最新人教版八年级数学上册《等边三角形》教案(精品教案)
人教版数学八年级上册12.3.2《等边三角形》教学设计
人教版数学八年级上册12.3.2《等边三角形》教学设计一. 教材分析等边三角形是初中数学的重要内容,它既有三角形的普遍性质,又有自己独特的性质。
人教版数学八年级上册12.3.2《等边三角形》一节,主要让学生掌握等边三角形的定义、性质和判定方法,以及了解等边三角形在实际生活中的应用。
通过学习,学生能进一步理解三角形的性质,提高解决问题的能力。
二. 学情分析学生在学习等边三角形之前,已经学习了三角形的分类、三角形的性质等知识,具备了一定的图形观念和空间想象力。
但部分学生对三角形的性质理解不深,对等边三角形的认识可能仅停留在表面。
因此,在教学过程中,需要关注学生的知识基础,引导学生深入理解等边三角形的性质。
三. 教学目标1.知识与技能:掌握等边三角形的定义、性质和判定方法,能运用等边三角形的性质解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和推理能力。
3.情感态度与价值观:培养学生对数学的兴趣,增强学生对几何图形的审美观念。
四. 教学重难点1.重点:等边三角形的定义、性质和判定方法。
2.难点:等边三角形性质的证明和应用。
五. 教学方法1.情境教学法:通过生活实例引入等边三角形,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、操作、猜想、验证等边三角形的性质,培养学生的思维能力。
3.小组合作学习:让学生在小组内讨论、分享学习心得,提高学生的合作能力。
六. 教学准备1.教学课件:制作课件,展示等边三角形的图片、性质和判定方法。
2.教学素材:准备一些等边三角形的实物模型,如三角形纸片、塑料三角形等。
3.教学工具:准备黑板、粉笔、直尺、圆规等。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的等边三角形图片,如金字塔、自行车的三角形架等,引导学生关注等边三角形。
提问:你们知道这些图形有什么共同的特点吗?让学生思考并回答,从而引出等边三角形的定义。
2.呈现(10分钟)展示等边三角形的性质和判定方法。
人教版八年级数学上册13.3.2《等边三角形(1)》教学设计
人教版八年级数学上册13.3.2《等边三角形(1)》教学设计一. 教材分析等边三角形是八年级数学上册的教学内容,它是三角形的一种特殊形式,具有三条边相等、三个角相等的性质。
本节课的教学内容主要包括等边三角形的定义、性质和判定。
教材通过引入等边三角形的概念,让学生了解等边三角形的基本性质,并通过实例演示等边三角形的判定方法。
通过本节课的学习,学生能够掌握等边三角形的基本性质,并能够运用这些性质解决相关问题。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,具备了一定的观察和推理能力。
然而,对于等边三角形的特殊性质和判定方法,学生可能较为陌生。
因此,在教学过程中,需要注重引导学生通过观察和推理来发现等边三角形的性质,并通过实例来巩固和应用这些性质。
三. 教学目标1.知识与技能:理解等边三角形的定义,掌握等边三角形的基本性质,学会判定一个三角形是否为等边三角形。
2.过程与方法:通过观察、推理和举例,培养学生的逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:等边三角形的定义和性质。
2.难点:等边三角形的判定方法。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动参与课堂讨论。
2.引导发现法:通过提问和引导,让学生自主发现等边三角形的性质,培养学生的推理能力。
3.实例教学法:通过举实例,让学生更好地理解等边三角形的性质和判定方法。
六. 教学准备1.教学课件:制作课件,展示等边三角形的图片和实例。
2.教学道具:准备一些等边三角形的模型或图片,用于展示和操作。
3.练习题:准备一些有关等边三角形的练习题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过展示一些等边三角形的图片,引导学生观察和思考:这些三角形有什么特殊的性质?你能否找出它们之间的共同点?2.呈现(10分钟)向学生介绍等边三角形的定义和性质,并通过举例来展示等边三角形的判定方法。
数学八年级上册《等边三角形(3)》教案
①求证:△BCE≌△ACD;
②求证:CF=CH;
③判断△CFH的形状并说明理由.
板书设计12.3.1 等边三角形(三)
一、复习知识要点
二、练习
教学小结:
3.等边三角形的判定方法:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.
4.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
二、练习(35分钟)
(一)、选择题
1.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于()
教学方法与手段
归纳结论——补充讲解——练习提高
教学准备
圆规、三角尺
第 一 课时
课时数
1课时
课堂教学实施设计(教师活动、学生活动)
复备内容或集体备课讨论记录(标、增、改、删、调)
一、复习知识要点(5分钟)
1.三条边都相等的三角形叫做等边三角形,也叫做正三角形.
2.等边三角形的性质:等边三角形的三个内角都相等,并且每一个内角都等于60°
A.60°B.90°C.120°D.150°
1.下列三角形:①有两个角等于60°;②有一个角等于60°的等
腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()
A.①②③B.①②④C.①③D.①②③④
3.如图,D、E、F分别是等边△ABC各边上的点,且AD=BE=CF,则△DEF的形状是()
A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状
最新版初中数学教案《等边三角形的性质与判定 》精品教案(2022年创作)
等边三角形第1课时等边三角形的性质与判定【知识与技能】1.掌握等边三角形的定义.2.理解等边三角形的性质与判定定理.【过程与方法】经过应用等边三角形的性质与判定的过程培养学生分析问题、解决问题的能力.【情感态度】通过对等边三角形的学习,了解等边三角形的对称美,增强应用数学知识解决实际问题的信心.【教学重点】等边三角形的性质和判定方法.【教学难点】等边三角形性质的应用.一、情境导入,初步认识在等腰三角形中,有一种特殊的等腰三角形——三条边都相等的三角形,它叫等边三角形.请大家画图并结合等腰三角形的知识探讨等边三角形具有哪些特征,同学间互相交流.教师归纳总结如下:1.等边三角形是轴对称图形,它有三条对称轴.2.等边三角形的三个内角都相等,并且每一个角都等于60°.3.三角都相等的三角形是等边三角形.4.有一个角是60°的等腰三角形是等边三角形.其中,前两个是等边三角形性质,后两个是等边三角形的判定.【教学说明】学生的发言会是多方位多角度的,教师应从边、角、对称性等类型归纳.同时强调,作为特殊的等腰三角形,等边三角形首先具备等腰三角形的所有性质.教师讲课前,先让学生完成“名师导学〞.二、思考探究,获取新知例1 如图,P,Q是△ABC的边BC上两点,且PB=PQ=QC=AP=AQ,求∠BAC的大小.【分析】由显然可知△APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.解:∵AP=AQ=PQ,∴△APQ是等边三角形.∴∠PAQ=∠APQ=∠AQP=60°.又∵AP=PB,∴∠PAB=∠PBA.又∵∠APQ=∠PBA+∠PAB,∴∠PAB=30°.同理∠QAC=30°.∴∠BAC=∠PAB+∠PAQ+∠QAC=120°.【教学说明】本例综合应用等边三角形与等腰三角形在角方面的性质,要求解题要标准,表述要有条理,言必有据,可让学生说出过程中每一步的依据.例2 在等边△ABC中,∠ABC和∠ACB的平分线相交于点O,BO,CO的垂直平分线分别交BC于点E和点F.求证:△OEF是等边三角形.【分析】由角平分线得∠OBC=∠∠OEF及∠OFE的度数,进而可证得△OEF 是等边三角形.【证明】∵E,F分别是BO,CO的垂直平分线上的点,∴OE=BE,OF=CF.∵△ABC是等边三角形,且OB,CO分别平分∠ABC,∠ACB,∴∠OBE=∠BOE=∠OCF=∠COF=30°.∴∠OEF=∠OFE=60°.∴∠EOF=60°.∴△OEF是等边三角形〔三个角都相等的三角形是等边三角形〕.【教学说明】证明一个三角形是等边三角形,要灵活运用判定方法,根据提供的条件灵活选择,此题可用多种方法证明.三、运用新知,深化理解1.△ABC 中,AB=BC,∠B=∠C,那么∠A= .2.以下说法不正确的选项是( ).A.有两个角为60°的三角形是等边三角形B.有一个外角是120°的等腰三角形是等边三角形∠AOB=30°,点P 在∠AOB 内部,P1与P 关于OB 对称,P2与P 关于OA 对称,那么△P 1OP 2是( )三角形.4.如图,在等边△ABC 中,D 为BC 上一点,BD=2CD,DE ⊥∠APE 的度数.【教学说明】用多媒体(或小黑板)出示以上问题,学生可在老师指导下完成,稳固所学知识.4.解:∵△ABC 为等边三角形.∴∠B=∠ACB=60°,AC=BC ,又∵DE ⊥AB ,∠B=60°,∴∠BDE=30°.∴BE=21BD ,而BD=2CD ∴BE=CD.在△BCE 和△CAD 中∴△BCE ≌△CAD ,∴∠BCE=∠DAC而∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°.∴∠APC=120°,∴∠APE=60°.四、师生互动,课堂小结教师指导学生回忆本节所学知识点,学生间交流,互相查漏补缺.1.布置作业:从教材“习题13.3”中选取.2.完成创优作业中本课时的“课时作业〞局部.本课时学习特殊的等腰三角形——等边三角形,可让学生先自主探索再合作交流,小组内、小组间充分交流后概括所得结论,这既稳固等腰三角形的应用知识,又类比探索等腰三角形性质和判定定理的方法,加深了对等腰三角形与等边三角形联系与区别的理解.第1课时教学目标1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系.3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题.4.帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣.重点、难点重点:1.对三角形有关概念的了解,能用符号语言表示三条形.2.能从图中识别三角形.3.通过度量三角形的边长的实践活动,从中理解三角形三边间的不等关系.难点:1.在具体的图形中不重复,且不遗漏地识别所有三角形.2.用三角形三边不等关系判定三条线段可否组成三角形.教学过程一、看一看1.投影:图形见章前P1图.教师表达: 三角形是一种最常见的几何图形之一.(看条件许可, 可以把古埃及的金字塔、飞机、飞船、分子结构……的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑如P68-69的图,到微小的分子结构, 处处都有三角形的身影.结合以上的实际使学生了解到:我们所研究的“三角形〞这个课题来源于实际生活之中.学生活动:(1)交流在日常生活中所看到的三角形.(2)选派代表说明三角形的存在于我们的生活之中.2.板书:在黑板上老师画出以下几个图形.(1)教师引导学生观察上图:区别三条线段是否存在首尾顺序相接所组成的.图(1)三条线段AC、CB、AB是否首尾顺序相接.(是)(2)观察发现,以上的图,哪些是三角形?(3)描述三角形的特点:板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形〞.教师提问:上述对三角形的描述中你认为有几个局部要引起重视.学生答复:一直线上的三条线段.b.首尾顺次相接.二、读一读指导学生阅读课本P2,第一局部至思考,一段课文,并答复以下问题:(1)什么叫三角形?(2)三角形有几条边?有几个内角?有几个顶点?(3)三角形ABC用符号表示________.(4)三角形ABC的边AB、AC和BC可用小写字母分别表示为________.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC用符号表示为△ABC,三角形ABC的三边,AB可用边AB的所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示.三、做一做画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?同学们在画图计算的过程中,展开议论,并指定答复以上问题:(1)小虫从B出发沿三角形的边爬到C有如下几条路线.a.从B→Cb.从B→A→C(2)从B沿边BC到C的路线长为BC的长.从B沿边BA到A,从A沿边C到C的路线长为BA+AC.经过测量可以说BA+AC>BC,可以说这两条路线的长是不一样的.四、议一议1.在同一个三角形中,任意两边之和与第三边有什么关系?2.在同一个三角形中,任意两边之差与第三边有什么关系?3.三角形三边有怎样的不等关系?通过动手实验同学们可以得到哪些结论?三角形的任意两边之和大于第三边;任意两边之差小于第三边.五、想一想三角形按边分可以,分成几类?六、练一练有三根木棒长分别为3cm、6cm和2cm,用这些木棒能否围成一个三角形?分析:(1)三条线段能否构成一个三角形, 关键在捡判定它们是否符合三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构成一个三角形.(2)要让学生明确两条木棒长为3cm和6cm,要想用三根木棒合起来构成一个三角形,这第三根木棒的长度应介于3cm和9cm之间,由于它的第三根木棒长只有2cm,所以不可能用这三条木棒构成一个三角形.错导:∵3cm+6cm>2cm∴用3cm、6cm、2cm的木棒可以构成一个三角形.错因:三角形的三边之间的关系为任意两边之和大于第三边,任意两边之差小于第三边,这里3+6>2,没错,可6-3不小于2,所以答复这类问题应先确定最大边,然后看小于最大量的两量之和是否大于最大值,大时就可构成,小时就无法构成.七、忆一忆今天我们学了哪些内容:1.三角形的有关概念(边、角、顶点)2.会用符号表示一个三角形.3.通过实践了解三角形的三边不等关系.八、作业课本P8习题11.2第1、2、6、7题.。
人教版数学八年级上册《等边三角形的性质和判定》教学设计2
人教版数学八年级上册《等边三角形的性质和判定》教学设计2一. 教材分析等边三角形的性质和判定是初中数学八年级上册的教学内容,这部分内容在教材中占据重要的地位。
等边三角形是特殊类型的三角形,具有独特的性质。
本节课的教学内容主要包括等边三角形的性质及其应用,以及等边三角形的判定方法。
通过学习本节课的内容,学生能够更深入地了解等边三角形的性质,提高他们的空间想象能力和逻辑思维能力。
二. 学情分析学生在学习本节课之前,已经学习了三角形的性质、分类和判定等基础知识,对于三角形的概念和性质有一定的了解。
但等边三角形作为一种特殊的三角形,其性质和判定方法与普通三角形有所不同,需要学生进行进一步的学习和理解。
此外,学生需要通过观察、操作、推理等过程,发现等边三角形的性质和判定方法,因此,学生的观察能力、操作能力和推理能力有待提高。
三. 教学目标1.知识与技能目标:学生能够掌握等边三角形的性质及其应用,了解等边三角形的判定方法,提高他们的空间想象能力和逻辑思维能力。
2.过程与方法目标:通过观察、操作、推理等过程,学生能够发现等边三角形的性质和判定方法,培养他们的观察能力、操作能力和推理能力。
3.情感态度与价值观目标:学生能够积极参与课堂学习,对数学产生浓厚的兴趣,培养他们的团队协作能力和自主学习能力。
四. 教学重难点1.重点:等边三角形的性质及其应用,等边三角形的判定方法。
2.难点:发现等边三角形的性质和判定方法,理解等边三角形性质之间的联系。
五. 教学方法1.情境教学法:通过实物模型、图片等引导学生观察和操作,激发学生的学习兴趣。
2.问题驱动法:设置问题引导学生思考和讨论,培养学生的问题解决能力。
3.小组合作法:学生进行小组讨论和合作,培养学生的团队协作能力。
4.归纳总结法:引导学生总结等边三角形的性质和判定方法,提高学生的归纳能力。
六. 教学准备1.教学素材:准备等边三角形的模型、图片等教学素材。
2.教学工具:准备黑板、粉笔、投影仪等教学工具。
八年级数学上等边三角形教案(人教版)
八年级数学上等边三角形教案(人教版)本资料为woRD文档,请点击下载地址下载全文下载地址13.3.2 等边三角形第1课时等边三角形(1)【教学目标】.经历探索等腰三角形成为等边三角形的条件及其推理证明过程.2.经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.3.经历观察、实验、猜想、证明的数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理、清晰地阐述自己的观点.4.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.【重点难点】重点:等边三角形判定定理的发现与证明.难点:等边三角形判定定理的发现与证明.┃教学过程设计┃教学过程设计意图一、创设情境,导入新课活动1:观察与思考观看上海世博会的一组图片,引出“等边三角形”.观看一组图片:跳棋、警示牌、国旗、金字塔等,进一步感受“等边三角形”.学生能从图片中抽象出等边三角形的形象,进而产生求知欲,等边三角形有什么特点?教师引出课题:等边三角形.从生活经验出发,在丰富的现实情境中,让学生感受到“等边三角形”无处不在.二、师生互动,探究新知活动2:等边三角形的性质回顾:什么是等边三角形?它与以前学过的等腰三角形有何关系?学生回答:三条边都相等的三角形叫做等边三角形,它是一种特殊的等腰三角形.名称图形边角重要线段对称性等腰三角形两腰相等两个底角相等顶角平分线、底边上的中线、底边上的高互相重合轴对称图形等边三角形三条边相等三个角相等,且都为60°每条边上的中线、高和它所对角的平分线都互相重合轴对称图形,有三条对称轴活动3:复习等腰三角形的性质,探究等边三角形的性质学生完成表格,得出性质.活动4:探究等边三角形常用的判定方法回答下面的问题..一个三角形满足什么条件就是等边三角形?2.你认为有一个角等于60°的等腰三角形是等边三角形吗?你能证明你的结论吗?把你的证明思路与同伴交流.学生小组讨论,老师巡视指导.[师]给三个角都是60°,这个条件确实有点浪费,那么给什么条件不浪费呢?下面同学们可以在小组内交流自己的看法.老师指定学生回答讨论结果.[师]从同学们自主探索和讨论的结果可以发现:在等腰三角形中,不论底角是60°,还是顶角是60°,那么这个等腰三角形都是等边三角形.你能用更简洁的语言描述这个结论吗?[生]有一个角是60°的等腰三角形是等边三角形.[师]你在与同伴的交流过程中,发现了什么或受到了何种启示?学生主动发言.[师]今天,我们探索、发现并证明了等边三角形的判定定理:有一个角等于60°的等腰三角形是等边三角形.我们在证明这个定理的过程中,还得出了三角形为等边三角形的条件,是什么呢?[生]三个角都相等的三角形是等边三角形.[师]下面就请同学们来证明这个结论.[师]这样,我们由等腰三角形的性质和判定方法就可以得到.承上启下,揭示二者的关系,为下一步探究等边三角形的性质和判定方法打下基础.渗透类比的思想方法.让学生自主讨论探究等边三角形的判定定理,能发挥学生的主观能动性,加深印象与理解.让学生经历运用几何符号和图形描述命题的条件和结论的过程,体会分类讨论的数学思想方法.三、运用新知,解决问题下列三角形:有两个角等于60度;有一个角等于60度的等腰三角形;三个外角都相等的三角形;一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有________.进一步巩固等边三角形的判定和性质.四、课堂小结,提炼观点.本节课你学到了哪些知识?2.你觉得有哪些需要注意的问题?3.你是对比什么研究等边三角形的,这对你接下来继续学习其他图形的内容有什么启发吗?通过学生自我反思、小组交流,引导学生自主完成对本节重要知识技能和思想方法的小结,让学生养成“反思”的好习惯,并培养学生语言表述能力.五、布置作业,巩固提升教材第80页练习第1、2题.【板书设计】等边三角形图形性质判定的条件等腰三角形等边对等角等角对等边“三线合一”即等腰三角形顶角平分线、底边上的中线、高互相重合有一角是60°的等腰三角形是等边三角形等边三角形的三个角都相等,且每个角都是60°三个角都相等的三角形是等边角形【教学反思】本节课让学生在认识等腰三角形的基础上,进一步认识等边三角形.学习等边三角形的定义、性质和判定,在折一折的过程中体会等边三角形的特征,三条边相等,三个角也相等,都是60度.让学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力.第2课时等边三角形(2)【教学目标】.理解等边三角形的判别条件及其证明,理解含有30°角的直角三角形性质及其证明,并能利用这两个定理解决一些简单的问题.2.经历实际操作,探索含有30°角的直角三角形性质及其推理证明过程,发展合理推理能力和初步的演绎推理能力.3.在具体问题的证明过程中,有意识地渗透分类讨论、逆向思维的思想,提高学生的能力.4.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.【重点难点】重点:含30°角的直角三角形性质定理的发现与证明.难点:含30°角的直角三角形性质定理的探索与证明.┃教学过程设计┃教学过程设计意图一、创设情境,导入新课活动1:教师直接提出问题:我们学习过直角三角形,今天我们研究一个特殊的直角三角形:含30°角的直角三角形.拿出三角尺,做一做:用含30°角的两个三角尺,你能拼成一个怎样的三角形?能拼出一个等边三角形吗?在你所拼得的等边三角形中,有哪些线段存在相等关系,有哪些线段存在倍数关系,你能得到什么结论?说说你的理由.让学生经历拼摆三角尺的活动,猜想并探索:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边与斜边有什么关系?二、师生互动,探究新知活动2:学生一般可以得出上面两种图形:其中第1个图形是等边三角形,对于该图学生也可以得出BD=12AB,从而得出:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.教师提出问题:为什么所得到的三角形是等边三角形?学生探索方法.如果学生不能很快得出30°角所对直角边是斜边的一半,教师可以在图上标出各个字母,并要求学生思考其中哪些线段直接存在倍数关系,并再将三角尺分开,思考从中可以得到什么结论.活动3:让学生在得到该结论的基础上,尝试证明该定理,写出已知、求证,并进行证明.活动4:引导学生思考刚才命题的逆命题:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°吗?如果是,请你简单说明理由.让学生经历定理的探索和证明过程,体会辅助线的作法.教学中,教师可以引导学生思考:从前面定理证明的辅助线的作法中能否得到启示?三、运用新知,解决问题图片是某屋架设计图的一部分,点D是斜梁AB的中点,立柱Bc,DE垂直于横梁Ac,当AB=7.4m,∠A=30°时,求立柱Bc,DE的长.通过一个基础练习题,进一步巩固定理的应用.四、课堂小结,提炼观点通过本节课的学习,谈谈你的收获?对于课堂教学既要注重教学过程、方法,也要注重概括总结.五、布置作业,巩固提升教材第81页练习,第82页第4题.通过做题后的反思和总结,培养良好的学习品质.【板书设计】等边三角形一、性质定理在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.二、应用【教学反思】本节课难点在于探究两个定理:“在三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°”和“直角三角形中,30°角所对的直角边等于斜边的一半”,由于设计了三角尺操作的实践活动,有效地突破了难点,因而,课堂上学生思维非常灵活,方法多样,取得较好的效果.。
人教版数学八年级上册13.3.2等边三角形(第2课时)教学设计
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,让每个小组针对等边三角形的性质、判定方法进行讨论,共同总结规律。
2.互动交流:各小组展示讨论成果,其他小组进行补充、质疑,形成全面、深入的理解。
3.提出问题:引导学生思考,如果一个三角形的三条边都相等,那么这个三角形会有哪些性质?如何判定一个三角形是等边三角形?
(二)讲授新知
1.等边三角形的定义:在学生观察、思考的基础上,给出等边三角形的定义:三条边都相等的三角形称为等边三角形。
2.等边三角形的性质:引导学生通过实际操作、观察、讨论等途径,发现并总结等边三角形的性质,如:三个角相等,均为60度;三条中线、高、角平分线重合等。
2.作业量要适中,避免学生负担过重。
3.鼓励学生主动思考,培养解决问题的能力。
4.家长要关注学生的学习进度,协助教师督促学生完成作业。
5.教师要及时批改作业,了解方法:通过例题讲解,让学生掌握等边三角形的判定方法,并能熟练运用。
(5)巩固练习:设计不同难度的题目,让学生独立完成,巩固所学知识。
(6)课堂小结:总结本节课所学内容,强调等边三角形的性质和判定方法。
(7)作业布置:布置适量的作业,巩固所学知识,提高学生的运用能力。
3.教学策略:
(1)关注学生的个体差异,因材施教,提高教学的有效性。
1.激发学生对数学学习的兴趣,培养良好的学习习惯和积极的学习态度。
2.培养学生的空间观念,提高对几何图形的审美意识和鉴赏能力。
3.增强学生解决问题的自信心,培养勇于探索、敢于创新的精神。
人教版数学八年级上册13.3.2等边三角形教学设计
1.请同学们认真完成作业,字迹工整,图形清晰。
2.对于提高题和实践题,同学们可以相互讨论,发挥团队合作精神,共同解决问题。
3.作业完成后,请同学们认真检查,确保答案正确,并于下节课前上交。
1.引导学生通过观察等边三角形的图形,发现等边三角形的性质,培养学生的观察能力。
2.引导学生运用已知的三角形知识,通过猜想、验证等方法,发现并掌握等边三角形的性质,提高学生的探究能力。
3.设计不同难度的练习题,让学生独立思考、合作交流,培养他们解决问题的能力。
(三)情感态度与价值观
1.让学生感受等边三角形的对称美,激发他们对数学图形的热爱,提高审美情趣。
-鼓励学生参与课堂讨论和展示,评价他们的合作能力和表达能力。
四、教学内容与过程
(一)导入新课
1.复习导入:首先,带领学生复习已学的三角形知识,如三角形的分类、三角形的内角和等。通过提问方式引导学生回顾等腰三角形的性质,为学习等边三角形做好铺垫。
-提问:“同学们,我们已经学过哪些三角形?等腰三角形有什么性质?”
-学生回答后,总结等腰三角形的特点,引出等边三角形的定义。
2.实物导入:展示一些生活中常见的等边三角形物品,如三角形风筝、装饰品等,让学生观察并说出它们的共同特点,从而引出等边三角形的定义。
(二)讲授新知
1.等边三角形的定义:通过复习等腰三角形,引导学生观察等边三角形的图形,共同总结等边三角形的定义:三条边相等的三角形。
人教版数学八年级上册13.3.2等边三角形教学设计
一、教学目标
(一)知识与技能
1.理解等边三角形的定义,知道等边三角形的三条边相等,三个角相等,每个角为60度。
2.掌握等边三角形的判定方法,能够判断一个三角形是否为等边三角形。
人教版八年级数学上《等边三角形(第1课时)》教案
班级: 姓名: 小组:第8课时 等边三角形(第1课时)【学习目标】:1.理解等边三角形的性质与判定。
2.会证明一个三角形是等边三角形。
【学习重点】:等边三角形的性质与判定。
【学习难点】:综合运用所学知识探索与解决实际问题一.预习检测1.三条边都相等的三角形 三角形(也叫正三角形)。
2.①等边三角形是轴对称图形,它有____条对称轴,对称轴是_________ _________ 所在的直线. ②等边三角形每一个角都相等,都等于_____. ③三个角都相等的三角形是__________________.④有一个角(这个角不论是顶角还是底角)是________的等腰三角形是等边三角形. 巩固理解:在①、②、③、④中,_________是等边三角形的性质;________是等边三角形的判断方法。
二.合作探究活动一 1.△ABC 是等边三角形,以下三种方法分别 得到的△ADE 都是等边三角形吗?为什么? (1)在边,AB AC 上分别截取AD AE =(2)作060ADE ∠=,,D E 分别在,AB AC 上.(3)过边AB 上点D 作//DE BC ,交AC 于E 点.三.巩固提升1. 如图所示,△ABC 是等边三角形,D 是AC 上一点, 12∠=∠,BD CE =,试判断△ADE 的形状,并证明你的结论AQ CP B ABCED2. 已知△ABC 和△ADE 是等边三角形,试找出图中一对全等三角形;四.课堂小结 本节课你有哪些收获?还有什么困惑? 五.当堂检测1.△ABC 是等边三角形,D 、E 、F 为各 边中点,则图中共.有正三角形( ) A .2个 B .3个 4个 D .5个2.△ABC 中,∠A :∠B :∠C =1:2:3,则BC :AB 等于 ( )A . 2:1B .1:2C .1:3D .2 :3 3.三角形两内角的平分线相交而成的钝角等于 。
4.三角形的两条高线相交所成钝角的度数是__________. 5.ABC 中, ∠A =∠B =∠C ,则△ABC 是_____三角形. 6.BC 中,∠AC B=90°∠B=60°,BC=3㎝,则AB=_______.7.如图,P ,Q 是△ABC 边上BC 上的两点,且BP=PQ=QC=AP=AQ ,求∠BAC 的度数.5. 如图所示,已知△ABC 是等边三角形,BD 是中线,延长BC 到E ,使CE CD =. 求证: DB DE =。
人教版八年级数学上册13.3.2《等边三角形(1)》教案
人教版八年级数学上册13.3.2《等边三角形(1)》教案一. 教材分析等边三角形是八年级数学上册13.3节的一个重要内容,它是一种特殊的三角形,具有三条边相等和三个角相等的性质。
本节课主要让学生掌握等边三角形的性质,并能够运用这些性质解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的性质和判定,具备了一定的几何知识基础。
但等边三角形作为一种特殊的三角形,其性质和判定与普通三角形有所不同,需要学生进行一定的思考和理解。
三. 教学目标1.让学生了解等边三角形的性质,能够运用这些性质解决实际问题。
2.培养学生的空间想象能力和逻辑思维能力。
3.提高学生的几何学习兴趣,培养学生的自主学习能力。
四. 教学重难点1.等边三角形的性质及其应用。
2.等边三角形的判定方法。
五. 教学方法1.采用问题驱动法,引导学生通过观察和思考,发现等边三角形的性质。
2.运用案例分析法,让学生通过解决实际问题,巩固等边三角形的性质和判定。
3.采用小组合作学习法,培养学生的团队合作精神和沟通能力。
六. 教学准备1.PPT课件:包含等边三角形的性质和判定内容,以及相关的例题和练习题。
2.练习题:包括基础题和提高题,用于巩固和拓展学生的知识。
3.教学工具:直尺、三角板、彩色粉笔等。
七. 教学过程1.导入(5分钟)利用PPT展示等边三角形的图片,引导学生观察和思考:等边三角形有什么特点?你能否找出一些实际问题,用等边三角形的性质来解决?2.呈现(10分钟)通过PPT呈现等边三角形的性质和判定方法,引导学生理解和掌握。
同时,给出相关的例题,让学生通过观察和思考,发现等边三角形的性质。
3.操练(10分钟)让学生分组合作,运用等边三角形的性质和判定方法,解决实际问题。
教师巡回指导,给予学生必要的帮助和指导。
4.巩固(10分钟)让学生独立完成PPT上的练习题,巩固等边三角形的性质和判定。
教师选取部分学生的作业进行讲评,指出其中的错误和不足。
等边三角形的性质和判定-人教版八年级数学上册教案
等边三角形的性质和判定-人教版八年级数学上册教案
一、教学目标
1.理解等边三角形的定义并会画图;
2.掌握等边三角形的性质:三条边相等、三个角相等;
3.学会判定一个三角形是否为等边三角形;
4.了解等边三角形的简单应用。
二、教学重难点
1.理解等边三角形的定义;
2.掌握如何判定一个三角形为等边三角形。
三、教学过程
1. 导入新知
询问学生是否知道什么是等边三角形,引出等边三角形的定义,让学生体会等边三角形的特殊性质和美妙之处。
然后让学生画出等边三角形的图形。
2. 等边三角形的性质
通过让学生测量三边和三角度数,发现等边三角形的三边相等、三个角度数也相等的特点,然后让学生通过练习巩固学习。
3. 等边三角形的判定
判定某个三角形是否为等边三角形,可以从两个角度入手: 1. 通过测量三边的长短是否相等来判定三角形是否为等边三角形; 2. 通过测量三个角的大小是否一致来判定三角形是否为等边三角形。
4. 综合练习和扩展应用
练习判断某个三角形是否为等边三角形,掌握应用等边三角性质解题的方法和技巧。
四、课堂小结
教师对本节课所讲内容进行总结和点评,帮助学生梳理知识点,理清思路,回答学生遇到的问题。
五、作业布置
1.完成作业(P11-12 习题
2.1);
2.预习下节课内容。
六、教学反思
本节课重点在于让学生明确等边三角形的定义和性质,并通过训练巩固自己的判断等边三角形的技能。
在课堂上通过精心设计的练习环节,不仅使学生掌握相关知识,更提高了学生的自学和解题能力。
不过,还需要加强实际应用能力的培养,以便学生更好地掌握知识。
人教版数学八年级上册教学设计13.3.2《等边三角形》
人教版数学八年级上册教学设计13.3.2《等边三角形》一. 教材分析等边三角形是八年级数学上册的教学内容,这部分内容是在学生已经掌握了三角形的性质和分类的基础上进行学习的。
等边三角形是一种特殊的三角形,它有三条相等的边和三个相等的角。
通过学习等边三角形,可以使学生更深入地理解三角形的性质,并能够运用等边三角形的性质解决一些实际问题。
二. 学情分析学生在学习等边三角形之前,已经学习了三角形的分类和性质,对三角形有了初步的认识。
但是,对于等边三角形的性质和判定,学生可能还不是很清楚。
因此,在教学过程中,需要引导学生通过观察、操作、思考、讨论等方式,自主地探索等边三角形的性质,从而加深对等边三角形的理解和掌握。
三. 教学目标1.知识与技能:使学生了解等边三角形的定义和性质,能够运用等边三角形的性质解决一些实际问题。
2.过程与方法:通过观察、操作、思考、讨论等方式,培养学生的观察能力、操作能力、思考能力和合作能力。
3.情感态度与价值观:使学生感受到数学的趣味性和实用性,增强学生对数学的学习兴趣。
四. 教学重难点1.重点:等边三角形的性质和判定。
2.难点:等边三角形的性质的证明和应用。
五. 教学方法采用观察、操作、思考、讨论等教学方法,引导学生自主地探索等边三角形的性质,从而加深对等边三角形的理解和掌握。
六. 教学准备1.教师准备:准备好等边三角形的模型或者图片,准备一些关于等边三角形的实际问题。
2.学生准备:学生需要准备好三角形的性质和分类的知识。
七. 教学过程1.导入(5分钟)通过向学生展示一些等边三角形的模型或者图片,引导学生观察等边三角形的特点,从而引出等边三角形的概念。
2.呈现(10分钟)向学生介绍等边三角形的性质,如三条边相等,三个角相等等,并通过一些实际问题,让学生运用等边三角形的性质进行解决。
3.操练(10分钟)让学生通过观察、操作、思考、讨论等方式,自主地探索等边三角形的性质,并能够运用等边三角形的性质解决一些实际问题。
最新人教版八年级数学上册《13.3.2 等边三角形(第2课时)》优质教学课件
含30°角的直角三角形的性质:
在直角三角形中,如果一个锐角等于30°,那么它所对的
直角边等于斜边的一半.
A
应用格式:
∵ 在Rt△ABC 中,∠C =90°,∠A =30°,
∴
BC
=
1 2
AB.
B
C
探究新知
素养考点 1 利用含30°角的直角三角形的性质求线段的值
例1 如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB
课堂检测
拓广探索题
如图,已知△ABC是等边三角形,D,E分别为BC,AC上的点,且 CD=AE,AD、BE相交于点P,BQ⊥AD于点Q,求证:BP=2PQ.
证明:∵△ABC为等边三角形, ∴ AC=BC=AB ,∠C=∠BAC=60°, ∵CD=AE, ∴△ADC≌△BEA.
课堂检测
∴∠CAD=∠ABE. ∵∠BAP+∠CAD=60°, ∴∠ABE+∠BAP=60°. ∴∠BPQ=60°. 又∵ BQ⊥AD, ∴∠BQP=90°, ∴∠PBQ=30°, ∴BP=2PQ.
课堂检测
3.在△ABC中,∠A: ∠B: ∠C=1:2:3,若AB=10,则BC = 5 .
4.如图,Rt△ABC中,∠A= 30°, B
8
AB+BC=12cm,则AB=______cm.
C
A
第4题图
课堂检测
能力提升题
1.在△ABC中,∠C=90°,∠B=15°,DE是AB的垂直平分线,
BE=5,则求AC的长.
∵ ∠A= 30°,
∴ ∠ECA=∠BEC–∠A=60°–30° = 30°.
∴ AE=EC, ∴ AE=BE=BC,
人教版八年级数学上册(教案).2等边三角形
1.理论介绍:首先,我们要了解等边三角形的基本概念。等边三角形是三边长度相等的三角形,它具有独特的性质和应用。在几何学中,等边三角形是非常重要的基本图形。
2.案例分析:接下来,我们来看一个具体的案例。通过分析等边三角形在建筑、艺术等领域的应用,了解它如何帮助我们解决问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了等边三角形的基本概念、判定方法、性质和面积计算。同时,我们也通过实践活动和小组讨论加深了对等边三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-掌握等边三角形面积公式的推导过程:学生需要理解并记住面积公式的推导过程,这涉及到数学抽象和逻辑推理的能力。
-在实际问题中识别和应用等边三角形的知识:学生需要具备一定的观察能力和问题分析能力,才能将等边三角形的知识应用到实际问题中。
举例解释:
-通过对比不同类型的三角形,让学生明确等边三角形的判定条件,并能够识别。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“等边三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调等边三角形的判定方法和面积计算这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
最新人教版八年级数学上册《等边三角形的性质与判定》精品教案
13.3.2 等边三角形第1课时等边三角形的性质和判定教学目的1.使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。
2.熟识等边三角形的性质及判定.2.通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。
教学重点:等腰三角形的性质及其应用。
教学难点:简洁的逻辑推理。
教学过程一、复习巩固1.叙述等腰三角形的性质,它是怎么得到的?等腰三角形的两个底角相等,也可以简称“等边对等角”。
把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点C重合,线段BD与CD也重合,所以∠B=∠C。
等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。
由于AD为等腰三角形的对称轴,所以BD=CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。
2.若等腰三角形的两边长为3和4,则其周长为多少?二、新课在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。
我们把三条边都相等的三角形叫做等边三角形。
等边三角形具有什么性质呢?1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。
2.你能否用已知的知识,通过推理得到你的猜想是正确的?等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。
3.上面的条件和结论如何叙述?等边三角形的各角都相等,并且每一个角都等于60°。
等边三角形是轴对称图形吗?如果是,有几条对称轴?等边三角形也称为正三角形。
例1.在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。
分析:由AB=AC,D为BC的中点,可知AB为BC底边上的中线,由“三线合一”可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B =30°,∠BAC可求,所以∠1可求。
人教版八年级上册数学 等边三角形第一课时(教案)
《等边三角形》教学设计教材分析:《等边三角形》一课主要是学习等边三角形的性质定理和判定定理的推理证明及初步应用。
本课安排在学生学习轴对称图形和等腰三角形有关知识之后,不但可使学生进一步认识特殊的轴对称图形一等边三角形.而且相关定理更是今后证明角相等、线段相等的重要依据。
因此.本课内容在教材中处于非常重要的地位,起着承前启后的作用。
学情分析:本节课的授课对象是八年级上学期的学生,学生已经有了初步几何认识能力,并且在学习了等腰三角形的性质和判定后,用类比方法得出等边三角形的性质和判定,体现待学知识与已学知识的密切联系。
在能力上通过等边三角形的变化,可以发现图形的变化,从而发现问题、解决问题。
让学生充分的思考、讨论、交流、发展多角度思考问题,培养多策略解决问题的能力。
教学目标:(1)、掌握等边三角形的性质和判定方法,并能运用等边三角形的性质和判定方法解决有关数学问题.(2)、通过讨论,发现和归纳等边三角形的判定方法,并用演绎推理的方法进行证实.(3)、通过对等边三角形有关知识的学习,获得探究学习和数学几何应用的体验,提高分析问题的能力.教学重点:等边三角形的性质及判定及其应用。
教学难点:探索等边三角形性质及判定的过程。
教学策略:(1)教学方法:采用任务学习与小组合作学习相结合。
课前预习课上带着问题有目的的学习。
运用小组合作学习,独立思考与小组合作相结合,发挥一帮一的优势。
(2)教学手段:课前运用学案提前预习,课上运用多媒体课件激发学生的学习兴趣。
第一课时教学过程:第一环节:知识回顾1.等腰三角形的定义2.等腰三角形的性质3.等腰三角形的判定4.等边三角形的定义设计意图:复习知识为本节课新知类比学习做准备。
点拨:定义即是性质又是判定,等边三角形是特殊的等腰三角形,等腰三角形的性质等边三角形都具有。
第二环节:探究新知1.创设问题:根据等边三角形的定义结合等腰三角形的性质,你能得出等边三角形有什么性质?并进行证明。
最新人教版八年级数学上册《等边三角形的性质》教学设计
13.3等边三角形的性质 复习课
学习目标:
1、体会等边三角形的性质在全等三角形中的应用;
2、能够在图形的变换中体会从特殊到一般的思想;
一、知识链接:
尽可能的说出等腰三角形和等边三角形的性质
师:边相等、角相等、60°
二、新知学习:
师:遇见边相等和角相等的问题常常会想到什么问题?(全等)请看下面的题目 探索:两个等边三角形如图摆放,
(1)点B 、C 、E 在一条直线上,你能发现哪些结论(可以自己连结线段)?说明理由。
(2)当把△DCE 绕点C 旋转,使得点BCE 不在一 条直线上,
以上你发现的结论是否还存在,说明理由.
C
B E
E
交流讨论:不变的结论的原因是什么?由此你会想到什么样的图形也可以有类似的结论,小组内编一些题目,并进行讲解.
六、小结:师:等边三角形(边角)
全等
边角全等
七、作业:
23、(本小题满分11分)
如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°得到△ADE,连接BD,CE交于点F。
(1)求证:△ABD≌△ACE;
(2)求∠ACE的度数;
(3)求证:AB//CE.
八、板书设计:等边三角形的性质
等边三角形(边角)全等
边角全等
九、设计意图:由一道经典题进行图形的变换,体会等边三角形的性质,由此挖掘图形的本
质,体会数学的实质,由特殊到一般的思想.。
八年级数学上册1332等边三角形教案(新版)新人教版
等边三角形教学目标(一)教学知识点经历探索等腰三角形成为等边三角形的条件及其推理证明过程.(二)能力训练要求1 .经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.2 .经历观察、实验、猜想、证明的数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.(三)情感与价值观要求1 .积极参与数学学习活动,对数学有好奇心和求知欲.2 .在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点等边三角形判定定理的发现与证明.教学难点1 .等边三角形判定定理的发现与证明.2 .引导学生全面、周到地思考问题.教学方法探索发现法.教具准备多媒体课件,投影仪.教学过程I•提出问题,创设情境[ 师] 我们在前两节课研究证明了等腰三角形的性质和判定定理,我们知道,在等腰三角形中有一种特殊的等腰三角形一一三条边都相等的三角形,叫等边三角形•回答下面的三个问题.(演示课件)1 •把等腰三角形的性质用到等边三角形,能得到什么结论?2 •一个三角形满足什么条件就是等边三角形?3 •你认为有一个角等于60°的等腰三角形是等边三角形吗??你能证明你的结论吗?把你的证明思路与同伴交流.(教师应给学生自主探索、思考的时间)[生甲]由等边对等角的性质可知,等边三角形的三个角相等,又由三角形三内角和定理可知,等边三角形的三个角相等,并且都等于60°.[生乙]等腰三角形已有两边分别相等,所以我认为只要腰和底边相等,等腰三角形就是等边三角形了.[生丙]等边三角形的三个内角都相等,且分别都等于60 ° ,我认为等腰三角形的三个内角都等于60°,也就是说这个等腰三角形就是等边三角形了.(此时,部分同学同意此生看法,部分同学不同意此生看法,引起激烈的争论,?教师可让同学代表发表自己的看法)[生丁]我不同意这个同学的看法,?因为任何一个三角形满足这个条件都是等边三角形.根据等角对等边,三个内角都是60°,所以它们所对的边一定相等,但这一问题中“已知是等腰三角形,满足什么条件时便是等边三角形”,?我觉得他给的条件太多,浪费![师]给三个角都是60°,这个条件确实有点浪费,那么给什么条件不浪费呢??下面同学们可以在小组内交流自己的看法.n.导入新课探索等腰三角形成等边三角形的条件.[生]如果等腰三角形的顶角是60°,那么这个三角形是等边三角形.[师]你能给大家陈述一下理由吗?[生]根据三角形的内角和定理,顶角是60? °,?等腰三角形的两个底角的和就是180°-60 ° =120°,再根据等腰三角形两个底角是相等的,?所以每个底角分别是120。
八年级上册数学教案《等边三角形》
八年级上册数学教案《等边三角形》学情分析本课是在学习轴对称图形和等腰三角形有关知识后学习的,学生在小学接触过等边三角形,在之前已经学习了等腰三角形的性质和判定,对特殊的等腰三角形——等边三角形比较熟悉,本课的主要内容是三角形性质定理和判定定理,以及判定定理的推理证明和初步应用,是今后证明角相等、线段相等的重要知识点。
教学目的1、探索并掌握等边三角形的性质及判定方法。
2、运用等边三角形的性质和判定,进行简单的计算和证明。
3、在几何证明过程中,培养逻辑推理能力。
教学重点探索并掌握等边三角形的性质及判定方法。
教学难点运用等边三角形的性质和判定,进行简单的计算和证明。
教学方法讲授法、讨论法、演示法、练习法教学过程一、回顾知识我们在小学阶段学习了等边三角形,什么是等边三角形?用符号语言怎么表示?三条边都相等的三角形叫做等边三角形。
(正三角形)符号语言:∵AB = AC = BC,∴△ABC是等边三角形。
二、探究新知1、等边三角形的性质(1)等边三角形的三个内角之间存在什么关系?等腰三角形等边三角形AB = AC AB = AC = BC∠B = ∠C ∠A = ∠B = ∠C = 60°结论:等边三角形的三个内角都相等,并且每一个内角都等于60°。
2、已知AB = AC = BC,求证:∠A = ∠B = ∠C。
证明:∵AB = AC,∴∠B = ∠C(等边对等角)同理,∠A = ∠C∴∠A = ∠B = ∠C∵∠A + ∠B + ∠C = 180°∴∠A =∠B = ∠C = 180°÷ 3 = 60°3、画一画,等边三角形有几条对称轴?等边三角形是否有”三线合一“的性质?结论:等边三角形有三条对称轴,每条边上的中线、高和所求角的平分线都“三线合一”。
4、等边三角形的判定方法(1)一个三角形满足什么条件是等边三角形?①从边来看,三条边都相等的三角形是等边三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等边三角形
导学活教学目标:
知识与能力
1、了解等边三角形的性质和判定方法。
2、会用等边三角形得相关性质解决简单的
实际问题。
情感、态度和价值观
1、经历通过探究发现规律的过程,感受数学
学习的乐趣,激发数学学习的兴趣。
2、经历通过应用等边三角形的相关性质解
决实际问题的过程,体会数学与现实的密切联系,感受数学的应用价值,培养应用意识。
教学重点、难点
重点:等边三角形的性质、判定方法和应用;含30°角的直角三角形的性质;几何问题的代数解法。
难点:理解含30°角的直角三角形的性质的理论依据。
教学设计:
a)回顾旧知,引入新知
1、引导学生回顾等腰三角形的相关知
动过程
识,指出本节课将讨论一类特殊的等腰三
角形----等边三角形。
2、给出等边三角形的概念。
三边都相等的三角形叫做等边三角形。
3、提出下列问题,组织学生进行分组讨
论。
问题:把等腰三角形的性质用于等边三角形,能得到什么结论?一个三角形满足什么条件就是等边三角形?
4、提醒学生等边三角形是等腰三角形的
特例,显然它在有等腰三角形的所有性质
的同时还应该满足一些特殊的性质。
5、一段时间之后,师生共同分析讨论,
归纳出等边三角形的性质和判定方法。
由等腰三角形的性质和判定方法就可以得到:
⑴等边三角形的三个内角都相等,并且每一个角都等于60°;
⑵三个角都相等的三角形是等边三角形.
⑶有一个角是60°的等腰三角形是等边三角形.
二、等边三角形性质的运用
学生互相交流,并尝试完成,教师巡视班级,观察监督学生活动情况。
鼓励学生积极发言,师
生共同分析、讨论,给出问题的解答。
尝试其它解法。
形
式个人备课
集体
研讨
与个
案补
充
导2、随堂练习:课本80页练习1、2
3、多媒体展示如下问题
让学生动手操作,用两个含30°角的三角尺摆一摆,猜一猜,证一证。
用含30°角的直角三角尺摆出了如下两个三角形.
(1)
D C
A
B
(2)
D C
A
B
其中,图(1)是等边三角形,因为
学活动过△ABD≌△ACD,所以AB=AC,又因为Rt△ABD中,∠BAD=60°,所以∠ABD=60°,有一个角是60°的等腰三角形是等边三角形.图(1)中,已经知道它是等边三角形,所以AB=BC=AC.•而∠ADB=90°,即AD⊥BC.根据等腰三角形“三线合一”的性质,可得
BD=DC=1
2
BC.所以BD=1
2
AB,即在Rt△ABD 中,∠BAD=30°,它所对的边BD是斜边AB 的一半.
定理:在直角三角形中,如果一个锐角等于30°,•那么它所对的直角边等于斜边的一半.已知:如图,在Rt△ABC中,∠C=90°,
∠BAC=30°.求证:BC=1
2
AB.
C
A
B D
C
A
B
分析:从三角尺的摆拼过程中得到启发,延长BC至D,使CD=BC,连接AD.
形
式个人备课
集体
研讨
与个
案补
充3、展示例5:
右图是屋架设计图的一部分,
点D是斜梁AB的中点,立柱
BC、DE垂直于横梁AC,
AB=7.4m,∠A=30°,立柱BD、DE要多长?
分析:观察图形可以发现在Rt△AED与
Rt△ACB中,由于∠A=30°,所以DE=1
2
AD,
BC=1
2
AB,又由D是AB的中点,所以DE=1
4
AB.[例]等腰三角形的底角为15°,腰长为2a,
求腰上的高.
已知:如图,在△ABC
中,AB=AC=2a,
∠ABC=∠ACB=15°,CD是
腰AB上的高.
求:CD的长.
D
C
A E
B
D
C
A
B
分析:观察图形可以发现,在Rt△ADC中,AC=2a,而∠DAC是△ABC的一个外角,•则
∠DAC=15°×2=30°,根据在直角三角形中,
30°角所对的边是斜边的一半,•可求出CD.
三、布置思考题及课后作业
1、思考题:
展开你的想象,从一个或几个图形出发,利用轴对称变换或与平移进行组合,设计出一些图
案,并与同学交流。
2、课后作业
反
思。