函数与方程专题

合集下载

专题12 函数与方程(解析版)

专题12 函数与方程(解析版)

2023高考一轮复习讲与练12 函数与方程练高考 明方向1.(2022·新高考Ⅰ卷T10)(多选题)已知函数3()1f x x x =-+,则( ) A. ()f x 有两个极值点B. ()f x 有三个零点C. 点(0,1)是曲线()y f x =的对称中心D. 直线2y x =是曲线()y f x =的切线 【答案】AC 【解析】【分析】利用极值点的定义可判断A ,结合()f x 的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义判断D.【详解】由题,()231f x x '=-,令()0f x '>得3x >或3x <-,令()0f x '<得x <<,所以()f x 在(上单调递减,在(,-∞,)+∞上单调递增,所以x =是极值点,故A 正确;因(10f =+>,10f =>,()250f -=-<,所以,函数()f x 在,⎛-∞ ⎝⎭上有一个零点,当x ≥时,()03f x f ⎛≥> ⎝⎭,即函数()f x 在3⎛⎫∞ ⎪ ⎪⎝⎭上无零点,综上所述,函数()f x 有一个零点,故B 错误;令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-,则()h x 是奇函数,(0,0)是()h x 的对称中心, 将()h x 的图象向上移动一个单位得到()f x 的图象,所以点(0,1)是曲线()y f x =的对称中心,故C 正确;令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+,故D 错误. 2.(2022·全国乙(文)T20) 已知函数1()(1)ln f x ax a x x=--+. (1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围. 【答案】(1)1- (2)()0,+∞ 【解析】【分析】(1)由导数确定函数的单调性,即可得解; (2)求导得()()()211ax x f x x --'=,按照0a ≤、01a <<及1a >结合导数讨论函数的单调性,求得函数的极值,即可得解. 【小问1详解】 当0a =时,()1ln ,0f x x x x =-->,则()22111x f x x x x-'=-=, 当()0,1∈x 时,0f x,()f x 单调递增;当()1,x ∈+∞时,0fx,()f x 单调递减;所以()()max 11f x f ==-; 【小问2详解】()()11ln ,0f x ax a x x x =--+>,则()()()221111ax x a f x a x x x--+'=+-=, 当0a ≤时,10-≤ax ,所以当()0,1∈x 时,0f x,()f x 单调递增;当()1,x ∈+∞时,0fx,()f x 单调递减;所以()()max 110f x f a ==-<,此时函数无零点,不合题意; 当01a <<时,11a >,在()10,1,,a ⎛⎫+∞ ⎪⎝⎭上,0f x,()f x 单调递增;在11,a ⎛⎫⎪⎝⎭上,0f x,()f x 单调递减;又()110f a =-<,当x 趋近正无穷大时,()f x 趋近于正无穷大,所以()f x 仅在1,a ⎛⎫+∞ ⎪⎝⎭有唯一零点,符合题意;当1a =时,()()2210x f x x -'=≥,所以()f x 单调递增,又()110f a =-=, 所以()f x 有唯一零点,符合题意;当1a >时,11a <,在()10,,1,a ⎛⎫+∞ ⎪⎝⎭上,0f x ,()f x 单调递增;在1,1a ⎛⎫⎪⎝⎭上,0fx,()f x 单调递减;此时()110f a =->,又()1111ln n n n f a n a a aa -⎛⎫=-++ ⎪⎝⎭,当n 趋近正无穷大时,1n f a⎛⎫⎪⎝⎭趋近负无穷,所以()f x在10,a ⎛⎫ ⎪⎝⎭有一个零点,在1,a ⎛⎫+∞ ⎪⎝⎭无零点,所以()f x 有唯一零点,符合题意;综上,a 的取值范围为()0,+∞.【点睛】关键点点睛:解决本题的关键是利用导数研究函数的极值与单调性,把函数零点问题转化为函数的单调性与极值的问题.3.(2022·全国乙(理)T21)已知函数()()ln 1e xf x x ax -=++(1(当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程; (2(若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围. 【答案】(1)2y x = (2)(,1)-∞- 【解析】【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a 分类讨论,对x 分(1,0),(0,)-+∞两部分研究【小问1详解】()f x 的定义域为(1,)-+∞当1a =时,()ln(1),(0)0ex xf x x f =++=,所以切点为(0,0),11(),(0)21ex xf x f x ''-=+=+,所以切线斜率为2,所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x =。

2024年新高考版数学专题1_3.5 函数与方程及函数的综合应用(分层集训)

2024年新高考版数学专题1_3.5 函数与方程及函数的综合应用(分层集训)
A.2
B.3
答案 B
C.4
D.5
)
3.(2022南京师范大学附中期中,7)用二分法研究函数f(x)=x3+2x-1的零点
时,第一次计算,得f(0)<0,f(0.5)>0,第二次应计算f(x1),则x1等于 (
A.1
B.-1
答案 C
C.0.25
D.0.75
)
4.(多选)(2022湖南师大附中三模,11)已知函数f(x)的定义域为R,且f(x)=f(x
1.(2023届长春六中月考,7)若函数f(x)=ln x+x2+a-1在区间(1,e)内有零点,则
实数a的取值范围是 (
A.(-e2,0)
C.(1,e)
答案 A
B.(-e2,1)
D.(1,e2)
)
2.(2017课标Ⅲ,文12,理11,5分)已知函数f(x)=x2-2x+a(ex-1+e-x+1)有唯一零点,
A型
0.4
3
B型
0.3
4
C型
0.5
3
D型
0.4
4
则保温效果最好的双层玻璃的型号是 (
A.A型
答案 D
B.B型
C.C型
D.D型
)
3.(2020课标Ⅲ理,4,5分)Logistic模型是常用数学模型之一,可应用于流行
病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数
I(t)(t的单位:天)的Logistic模型:I(t)=
1 e
K
0.23( t 53)
,其中K为最大确诊病例数.
当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为(ln 19≈3) (

专题12函数与方程--2022年(新高考)数学高频考点+重点题型(解析版)

专题12函数与方程--2022年(新高考)数学高频考点+重点题型(解析版)

专题12函数与方程--2022年(新高考)数学高频考点+重点题型一、关键能力学生应掌握函数的零点、方程的解、图象交点(横坐标)三者之间的灵活转化,以实现快速解决问题.二、教学建议从近三年高考情况来看,本讲一直是高考的热点,尤其是函数零点(方程的根)个数的判断及由零点存在性定理判断零点是否存。

常常以基本初等函数为载体,结合函数的图象,判断方程根的存在性及根的个数,或利用函数零点确定参数的取值范围等.也可与导数结合考查.题目的难度起伏较大.三、自主梳理1.函数的零点(1)函数零点的定义对于函数y=f(x) (x∈D),把使f(x)=0的实数x叫做函数y=f(x) (x∈D)的零点.(2)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个__c__也就是方程f(x)=0的根.2.二次函数y=ax2+bx+c (a>0)的图象与零点的关系(☆☆☆)(x0),(x0)(x0)无交点四、高频考点+重点题型考点一、求解函数零点例1-1(直接求解函数零点)(2019·全国卷⇔)函数f(x)=2sin x-sin 2x在[0,2π]所有零点之和为【答案】3π【解析】由f(x)=2sin x-sin 2x=2sin x-2sin x cos x=2sin x·(1-cos x)=0得sin x=0或cos x =1,⇔x=kπ,k⇔Z,又⇔x⇔[0,2π],⇔x=0,π,2π,即零点有3个.例1-2(二分法求零点)用二分法求函数f(x)=3x-x-4的一个零点,其参考数据如下:据此数据,可得方程3x-x-4=0的一个近似解为________(精确到0.01)【答案】1.56【解析】注意到f(1.5562)=-0.029和f(1.5625)=0.003,显然f(1.5562)f(1.5625)<0,故区间的端点四舍五入可得1.56.对点训练1.(天津高考真题)已知函数,函数,则函数的所有零点之和为()A.2 B.3 C.4 D.5【答案】A【解析】当x<0时2−x>2,所以f(x)=2−|x|=2+x,f(2−x)=x2,此时函数f(x)−g(x)=f(x)+f(2−x)−3=x2+x−1的小于零的零点为x=−1+√5;当0≤x≤2时f(x)=2−2|x|=2−x,f(2−x)=2−|2−x|=x,函数f(x)−g(x)=2−x+x−3=−1无零点;当x>2时,f(x)=(x−2)2,f(2−x)=2−|2−x|=4−x,函数f(x)−g(x)=(x−2)2+4−x−3=x2−5x+5大于2的零点为x=5+√5,综上可得.故选A.2对点训练2.(2020·郸城县实验高中高一月考)如图是函数f(x)的图象,它与x轴有4个不同的公共点.给出的下列四个区间之中,存在不能用二分法求出的零点,该零点所在的区间是( )A .[-2.1,-1]B .[4.1,5]C .[1.9,2.3]D .[5,6.1]【答案】C 【解析】结合图象可得:ABD 选项每个区间的两个端点函数值异号,可以用二分法求出零点, C 选项区间两个端点函数值同号,不能用二分法求零点. 故选:C对点训练3.用二分法求函数()y f x =在区间()2,4上的近似解,验证()()240f f <,给定精度为0.1,需将区间等分__________次. 【答案】5 【解析】因为区间()2,4的长度为2,所以第一次等分后区间长度为1,第二次等分后区间长度为0.5,……第四次等分后区间长度为0.125<0.2,第五次等分区间后区间长度为0.0625<0.1,所以需要将区间等分5次. 故答案为5.考点二、判断函数零点个数 例2-1(直接求解零点)(2020·江苏省高三其他)设表示不超过实数的最大整数(如,),则函数的零点个数为_______.[]t t [ 1.3]2-=-[2.6]2=[]()21f x x x =--【答案】2 【解析】函数的零点即方程的根,函数的零点个数,即方程的根的个数..当时,. 当时,或或(舍). 当时,,方程无解. 综上,方程的根为,1. 所以方程有2个根,即函数有2个零点. 故答案为:2.例2-2(零点存在定理+单调性)(2021·北京清华附中高三其他模拟)函数()ln 6f x x x =+-的零点一定位于区间( ) A .()2,3 B .()3,4C .()4,5D .()5,6【答案】C 【解析】根据零点存在性定理,若在区间(,)a b 有零点,则()()0f a f b ⋅<,逐一检验选项,即可得答案. 【详解】由题意得()ln 6f x x x =+-为连续函数,且在(0,)+∞单调递增,(2)ln 240,(3)ln330f f =-<=-<,2(4)ln 42ln 20f e =-<-=,(5)ln 51ln 10f e =->-=,根据零点存在性定理,(4)(5)0f f ⋅<,[]()21f x x x =--[]21x x -=∴()f x []21x x -=[]210,0,0x x x -≥∴≥∴≥01x ≤<[]10,210,2x x x =∴-=∴=1x =[]1,211,211x x x =∴-=∴-=211,1x x -=-∴=0x =1x >[]2121x x x x -=->≥∴[]21x x -=[]21x x -=12[]21x x -=[]()21f x x x =--所以零点一定位于区间()4,5. 故选:C例2-3(2021·山东烟台市·高三二模)已知函数()f x 是定义在区间()(),00,-∞+∞上的偶函数,且当()0,x ∈+∞时,()()12,0221,2x x f x f x x -⎧<≤⎪=⎨-->⎪⎩,则方程()2128f x x +=根的个数为( ) A .3 B .4 C .5 D .6【答案】D 【解析】将问题转化为()f x 与228xy =-的交点个数,由解析式画出在(0,)+∞上的图象,再结合偶函数的对称性即可知定义域上的交点个数. 【详解】要求方程()2128f x x +=根的个数,即为求()f x 与228xy =-的交点个数,由题设知,在(0,)+∞上的图象如下图示,∴由图知:有3个交点,又由()f x 在()(),00,-∞+∞上是偶函数,∴在,0上也有3个交点,故一共有6个交点.故选:D.对点训练1.(2020·开原市第二高级中学高三)函数21()f x x x=+,(0,)x ∈+∞的零点个数是( ). A .0 B .1C .2D .3【答案】A 【解析】根据函数定义域,结合零点定义,即可容易判断和求解. 【详解】 由于20x >,10x>, 因此不存在(0,)x ∈+∞使得21()0f x x x=+=, 因此函数没有零点. 故选:A .对点训练2-1.(2020·海丰县彭湃中学高一期末)函数的零点所在的大致区间为( ) A . B . C . D .【答案】D 【解析】因为函数在R 上单调递减, ,,所以零点所在的大致区间为 故选:D对点训练2-2【多选题】(2021·湖北荆州市·荆州中学高三其他模拟)在下列区间中,函数()43x f x e x =--一定存在零点的区间为( )A .11,2⎛⎫- ⎪⎝⎭B .(,3)e -C .10,2⎛⎫ ⎪⎝⎭D .11,e ⎛⎫- ⎪⎝⎭31()102f x x x =--+(1,0)-(0,1)(1,2)(2,3)31()102f x x x =--+(2)10f =>(3)0f <(2,3)【答案】ABD 【解析】本题首先可通过求导得出函数()f x 在()ln 4,+∞上是增函数、在(),ln 4-∞上是减函数以及()ln 40f <,然后通过函数()f x 的单调性以及零点存在性定理对四个选项依次进行判断,即可得出结果. 【详解】()43x f x e x =--,()4x f x e '=-,当()0f x '>时,ln 4x >,函数()f x 在()ln 4,+∞上是增函数; 当()0f x '<时,ln 4x <,函数()f x 在(),ln 4-∞上是减函数,()ln4ln 44ln 4314ln 40f e =--=-<,A 项:()1114310f e e--=-=+>+,1211435022f e ⎛⎫=-⨯-=< ⎪⎝⎭,因为()1102f f ⎛⎫-⨯< ⎪⎝⎭,所以函数()f x 在11,2⎛⎫- ⎪⎝⎭内存在零点,A 正确;B 项:()430ef e e e -+-=->,()333123150f e e =--=>-,因为ln 43e,()ln 40f <,所以函数()f x 在(,3)e -内存在零点,B 正确;C 项:()00320f e =-=-<,102f ⎛⎫<⎪⎝⎭,()1002f f ⎛⎫⨯> ⎪⎝⎭, 因为1ln 42,所以函数()f x 在10,2⎛⎫⎪⎝⎭内不存在零点,C 错误; D 项:()10f ->,11430e f e e e ⎛⎫=--< ⎪⎝⎭,()110f f e ⎛⎫-⨯< ⎪⎝⎭, 则函数()f x 在11,e ⎛⎫- ⎪⎝⎭内存在零点,D 正确, 故选:ABD.对点训练3.(2018·全国卷⇔)已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)【答案】C【解析】令h (x )=-x -a ,则g (x )=f (x )-h (x ).在同一坐标系中画出y =f (x ),y =h (x )的示意图,如图所示.若g (x )存在2个零点,则y =f (x )的图象与y =h (x )的图象有2个交点,平移y =h (x )的图象,可知当直线y =-x -a 过点(0,1)时,有2个交点,此时1=-0-a ,a =-1.当y =-x -a 在y =-x +1上方,即a <-1时,仅有1个交点,不符合题意.当y =-x -a 在y =-x +1下方,即a >-1时,有2个交点,符合题意.综上,a 的取值范围为[-1,+∞).故选C.考点三、已知零点求参 例3-1(已知零点个数求参)(2021·广东茂名市·高三二模)已知函数()()12log 1,0,(1),0,x x f x f x x ⎧+≥⎪=⎨⎪+<⎩若函数()()g x f x x a =--有且只有两个不同的零点,则实数a 的取值可以是( )A .-1B .0C .1D .2【答案】B 【解析】作出函数()f x 的图象如下图所示,将原问题转化为函数()f x 的图象与直线+y =x a 有两个不同的交点,根据图示可得实数a 的取值范围. 【详解】作出函数()f x 的图象如下图所示,令()()0g x f x x a =--=,即()+f x x a =, 所以要使函数()()g x f x x a =--有且只有两个不同的零点,则需函数()f x 的图象与直线+y =x a 有两个不同的交点,根据图示可得实数a 的取值范围为(]10-,,故选:B.例3-2(已知零点所在区间求参)函数f (x )=2x-2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)【答案】C【解析】因为f (x )在(0,+∞)上是增函数,则由题意得f (1)·f (2)=(0-a )(3-a )<0,解得0<a <3,故选C 。

专题三 基本初等函数、函数与方程

专题三  基本初等函数、函数与方程

专题复习《基本初等函数、函数与方程》例1、二次函数1、若定义在R 上的函数()225f x ax x =++在区间()2,+∞上是减函数,则实数a 的取值范围是__ __;【答案】[)0,+∞; 2、若函数()()231f x mx m x =+-+对于任意x R ∈恒有()()f x f m ≤(其中m 为常数),则函数()f x 的单调递增区间为 ; 【答案】3,2⎛⎤-∞- ⎥⎝⎦;3、已知函数()[]268,1,f x x x x a =-+∈,并且()f x 的最小值为()f a ,则实数a 的取值范围是 ;【答案】(]1,3; 4、设二次函数()221f x ax ax =++在区间[]3,2-上有最大值4,则实数a 值为 ;【答案】38或3-; 5、关于x 方程()2310mx m x +-+=的根均大于0,则实数m 的取值范围是_________。

【答案】01m ≤≤; 6、关于x 方程()22120x a x a +-+-=的一个根比1大,另一个根比1小,则有( )A 、11a -<<B 、2a <-或1a >C 、21a -<<D 、1a <-或2a > 【答案】C ; 7、(2014江苏)已知函数()21f x x mx =+-,若对于任意的[],1x m m ∈+都有()0f x <,则实数m 的取值范围为 .【答案】⎛⎫ ⎪⎝⎭;8、已知关于x 的不等式240ax ax ++>的解集为R ,则实数a 的取值范围为 ;【答案】016a ≤<; 9、若关于x 的不等式2160x kx ++≥的解集为R ,则实数k 的取值范围为 ;【答案】88k -≤≤;例2、指数与指数函数1、()52-的5次方根是________; ()42-的4次方根是________; 【答案】-2;2±; 2、15a a-+=,则22a a-+的值为 ;1122a a-+的值为 ;【答案】由15a a-+=得()2125a a -+= 22225a a-∴++= 2223a a-∴+=【答案】由题可知110,0a a ->> 11220a a -∴+> 又21112227a a a a --+=++=⎛⎫ ⎪⎝⎭,1122a a -∴+=3、已知函数()24x f x a n -=+(0a >且1a ≠)的图像恒过定点(),2P m ,则m n += ; 【答案】3;4、函数y = )A 、1,2⎡⎫+∞⎪⎢⎣⎭B 、1,2⎛⎤-∞ ⎥⎝⎦C 、(),-∞+∞D 、(],1-∞ 【答案】A ;5、函数y = )A 、[)0,+∞B 、[]0,3C 、[)0,3D 、()0,3 【答案】C ;6、函数2412x xy +⎛⎫= ⎪⎝⎭的值域为 ; 【答案】(]0,16;7、设函数()()()x x f x x e ae x R =+∈是偶函数,则实数a 的值为 ; 【答案】1-;8、若函数(),142,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤⎪ ⎪⎝⎭⎩在R 上是增函数,则实数a 的取值范围是( )A 、()1,+∞B 、()1,8C 、()4,8D 、[)4,8 【答案】D ;例3、对数与对数函数1、求值:①13log = ; ②21log 32.51log 6.25lg2100+++= ; 【答案】①13-; ②132; 2、函数()22log 32y x =+-(0,1a a >≠且)的图象恒过定点P ,则P 点坐标为 ;【答案】()1,2; 3、函数()213log 32y x x =--的单调递增区间是( )A 、()3,1-B 、1,12⎛⎫⎪⎝⎭C 、()1,+∞D 、[)1,1- 【答案】D ;4、已知函数()()log ,121,1a x x f x a x x ⎧>⎪=⎨--≤⎪⎩在(),-∞+∞上单调递增,则实数a 的取值范围是 ; 【答案】(]2,3;5、已知函数()log 2a y ax =-在区间[]0,1上是关于x 的减函数,则实数a 的取值范围是( )A 、()0,1B 、()1,2C 、()0,2D 、[)2,+∞ 【答案】B ;6、已知函数()()212log 23f x x ax =-+在区间(],1-∞上是增函数,求实数a 的取值范围是 ;【答案】[)1,2;7、函数()22log 43y kx kx =++的定义域为R ,则实数k 的取值范围是_______;【答案】304k ≤<;8、已知函数()()2lg 1f x x mx =-+的值域为R ,则实数m 的取值范围为 ; 【答案】()(),22,-∞-+∞ ;9、【2014辽宁】已知132a -=,123log b =,1132log c =则( )A 、a b c >>B 、a c b >>C 、c a b >>D 、c b a >> 【答案】C ;10、函数()lg(f x x =是( )A 、奇函数B 、偶函数C 、既是奇函数又是偶函数D 、非奇非偶函数 【答案】A ;11、若函数()y f x =的反函数的图象经过点()1,5,则函数()y f x =的图象必过点( ) A 、()5,1 B 、()1,5 C 、()1,1 D 、()5,5 【答案】A ;例4、幂函数1、已知点⎝在幂函数()f x 的图象上,则( ) A 、()3f x x = B 、()3f x x -= C 、()12f x x = D 、()12f x x-= 【答案】B ;2、当()0,x ∈+∞时,幂函数()()121m f x m m x-+=--为减函数,则实数m = ; 【答案】2;3、若函数2223()(1)m m f x m m x --=--是幂函数,且是偶函数,则实数m 的值为_______;【答案】1-;4、(2016全国III )已知432a =,233b =,1325c =,则( )A 、b a c <<B 、a b c <<C 、b c a <<D 、c a b << 【答案】A ;例5、函数与方程 1、函数()()1ln 3x xf x x -=-的零点个数为( )A 、1B 、2C 、3D 、0 【答案】A ;2、已知实数1,01a b ><<,则函数()xf x a x b =+-的零点所在的一个区间是( )A 、()2,1--B 、()1,0-C 、()0,1D 、()1,2 【答案】B ;3、若函数()()()251f x x x =---有两个零点12,x x ,且12x x <,则( )A 、122,25x x <<<B 、122,5x x >>C 、122,5x x <>D 、1225,5x x <<> 【答案】C ; 4、若函数()215f x x ax =-+-(a 是常数,且a R ∈)恰有两个不同的零点,则a 的取值范围是 ; 【答案】()2,2-;5、(2012北京)函数()1212xf x x ⎛⎫=- ⎪⎝⎭的零点个数为( )A 、0B 、1C 、2D 、3 【答案】B ;6、已知函数()221,02,0x x f x x x x ⎧⎪->=⎨⎪⎩--≤,若函数()y f x m =-有3个不同的零点,则实数m 的取值范围是 ;【答案】()0,1;7、已知函数()()21,01,0x x f x f x x -⎧-≤⎪=⎨->⎪⎩,若方程()f x x a =+有且只有两个不相等的实数根,则实数a 的取值范围是( )A 、(],0-∞B 、[)0,1C 、(),1-∞D 、[)0,+∞ 【答案】C ; 8、若关于x 的方程31x k -=有一解,则实数k 的取值范围为 ; 【答案】[){}1,0+∞ ; 9、(2016山东)已知函数()2,24,x x mf x x mx m x m⎧≤⎪=⎨-+>⎪⎩(其中0m >),若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则实数m 的取值范围是 ; 【答案】()3,+∞;提示:由题2224m m m m -+<;10、若定义在R 上的偶函数()f x 满足()()2f x f x +=,且当[]0,1x ∈时,()f x x =,则方程()2log 0f x x -= 的根的个数是( )A 、6B 、4C 、3D 、2 【答案】B ;11、已知定义在R 上的奇函数()y f x =的图象关于直线1x =对称,当01x <≤时,()12log f x x =,则方程()10f x -=在()0,6内所有根之和为( )A 、8B 、10C 、12D 、16 【答案】C ;12、已知函数()[]ln 23f x x x =-+,其中[]x 表示不大于x 的最大整数(如[][]1.61, 2.13=-=-),则函数()f x 的零点个数是( )A 、1B 、2C 、3D 、4 【答案】B ; 13、已知函数()1312,132,1x x f x x x x -⎧-≥⎪=⎨⎪-+<⎩,则方程()21f x =的根的个数为( )A 、1B 、2C 、3D 、4【答案】C ;提示:由题()12f x =;当1x ≥时,11122x--= 2x ∴= 当1x <时,3132x x -+=即3330x x -+= 令()333g x x x =-+ ()233g x x '∴=-令()0g x '=得1x =或1x =-()g x ∴在(),1-∞-上是增函数,在()1,1-上是减函数 又()712g -=,()112g =- ()g x ∴在区间(),1-∞上有2个零点 综上方程()21f x =的根的个数为3.14、已知函数()()12,12ln ,1x x f x x x ⎧+≤⎪=⎨⎪>⎩,若函数()()g x f x ax =-恰有两个零点,则实数a 的取值范围是( )A 、10,e ⎛⎫ ⎪⎝⎭B 、10,3⎛⎫ ⎪⎝⎭C 、11,3e ⎡⎫⎪⎢⎣⎭D 、1,3e ⎡⎫⎪⎢⎣⎭【答案】C ;15、已知定义在(]0,2上的函数()(](]113,0,121,1,2x x x f x x -⎧-∈⎪=⎨⎪-∈⎩,且()()g x f x mx =-在(]0,2内有且仅有两个不同的零点,则实数m 的取值范围是( )A 、91,20,42⎛⎤⎛⎤-- ⎥⎥⎝⎦⎝⎦B 、111,20,42⎛⎤⎛⎤-- ⎥⎥⎝⎦⎝⎦C 、92,20,43⎛⎤⎛⎤-- ⎥⎥⎝⎦⎝⎦D 、112,20,43⎛⎤⎛⎤-- ⎥⎥⎝⎦⎝⎦ 【答案】A ; 16、设函数()2lg ,02,0x x f x x x x ⎧>⎪=⎨--≤⎪⎩,若函数()()2221y f x bf x ⎡⎤=++⎣⎦有8个不同的零点,则实数b 的取值范围是 ;【答案】3,2⎛- ⎝;【解析】令()f x t =,则2221y t bt =++ 由()f x 图象知,当()0,1t ∈时,函数()t f x =有4个交点故22210t bt ++=有两个不等实根12,t t 且()12,0,1t t ∈令()2221g x t bt =++ 则()()2480010123020122b g g b b ⎧∆=->⎪⎪=>⎪⎨=+>⎪⎪<-<⎪⎩⨯解得32b -<< 17、已知定义在R 的函数()y f x =满足1322f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,当11x -<≤时,()f x x =;若方程()log a f x x =恰好有6个根,则实数a 的取值范围是( )A 、11,75⎡⎤⎢⎥⎣⎦B 、[)11,5,775⎡⎫⎪⎢⎣⎭C 、[)11,3,553⎡⎫⎪⎢⎣⎭D 、11,53⎡⎤⎢⎥⎣⎦【答案】B ;18、设函数()[](),01,0x x x f x f x x ⎧-≥⎪=⎨+<⎪⎩,其中[]x 表示不超过x 的最大整数,如[][][]1.22,1.21,11-=-==,若直线()0y kx k k =+>与函数()y f x =的图象恰有三个不同的交点,则实数k 的取值范围是( )A 、11,43⎡⎫⎪⎢⎣⎭B 、10,4⎛⎤ ⎥⎝⎦C 、11,43⎡⎤⎢⎥⎣⎦D 、11,43⎛⎫⎪⎝⎭【答案】A ;19、已知函数()(),11,1x e x f x f x x ⎧≤⎪=⎨->⎪⎩,()1g x kx =+,若方程()()0f x g x -=有两个不等的实根,则实数k 的取值范围是 ; 【答案】(]1,11,12e e -⎛⎫- ⎪⎝⎭;。

专题练 第5练 基本初等函数、函数与方程

专题练 第5练 基本初等函数、函数与方程

6.(2018·全国Ⅰ)已知函数f(x)=elnx,x,x≤x>00,,g(x)=f(x)+x+a.若g(x)存在2个 零点,则a的取值范围是
A.[-1,0)
B.[0,+∞)
√C.[-1,+∞)
D.[1,+∞)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
令h(x)=-x-a,则g(x)=f(x)-h(x). 在同一坐标系中画出y=f(x),y=h(x)图象的示意图, 如图所示. 若g(x)存在2个零点,则y=f(x)的图象与y=h(x)的图象有2个交点,平 移y=h(x)的图象可知,当直线y=-x-a过点(0,1)时,有2个交点, 此时1=-0-a,a=-1. 当y=-x-a在y=-x+1上方,即a<-1时,仅有1个交点,不符合 题意; 当y=-x-a在y=-x+1下方,即a>-1时,有2个交点,符合题意. 综上,a的取值范围为[-1,+∞).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
14.(2022·临汾模拟)2019年在阿塞拜疆举行的联合国教科文组织第43届世界遗
产大会上,随着木槌落定,良渚古城遗址成功列入《世界遗产名录》,这座见 证了中华五千多年文明史的古城迎来了在世界文明舞台上的“高光时刻”,标
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10.(2022·淮安模拟)已知函数f(x)=(3m-2)·xm+2(m∈R)是幂函数,则函数
g(x)=loga(x-m)+1(a>0,且a≠1)的图象所过定点P的坐标是
√A.(2,1)
B.(0,2)
C.(1,2)
D.(-1,2)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

专题07 二次函数与一元二次方程(解析版)

专题07 二次函数与一元二次方程(解析版)

数学八年级下暑假预习专题训练专题七二次函数与一元二次方程【专题导航】目录【考点一抛物线与坐标轴的交点】...................................1【考点二图像法求一元二次方程的解】...............................5【考点三图像法求一元二次不等式的解集】...........................11【考点四抛物线与x 轴的交点问题】.................................17【考点五求x 轴与抛物线的截线长】..................................23【聚焦考点1】抛物线与坐标轴的交点已知二次函数(1)轴与二次函数得交点为(0,).(2)二次函数与轴的交点二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根.【典例剖析1】【典例1-1】已知抛物线()2y a x h k =-+与x 轴有两个交点()1,0A -,()3,0B ,抛物线()2y a x h m k =--+与x 轴的一个交点是()4,0,则m 的值是()A .5B .1-C .5或1D .5-或1-【答案】C【分析】将()2y a x h k =-+往右平移m 个单位后得到()2y a x h m k =--+,由此即可求解.【详解】解:比较抛物线()2y a x h k =-+与抛物线()2y a x h m k =--+,发现:将前一个抛物线往右平移m 个单位后可以得到后一个抛物线的解析式,∵()2y a x h m k =--+与x 轴的一个交点是()4,0,()2y a x h k =-+与x 轴有两个交点()1,0A -,()3,0B ,∴当前一个抛物线往右平移1个单位时,后一个抛物线与x 轴的一个交点是()4,0,故m =1,当前一个抛物线往右平移5个单位时,后一个抛物线与x 轴的一个交点是()4,0,故m =5,故选:C .【点评】本题考查二次函数的平移规律,左右平移时y 值不变,x 增大或减小,由此即可求解.【典例1-2】若二次函数()()2224y m x x m =-++-的图像过原点,则m =______.【答案】2-【解析】【分析】将(0,0)代入解析式求解,然后根据二次函数的定义进行讨论,最后取得m 的值.【详解】解,由题意,将(0,0)代入解析式,得:24=0m -解得:=2m ±又∵在二次函数中,20m -≠∴m=-2故答案为:-2.【点评】本题考查二次函数的性质及定义,掌握二次函数二次项系数不能为0是本题的解题关键.【典例1-3】抛物线2(1)1y k x x =--+与x 轴有交点,则k 的取值范围是___________________.【答案】54k且1k ≠【解析】【分析】直接利用根的判别式进行计算,再结合10k -≠,即可得到答案.【详解】解:∵抛物线2(1)1y k x x =--+与x 轴有交点,∴2(1)4(1)10k ∆=--⨯-⨯≥,∴54k ≤,又∵10k -≠,∴1k ≠,∴k 的取值范围是54k且1k ≠;故答案为:54k且1k ≠.【点评】本题考查了二次函数与坐标轴有交点的问题,解题的关键是掌握根的判别式求参数的取值范围.针对训练1【变式1-1】抛物线244y x x =-+-与坐标轴的交点个数为()A .0B .1C .2D .3【答案】C【分析】先计算自变量为0对应的函数值得到抛物线与y 轴的交点坐标,再解方程2440x x -+-=得抛物线与x 轴的交点坐标,从而可对各选项进行判断.【详解】当0x =时,2444y x x =-+-=-,则抛物线与y 轴的交点坐标为(0,4)-,当0y =时,2440x x -+-=,解得122x x ==,抛物线与x 轴的交点坐标为(2,0),所以抛物线与坐标轴有2个交点.故选C .【点评】本题考查了抛物线与x 轴的交点:把求二次函数2(,,y ax bx c a b c =++是常数,0)a ≠与x 轴的交点坐标问题转化为解关于x 的一元二次方程.【变式1-2】将抛物线y =(x ﹣1)2+3向左平移1个单位,得到的抛物线与y 轴的交点坐标是()A .(0,2)B .(0,3)C .(0,4)D .(0,7)【答案】B【分析】先根据顶点式确定抛物线y =(x -1)2+3的顶点坐标为(1,3),再利用点的平移得到平移后抛物线的顶点坐标为(0,3),于是得到移后抛物线解析式为y =x 2+3,然后求平移后的抛物线与y 轴的交点坐标.【详解】解:抛物线y =(x -1)2+3的顶点坐标为(1,3),把点(1,3)向左平移1个单位得到点的坐标为(0,3),所以平移后抛物线解析式为y =x 2+3,所以得到的抛物线与y 轴的交点坐标为(0,3).故选:B .【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.【能力提升1】【提升1-1】抛物线()2221y x k x k =+--(k 为常数)与x 轴交点的个数是__________.【答案】2【解析】【分析】求出∆的值,根据∆的值判断即可.【详解】解:∵∆=4(k-1)2+8k=4k 2+4>0,∴抛物线与x 轴有2个交点.故答案为:2.【点评】本题考查了二次函数与坐标轴的交点问题,二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)的图象与x 轴的交点横坐标是一元二次方程ax 2+bx +c =0的根.当∆=0时,二次函数与x 轴有一个交点,一元二次方程有两个相等的实数根;当∆>0时,二次函数与x 轴有两个交点,一元二次方程有两个不相等的实数根;当∆<0时,二次函数与x 轴没有交点,一元二次方程没有实数根.【提升1-2】已知抛物线()2y a x h k =-+与x 轴有两个交点()1,0A -,()3,0B ,抛物线()2y a x h m k =--+与x 轴的一个交点是()4,0,则m 的值是()A .5B .1-C .5或1D .5-或1-【答案】C【分析】将()2y a x h k =-+往右平移m 个单位后得到()2y a x h m k =--+,由此即可求解.【详解】解:比较抛物线()2y a x h k =-+与抛物线()2y a x h m k =--+,发现:将前一个抛物线往右平移m 个单位后可以得到后一个抛物线的解析式,∵()2y a x h m k =--+与x 轴的一个交点是()4,0,()2y a x h k =-+与x 轴有两个交点()1,0A -,()3,0B ,∴当前一个抛物线往右平移1个单位时,后一个抛物线与x 轴的一个交点是()4,0,故m =1,当前一个抛物线往右平移5个单位时,后一个抛物线与x 轴的一个交点是()4,0,故m =5,故选:C .【点评】本题考查二次函数的平移规律,左右平移时y 值不变,x 增大或减小,由此即可求解.【聚焦考点2】图像法求一元二次方程的解利用抛物线y =ax 2+bx +c 与x 轴的交点的横坐标求一元二次方程ax 2+bx +c =0的根.具体过程如下:①在平面直角坐标系中画出抛物线y =ax 2+bx +c ;②观察图象,确定抛物线与x 轴的交点的横坐标;③交点的横坐标为一元二次方程ax 2+bx +c =0的根.2.用两点夹逼法估计一元二次方程的根,具体方法如下:在交点(抛物线与x 轴的交点)的两侧各取一点,则一元二次方程的根在这两个点的横坐标之间.3.通过取平均数求根的近似值,具体的操作过程如下:①取使函数值异号且绝对值较小的两个自变量的值m ,n ;②分别将2m n +,n (或2m n +,m )作为自变量的值代入函数解析式,判断其函数值是否异号;③重复执行步骤①②,以提高根的估计值的精确度。

高考数学《函数与方程综合问题》专题复习

高考数学《函数与方程综合问题》专题复习

第五讲函数与方程综合A 组一、选择题1.(2018全国卷Ⅰ)已知函数⎩⎨⎧>≤=,0,ln ,0,)(x x x e x f x ()()=++g x f x x a .若()g x 存在2个零点,则a 的取值范围是( ) A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞【答案】C【解析】函数()()=++g x f x x a 存在 2个零点,即关于x 的方程()=--f x x a 有2 个不同的实根, 函数()f x 的图象与直线=--y x a 有2个交点,作出直线=--y x a 与函数()f x 的图象, 如图所示,xy–1–2123–1–2123O由图可知,1≤-a ,解得1-≥a ,故选C .2.已知实数a ,b 满足23a=,32b=,则函数()xf x a x b =+-的零点所在的区间是( )A. ()21--,B.()1,0-C.()0,1D.()1,2 【解析】23a =,32b =,∴1a >,01b <<,又()x f x a x b =+-,∴()1110f b a-=--<,()010f b =->,从而由零点存在定理可知()f x 在区间()1,0-上存在零点.故选B.3.已知函数()12+-=x x f ,()kx x g =.若方程()()f x g x =有两个不相等的实根,则实数k 的取值范围是A .),(210B .),(121C .),(21D .),(∞+2【答案】B【解析】如图所示,方程()()f x g x =有两个不相等的实根等价于两个函数的图象有两个不同的交点,结合图象可知,当直线y kx =的斜率大于坐标原点与点(2,1)的连续的斜率,且小于直线1y x =-的斜率时符合题意,故选112k <<.4.设函数1()ln 3f x x x =-,则函数()f x ( ) A .在区间1(,1)e ,(1,)e 内均有零点 B .在区间1(,1)e ,(1,)e 内均无零点C .在区间1(,1)e内有零点,在(1,)e 内无零点 D .在区间1(,1)e内无零点,在((1,)e 内有零点 【解析】1()ln 3f x x x =-的定义域为(0,)+∞,'11()3f x x=-,故()f x 在(0,3)上递减,又 1()0,(1)0,()0f f f e e>><,故选D. 5. 已知函数()f x 满足:()()1fx f x +=-,且()f x 是偶函数,当[]0,1x ∈时,()2f x x =,若在区间[]1,3-内,函数()()k kx x f x g --=有4个零点,则实数k 的取值范围是( ) A .()+∞,0 B .⎥⎦⎤ ⎝⎛21,0 C .⎥⎦⎤ ⎝⎛41,0 D .11,43⎡⎤⎢⎥⎣⎦【解析】由(1)()()f x f x f x +=-⇒的周期为2,又()f x 是偶函数,且[]0,1x ∈时,()2f x x =,故可示意()f x 在[1,3]-上图象,()()k kx x f xg --=有4个零点转化为函数()f x 与(1)y k x =+在x ∈[1,3]-上有4个交点,由图象知1(0,]4k ∈,故选C.6.已知方程923310x xk -⋅+-=有两个实根,则实数k 的取值范围为( ) A.2[,1]3 B. 12(,]33 C.2[,)3+∞ D.[1, +∞)【解析】设3xt =,原题转化为函数2()231g t t t k =-+-在(0,)t ∈+∞上有两个零点(可以相同),则44(31)020310k k --≥⎧⎪>⎨⎪->⎩解得12(,]33k ∈,故选B.7.(2016高考新课标2卷理)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()miii x y =+=∑( )A. 0B. mC. 2mD. 4m 【解析】由于()()2f x f x -+=,不妨设()1f x x =+,与函数111x y x x+==+的交点为()()1,2,1,0-,故12122x x y y +++=,故选B.(客观上函数()y f x =与1x y x+=有共同的对称中心(0,1),所以它们的所有交点 关于(0,1)对称 二、填空题8.(2018年全国卷Ⅲ)函数()cos(3)6f x x π=+在[0,]π的零点个数为________.【答案】3【解析】由题意知,cos(3)06x π+=,所以362x k πππ+=+,k ∈Z ,所以93k x ππ=+,k ∈Z ,当0k =时,9x π=;当1k =时,49x π=;当2k =时,79x π=,均满足题意,所以函数()f x 在[0,]π的零点个数为3.10.若函数f (x )=21x --x-m 无零点,则实数m 的取值范围是 .【解析】原题转化为函数y =1的平行线系y x m =+没有公共点的问题,画图,可得1m <-或2m >.11.设常数a 使方程sin 3cos x x a +=在闭区间[0,2]π上恰有三个解123,,x x x ,则123x x x ++= . 【解析】原方程可变为2sin()3a x π=+,作出函数2sin()3y x π=+的图象,再作直线y a =,从图象可知 函数2sin(x )3y π=+在[0,]6π上递增,在7[,]66ππ上递减,在7[,2]6ππ上递增,只有当3a =时,才有三个交点,1230,,23x x x ππ===,所以123x x x ++=73π.12.(2016高考山东卷理)已知函数2||,()24,x x m f x x mx m x m≤⎧=⎨-+>⎩ 其中0m >,若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是________________.【解析】画出函数图象如下图所示:由图所示,要()f x b =有三个不同的根,需要红色部分图像在深蓝色图像的下方,即2224,30m m m m m m m >-⋅+->,解得3m >.13.(2018年高考上海卷)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时,某地上班族S 中的成员仅以自驾或公交方式通勤,分析显示:当S 中%(0100)x x <<的成员自驾时,自驾群体的人均通勤时间为30,030,()1800290,30100x f x x x x <⎧⎪=⎨+-<<⎪⎩≤(单位:分钟), 而公交群体的人均通勤时间不受x 影响,恒为40分钟,试根据上述分析结果回答下列问题: (1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S 的人均通勤时间()g x 的表达式;讨论()g x 的单调性,并说明其实际意义.(2)设该地上班族总人数为n ,则自驾人数为%n x ⋅,乘公交人数为(1%)n x ⋅-.因此人均通勤时间30%40(1%),030()1800(290)%40(1%),30100n x n x x ng x x n x n x x x n ⋅⋅+⋅⋅-⎧<⎪⎪=⎨+-⋅⋅+⋅⋅-⎪<<⎪⎩≤,整理得:240,0010()1(32.5)36.875,3010050x x g x x x ⎧-<⎪⎪=⎨⎪-+<<⎪⎩≤3,则当(0,30](30,32.5]x ∈,即(0,32.5]x ∈时,()g x 单调递减;当(32.5,100)x ∈时,()g x 单调递增.实际意义:当有32.5%的上班族采用自驾方式时,上班族整体的人均通勤时间最短.适当的增加自驾比例,可以充分的利用道路交通,实现整体效率提升;但自驾人数过多,则容易导致交通拥堵,使得整体效率下降.B 组一、选择题 1.设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点11(,)A x y ,22(,)B x y ,则下列判断正确的是( )A .120x x +>,120y y +>B .120x x +>,120y y +<C .120x x +<,120y y +>D .120x x +<,120y y +< 【解析】依题意,示意图象,可知120x x +>,且12,x x 异号,而1212120x x y y x x ++=<,故选B.2.已知函数()1xf x xe ax =--,则关于()f x 的零点叙述正确的是( ) A.当0a =时,函数()f x 有两个零点 B.函数()f x 必有一个零点是正数 C.当0a <时,函数()f x 有两个零点 D.当0a >时,函数()f x 只有一个零点 【解析】函数()1xf x xe ax =--的零点可转化为函数xy e =与1y a x=+图象的交点情况研究,选B. 3.已知函数2()22(4)1f x mx m x =--+,()g x mx =,若对于任意实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是( )A. (0,2)B. (0,8)C. (2,8)D.(,0)-∞【解析】依题意,0m =不符;0m <时,则对于[0,)x ∀∈+∞,当x →+∞时,显然()0f x <,不符;0m >时,则对于(,0]x ∀∈-∞,()0f x >,由(0)10f =>,需对称轴:024>-=m m x 或⎪⎩⎪⎨⎧<--≤-08)4(40242m m mm, 解得(0,8)x ∈,故选B.4.函数()lg(1)sin 2f x x x =+-的零点个数为 ( )A. 9B. 10C. 11D. 12 【解析】示意函数lg(||1)y x =+与y sin 2x =的图象可确定选D.5.已知函数sin()1,0()2log (0,1),0a x x f x x a a x π⎧-<⎪=⎨⎪>≠>⎩的图象上关于y 轴对称的点至少有3对,则实数a 的取值范围是( ) A.5(0,)5 B.5(,1)5C.3(,1)3D.3(0,)3 【解析】依题意,需要()f x 在y 轴左侧图象对称到y 轴右侧,即sin()1(0)2xy x π=-->,需要其图象与()f x 原y 轴右侧图象至少有3个公共点,1a >不能满足条件,只有01a <<,如图,此时,只需在5x =时,log a y x =的纵坐标大于2-,即log 52a >-,得505a <<. 6.已知实数,0,()lg(),0,x e x f x x x ⎧≥=⎨-<⎩若关于x 的方程2()()0f x f x t ++=有三个不同的实根,则t 的取值范围为( )A .]2,(--∞ B .),1[+∞ C .]1,2[- D .),1[]2,(+∞--∞【解析】做出函数)(x f 的图象,如图所示,由图可知,当1≥m 时直线m y =与)(x f 的图象有两个交点,当1<m 时直线m y =与)(x f 的图象有一个交点,题意要求方程0)()(2=++t x f x f 有三个不同的实根,则方程20m m t ++=必有两不等实根,且一根小于1,一根不小于1,当011=++t ,即2-=t 时,方程022=-+m m 的两根为1和2-,符合题意;当011<++t ,即2-<t 时,方程20m m t ++=有两个不等实根,且一根小于1,一根大于1,符合题意.综上由2-≤t .7.(2018年江苏卷)若函数)(12)(23R a ax x x f ∈+-=在()+∞,0内有且只有一个零点,则)(x f 在[]1,1-上的最大值与最小值的和为________. 【答案】–3【解析】由得,因为函数在上有且仅有一个零点且,所以,因此从而函数在上单调递增,在上单调递减,所以,8. 设函数2,1()4()(2),1x a x f x x a x a x ⎧-<=⎨--≥⎩.(1)若1a =,则()f x 的最小值为______;(2)若()f x 恰有2个零点,则实数a 的取值范围是 . 【解析】(1)当1a =时,若1x <,()(1,1)f x ∈-;当时1x ≥,223()4(32)4()12f x x x x =-+=--,则32x =时,min () 1.f x =- (2)0a ≤时,()f x 无零点;不符;102a <<时,()f x 有一个零点;112a ≤<,符合;12a ≤<,()f x 有3个零点;2a ≥,符合. 综上得112a ≤<或 2.a ≥ 9.已知32,(),x x af x x x a⎧≤=⎨>⎩,若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是 .【解析】由题意,问题等价于方程)(3a xb x ≤=与方程)(2a xb x >=的根的个数和为2,若两个方程各有一个根:则可知关于b 的不等式组13b a b a b a ⎧≤⎪⎪>⎨⎪-≤⎪⎩有解,∴23a b a <<,从而1>a ;若方程)(3a x b x ≤=无解,方程)(2a xb x >=有2个根:则可知关于b 的不等式组⎪⎩⎪⎨⎧>->a b a b 31有解,从而0<a ,综上,实数a 的取值范围是),1()0,(+∞-∞ .10.已知函数23f xx x ,R x ∈.若方程10f x a x 恰有4个互异的实数根,则实数a 的取值范围为__________ . 【解析】在同一坐标系中画23f xx x 和1g x a x 的图象(如图),问题转化为xy13O tyO 91f x 与g x 图象恰有四个交点.当1ya x 与23yx x (或1ya x 与23yx x )相切时,f x 与g x 图象恰有三个交点.把1y a x 代入23yx x ,得231x xa x ,即230x a xa,由0=∆,得2340aa,解得1a或9a .又当0a 时,f x 与g x 仅两个交点,01a ∴<<或9a >. 三、解答题11.设函数22()(ln )x e f x k x x x=-+(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数).(Ⅰ)当0k ≤时,求函数()f x 的单调区间;(Ⅱ)若函数()f x 在(0,2)内存在两个极值点,求k 的取值范围. 【解析】(I )函数()y f x =的定义域为(0,)+∞,2'42221()()x x x e xe f x k x x x -=--+322(2)x x xe e k x x x --=-3(2)()x x e kx x--= 由0k ≤可得0xe kx ->, 所以当(0,2)x ∈时,'()0f x <,函数()y f x =单调递减,当(2,)x ∈+∞时,'()0f x >,函数()y f x =单调递增. 所以()f x 的单调递减区间为(0,2),单调递增区间为(2,)+∞. (II )由(I )知,0k ≤时,函数()f x 在(0,2)内单调递减,故()f x 在(0,2)内不存在极值点; 当0k >时,设函数(),[0,)xg x e kx x =-∈+∞, 因为'ln ()xxkg x e k e e=-=-,当01k <≤时,当(0,2)x ∈时,'()0xg x e k =->,()y g x =单调递增,故()f x 在(0,2)内不存在两个极值点; 当1k >时,得(0,ln )x k ∈时,'()0g x <,函数()y g x =单调递减,(ln ,)x k ∈+∞时,'()0g x >,函数()y g x =单调递增, 所以函数()y g x =的最小值为(ln )(1ln )g k k k =-, 函数()f x 在(0,2)内存在两个极值点;当且仅当(0)0(ln )0(2)00ln 2g g k g k >⎧⎪<⎪⎨>⎪⎪<<⎩, 解得22e e k <<,综上所述,函数在(0,2)内存在两个极值点时,k 的取值范围为2(,)2e e .C 组一、选择题1.记方程①:2110x a x ++=,方程②:2220x a x ++=,方程③:2340x a x ++=,其中123,,a a a 是正实数.当123,,a a a 成等比数列时,下列选项中,能推出方程③无实根的是( )A.方程①有实根,且②有实根B.方程①有实根,且②无实根C.方程①无实根,且②有实根D.方程①无实根,且②无实根【解析】按D 考虑,则由2142222223321132123408064161604,,0a a a a a a aa a a aa ⎧-<⎪⎪-<⎪⇒=<=⇒-<⎨⎪=⎪>⎪⎩,故选D. 2.若,a b 是函数2()(0,0)f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于( )A .6B .7C .8D .9【解析】依题,0a b pab q p q +=⎧⎪=⎨⎪>⎩得0,0a b >>,则,,2a b -这三个数适当排序排成等比数列必有4ab =,,,2a b -这三个数适当排序后成等差数列应有2222a b b a -=-=或,解得4114a ab b ==⎧⎧⎨⎨==⎩⎩或 则5,4p q ==,故9p q +=,选D.3.已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是( ) A. 7,4⎛⎫+∞⎪⎝⎭ B. 7,4⎛⎫-∞ ⎪⎝⎭ C.70,4⎛⎫⎪⎝⎭ D. 7,24⎛⎫ ⎪⎝⎭【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩,即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩ ()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知724b <<. 故选D. 8642246815105510154.定义在),1(+∞上的函数)(x f 满足下列两个条件:(1)对任意的),1(+∞∈x 恒有)(2)2(x f x f =成立;(2)当(]2,1∈x 时,x x f -=2)(.记函数()g x =()(1)f x k x --,若函数)(x g 恰有两个零点,则实数k 的取值范围是( ) .A [)1,2 .B ⎥⎦⎤⎢⎣⎡2,34 .C ⎪⎭⎫ ⎝⎛2,34 .D ⎪⎭⎫⎢⎣⎡2,34【解析】∵对任意的),1(+∞∈x 恒有)(2)2(x f x f =成立,且当(]2,1∈x 时,x x f -=2)(, ∴()2,(,2]f x x b x b b =-+∈.由题意得()(1)f x k x =-的函数图象是过定点(1,0)的直线,如图所示红色的直线与线段AB 相交即可(可以与B 点重合但不能与A 点重合),∴可得k 的范围为423k ≤<.5.设函数()f x 在R 上存在导数'()f x ,x R ∀∈,有2()()f x f x x -+=,在(0,)+∞上'()f x x <,若(4)()84f m f m m --≥-,则实数m 的取值范围为( )A .[2,2]-B .[2,)+∞C . [0,)+∞D .(,2][2,)-∞-+∞ 【解析】设21()()2g x f x x =-,依题()()0g x g x -+=,则()g x 是奇函数,又在(0,)+∞上'()f x x <,可判断()g x在R 上递减,不等式(4)()84f m f m m --≥-可转化为(4)()g m g m -≥,则4m m -≤,得2m ≥, 故选B.6.定义在R 上的奇函数()f x ,当0x ≥时,13log (1),[0,2)()14,[2,)x x f x x x +∈⎧⎪=⎨⎪--∈+∞⎩,则关于x 的函数()()(01)F x f x a a =-<<的所有零点之和为( )A .31a- B .13a- C .31a-- D .13a --【解析】由题意得:133log (1)(1,0],[0,2)1|4|(,1],[2,)()log (1)(0,1),(2,0)|4|1[1,),(,2)x x x x f x x x x x +∈-∈⎧⎪⎪--∈-∞∈+∞=⎨⎪-∈∈-⎪+-∈-+∞∈-∞-⎩,所以当01a <<时()y f x =与y a =有五个交点,其中1|4|,[2,)y x x =--∈+∞与y a =的两个交点关于4x =对称,和为8;|4|1,(,2)y x x =+-∈-∞-与y a =的 两个交点关于4x =-对称,和为-8;3log (1),(2,0)y x x =-∈-与y a =的一个交点,值为13a -;因此 所有零点之和为13a -,故选B. 二、填空题7.(2018年高考浙江卷)已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎪⎨-+<⎪⎩,当λ=2时,不等式f (x )<0的解集是 ___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.【答案】(1,4) (1,3](4,)⋃+∞8.已知函数)(x f 是定义在),0()0,(+∞-∞ 上的偶函数,当0>x 时,⎪⎩⎪⎨⎧>-≤<-=-,2),2(21,20,12)(1x x f x x f x ,则函数1)(2)(-=x f x g 的零点个数为 个.【解析】函数1)(2)(-=x f x g 的零点个数等价于函数)(x f y =的图象与直线21=y 的图象的交点的个数.由已知条件作出函数)(x f y =的图象与直线21=y 的图象,如下图.由图可知,函数()y f x =的图象与直线21=y 的图象有6个交点.9.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是 .【解析】令32310ax x -+=,得313()a xx =-+,设1t x=,即33a t t =-+,原问题转化为直线y a =与函数 3()3f t t t =-+只有一个交点且此交点的横坐标为正,由'2()330f t t =-+=,得1t =±,且()f t 在(,1)-∞-递增,在(1,1)-上递减,在(1,)+∞上递增,可知(2)(1)2f f =-=-,由图象得2a <-.10. 函数ln ,0()2ln ,x x ef x x x e⎧<≤⎪=⎨->⎪⎩若,,a b c 互不相等,且()()()f a f b f c ==,则a b c ++的取值范围为 .【解析】示意()f x 图象,由,,a b c 互不相等,且()()()f a f b f c ==,不妨令a b c <<,应有211a b e c e e<<<<<<得 ln ln 2ln a b c -==-得1ab =,2c ae =,则 21(1)a b c e a a ++=++,可判断函数21()(1)g a e a a =++在1(,1)a e ∈上递增,故 21(2,2)a b c e e e ++∈++三、解答题11. 已知a R ∈,函数21()log ()f x a x=+. (1)当5a =时,解不等式()0f x >;(2)若关于x 的方程2()log [(4)25]0f x a x a --+-=的解集中恰好有一个元素,求a 的取值范围;(3)设0a >,若对任意1[,1]2t ∈,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.【解析】(1)由21log 50x ⎛⎫+> ⎪⎝⎭,得151x +>,解得()1,0,4x ⎛⎫∈-∞-+∞ ⎪⎝⎭.(2)()1425a a x a x+=-+-,()()24510a x a x -+--=, 当4a =时,1x =-,经检验,满足题意.当3a =时,121x x ==-,经检验,满足题意. 当3a ≠且4a ≠时,114x a =-,21x =-,12x x ≠. 1x 是原方程的解当且仅当110a x +>,即2a >;2x 是原方程的解当且仅当210a x +>,即1a >. 于是满足题意的(]1,2a ∈. 综上,a 的取值范围为(]{}1,23,4.(3)当120x x <<时,1211a a x x +>+,221211log log a a x x ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭, 所以()f x 在()0,+∞上单调递减.函数()f x 在区间[],1t t +上的最大值与最小值分别为()f t ,()1f t +. ()()22111log log 11f t f t a a t t ⎛⎫⎛⎫-+=+-+≤ ⎪⎪+⎝⎭⎝⎭即()2110at a t ++-≥,对任意1,12t ⎡⎤∈⎢⎥⎣⎦成立. 因为0a >,所以函数()211y at a t =++-在区间1,12⎡⎤⎢⎥⎣⎦上单调递增,12t =时, y 有最小值3142a -,由31042a -≥,得23a ≥. 故a 的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭.。

函数方程不等式专题

函数方程不等式专题

函数方程不等式专题(总20页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--函数、方程、不等式综合应用专题一、专题介绍函数思想就是用联系和变化的观点看待或提出数学对象之间的数量关系。

函数是贯穿在中学数学中的一条主线;函数思想方法主要包括建立函数模型解决问题的意识,函数概念、性质、图象的灵活应用等。

函数、方程、不等式的结合,是函数某一变量值一定或在某一范围下的方程或不等式,体现了一般到特殊的观念。

也体现了函数图像与方程、不等式的内在联系,在初中阶段,应该深刻认识函数、方程、不等式三部分之间的内在联系,并把这种内在联系作为学生学习的基本指导思想,这也是初中阶段数学最为重要的内容之一。

而新课程标准中把这个联系提到了十分明朗、鲜明的程度。

因此,第二轮中考复习,对这部分内容应予以重视。

这一专题,往往以计算为主线,侧重决策问题,或综合各种几何知识命题,近年全国各地中考试卷中占有相当的分量。

这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活。

考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力,要求学生熟练掌握三角形、四边形、三角函数、圆等几何知识,较熟练地应用转化思想、方程思想、分类讨论思想、数形结合思想等常见的数学思想。

解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决。

三、考点精讲考点一:一次函数,反比例函数,二次函数综合1.已知二次函数2y ax bx c =++的图象如图所示,那么一次函数y bx c =+和反比例函数a y x=在同一平面直角坐标系中的图象大致是【 】 A .B .C . D解析:∵二次函数图象开口向下,∴a <0,∵对称轴x=- b/2a <0,∴b <0,∵二次函数图象经过坐标原点,∴c=0,∴一次函数y=bx+c 过第二四象限且经过原点,反比例函数y= ax 位于第二四象限,纵观各选项,只有C选项符合.故选C.课堂练习:1已知:M,N两点关于y轴对称,且点M在双曲线上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=﹣abx2+(a+b)x()A.有最大值,最大值为 B.有最大值,最大值为C.有最小值,最小值为 D.有最小值,最小值为2.某公司销售一产品,已知每件产品的进价为40元,经销过程中测出销售量y(万件)与销售单价x(元)存在如图所示的关系,每年销售该产品的总开支z(万元)(不含进价)与年销量y(万件)存在函数关系z=10y+.(1)求y关于x的函数关系式;(2)写出该公司销售该产品年获利w(万元)关于销售单价x(元)的函数关系式;(年获利=年销售总金额一年销售产品的总进价一年总开支金额)当销售单价x为何值时,年获利最大最大值是多少(3)若公司希望该产品一年的销售获利不低于万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围.在此条件下要使产品的销售量最大,你认为销售单价应定为多少元考点二:函数与方程(组)综合应用例2.某乡镇决定对小学和初中学生用餐每生每天3元的标准进行营养补助,其中家庭困难的学生的补助标准为:小学生每生每天4元,初中生每生每天5元,已知该乡镇现有小学生和初中学生共1000人,且小学、初中均有2%的学生为家庭困难寄宿生.设该乡镇现有小学生x人.(1)用含x的代数式表示:该乡镇小学生每天共需营养补助费是____元.该乡镇初中生每天共需营养补助费是_____元.(2)设该乡镇小学和初中生每天共需营养补助费为y元,求y与x之间的函数关系式;(3)若该乡镇小学和初中学生每天共需营养补助费为3029元,问小学生、初中生分别有多少人解答:解:(1)小学生每天所需营养费=4×2%x+3(1﹣2%)x=;中学生所需营养费=5×2%(1000﹣x)+3×(1﹣2%)(1000﹣x)=3040﹣;(2)根据题意得y=+3040﹣=3040﹣;(3)令y=3029,故3040﹣=3029解得:x=550,故中学生为1000﹣550=450人.答:小学生有550人,中学生有450人.课堂练习3.某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多4.体育课上,老师用绳子围成一个周长为30米的游戏场地,围成的场地是如图所示的矩形ABCD.设边AB的长为x(单位:米),矩形ABCD的面积为S(单位:平方米).(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)若矩形ABCD的面积为50平方米,且AB<AD,请求出此时AB的长.考点三:函数与不等式(组)综合应用例3.国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x (套)与每套的售价y 1(万元)之间满足关系式y 1=170-2x ,月产量x (套)与生产总成本y 2(万元)存在如图所示的函数关系.(1)直接写出....y 2与x 之间的函数关系式;(2)求月产量x 的范围;(3)当月产量x (套)为多少时,这种设备的利润W (万元)最大最大利润是多少解:(1)y 2=500+30x. (2)依题意得:⎩⎨⎧≥-≤+.902170,5030500x x x 解得:25≤x ≤40(3)∵W =xy 1-y 2=x (170-2x )-(500+30x )=-2x 2+140x -500,∴W =-2(x -35)2+1950.而25<35<40, ∴当x =35时,1950=最大W .即月产量为35件时,利润最大,最大利润是1950万元.课堂练习:5.某校为开展好大课间活动,欲购买单价为20元的排球和单价为80元的篮球共100个.(1)设购买排球数为x (个),购买两种球的总费用为y (元),请你写出y 与x 的函数关系式(不要求写出自变量的取值范围);(2)如果购买两种球的总费用不超过6620元,并且篮球数不少于排球数的3倍,那么有哪几种购买方案(3)从节约开支的角度来看,你认为采用哪种方案更合算6.为了扶持农民发展农业生产,国家对购买农机的农户给予农机售价13%的政府补贴.某市农机公司筹集到资金130万元,用于一次性购进A 、B 两种型号的收割机共30台.根据市场需求,这些收割机可以全部销售,全部销售后利润不少于15万元.其中,收割机的进价和售价见下表:设公司计划购进A型收割机x台,收割机全部销售后公司获得的利润为y万元.(1)试写出y与x的函数关系式;(2)市农机公司有哪几种购进收割机的方案可供选择(3)选择哪种购进收割机的方案,农机公司获利最大最大利润是多少此种情况下,购买这30台收割机的所有农户获得的政府补贴总额W为多少万元7.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某,乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部..运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少最少运费是多少元8.某工厂有一种材科,可加工甲、乙、丙三种型号机械配件共240个.厂方计划由20个工人一天内加工完戚.并要求每人只加工一种配件.根据下表提供的信息。

专题一 第2讲 基本初等函数、函数与方程

专题一 第2讲 基本初等函数、函数与方程

第2讲基本初等函数、函数与方程[考情分析] 1.基本初等函数的图象与性质是高考考查的重点,利用函数性质比较大小、解不等式是常见题型.2.函数零点的个数判断及参数范围是常考题型,常以压轴题的形式出现.3.函数模型及应用是近几年高考的热点,通常考查指数函数、对数函数模型.考点一基本初等函数的图象与性质核心提炼指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数,其图象关于y =x对称,它们的图象和性质分0<a<1,a>1两种情况,着重关注两种函数图象的异同.例1(1)(2022·杭州模拟)已知lg a+lg b=0(a>0且a≠1,b>0且b≠1),则函数f(x)=a x与g(x) x的图象可能是()log=1b(2)若e a+πb≥e-b+π-a,则下列结论一定成立的是()A.a+b≤0 B.a-b>0C.a-b≤0 D.a+b≥0规律方法(1)指数函数、对数函数的图象与性质受底数a的影响,解决与指数函数、对数函数有关的问题时,首先要看底数a的取值范围.(2)基本初等函数的图象和性质是统一的,在解题中可相互转化.跟踪演练1(1)(2022·山东名校大联考)若a=log32,b=log52,c=e0.2,则a,b,c的大小关系为()A.b<a<c B.c<a<bC.b<c<a D.a<b<c(2)(2022·邯郸模拟)不等式10x-6x-3x≥1的解集为________.考点二 函数的零点 核心提炼判断函数零点个数的方法(1)利用函数零点存在定理判断.(2)代数法:求方程f (x )=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y =f (x )的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性. 考向1 函数零点个数的判断例2 已知f (x )是定义在R 上周期为2的偶函数,且当x ∈[0,1]时,f (x )=2x -1,则函数g (x )=f (x )-log 5|x |的零点个数是( )A .2B .4C .6D .8考向2 求参数的值或范围例3 (2022·河北联考)函数f (x )=e x 和g (x )=kx 2的图象有三个不同交点,则k 的取值范围是________.规律方法 利用函数零点的情况求参数值(或取值范围)的三种方法跟踪演练2 (1)(2022·合肥模拟)若f (x )为奇函数,且x 0是y =f (x )-2e x 的一个零点,则-x 0一定是下列哪个函数的零点( )A .y =f (-x )e -x -2B .y =f (x )e x +2C .y =f (x )e x -2D .y =f (-x )e x +2(2)已知函数f (x )=⎩⎨⎧-x ,x <0,x ,x ≥0,若关于x 的方程f (x )=a (x +1)有三个不相等的实数根,则实数a 的取值范围是________.考点三 函数模型及其应用核心提炼解函数应用题的步骤(1)审题:缜密审题,准确理解题意,分清条件和结论,理清数量关系.(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型.(3)求模:求解数学模型,得出数学结论.(4)反馈:将得到的数学结论还原为实际问题的意义.例4 (1)(2022·西安模拟)2022年4月16日,神舟十二号3名航天员告别了工作生活183天的中国空间站,安全返回地球.中国征服太空的关键是火箭技术,在理想情况下,火箭在发动机工作期间获得速度增量的公式Δv =v e ln m 0m 1,其中Δv 为火箭的速度增量,v e 为喷流相对于火箭的速度,m 0和m 1分别代表发动机开启和关闭时火箭的质量,在未来,假设人类设计的某火箭v e 达到5公里/秒,m 0m 1从100提高到600,则速度增量Δv 增加的百分比约为( ) (参考数据:ln 2≈0.7,ln 3≈1.1,ln 5≈1.6)A .15%B .30%C .35%D .39%(2)(2022·福州模拟)深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为L =00GG L D ,其中L 表示每一轮优化时使用的学习率,L 0表示初始学习率,D 表示衰减系数,G 表示训练迭代轮数,G 0表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为0.5,衰减速度为22,且当训练迭代轮数为22时,学习率衰减为0.45,则学习率衰减到0.05以下(不含0.05)所需的训练迭代轮数至少为(参考数据:lg 3≈0.477 1)( )A .11B .22C .227D .481易错提醒 构建函数模型解决实际问题的失分点(1)不能选择相应变量得到函数模型.(2)构建的函数模型有误.(3)忽视函数模型中变量的实际意义.跟踪演练3 (1)(2022·荆州联考)“绿水青山就是金山银山”,党的十九大以来,城乡深化河道生态环境治理,科学治污.某乡村一条污染河道的蓄水量为v 立方米,每天的进出水量为k 立方米.已知污染源以每天r 个单位污染河水,某一时段t (单位:天)河水污染质量指数为m (t )(每立方米河水所含的污染物)满足m (t )=r k +⎝⎛⎭⎫m 0-r k e kt -v (m 0为初始质量指数),经测算,河道蓄水量是每天进出水量的80倍.若从现在开始关闭污染源,要使河水的污染水平下降到初始时的10%,需要的时间大约是(参考数据:ln 10≈2.30)()A.1个月B.3个月C.半年D.1年(2)(2022·广东大联考)水果采摘后,如果不进行保鲜处理,其新鲜度会逐渐流失,某水果产地的技术人员采用一种新的保鲜技术后发现水果在采摘后的时间t(单位:小时)与失去的新鲜度y满足函数关系式:y=220301,010100012,10100,20tt tt+⎧<⎪⎪⎨⎪⋅⎪⎩≤,≤≤为了保障水果在销售时的新鲜度不低于85%,从水果采摘到上市销售的时间间隔不能超过(参考数据:log23≈1.6)() A.20小时B.25小时C.28小时D.35小时。

专题二次函数与一元二次方程(5个考点)(题型专练+易错精练)

专题二次函数与一元二次方程(5个考点)(题型专练+易错精练)

专题5.3 二次函数与一元二次方程(5个考点)【考点1 二次函数与x 轴交点问题】【考点2 图象法确定一元二次方程的根】【考点3已知函数值y 求x 的取值范围】【考点4二次函数与一次函数不等式的关系】【考点5二次函数综合】【考点1 二次函数与x 轴交点问题】1.在平面直角坐标系中,二次函数24y ax ax c =-+(0a ¹)的图象与x 轴的一个交点的横坐标为1-,则另一个交点的横坐标为( )A .5B .3C .3-D .5-2.抛物线y=x 2+6x+8与x 轴交点坐标( )A .(0,8)B .(0,-8)C .(0,6)D .(-2,0),(-4,0)3.二次函数256y x x =--与坐标轴的交点个数是( )A .1个B .2个C .3个D .0个4.如图,二次函数2y x mx n =-++的图象与x 轴的一个交点坐标为(5,0),那么关于x 的一元二次方程20x mx n -++=的解为( )A .15x =,21x =B .15x =,21x =-C .15x =,25x =-D .5x =5.已知二次函数22y x x m =--+的部分图象如图所示,则关于x 的一元二次方程220x x m --+=的解为( )A .3或1B .3-或1C .3或3-D .3-或1-6.若抛物线224y x x =-与x 轴分别交于A 、B 两点,A 、B 两点间的距离是 .7.若二次函数22y x x b +=-的图象与坐标轴有两个公共点,则b 满足的条件是 .【考点2 图象法确定一元二次方程的根】8.根据下列表格对应值:x3.24 3.253.262ax bx c++0.020.01-0.03-判断关于x 的方程20ax bx c ++=的一个解的范围是( )A . 3.24x < B .3.24 3.25x <<C .3.25 3.26x <<D . 3.26x >9.观察下列表格,一元二次方程x 2﹣x =1.1的一个解x 所在的范围是( ) x 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9x 2﹣x0.110.240.390.560.750.961.191.441.71A .1.5<x <1.6B .1.6<x <1.7C .1.7<x <1.8D .1.8<x <1.910.下表是一组二次函数 y =ax 2+bx +c 的自变量x 与函数值y 的对应值:那么下列选项中可能是方程 20ax bx c ++=的近似根的是( )x 1.21.31.4 1.5 1.6y0.36-0.01-0.360.751.16A .1.2B .1.3C .1.4D .1.511.小明在学习了利用图象法来求一元二次方程的近似根的知识后进行了尝试:在直角坐标系中作出二次函数2210y x x =+-的图象.由图象可知,方程22100x x +-=有两个根,一个在5-和4-之间,另一个在2和3之间,利用计算器进行探索:由下表知,方程的一个近似根是( )x4.1- 4.2- 4.3- 4.4-y1.39-0.76-0.11-0.56A . 4.12-B . 4.23-C . 4.32-D . 4.43-12.根据下列表格,判断出方程28910x x +-=的一个近似解(结果精确到0.01)是( )x1.5- 1.4- 1.3- 1.2- 1.1-2891x x +- 3.52.080.820.28- 1.22-A . 1.45-B . 1.35-C . 1.25-D . 1.15-13.下列表格是二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程20ax bx c ++=(0,,,a a b c ¹为常数)的一个解x 的范围是( )x1.5-00.51.52y ax bx c=++ 1.25-2- 1.25- 1.75A .2 1.5x -<<-B . 1.50x -<<C .00.5x <<D .0.5 1.5x <<【考点3已知函数值y 求X 的取值范围】14.已知函数222y x x =--的图象如图所示,根据图象提供的信息,可得1y £时,x 的取值范围是( )A .3x ³-B .31x -££C .13x -££D .1x £-或3x ³15.已知一次函数()10y kx m k =+¹和二次函数()220y ax bx c a =++¹部分自变量和相应的函数值如表,当21y y >时,自变量x 的取值范围是( )x×××1-0245×××1y ×××01356×××2y ×××1-059×××A .12x -<<B .45x <<C .1x <-或5x >D .1x <-或4x >16.已知关于x 的一元二次方程2x mx n 0++=的两个实数根分别为1x a =,2x b =(a b <),则二次函数2y x mx n =++中,当y 0<时,x 的取值范围是( )A .x a<B .x b>C .a x b<<D .x a <或x b>17.已知二次函数222y x x -=-,当1y >时,则x 的取值范围为( )A .13x -<<B .31x -<<C .1x <-或3x >D .3x <-或1x >18.如图,对于抛物线2y ax bx =+,若当x <3时,y 随x 的增大而减小;当x >3时,y 的值随x 的增大而增大,则使y <0的x 的取值范围为.19.如图,已知点()4,P m 在抛物线223y x x =--上,当y m >时,x 的取值范围是.20.如图,抛物线y=ax 2+bx+c 分别交坐标轴于A (-2,0)、B (6,0)、C (0,4),则0≤ax 2+bx+c<4的解是.21.函数y =-x 3+x 的部分图像如图所示,当y >0时,x 的取值范围是 .【考点4二次函数与一次函数不等式的关系】22.如图是二次函数()210y ax bx c a =++¹和一次函数()20y mx n m =+¹的图象,当12y y <时,x 的取值范围是 .23.如图,抛物线21(2)1y x =--与直线21y x =--交于(1,0)A 、(4,3)B 两点,则当21y y >时,x 的取值范围为.24.直线11y x =+与抛物线223y x =-+的图象如图,当12y y >时,x 的取值范围为25.如图,抛物线21y ax =与直线2y bx c =+的两个交点坐标分别为()2,4A -,()1,1B ,则12y y £,x 的取值范围是 .26.如图,已知抛物线2y ax bx c =++与直线y kx m =+交于()31A --,,()03B ,两点.则关于x 的不等式2ax bx c kx m ++£+的解集是.27.二次函数21y ax bx c =++的图象与一次函数2y kx b =+的图象如图所示,当21y y >时,根据图象写出x 的取值范围 .28.如图,直线y =px +q (p ≠0)与抛物线y =ax 2+bx +c (a ≠0)交于A (﹣2,m ),B (1,n )两点,则关于x 的不等式ax 2+bx +c ≤px +q 的解集是 .29.如图,直线y=mx+n 与抛物线y=ax 2+bx+c 交于A (−1,p ),B (5,q )两点,则关于x 的不等式mx+n<a 2x +bx+c 解集是 .【考点5二次函数综合】30.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++的图象经过点()0,3A -,()1,0B .(1)求该抛物线的解析式;(2)结合函数图象,直接写出3y <-时,x 的取值范围.31.如图,二次函数2y ax bx c =++的图象与x 轴交于O (O 为坐标原点)、A 两点,且二次函数的最小值为2-,点()1,M m 是其对称轴上一点,点B 在y 轴上,1OB =.(1)求二次函数的解析式;(2)二次函数在第四象限的图象上有一点P ,连接PA ,PB ,求PAB V 面积的最大值;(3)在二次函数图象上是否存在点N ,使得以A ,B ,M ,N 为顶点的四边形是平行四边形若存在,请直接写出所有符合条件的点N 的坐标;若不存在,请说明理由.32.如图,二次函数22y ax ax c =++的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴正半轴交于点C ,且3OA OC ==.(1)求二次函数及直线AC 的解析式.(2)P 是拋物线上一点,且在x 轴上方,若45ABP Ð=°,求点P 的坐标.33.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线2112y x bx =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且线段OA OB =.(注:抛物线2y ax bx c =++的对称轴为2bx a=-)(1)求该抛物线的解析式;(2)在抛物线的对称轴上找一点M ,使AM CM -的值最大,求点M 的坐标.34.将抛物线2(0)y ax a =¹向左平移1个单位,再向上平移4个单位后,得到抛物线2:()H y a x h k =-+.抛物线H 与x 轴交于点A ,B ,与y 轴交于点C .已知(3,0)A -,点P是抛物线H 上的一个动点.(1)求抛物线H 的表达式;(2)如图,点M 是抛物线H 的对称轴L 上的一个动点,是否存在点M ,使得以点A ,M ,C 为顶点的三角形是直角三角形?若存在,求出所有符合条件的点M 的坐标;若不存在,说明理由.35.如图,抛物线234y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,直线334y x =+经过A 、C 两点,点D 是第二象限内抛物线上一点.(1)求抛物线的解析式;(2)连接AD 、CD ,求ACD V 面积的最大值;(3)若点D 关于直线BC 的对称点D ¢恰好落在直线AC 上,求点D 的坐标.1.A【分析】本题考查二次函数图象与性质,涉及求抛物线对称轴、图象与x 轴交点的对称性等知识,先求出抛物线对称轴,再由抛物线图象与性质求解即可得到答案,熟练掌握二次函数图象与性质是解决问题的关键.【详解】解:Q 二次函数24y ax ax c =-+(0a ¹)的对称轴为4222-=-=-=b a x a a,且图象与x 轴的一个交点的横坐标为1-,\由抛物线上点的对称性可知,图象与x 轴的另一个交点的横坐标为5,故选:A .2.D【分析】把y=0代入函数解析式得到x 2+6x+8=0,解方程即可.【详解】解:把y=0代入函数解析式得x 2+6x+8=0,解得 x 1=-2,x 2=-4,∴抛物线y=x 2+6x+8与x 轴交点坐标为(-2,0),(-4,0).故选:D【点睛】本题考查了二次函数与一元二次方程的关系,求抛物线与x 轴交点坐标就是求当y=0时自变量的取值.3.C【分析】先计算=0x 的函数值得到抛物线与y 轴的交点坐标,再解方程2560x x --=得抛物线与x 轴的交点坐标,从而可判断抛物线与坐标轴的交点坐标.【详解】解:当=0x 时,2566y x x =--=-,∴抛物线与y 轴的交点坐标为(0,6)-,当=0y 时,2560x x --=,解得121,6x x =-=,∴抛物线与x 轴的交点坐标为(1,0),(6,0)-,∴二次函数256y x x =--与坐标轴有3个交点.故选:C .【点睛】本题考查了二次函数与坐标轴的交点坐标及解一元二次方程,抛物线与x 的的交点纵坐标为0,与y 轴的交点横坐标为0.4.B【分析】此题考查的是求二次函数图象与x 轴的交点坐标和求一元二次方程的根,掌握二次函数图象的对称性和二次函数与x 轴的交点的横坐标与一元二次方程的根的关系是解决此题的关键.根据图象可知二次函数图象的对称轴,然后利用二次函数图象的对称性求出图象与x 轴的另一个交点坐标,最后根据二次函数与x 轴的交点的横坐标与一元二次方程的根的关系即可得出结论.【详解】解:由图象可知:二次函数2y x mx n =-++图象的对称轴为直线2x =,∵图象与x 轴的一个交点为(5,0),∴图象与x 轴的另一个交点坐标为()1,0-,∴关于x 的一元二次方程20x mx n -++=的两实数根是125,1x x ==-故选B .5.B【分析】根据函数图象可以得到该函数的对称轴,该函数与x 轴的一个交点,然后根据二次函数的对称性即可得到另一个交点,从而可以得到关于x 的一元二次方程220x x m --+=的解.【详解】解:由图象可知,该函数的对称轴是直线212(1)x -=-=-´-,与x 轴的一个交点是(3,0)-,则该函数与x 轴的另一个交点是(1,0),即当0y =时,220x x m --+=时,13x =-,21x =,故关于x 的一元二次方程220x x m --+=的解为13x =-,21x =,故选:B .【点睛】本题考查抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.6.2【分析】本题考查了二次函数与坐标轴交点问题,熟悉掌握交点的运算方法是解题的关键.0y =代入224y x x =-求出两个交点后,即可得到两点间的距离.【详解】解:、把0y =代入224y x x =-得:2240x x -=解得:2x =或0,∴202AB =-=,故答案为:2.7.1-或0【分析】本题考查了二次函数的图象,二次函数与一元二次方程的关系,一元二次方程根的判别式等知识.熟练掌握二次函数的图象,二次函数与一元二次方程的关系,一元二次方程根的判别式是解题的关键.由题意知,分①二次函数22y x x b +=-的图象与x 轴有1个公共点;②二次函数22y x x b +=-的图象与x 轴有2个公共点,但其中一个点为原点,两种情况求解作答即可.【详解】解:∵二次函数22y x x b +=-的图象与坐标轴有两个公共点,∴分①二次函数22y x x b +=-的图象与x 轴有1个公共点;②二次函数22y x x b +=-的图象与x 轴有2个公共点,但其中一个点为原点,两种情况求解;①当二次函数22y x x b +=-的图象与x 轴有1个公共点时,()2240b D =--=,解得1b =-;②当二次函数22y x x b +=-的图象与x 轴有2个公共点,但其中一个点为原点时,0b =,∴()222y x x x x +==+,与x 轴有2个公共点,为()20-,或()00,,综上所述,b 的值为1-或0,故答案为:1-或0.8.B【分析】本题考查二次函数和一元二次方程的根的联系,解题的关键是掌握二次函数的图象和性质,根据上表可知当20ax bx c ++=时,x 的取值范围为:3.24 3.25x <<,即可.【详解】由上表可知当20ax bx c ++=,关于x 的方程的一个解的范围为:3.24 3.25x <<,故选:B .9.B【分析】利用表中数据可判断方程解的范围为1.6<x <1.7.【详解】解:因为x =1.6时,x 2-x =0.96,x =1.7时,x 2-x =1.19,所以一元二次方程x 2﹣x =1.1的一个解的范围为1.6<x <1.7.故选:B .【点睛】本题考查了估算一元二次方程的近似解:用列举法估算一元二次方程的近似解,具体方法是:给出一些未知数的值,计算方程两边结果,当两边结果愈接近时,说明未知数的值愈接近方程的根.10.B【分析】本题考查了抛物线法求方程的近似根,采用零距离比较法,与零的距离越小,越近似看成方程的根,得到所求方程的近似根即可.【详解】观察图表的,得0.01-与零的距离最小,方程 20ax bx c ++=的近似根的是: 1.3x =故选B .11.C【分析】本题考查了一元二次方程的近似根,当y 等于0时得到的x 值即为方程22100x x +-=的解.分析题干中的表格,取y 值最接近0时x 的值作为方程的近似解.【详解】解:由表格可知,当 4.3x =-时,0.110y =-<,当 4.4x =-时,0.560y =>,则方程的一个根在 4.3-和 4.4-之间, 4.3x =-时的y 值比 4.4x =-时更接近0,\方程的一个近似根为: 4.32-.故选:C .12.C【分析】本题考查了二次函数与一元二次方程的关系,根据方程28910x x +-=的一个根是函数2891y x x =+-的图象与x 轴的一个交点的横坐标,再找到表格中2891x x +-的值最接近0的数即可,掌握二次函数的图象与x 轴的交点与一元二次方程的关系是解题关键.【详解】解:方程28910x x +-=的一个根是函数2891y x x =+-的图象与x 轴的一个交点的横坐标,即关于函数2891y x x =+-,0y =时,x 的取值,由表格可知:当 1.2x =-时,函数y 的值最接近0,\方程的近似解是 1.25-,故选:C .13.D【分析】本题考查了用图象法求一元二次方程的近似根,根据表格找到y 由负变为正时,自变量的取值范围即可得到答案.【详解】解:由表格中的数据可知,当0.5x =时, 1.250y =-<,当 1.5x =时, 1.750y =>,∴方程20ax bx c ++=(0,,,a a b c ¹为常数)的一个解x 的范围是0.5 1.5x <<,故选D .14.C【分析】令y=1,求解出x 的两个值,则在这两个值所包含的范围内的x 均符合题意要求.【详解】解:令y=1,则2221x x --=,解得x=-1或3,则由图像可知当13x -££时,可使得1y £,故选择C.【点睛】本题结合一元二次方程考查了二次函数的知识.15.D【分析】利用表中数据得到直线与抛物线的交点为(−1,0)和(4,5),−1<x<4时,y 1>y 2,从而得到当y 2>y 1时,自变量x 的取值范围.【详解】∵当x=0时,y 1=y 2=0;当x=4时,y 1=y 2=5;∴直线与抛物线的交点为(−1,0)和(4,5),而−1<x<4时, y 1>y 2,∴当y 2>y 1时,自变量x 的取值范围是x<−1或x>4.故选D.【点睛】此题考查二次函数的性质,解题关键在于掌握其性质定义.16.C【分析】根据抛物线方程画出该抛物线的大体图象,根据图象直接回答问题.【详解】∵关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=a ,x 2=b (a <b ),∴二次函数y=x 2+mx+n 与x 轴的交点坐标分别是(a ,0)、(b ,0)(a <b ),且抛物线的开口方向向上,∴该二次函数的图象如图所示:根据图示知,符合条件的x 的取值范围是:a <x <b ;故选C .【点睛】考查了抛物线与x 轴的交点问题.解题时,采用的是“数形结合”的数学思想.17.C【分析】先求出当1y =时,对应的x 的值,然后根据二次函数的性质即可解答.【详解】解:根据题意可得:当1y =时,即2221x x --=,解得:1231x x ==-,,∵10a =>,∴图象开口向上,∵1y >,∴1x <-或3x >故选:C .【点睛】本题考查了二次函数的性质和二次函数与不等式的关系,正确理解题意、明确求解的方法是关键.18.06x <<【分析】求出抛物线与x 轴的交点坐标即可解决问题.【详解】解:由题意对称轴x =3,抛物线经过(0,0)和(6,0),观察图象可知:使y <0的x 的取值范围为0<x <6.故答案为:0<x <6.【点睛】本题考查抛物线与x 轴的交点,二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.2x <-或4x >【分析】先将4x =代入223y x x =--求出m 的值,再令y m =,解一元二次方程,结合二次函数图象即可得出x 的取值范围.【详解】解:Q 点()4,P m 在抛物线223y x x =--上,\242435m --=´=,令5y m ==,则2235x x --=,即2280x x --=,解得12x =-,24x =,Q 抛物线开口向上,\当y m >即>5y 时,x 的取值范围是2x <-或4x >.故答案为:2x <-或4x >.【点睛】本题考查二次函数图象上的点的坐标特征,根据交点确定不等式的解集等,解题的关键是掌握二次函数与一元二次方程的关系,熟练运用数形结合的思想.20.-2≤x <0或4<x≤6【分析】根据点A 、B 的坐标确定出对称轴,再求出点C 的对称点的坐标,然后写出即可.【详解】解:∵A (-2,0)、B (6,0),∴对称轴为直线x=262-+=2,∴点C 的对称点的坐标为(4,4),∴0≤ax 2+bx+c <4的解集为-2≤x <0或4<x≤6.故答案为:-2≤x <0或4<x≤6.【点睛】本题考查了二次函数与不等式,难点在于求出对称轴并得到C 点的对称点的坐标.21.x <-1或0<x <1【分析】根据y =0时,对应x 的值,再求函数值y >0时,对应x 的取值范围.【详解】解:y =0时,即-x 3+x =0,∴-x (x 2-1)=0,∴-x (x +1) (x -1)=0,解得x =0或x =-1或x =1,∴函数y =-x 3+x 的部分图像与x 轴的交点坐标为(-1,0),(0,0),(1,0),故当函数值y >0时,对应x 的取值范围上是:x <-1,0<x <1.故答案为:x <-1或0<x <1.【点睛】本题考查了函数值与对应自变量取值范围的关系,需要形数结合解题.22.2<<1x -【分析】本题考查了二次函数的性质.根据图象可以直接回答,使得21y y >的自变量x 的取值范围就是直线()20y mx n m =+¹落在二次函数()210y ax bx c a =++¹的图象上方的部分对应的自变量x 的取值范围.【详解】根据图象可得出:当21y y >时,x 的取值范围是:2<<1x -.故答案为:2<<1x -.23.14x <<【分析】本题考查了二次函数图象与一次函数函数值比较,解决的办法是首先求出交点坐标,然后根据图象找到上方部分,即可解答.【详解】解:抛物线21(2)1y x =--与直线21y x =--交点为(1A ,0)(4B ,3),由图象知,当21y y >时,x 的取值范围14x <<,故答案为:14x <<.24.2x <-或x >1##x >1或2x <-【分析】根据函数图象写出直线在抛物线上方部分的x 的取值范围即可.【详解】解:∵直线11y x =+与抛物线223y x =-+的图象交点的横坐标分别为2,1-,∴当12y y >时,x 的取值范围为:2x <-或1x >,故答案为:2x <-或1x >.【点睛】本题考查了根据函数图象求不等式的解集,数形结合是解题的关键.25.21x -££【分析】直接观察图象,即可求解.【详解】解:观察图象得:当21x -££时,12y y £,∴12y y £时,x 的取值范围是21x -££.故答案为:21x -££【点睛】本题考查了根据交点求一元二次方程的解,数形结合,理解方程的解为两函数图象的交点的横坐标是解题的关键.26.3x £-或0x ³##0x ³或3x £-【分析】根据图象,写出抛物线在直线下方部分的x 的取值范围即可.【详解】解:∵抛物线y =ax 2+bx +c 与直线y kx m =+交于()31A --,、()03B ,,∴不等式2ax bx c kx m ++£+的解集是3x £-或0x ³,故答案为:3x £-或0x ³.【点睛】本题考查了二次函数与不等式的关系,主要利用了数形结合的思想,解题关键在于对图象的理解,题目中的不等式的含义为:二次函数的图象在一次函数图象下方时,自变量x 的取值范围.27.2<<1x -【分析】利用一次函数与二次函数图象,进而结合其交点横坐标得出21y y >时,x 的取值范围.【详解】解:当21y y >时,即一次函数2y kx b =+的图象在二次函数21y ax bx c =++的图象的上面,可得x 的取值范围是:2<<1x -.故答案为:2<<1x -.【点睛】此题主要考查了二次函数与不等式,解题的关键是正确利用函数的图象得出正确信息.28.x ≤﹣2或x ≥1##x ≥1或x ≤﹣2【分析】直接利用函数的交点坐标进而结合函数图象得出不等式ax2+bx+c≤px+q 的解集.【详解】解:由图象可得点A 左侧与点B 右侧抛物线在直线下方,∴x ≤﹣2或x ≥1时,ax 2+bx +c ≤px +q ,故答案为:x ≤﹣2或x ≥1.【点睛】此题主要考查了二次函数与不等式,正确数形结合分析是解题关键.29.-1<x <5【分析】直接利用函数的交点坐标进而结合函数图象得出不等式mx+n <ax 2+bx+c 的解集.【详解】解:∵直线y=mx+n 与抛物线y=ax 2+bx+c 交于A (-1,p ),B (5,q )两点,∴关于x 的不等式mx+n <ax 2+bx+c 解集是-1<x <5故答案为:-1<x <5.【点睛】此题主要考查了二次函数与不等式,正确数形结合分析是解题关键.30.(1)223y x x =+-(2)20x -<<【分析】本题考查二次函数的性质,解题关键是掌握待定系数法求函数解析式,掌握二次函数与方程及不等式的关系.(1)根据待定系数法即可求得;(2)令=3y -求出x 的值,即可求解.【详解】(1)解:将点(0,3),(1,0)A B -代入2y x bx c =++得:301c b c -=ìí=++î,解得:2,3b c =ìí=-î223y x x \=+-.(2)令=3y -即2233x x +-=-,解得:120,2x x ==-,Q 抛物线开口向上,\3y <-时,20x -<<。

专题1函数与方程思想

专题1函数与方程思想

* a n N a n n (3)已知数列 中, n 98 , ,则数列 an 的
n 97
前30项中最大项和最小项分别是( A、 a1 , a30 B、a1 , a9

a10 , a30 C、a10 , a9 D、
(4)已知 f t log2 t, t [ 2,8], 对于 f t 值域内的所 2 有实数m,不等式 x mx 4 2m 4 x 恒成立,则 x 的取 值范围为 .
专题一:函数与方程的思想
四、巩固与提高
x2 y2 1 1、设点 F1 是椭圆 3 的左焦点,弦AB过椭圆的右焦点, 2 求△F1 AB 的面积的最大值。
2 2 x y 2、已知双曲线C的方程为 2 1 (a 0, b 0) , 2 a b 5 ,顶点到渐近线的距离为 2 5 . 离心率e 5 2
专题一:函数与方程的思想
2 6 (2)过点 F1 的直线 l与该椭圆交与M、N两点,且F2 M F2 N , 3 求直线 l 的方程。
(1)求曲线 y f x 在点M (t , f t ) 处的切线方程;
专题一:函数与方程的思想
六、课堂总结
(1)掌握函数思想的实质:建立函数关系,构造函数
(2)掌握方程思想的实质:建立方程或方程组
B 、1 实根的个数是( C、2 D、无数 )
(1)方程 A 、0
(2)设 f x , g x 分别是定义在上的奇函数和偶函数,当 x<0时, f ' x.g x f x.g ' x 0 ,则不等式 f x .g x 0 的解集 为 .
专题一:函数与方程的思想
则该双曲线的离心率等于( ) A、 3 B、 2 C、 5 D、 6

函数与方程思想专题

函数与方程思想专题

函数与方程思想专题淮南三中 蔡田1 函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函 数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决。

2方程的思想,是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。

3函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来解决;方程问题也可以转化为函数问题加以解决,如解方程f(x)=0,就是求函数y=f(x)的零点,解不等式f(x)>0(或f(x)<0),就是求函数y=f(x)的正负区间,再如方程f(x)=g(x)的交点问题,也可以转化为函数y=f(x)-g(x)与x 轴交点问题,方程f(x)=a 有解,当且仅当a 属于函数f(x)的值域,函数与方程的这种相互转化关系十分重要。

函数与方程都是中学数学中最为重要的内容。

而函数与方程思想更是中学数学的一种基本思想,几乎渗透到中学数学的各个领域,在解题中有着广泛的应用,是历年来高考考查的重点。

例1.若a 、b 是正数,且满足ab=a+b+3,求ab 的取值范围。

解析:方法一:(看成函数的值域)∵3++=b a ab,∴()31+=-a a b ∵1=a 不满足上式,∴1≠a∴13-+=a ab ,由于0>b ,∴013>-+a a 可得1>a 或3-<a (舍) ∴514)1(14)1(5)1(131322+-+-=-+-+-=-+=-+⋅=a a a a a a a a a a a ab∵1>a ,∴01>-a 由基本不等式得9≥ab当且仅当14)1(-=-a a,即3=a 时,等号成立. ∴ab 的取值范围是[9,+∞). 方法二(看成不等式的解集) ∵a 、b 为正数, ∴ab b a 2≥+,又因为3-=+ab b a∴ab ab 23≥- 即032)(2≥--ab ab解得3≥ab 或1-≤ab (舍去)∴9≥ab ,即ab 的取值范围是[9,+∞).例2:已知a ,b ,c R ∈,0=++c b a ,01=-+bc a ,求a 的取值范围。

高三函数专题复习

高三函数专题复习

函数、函数与方程及函数的应用考 点 整 合1.函数的性质(1)单调性(ⅰ)用来比较大小,求函数最值,解不等式和证明方程根的唯一性.(ⅱ)常见判定方法:①定义法:取值、作差、变形、定号,其中变形是关键,常用的方法有:通分、配方、因式分解;②图象法;③复合函数的单调性遵循“同增异减”的原则;④导数法.(2)奇偶性:①若f (x )是偶函数,那么f (x )=f (-x );②若f (x )是奇函数,0在其定义域内,则f (0)=0;③奇函数在关于原点对称的区间内有相同的单调性,偶函数在关于原点对称的区间内有相反的单调性;(3)周期性:常见结论有①若y =f (x )对x ∈R ,f (x +a )=f (x -a )或f (x -2a )=f (x )(a >0)恒成立,则y =f (x )是周期为2a 的周期函数;②若y =f (x )是偶函数,其图象又关于直线x =a 对称,则f (x )是周期为2|a |的周期函数;③若y =f (x )是奇函数,其图象又关于直线x =a 对称,则f (x )是周期为4|a |的周期函数;④若f (x +a )=-f (x )⎝ ⎛⎭⎪⎫或f (x +a )=1f (x ),则y =f (x )是周期为2|a |的周期函数. 2.函数的图象(1)对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换.(2)在研究函数性质特别是单调性、值域、零点时,要注意结合其图象研究.3.求函数值域有以下几种常用方法:(1)直接法;(2)配方法;(3)基本不等式法;(4)单调性法;(5)求导法;(6)分离变量法.除了以上方法外,还有数形结合法、判别式法等.4.函数的零点问题(1)函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③数形结合,利用两个函数图象的交点求解.5.应用函数模型解决实际问题的一般程序 读题(文字语言)⇒建模(数学语言)⇒求解(数学应用)⇒反馈(检验作答)与函数有关的应用题,经常涉及到物价、路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题.解答这类问题的关键是确切的建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.热点一 函数性质的应用【例1】 (1)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为________(从小到大排序).(2)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则()∑=+mi i i y x 1=________.探究提高 (1)可以根据函数的奇偶性和周期性,将所求函数值转化为给出解析式的范围内的函数值.(2)利用函数的对称性关键是确定出函数图象的对称中心(对称轴).【训练1】 (1)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________.(2)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝ ⎛⎭⎪⎫-52+f (1)=________.热点二 函数图象的应用【例2】 (1)已知函数f (x )=⎩⎨⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则实数a 的取值范围是________.(2)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则实数a 的取值范围是________.探究提高 (1)涉及到由图象求参数问题时,常需构造两个函数,借助两函数图象求参数范围.(2)图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.【训练2】 设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x<0的解集为________.热点三 函数与方程问题[微题型1] 函数零点个数的求解【例3-1】 函数f (x )=4cos 2x 2·cos ⎝ ⎛⎭⎪⎫π2-x -2sin x -|ln(x +1)|的零点个数为________.探究提高 解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解.[微题型2] 由函数的零点(或方程的根)求参数【例3-2】 (1)设函数f (x )=⎩⎪⎨⎪⎧x -1e x ,x ≥a ,-x -1,x <a ,g (x )=f (x )-b .若存在实数b ,使得函数g (x )恰有3个零点,则实数a 的取值范围为________.(2)已知函数f (x )=⎩⎨⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=b -f (2-x ),其中b ∈R ,若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是________.探究提高 利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.【训练3】设函数f(x)=x2+3x+3-a·e x(a为非零实数),若f(x)有且仅有一个零点,则a的取值范围为________.1.解决函数问题忽视函数的定义域或求错函数的定义域,如求函数f(x)=1x ln x的定义域时,只考虑x>0,忽视ln x≠0的限制.2.如果一个奇函数f(x)在原点处有意义,即f(0)有意义,那么一定有f(0)=0.3.三招破解指数、对数、幂函数值的大小比较.(1)底数相同,指数不同的幂用指数函数的单调性进行比较;(2)底数相同,真数不同的对数值用对数函数的单调性比较;(3)底数不同、指数也不同,或底数不同,真数也不同的两个数,常引入中间量或结合图象比较大小.4.对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个函数图象,然后数形结合,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.一、填空题1.函数f(x)=ln x+1-x的定义域为________.2.函数f(x)=log5(2x+1)的单调增区间是________.3.函数f (x )=⎩⎨⎧2x ,x ≤0,-x 2+1,x >0的值域为________.4.定义在区间[0,3π]上的函数y =sin 2x 的图象与y =cos x 的图象的交点个数是________.5.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎨⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32,则a +3b 的值为________.6.已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围是________.7.已知函数f (x )=⎩⎨⎧x -[x ],x ≥0,f (x +1),x <0,其中[x ]表示不超过x 的最大整数.若直线y =k (x +1)(k >0)与函数y =f (x )的图象恰有三个不同的交点,则实数k 的取值范围是________.8.设函数f (x )=⎩⎨⎧2x -a ,x <1,4(x -a )(x -2a ),x ≥1.(1)若a=1,则f(x)的最小值为________;(2)若f(x)恰有2个零点,则实数a的取值范围是________.二、解答题9.已知函数f(x)=x2-2ln x,h(x)=x2-x+a.(1)求函数f(x)的极值;(2)设函数k(x)=f(x)-h(x),若函数k(x)在[1,3]上恰有两个不同零点,求实数a 的取值范围.。

第三单元第8讲 函数与方程微专题讲义 课件-2025届高三数学一轮复习

第三单元第8讲 函数与方程微专题讲义 课件-2025届高三数学一轮复习
<0,f (6)f (7)>0,
∴f (x)在区间(2,3),(5,6)内各至少有一个零点.
12
返 回
函数与方程
返 回
+ − , ≤ ,

3.[教材改编]函数f (x)=
的零点个数为
− + , >
(
A.3
B.2
C.7
D.0
答案:B
≤ ,
> ,
解析:由
32
返 回
函数与方程
返 回
2.(2023·莆田模拟)函数f (x)是R上最小正周期为2的周期函数,
当0≤x<2时,f (x)=x2-x,则函数y=f (x)的图象在区间[-3,
3]上与x轴的交点个数为(
)
A.6
B.7
C.8
D.9
答案:B
33
函数与方程
解析:令f (x)=x2-x=0,即x=0或x=1,所以f (0)=0,f (1)
2025届
函数与方程
返 回
第8讲 函数与方程
1
1
函数与方程
返 回
课程标准解读
2
命题方向
数学素养
1.理解函数的零点与方程的解的
1.函数零点区间的判
联系.

直观想象
2.理解函数零点存在性定理,并
2.函数零点个数的判
数学运算
能简单应用.

逻辑推理
3.了解用二分法求方程的近似解
3.函数零点的应用
函数与方程
28
函数与方程
解法二(图象法) 作出函数f (x)的图象,
如图,函数y=f (x)-3的
零点个数即y=f (x)的图象

题型专题八基本初等函数函数与方程

题型专题八基本初等函数函数与方程
2 上的函数图象如图所示.由图可知方程 f(x)-1 =0 在(0,6)内的根共有 4 个,其和为 x1+x2+x3+x4=2+10=12,故选 C.
3.(2016·郑州质检)已知定义在 R 上的奇函数 y=f(x)的图象关 于直线 x=1 对称,当 0<x≤1 时,f(x)=log1x,则方程 f(x)-1=0
2 在(0,6)内的所有根之和为( )
A.8 B.10 C.12 D.16
解析:选 C ∵奇函数 f(x)的图象关于直线 x=1 对称,∴f(x)=f(2-x)=-f(-x),即 f(x)= -f(x+2)=f(x+4),∴f(x)是周期函数,其周期 T =4.当 0<x≤1 时,f(x)=log1x,故 f(x)在(0,6)
200-200=1 000,当且仅当 x=10x000,即 x=100 时,L(x)取得最大值 1
000 万元.由于 950<1 000,∴当产量为 100 千件时,该工厂在这一产品
的生产中所获年利润最大,最大年利润为 1 000 万元.故选 B.
高考变的是题目,不变的是知识,交汇创新题只不过是载体的改变而已
能全部售完,则该工厂在这一产品的生产中所获年利润的最大值是
() A.1 150 万元
B.1 000 万元
C.950 万元
D.900 万元
解析:选 B ∵每件产品的售价为 0.05 万元,∴x 千件产品的销售
额为 0.05×1 000x=50x 万元.①当 0<x<80 时,年利润 L(x)=50x-31x2
A.b<a<c
B.a<c<b
C.c<b<a
D.c<a<b
解析:选 D 1=log33<a=log37<log39=2,b=21.1>21=2, c=0.83.1<0.80=1,所以 c<a<b.

专题03 函数与方程和零点问题与嵌套函数(解析版)

专题03 函数与方程和零点问题与嵌套函数(解析版)

专题03 函数与方程和零点问题与嵌套函数一、重点题型目录【题型】一、零点存在定理法判断函数零点所在区间 【题型】二、方程法判断函数零点个数 【题型】三、数形结合法判断函数零点个数 【题型】四、转化法判断函数零点个数 【题型】五、利用函数的零点或方程有根求参数 【题型】六、利用函数的交点或交点个数求参数 【题型】七、一元二次不等式恒成立问题 【题型】八、一元二次不等式能成立问题 二、题型讲解总结【题型】一、零点存在定理法判断函数零点所在区间例1.(2023·全国·高三专题练习)函数()2ln 1f x x x =--的零点所在的区间是( )A .()1,2B .()2,3C .()3,4D .()4,5【答案】B【分析】利用零点存在性定理求解即可 【详解】函数()2ln 1f x x x =--在()1,+∞ 上单调递增,且在()1,+∞上连续. 因为()22ln 2ln 22021f =-=-<-,()23ln 3ln 31031f =-=->-, 所以()()230f f <,所以函数的零点所在的区间是()2,3. 故选:B例2.(2023·全国·高三专题练习)已知函数()f x 的定义域为(0,)+∞,对任意,()0x ∈+∞,都有()2()log 20f f x x -=.现已知()()17f a f a +'=,那么( ) A .(1,1.5)a ∈ B .(1.5,2)a ∈C .(2,2.5)a ∈D .(2.5,3)a ∈【答案】D【分析】先由()2()log 20f f x x -=求出2()16log f x x =+,再由()()17f a f a +'=得到21log 10ln 2a a --=,结合单调性和零点存在定理进行判断即可. 【详解】不妨设2()log f x x m -=,则()20f m =,所以2log 2016m m m +=⇒=,得2()16log f x x =+,1()ln 2f x x '=,因为()()17f a f a +'=,所以21log 10ln 2a a --=.令21()log 1ln 2g a a a =--,易得()g a 在(0,)+∞上单调递增,因为227ln118(3)log 3103ln 23ln 2g -=--=>,52531255ln 2ln 25ln 21ln 42410244(2.5)log 2.5102.5ln 25ln 25ln 25ln 25ln 2g ⎛⎫--- ⎪-⎝⎭=--===<<, 由零点存在定理知:(2.5,3)a ∈. 故选:D .例3.(2023·全国·高三专题练习)已知()=ln f x x ,()e xg x =,若()()f s g t =,则当s t -取得最小值时,()g t 所在区间是( ) A .11,3e ⎛⎫ ⎪⎝⎭B .11,e 2⎛⎫ ⎪⎝⎭C .()ln 2,1D .1,ln 22⎛⎫ ⎪⎝⎭【答案】D【分析】由已知条件构造函数()e ln ah a a =-,利用导数求出最值,由零点存在性定理验证001e 0a a -=的根的范围即可. 【详解】令()()f s g t a ==,即e ln 0t s a ==>, ∴ln t a =,e a s =, ∴e ln (0)a s t a a -=->,令()e ln ah a a =-,则()1e a h a a'=-,令()1e am a a =-,则()21e a m a a '=+, ∴()m a 在()0,∞+上单调递增,且()1e 10m =->,1202m ⎛⎫=< ⎪⎝⎭∴存在唯一0a a =使得()0h a '=,当00a a <<时,1e a a <, ()0h a '<,当0a a >时,1e aa>, ()0h a '>,∴()0()min h h a a =,即s t -取得最小值时,0()f s a a ==,由零点的存在定理验证01e 0aa -=的根的范围,当012a =时,001e 0a a -<,当0ln2a =时,001e 0aa ->,故01(,ln 2)2a ∈, 故选:D .例4.(2023·全国·高三专题练习)已知函数()()2e 0-=->x af x x a 有两个极值点1x 和2x ,且12x x <,则下列结论正确的是( )A .101x <<B .2101xx e << C .()101f x << D .()1ln 2,a ∈-+∞【答案】ACD 【分析】函数()()2e0-=->x af x x a 有两个极值点1x 和2x ,令()0f x '=,则e2e =xa x判断函数()e x g x x =的单调性,由题知()e xg x x=与2e =a y 有两个交点,借助图像求出a 的取值范围,判断D ;再根据零点存在性定理判断A ;又根据11e 2-=x ax ,求出()1f x 的取值范围,判断C ;由()()1200f x f x ⎧'=='⎪⎨⎪⎩,得2112e e x xx x =,由于101x <<,21x >,所以12e 1>x x ,从而判断B.【详解】已知()2e -=-x a f x x ,则()e 2-'=-x af x x ,令()0f x '=,则e2e =xa x考虑函数()e xg x x =,则()()2e 1x x g x x-'=, 当(),0x ∈-∞时,()0g x '<,即()g x 在(),0∞-上单调递减; 当()0,1x ∈时,()0g x '<,即()g x 在()0,1上单调递减; 当()1,x ∈+∞时,()0g x '>,即()g x 在()1,+∞上单调递增; 故()g x 的图象大致如图:依题意,若()f x 有两个极值点,则2e e >a ,即1ln 2a >-,因此选项D 正确; 由图易知,101x <<,21x >,故选项A 正确; 又11e 2-=x ax ,故()()122211111e 211-=-=-=--x a f x x x x x ,因为101x <<,所以()101f x <<,故选项C 正确; 因为()()1200f x f x ⎧'=='⎪⎨⎪⎩,即1212e 2e 2x a x a x x --⎧=⎨=⎩,故1212e e =x x x x ,即2112e e x xx x =. 由于101x <<,21x >,所以12e 1>x x ,从而21e 1>xx ,故选项B 错误.故答案为:ACD.【题型】二、方程法判断函数零点个数例5.(2023·全国·高三专题练习)关于函数()ln ||ln |2|f x x x =+-有下述四个结论: ∴()f x 的图象关于直线1x =对称 ∴()f x 在区间(2,)+∞单调递减 ∴()f x 的极大值为0 ∴()f x 有3个零点 其中所有正确结论的编号为( ) A .∴∴ B .∴∴ C .∴∴∴ D .∴∴∴【答案】D【分析】根据给定函数,计算(2)-f x 判断∴;探讨()f x 在(2,)+∞上单调性判断∴;探讨()f x 在(0,1)和(1,2)上单调性判断∴;求出()f x 的零点判断∴作答.【详解】函数()ln ||ln |2|f x x x =+-的定义域为(,0)(0,2)(2,)-∞⋃⋃+∞, 对于∴,(,0)(0,2)(2,)x ∈-∞⋃⋃+∞,则2(,0)(0,2)(2,)x -∈-∞⋃⋃+∞, (2)ln |2|ln ||()f x x x f x -=-+=,()f x 的图象关于直线1x =对称,∴正确;对于∴,当2x >时,()ln ln(2)f x x x =+-,()f x 在(2,)+∞单调递增,∴不正确; 对于∴,当0x <时,()ln()ln(2)f x x x =-+-,()f x 在(,0)-∞单调递减,当02x <<时,2()ln ln(2)ln[(1)1]f x x x x =+-=--+,()f x 在(0,1)上单调递增,在(1,2)上单调递减,又()f x 在(2,)+∞单调递增,因此()f x 在1x =处取极大值(1)0f =,∴正确;对于∴,由()0f x =得:2|2|1x x -=,即2210x x --=或2210x x -+=,解得1x =1x =,于是得()f x 有3个零点,∴正确, 所以所有正确结论的编号为∴∴∴. 故选:D【点睛】结论点睛:函数()y f x =的定义域为D ,x D ∀∈,存在常数a 使得()(2)()()f x f a x f a x f a x =-⇔+=-,则函数()y f x =图象关于直线x a =对称.例6.(2023·全国·高三专题练习)若()f x 为奇函数,且0x 是()2e x y f x =-的一个零点,则0x -一定是下列哪个函数的零点( ) A .()e 2x y f x -=-- B .()e 2x y f x =+ C .()e 2x y f x =- D .()e 2x y f x =-+【答案】B【分析】根据()f x 是奇函数可得()()f x f x -=-,因为0x 是()2e =-xy f x 的一个零点,代入得()002e xf x =,利用这个等式对A 、B 、C 、D 四个选项进行一一判断可得答案.【详解】()f x 是奇函数,()()f x f x ∴-=-且0x 是()2e =-xy f x 的一个零点, 所以()002e xf x =,把0x -分别代入下面四个选项,对于A ,()()0020e e 222-=-x x f x ,不一定为0,故A 错误;对于B ,()()0000e 2e x xf x f x ---+=-0012e e 20x x -+=-⋅⋅+=,所以0x -是函数()e 2x y f x =+的零点,故B 正确;对于C ,()000224e 2e ---=--=-x f x ,故C 不正确;对于D ,()0000e 22e e +24--+==x x x f x ,故D 不正确;故选:B.例7.(2023·全国·高三专题练习)已知函数()cos 2cos f x x x =+,且[]0,2πx ∈,则()f x 的零点个数为( ) A .1个 B .2个C .3个D .4个【答案】C【分析】解三角方程求得()f x 的零点即可解决【详解】由()()2cos 2cos 2cos cos 1cos 12cos 10x x x x x x +=+-=+-=可得cos 1x =-或1cos 2x =,又[]0,2πx ∈,则πx =,或π3x =,或5π3x =则()f x 的零点个数为3 故选:C例8.(2023·全国·高三专题练习)()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x =在区间[]6,6-内解的个数的最小值是_______. 【答案】13【分析】根据函数周期性和奇偶性的性质,进行递推即可. 【详解】()f x 是定义在R 上的以3为周期的奇函数,()()3f x f x ∴+=,且()()f x f x -=-,则()00f =,则()()()()()()36600330f f f f f f ==-==-=-=,,()20f =,()()()()514050f f f f ∴=-=-=-=,, ()10f =,()40f =,()20f -=,方程的解至少有0,3,6,6-,3-,2,5,5-,2-,1-,1,4,4-,共13个. 故答案为:13【题型】三、数形结合法判断函数零点个数例9.(2023·全国·高三专题练习)已知函数()33f x x x =-,则函数()()h x f f x c =-⎡⎤⎣⎦,[]2,2c ∈-的零点个数( )A .5或6个B .3或9个C .9或10个D .5或9个【答案】D【分析】设()t f x =,求导分析()33f x x x =-的最值与极值,画出图形,再分析()f t c =与()t f x =的根的范围与个数即可【详解】设()t f x =,则由()()0h x f f x c =-=⎡⎤⎣⎦, 得()f f x c =⎡⎤⎣⎦,即()f t c =,()t f x = 又()()()233311f x x x x '=-=-+, 由0fx得1x <-或1x >,此时函数单调递增,由()0f x '<得11x -<<,此时函数单调递减,即函数在=1x -处取得极大值()()()311312f -=--⨯-=,函数在1x =处取得极小值()311312f =-⨯=-,又由()()()322322f -=--⨯-=-,()322322f =-⨯=可得图象:若()f t c =,()2,2c ∈-,则方程有三个解, 满足121t -<<-,211t -<<,312t <<, 则当121t -<<-时,方程()t f x =,有3个根, 当211t -<<时,方程()t f x =,有3个根, 当312t <<时,方程()t f x =,有3个根,此时共有9个根,若()f t c =,2c =,则方程有两个解, 满足11t =-,22t =,则当11t =-时,方程()t f x =,有3个根, 当22t =,有2个根, 此时共有5个根,同理()f t c =,2c =-,也共有5个根 故选:D .例10.(2023·全国·高三专题练习)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∴[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是( ) A .1 B .2C .3D .4【答案】D【分析】由题意知,f (x )是周期为2的偶函数,将函数零点转化为求两个函数图象交点的个数即可,作出图象观察得出结论.【详解】由题意知,f (x )是周期为2的偶函数.在同一坐标系内作出函数y =f (x )及y =log 3|x |的图象,如下:观察图象可以发现它们有4个交点, 即函数y =f (x )-log 3|x |有4个零点. 故选:D.例11.(2023·全国·高三专题练习)已知函数()()e 2,1ln 1,1xx f x x x -⎧-≤⎪=⎨->⎪⎩,则函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数是( )A .4B .5C .6D .7【答案】B【分析】令()t f x =,()0g x =,则()21f t t =-,分别作出函数()y f t =和直线21y t =-的图象,得到10t =,212t <<,再分别作出函数()y f x =和直线y t =的图象,得到方程()0f x =和方程()2t f x =的根的个数,进而得到函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数. 【详解】令()t f x =,()0g x =,则()210f t t -+=,即()21f t t =-, 分别作出函数()y f t =和直线21y t =-的图象,如图所示,由图象可得有两个交点,横坐标设为1t ,2t , 则10t =,212t <<,对于()t f x =,分别作出函数()y f x =和直线2y t =的图象,如图所示,由图象可得,当()10f x t ==时,即方程()0f x =有两个不相等的根, 当()2t f x =时,函数()y f x =和直线2y t =有三个交点, 即方程()2t f x =有三个不相等的根,综上可得()0g x =的实根个数为5,即函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数是5. 故选:B.例12.(2023·上海·高三专题练习)对于给定的正整数n (n ≥2),定义在区间[0,n ]上的函数y =f (x )满足:当01x ≤≤时,2()2f x x x =-+,且对任意的x ∴[1,n ],都成立f (x )=f (x ﹣1)+1.若与n 有关的实数kn 使得方程f (x )=knx 在区间[n ﹣1,n ]上有且仅有一个实数解,则关于x 的方程f (x )=knx 的实数解的个数为____. 【答案】2n ﹣1##12-+n【分析】数形结合,画出y =f (x )在区间[0,n ]上的图象,根据y =knx 与y =f (x )的图象交点分析即可.【详解】由题意,画出y =f (x )在区间[0,1]上的图象, 又对任意的[1,n ],都成立f (x )=f (x ﹣1)+1.可理解为区间[n ﹣1,n ]的图象由区间[n ﹣2,n ﹣1]的图象向右平移一个单位所得, 即可画出y =f (x )在区间[0,n ]上的图象,如图所示,故若与n 有关的实数kn 使得方程f (x )=knx 在区间[n ﹣1,n ]上有且仅有一个实数解, 则y =knx 与y =f (x )在区间[n ﹣1,n ]上的图象相切,且易得y =f (x )的图象在y =x 与区间[0,1],[1,2],[2,3],∴[n ﹣1,n ]上的公切线之间, 故y =knx 与y =f (x )在区间[0,1],[1,2],[2,3],∴[n ﹣1,n ]上均有2个交点, 故关于x 的方程f (x )=knx 的实数解的个数为2(n ﹣1)+1=2n ﹣1个. 故答案为:2n ﹣1.【题型】四、转化法判断函数零点个数例13.(2022·全国·高三专题练习)已知()f x 的定义域为[)0,∞+,且满足()[)()[)1,0,121,1,xe xf x f x x ⎧-∈⎪=⎨-∈+∞⎪⎩,若()()g x f x π=-,则()g x 在[]0,10内的零点个数为( ) A .8 B .9 C .10 D .11【答案】B【分析】求出函数()f x 在区间[)(),109,n n n n N +≤≤∈值域及单调性,由此可得出结论.【详解】当[)0,1x ∈时,()[)10,1xf x e e =-∈-,当[)1,2x ∈时,[)10,1x -∈,则()()[)210,22f x f x e =-∈-,当[)2,3x ∈时,[)20,1x -∈,则()()()[)21420,44f x f x f x e =-=-∈-,以此类推,当[)(),109,x n n n n N ∈+≤≤∈时,()()())20,21n nf x f x n e ⎡=-=-⎣,且函数()f x 在区间[)(),109,n n n n N +≤≤∈上为增函数,122e e π-<<-,所以,函数()g x 在区间[)(),119,n n n n N +≤≤∈上有且只有一个零点,且()()()101010200g f f ππ=-=-<,因此,()g x 在[]0,10内的零点个数为9. 故选:B.【点睛】方法点睛:判定函数()f x 的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令()0f x =,将函数()f x 的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果. 例14.(2022·全国·高三专题练习(文))已知函数()()3log 911x f x x+=-,下列说法正确的是( )A .()f x 既不是奇函数也不是偶函数B .()f x 的图象与sin y x =有无数个交点C .()f x 的图象与2y =只有一个交点D .()()21f f -<- 【答案】C【分析】A 根据函数奇偶性的定义即可判断()f x 的奇偶性;B 利用放缩法,当0x >易证()1f x >,由奇函数的对称性知0x <时()1f x <-,即可知()f x 与sin y x =的交点情况;C :由()2f x =变形可得112713xx⎛⎫+= ⎪⎝⎭⎛⎫ ⎪⎝⎭,设()11327xxg x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭只需判断()1g x =解得个数即可;D 根据函数解析式求出()()2,1f f --比较大小即可. 【详解】A :()f x 定义域为{|0}x x ≠且()()()()()()333391log log 91log 91log 9191120x x x x x f x f x x x x x -⎛⎫+ ⎪+++⎝⎭-+=-+-=--=-,故()f x 为奇函数,错误;B :当0x >时有()3log 91211xf x x>-=-=,又()f x 为奇函数,则当0x <时,()1f x <-,即在R 上()f x ∈()(),11,-∞-⋃+∞,则()f x 的图象与sin y x =没有交点,错误, C :若()2f x =,则有()3log 9112x x+-=,即()3log 913x x +=,变形得9127x x+=,即112713x x⎛⎫+= ⎪⎝⎭⎛⎫ ⎪⎝⎭, 设()11327xxg x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,则()g x 为减函数且其值域为0,,则()1g x =有且只有一个解,即()f x 的图象与2y =只有一个交点,正确,D :()()2333182log 1log 2log 918181211222f -⎛⎫⎛⎫++ ⎪+ ⎪⎝⎭-=-=--=- ⎪- ⎪⎝⎭3182log 29=-⨯3log =-,而()333110101log 11log 1log 993f ⎛⎫⎛⎫-=-+-=-+=- ⎪ ⎪⎝⎭⎝⎭,则有()()21f f ->-,错误.故选:C.【点睛】关键点点睛:A 利用奇偶性定义判断函数的奇偶性,B 放缩法及奇函数的对称性,结合正弦函数的性质判断交点情况,C 将交点问题,通过恒等变形转化为方程是否有解的问题,D 通过函数解析式求函数值,进而比较大小.例15.(2022·全国·高三专题练习)高斯被人认为是历史上最重要的数学家之一,并享有“数学王子”之称.有这样一个函数就是以他名字命名的:设x ∈R ,用[]x 表示不超过x 的最大整数,则()[]f x x =称为高斯函数,又称为取整函数.如:(2.3)2f =,( 3.3)4f -=-.则下列结论正确的是( )A .函数()f x 是R 上的单调递增函数B .函数2()()3g x f x x =-有2个零点 C .()f x 是R 上的奇函数D .对于任意实数,a b ,都有()()()f a f b f a b +≤+ 【答案】BD【分析】对于AC ,举例判断,对于B ,利用取整函数和零点的定义判断即可,对于D ,定义{}[]a a a -=这样一个函数,就会有{}10a >≥,然后结合高斯函数的定义判断即可 【详解】对于A ,(1.1)1f =,(1.2)1f =,(1.1)(1.2)f f =,()f x ∴在R 上不是单调增函数,所以A 错.对于B ,由()[]f x x =,可得1()x f x x -<≤,所以1()33x xg x -<≤,若函数()g x 要有零点,则1033x x -<≤,得[0,3)x ∈,因为()g x 要想为0,必须23x 也为整数,在这个范围内,只有30,2x x ==两个点,所以B 正确, 对于C ,(1.1)1f =,( 1.1)2(1.1)f f -=-≠-,()f x ∴不是奇函数,所以C 错, 对于D ,如果我们定义{}[]a a a -=这样一个函数,就会有{}10a >≥,同时有{}{}{}{}()([][])[[][]]f a b f a b a b a b a b +=+++=+++,当{}{}1a b +≥时,会有()[][]()()f a b a b f a f b +=+=+,当{}{}01a b <+<时,()[][]()()f a b a b f a f b +>+=+,所以D 正确,故选:BD.【题型】五、利用函数的零点或方程有根求参数例16.(2023·全国·高三专题练习)函数f (x )=ax 2-x -1有且仅有一个零点,则实数a 的值为( )A .-14B .0C .14D .0或-14【答案】D【分析】通过a 是否为0,然后求解函数的零点即可.【详解】解:当0a =时,函数()1f x x =--仅有一个零点,满足题意;当0a ≠时,函数2()1f x ax x =--仅有一个零点,可得140a ∆=+=,解得14a =-.故选:D例17.(2023·全国·高三专题练习)已知函数1,1()1()1,12x a x f x x -=⎧⎪=⎨+≠⎪⎩,若方程22()(23)()30-++=f x a f x a 有5个不同的实数解,则a 的范围是( )A .33(1,)(,2)22⋃B .(1,2)(2,3)C .(1,)+∞D .(1,3)【答案】A【分析】解方程22()(23)()30-++=f x a f x a 得()f x a =或3()2f x =,根据a 的取值分类讨论即可.【详解】方程22()(23)()30-++=f x a f x a ,解得()f x a =或3()2f x =, 若32a =,13,132()12()1,12x x f x x -⎧=⎪⎪==⎨⎪+≠⎪⎩, 解得1x =或0或2,不符合题意,所以32a ≠, 由3()2f x =,可得原方程有3个不等实根1x =或0或2; 所以只要|1|1()12x a -+=有2个不等实根即可.由|1|0x ->可得|1|10()12x -<<,即有12a <<,综上可得33(1,)(,2)22a ⋃∈.故选:A .例18.(2023·全国·高三专题练习)已知函数()2ln ,043,0x x f x x x x >⎧=⎨---≤⎩,若函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,则m 的取值范围是( ) A .102,3⎛⎫- ⎪⎝⎭B .102,3⎛⎤- ⎥⎝⎦C .102,3⎛⎫⎪⎝⎭D .102,3⎛⎤ ⎥⎝⎦【答案】D【分析】画出()f x 的图像,结合函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,结合图像列不等式来求得m 的取值范围.【详解】当0x ≤时,()f x 是开口向下的二次函数,对称轴为2x =-,()()24831,03f f -=-+-==-.由243=0x x ---解得=1x -或3x =-. 由此画出()f x 的图像如下图所示,依题意,函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点, 令()t f x =,则21y t mt =++,根据图像可知,函数21y t mt =++在区间[)3,1-上有两个不相等的实数根,则()222Δ403310110312m m m m ⎧=->⎪--+≥⎪⎪⎨++>⎪⎪-<-<⎪⎩,解得1023m <≤,所以m 的取值范围是102,3⎛⎤ ⎥⎝⎦.故选:D例19.(2023·全国·高三专题练习)已知函数()2221,0log ,0x x f x x x +⎧-≤⎪=⎨>⎪⎩,若关于x 的方程2[()]()40f x mf x ++=有6个不同的实数根,则m 的取值范围是( )A .13(,5),43⎡⎫-∞-⋃--⎪⎢⎣⎭B .13,43⎡⎫--⎪⎢⎣⎭ C .134,(5,)3⎛⎤⋃+∞ ⎥⎝⎦ D .134,3⎛⎤ ⎥⎝⎦【答案】A【分析】画出()f x 的图象,令()t f x =,则先讨论240t mt ++=的零点,根据二次函数判别式与韦达定理,结合()f x 的图象可得240t mt ++=的较小根的范围,进而根据m 与较小根的关系式结合函数的单调性求解即可.【详解】画出()f x 的图象如图,令()t f x =,则先讨论240t mt ++=的零点. 当2440m ∆=-⨯<,即44m -<<时,不合题意;当2440m ∆=-⨯=,即4m =±时,易得2t =或2t =-,此时当()2f x =或()2f x =-时均不满足有6个零点,不合题意;故2440m ∆=-⨯>,4m >或4m <-,设240t mt ++=的两根为12,t t ,不妨设12t t <,由韦达定理124t t =,且12,2t t ≠.∴当12,0t t <时,()1f x t =与()2f x t =均无零点,不合题意; ∴当12,0t t >时:1. 若101t <<,则24t >,此时()1f x t =有4个零点,()2f x t =有2个零点,合题意;2. 若112t ≤<,此时()1f x t =有3个零点,则()2f x t =有且仅有3个零点,此时223t <≤,故1423t ≤<; 综上可得101t <<或1423t ≤<. 又12t t m +=-,故()12114m t t t t ⎛⎫=-+=-+ ⎪⎝⎭,结合4y t t =+在()0,2上为减函数可得114m t t ⎛⎫=-+ ⎪⎝⎭在()0,1,4,23⎡⎫⎪⎢⎣⎭上为增函数.故13(,5),43m ⎡⎫∈-∞-⋃--⎪⎢⎣⎭故选:A【点睛】本题主要考查了数形结合解决复合函数零点的问题,需要换元先分析二次函数的零点情况,数形结合判断零点所在的区间,进而得出()f x 零点所在的区间,并结合二次函数的性质与韦达定理求解.属于难题.例20.(2023·全国·高三专题练习)已知函数()()23,0,3,0,x x x f x f x x ⎧--<⎪=⎨-≥⎪⎩以下结论正确的是( )A .()f x 在区间[7,9]上是增函数B .()()220222f f -+=C .若函数()y f x b =-在(),6-∞上有6个零点()1,2,3,4,5,6i x i =,则619i i x ==∑D .若方程()1f x kx =+恰有3个实根,则11,3k ⎛⎫∈-- ⎪⎝⎭【答案】BC【分析】A 根据()f x 的周期性判断区间单调性;B 利用周期性求得()() 202230f f =-=即可判断;C 转化为y b =与()y f x =的交点问题,应用数形结合法及对称性求零点的和;D 根据函数图象求得1y kx =+与()y f x =交点个数为2或3时的临界值,即可得范围. 【详解】A :由题意,当3x ≥-时()f x 以3为周期的函数,故()f x 在[7,9]上的单调性与()f x 在[-2,0]上的单调性相同,而当0x <时()23924x x f ⎛⎫=-++ ⎪⎝⎭,∴()f x 在[-2,0]上不单调,错误;B :()22f -=,()() 202230f f =-=,故()()2 20222f f -+=,正确;C :作出()y f x =的函数图象如图所示:由于()y f x b =-在(),6-∞上有6个零点,故直线y b =与()y f x =在(),6-∞上有6个交点,不妨设1i i x x +<,i =1,2,3,4,5,由图象知:1x ,2x 关于直线32x =-对称,3x ,4x 关于直线32x =对称,5x ,6x 关于直线92x =对称,∴513392229222i i x ==-⨯+⨯+⨯=∑,正确;D :若直线1y kx =+经过(3,0),则13k =-,若直线1y kx =+与()230y x x x =--<相切,则消元可得:()2103x k x ++=+,令Δ0=可得()2340k +-=,解得k =-1或k =-5(舍),若直线1y kx =+与()y f x =在(0,3)上的图象相切,由对称性得:k =1. 因为()1f x kx =+恰有3个实根,故直线1y kx =+与()y f x =有3个交点, ∴113k -<<-或k =1,错误,故选:BC .例21.(2023·全国·高三专题练习)若函数()()2e 2xf x x x a =-++在区间(),1a a +上存在最大值,则实数a 的取值范围为_______【答案】2⎫⎪⎪⎝⎭【分析】根据开区间上连续函数的最值点必为导函数的零点,然后求导,数形结合,根据零点存在性定理建立不等式即可求解【详解】因为()()()22e 222e 2x xf x x x a x x a '=-++-+=-++,且函数()f x 在区间(),1a a +上存在最大值, 故只需()22h x x a =-++满足()()>0+1<0h a h a ⎧⎪⎨⎪⎩,所以()22++2>0+1++2<0a a a a --⎧⎪⎨⎪⎩,2a <<.故答案为:2⎫⎪⎪⎝⎭【题型】六、利用函数的交点或交点个数求参数例22.(2023·全国·高三专题练习)已知定义在R 上的奇函数,满足()()20f x f x -+=,当(]0,1x ∈时,()2log f x x =-,若函数()()sin()F x f x x π=-,在区间[]1,m -上有10个零点,则m 的取值范围是( ) A .[)3.5,4 B .(]3.5,4 C .(]3,4 D .[)3,4【答案】A【分析】由已知得出函数()f x 是周期函数,周期为2,函数()F x 的零点个数转化为函数()f x 的图象与sin()y x π=的图象的交点个数,作出函数的图象(其中()f x 的图象由奇偶性与周期性结合作出),然后分析交点个数得出参数范围. 【详解】由(2)()0f x f x -+=得(2)()f x f x +=--,又()f x 是奇函数,所以(2)()()f x f x f x +=--=,即()f x 是周期函数,周期为2,sin()y x π=也是周期函数,且最小正周期是22ππ=,由奇偶性和周期性作出函数()f x 的图象,再作出sin()y x π=的图象,如图,函数()()sin()F x f x x π=-的零点个数即为函数()y f x =的图象与函数sin()y x π=的图象交点个数,()f x 是R 上的奇函数,所以(0)0f =,从而20()f k =,Z k ∈,易知它们在[1,1)-上有4个交点,从而在[1,3)上也有4个交点,而4x =时,点(4,0)是一个交点,所以4m <,在(0,1)上,2()log f x x =-,11()1sin 22f π==,即1(,1)2是(0,1)上交点,从而在(1,0)-上交点上交点为1(,1)2--,由周期性在(3,4)上两函数图象交点为7(,1)2-,所以72m ≥. 综上,724m ≤<.故选:A .例23.(2023·全国·高三专题练习)已知函数()2cos()1(0,0π)f x x ωϕωϕ=+-><<经过(0,0)点,且()f x 在(0,π)上只有一个零点0x ,则ω的最大值为( )A .43B .12C .2D .136【答案】C【分析】运用代入法,结合余弦型函数的性质、函数零点的定义进行求解即可. 【详解】因为()2cos()1f x x ωϕ=+-经过(0,0)点, 所以12cos 10cos 2ϕϕ-=⇒=,因为0πϕ<<,所以π3ϕ=,即π()2cos()13f x x ω=+-,令ππ1()2cos()10cos()332f x x x ωω=+-=⇒+=,因为π()0,x ∈,所以πππ(,π)333x ωω+∈+,因为()f x 在(0,π)上只有一个零点0x ,所以有5πππ43327ππ3π33ωωω⎧<+⎪⎪⇒<≤⎨⎪≤+⎪⎩,所以ω的最大值为2, 故选:C例24.(2023·全国·高三专题练习)已知函数π()2cos()1(0,0)2f x x ωϕωϕ=+-><<,在0x =处的切线斜率为,若()f x 在(0,π)上只有一个零点0x ,则ω的最大值为( )A .43B .12C .2D .136【答案】C【分析】求出函数()f x 的导数,利用导数的几何意义求出ϕ,再由零点信息列出不等式,求解作答.【详解】依题意,()2sin()f x x ωωϕ'=-+,则(0)2sin f ωϕ'=-=,即sin ϕ=,而π02ϕ<<,解得π3ϕ=, 因此,π()2cos()13f x x ω=+-,由()0f x =得:π1cos()32x ω+=,又π()0,x ∈,有πππ(,π)333x ωω+∈+,因()f x 在(0,π)上只有一个零点0x ,于是得5ππ7ππ333ω<+≤,解得423ω<≤, 所以ω的最大值为2. 故选:C例25.(2023·全国·高三专题练习)定义在R 上的偶函数()f x 满足()22)(f x f x -+=,当[0,2]x ∈时,()xf x =,若在区间[0,10]x ∈内,函数()()(1)mg x f x x =-+有个5零点,则实数m 的取值范围是( ) A .()110,log e B .(]11710,log e ,log e 2⎛⎫⋃ ⎪⎝⎭C .111log e,2⎛⎫ ⎪⎝⎭D .11711log e,,log e 22⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭【答案】B【分析】根据函数的奇偶性求出函数在[2,0]-上的解析式,将问题转化为函数图象()y f x =与(1)m y x =+在[0,10]上有5个不同的交点,结合图形即可得出结果.【详解】由题意知,函数()f x 为偶函数,且(2)(2)f x f x -=+,令2x x →+,则(22)()(4)()f x f x f x f x --=-=+=, 所以函数()f x 是以4为周期的函数. 当[2,0]x ∈-时,[0,2]x -∈,所以()x f x --=,即当[2,0]x ∈-时()x f x -=,因为函数()()(1)m g x f x x =-+在[0,10]上有5个零点, 所以方程()(1)0m f x x -+=在[0,10]上有5个根,即函数图象()y f x =与(1)m y x =+在[0,10]上有5个不同的交点,如图,当[0,2]x ∈时,()xf x =,()121e 2x f x '=,()102f '=,设()(1)mp x x =+,则()1(1)m p x m x -'=+,()0p m '=,当12m ≤,()()00p f '≤', 所以在[0,2]x ∈时,函数()()(1)m g x f x x =-+只有一个零点,此时,若要使图象()y f x =与(1)m y x =+在[0,10]上有5个不同的交点, 则()()11010mf +≤,11log e m ≤,所以110log e m <≤; 当12m >时,()()00p f '>', 所以在[0,2]x ∈时,函数()()(1)m g x f x x =-+有两个零点, 所以()()166mf +<且()()11010mf +>,即7e 11e m m ⎧<⎨>⎩,解得71log e 2m <<,故m 的取值范围为(]11710,log e ,log e 2⎛⎫⋃ ⎪⎝⎭.故选:B.例26.(2023·全国·高三专题练习)已知函数()31,21()1,2x x f x x x ⎧≥⎪-=⎨⎪-<⎩,若函数()()g x f x kx k =-+恰好有两个零点,则实数k 的取值范围是( )A .[)1,+∞B .0,1C .()1,+∞D .()(),00,1-∞⋃【答案】C【分析】根据已知条件画出函数()f x 的图象,将函数()()g x f x kx k =-+恰好有两个零点转化为函数()f x 与直线()1y k x =-图象恰有两个交点即可求解.【详解】由题意知,画出函数()31,21()1,2x x f x x x ⎧≥⎪-=⎨⎪-<⎩的简图,如图所示由()()g x f x kx k =-+恰好有两个零点转化为()f x 与直线()1y k x =-有两个不同的交点, 由图知,当直线经过点()()1,0,0,1-两点的斜率为10101k --==-,则1k >. 所以实数k 的取值范围为()1,+∞. 故选:C.例27.(2023·全国·高三专题练习)已知()e xx f x =.则下列说法正确的有( )A .函数()y f x =有唯一零点0x =B .函数()y f x =的单调递减区间为()(),01,-∞⋃+∞C .函数()y f x =有极大值1eD .若关于x 的方程()f x a =有三个不同的根.则实数a 的取值范围是10,e ⎛⎫⎪⎝⎭【答案】ACD【分析】根据零点的定义判断A ,利用导数分析函数的单调性,作出函数()f x 的图象,根据图象判断其余选项.【详解】由()0f x =得:0x =,即0x =,故函数()f x 有唯一零点0x = 由题可知:(),0e e ,0e xx xxx x f x x x ⎧≥⎪⎪==⎨⎪-<⎪⎩ 设()e ex x xg x x -==⋅,x ∈R ,则()()1x g x x e -'=-⋅, 由()()1e 0x g x x -⋅'=-≥得:1x ≤;由()()1e 0xg x x -⋅'=-≤得;1x ≥;故()g x 在(],1-∞上单调递增﹐在[)1,+∞上单调递减,作出()y g x =图象,并将0x <的部分图象关于x 轴对称可得()y f x =的图象如下:观察图象可得函数()y f x =的单调递减区间为(),0∞-,()1,+∞,B 错, 函数()y f x =在1x =时有极大值1e,C 对,方程()f x a =有三个不同的根,则实数a 的取值范围是10,e ⎛⎫⎪⎝⎭,D 对,故选:ACD.【题型】七、一元二次不等式恒成立问题例28.(2023·全国·高三专题练习)已知m 是区间[]0,4内任取的一个数,那么函数3221()233f x x x m x =-++在x ∈R 上是增函数的概率是( )A .14B .13C .12D .23【答案】C【分析】首先得到220()4f x x x m '=-≥+恒成立,则解出m 的范围,再根据其在[0,4]内取数,利用几何概型公式得到答案. 【详解】22()4f x x x m '=-+,3221()233f x x x m x =-++在x ∈R 上是增函数22()40f x x x m '∴=-+≥恒成立21640m ∴∆=-≤解得2m ≥或2m ≤- 又m 是区间[0,4]内任取的一个数24m ∴≤≤由几何概型概率公式得函数3221()233f x x x m x =-++在x ∈R 上是增函数的概率42142P -== 故选:C .例29.(2023·全国·高三专题练习)当13x ≤≤时,关于x 的不等式210ax x -<+恒成立,则实数a 的取值范围是( ) A .1,4⎛⎤-∞- ⎥⎝⎦B .,⎛⎫-∞- ⎪⎝⎭14C .,1,4∞⎛⎫-+ ⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭【答案】B【分析】分离参变量得211a x x ⎛⎫<- ⎪⎝⎭恒成立,只用2min11a x x ⎡⎤⎛⎫<-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦可求解.【详解】当13x ≤≤时,由210ax x -<+恒成立可得,211a x x⎛⎫<- ⎪⎝⎭恒成立, 令2211111()()24f x x x x ⎛⎫=-=-- ⎪⎝⎭,1113,,13x x ⎡⎤≤≤∴∈⎢⎥⎣⎦,∴当111,123x ⎡⎤=∈⎢⎥⎣⎦,即当2x =时, ()f x 取得最小值为()()min124f x f ==-, 因为211a x x⎛⎫<- ⎪⎝⎭恒成立,所以()min a f x <,即14a <-.故选:B .例30.(2023·全国·高三专题练习)已知函数()312x f x x +=+,()()42e xg x x =-,若[)120,x x ∀∈+∞,,不等式()()()()2221e e t g x t f x +≤+恒成立,则正数t 的取值可以是( )A .6e B.(2e +C.(2e +D .2e【答案】AB【分析】本题的含义是不等式左边的最大值小于等于右边的最小值,t 是常数, 因此先要算出左边的最大值和右边的最小值,再计算不等式即可. 【详解】因为()()3253153222x x f x x x x +-+===-+++,所以()f x 在[)0,∞+上单调递增, 所以对[0,)x ∀∈+∞,()()102f x f ≥=; ()()42e x g x x =-,所以()()()'2e 42e 21e x x x g x x x =-+-=- ,当1x >时,()'0g x < ;当01x <<时,()'0g x > ,函数()g x 在()0,1上单调递增,在()1,+∞上单调递减, ∴()max ()12e g x g ==;因为0t >,任意[)12,0,x x ∈+∞,不等式()()()()2221e e t g x t f x +≤+恒成立,即()()221e 2e e 2t t +⋅≤+,整理得224e 3e 0t t --≥,解得(2e t ≤或(2e t ≥,所以正数t的取值范围为()2e,⎡+∞⎣; 6e与(2e均在区间()2e,⎡+∞⎣内,(2e +与2e均不在区间()2e,⎡+∞⎣内; 故选:AB .【题型】八、一元二次不等式能成立问题31.(2023·全国·高三专题练习)已知命题:R p x ∀∈,20x x a -+>,若p ⌝是真命题,则实数a 的取值范围是( ) A .1,4⎛⎤-∞ ⎥⎝⎦B .1,)4-∞( C .11,42⎛⎫ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】A【分析】由题意得到20x x a -+≤有解,进而由根的判别式列出不等式,求出实数a 的取值范围.【详解】若p ⌝是真命题,由题意知不等式20x x a -+≤有解,140a ∴∆=-≥,解得:14a ≤. 因此,实数a 的取值范围是1,4⎛⎤-∞ ⎥⎝⎦.故选:A例32.(2023·全国·高三专题练习)若1,22x ⎡⎤∃∈⎢⎥⎣⎦,使2210x x λ-+<成立,则实数λ的取值范围是______________.【答案】)+∞【分析】利用不等式的基本性质分离参数,利用函数的单调性求相应最值即可得到结论. 【详解】由2210x x λ-+<可得,221x x λ>+,因为1,22x ⎡⎤∈⎢⎥⎣⎦,所以12x x λ>+,根据题意,min 12x x λ⎛⎫+ ⎪⎝⎭>即可,设()12f x x x =+,易知()f x在12⎛ ⎝⎭单调递减,在2⎫⎪⎪⎝⎭单调递增,所以()min f x f ==⎝⎭所以λ>故答案为:)+∞。

高考数学培优专题5:函数与方程

高考数学培优专题5:函数与方程

高考数学培优---专题5函数与方程一、真题特点分析:1. 方程2223450x xy y x -+-+=的整数解的组数为________.2.已知函数()()e 1x f x a x b =+-+在区间[]1,3上存在零点,则22a b +的最小值为( )A .e 2B .eC .2e 2D .2e3已知方程2sin 1x x -=,则下列判断: (1)方程没有正数解; (2)方程有数多个解; (3)方程有一个正数解; (4)方程的实根小于1.其中错误的判断有_______________二、知识要点拓展一.一元二次方程20(0)ax bx c a ++=≠有关公式1.一元二次方程的根:x =2.根与系数的关系:12b x x a +=-,12cx x a=(韦达定理)3.判别式:24b ac ∆=-.二.函数不等式恒成立、能成立、恰成立问题 1.函数不等式的恒成立问题:(1)不等式()f x m ≥在集合D 上恒成立⇔在集合D 上min ()f x m ≥. (2)不等式()f x n ≤在集合D 上恒成立⇔在集合D 上max ()f x n ≤.2.函数不等式的能成立问题:(1)在集合D 上存在实数x 使不等式()f x m ≥成立⇔在集合D 上max ()f x m ≥. (2)在集合D 上存在实数x 使不等式()f x n ≤成立⇔在集合D 上min ()f x n ≤. 3.函数不等式的恰成立问题:不等式在集合D 上恰成立⇔该不等式的解集为D . 三.几个常见的函数方程1.正比例函数()f x cx =,具有性质:()()(),(1)f x y f x f y f c +=+=.2.指数函数()x f x a =,具有性质:()()(),(1)0f x y f x f y f a +==≠.3.对数函数()log a f x x =,具有性质:()()(),()1(0,1)f xy f x f y f a a a =+=>≠.方程的根与函数的零点:1.对于函数()y f x =,我们把使()0f x =的实数叫做函数()y f x =的零点.2.方程()0f x =有实数根⇔函数()y f x =的图象与x 轴有交点⇔函数()y f x =有零点3.零点存在定理:设函数()f x 在闭区间[,]a b 上连续,且()()0f a f b ⋅<,那么在开区间(,)a b 内至少存在一点c ,使()0f c =。

题型专题九基本初等函数、函数与方程

题型专题九基本初等函数、函数与方程
题型专题九基本初等 函数、函数与方程
• 基本初等函数 • 函数与方程 • 函数的应用
目录
Part
01
基本初等函数
一次函数
一次函数是形如$y=kx+b$的 函数,其中$k$和$b$是常数, 且$k neq 0$。
一次函数的图像是一条直线, 斜率为$k$,截距为$b$。
一次函数的单调性由斜率$k$ 决定,当$k>0$时,函数单调 递增;当$k<0$时,函数单调 递减。
函数的奇偶性和对称性是相互联 系的,它们在解决一些数学问题 时可以相互转化。
详细描述
在解决一些数学问题时,可以根 据奇偶性和对称性的定义进行相 互转化。例如,利用奇函数的性 质可以简化一些计算,或者利用 对称性来理解函数的图像和性质 。
函数的周期性与最值
• 总结词:函数的周期性描述了函数值重复出现的规律,而最值则是函数 在某个区间内的最大值或最小值。
指数函数的图像是单调递增或递 减的曲线。
指数函数的单调性由底数$a$决 定,当$a>1$时,函数单调递增; 当$0<a<1$时,函数单调递减。
对数函数
对数函数是形如$y=log_a x$的函数,其中$a>0$且$a neq 1$。
对数函数的图像是单调递增或递减的曲线。
对数函数的单调性由底数$a$决定,当$a>1$时,函数单调递增;当$0<a<1$时, 函数单调递减。
• 详细描述:周期函数是指函数在某个固定周期内重复变化的函数,例如正弦函数和余弦函数。最值则是函数在某个区间 内的最大值或最小值,可以通过求导数或者比较区间端点函数值的方法来求解。
• 总结词:函数的周期性和最值在解决一些数学问题时具有重要应用。 • 详细描述:在解决一些数学问题时,可以利用函数的周期性和最值进行求解。例如,利用周期性可以将一个复杂的问题

微专题30 基本初等函数、函数与方程

微专题30 基本初等函数、函数与方程
索引
1
真题演练 感悟高考
索引
1.(2022·全国甲卷)已知9m=10,a=10m-11,b=8m-9,则( A )
A.a>0>b
B.a>b>0
C.b>a>0
解析 因为9m=10,所以m=log910,
所以a=10m-11=10log910 -11=10log910 -10log1011 .
D.b>0>a
索引
2
热点聚焦 分类突破
索引
热点一 基本初等函数的图象与性质
///////
核心归纳
1.指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0,且a≠1)互为反函数, 其图象关于y=x对称,它们的图象和性质分0<a<1,a>1两种情况,着重关 注两个函数图象的异同.
2.幂函数 y=xα 的图象和性质,主要掌握 α=1,2,3,21,-1 五种情况.
因为log910-log1011

lg 10 lg 9

lg 11 lg 10

(lg 10)2-lg 9·lg 11 lg 9·lg 10

(lg
10)2-(lg
9+lg 2
11)2
lg 9·lg 10

1-(lglg9299)2>0,所以 a>0.
索引
b=8log910 -9=8log910 -8log89 ,
若函数 y=f(x)-ax-b 恰有 3 个零点,则( C )
A.a<-1,b<0 B.a<-1,b>0 C.a>-1,b<0 D.a>-1,b>0 解析 由题意可得,当 x≥0 时,f(x)-ax-b=31x3-21(a+1)x2-b. 令 f(x)-ax-b=0,则 b=13x3-12(a+1)x2=61x2[2x-3(a+1)]. 因为对任意的x∈R,f(x)-ax-b=0有3个不同的实数根,所以要使其满足条件, 则当 x≥0 时,b=16x2[2x-3(a+1)]必须有 2 个实根, 所以3(a+ 2 1)>0,解得 a>-1.所以 b<0.故选 C.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数与方程专题 一.范例分析
1.已知函数()()231f x x m x n =+++的零点是1和2,求函数()log 1n y mx =+的零点. 13.2
2m n =-⎧⎨=⎩
0x =
2.定义在R 上的偶函数y =f (x )在(-∞,0]上是增函数,函数f (x )的一个零点为-1
2,求满足
f (lo
g 4
1x )≥0的x 的取值范围.
解 ∵-12是函数的一个零点,∴f (-1
2
)=0,
∵y =f (x )是偶函数,且在(-∞,0]上是增函数,∴当log 1
4x ≤0,
即x ≥1时log 14x ≥-1
2
,解得x ≤2,即1≤x ≤2,
由对称性可知,当log 14x >0时,1
2
≤x <1,综上所述,x 的取值范围是⎣⎡⎦⎤12,2. 3.是否存在这样的实数a ,使函数f (x )=x 2+(3a -2)x +a -1在区间[-1,3]上与x 轴有且只有一个交点.若存在,求出a 的范围;若不存在,说明理由. 解 ∵Δ=(3a -2)2-4(a -1)=(3a -83)2+8
9
>0,
∴若存在实数a 满足条件,则只需f (-1)·f (3)≤0即可. f (-1)·f (3)=(1-3a +2+a -1)·(9+9a -6+a -1)=4(Label1
1-a )(5a +1)≤0.
所以a ≤-1
5
或a ≥1.
检验:①当f (-1)=0时,a =1.所以f (x )=x 2+x . 令f (x )=0,即x 2+x =0.
得x =0或x =-1.方程在[-1,3]上有两根,不合题意,故a ≠1.
②当f (3)=0时,a =-15,此时f (x )=x 2-135x -65,令f (x )=0,即x 2-135x -6
5=0,
解之得x =-25或x =3.方程在[-1,3]上有两根,不合题意,故a ≠-1
5.综上所述,a <-
1
5
或a >1. 4. 证明方程6-3x =2x 在区间[1,2]内有唯一一个实数解,并求出这个实数解.(精确度0.1)
4. 证明 设函数f (x )=2x +3x -6,∵f (1)=-1<0,f (2)=4>0,
又∵f (x )是增函数,∴函数f (x )=2x +3x -6在区间[1,2]内有唯一的零点, 则方程6-3x =2x 在区间[1,2]内有唯一一个实数解. 设该解为x 0,则x 0∈[1,2],
取x 1=1.5,f (1.5)≈1.33>0,f (1)·f (1.5)<0,∴x 0∈(1,1.5), 取x 2=1.25,f (1.25)≈0.128>0,f (1)·f (1.25)<0,∴x 0∈(1,1.25),
取x 3=1.125,f (1.125)≈-0.444<0,f (1.125)·f (1.25)<0,∴x 0∈(1.125,1.25), 取x 4=1.187 5,f (1.187 5)≈-0.16<0,f (1.187 5)·f (1.25)<0,∴x 0∈(1.187 5,1.25). ∵|1.25-1.187 5|=0.062 5<0.1,∴1.187 5可作为这个方程的实数解.
5.一片森林原来的面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍
伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22, (1)求每年砍伐面积的百分比;
(2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?
5.解 (1)设每年砍伐面积的百分比为x (0<x <1),则
a (1-x )10=12a ,即(1-x )10=12,解得x =1-(12)110.
(2)设经过m 年剩余面积为原来的2
2
,则 a (1-x )m =
22a ,即(12)m 10=(12)12,m 10=1
2
,解得m =5, 故到今年为止,已砍伐了5年.
(3)设从今年开始,以后砍了n 年,则n 年后剩余面积为2
2
a (1-x )n . 令
22a (1-x )n ≥14a ,即(1-x )n ≥24,(12)n 10≥(12)32,n 10≤3
2
,解得n ≤15. 故今后最多还能砍伐15年. 二.课后作业
1. 函数f (x )=ln x -2
x
的零点所在的大致区间是 ( B )
A .(1,2)
B .(2,3)
C .(e,3)
D .(e ,+∞) 2. 设方程|x 2-3|=a 的解的个数为m ,则m 不可能等于 ( A )
A .1
B .2
C .3
D .4
3. 某单位职工工资经过六年翻了三番,则每年比上一年平均增长的百分率是 ( B )
(下列数据仅供参考:2=1.41,3=1.73,33=1.44,6
6=1.38)
A .38%
B .41%
C .44%
D .73%
4. 二次函数y =ax 2+bx +c 的图象如图所示,则下列条件不正确的是 ( D )
A .a <0,b >0,c <0
B .b 2-4ac <0
C .a +b +c <0
D .a -b +c >0 5.根据统计资料,我国能源生产自1998年以来发展得很快,下面是我国能源生产总量(折
合亿吨标准煤)的几个统计数据:1998年8.6亿吨,5年后的2003年10.4亿吨,10年后的2008年12.9亿吨,有关专家预测,到2013年我国能源生产总量将达到16.1亿吨,则专家是以哪种类型的函数模型进行预测的? ( B )
A .一次函数
B .二次函数
C .指数函数
D .对数函数 二、填空题 6.若函数f (x )=a
x
-x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围为________.
7.方程x 2+ax -2=0在区间[1,5]上有解,则实数a 的取值范围为________.
8.对于实数a 和b ,定义运算“*”:a *b =⎩
⎪⎨⎪⎧
a 2-a
b ,a ≤b b 2-ab ,a >b ,设f (x )=(2x -1)*(x -1),且
关于x 的方程f (x )=m (m ∈R )恰有三个互不相等的实数根,则m 的取值范围是______. 6.(1,+∞) 7.[-23
5,1] 8.⎝⎛⎭⎫0,14
三.简答题
9.已知a 是实数,函数()a x ax x f --+=3222,如果函数()x f y =在区间[]1,1-上有零
点,求a 的取值范围.
10函数()2
1y x m x m =+++的两个不同的零点是1x 和2x ,且1x ,2x 的倒数平方和为2,
求m . 11.我国是水资源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的.某
市用水收费标准是:水费=基本费+超额费+定额损耗费,且有如下三条规定: ①若每月用水量不超过最低限量m 立方米时,只付基本费9元和每户每月定额损耗费a 元;
②若每月用水量超过m 立方米时,除了付基本费和定额损耗费外,超过部分每立方米付n 元的超额费;
③每户每月的定额损耗费a 不超过5元.
(1)求每户每月水费y (元)与月用水量x (立方米)的函数关系式; (2)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:
m ,n ,a 的值.
11.解 (1)依题意,得y =⎩
⎪⎨⎪⎧
9+a ,0<x ≤m , ①9+n (x -m )+a ,x >m . ②其中0<a ≤5.
(2)∵0<a ≤5,∴9<9+a ≤14.
由于该家庭今年一、二月份的水费均大于14元,故用水量4立方米,5立方米都大于最低限量m 立方米.
将⎩⎪⎨⎪⎧ x =4,y =17和⎩⎪⎨⎪⎧ x =5,y =23分别代入②,得⎩
⎪⎨⎪⎧
17=9+n (4-m )+a , ③
23=9+n (5-m )+a . ④ ③-④,得n =6.
代入17=9+n (4-m )+a ,得a =6m -16.
又三月份用水量为2.5立方米,若m <2.5,将⎩
⎪⎨⎪⎧
x =2.5,y =11代入②,得a =6m -13,
这与a =6m -16矛盾.
∴m ≥2.5,即该家庭三月份用水量2.5立方米没有超过最低限量.
将⎩⎪⎨⎪⎧ x =2.5,y =11代入①,得11=9+a ,由⎩⎪⎨⎪⎧ a =6m -16,11=9+a ,解得⎩⎪⎨⎪⎧
a =2,
m =3.
∴该家庭今年一、二月份用水量超过最低限量,三月份用水量没有超过最低限量,且m =3,n =6,a =2.。

相关文档
最新文档