高等数学(复习)

合集下载

高数复习资料

高数复习资料

《高等数学》课程复习资料一、填空题:1.设2)(xx a a x f -+=,则函数的图形关于 对称。

2.若2sin x x y x x <<=+≤<⎧⎨⎩-20102,则=)2(πy .3.极限limsinsin x x x x→=021。

4.已知22lim 222=--++→x x bax x x ,则=a ,=b 。

5.已知0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数a = 6.设)(22y z y z x ϕ=+,其中ϕ可微,则yz∂∂= 。

7.设2e yz u x =,其中),(y x z z =由0=+++xyz z y x 确定的隐函数,则=∂∂)1,0(xu 。

8.设ϕϕ,),()(1f y x y xy f x z ++=具有二阶连续导数,则=∂∂∂yx z 2 。

9.函数y x xy xy y x f 22),(--=的可能极值点为 和 。

10.设||)1(sin ),(22xy x y x y x f -+=则'y f =(1,0) 。

11.=⎰xdx x 2sin 212.[0,]cos ,sin y x y x π==在区间上曲线之间所围图形的面积为 。

13.若21d e 0=⎰∞+-x kx ,则k = 。

14.设D:221x y +≤,则由估值不等式得 ⎰⎰≤++≤Ddxdy y x)14(2215.设D 由22,,,y x y x y y ====212围成(0x ≥),则(),Df x y d σ⎰⎰在直角坐标系下的两种积分次序为 和 。

16.设D 为01,01y x x ≤≤-≤≤,则Dfdxdy ⎰⎰的极坐标形式的二次积分为 。

17.设级数∑∞=+121n pn收敛,则常数p 的最大取值范围是 。

18.=+-+-⎰10 642)!3!2!11(dx x x x x 。

19.方程01122=-+-ydy xdx 的通解为 。

《高等数学》复习重点.doc

《高等数学》复习重点.doc

第一部分、《基础知识》一、整式运算1. 整式加减法(合并同类项)2. 整式乘法与因式分解(1)法则:nb na mb ma b a n b a m b a n m +++=+++=++)()())(( 如:6)62()3()3)(2(22--=-+-=-+x x x x x x x (2)乘法公式:222222)())((b ab a b a b a b a b a +±=±-=-+ 如:25)5)(5(2-=-+x x x ,96)3(22+-=-x x x ,168)4(22++=+x x x (3)因式分解(实际上是整式乘法的逆运算) A.提取公因式法。

如:)2(22222x xe e x xe x x x -=- B.公式法。

如:)2)(2()2(),1)(1(122+-=--+=-x x x x x xC.十字相乘法,如:)3)(2(652--=+-x x x x 3. 整式除法 (1)整除:61)6)(1(16533)3)(3(3922-=+-+=+---=+-+=+-x x x x x x x x x x x x x (2)带余除法:11111111111222++-=+++-=++-=+x x x x x x x x x 1111223+--=++x x x x x二、分式运算:关键在于通分和约分1. 通分:①同分母分式相加;②异分母分式相加减;③整式与分式相加减; ①同分母分式相加:分母不变,分子相加减。

22221)31()1(13111-=--=--++=--+-+x xx x x x x x x ②异分母分式相加减222222222222)1(4)1(22)1()1(2)1(2212x x x x x x x x +=+-+++=+-++ ③整式与分式相加减232322221111)1(1x x x x x x x x x x x x x x +=+-+=+-++=+- 2. 约分(主要在分式乘除运算中使用) 三、解方程与解方程组 1.解方程举例:3,1,0)3)(1(,0322,0)2(,0442,2,0)2)(2(,0421********=-==-+=--===-=+-=-==+-=-x x x x x x x x x x x x x x x x2.解方程组举例 (1)代入消元法:⎩⎨⎧==⎩⎨⎧=-==-==-+=-+=-+⎩⎨⎧=+-=01,322,2,0)1)(2(021121)2(1)1(1221121222y x y x x x x x x x x x y x x y 方程组的解为:于是,)得:)代入(解:把( 由此可得,抛物线12-=x y 与直线1=+y x 的交点为(-2,3)和(1,0)。

高等数学复习题(附答案)

高等数学复习题(附答案)

高等数学复习题一、选择题 1、已知函数)2arctan(2)(-+-=x x x f ,则函数)(x f 的定义域为 ( )①)2,1(-, ②]3,1(-, ③]2,1[, ④]2,(-∞.2、已知函数)(x f 的定义域为[0,1],则函数)2(x f -的定义域为 ( ) ①]2,(-∞, ②(1,2), ③[0,1], ④[1,2].3、已知函数|1|arcsin )(-=x x f ,则函数)(x f 的定义域为 ( ) ①]1,1[-, ②]1,1(-, ③)2,0(, ④]2,0[.4、=∞→xx x πsinlim ( )① 1 ② π ③不存在 ④ 05、下列函数中为奇函数的是 ( )①)1(log 2++x x a , ②2xx e e -+, ③x cos , ④x 2.6、下列函数中是相同函数的是 ( ) ① 1)(,)(==x g xxx f ② 33341)(,)(-=-=x x x g x x x f ③ 2)()(,)(x x g x x f == ④ x x g x x f lg 2)(,lg )(2==7、=→xxx 3sin lim0 ( )①1 ② 2 ③ 3 ④ ∞ 8、()=+→xx x 121lim ( )①2-e , ②2e , ③2, ④+∞.9、=→xx x arcsin 0lim( )①0, ②1, ③2, ④不存在.10、=⎪⎭⎫⎝⎛+∞→xx x 21lim ( )①2-e , ②2e , ③2, ④+∞.11、=++--∞→103422lim 22x x x x x ( ) ①0, ②1, ③2, ④不存在.12、=⎪⎭⎫⎝⎛+∞→xx x x 2lim ( )①2-e , ②2e , ③2, ④+∞.13、=∞→xx x arctan lim( )① 0, ② 1, ③ 2, ④不存在. 14、()=+→xx x 1021lim ( )①2-e , ②2e , ③2, ④+∞.15、当0→x 时,下列函数为无穷小量的是 ( ) ①x x sin ②x x 1sin 2③)1ln(1+x x ④x11+ 16、当x x 2tan 0时,与→等价的无穷小量是 ( ) ①x -, ②x , ③2x , ④2x .17、下列函数在指定变化趋势下是无穷小量的是 ( ) ①1,ln →x x , ②+→0,ln x x , ③∞→x e x,, ④+∞→x e x,. 18、下列函数在指定变化趋势下不是无穷小量的是 ( )①1,ln →x x , ②0,cos →x x , ③∞→x x ,sin 1, ④+∞→-x ex,. 19、当x x 2sin 0时,与→等价的无穷小量是 ( ) ①x -, ②x , ③2x , ④2x . 20、点0=x 是函数⎩⎨⎧≥-<=0,10,)(x e x x x f x的 ( ) ①连续点 ②可去间断点③第二类间断点 ④第一类间断点,但不是可去间断点 21、函数)(x f y =由参数方程0sin cos ≠⎩⎨⎧==a ta y ta x ,则 =dx y d ( )①t sin - ② t tan ③ t cot - ④t sec22、设==dy e y x则, ( )①dx ex x, ②dx e x, ③xdx e x 2, ④xdx e x23、设==-dy ey x则,1 ( )①dx e x1-, ②dx e x x 121--, ③dx e xx 121-, ④dx e x x 11--24、设,sin 2x y= 则=dy ( )① x x cos sin 2 ② xdx cos 2 ③ xdx sin 2 ④xdx 2sin25、设函数||)(x x f = 则在0=x 点处 ( ) ①不连续, ②连续但左右导数均不存在, ③连续且可导, ④连续但不可导.26、设函数||cos )(x x f = 则在0=x 点处 ( ) ①不连续, ②连续但左右导数均不存在, ③连续且可导, ④连续但不可导. 27、设函数x x f =)(,则)(x f 在点0=x 处 ( ) ①可导 ②不连续③连续,但不可导 ④可微28、设21,1,()31,1x x f x x x ⎧+<=⎨-≥⎩,则f (x )在x =1处 ………………………………( )①既可导又连续 ②可导但不连续 ③不连续也不可导 ④连续但不可导 29、函数x y sin =,则 =)12(y( )①x cos ② x cos - ③ x sin ④x sin - 30、曲线26322-+=x x y 在点(3,1)处的切线的斜率=k ( )①3 ②1 ③15 ④ 0 31、设'0000(2)()()limh f x h f x f x h→+-=存在,则 ………………………..….. ( )①'0()f x ②'0()f x h - ③'02()f x h - ④'02()f x32.设函数3)(x x f = , 则在0=x 是函数的 ( ) ① 驻点与极值点; ②不是驻点与极值点; ③极值点; ④驻点. 33、设函数()f x 区间[0,1]满足罗尔定理的是 ( )①|5.0|)(-=x x f , ②⎩⎨⎧≥-<=5.0225.02)(x x x xx f , ③)sin()(x x f π=, ④ x x f =)(34、设函数()f x 在0x 的()00f x '=,则()f x 在0x ( ) ① 一定取极大值 ② 一定 取极小值 ③ 一定 不取极值 ④ 极值情况不确定35、设函数)(x f 在0x 处具有二阶导数,且0)(0='x f ,0)(0<''x f ,则)(0x f 为① 最小值 ②极小值 ③最大值 ④极大值36、⎰='])([dx x F d ( ) ①dx x F )(', ②)(x F , ③dx x F )(, ④. )(x F '37、设x sin 是)(x f 的一个原函数,则⎰=dx x f )( ( )①C x +sin ② C x +cos ③C x x ++cos sin ④C x x +sin 38、⎰=-dx xx 212 ( )①C x +arcsin , ②C x +-21, ③C x +--212, ④C x +2arcsin 2139、⎰=+dx x x212 ( )①C x +arctan , ②C x +2arctan 21, ③C x +2, ④C x ++)1ln(240、下列函数中,为)(222x xe e y --=的原函数的是………………………….( )① x xe e22-- ②)(2122x x e e -- ③x x e e 22-+ ④)(2122x x e e -+41、dx x x e⎰+1)ln 1(1= ( )① 12ln + ②C +2ln ③2 ④2ln42、=⎰badaddx x f )( ( )① )()(a f b f - ②)(a f - ③ f(b ) ④ 043、=⎰21sin xdx x dxd( )① x sin x ②0 ③2 ④344、=⎰badbddx x f )( ( )① )()(a f b f -, ② f(b ), ③)(a f -, ④ 0.二、填空题1、 若)(x f 的定义域为)0,(-∞,则)(ln x f 的定义域为 ;2、 已知函数291)(xx f -=,则函数)(x f 的定义域为 。

高数复习资料

高数复习资料

《高等数学》课程复习资料一、填空题:1.设2)(xx aaxf-+=,则函数的图形关于对称。

2.若2sin x xyx x<<=+≤<⎧⎨⎩-20102,则=)2(πy.3.极限limsinsinxxxx→=21。

4.已知22lim222=--++→xxbaxxx,则=a ,=b。

5.已知0→x时,1)1(312-+ax与1cos-x是等价无穷小,则常数a=6.设)(22yzyzxϕ=+,其中ϕ可微,则yz∂∂= 。

7.设2e yzu x=,其中),(yxzz=由0=+++xyzzyx确定的隐函数,则=∂∂)1,0(xu。

8.设ϕϕ,),()(1f y x y xy f x z ++=具有二阶连续导数,则=∂∂∂yx z 2 。

9.函数y x xy xy y x f 22),(--=的可能极值点为 和 。

10.设||)1(sin ),(22xy x y x y x f -+=则'y f =(1,0) 。

11.=⎰xdx x 2sin 212.[0,]cos ,sin y x y x π==在区间上曲线之间所围图形的面积为 。

13.若21d e 0=⎰∞+-x kx ,则k = 。

14.设D:221x y +≤,则由估值不等式得 ⎰⎰≤++≤Ddxdy y x)14(2215.设D 由22,,,y x y x y y ====212围成(0x ≥),则(),Df x y d σ⎰⎰在直角坐标系下的两种积分次序为 和 。

16.设D 为01,01y x x ≤≤-≤≤,则Dfdxdy ⎰⎰的极坐标形式的二次积分为 。

17.设级数∑∞=+121n pn收敛,则常数p 的最大取值范围是 。

18.=+-+-⎰10 642)!3!2!11(dx x x x x 。

19.方程01122=-+-ydy xdx 的通解为 。

20.微分方程0y y '''-+=42025的通解为 。

高等数学复习资料

高等数学复习资料

全国教师教育网络联盟专科起点升本科高等数学复习资料目录第一章函数 (1)一、内容提要 (1)二、典型例题 (2)第二章极限与连续 (5)一、内容提要 (5)二、典型例题 (7)第三章导数与微分 (12)一、内容提要 (12)二、典型例题 (14)第四章导数的应用 (18)一、内容提要 (18)二、典型例题 (20)第五章不定积分 (25)一、内容提要 (25)二、典型例题 (26)第六章定积分及其应用 (30)一、内容提要 (30)二、典型例题 (31)第七章多元函数微积分 (34)一、内容提要 (34)二、典型例题 (37)第一章函数一、内容提要1、函数(1)定义:设有两个变量x与y。

当变量x在给定的某一变域中任意取定一值时,另一变量y就按某一确定的法则有一个确定值与x的这个值相对应,那末变量y称为变量x的函数,记作y=f(x)。

(2)定义中两要素:定义域与对应法则。

定义域:自变量x的取值范围。

对应法则:自变量x与因变量y的对应规则。

(3)注意两点:①两个函数只有当它们的定义域和对应法则都相同时,才能说它们是相同的函数。

②在不同区间上用不同数学表达式来表示的函数称为分段函数。

分段函数是一个函数而不是几个函数。

2、反函数(1)定义:设已知y是x的函数y=f(x),如果将y当作自变量,x当函数,则由关系式y=f(x)所确定的函数x=ϕ(y)就叫做函数f(x)的反函数,由于通常总把自变量记作x,函数记作y,因此习惯上称y=ϕ(x)为函数f(x)的反函数,记作f -1(x),而f(x)叫做直接函数。

(2)附注:反函数的定义域与直接函数的值域相同。

3隐函数定义:凡能够由方程F(x,y)=0确定的函数关系,称为隐函数。

4、函数的简单性质有界性,奇偶性,单调性与周期性。

5、复合函数(1)定义:设y是u的函数y=f(u),而u又是x的函数u=ϕ(x),而且当x在某一区间I 取值时相应的u值可使y有定义,则称y是x的一个定义于区间I上的复合函数,记作y=f[ϕ(x)]。

高数复习题与答案

高数复习题与答案

复习题(一)一、选择题1. 函数⎪⎩⎪⎨⎧=≠=001cos)(x x xx x f 在0=x 处( )A 、连续;B 、不连续;C 、为第一类间断点;D 、为第二类间断点.2、已知2)]([)(x f x f =',则=)()(x f n ( )A 、1)]([+n x f ;B 、n x f n )]([;C 、1][+n f(x)n!;D 、n x f n )]([! 3、设xe y sin =,则dy=( )A 、x d e 22sin ;B 、x d e x sin sin ;C 、x d e x sin 2sin ;D 、xdx e x sin 2sin . 4.函数)(x f 在0x 可导是函数)(x f 在该点连续的 ( )A 、充分条件;B 、必要条件;C 、充要条件;D 、非充分非必要条件.5、1lim(1)n n n→∞-=( )A.2eB.1C. 1 -eD. e6. 0tan 1lim(sin )x x x x x→-=( )A. 1B. 2C. 0D. 不存在 7、 数列收敛是数列有界的( )A 、充分非必要条件;B 、必要非充分条件;C 、充分必要条件;D 、既不充分又不必要条件. 8、0x →时,下列无穷小中,( )是等价无穷小A 、arcsin x x 与 x ;B 、1cos x -与 22x ;C 、1xe -与 2x ;D 、22x x -与 24x x -.9、设1112()1xxe f x e+=+,则0x =是()f x 的( )A 、可去间断点;B 、跳跃间断点;C 、无穷间断点;D 、振荡间断点. 10、函数()f x 在0x 不可导,则()f x 在0x 处( )A 、一定不连续;B 、一定无界;C 、不一定连续;D 、一定无定义.11、设曲线L 的参数方程是2(sin )2(1cos )x t t y t =-⎧⎨=-⎩,则曲线在2t π=处的切线方程是( )A 、x y π-=;B 、4x y π+=-;C 、x y π+=;D 、4x y π-=-.12、设tan ln 2y x =+,则y '=( )A 、1sec 2x +;B 、2sec 2x +; C 、2sec x ;D 、cot x .二、填空题1. 当)(),(),(0x x x x x γβα时,→都是无穷小,且))(o()(x x βα=,)(x β~)(x γ,则)()()(limx x x x x γβα+→=2. 21lim()xx x x→∞+= 3.设a )(=x x f 在连续,且6)1(2tan lima 0=-→xe f x x x x ,则=)a (f ; 4、过曲线xxy -+=66上点(2,2)处的切线方程为 ; 5、设)0(,)sin(ln >=x x y ,则=dy x d ln 。

高数总复习1

高数总复习1
(4) lim( x→ 0 (6) lim x→ ∞
x 1 ctg x
1 x
( a>0 , a≠1 )
(7) lim(1+ ln sin )x x→ 2 x
π
1+3x − 1+ x (8) lim x→ 0 2x
tan x2 (9) lim x→ 0 x 1−cos 2
(ex −1 ctgx ) (10) lim x→ 0 cos x
在 (, 两 线 ) 7. 求曲线 xey + y =1 点 10 处 切 ,
法 的 程 线 方
x = cos(t2) 1 d2 y , cosudu,求 8. 设 , t2 2 dx y = tan x(t ) −∫ 2 u 1
9. 已知 y = f (x
x
[
1 2 x
)] , 其中f为可微正值函数,求 dy
15. 一、填空
定积分的几何意义
1 x
lim lim 1、设f(x)=cosx+ e ,则 x→0 f(x)= 0, x→0+ f(x)= +∞。 1 ⋅ sin x 的水平渐近线为 y = 0 , 2、曲线y = x −1 垂直渐近线为 x =1。

n 3、已知 lim b 3 =A(A =A A ≠ 0 ,A A n→ n −(n −1 k ∞ )
ln cos x dx 2. ∫ 2 cos x 1 x dx 3. ∫ 2 1+ x
1 dx 4. ∫ 2 x(1+ ln x) 1 dx 5. ∫ 2 2 (1+ x )
6. ∫ 0 7.
ln2
ex −1 dx

π
2 0
xsin 2 xdx

高等数学复习资料大全

高等数学复习资料大全

高等数学复习资料大全高等数学复习资料大全一、函数的极限1、函数极限的定义:当函数f(x)在x趋近于某一值时,函数值无限接近于某一确定的数值A,则称A为函数f(x)在x趋近于这一值时的极限。

2、函数极限的性质:(1)唯一性:若极限存在,则唯一。

(2)局部有界性:在极限附近的函数值有界。

(3)局部保号性:在极限附近,函数值的符号保持不变。

(4)归结原则:若在某一区间内,f(x)恒等于A,则A为f(x)在该区间内的极限。

3、极限的四则运算:设、存在,则、也存在,且、、、。

4、复合函数的极限:设、存在,且g(x)在u=a处连续,则、存在,且、。

5、无穷小与无穷大:(1)无穷小:若当x趋近于某一值时,函数f(x)的极限为0,则称f(x)为当x趋近于这一值时的无穷小。

(2)无穷大:若当x趋近于某一值时,函数f(x)的绝对值无限增大,则称f(x)为当x趋近于这一值时的无穷大。

6、两个重要极限:(1)sin x / x = 1 (x趋近于0);(2)(1+k)^ x / kx = e^k (k为常数且k趋近于0)。

二、导数与微分1、导数的定义:设y=f(x),若增量 / 趋于0时,之间的比值也趋于0,则称f(x)在处可导,称此比值为f(x)在处的导数。

2、导数的几何意义:函数在某一点处的导数就是曲线在该点处的切线的斜率。

3、微分的定义:设y=f(x),若函数的增量可以表示为,其中A不依赖于,则称在处可微分,为f(x)在处的微分。

4、导数与微分的关系:若函数在某一点处可导,则在该点处必可微分;反之,若函数在某一点处可微分,则在该点处不一定可导。

5、导数的计算方法:(1)四则运算导数公式;(2)复合函数的导数;(3)隐函数求导法;(4)对数求导法;(5)高阶导数。

三、不定积分1、不定积分的定义:设f(x)是一个函数,是一个常数,则对f(x)进行积分所得的结果称为f(x)的不定积分,记为或。

2、不定积分的性质:(1)线性性质:和都存在,且;(2)恒等性质:都存在,且。

高等数学复习题

高等数学复习题

复习题(一)一.填空题(每小题3分,共15分)1.若α与β是同阶无穷小,则=βαlim____________________.2.基本初等函数,以及对基本初等函数作有限次四则运算与有限次复合运算而得到的由一个式子表示的函数叫做_______________. 3.=)(sec x d ____________.4.=⎰dx a x ____________(1,0≠>a a ).5.对于随机试验E 的每一个可能结果Ω∈ω,都有唯一的一个实数值)(ωξ相对应,称)(ωξ为________________, 简记为ξ.二.判断题 (对的打“√”,错的打“╳”。

每小题2分, 共10分)1. 任一变量与无穷小量的乘积仍是无穷小量. ( ) 2.对任意函数,必有)lim ()(lim 0x f x f x x x x →→=. ( )3.可导的函数必连续. ( ) 4.⎰⎰'='dx x f dx x f )())((. ( )5.若事件A 发生必然导致事件B 发生,则称事件B 包含事件A. (三.解答下列各题(每小题5分,共25分)1.若)1()1(+=-x x x f , 求)(x f . 2.求)1ln(+=x y 的n 阶导数.3.求函数59623-+-=x x x y 的单调区间.4.求极限212lim xx x x ⎪⎭⎫ ⎝⎛++∞→.5.利用洛必达法则求极限1cos )1(lim--→x e x xx .四.解答下列各题(每小题5分,共30分)1.求不定积分⎰+dx x x 1.2.求定积分⎜⎠⎛21121dx e xx. 3.求定积分⎰-1dx xe x .4.10把钥匙中有2把能打开门, 从中任意取2把, 问能打开门的概率是多少? 5.甲、乙两战士打靶,甲的命中率为9.0,乙的命中率为85.0. 设两人同时射击同一目标, 各打一枪, 求目标被击中的概率.6.已知在100个灯泡中坏灯泡的个数从0到2是等可能的,若任取10个灯泡是好的,问100个灯泡都是好灯泡的概率是多大?五.应用题(每小题10分,共20分)1.求曲线22-=x y 与直线1-=y 所围成的图形面积.2.要造一个圆柱形无盖的畜水池,容积为3300m ,底面的造价是侧面造价的2倍,设侧面每平方米造价为a 元.(1) 试将整个畜水池的造价y 表示为底面半径r 的函数; (2) 问底面半径r 为多大时, 整个畜水池的造价最少?复习题(二)一.填空题(每小题3分,共15分)1.以零为极限的变量叫做____________.2.对于函数)(x f y =,x 的取值范围X 叫做函数的____________,函数值的集合Y 叫做函数的____________. 3.=')(tan x ____________. 4.='⎰dx x F )(____________.5.将表示事件A 出现可能性大小的一个数称为____________.二.判断题 (对的打“√”,错的打“╳”。

《高等数学》期末复习题

《高等数学》期末复习题

期末题型:10个单选(每题3分),7个大题(每题10分)一、单项选择题1. 下列各式中不是常微分方程的为 C . A. y y x '+= B.2y y y '''+= C.20ax bx c ++= D.d d 0x y y x +=2. 微分方程 y ′′−2y ′−3y =0 的通解为 A .A. y =C 1e 3x +C 2e −xB.y =C 1e −3x +C 2e −xC.y =C 1e 3x +C 2e xD.y =C 1e −3x +C 2e x3. 微分方程 y ′′−2y ′+y =0 的通解为 C .A. y =C 1e x +C 2e xB.y =Ce xC.y =(C 1+C 2x)e xD.y =(C 1+C 2x)e −x4. 微分方程 y ′′−2y ′+5y =0 的通解为 B .A. y =e 2x (C 1cos x +C 2sin x)B.y =e x (C 1cos 2x +C 2sin 2x)C. y =C 1cos x +C 2sin 2xD. y =C 1cos 2x +C 2sin x5.已知 a ⃗⃗⃗⃗ =(0,1,0), b ⃗⃗⃗⃗ =(0,1,−2),则 a ⃗⃗⃗⃗ ∙ b ⃗⃗⃗⃗ = C . A .0 B. −1 C. 1 D. 26.已知 a ⃗⃗⃗⃗ =(0,3,4), b ⃗⃗⃗⃗ =(2,1,−2),则 Prj a ⃗⃗⃗⃗ b ⃗⃗⃗⃗ = C . A .3 B. −53 C. −1 D. 17.已知a b ,两向量夹角为π4,且(2,1,2)b =−,则Pr a j b = C .A .32 B.13− C.2D.18.方程 z =√x 2+y 2 表示三维空间中的 B . .A .球面B .圆锥面C .圆柱面D .旋转抛物面 9.直线x−22=y+21=z−4−3=0 与平面 x +y +z =4 的关系是 A .A .直线在平面上B .平行C .垂直D .三者都不是10.函数(,)f x y 在点00(,)x y 偏导数存在是(,)f x y 在该点连续的 D . A .充分非必要条件 B .必要非充分条件 C .充分必要条件 D .既非充分也非必要条件11.若在点00(,)x y 处0f x ∂=∂,0fy∂=∂,则(,)f x y 在点00(,)x y 是 D . A .连续且可微 B .连续但不一定可微 C .可微但不一定连续 D .不一定可微也不一定连续12.考虑二元函数的下面4条性质:①(,)f x y 在点00(,)x y 处连续; ②(,)f x y 在点00(,)x y 处的两个偏导数连续; ③(,)f x y 在点00(,)x y 处可微; ④(,)f x y 在点00(,)x y 处的两个偏导数存在. 若用“P Q ⇒”表示可由性质P 推出性质Q ,则有 A . A .②⇒③⇒① B .③⇒②⇒① C .③⇒④⇒① D .③⇒①⇒④13.lim n→∞u n =0 是级数1nn u∞=∑收敛的 B .A. 充分非必要条件B.必要非充分条件C.充要条件D. 既非充分也非必要条件14.下列级数条件收敛的是 C .A. 1(1)1nn n n ∞=−+∑B.1(1)n ∞=−∑C.1(1)n n ∞=−∑D. 211(1)n n n ∞=−∑15.设幂级数nn n a x∞=∑在2x =处收敛,则该级数在1x =−处必定 C .A.发散B.条件收敛C.绝对收敛D.敛散性不能确定二、计算题1.求微分方程d 0xy x y =满足初始条件1e x y ==的特解.解:方程变形为d xy x y =1d x y y=,两端积分得211d 2y y =⎰1ln ln y C =+,由此得11)y C C C C =±==±记,满足初始条件1e x y ==,代入得e C =,所以特解为1y =.2.求过点 (2,1,0) 且与平面 2x 3y −5z −5= 0 平行的平面方程.解:设所求平面方程为2350x y z D +−+=,将点(2,1,0)代入平面方程得,7D =− 从而平面方程为23570x y z +−−=.3.求过点(3,2,5)−且与两平面430x z −−=和2510x y z −−−=平行的直线方程解:所求直线的方向向量可取10443215i j ks i j k =−=−−−−−,即(4,3,1)s =−−−(4,3,1),故直线方程为325431x y z +−−==.4.求过两点()1,1,1M −−和()2,2,4N 且与平面:0x y z ∏+−=垂直的平面方程. 解: ()11,3,5,(1,1,1)MN n ==− 平面的法向量为:1(4,3,1)n MN n =⨯=− 所求平面方程为:4(1)3(1)(1)0x y z −−+++= 即4360x y z −+−=L5. 计算极限 02tan()limx y xy x→→. 解:000222tan()tan()tan()limlim lim lim 12 2.x x xy y y y xy xy xy y y x xy xy →→→→→→=⋅=⋅=⋅=6. 计算极限00x y →→.解:000001.4x x x y y y →→→→→→−===7.设(32,42)z f x y x y =+−,其中(,)f u v 可微,求,,d z zz x y∂∂∂∂. 解:121234,22z zf f f f x y∂∂''''=+=−∂∂,()()1212d d d 34d 22d z z z x y f f x f f y x y ∂∂''''=+=++−∂∂.8.设333z xyz a −=,求,z zx y∂∂∂∂. 解:令33(,,)3F x y z z xyz a =−−,则3x F yz =−,3y F xz =−,233z F z xy =−;2x z F z yz x F z xy ∂∴=−=∂−,2y z F z xz yF z xy ∂=−=∂−.9.用二重积分的几何意义计算下列二重积分: (1)∬√4−x 2−y 2 dσD ,(22:4,0)D x y y +≤≥); (2)∬√x 2+y 2 dσD ,(22:1D x y +≤).提示:224,0x y y +≤≥⎰⎰σ表示半径为2的1/4球体的体积;221x y +≤⎰⎰σ表示半径和高都为1的圆柱体与圆锥体的体积之差.10.计算22d d Dx x y y⎰⎰,其中D 是由直线2,x y x ==与曲线1xy =所围成的闭区域. 解:如图9-4所示,区域1:12,D x y x x≤≤≤≤,则 原式22121d d xxx x y y =⎰⎰22111d xx x x y ⎡⎤=−⎢⎥⎣⎦⎰22423119()d .244x x x x x ⎡⎤=−+=−+=⎢⎥⎣⎦⎰11.计算22d Dx y σ+⎰⎰,其中D 是圆环形闭区域{}22(,)14x y x y +≤≤.解:22π22223011114πd d d d d 2π33DDx y σρρρθθρρρ⎡⎤+=⋅==⋅=⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰.12.判断级数12!nn n n n ∞=∑的敛散性.解:因为11(1)11e 2(1)!lim lim 11222!n nn n n n n n n n n n ++→∞→∞++⎛⎫=+=> ⎪⎝⎭.由比值审敛法可知12!n n n n n ∞=∑发散.13.判断级数11πtan2n n n ∞+=∑的敛散性. 解:因为11ππtan()22~n n n n n ++→∞,即11πtan2lim1π2n n n n n +→∞+=. 又211π1112limlim 122π2n n n n n n n n ρ+→∞→∞+++===<,由比值审敛法可知11π2n n n ∞+=∑收敛, 再由比较审敛法的极限形式可知11πtan2n n n ∞+=∑收敛. 图 9-4。

《高等数学》复习参考题

《高等数学》复习参考题
第一章 函数的极限与连续
一、选择题
1. 下列选项中, f x 与 gx 是同一函数的是( ).
A. f (x) = x, g(x) = x 2
B. f (x) = 4 ln x, g(x) = ln x 4
C. f x x 2 4 , gx x 2
x2
D.
f
x
1 1
x x
,
gx
1
1
x2
x2
7.在积分曲线族
dx xx
中,过点
(1,1)
的积分曲线是
y
_____
三、计算题
1. 求不定积分
(1) 4x3dx (2) (3x2 cos x ex)dx ; (3) x (x2 5)dx ;
(4) 3cos(3x 1)dx ; (5) 2xex2 dx ;
(6)
x dx ; 1 x
1
*4.判断函数
f
x
e
x 1
ex
1, 1
x
0,

x
0
处间断点类型.
1, x 0
第二章 导数与微分
一、填空题
1.
若 f '(1) 1 ,则 lim x1
f ( x) f (1) x2 1

2.

f
( x0 )
2,
则 lim h0
f ( x0 h) h
f ( x0 )

3. 设函数 f x sin x ,则 f
ln 2 x ln 2
(16) lim x0
e2x 1
.
2x 1, x 0
2.
已知函数
f
x
x
2

高等数学期中复习题加答案

高等数学期中复习题加答案

高等数学期中复习题加答案一、选择题1. 函数\( f(x) = x^2 - 3x + 2 \)在区间\( (0, 2) \)上的值域是:A. \( (-1, 1) \)B. \( (-\infty, 1) \)C. \( (-\infty, 2) \)D. \( (-1, +\infty) \)答案: A2. 极限\( \lim_{x \to 0} \frac{\sin x}{x} \)的值是:A. 0B. 1C. \( \frac{\pi}{2} \)D. \( \infty \)答案: B二、填空题1. 函数\( y = x^3 - 2x^2 + x \)的导数是 \( y' =\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\)。

答案: \( 3x^2 - 4x + 1 \)2. 定积分 \( \int_{0}^{1} x^2 dx \) 的值是\( \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \)。

答案: \( \frac{1}{3} \)三、计算题1. 计算极限 \( \lim_{n \to \infty} \frac{n^2}{n^2 + 1} \)。

答案: 12. 求函数 \( f(x) = \ln(x) \) 在区间 \( [1, e] \) 上的定积分。

答案: \( x - e^x \) 在 \( [1, e] \) 上的定积分为 \( e - 2 \)。

四、证明题1. 证明:函数 \( f(x) = x^3 \) 是严格递增函数。

答案:首先求导 \( f'(x) = 3x^2 \),由于 \( x \) 为实数,\( x^2 \geq 0 \),所以 \( f'(x) \geq 0 \)。

当 \( x \neq 0 \) 时,\( f'(x) > 0 \),因此函数 \( f(x) = x^3 \) 是严格递增函数。

高等数学复习笔记

高等数学复习笔记

高等数学复习笔记
一、导数与微分
1.导数的定义
•定义一元函数在某点处的导数•定义多元函数在某点处的偏导数2.常见函数的导数公式
•幂函数和指数函数的导数
•对数函数和三角函数的导数
3.高阶导数和隐函数求导
4.微分的概念和应用
•极值与最值问题
•物体运动问题中的微分
二、积分与曲线积分
1.不定积分和定积分
2.积分常用公式与换元法
3.微元法与定积分应用
4.曲线积分基本概念与计算方法
三、级数和 Fourier 级数
1.数项级数收敛性判别法
2.正项级数收敛性判别法
3.幂级数收敛域和Taylor公式
4.Fourier级数及其应用
四、常微方程
1.可解析方法:变量可分离、齐次方程等
2.一阶线性微分方程
3.高阶恒等式、高阶齐次线性微分方程
4.变系参数非齐次方程
五、向量与空间解析几何
1.向量的基本性质和运算规则
2.点、直线与平面的方程
3.空间曲线的参数方程和切向量
4.空间曲面的一般方程和法向量
六、多元函数微分学
1.多元函数的极值与条件极值
2.偏导数、全微分及其应用
3.隐函数及其导数计算方法
4.多元重积分及其应用
以上仅为高等数学复习笔记的概要,详细内容请参考相关教材或参考书籍进行深入学习。

高等数学复习题及答案

高等数学复习题及答案

高等数学复习题及答案一、选择题(每题5分,共20分)1. 若函数f(x)在点x=a处连续,则下列说法正确的是()。

A. 极限lim(x→a) f(x)存在B. 极限lim(x→a) f(x) = f(a)C. 极限lim(x→a) f(x) = f(a)且f(a)存在D. 以上说法都不正确2. 函数f(x)=x^2在区间[-1,1]上的最大值是()。

A. 0B. 1C. 4D. 无法确定3. 曲线y=x^3在点(1,1)处的切线斜率是()。

A. 1B. 3C. 0D. 24. 以下哪个选项是函数y=x^2的不定积分()。

A. x^3/3 + CB. 2x + CC. x^2 + CD. x + C二、填空题(每题5分,共20分)1. 函数f(x)=2x+3在x=1处的值是______。

2. 极限lim(x→0) (sin x)/x的值是______。

3. 函数y=x^3-3x的拐点是______。

4. 曲线y=x^2-4x+4在x=2处的切线方程是______。

三、解答题(每题15分,共30分)1. 求函数f(x)=x^2-4x+3在区间[0,3]上的最大值和最小值。

2. 计算定积分∫(0到1) (2x+1)dx。

四、证明题(每题15分,共30分)1. 证明函数f(x)=x^3在R上是连续的。

2. 证明若函数f(x)在区间[a,b]上连续,则f(x)在该区间上必有最大值和最小值。

五、应用题(每题20分,共20分)1. 某工厂生产一种产品,其成本函数为C(x)=0.5x^2-2x+100,其中x 表示生产的产品数量。

求该工厂生产多少件产品时,平均成本最低,并求出最低平均成本。

答案:一、选择题1. C2. C3. B4. A二、填空题1. 52. 13. (1,-2)4. y=4x-12三、解答题1. 最大值:f(3)=0,最小值:f(2)=-12. ∫(0到1) (2x+1)dx = (x^2+x)|_0^1 = 2四、证明题1. 略2. 略五、应用题1. 当x=2时,平均成本最低,最低平均成本为50。

大学高数复习资料大全

大学高数复习资料大全

高等数学第一章 函数与极限第一节 函数○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★)(){},|U a x x a δδ=-<(){},|0U a x x a δδ=<-<第二节 数列的极限○数列极限的证明(★)【题型示例】已知数列{}n x ,证明{}lim n x x a →∞= 【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >, ∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞→lim第三节 函数的极限○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0lim○∞→x 时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>, ∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞→lim第四节 无穷小与无穷大○无穷小与无穷大的本质(★) 函数()x f 无穷小⇔()0lim =x f 函数()x f 无穷大⇔()∞=x f lim○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f1-为无穷大【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U内是有界的;(∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第五节 极限运算法则○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0lim 0b a x q x p x m n m n m n >=<()()()()000lim 00x x f x g x f x g x →⎧⎪⎪⎪=∞⎨⎪⎪⎪⎩()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9x x x →--【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23333311limlim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()239x f x x -=-的可去间断点倘若运用罗比达法则求解(详见第三章第二节):解:()()0233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(★★) (定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦ 【题型示例】求值:93lim 23--→x x x【求解示例】36x →===第六节 极限存在准则及两个重要极限○夹迫准则(P53)(★★★) 第一个重要极限:1sin lim 0=→xxx∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim0=→x x x 0000lim11lim lim 1sin sin sin lim x x x x x x x x x x →→→→===⎛⎫⎪⎝⎭(特别地,000sin()lim1x x x x x x →-=-)○单调有界收敛准则(P57)(★★★)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x【求解示例】()()211121212122121122122121lim21221232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞⋅++++⋅⋅+++→∞+→∞++→∞+++⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥=+=+ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎢⎥=+⎪⎢⎥+⎝⎭⎣⎦解:()()12lim 1212121212122lim 121x x x x x x x x x ee e e+→∞⎡⎤⋅+⎢⎥+⎣⎦+→∞+→∞⎡⎤⋅+⎢⎥+⎣⎦+⎛⎫⎪+⎝⎭====第七节 无穷小量的阶(无穷小的比较) ○等价无穷小(★★)1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1UU U U U U U e +- 2.U U cos 1~212-(乘除可替,加减不行)【题型示例】求值:()()xx x x x x 31ln 1ln lim 20++++→ 【求解示例】()()()()()()()3131lim 31lim 31ln 1lim 31ln 1ln lim,0,000020=++=+⋅+=++⋅+=++++=≠→→→→→x x x x x x x x x x x x x x x x x x x x x 所以原式即解:因为第八节 函数的连续性○函数连续的定义(★)()()()000lim lim x x x x f x f x f x -+→→==○间断点的分类(P67)(★)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=x a e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R 上的连续函数?【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =第九节 闭区间上连续函数的性质 ○零点定理(★)【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续;2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0fg C ξξ--=(10<<ξ) 4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=b ax e x f x1 ,00>≤x x 在0=x 处可导,求a ,b【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩ ∴1,2a b ==【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 【求解示例】1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=- 法线方程:()()()1y f a x a f a -=--' 第二节 函数的和(差)、积与商的求导法则○函数和(差)、积与商的求导法则(★★★) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则○反函数的求导法则(★)【题型示例】求函数()x f1-的导数【求解示例】由题可得()x f 为直接函数,其在定于域D上单调、可导,且()0≠'x f ;∴()()11fx f x -'⎡⎤=⎣⎦' ○复合函数的求导法则(★★★)【题型示例】设(ln y e =,求y '【求解示例】(22arcsi y ex a e e e ''='⎛⎫' ⎪+=⎝⎛⎫⎪ =⎝⎭=解:⎛ ⎝第四节 高阶导数 ○()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx --'⎡⎤=⎢⎥⎣⎦)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数 【求解示例】()1111y x x-'==++, ()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ()()()()()2311121y x x --'⎡⎤'''=-⋅+=-⋅-⋅+⎣⎦……()1(1)(1)(1)nn n y n x --=-⋅-⋅+!第五节 隐函数及参数方程型函数的导数 ○隐函数的求导(等式两边对x 求导)(★★★) 【题型示例】试求:方程ye x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由ye x y +=两边对x 求导即()y y x e '''=+化简得1yy e y ''=+⋅∴ee y -=-='11111 ∴切线方程:()e x ey +--=-1111法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】1.()()t t dx dy ϕγ''= 2.()22dy d y dx dxt ϕ'⎛⎫⎪⎝⎭=' 第六节 变化率问题举例及相关变化率(不作要求)第七节 函数的微分○基本初等函数微分公式与微分运算法则(★★★) ()dx x f dy ⋅'=第三章 中值定理与导数的应用第一节 中值定理 ○引理(费马引理)(★) ○罗尔定理(★★★) 【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈, 使得()()cos sin 0ff ξξξξ'+=成立【证明示例】1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导;2.又∵()()00sin00f ϕ==()()sin 0f ϕπππ== 即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,xe e x >⋅ 【证明示例】1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立,又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-,化简得x e e x >⋅,即证得:当1x >时,xe e x >⋅ 【题型示例】证明不等式:当0x >时,()ln 1x x +< 【证明示例】1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x'=+;2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立,化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈, ∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=, 即证得:当1x >时,xe e x >⋅第二节 罗比达法则○运用罗比达法则进行极限运算的基本步骤(★★) 1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件 A .属于两大基本不定型(0,0∞∞)且满足条件,则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆不属于两大基本不定型(转化为基本不定型) ⑴0⋅∞型(转乘为除,构造分式) 【题型示例】求值:0lim ln x x x α→⋅【求解示例】()10000201ln ln lim ln lim lim lim 111lim 0x x L x x x x x x x x x x x x x a ααααααα∞∞-'→→→→→'⋅===⋅'⎛⎫- ⎪⎝⎭=-=解: (一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母) 【题型示例】求值:011lim sin x x x →⎛⎫-⎪⎝⎭【求解示例】200011sin sin lim lim lim sin sin x x x x x x x x x x x x →→→--⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⋅⎝⎭⎝⎭⎝⎭解:()()()()000002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---====='' ⑶00型(对数求极限法)【题型示例】求值:0lim xx x →【求解示例】()()0000lim ln ln 000002ln ,ln ln ln 1ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx xx y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()10lim cos sin xx x x →+【求解示例】()()()()()1000000lim ln ln 10ln cos sin cos sin ,ln ,ln cos sin ln 0limln limln cos sin cos sin 10lim lim 1,cos sin 10lim =lim x xx x L x x yy x x x x y x x y xx x y x y xx x x x x x x y e e e e→→→'→→→→+=+=+→='+⎡⎤--⎣⎦====++'===解:令两边取对数得对求时的极限,从而可得⑸0∞型(对数求极限法) 【题型示例】求值:tan 01lim xx x →⎛⎫⎪⎝⎭【求解示例】()()tan 00200020*******,ln tan ln ,1ln 0lim ln lim tan ln 1ln ln lim limlim 1sec 1tan tan tan sin sin lim lim li xx x x L x x x L x y y x x x y x y x x x xx x x xx x x x x →→∞∞'→→→'→→⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫→=⋅ ⎪⎢⎥⎝⎭⎣⎦'=-=-=-⎛⎫'⎛⎫-⎪ ⎪⎝⎭⎝⎭'==='解:令两边取对数得对求时的极限,00lim ln ln 002sin cos m 0,1lim =lim 1x x yy x x x xy e e e →→→→⋅====从而可得○运用罗比达法则进行极限运算的基本思路(★★)00001∞⎧⎪∞-∞−−→←−−⋅∞←−−⎨∞⎪∞⎩∞(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分式形式) ⑶取对数获得乘积式(通过对数运算将指数提前)第三节 泰勒中值定理(不作要求) 第四节 函数的单调性和曲线的凹凸性 ○连续函数单调性(单调区间)(★★★) 【题型示例】试确定函数()3229123f x x x x =-+-的单调区间 【求解示例】1.∵函数()f x 在其定义域R 上连续,且可导∴()261812f x x x '=-+2.令()()()6120f x x x '=--=,解得:121,2x x ==4.∴函数f x 的单调递增区间为,1,2,-∞+∞; 单调递减区间为()1,2【题型示例】证明:当0x >时,1xe x >+ 【证明示例】1.(构建辅助函数)设()1x x e x ϕ=--,(0x >)2.()10xx e ϕ'=->,(0x >)∴()()00x ϕϕ>=3.既证:当0x >时,1xe x >+【题型示例】证明:当0x >时,()ln 1x x +<【证明示例】1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +<○连续函数凹凸性(★★★)【题型示例】试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点【证明示例】1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩3.(四行表)x(,0)-∞ 0(0,1) 1(1,2) 2(2,)+∞y '-++- y '' ++--y1 (1,3) 5 4.⑴函数13y x x =+-单调递增区间为(0,1),(1,2)单调递增区间为(,0)-∞,(2,)+∞;⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸;⑷函数2313y x x =+-的拐点坐标为()1,3第五节 函数的极值和最大、最小值○函数的极值与最值的关系(★★★)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ;令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈则函数()f x 在闭区间[],ab 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =;【题型示例】求函数()33f x x x =-在[]1,3-上的最值 【求解示例】1.∵函数()f x 在其定义域[]1,3-上连续,且可导 ∴()233f x x '=-+2.令()()()3110f x x x '=--+=, 解得:121,1x x =-= .(三行表)x1- ()1,1-1 (]1,3()f x ' 0+-()f x极小值极大值4.又∵12,12,318f f f -=-==- ∴()()()()max min 12,318f x f f x f ====- 第六节 函数图形的描绘(不作要求) 第七节 曲率(不作要求)第八节 方程的近似解(不作要求) 第四章 不定积分第一节 不定积分的概念与性质 ○原函数与不定积分的概念(★★) ⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数⑵原函数存在定理:(★★)如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念(★★)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)○基本积分表(★★★)○不定积分的线性性质(分项积分公式)(★★★)()()()()1212k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ 第二节 换元积分法○第一类换元法(凑微分)(★★★) (()dx x f dy ⋅'=的逆向应用)()()()()f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰【题型示例】求221dx a x +⎰【求解示例】222211111arctan 11x x dx dx d Ca x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求【求解示例】()()121212x x C=+=+=○第二类换元法(去根式)(★★)(()dx x f dy ⋅'=的正向应用)⑴对于一次根式(0,a b R ≠∈):t =,于是2t b x a-=,则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<),于是arctan xt a=,则原式可化为sec a t ;⑶对于根号下平方差的形式(0a >):asin x a t =(22t ππ-<<),于是arcsin xt a=,则原式可化为cos a t ;bsec x a t =(02t π<<),于是arccos at x =,则原式可化为tan a t ;【题型示例】求(一次根式) 【求解示例】2221t x t dx tdttdt dt t C Ct =-=⋅==+=⎰⎰【题型示例】求(三角换元)【求解示例】()()2sin ()2222arcsincos 22cos 1cos 221sin 2sin cos 222x a t t xt adx a ta a tdt t dta a t t C t t t C ππ=-<<==−−−−−−→=+⎛⎫=++=++ ⎪⎝⎭⎰⎰第三节 分部积分法 ○分部积分法(★★)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指” ○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '⋅=) ⑶使用分部积分公式:udv uv vdu =-⎰⎰⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果); b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2x e x dx ⋅⎰【求解示例】()()222222222222222x x x x x x x x x x x x x x x e x dx x e dx x de x e e d x x e x e dx x e x d e x e xe e dx x e xe e C⋅===-=-⋅=-⋅=-+=-++⎰⎰⎰⎰⎰⎰⎰解:【题型示例】求sin x e xdx ⋅⎰【求解示例】()()()()sin cos cos cos cos cos cos sin cos sin sin cos sin sin x x x xx x x x x x x x x x e xdx e d x e x xd ee x e xdx e x e d x e x e x xd e e x e x e xdx⋅=-=-+=-+=-+=-+-=-+-⎰⎰⎰⎰⎰⎰⎰解:()sin cos sin sin x x x x e xdx e x e x xd e ⋅=-+-⎰⎰即:∴()1sin sin cos 2xxe xdx e x x C ⋅=-+⎰第四节 有理函数的不定积分 ○有理函数(★)设:()()()()101101m m mn n nP x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()kx a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<);即:()()()12Q x Q x Q x =⋅一般地:n mx n m x m ⎛⎫+=+ ⎪⎝⎭,则参数n a m =-22b c ax bx c a x x a a ⎛⎫++=++ ⎪⎝⎭则参数,b cp q a a ==⑵则设有理函数()()P x Q x 的分拆和式为:()()()()()()122k lP x P x P x Q x x a x px q =+-++其中()()()()1122...k kkP x A A A x a x a x a x a =+++----()()()()2112222222...ll llP x M x N M x N x px q x px q x px q M x N x px q ++=++++++++++++参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出⑶得到分拆式后分项积分即可求解【题型示例】求21x dx x +⎰(构造法) 【求解示例】()()()221111111111ln 112x x x x dx dx x dx x x x xdx dx dx x x x Cx +-++⎛⎫==-+ ⎪+++⎝⎭=-+=-++++⎰⎰⎰⎰⎰⎰第五节 积分表的使用(不作要求)第五章 定积分极其应用第一节 定积分的概念与性质 ○定积分的定义(★)()()01lim nbiiai f x dx f x I λξ→==∆=∑⎰(()f x 称为被积函数,()f x dx 称为被积表达式,x则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)○定积分的性质(★★★)⑴()()b baaf x dx f u du =⎰⎰ ⑵()0a af x dx =⎰ ⑶()()b ba akf x dx k f x dx =⎡⎤⎣⎦⎰⎰⑷(线性性质)()()()()1212b b ba a a k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ ⑸(积分区间的可加性)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0baf x dx >⎰;(推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b baaf x dxg x dx ≤⎰⎰;(推论二)()()b baaf x dx f x dx ≤⎰⎰○积分中值定理(不作要求) 第二节 微积分基本公式○牛顿-莱布尼兹公式(★★★)(定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则()()()baf x dx F b F a =-⎰○变限积分的导数公式(★★★)(上上导―下下导)()()()()()()()x x d f t dt f x x f x x dxϕψϕϕψψ''=-⎡⎤⎡⎤⎣⎦⎣⎦⎰ 【题型示例】求21cos 2limt xx e dt x -→⎰【求解示例】()2211cos cos 2002lim lim 解:t t x x x L x d e dt e dt dx x x--'→→='⎰⎰()()()()2222221cos cos000cos 0cos cos 0cos 010sin sin limlim 22sin lim 2cos sin 2sin cos lim21lim sin cos 2sin cos 21122xxx x xL x xxx x x e ex x e xxdx e dx x x ex ex xe x x x x e e---→→-'→--→-→-⋅-⋅-⋅==⋅='⋅+⋅⋅=⎡⎤=+⋅⎣⎦=⋅=第三节 定积分的换元法及分部积分法 ○定积分的换元法(★★★) ⑴(第一换元法)()()()()b ba a f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰ 【题型示例】求20121dx x +⎰【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足: a .,αβ∃,使得()(),a b ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续 则:()()()baf x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰。

高等数学复习题(含答案)

高等数学复习题(含答案)

高等数学复习题与答案解析一、 一元函数微积分概要 (一)函数、极限与连续1.求下列函数的定义域: (1) y =216x -+x sin ln ,(2) y =)12arcsin(312-+-xx .解 (1) 由所给函数知,要使函数y 有定义,必须满足两种情况,偶次根式的被开方式大于等于零或对数函数符号内的式子为正,可建立不等式组,并求出联立不等式组的解.即⎩⎨⎧>≥-,0sin ,0162x x 推得⎩⎨⎧⋅⋅⋅±±=+<<≤≤-2,1,0π)12(π244n n x n x 这两个不等式的公共解为 π4-<≤-x 与π0<<x所以函数的定义域为)π,4[-- )π,0(.(2) 由所给函数知,要使函数有定义,必须分母不为零且偶次根式的被开方式非负;反正弦函数符号内的式子绝对值小于等于1.可建立不等式组,并求出联立不等式组的解.即⎪⎪⎩⎪⎪⎨⎧<->-≠-,112,03,032xx x 推得⎩⎨⎧≤≤<<-,40,33x x 即 30<≤x , 因此,所给函数的定义域为 )3,0[.2.设)(x f 的定义域为)1,0(,求)(tan x f 的定义域. 解:令x u tan =, 则)(u f 的定义域为)1,0(∈u∴)1,0(tan ∈x , ∴x ∈(k π, k π+4π), k ∈Z ,∴ )(tan x f 的定义域为 x ∈(k π, k π+4π), k ∈Z .3.设)(x f =x-11,求)]([x f f ,{})]([x f f f .解:)]([x f f =)(11x f -=x--1111=x 11- (x ≠1,0),{})]([x f f f =)]([11x f f -=)11(11x--= x (x ≠0,1).4.求下列极限:(1)123lim 21-+-→x x x x , (2)652134lim 2434-++-∞→x x x x x ,解:原式=1)1)(2(lim 1---→x x x x 解: 原式=424652134limxx x x x -++-∞→ =)2(lim 1-→x x =2.(抓大头)= 1-.(恒等变换之后“能代就代”)(3)xx x -+-→222lim 2, (4)330sin tan lim x x x →,解:原式=)22)(2()22)(22(lim2++-+++-→x x x x x 解:0→x 时33~tan x x ,=221lim2++→x x 33~sin x x ,=41. (恒等变换之后“能代就代”) ∴原式=330lim x x x →=1lim 0→x =1.(等价)(5))100sin (lim +∞→x x x , (6) 2121lim()11x x x→--- ,解:原式=100lim sin lim∞→∞→+x x x x解: 原式=2211212(1)lim()lim 111x x x x x x→→-+-=--- =0 + 100= 100 (无穷小的性质) 11(1)11limlim (1)(1)12x x x x x x →→-===-++.(7)215lim+-+∞→x x x .解 : 原式=52115lim=+-+∞→xx x .(抓大头) (8)11lim 21-+→x x x .解:因为0)1(lim 1=-→x x 而0)1(lim 21≠+→x x ,求该式的极限需用无穷小与无穷大关系定理解决.因为011lim 21=+-→x x x ,所以当1→x 时,112+-x x 是无穷小量,因而它的倒数是无穷大量,即 ∞=-+→11lim21x x x . (9)limx解:不能直接运用极限运算法则,因为当x →+∞时分子,极限不存在,但sin x 是有界函数,即sin 1x ≤而 0111lim1lim33=+=++∞→+∞→x x xx x x ,因此当+∞→x 时,31xx +为无穷小量.根据有界函数与无穷小乘积仍为无穷小定理,即得l i 0x =. (10)203cos cos limxxx x -→ . 解:分子先用和差化积公式变形,然后再用重要极限公式求极限原式=202sin sin 2limx x x x →=441)22sin 4(lim sin lim 0=⨯=⋅⋅∞→→x x x x x x .(也可用洛必达法则) (11)xx x)11(lim 2-∞→.解一 原式=10])11[(lim )11(lim )11()11(lim --∞→→∞→-⋅+=-+x x x x x x x xx x x =1ee 1=-,解二 原式=)1()(2])11[(lim 2x x x x--∞→-=1e 0=. (12)30tan sin limx x xx→-. 解 :x x x x 30sin sin tan lim -→=xx x x x cos )cos 1(sin lim 30-→ =2202sin 2limx x x → =21 ( 222~2sin ,0⎪⎭⎫⎝⎛→x x x ) .(等价替换) 5.求下列极限(1)201cot limxx x x -→ (2))e e ln()3ln(cos lim 33--+→x x x x (3))]1ln(11[lim 20x x x x +-→ (4))ln (lim 0x x n x ⋅+→ (5) xxx cos 1lim++∞→解 :(1)由于0→x 时,1tan cot →=x x x x ,故原极限为0型,用洛必达法则 所以 xx xx x x x x x x sin sin cos lim 1cot lim 2020-=-→→30sin cos limx xx x x -=→ (分母等价无穷小代换)01sin lim 3x x x→-=31-=.(2) 此极限为∞∞,可直接应用洛必达法则 所以 )e e ln()3ln(cos lim 33--+→x x x x =)e e ln()3ln(lim cos lim 333--⋅++→→x x x x x x x e lim 3cos e133+→⋅⋅=3cos = . (3) 所求极限为∞-∞型 ,不能直接用洛必达法则,通分后可变成00或∞∞型.)]1ln(11[lim 20x x x x +-→xx xx x x x 2111lim )1ln(lim 020+-=+-=→→ 21)1(21lim )1(211lim00=+=+-+=→→x x x x x x .(4)所求极限为∞⋅0型,得nx nx xx x x 10ln lim ln lim -→→++=⋅ (∞∞型) =1111lim --→-+n x x nx =.01lim lim 0110=-=-++→+→nxn xnx x nx (5)此极限为 ∞∞型,用洛必达法则,得 1sin 1limcos lim xx x x x x -=++∞→+∞→不存在,因此洛必达法则失效! 但 101c o s 1lim 11cos 11lim cos lim =+=+=+=++∞→+∞→+∞→x xxx x x x x x x . 6.求下列函数的极限:(1)42lim 22--→x x x , (2)()⎪⎩⎪⎨⎧++=,1,1sin 2xa x x x f ,0,0><x x 当a 为何值时,)(x f 在0=x 的极限存在. 解: (1)41)2)(2(2lim 42lim 222-=+--=----→→x x x x x x x ,41)2)(2(2lim 42lim 222=+--=--++→→x x x x x x x ,因为左极限不等于右极限,所以极限不存在.(2)由于函数在分段点0=x 处,两边的表达式不同,因此一般要考虑在分段点0=x 处的左极限与右极限.于是,有a a x x a x x x f x x x x =+=+=----→→→→000lim )1sin (lim )1sin(lim )(lim ,1)1(lim )(lim 2=+=++→→x x f x x ,为使)(lim 0x f x →存在,必须有)(lim 0x f x +→=)(lim 0x f x -→,因此 ,当a =1 时, )(lim 0x f x →存在且 )(lim 0x f x →=1.7.讨论函数 ⎪⎩⎪⎨⎧=,1sin ,)(x x xx f0>≤x x , 在点0=x 处的连续性.解:由于函数在分段点0=x 处两边的表达式不同,因此,一般要考虑在分段点0=x 处的左极限与右极限. 因而有01sinlim )(lim ,0lim )(lim 0====++--→→→→xx x f x x f x x x x , 而,0)0(=f 即0)0()(lim )(lim 00===+-→→f x f x f x x ,由函数在一点连续的充要条件知)(x f 在0=x 处连续.8. 求函数xx x x f )1(1)(2--=的间断点,并判断其类型:解:由初等函数在其定义区间上连续知)(x f 的间断点为1,0==x x .21lim)(lim 11=+=→→xx x f x x 而)(x f 在1=x 处无定义,故1=x 为其可去间断点.又∞=+=→x x x f x 1lim )(0 ∴0=x 为)(x f 的无穷间断点.综上得1=x 为)(x f 的可去间断点, 0=x 为)(x f 的无穷间断点.(二)一元函数微分学1.判断:(1)若曲线y =)(x f 处处有切线,则y =)(x f 必处处可导. 答:命题错误. 如:x y 22=处处有切线,但在0=x 处不可导. (2)若A ax a f x f ax =--→)()(lim(A 为常数),试判断下列命题是否正确.①)(x f 在点a x = 处可导, ②)(x f 在点a x = 处连续, ③)()(a f x f -= )()(a x o a x A -+-. 答:命题①、②、③全正确.(3)若)(x f ,)(x g 在点0x 处都不可导,则)()(x g x f +点0x 处也一定不可导. 答:命题不成立.如:)(x f =⎩⎨⎧>≤,0,,0,0x x x )(x g =⎩⎨⎧>≤,0,0,0,x x x)(x f ,)(x g 在x = 0 处均不可导,但其和函数)(x f +)(x g = x 在x = 0 处可导.(4)若)(x f 在点0x 处可导,)(x g 在点0x 处不可导,则)(x f +)(x g 在点0x 处一定不可导. 答:命题成立.原因:若)(x f +)(x g 在0x 处可导,由)(x f 在0x 处点可导知)(x g =[)(x f +)(x g ])(x f -在0x 点处也可导,矛盾.(5))('0x f 与)]'([0x f 有区别. 答:命题成立.因为)('0x f 表示0)(x x x f =在处的导数; )]'([0x f 表示对0)(x x x f =在处的函数值求导,且结果为0.(6)设)(x f y =在点0x 的某邻域有定义,且-∆+)(0x x f )(0x f =2)(x b x a ∆+∆,其中b a ,为常数,下列命题哪个正确?①()x f 在点0x 处可导,且()a x f ='0,②()x f 在点0x 处可微,且()x a x f x x d |d 0==, ③()()x a x f x x f ∆+≈∆+00 ( ||x ∆很小时). 答:①、②、③三个命题全正确.2.已知x x cos )'(sin =,利用导数定义求极限xx x 1)2πsin(lim 0-+→.解:xx x 1)2πsin(lim 0-+→=xx x 2sin)2πsin(lim0π-+→ =2π|)'(sin =x x = 2πcos=0. 3.求 ()⎩⎨⎧+=,,xx x f 1ln )(0<≥x x ,的导数.解: 当0>x 时,xx f +='11)( , 当0<x 时,1)(='x f ,当0=x 时,xf x f x f x f f x x )0()(lim 0)0()(lim)0(00-=--='→→,所以 10lim )0(0=-='-→-xx f x , 1e ln )1ln(lim 0)1ln(lim )0(100==+=-+='++→→+x x x x xx f ,因此 1)0(='f ,于是 ⎪⎩⎪⎨⎧+=',1,11)(xx f.0,0≤>x x4.设))((),1ln()(x f f y x x f =+=,求dxdy 解:)]1ln(1ln[))((x x f f y ++==,)]'1ln(1[)1ln(11d d x x x y ++⋅++=∴)1)](1ln(1[1x x +++=.5.已知arctanxy=求y ''. 解:两端对x 求导,得)(1)()(1122222'++='⋅+y x y x y xyx ,222222222221yx y y x yx yy x y y x y +'⋅+⋅+='-⋅+,整理得 x y y x y -='+)( ,故 xy xy y +-=', 上式两端再对x 求导,得=2)(22x y yy x +-', 将 xy xy y +-='代入上式,得 2)(22x y yxy xy x y +-+-⋅=''322)(2222y x xy y x xy +---=322)()(2x y y x ++-=. 6.求y = 323)4()3)(2)(1(⎥⎦⎤⎢⎣⎡+⋅+++x x x x x 的导数x yd d 解:两边取对数:y ln =)]4ln(ln 3)3ln()2ln()1[ln(32+--+++++x x x x x , 两边关于x 求导:]413312111[32'1+--+++++=⋅x x x x x y y , ∴)413312111(32d d +--+++++=x x x x x y x y . 7.设xx x f e )(=,求)('x f .解:令xx y e =, 两边取对数得:x y xln e ln =, 两边关于x 求导数得:即 )e ln e ('e xx x y xxx+=. 8.设,sin ),(2x u u f y ==求x y d d 和22d d xy.解:xy d d =2cos 2)(x x u f ⋅⋅', 22d d xy =)sin 4cos 2)(()(cos 4)(222222x x x u f x x u f -'+⋅''. 9.x x y e 4+=, 求y)4(.解:xx y e 43+=', xx y e 122+='',xx y e 24+=''', x y e 24)4(+=.10.设cos sin x t t y t=-⎧⎨=⎩,, 求 22d d x y . 解:d (sin )cos d 1sin (cos )y t tx tt t '=='+- , 222sin (1sin )cos 11(1sin )1sin (1sin )t t t t t t -+--=⋅=+++. 11.求曲线⎩⎨⎧==,,3t y t x 在点(1,1)处切线的斜率. 解:由题意知:⎩⎨⎧==,1,13t t 1=⇒t ,∴33)()(d d 12131==''====t t t t t t xy ,∴曲线在点(1,1)处切线的斜率为312. 求函数xx y tan ln e=的微分.解一 用微分的定义x x f y d )(d '=求微分, 有x x xx d )2sin 21(e tan ln +=. 解二 利用一阶微分形式不变性和微分运算法则求微分,得x xxx d )2sin 21(e tan ln +=. 13.试证当1≠x 时,x xe e >.证明:令x x f xe e )(-=,易见()f x 在),(+∞-∞内连续,且0)1(=f e e )(-='xx f .当1<x 时,e e )(-='xx f 0<可知()f x 为]1,(-∞上的严格单调减少函数,即 当1>x 时,e e )(-='x x f 0>,可知()f x 为),1[+∞上的严格单调增加函数, 即()(1)0f x f >=.故对任意 ,1≠x 有()0,f x >即 .0e e >-x xx xe e >.14.求函数344x x y -=的单调性与极值. 解:函数的定义域为),(+∞-∞.)3(3223-=-='x x x x y , 令 ,0='y 驻点 3,021==x x 列表由上表知,单调减区间为)3,(-∞,单调增区间为),3(+∞,极小值 4)3(-=y 求函数的极值也可以用二阶导数来判别,此例中0,6302=''-=''=x y x x y 不能确定0=x 处是否取极值,,093>=''=x y 得427)3(-=y 是极小值. 15.求3)(x x f =+23x 在闭区间[]5,5-上的极大值与极小值,最大值与最小值. 解:x x x f 63)(2+=', 令0)(='x f , 得2,021-==x x ,66)(+=''x x f , 06)0(>=''f , 06)2(<-=-''f ,∴)(x f 的极大值为=-)2(f 4,极小值为0)0(=f . ∵50)5(-=-f , 200)5(=f .∴ 比较)5(),0(),2(),5(f f f f --的大小可知:)(x f 最大值为200, 最小值为50-.16.求曲线32310510x x y ++=的凹凸区间与拐点. 解:函数的定义域为()+∞∞-,,21010x x y +=', x y 2010+='',令0=''y , 得21-=x , 用21-=x 把()+∞∞-,分成)21,(--∞,),21(+∞-两部分. 当∈x )21,(--∞时,0<''y , 当∈x ),21(+∞-时,0>''y , ∴曲线的凹区间为),,21(+∞-凸区间为),21,(--∞ 拐点为)665,21(-.17.求函数)1ln(2x y +=的凹向及拐点. 解:函数的定义域 ),(+∞-∞,,122x x y +=' 222222)1()1(2)1(22)1(2x x x x x x y +-=+⋅-+='', 令 ,0=''y 得1±=y , 列表知,上凹区间(1,1)-,下凹区由此可(,1)(1,)-∞-+∞,曲线的间拐点是)2ln ,1(±.的渐近线.18.求下列曲线的渐近线(1)xxy ln = ,(2)1222-+-=x x x y ,(3)()()213--+=x x x y .解 (1)所给函数的定义域为),0(+∞.由于 011lim ln lim ==+∞→+∞→x x xx x ,可知 0=y 为 所给曲线xxy ln =的水平渐近线.由于 -∞=+→xxx ln lim 0,可知 0=x 为曲线xxy ln =的铅直渐近线.(2) 所给函数的定义域)1,(-∞,),1(∞+.由于 -∞=-+-=--→→122lim )(lim 211x x x x f x x , +∞=-+-=++→→122lim )(lim 211x x x x f x x , 可知 1=x 为所给曲线的铅直渐近线(在1=x 的两侧()f x 的趋向不同).又 a x x x x x x f x x ==-+-=∞→∞→1)1(22lim )(lim2, []b x x x x x x x ax x f x x x =-=-+-=--+-=-∞→∞→∞→112lim ])1(22[lim )(lim 2, 所以 1-=x y 是曲线的一条斜渐近线.(3)()()∞=--+→213lim1x x x x , 故1=x 为曲线的铅直渐近线,()()∞=--+→213lim2x x x x , 故2=x 为曲线的铅直渐近线,()()2133lim lim 0121211x x x x x x x x x →∞→∞++==--⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭, 故0=y 为曲线的水平渐近线,∴ 曲线的渐近线为:2,1,0===x x y .19.求解下列各题:(1)设某产品的总成本函数和总收入函数分别为x x C 23)(+=, 15)(+=x xx R , 其中x 为该产品的销售量,求该产品的边际成本、边际收入和边际利润.解:边际成本C M =x x C 1)('=边际收入R M =2)1(5)('+=x x R边际利润xx M M q L C R 1)1(5)('2-+=-=. (2)设p 为某产品的价格,x 为产品的需求量,且有801.0=+x p , 问p 为何值时,需求弹性大或需求弹性小.解:由801.0=+x p 得10d d -=px, 所以需求价格弹性80)10(1.080-=-⨯-=p p p p Ep Ex , 故当80-p p < 1-, 即40<p <80时, 需求弹性大; 当1-<80-p p<0, 即0<p <40时,需求弹性小.(三)一元函数积分学1. 在不定积分的性质x x f k x x kf d )(d )(⎰=⎰中,为何要求0≠k ?答:因为0=k 时,C x x x kf =⎰=⎰d 0d )((任意常数),而不是0. 2. 思考下列问题:(1) 若C x x x f x++=⎰sin 2d )(,则)(x f 为何? 答:x x x f x f xcos 2ln 2)d )(()(+='⎰=. (2) 若)(x f 的一个原函数为3x ,问)(x f 为何?答:233)()(x x x f ='=(3)若)(x f 的一个原函数的x cos ,则dx x f )('⎰为何?答:C x C x f x x f x x x f +-=+='⎰-='=sin )(d )(,sin )(cos )(. 3. 计算下列积分:(1))sin d(sin 5x x ⎰, (2)x x d cos 3⎰, (3)⎰+x xx x d )sin (,(4)x xe xd 2⎰, (5)⎰-21d xx x , (6)⎰-41d xx x ,(7)⎰x xx d 2ln , (8)x x d )32(2+⎰, (9)⎰-⋅dx x x 211arcsin 1, (10)⎰+x x x d arctan )1(12, (11)⎰+22d x x, (12)⎰-24d x x . 解:(1)C xx x +=⎰6sin )sin d(sin 65. (2)x x x x x d cos )sin 1(d cos 23-⎰=⎰ =)sin d()sin 1(2x x -⎰ =)sin d(sin )sin d(2x x x ⎰-⎰=C xx +-3sin sin 3. (3)x x x x x xx x d sin 2d d )sin (⎰+⎰=+⎰=C x x +-cos 222. (4)C x x x x x x +=⎰=⎰222e 21)(d e 21d e 2. (5)C x x x x x x+--=--⎰-=--⎰2221221)1(d )1(21d 1.(6)C x x x x xx +=-=-⎰⎰22224arcsin 21)(1)(d 211d .(7(8)C x x x x x ++=++⎰=+⎰322)32(6)32(d )32(2d )32(.(9)C x x x x x x +==-⋅⎰⎰|arcsin |ln )arcsin d(arcsin 1d 11arcsin 12. (10)C x x x x x x +==+⎰⎰|arctan |ln )arctan d(arctan 1d arctan )1(12.(11)C x x x x x x x +=+=+=+⎰⎰⎰22arctan 22)2(d )2(1121)2(1d 212d 222. (12)⎰2-4d x x =⎰2)2(-12d x x=)2(d )2(-112x x⎰=C x+2arcsin . 4. 计算下列不定积分:(1)⎰++x xd 111,(2)x x d 162-⎰,(3)⎰+232)4(d x x ,(4)⎰-x xx d 122.解:(1) 令t x =+1, 则 =x 12-t , t t x d 2d =,于是原式=⎰+t t t d 12=⎰+-+t t t d 1112=]1d d [2⎰⎰+-t tt =C t t ++-1ln 22=C x x +++-+11ln 212. (2)令)2π2π(sin 4<<-=t t x ,则t x cos 4162=-,t t x d cos 4d =, 于是 t t t t t x x d )2cos 1(8d cos 4cos 4d 162+⎰=⋅⎰=-⎰ =C t t ++2sin 48.由右图所示的直角三角形,得81641642cos sin 22sin 22x x x x t t t -=-⋅⋅==,故 C xx x dx x +-+⋅=-⎰2164arcsin81622. (2)令)2π2π(tan 2<<-=t t x ,则t t x t x d sec 2d ,sec 8)4(23232==+,于是C t t t t t tx x +==⋅=+⎰⎰⎰2sin d 2cos d sec 2sec 41)4(d 23232. 由右图所示的直角三角形,得24sin xx t +=故C xx x x ++=+⎰223242)4(d .(4) 设 t x sin = ,t x cos 12=-,t t x d cos d = , 于是原式=⎰t t tt d cos cos sin 2=⎰t t d sin 2=⎰-t t d 22cos 1 =21⎰⎰-)2(d 2cos 41d t t t ==+-C t t 2sin 4121C t t t +-cos sin 2121=C x x x +--212arcsin 21.5.计算下列积分:(1)⎰x x d 2ln , (2)⎰x x d 2arctan , (3) ⎰x x xd e 4,(4)⎰x x xd 4sine 5, (5) ⎰x x x d 100sin , (6) ⎰x x x d 2arctan .解:(1))2ln d(2ln d 2ln x x x x x x ⎰-=⎰=x xx x x d 222ln ⋅⎰- =C x x x +-2ln .(2)⎰x x d 2arctan =)d(arctan22arctan x x x x ⎰- =x x x x x d )2(122arctan 2+⋅⎰- =⎰+-2241)(d 2arctan x x x x=)41(d 411412arctan 22x xx x ++-⎰ =C x x x ++-)41ln(412arctan 2.(3)x x x x x x x xx d e 41e 41de 41d e 4444⎰-==⎰⎰=C x xx +-44e 161e 41. (4)5555e 1e e sin 4d sin 4d()e sin 4d(sin 4)555x xxx x x x x x ⎰=⎰=-⎰ =x x x x xd 4cose 544sin e5155⎰-1=5e d 4cos 544sin e 5155xx x x ⎰-=⎥⎦⎤⎢⎣⎡--⎰)4cos d(5e 4cos 5e 544sin e 51555x x x xx x=x x x x x x xd 4sine 25164cos e 2544sin e 51555⎰--, 移项合并,得C x x x x xx+-=⎰)4cos 44sin 5(e 411d 4sin e55. (5)⎰---=-⎰=⎰x xx x x x x x x d )100100cos (100100cos )100100cos (d d 100sin=C xx x +-100100cos 10000100sin .(6)⎰x x x d 2arctan =⎰)2d(2arctan 2x x=⎰-)2(arctan d 22arctan 222x x x x =x x x x x d )2(1222arctan 2222⎰+⋅- =x x x x d )4111(412arctan 222⎰+-- =C x x x x ++-2arctan 8142arctan 22. 6.计算 (1)x xxd e )1(2⎰+ , (2) 3s e c d x x ⎰.解:(1) 选 12+=x u ,=v d x e x d , =v xe , x x u d 2d =, 于是原式 )1(2+=x x e ⎰-x 2xe x d ,对于⎰x x e x d 再使用分部积分法,选x u =, =v d x e x d , 则 x u d d =,=v xe ,从而⎰x xex d =x x e ⎰-x x d e =x x e C x +-e .原式=x e =+--)e e (21C x x x )12(2++x x C x+e (12C C =), 为了简便起见,所设 x u =,=v xe 等过程不必写出来,其解题步骤如下:⎰x xedx =⎰x d x e =x C x x x x x x +-=-⎰e e d e e .(2)3sec d x x ⎰=)(tan d sec x x ⎰=x x tan sec ⎰-)(sec d tan x x=x x tan sec ⎰-x x x d sec tan 2=sec tan x x -x x x d sec )1(sec 2-⎰=sec tan x x -⎰x x d sec 3+⎰x x d sec=sec tan x x -⎰x x d sec 3+x x tan sec ln +, 式中出现了“循环”,即再出现了⎰x x d sec 3移至左端,整理得3sec d x x ⎰=21[x x tan sec +x x tan sec ln +]+C . 7. 利用定积分的估值公式,估计定积分⎰-+-1134)524(x x x d 的值.解:先求524)(34+-=x x x f 在[]1,1-上的最值,由0616)(23=-='x x x f , 得0=x 或83=x . 比较 7)1(,102427)83(,5)0(,11)1(=-===-f f f f 的大小,知 11,102427max min =-=f f , 由定积分的估值公式,得[])1(1d )524()]1(1[max 1134min --⋅≤+-≤--⋅⎰-f x x x f ,即 22d )524(512271134≤+-≤-⎰-x x x .8. 求函数21)(x x f -=在闭区间[-1,1]上的平均值.解:平均值⎰-=⋅⋅=---=11224π21π21d 1)1(11x x μ. 9. 若⎰=2d sin )(2x xt t x f ,则)(x f '=?解:)(x f '=242222sin sin 2sin )sin()(x x x x x x -=-'.10.已知 ⎰+=t t xxx F d 1sin )(2 , 求 )(x F '.解:)(x F '=)2(12x x +-+x x cos sin 1⋅+=++-212x x x x cos sin 1⋅+.11. 求极限x tt x x πcos 1d πsin lim11+⎰→.解:此极限是“0”型未定型,由洛必达法则,得xtt x x πcos 1d πsin lim11+⎰→=)πcos 1()d πsin (lim11'+'⎰→x t t xx =π1)π1(lim πsin ππsin lim11-=-=-→→x x x x12.计算下列定积分(1)⎰-20d |1|x x , (2)⎰-122d ||x x x , (3)⎰π20d |sin |x x .解:(1)⎰-20d |1|x x =⎰-10d )1(x x +⎰-21d )1(x x=212122)1(2)1(-+--x x =2121+=1. (2)⎰-122d ||x x x =⎰--023d )(x x +⎰13d x x=10402444x x +--=4+41741=. (3)⎰π20d |sin |x x =⎰πd sin x x +⎰-π2πd )sin (x x=π2ππ0cos )cos (x x +-=2+2=4.13.计算下列定积分(1)⎰--2π2π3d cos cos x x x ,(2)⎰--112d 1x x .解:(1)x x x x x x d sin )(cos 2d cos cos 212π2π2π03⎰⎰-=-=34cos 34)cos d()(cos 22π0232π021=-=-⎰x x x .(2)⎰⎰⎰---=-=-112π2π2π2π222d )(cos )sin d()(sin 1d 1t t t t x x=2=+=+=⎰⎰2π02π02π02)2sin 21(d 22cos 12d )(cos t t t t t t 2π.14.计算 (1)⎰+-4d 11x xx, (2)⎰4π4d tan sec x x x .解:(1)利用换元积分法,注意在换元时必须同时换限.令 x t =,x 2t = ,t t x d 2d = ,当0=x 时,0=t ,当4=x 时,2=t ,于是⎰+-4d 11x xx=⎰+-20d 211t t t t =⎰+--20d ]1424[t t t(2)⎰4π04d tan sec x x x =⎰4π03)(sec d sec x x43411sec 414π04=-==x .15. 计算下列定积分:(1)x x x d e )15(405⎰+, (2)x x d )12ln(e21⎰+,(3)x x x d πcos e 10π⎰, (4)x x x x x d )e 3(133⎰++.解:(1)x x xd e )15(405⎰+=5e d )15(540x x ⎰+=⎰+-+10515)15(d 5e )15(5e x x xx =5155e 5e51e 6=--x .(2)x x d )12ln(e21⎰+=()())12ln d(12ln e21e21+-+⎰x x x x()1e 23ln 231e 4ln )21e 2(+--++=. (3) x x x d πcos e 10π⎰=ππsin d e 10πx x ⎰ =0x x x d πsin e 10π⎰-=)ππcos d(e 1πxx --⎰ =-+-)1e (π1πx x x d πcos e 10π⎰移项合并得x x x d πcos e 10π⎰)1e (π21π+-=.(4)x x x xxd )e 3(1033⎰++)e 313ln 34(d 3104xx x x ++=⎰ =4514e 923ln 23ln 3)e 913ln 320(e 313ln 3413213253++-=++-++x x x 16.计算(1)⎰1d arctan x x , (2)x x x d ln 2e e1⎰.解:(1)⎰1d arctan x x =10arctan x x⎰+-102d 1x x x=102)1ln(214πx +- =2ln 214-π .(2) 由于在[1,e1]上0ln ≤x ;在[2e ,1]上0ln ≥x ,所以x x x d ln 2e e1⎰=x x x d )ln (1e1⎰-+x x x d ln 2e 1⎰=)2(d ln 21e1x x ⎰-+)2d(ln 2e 12x x ⎰=[-x x ln 22+42x ]1e 1+[x x ln 22-42x ]2e 1=41-(412e 1+212e 1)+(4e -414e +41) =21-432e 1+434e .17.判别下列广义积分的敛散性,如果收敛计算其值 . (1)⎰∞++022d )1(x x x, (2)⎰∞+02d 1x x , (3)x xd e 1100⎰∞+-, (4)⎰∞++02100d x x . 解:(1) 因为积分区间为无穷区间,所以原式=+∞→b lim ⎰+bx x x 022d )1(=+∞→b lim ⎰++b x x 0222)1()1(d 21=bb x 02])1(21[lim +-+∞→ =]21)1(21[lim 2++-+∞→b b =21,故所给广义积分收敛,且其值为21. (2)⎰∞+02d 1xx =+∞=-=-+∞→→+∞+x x x x x 1lim 1lim )1(00, ∴⎰∞+02d 1x x发散. (3)x xd e 1100⎰∞+-=1001001100e 1001)100e (0100e --+∞-=--=-x .(4)⎰∞++02100d x x=20π10arctan 1010=+∞x . 18.求曲线22)2(,-==x y x y 与x 轴围成的平面图形的面积.解:如图,由⎪⎩⎪⎨⎧-==,)2(,22x y x y 得两曲线交点(1,1). 解一 取x 为积分变量,]2,0[∈x , 所求面积323)2(3d )2(d 213103212102=-+=-+=⎰⎰x xx x x x A . 解二 取y 为积分变量,y 的变化区间为[0,1],32)d y -y -2(1==⎰y A . 显然,解法二优于解法一.因此作题时,要先画图,然后根据图形选择适当的积分变量,尽量使计算方便. 19. 求下列曲线所围成的图形的面积:抛物线22xy =与直线42=-y x . 解:先画图,如图所示,并由方程⎪⎩⎪⎨⎧=-=4222y x x y ,求出交点为(2,1-),(8,2). 解一 取y 为积分变量,y 的变化区间为[1-,2], 在区间[1-,2]上任取一子区间[y ,y +y d ], 则面积微元 A d =y y y d )242(2-+, 则所求面积为A =⎰--+212d )242(y y y = (32324y y y -+)21-=9.解二 取x 为积分变量,x 的变化区间 为[0,8],由图知,若在此区间上任取子区间, 需分成[0,2],[2,8]两部分完成.在区间[0,2]上任取一子区间[x ,x +x d ], 则面积微元 A d 1=x xd ]22[, 在区间[2,8]上任取一子区间[x ,x +x d ], 则面积微元 A d 2=[)4(212--x x ]x d , 于是得A =A 1+A 2A =⎰2d 22x x+A x xx d )222(82+-⎰=23322x 20+[23322x 224x x -+]82=9 .显然,解法一优于解法二.因此作题时,要先画图,然后根据图形选择适当的积分变量,尽量使计算方便. 20.用定积分求由0,1,0,12===+=x x y x y 所围平面图形绕x 轴旋转一周所得旋转体的体积. 解:如右图,所求体积y=135)325(πx x x ++=π1528. 二、 微分方程1. 验证xx C C x C y --+=e e 21为微分方程0'2''=++y y y 的解,并说明是该方程的通解. 证明: xx C C x C y --+=e e 21,x x C x C C C y ----=∴e e )('121, x x C x C C C y --+-=e e )2(''112,于是0'2''=++C C C y y y ,故C y 是0'2''=++y y y 的解.x x -e 与x -e 线性无关,∴0'2''=++y y y 中的1C 与2C 相互独立,即C y 中含有与方程0'2''=++y y y 阶数相同(个数均为2)的独立任意常数,故C y 是该方程的通解. 2. 用分离变量法求解下列微分方程:(1)22d d y x x y =, (2)21d d x y x y -=, (3)y x x x y )1(d d 2++=,且e )0(=y . 解:(1)分离变量得x x yy d d 22=,(0≠y ) 两边积分得⎰⎰=x x y yd d 122 , 求积分得 3313Cx y +=-, 从而通解为Cx y +-=33及验证0=y 也是方程的解.(特别注意,此解不能并入通解)(2)分离变量得21d d xx y y -=,(0≠y )两边积分得⎰⎰-=x x y y d 11d 12,求积分得 1arcsin ||ln C x y +=, 即 )e (e ee 11arcsin arcsin C x xCC C y ±==±=,从而通解为 xC y arcsin e =,验证0=y 也是方程的解.(3)分离变量得x x x yyd )1(d 2++=,(0≠y ) 两边积分得⎰⎰++=x x x y y d )1(d 12求积分得 13232||ln C x x x y +++=, 即 )e (eee 1332232132C x x x C C C y x x x ±==±=++++,从而通解为3232ex x x C y ++=,验证0=y 也是方程的解.由e )0(=y ,得e =C , 故特解为32132e x x x y +++=.3.求解下列一阶线性微分方程(1)x b ay y sin '=+(其中b a ,为常数), (2)21d d y x x y +=. 解:(1)因a x P =)(, x b x Q s i n )(=, 故通解为)]cos sin (e 1[e 2x x a a b C axax -++=-. (2)方程变形为2d d y x yx=-, 这是x 关于y 的一阶线性微分方程,其中2)(,1)(y y Q y P =-=,通解为:)22(e 2++-=y y C y .以上是用一阶线性微分方程的通解公式求解,要熟练掌握常数变易法! 4.求微分方程 y y x y x y xy d d d d 2+=+ 满足条件20==x y的特解.解:这是可以分离变量的微分方程,将方程分离变量,有x x y y y d 11d 12-=-,两边积分,得=-⎰y y yd 12⎰-x x d 11,求积分得121ln 1ln 21C x y +-=-,1222)1ln(1ln C x y +-=-, 1222e )1(1C x y -=-,222)1(e 11-±=-x y C ,记 0e12≠=±C C ,得方程的解 22)1(1-=-x C y .可以验证 0=C 时,1±=y ,它们也是原方程的解,因此,式22)1(1-=-x C y 中的C 可以为任意常数,所以原方程的通解为 22)1(1-=-x C y (C 为任意常数). 代入初始条件 20==x y得 3=C ,所以特解为 22)1(31-=-x y .5.求微分方程(1)xy yy +=',(2) x xy y x cos e 22=-'的通解.(1)解一 原方程可化为1d d +=xyx yx y ,令 x yu =, 则 1d d +=+u u x u x u ,即 x x u u u d d 12-=+ ,两边取积分 ⎰⎰-=+x x u u u d 1d )11(2, 积分得C x u u ln ln ln 1-=-,将xy u =代入原方程,整理得原方程的通解为 yx C y e = (C 为任意常数).解二 原方程可化为11d d =-x yy x 为一阶线性微分方程,用常数变易法.解原方程所对应的齐次方程 01d d =-x yy x ,得其通解为 y C x =. 设y y C x )(=为原方程的解,代入原方程,化简得 1)(='y y C ,1ln)(C yy C =, 所以原方程的通解为 1ln C y y x=,即yx C ye = (C 为任意常数).(2)解一 原方程对应的齐次方程02d d =-xy x y 分离变量,得xy xy2d d =,x x y y d 2d =, 两边积分,得x x y y ⎰⎰=d 2d ,C x y +=2ln , )e ln(ln e ln ln 22x x C C y =+=,2e x C y =,用常数变易法.设2e )(x x C y =代入原方程,得 x x C x x cos e e )(22=',x x C cos )(=',C x x x x C +==⎰sin d cos )(,故原方程的通解为 )(sin e 2C x y x += (C 为任意常数). 解二 这里x x P 2)(-=,x x Q x cos e)(2=代入通解的公式得=)d ecos e(e 222C x x x x x +⋅⎰-=)d cos (e 2C x x x +⎰=)(sin e 2C x x +(C 为任意常数).6.求微分方程 123='+''y x y x 的通解.解:方程中不显含未知函数y ,令P y =',x P y d d ='',代入原方程,得 1d d 23=+P x xP x , 311d d xP x x P =+,这是关于未知函数)(x P 的一阶线性微分方程,代入常数变易法的通解公式,所以 =)(x P 1d 13d 1d e 1(eC x xxx xx +⎰⎰⎰-) =1ln 3ln d e 1(e C x x x x+⎰-)=13d 1(1C x x xx +⋅⎰)=11(1C x x +-)=x C x 121+-, 由此x y d d =x Cx 121+-,⎰+-=x x C xy d )1(12=21ln 1C x C x ++, 因此,原方程的通解为 y =21ln 1C x C x++ (21,C C 为任意常数). 7.求微分方程 )1()(22-''='y y y 满足初始条件21==x y ,11-='=x y 的特解.解:方程不显含x ,令 P y =',y P Py d d ='',则方程可化为 )1(d d 22-=y yP PP , 当 0≠P 时y y P P d 12d -=,于是 21)1(-=y C P . 根据 21==x y,11-='=x y ,知12-='=y y 代入上式,得 11-=C ,从而得到x y yd )1(d 2-=-,积分得211C x y +=-,再由21==x y ,求得 02=C ,于是当0≠P 时,原方程满足所给初始条件的特解为x y =-11, 当0=P 时,得C y =(常数),显然这个解也满足方程,这个解可包含在解x y =-11中. 故原方程满足所给初始条件的特解为x y =-11,即 xy 11+=. 8.求方程0)'(''2=-y yy 的通解.解:方程不显含自变量x , 令)('y p y =原方程可变为0d d 2=-⋅⋅p ypp y , 即0=p 或p ypy=d d , 由0'==p y 得C y =.由p y p y=d d 分离变量,得yy p p d d =, 两边积分得⎰⎰=y yp p d d ,求积分得 1ln ln ln C y p +=, 即y C p 1=, 解y C y 1'= 得xC C y 1e 2=,因C y =包含于xC C y 1e2=中, 故原方程通解为 xC C y 1e2=.9.写出下列微分方程的通解:(1)0'2''=+-y y y , (2)08'=+y y . 解:(1)特征方程0122=+-r r , 特征根121==r r , 通解为xx C C y e )(21+=.(2)特征方程08=+r , 特征根8-=r , 通解为xC y 81e-=.10.求下列微分方程满足所给初始条件的特解:(1)xy y y 3e6'2''-=-+, 1)0(',1)0(==y y ,(2) x y y sin 2''=+,1)0(',1)0(==y y . 解:(1)先解06'2''=-+y y y ,其特征方程为0622=-+r r , 特征根为711+-=r , 712--=r ,故通解 xxC C y )71(2)71(1e e --+-+=.因x3e-中3-=λ不是特征方程的根,且1)(=x P m , 故设原方程特解xp A y 3e-=,代入原方程化简,得31-=A ,从而原方程通解为x x C C y )71(2)71(1e e --+-+=x 3e 31--.由0)0(=y ,得03121=-+C C , 由0)0('=y ,得11)71()71(21=++-+-C C ,解得42771+=C , 42772-=C , 故所求特解x xxp y 3)71()71(e 31e 4277e 4277---+---++=. (2)先解02=+''y y ,其特征方程为022=+r ,特征根为i 2,i 221-==r r ,故通解x C x C y C 2sin 2cos 21+=.设原方程特解x b x a y s i n c o s *+=,代入原方程,化简得1,0==b a ,故原方程通解x x C x C y sin 2sin 2cos 21++=,由00)0(1==C y 得,由1)0(='y ,得02=C ,故所求特解为x y sin =.11. 求微分方程 xx y y e 4=-''满足初始条件00==x y,10='=x y 的特解.解:对应齐次方程的特征方程为 012=-r ,特征根 12,1±=r .故对应齐次微分方程的通解为 xx c C C y -+=e e 21.因为1=λ是特征方程的单根,所以设特解为 xP b x b x y e )(10+=,代入原方程得 x x b b b 4422010=++,比较同类项系数得 10=b ,11-=b ,从而原方程的特解为 xP x x y e )1(-=, 故原方程的通解为 =y xxC C -+ee 21x x x e )1(-+,由初始条件 0=x 时,0='=y y ,得 ⎩⎨⎧=-=+,2,02121C C C C从而11=C ,12-=C .因此满足初始条件的特解为 =y xx--ee x x x e )1(-+.12.求微分方程 x y y y x2sin e 842=+'-''的通解.解:对应的齐次微分方程的特征方程 0842=+-r r ,特征根 i 222,1±=r .于是所对应的齐次微分方程通解为)2sin 2cos (e 212x C x C y x c +=.为了求原方程x y y y x2sin e842=+'-''的一个特解,先求x y y y )i 22(e 84+=+'-''(*)的特解.由于i 22+=λ是特征方程的单根,且1)(=x P m 是零次多项式。

高等数学(Ⅰ)复习题

高等数学(Ⅰ)复习题

高等数学(上)复习题1、A、B、C、D、2、A、B、C、D、3、A、B、C、D、4、A、B、C、D、5、A、1B、C、2D、6、A、1B、C、0D、7、由心形线所围成图形的面积(). A、B、C、D、8、A、B、C、D、9、A、B、C、D、10、A、B、C、D、11、A、2B、C、D、0E、-212、A、0,2B、-1,-1C、-1,1D、0,-313、A、B、C、D、14、A、B、唯一的C、任意的D、15、A、B、C、D、16、A、B、C、D、无法确定正负17、A、B、C、D、0E、18、A、奇函数B、偶函数C、非奇非偶函数D、奇偶性决定于a的值19、下列叙述正确的是()。

A、有界数列一定有极限B、无界数列一定是极限值为无穷大C、极限值为无穷大数列必为无界数列D、无界数列未必发散20、A、B、C、0D、21、A、充分条件,但不是必要条件B、充分必要条件C、必要条件,但不是充分条件D、既非充分也非必要条件22、A、1B、0C、2D、323、A、1B、3C、2D、424、A、B、C、25、A、B、C、D、626、A、B、C、D、27、A、B、C、D、28、下列等式成立的是()。

A、B、C、D、29、曲线与直线x=4、y=0所围图形绕y轴旋转一周所形成的旋转体的体积()A、B、C、D、30、A、B、C、D、有界,但非无穷小量31、A、B、C、D、32、由双曲线xy=1与直线y=x及y=2围成的平面图形的面积()A、B、C、D、33、A、B、C、D、34、A、B、C、D、35、B、C、D、36、A、120B、-120C、0D、-24037、A、1B、2C、0D、-1E、-238、A、B、C、39、A、-1B、1C、2D、-2E、040、A、B、1C、D、041、A、一个很小的函数B、任意给定的正的常数C、很小的与n有关的函数D、是n的函数42、A、无界变量B、无穷大量C、无穷小量D、有界,但非无穷小量43、A、连续但不可导B、可导C、左可导而右不可导D、右可导而左不可导44、A、6B、1C、-6D、-1E、045、A、B、C、D、046、A、左连续,右不连续B、连续C、右连续,左不连续D、左右都不连续47、A、B、C、D、48、下列极限中不正确的是. A、B、C、D、49、A、-9B、9C、D、50、A、B、C、不一定收敛D、不收敛51、A、B、C、D、52、A、B、C、D、53、A、B、C、D、54、A、B、C、D、55、A、B、C、D、A、0B、1C、D、57、A、B、D、58、A、B、C、D、59、A、B、C、D、60、A、20B、2C、12D、-2E、061、曲线y=lnx,y=lna,y=lnb,(0<a<b)及y轴所围图形面积(). A、B、C、D、62、A、B、C、D、63、A、B、C、D、164、A、1B、2C、0D、-165、A、有界函数B、单调函数C、周期函数D、无界函数66、A、偶函数B、奇函数C、D、非奇非偶67、A、1B、-1C、0D、E、68、A、B、C、D、69、A、a=1,b=1B、C、D、70、A、B、C、D、71、A、B、C、D、72、A、B、C、D、[a,b]73、A、甲、乙都不成立B、甲成立,乙不成立C、甲不成立,乙成立D、甲、乙都成立74、A、B、100C、0D、20075、A、B、C、D、76、A、B、C、D、77、A、B、2C、D、78、A、B、C、D、79、下列各对函数中,是同一函数的原函数的是(). A、B、C、D、80、A、0个B、至少有1个C、无数多个D、无法确定81、A、B、C、D、82、A、1B、C、D、83、A、2B、1C、D、0E、-184、下列函数中,在[1,e]上满足拉格朗日中值定理条件的是(). A、B、C、D、85、A、1B、4C、3D、E、086、A、充分条件B、必要条件C、充要条件D、既非充分又非必要条件87、A、2B、-2C、4D、-488、A、B、C、D、89、B、2C、D、E、490、A、B、C、D、91、下列等式中,正确的结果是(). A、B、C、D、92、A、C、D、93、A、2B、C、1D、094、A、甲、乙都正确B、甲正确,乙不正确C、甲、乙都不正确D、甲不正确,乙正确95、A、-7B、7C、1D、-1E、096、A、2B、1C、0D、E、397、A、B、C、D、98、A、连续,可导B、连续,但不可导C、不连续,但可导D、不连续,必不可导99、A、2B、C、D、不存在100、A、0B、1C、6D、2E、3101、下列关于实数列的命题正确的为().A、其他各项结论均不成立B、C、D、102、A、B、C、0D、1103、A、2B、-2C、3D、-3104、A、0B、1C、2D、3105、A、充分条件B、必要条件C、既非必要又非充分条件D、必要充分条件106、A、-2B、1107、A、1B、C、D、2 108、A、B、C、D、3E、0 109、A、0B、C、1D、-1 110、A、D、E、111、A、B、C、D、112、A、同阶无穷小,但不是等价无穷小B、等价无穷小C、低阶无穷小D、高阶无穷小113、A、f’(x)B、C、D、很小的量114、计算曲线一段的弧长(). A、B、C、D、115、A、1B、-1C、-2D、2E、0 116、A、B、C、1D、2 117、A、1B、0C、D、不存在118、A、B、C、D、119、A、连续是可微的充分条件B、可导是可微的充分必要条件C、可微不是连续的充分条件D、连续是可导的充分必要条件120、A、B、C、D、121、A、-1B、1C、2D、-2E、0122、A、B、C、D、123、A、B、C、D、124、A、B、C、1D、2125、A、必要条件B、充分必要条件C、充分条件D、既非充分又非必要条件126、A、B、C、D、127、A、B、C、D、128、A、B、C、D、129、下列函数中在[-1,1]上满足罗尔定理的函数是(). A、B、C、D、130、A、必要条件B、既非必要又非充分条件C、充分必要条件D、充分条件131、A、1B、2C、3D、6E、0132、A、B、C、可能收敛,可能发散D、都发散133、A、0B、C、1D、2134、A、B、C、D、135、A、B、C、D、136、A、B、C、D、137、A、B、C、D、138、下列极限中,不正确的是(). A、B、C、D、139、A、B、C、D、140、A、有界变量B、无界,但非无穷大量C、无穷大量D、无穷小量141、抛物线及直线绕x轴旋转一周得一旋转体的体积(). A、B、C、D、142、A、B、C、D、143、A、0B、C、1D、不存在144、A、B、C、D、145、A、B、C、D、146、A、-1B、1C、0D、2147、A、0B、1C、2D、-1148、A、在[a,b]上,f(x)=0B、C、D、149、A、B、C、D、E、150、A、B、C、D、151、A、B、C、D、-2ln2 152、A、B、C、D、153、A、B、C、D、154、A、1B、2C、0D、3 155、A、B、C、D、A、B、C、D、157、下列函数中为奇函数的是(). A、B、C、D、158、A、B、C、D、A、B、C、D、160、A、2·6!B、4·6!C、6!D、3·6!。

高等数学复习题(含答案)

高等数学复习题(含答案)

高等数学复习题与答案解析一、 一元函数微积分概要 (一)函数、极限与连续1.求下列函数的定义域: (1) y =216x -+x sin ln ,(2) y =)12arcsin(312-+-xx .解 (1) 由所给函数知,要使函数y 有定义,必须满足两种情况,偶次根式的被开方式大于等于零或对数函数符号内的式子为正,可建立不等式组,并求出联立不等式组的解.即⎩⎨⎧>≥-,0sin ,0162x x 推得⎩⎨⎧⋅⋅⋅±±=+<<≤≤-2,1,0π)12(π244n n x n x 这两个不等式的公共解为 π4-<≤-x 与π0<<x所以函数的定义域为)π,4[-- )π,0(.(2) 由所给函数知,要使函数有定义,必须分母不为零且偶次根式的被开方式非负;反正弦函数符号内的式子绝对值小于等于1.可建立不等式组,并求出联立不等式组的解.即⎪⎪⎩⎪⎪⎨⎧<->-≠-,112,03,032xx x 推得⎩⎨⎧≤≤<<-,40,33x x即 30<≤x , 因此,所给函数的定义域为 )3,0[.2.设)(x f 的定义域为)1,0(,求)(tan x f 的定义域. 解:令x u tan =, 则)(u f 的定义域为)1,0(∈u∴)1,0(tan ∈x , ∴x ∈(k π, k π+4π), k ∈Z ,)(tan x f 的定义域为 x ∈(k π, k π+4π), k ∈Z .3.设)(x f =x-11,求)]([x f f ,{})]([x f f f .解:)]([x f f =)(11x f -=x--1111=x 11- (x ≠1,0),{})]([x f f f =)]([11x f f -=)11(11x--= x (x ≠0,1).4.求下列极限:(1)123lim 21-+-→x x x x , (2)652134lim 2434-++-∞→x x x x x ,解:原式=1)1)(2(lim 1---→x x x x 解: 原式=424652134lim xx x x x -++-∞→ =)2(lim 1-→x x =2.(抓大头)= 1-.(恒等变换之后“能代就代”)(3)xx x -+-→222lim 2, (4)330sin tan lim x x x →, 解:原式=)22)(2()22)(22(lim2++-+++-→x x x x x 解:0→x 时33~tan x x ,=221lim2++→x x 33~sin x x ,=41. (恒等变换之后“能代就代”) ∴原式=330lim x x x →=1lim 0→x =1.(等价)(5))100sin (lim +∞→x x x , (6) 2121lim()11x x x→--- ,解:原式=100lim sin lim∞→∞→+x x x x解: 原式=2211212(1)lim()lim 111x x x x x x→→-+-=--- =0 + 100= 100 (无穷小的性质) 11(1)11limlim (1)(1)12x x x x x x →→-===-++.(7)215lim+-+∞→x x x .解 : 原式=52115lim=+-+∞→xxx .(抓大头) (8)11lim 21-+→x x x .解:因为0)1(lim 1=-→x x 而0)1(lim 21≠+→x x ,求该式的极限需用无穷小与无穷大关系定理解决.因为011lim 21=+-→x x x ,所以当1→x 时,112+-x x 是无穷小量,因而它的倒数是无穷大量,即 ∞=-+→11lim 21x x x . (9)limx解:不能直接运用极限运算法则,因为当x →+∞时分子,极限不存在,但sin x 是有界函数,即sin 1x ≤而 0111lim1lim33=+=++∞→+∞→x x xx x x ,因此当+∞→x 时,31xx +为无穷小量.根据有界函数与无穷小乘积仍为无穷小定理,即得lim0x =.(10)203cos cos limxxx x -→ . 解:分子先用和差化积公式变形,然后再用重要极限公式求极限原式=202sin sin 2limx x x x →=441)22sin 4(lim sin lim 0=⨯=⋅⋅∞→→x xx x x x .(也可用洛必达法则)(11)xx x)11(lim 2-∞→.解一 原式=10])11[(lim )11(lim )11()11(lim --∞→→∞→-⋅+=-+x x x x x x x xx x x =1ee 1=-,解二 原式=)1()(2])11[(lim 2x x x x--∞→-=1e 0=.(12)30tan sin limx x xx →-.解 :x x x x 30sin sin tan lim -→=xx x x x cos )cos 1(sin lim 30-→ 20sin (1cos )1lim cos x x x x x x→-=⋅⋅ =222sin 2limx xx →=21 ( 222~2sin ,0⎪⎭⎫⎝⎛→x x x ) .(等价替换) 5.求下列极限(1)201cot limx x x x -→ (2))e e ln()3ln(cos lim33--+→x x x x (3))]1ln(11[lim 20x x x x +-→ (4))ln (lim 0x x n x ⋅+→ (5) xxx cos 1lim ++∞→解 :(1)由于0→x 时,1tan cot →=x x x x ,故原极限为0型,用洛必达法则 所以 xx xx x x x x x x sin sin cos lim 1cot lim 2020-=-→→30sin cos limx xx x x -=→ (分母等价无穷小代换)20cos sin cos lim3x x x x xx →--=01sin lim 3x x x→-=31-=.(2) 此极限为∞∞,可直接应用洛必达法则 所以 )e e ln()3ln(cos lim 33--+→x x x x =)e e ln()3ln(lim cos lim 333--⋅++→→x x x x x 3e e lim e 1lim 3cos 333--⋅⋅=++→→x x x x xxx e lim 3cos e133+→⋅⋅=3cos = . (3) 所求极限为∞-∞型 ,不能直接用洛必达法则,通分后可变成00或∞∞型.)]1ln(11[lim 20x x x x +-→xx xx x x x 2111lim )1ln(lim 020+-=+-=→→ 21)1(21lim )1(211lim00=+=+-+=→→x x x x x x .(4)所求极限为∞⋅0型,得nx nx xx x x 10ln lim ln lim -→→++=⋅ (∞∞型) =1111lim --→-+n x x nx =.01lim lim 0110=-=-++→+→nx n xnxx nx (5)此极限为∞∞型,用洛必达法则,得 1sin 1lim cos lim x x x x x x -=++∞→+∞→不存在,因此洛必达法则失效! 但 101c o s 1lim 11cos 11lim cos lim =+=+=+=++∞→+∞→+∞→x xxx x x x x x x .6.求下列函数的极限:(1)42lim 22--→x x x , (2)()⎪⎩⎪⎨⎧++=,1,1sin 2xa x x x f ,0,0><x x 当a 为何值时,)(x f 在0=x 的极限存在. 解: (1)41)2)(2(2lim 42lim 222-=+--=----→→x x x x x x x ,41)2)(2(2lim 42lim 222=+--=--++→→x x x x x x x ,因为左极限不等于右极限,所以极限不存在.(2)由于函数在分段点0=x 处,两边的表达式不同,因此一般要考虑在分段点0=x 处的左极限与右极限.于是,有a a x x a x x x f x x x x =+=+=----→→→→0000lim )1sin (lim )1sin (lim )(lim ,1)1(l i m )(l i m 2=+=++→→x x f x x , 为使)(lim 0x f x →存在,必须有)(lim 0x f x +→=)(lim 0x f x -→, 因此 ,当a =1 时, )(lim 0x f x →存在且 )(lim 0x f x →=1.7.讨论函数 ⎪⎩⎪⎨⎧=,1sin ,)(x x xx f0>≤x x , 在点0=x 处的连续性.解:由于函数在分段点0=x 处两边的表达式不同,因此,一般要考虑在分段点0=x 处的左极限与右极限.因而有01sin lim )(lim ,0lim )(lim 0====++--→→→→xx x f x x f x x x x , 而,0)0(=f 即0)0()(lim )(lim 00===+-→→f x f x f x x , 由函数在一点连续的充要条件知)(x f 在0=x 处连续.8. 求函数xx x x f )1(1)(2--=的间断点,并判断其类型:解:由初等函数在其定义区间上连续知)(x f 的间断点为1,0==x x .21lim)(lim 11=+=→→xx x f x x 而)(x f 在1=x 处无定义,故1=x 为其可去间断点.又∞=+=→x x x f x 1lim)(0 ∴0=x 为)(x f 的无穷间断点. 综上得1=x 为)(x f 的可去间断点, 0=x 为)(x f 的无穷间断点.(二)一元函数微分学1.判断:(1)若曲线y =)(x f 处处有切线,则y =)(x f 必处处可导.答:命题错误. 如:x y 22=处处有切线,但在0=x 处不可导.(2)若A ax a f x f ax =--→)()(lim(A 为常数),试判断下列命题是否正确.①)(x f 在点a x = 处可导, ②)(x f 在点a x = 处连续, ③)()(a f x f -= )()(a x o a x A -+-. 答:命题①、②、③全正确.(3)若)(x f ,)(x g 在点0x 处都不可导,则)()(x g x f +点0x 处也一定不可导. 答:命题不成立.如:)(x f =⎩⎨⎧>≤,0,,0,0x x x )(x g =⎩⎨⎧>≤,0,0,0,x x x)(x f ,)(x g 在x = 0 处均不可导,但其和函数)(x f +)(x g = x 在x = 0 处可导.(4)若)(x f 在点0x 处可导,)(x g 在点0x 处不可导,则)(x f +)(x g 在点0x 处一定不可导. 答:命题成立.原因:若)(x f +)(x g 在0x 处可导,由)(x f 在0x 处点可导知)(x g =[)(x f +)(x g ])(x f -在0x 点处也可导,矛盾.(5))('0x f 与)]'([0x f 有区别. 答:命题成立.因为)('0x f 表示0)(x x x f =在处的导数; )]'([0x f 表示对0)(x x x f =在处的函数值求导,且结果为0.(6)设)(x f y =在点0x 的某邻域有定义,且-∆+)(0x x f )(0x f =2)(x b x a ∆+∆,其中b a ,为常数,下列命题哪个正确?①()x f 在点0x 处可导,且()a x f ='0,②()x f 在点0x 处可微,且()x a x f x x d |d 0==, ③()()x a x f x x f ∆+≈∆+00 ( ||x ∆很小时). 答:①、②、③三个命题全正确.2.已知x x cos )'(sin =,利用导数定义求极限xx x 1)2πsin(lim 0-+→.解:xx x 1)2πsin(lim 0-+→=xx x 2sin)2πsin(lim0π-+→ =2π|)'(sin =x x = 2πcos=0. 3.求 ()⎩⎨⎧+=,,xx x f 1ln )(0<≥x x ,的导数.解: 当0>x 时,xx f +='11)( ,当0<x 时,1)(='x f ,当0=x 时,xf x f x f x f f x x )0()(lim 0)0()(lim)0(00-=--='→→, 所以 10lim )0(0=-='-→-xx f x , 1e ln )1ln(lim 0)1ln(lim )0(100==+=-+='++→→+x x x x xx f , 因此 1)0(='f ,于是 ⎪⎩⎪⎨⎧+=',1,11)(xx f .0,0≤>x x4.设))((),1ln()(x f f y x x f =+=,求dxdy解:)]1ln(1ln[))((x x f f y ++==,)]'1ln(1[)1ln(11d d x x x y ++⋅++=∴)1)](1ln(1[1x x +++=.5.已知arctanxy=求y ''. 解:两端对x 求导,得)(1)()(1122222'++='⋅+y x y x y xyx ,222222222221yx y y x yx yy x y y x y +'⋅+⋅+='-⋅+,整理得 x y y x y -='+)( ,故 xy xy y +-=', 上式两端再对x 求导,得22)()())(1())(1(x y x y y x y y x y x y y y x y x y y x y y y ++-'+'--'+-'=+-+'-+-'=''=2)(22x y yy x +-',将 xy xy y +-='代入上式,得2)(22x y y x y xy x y +-+-⋅=''322)(2222y x xy y x xy +---=322)()(2x y y x ++-=. 6.求y = 323)4()3)(2)(1(⎥⎦⎤⎢⎣⎡+⋅+++x x x x x 的导数x yd d 解:两边取对数:y ln =)]4ln(ln 3)3ln()2ln()1[ln(32+--+++++x x x x x , 两边关于x 求导:]413312111[32'1+--+++++=⋅x x x x x y y , ∴)413312111(32d d +--+++++=x x x x x y x y . 7.设xx x f e )(=,求)('x f .解:令xx y e =, 两边取对数得:x y x ln e ln =, 两边关于x 求导数得:xx y y x xe ln e '1+⋅=⋅)e ln e ('xx y y x x+=即 )e ln e ('e xx x y xxx+=. 8.设,sin ),(2x u u f y ==求x y d d 和22d d xy.解:xy d d =2cos 2)(x x u f ⋅⋅', 22d d xy=)sin 4cos 2)(()(cos 4)(222222x x x u f x x u f -'+⋅''. 9.xx y e 4+=, 求y)4(.解:xx y e 43+=', xx y e 122+='',xx y e 24+=''', x y e 24)4(+=.10.设cos sin x t t y t=-⎧⎨=⎩,, 求 22d d x y . 解:d (sin )cos d 1sin (cos )y t tx tt t '=='+- ,22d d d cos d cos d cos 1()()()d d d d 1sin d 1sin d 1sin d y y t t t t xx x x t t t x t t''===⋅=+++ 222sin (1sin )cos 11(1sin )1sin (1sin )t t t t t t -+--=⋅=+++. 11.求曲线⎩⎨⎧==,,3t y t x 在点(1,1)处切线的斜率. 解:由题意知:⎩⎨⎧==,1,13t t 1=⇒t ,33)()(d d 12131==''====t t t t t t xy,曲线在点(1,1)处切线的斜率为3 12. 求函数x x y tan ln e =的微分.解一 用微分的定义x x f y d )(d '=求微分, 有x x xx x x y xx x d ]sec tan 1e e [d )e (d 2tan ln tan ln tan ln ⋅+='= x xxx d )2sin 21(e tan ln +=. 解二 利用一阶微分形式不变性和微分运算法则求微分,得 x x xx x x y tan ln tan ln tan ln e d d e )e(d d +==)tan (ln d e d e tan ln tan ln x x x x x +=)tan d(tan 1e d e tan ln tan ln x x x x x x ⋅+= x xx x x x x d cos 1tan 1e d e 2tan ln tan ln ⋅+= x xxx d )2sin 21(e tan ln +=. 13.试证当1≠x 时,x xe e >.证明:令x x f x e e )(-=,易见()f x 在),(+∞-∞内连续,且0)1(=f e e )(-='xx f .当1<x 时,e e )(-='xx f 0<可知()f x 为]1,(-∞上的严格单调减少函数,即()(1)0.f x f >=当1>x 时,e e )(-='xx f 0>,可知()f x 为),1[+∞上的严格单调增加函数,即()(1)0f x f >=.故对任意 ,1≠x 有()0,f x >即 .0e e >-x x x xe e >.14.求函数344x x y -=的单调性与极值. 解:函数的定义域为),(+∞-∞.)3(3223-=-='x x x x y , 令 ,0='y 驻点 3,021==x x 列表由上表知,单调减区间为)3,(-∞,单调增区间为),3(+∞,极小值 4)3(-=y 求函数的极值也可以用二阶导数来判别,此例中0,6302=''-=''=x y x x y 不能确定0=x 处是否取极值, ,093>=''=x y 得427)3(-=y 是极小值. 15.求3)(x x f =+23x 在闭区间[]5,5-上的极大值与极小值,最大值与最小值.解:x x x f 63)(2+=', 令0)(='x f , 得2,021-==x x ,66)(+=''x x f , 06)0(>=''f , 06)2(<-=-''f ,∴)(x f 的极大值为=-)2(f 4,极小值为0)0(=f . ∵50)5(-=-f , 200)5(=f .∴ 比较)5(),0(),2(),5(f f f f --的大小可知:)(x f 最大值为200, 最小值为50-.16.求曲线32310510x x y ++=的凹凸区间与拐点. 解:函数的定义域为()+∞∞-,,21010x x y +=', x y 2010+='',令0=''y , 得21-=x , 用21-=x 把()+∞∞-,分成)21,(--∞,),21(+∞-两部分.当∈x )21,(--∞时,0<''y , 当∈x ),21(+∞-时,0>''y , 曲线的凹区间为),,21(+∞-凸区间为),21,(--∞ 拐点为)665,21(-.17.求函数)1ln(2x y +=的凹向及拐点. 解:函数的定义域 ),(+∞-∞,,122x x y +=' 222222)1()1(2)1(22)1(2x x x x x x y +-=+⋅-+='', 令 ,0=''y 得1±=y , 列表由此可知,上凹区间(1,1)-,下凹区间(,1)(1,)-∞-+∞,曲线的拐点是)2ln ,1(±.的渐近线.18.求下列曲线的渐近线 (1)x x y ln = ,(2)1222-+-=x x x y ,(3)()()213--+=x x x y .解 (1)所给函数的定义域为),0(+∞.由于 011lim ln lim ==+∞→+∞→x x xx x ,可知 0=y 为 所给曲线xxy ln =的水平渐近线.由于 -∞=+→xxx ln lim0, 可知 0=x 为曲线xxy ln =的铅直渐近线.(2) 所给函数的定义域)1,(-∞,),1(∞+.由于 -∞=-+-=--→→122lim )(lim 211x x x x f x x , +∞=-+-=++→→122lim )(lim 211x x x x f x x , 可知 1=x 为所给曲线的铅直渐近线(在1=x 的两侧()f x 的趋向不同).又 a x x x x x x f x x ==-+-=∞→∞→1)1(22lim )(lim 2,[]b x x x x x x x ax x f x x x =-=-+-=--+-=-∞→∞→∞→112lim ])1(22[lim )(lim 2, 所以 1-=x y 是曲线的一条斜渐近线.(3)()()∞=--+→213lim1x x x x , 故1=x 为曲线的铅直渐近线,()()∞=--+→213lim2x x x x , 故2=x 为曲线的铅直渐近线,()()2133lim lim 0121211x x x x x x x x x →∞→∞++==--⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭, 故0=y 为曲线的水平渐近线,∴ 曲线的渐近线为:2,1,0===x x y .19.求解下列各题:(1)设某产品的总成本函数和总收入函数分别为x x C 23)(+=, 15)(+=x xx R , 其中x 为该产品的销售量,求该产品的边际成本、边际收入和边际利润.解:边际成本C M =x x C 1)('=边际收入R M =2)1(5)('+=x x R边际利润xx M M q L C R 1)1(5)('2-+=-=. (2)设p 为某产品的价格,x 为产品的需求量,且有801.0=+x p , 问p 为何值时,需求弹性大或需求弹性小.解:由801.0=+x p 得10d d -=px, 所以需求价格弹性80)10(1.080-=-⨯-=p p p p Ep Ex , 故当80-p p < 1-, 即40<p <80时, 需求弹性大; 当1-<80-p p<0, 即0<p <40时,需求弹性小.(三)一元函数积分学1. 在不定积分的性质x x f k x x kf d )(d )(⎰=⎰中,为何要求0≠k ?答:因为0=k 时,C x x x kf =⎰=⎰d 0d )((任意常数),而不是0. 2. 思考下列问题:(1) 若C x x x f x ++=⎰sin 2d )(,则)(x f 为何? 答:x x x f x f x cos 2ln 2)d )(()(+='⎰=. (2) 若)(x f 的一个原函数为3x ,问)(x f 为何? 答:233)()(x x x f ='=(3)若)(x f 的一个原函数的x cos ,则dx x f )('⎰为何?答:C x C x f x x f x x x f +-=+='⎰-='=sin )(d )(,sin )(cos )(. 3. 计算下列积分:(1))sin d(sin 5x x ⎰, (2)x x d cos 3⎰, (3)⎰+x xx x d )sin (,(4)x xe x d 2⎰, (5)⎰-21d xx x , (6)⎰-41d xx x ,(7)⎰x x x d 2ln , (8)x x d )32(2+⎰, (9)⎰-⋅dx x x 211arcsin 1, (10)⎰+x x x d arctan )1(12, (11)⎰+22d x x , (12)⎰-24d x x .解:(1)C xx x +=⎰6sin )sin d(sin 65. (2)x x x x x d cos )sin 1(d cos 23-⎰=⎰ =)sin d()sin 1(2x x -⎰ =)sin d(sin )sin d(2x x x ⎰-⎰=C xx +-3sin sin 3. (3)x x x x x xx x d sin 2d d )sin (⎰+⎰=+⎰=C x x +-cos 222. (4)C x x x x x x +=⎰=⎰222e 21)(d e 21d e 2.(5)C x x x x x x+--=--⎰-=--⎰2221221)1(d )1(21d 1.(6)C x x x x xx +=-=-⎰⎰22224arcsin 21)(1)(d 211d .(7(8)C x x x x x ++=++⎰=+⎰322)32(6)32(d )32(2d )32(.(9)C x x x x x x +==-⋅⎰⎰|arcsin |ln )arcsin d(arcsin 1d 11arcsin 12.(10)C x x x x x x +==+⎰⎰|arctan |ln )arctan d(arctan 1d arctan )1(12.(11)C x x x x x x x +=+=+=+⎰⎰⎰22arctan 22)2(d )2(1121)2(1d 212d 222. (12)⎰2-4d x x =⎰2)2(-12d x x=)2(d )2(-112xx ⎰=C x +2arcsin .4. 计算下列不定积分:(1)⎰++x xd 111,(2)x x d 162-⎰,(3)⎰+232)4(d x x ,(4)⎰-x xx d 122.解:(1) 令t x =+1, 则 =x 12-t , t t x d 2d =,于是原式=⎰+t t t d 12=⎰+-+t t t d 1112=]1d d [2⎰⎰+-t tt =C t t ++-1ln 22=C x x +++-+11ln 212. (2)令)2π2π(sin 4<<-=t t x ,则t x cos 4162=-,t t x d cos 4d =, 于是 t t t t t x x d )2cos 1(8d cos 4cos 4d 162+⎰=⋅⎰=-⎰ =C t t ++2sin 48.由右图所示的直角三角形,得81641642cos sin 22sin 22xx x x t t t -=-⋅⋅==, 故 C xx x dx x +-+⋅=-⎰2164arcsin81622. (2)令)2π2π(tan 2<<-=t t x ,则t t x t x d sec 2d ,sec 8)4(23232==+,x于是C t t t t t tx x +==⋅=+⎰⎰⎰2sin d 2cos d sec 2sec 41)4(d 23232. 由右图所示的直角三角形,得24sin xx t +=故C x x x x ++=+⎰223242)4(d .(4) 设 t x sin = ,t x cos 12=-,t t x d cos d = , 于是原式=⎰t t tt d cos cos sin 2=⎰t t d sin 2=⎰-t t d 22cos 1 =21⎰⎰-)2(d 2cos 41d t t t ==+-C t t 2sin 4121C t t t +-cos sin 2121=C x xx +--212arcsin 21. 5.计算下列积分:(1)⎰x x d 2ln , (2)⎰x x d 2arctan , (3) ⎰x x xd e4,(4)⎰x x xd 4sin e5, (5)⎰x x x d 100sin , (6) ⎰x x x d 2arctan .解:(1))2ln d(2ln d 2ln x x x x x x ⎰-=⎰=x xx x x d 222ln ⋅⎰- =C x x x +-2ln .(2)⎰x x d 2arctan =)d(arctan22arctan x x x x ⎰- =x x x x x d )2(122arctan 2+⋅⎰-=⎰+-2241)(d 2arctan xx x x =)41(d 411412arctan 22x xx x ++-⎰ =C x x x ++-)41ln(412arctan 2.(3)x x x x x x x xx d e 41e 41de 41d e 4444⎰-==⎰⎰=C x xx +-44e 161e 41. x221x -1x t(4)5555e 1e e sin 4d sin 4d()e sin 4d(sin 4)555x xxx x x x x x ⎰=⎰=-⎰ =x x x xxd 4cose 544sin e5155⎰-=5e d 4cos 544sin e 5155xx x x ⎰-=⎥⎦⎤⎢⎣⎡--⎰)4cos d(5e 4cos 5e 544sin e 51555x x x xx x=x x x x xx xd 4sine 25164cos e 2544sin e 51555⎰--, 移项合并,得C x x x x xx+-=⎰)4cos 44sin 5(e 411d 4sin e55. (5)⎰---=-⎰=⎰x xx x x x x x x d )100100cos (100100cos )100100cos (d d 100sin =C xx x +-100100cos 10000100sin . (6)⎰x x x d 2arctan =⎰)2d(2arctan 2x x=⎰-)2(arctan d 22arctan 222x x x x =x x x x x d )2(1222arctan 2222⎰+⋅-=x x x x d )4111(412arctan 222⎰+-- =C x x x x ++-2arctan 8142arctan 22. 6.计算 (1)x x xd e )1(2⎰+ , (2) 3s e c d x x ⎰. 解:(1) 选 12+=x u ,=v d x e x d , =v xe , x x u d 2d =, 于是原式 )1(2+=x x e ⎰-x 2x e x d ,对于⎰x x e x d 再使用分部积分法,选x u =, =v d x e x d , 则 x u d d =,=v xe ,从而⎰x xex d =x x e ⎰-x x d e =x x e C x +-e .原式=xe =+--)e e (21C x x x )12(2++x x Cx+e (12C C =),为了简便起见,所设 x u =,=v xe 等过程不必写出来,其解题步骤如下:⎰x xe dx =⎰x d x e =x C x x x x x x +-=-⎰e e d e e . (2)3secd x x ⎰=)(tan d sec x x ⎰=x x tan sec ⎰-)(sec d tan x x=x x tan sec ⎰-x x x d sec tan 2=sec tan x x -x x x d sec )1(sec 2-⎰=sec tan x x -⎰x x d sec 3+⎰x x d sec =sec tan x x -⎰x x d sec3+x x tan sec ln +,式中出现了“循环”,即再出现了⎰x x d sec 3移至左端,整理得3sec d x x ⎰=21[x x tan sec +x x tan sec ln +]+C . 7. 利用定积分的估值公式,估计定积分⎰-+-1134)524(x x x d 的值.解:先求524)(34+-=x x x f 在[]1,1-上的最值,由0616)(23=-='x x x f , 得0=x 或83=x . 比较 7)1(,102427)83(,5)0(,11)1(=-===-f f f f 的大小,知 11,102427max min =-=f f , 由定积分的估值公式,得[])1(1d )524()]1(1[max 1134min --⋅≤+-≤--⋅⎰-f x x x f ,即 22d )524(512271134≤+-≤-⎰-x x x . 8. 求函数21)(x x f -=在闭区间[-1,1]上的平均值.解:平均值⎰-=⋅⋅=---=11224π21π21d 1)1(11x x μ. 9. 若⎰=2d sin )(2x xt t x f ,则)(x f '=?解:)(x f '=242222sin sin 2sin )sin()(x x x x x x -=-'.10.已知 ⎰+=t t x xx F d 1sin )(2 , 求 )(x F '.解:)(x F '=)2(12x x +-+x x cos sin 1⋅+=++-212x x x x cos sin 1⋅+.11. 求极限x tt x x πcos 1d πsin lim11+⎰→.解:此极限是“0”型未定型,由洛必达法则,得xtt x x πcos 1d πsin lim11+⎰→=)πcos 1()d πsin (lim11'+'⎰→x t t xx =π1)π1(lim πsin ππsin lim11-=-=-→→x x x x12.计算下列定积分(1)⎰-20d |1|x x , (2)⎰-122d ||x x x , (3)⎰π20d |sin |x x .解:(1)⎰-2d |1|x x =⎰-10d )1(x x +⎰-21d )1(x x=212122)1(2)1(-+--x x =2121+=1.(2)⎰-122d ||x x x =⎰--023d )(x x +⎰103d x x=1402444x x +--=4+41741=.(3)⎰π20d |sin |x x =⎰πd sin x x +⎰-π2πd )sin (x x=π2ππ0cos )cos (x x +-=2+2=4.13.计算下列定积分(1)⎰--2π2π3d cos cos x x x ,(2)⎰--112d 1x x .解:(1)x x x x x x d sin )(cos 2d cos cos 212π2π2π03⎰⎰-=-=34cos 34)cos d()(cos 22π0232π021=-=-⎰x x x .(2)⎰⎰⎰---=-=-112π2π2π2π222d )(cos )sin d()(sin 1d 1t t t t x x=2=+=+=⎰⎰2π02π02π02)2sin 21(d 22cos 12d )(cos t t t t t t 2π.14.计算 (1)⎰+-4d 11x xx, (2)⎰4π4d tan sec x x x .解:(1)利用换元积分法,注意在换元时必须同时换限.令 x t =,x 2t = ,t t x d 2d = ,当0=x 时,0=t ,当4=x 时,2=t ,于是⎰+-40d 11x x x=⎰+-20d 211t t t t =⎰+--20d ]1424[t tt [].3ln 44021ln 442-=+--=tt t(2)⎰4π4d tan sec x x x =⎰4π03)(sec d sec x x43411sec 414π04=-==x .15. 计算下列定积分:(1)x x xd e )15(405⎰+, (2)x x d )12ln(e21⎰+,(3)x x x d πcos e 10π⎰, (4)x x x x x d )e 3(133⎰++.解:(1)x x xd e )15(405⎰+=5e d )15(540x x ⎰+=⎰+-+10515)15(d 5e )15(5e x x x x =5155e 5e 51e 6=--x.(2)x x d )12ln(e21⎰+=()())12ln d(12ln e21e21+-+⎰x x x xx x xd 1223ln )1e 4ln(e 2e21⎰+--+= --+=3ln )1e 4ln(e 2x x )d 1211(e 21⎰+---+=3ln )1e 4ln(e 2()e21)12ln 21(+-x x()1e 23ln 231e 4ln )21e 2(+--++=.(3) x x xd πcose 10π⎰=ππsin d e 10πx x ⎰x x x x πde ππsin πsin e π11010π⎰-= =0x x x d πsin e 10π⎰-=)ππcos d(e 10πx x--⎰ x x x x πde ππcos πcos e π11010π⎰-==-+-)1e (π1πx x x d πcos e 10π⎰ 移项合并得x x x d πcos e 10π⎰)1e (π21π+-=. (4)x x x xxd )e 3(1033⎰++)e 313ln 34(d 3104xx x x ++=⎰⎰++-++=1034134d )e 313ln 34()e 313ln 34(x x x x xx x x=4514e 923ln 23ln 3)e 913ln 320(e 313ln 3413213253++-=++-++x x x 16.计算(1)⎰1d arctan x x , (2)x x x d ln 2e e1⎰.解:(1)⎰1d arctan x x =10arctan x x⎰+-102d 1x x x=102)1ln(214πx +- =2ln 214-π .(2) 由于在[1,e1]上0ln ≤x ;在[2e ,1]上0ln ≥x ,所以x x x d ln 2e e1⎰=x x x d )ln (1e1⎰-+x x x d ln 2e 1⎰=)2(d ln 21e1x x ⎰-+)2d(ln 2e 12x x ⎰=[-x x ln 22+42x ]1e 1+[x x ln 22-42x ]2e 1=41-(412e 1+212e 1)+(4e -414e +41) =21-432e 1+434e . 17.判别下列广义积分的敛散性,如果收敛计算其值 . (1)⎰∞++022d )1(x x x, (2) ⎰∞+02d 1x x , (3)x xd e 1100⎰∞+-, (4)⎰∞++02100d xx . 解:(1) 因为积分区间为无穷区间,所以原式=+∞→b lim ⎰+bx x x 022d )1(=+∞→b lim ⎰++b x x 0222)1()1(d 21=bb x 02])1(21[lim +-+∞→ =]21)1(21[lim 2++-+∞→b b =21, 故所给广义积分收敛,且其值为21. (2)⎰∞+02d 1x x =+∞=-=-+∞→→+∞+xx x x x 1lim 1lim )1(00,∴⎰∞+02d 1x x 发散. (3)x xd e1100⎰∞+-=1001001100e 1001)100e (0100e --+∞-=--=-x .(4)⎰∞++02100d x x =20π10arctan 1010=+∞x . 18.求曲线22)2(,-==x y x y 与x 轴围成的平面图形的面积.解:如图,由⎪⎩⎪⎨⎧-==,)2(,22x y x y 得两曲线交点(1,1). 解一 取x 为积分变量,]2,0[∈x , 所求面积323)2(3d )2(d 213103212102=-+=-+=⎰⎰x x x x x x A . 解二 取y 为积分变量,y 的变化区间为[0,1],32)d y -y -2(1==⎰y A . 显然,解法二优于解法一.因此作题时,要先画图,然后根据图形选择适当的积分变量,尽量使计算方便. 19. 求下列曲线所围成的图形的面积:抛物线 22xy =与直线42=-y x . 解:先画图,如图所示,并由方程⎪⎩⎪⎨⎧=-=4222y x x y ,求出交点为(2,1-),(8,2). 解一 取y 为积分变量,y 的变化区间为[1-,2], 在区间[1-,2]上任取一子区间[y ,y +y d ],则面积微元 A d =y y y d )242(2-+,则所求面积为A =⎰--+212d )242(y y y = (32324y y y -+)21-=9.解二 取x 为积分变量,x 的变化区间 为[0,8],由图知,若在此区间上任取子区间, 需分成[0,2],[2,8]两部分完成.在区间[0,2]上任取一子区间[x ,x +x d ], 则面积微元 A d 1=x xd ]22[, 在区间[2,8]上任取一子区间[x ,x +x d ],2)2-y则面积微元 A d 2=[)4(212--x x ]x d , 于是得=A 1+A 2 =⎰20d 22x x +x x x d )222(82+-⎰=23322x 20+[23322x 224x x -+]82=9 .显然,解法一优于解法二.因此作题时,要先画图,然后根据图形选择适当的积分变量,尽量使计算方便. 20.用定积分求由0,1,0,12===+=x x y x y 所围平面图形绕x 轴旋转一周所得旋转体的体积. 解:如右图,所求体积⎰+=122d )1(πx x V⎰++=1024d )12(πx x x=135)325(πx x x ++=π1528. 二、 微分方程1. 验证x x C C x C y --+=e e 21为微分方程0'2''=++y y y 的解,并说明是该方程的通解. 证明: x x C C x C y --+=e e 21,x x C x C C C y ----=∴e e )('121, x x C x C C C y --+-=e e )2(''112,于是0'2''=++C C C y y y ,故C y 是0'2''=++y y y 的解.x x -e 与x -e 线性无关,∴0'2''=++y y y 中的1C 与2C 相互独立,即C y 中含有与方程0'2''=++y y y 阶数相同(个数均为2)的独立任意常数,故C y 是该方程的通解. 2. 用分离变量法求解下列微分方程:(1)22d d y x x y =, (2)21d d x yx y -=, (3)y x x x y )1(d d 2++=,且e )0(=y . 解:(1)分离变量得x x yyd d 22=,(0≠y ) 两边积分得⎰⎰=x x y yd d 122 ,x求积分得 3313Cx y +=-,从而通解为Cx y +-=33及验证0=y 也是方程的解.(特别注意,此解不能并入通解) (2)分离变量得21d d xxy y -=,(0≠y ) 两边积分得⎰⎰-=x x y y d 11d 12,求积分得 1arcsin ||ln C x y +=,即 )e (e e e 11arcsin arcsin Cx x CC C y ±==±=,从而通解为 x C y arcsin e =,验证0=y 也是方程的解. (3)分离变量得x x x yyd )1(d 2++=,(0≠y ) 两边积分得⎰⎰++=x x x y y d )1(d 12 求积分得 13232||ln C x x x y +++=, 即 )e (eee 1332232132C x x x C C C y x x x ±==±=++++,从而通解为3232ex x x C y ++=,验证0=y 也是方程的解.由e )0(=y ,得e =C , 故特解为32132e x x x y +++=.3.求解下列一阶线性微分方程(1)x b ay y sin '=+(其中b a ,为常数), (2)21d d yx x y +=. 解:(1)因a x P =)(, x b x Q s i n)(=, 故通解为 ⎰⎰⋅+⎰=-]d e sin [e d d x x b C y xa x a⎰⋅+=-)d e sin (e x x b C ax ax)]cos sin (e 1[e 2x x a a b C axax -++=-. (2)方程变形为2d d y x yx=-, 这是x 关于y 的一阶线性微分方程,其中2)(,1)(y y Q y P =-=,通解为:⎰⋅⎰⋅+⎰=---]d e [e d )1(2d )1(y y C x yy⎰-⋅+=]d e [e 2y y C y y)22(e 2++-=y y C y .以上是用一阶线性微分方程的通解公式求解,要熟练掌握常数变易法! 4.求微分方程 y y x y x y xy d d d d 2+=+ 满足条件20==x y的特解.解:这是可以分离变量的微分方程,将方程分离变量,有x x y y y d 11d 12-=-, 两边积分,得=-⎰y y yd 12⎰-x x d 11,求积分得121ln 1ln 21C x y +-=-,1222)1ln(1ln C x y +-=-, 1222e )1(1C x y -=-,222)1(e 11-±=-x y C ,记 0e12≠=±C C ,得方程的解 22)1(1-=-x C y .可以验证 0=C 时,1±=y ,它们也是原方程的解,因此,式22)1(1-=-x C y 中的C 可以为任意常数,所以原方程的通解为 22)1(1-=-x C y (C 为任意常数). 代入初始条件 20==x y得 3=C ,所以特解为 22)1(31-=-x y .5.求微分方程(1)xy yy +=',(2) x xy y x cos e 22=-'的通解.(1)解一 原方程可化为 1d d +=xyx y x y ,令 x yu =,则 1d d +=+u u x u x u ,即 x x u uu d d 12-=+ ,两边取积分 ⎰⎰-=+x x u u u d 1d )11(2, 积分得C x u u ln ln ln 1-=-,将xy u =代入原方程,整理得原方程的通解为 yx C y e = (C 为任意常数).解二 原方程可化为11d d =-x yy x 为一阶线性微分方程,用常数变易法.解原方程所对应的齐次方程 01d d =-x yy x ,得其通解为 y C x =. 设y y C x )(=为原方程的解,代入原方程,化简得 1)(='y y C ,1ln)(C yy C =,所以原方程的通解为 1ln C y y x=,即yxC ye = (C 为任意常数).(2)解一 原方程对应的齐次方程02d d =-xy x y 分离变量,得xy x y 2d d =,x x yy d 2d =, 两边积分,得x x y y⎰⎰=d 2d ,C x y +=2ln ,)e ln(ln e ln ln 22x x C C y =+=,2e x C y =,用常数变易法.设2e )(x x C y =代入原方程,得 x x C x x cos e e )(22=',x x C cos )(=',C x x x x C +==⎰sin d cos )(,故原方程的通解为 )(sin e 2C x y x += (C 为任意常数). 解二 这里x x P 2)(-=,x x Q x cos e )(2=代入通解的公式得)d e cos e (e d 2d 22⎰+⎰⋅⎰=---C x x y xx x x x=)d e cos e(e 222C x x x x x +⋅⎰-=)d cos (e 2C x x x +⎰=)(sin e 2C x x +(C 为任意常数).6.求微分方程 123='+''y x y x 的通解.解:方程中不显含未知函数y ,令P y =',x P y d d ='',代入原方程,得 1d d 23=+P x xP x, 311d d xP x x P =+,这是关于未知函数)(x P 的一阶线性微分方程,代入常数变易法的通解公式,所以 =)(x P 1d 13d 1d e 1(eC x xxx x x +⎰⎰⎰-) =1ln 3ln d e 1(e C x x x x+⎰-)=13d 1(1C x x x x +⋅⎰)=11(1C x x +-)=x C x 121+-, 由此x y d d =x Cx121+-,⎰+-=x x C xy d )1(12=21ln 1C x C x ++, 因此,原方程的通解为 y =21ln 1C x C x++ (21,C C 为任意常数). 7.求微分方程 )1()(22-''='y y y 满足初始条件21==x y ,11-='=x y 的特解.解:方程不显含x ,令 P y =',y P Py d d ='',则方程可化为 )1(d d 22-=y yP PP , 当 0≠P 时y y P P d 12d -=,于是 21)1(-=y C P .根据 21==x y,11-='=x y ,知12-='=y y 代入上式,得 11-=C ,从而得到x y yd )1(d 2-=-,积分得 211C x y +=-,再由21==x y ,求得 02=C ,于是当0≠P 时,原方程满足所给初始条件的特解为x y =-11, 当0=P 时,得C y =(常数),显然这个解也满足方程,这个解可包含在解x y =-11中. 故原方程满足所给初始条件的特解为x y =-11,即 xy 11+=. 8.求方程0)'(''2=-y yy 的通解.解:方程不显含自变量x , 令)('y p y =原方程可变为0d d 2=-⋅⋅p ypp y , 即0=p 或p ypy=d d , 由0'==p y 得C y =.由p y p y=d d 分离变量,得yy p p d d =, 两边积分得⎰⎰=y yp p d d ,求积分得 1ln ln ln C y p +=, 即y C p 1=, 解y C y 1'= 得xC C y 1e 2=,因C y =包含于xC C y 1e2=中, 故原方程通解为 xC C y 1e2=.9.写出下列微分方程的通解:(1)0'2''=+-y y y , (2)08'=+y y . 解:(1)特征方程0122=+-r r , 特征根121==r r , 通解为x x C C y e )(21+=.(2)特征方程08=+r , 特征根8-=r , 通解为xC y 81e-=.10.求下列微分方程满足所给初始条件的特解:(1)xy y y 3e6'2''-=-+, 1)0(',1)0(==y y ,(2) x y y sin 2''=+,1)0(',1)0(==y y . 解:(1)先解06'2''=-+y y y ,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学AI复习大纲及复习题第一部分函数与极限1、熟练掌握函数的有关概念及性质,能进行函数的复合运算;会计算函数的定义域;会判断函数的奇偶性、有界性2、熟练掌握极限的概念及性质,会利用左右极限判断极限的存在性;会利用极限运算法则、两个重要极限、无穷小量的性质求极限3、熟练掌握函数连续的概念及连续函数的性质,会判断分断函数在分界点处的连续性;掌握函数间断点的概念及其分类,会判断函数间断点的类型4、掌握闭区间上连续函数的性质,会利用介值定理判断方程根的存在性第二部分导数与微分1、熟练掌握导数与微分的概念,会利用导数的几何意义求曲线的切线方程;知道连续、可导及可微之间的关系2、熟练掌握和、差、积、商的求导法则;复合函数的求导法则;隐函数的求导法则、参数方程的求导法则及微分法则;会计算各种函数的导数及微分第三部分中值定理与导数的应用1、熟练掌握中值定理的条件及结论,会利用拉格郎日中值定理证明不等式2、熟练掌握罗必塔法则,会利用罗必塔法则计算各种未定式的极限3、熟练掌握函数的单调性、凹凸性的定义及其判定方法,会利用单调性证明简单的不等式4、掌握函数极值的概念及求法,会利用极值的理论解决实际应用中的最值问题5、了解泰勒公式及其应用,会描绘简单的函数图形第四部分不定积分1、熟练掌握不定积分概念及性质,熟练掌握积分方法,会用换元积分法和分布积分法计算不定积分2、了解几种特殊类型函数的积分方法;了解积分表的使用第五部分定积分及其应用1、熟练掌握定积分的概念、性质及其应用;熟练掌握变上限积分函数的概念及性质,会求变上限积分函数的导数2、熟练掌握定积分的换元积分法和分部积分法,会利用换元积分法和分部积分法计算定积分3、掌握广义积分的概念及收敛性的判断,会计算广义积分,会判断广义积分的收敛性4、掌握定积分的元素法,熟练掌握在平面直角坐标系下,平面图形的面积、旋转体的体积、平面曲线的弧长的计算方法5、了解定积分在物理学上的应用第六部分微分方程1、熟练掌握微分方程的有关概念;2、熟练掌握变量可分离的微分方程、一阶线性微分方程的解法.复习题及解答(答案)一、选择题例1 函数1)1ln(-+=x x y 的定义域是( C ) A 、(-1,+∞) B 、[-1,+∞] C 、(1,+∞) D 、[ 1,+∞] 例2 设)()(a x x a x f -=-(a 为大于零的常数),则=)(x f (B) A 、 x (x-a ) B 、x (x+a ) C 、(x-a )(x+a ) D 、2)(a x - 例3 函数xx f 1cos)(=是定义域内的(C ) A 、周期函数 B 、单调函数 C 、有界函数 D 、无界函数 例 4∞→x lim =+x x)21((A ) A 、e 2B 、eC 、eD 、∞例5 0lim→x =xx2tan ( D )A 、0B 、1C 、21D 、2例 6 0lim →x =xx4sin 3tan (C)A 、0B 、∞C 、43D 、34例 7 0lim→x =--1cos 12x e x ( D ) A 、∞ B 、2 C 、0 D 、-2 例 8函数434)(2---=x x x x f 的间断点的个数为(C ) A 、0 B 、1 C 、2 D 、3例 9设sin 3,0(),0xx f x x a x ⎧≠⎪=⎨⎪=⎩ 在x=0处连续,则a 等于( D )A 、-1B 、1C 、2D 、3例10 设函数f (x )在x=x 0处可导,并且,2)(0='x f 则0lim→h hx f h x f )()(00-- 等于( D )A 、21 B 、2 C 、21- D 、-2 例11设)0(f '=1,则在x=x 0处,当0→∆x 时y ∆与x ∆相比较为( D )A 、 低阶无穷小量B 、高阶无穷小量C 、 同阶但不等价D 、等价无穷小量例12设且0)0(=f 0lim→x x x f )(存在,则0lim →x xx f )(=( B )A 、)(x f 'B 、)0(f 'C 、)0(fD 、)0(21f '例13设函数f (x )在x=a 处可导,则0lim →x =--+xx a f x a f )()(( C )A 、0B 、)(a f 'C 、2)(a f 'D 、)2(a f ' 例14设='=y y x,则cos 2( C )A 、cos 2ln 2xB 、cos 2sin x x -C 、cos 2ln 2sin xx - D 、cos 12sin x x --例15 下列函数在[1,e]上满足拉格朗日中值定理条件的是(B ) A 、x ln ln B 、x ln C 、xln 1D 、)(x -2ln 例16 设)(则x f x x x f ,ln )(= ( A )A 、在(0,e 1)内单调减少 B 、在(+∞,1e)内单调减少 C 、在(0,+∞)内单调减少 D 、(0,+∞)在内单调增加例17 函数)1ln(2x y +=的单调增加区间为( C )A 、(-5,5)B 、(∞-,0)C 、(0,∞+)D 、(-+∞∞,) 例18 以下结论正确的是(C )A 、函数)(x f 的导数不存在的点,一定不是)(x f 的极值点B 、若x 0为)(x f 的驻点,则x 0必为)(x f 的极值点C 、若)(x f 在x 0处有极值,且)(0x f '存在,则必有)(0x f '=0D 、若)(x f 在x 0处连续,则)(0x f '一定存在 例19 x 是( B )的一个原函数 A 、x 21 B 、x21 C 、x ln D 、3x 例20 ( A )是函数x21的一个原函数A 、x 2lnB 、221x -C 、)(x +1lnD 、x 3ln 21 例21下列等式中( D )是正确的 A 、)()(x f dx x f ='⎰ B 、c e f dx e f x x +='⎰)()( C 、c x f x dx x f +='⎰)(2)( D 、c x f dx x f x +--=-'⎰)1(21)1(22 例22若=+=⎰⎰--dx e f e c x F dx x f x x )(,则)()((A)A 、c e F x+--)( B 、c e F x+-)( C 、c xe F x +-)( D 、c e F x +)(例23 设函数)(x f 在[]b a ,上连续,则dt t f dx x f baba⎰⎰-)()(=( B )A 、小于零B 、等于零C 、大于零D 、不确定例24设函数)(x f 在[]b a ,上连续,则曲线)(x f y =与直线0,,===y b x a x0,,===y b x a x 所围成的平面图形的面积等于( C )A 、dx x f ba⎰)( B 、⎰badx x f )( C 、dx x f ba⎰)( D 、))((a b f -'ξ例25 设==⎰)(为连续函数,则x f x f a dt t f x xa)(,)(2(D)A 、xa 22 B 、a axln 2 C 、122-x xa D 、a a x ln 22例26设函数)(x f 在[]a a ,-上连续,则定积分D A 、0 B 、dx x f a⎰)(2C 、-dx x f a a⎰-)( D 、dx x f aa⎰-)(例27 设)则(A xdx r xdx q xdx p ,sin 21,cos ,sin 222202202⎰⎰⎰-===ππππA 、r q p ==B 、p q r =<C 、p q r <<D 、p q r >>例28 极限lim→x )1(sin 0=⎰⎰x xtdttdtA 、-1B 、0C 、1D 、2例29下列微分方程中,属于变量可分离的微分方程是( C ) A 、0)sin(=+ydy dx xy x B 、)ln(y x y +=' C 、y x y sin =' D 、21x y y e y x'+= 例30方程dy x xydx xdy dx x y 232)(+=+-是(C )A 、变量可分离的方程B 、齐次方程C 、一阶线性方程D 、都不对 例31微分方程2x y e -'=的通解为( C )A 、c ey x +=-2B 、c e y x +=2C 、c e y x +-=-22 D 、2x cey -=例32微分方程1=-'y y 的通解为( C )A 、xce y = B 、1+=xce y C 、1-=xce y D 、xe c y )1(+=二、填空题例1设53)1(2++=+x x x f ,则=)(x f分析:设331,122++=++=-==+x x x f u u u f u x u x )(,所以)(,则 例2 函数12)(1-=-x x f 的反函数=-)(1x f分析:设11log 11log 122121++=++=-=--)()(,所以)(,则x x f y x y x 例3函数x x xx f cos 11)(2+--=的定义域是 分析:要使函数有意义必须满足:x 0≠,,012≥-x 即11,0≤≤-≠x x 且 所以函数的定义域为:[)(]1,00,1 -例4若2lim 22-+-→x ax x x =3 , 则a=分析:当x 2→时,分母的极限为0,分式的极限存在,可知分子的极限一定为0,即0)(lim 22=+-→a x x x ,解得:a=-2例5设1,0(),0,0x e x f x x A A x x -⎧-<===⎨+≥⎩在点处连续,则常数 分析:根据函数在定点连续的定义,f (x )必须满足条件 f (-0)=f (+0)=f (0) 而f (-0)=0)1(lim 0=--→-xx e ,f (+0)=A x A x =++→)(lim 0所以A=0例6 设函数xx arc y 22cot 2++=则=dxdy分析:=dxdy2ln 22)2()()2cot (2x x x x arc +='+'+'例7设='=-)(则0,cos y e y x分析:由复合函数的求导法则得(cos )sin ()x x x y e e e ---'''==-=sin ()sin xx x x ee x e e ----'--=所以1sin sin )0(0=='e e y 例8 曲线方程321xy =在点(1,1)处的切线方程为 法线方程为分析:32)1(,32,3532-='-='=--y x y x y切线方程为:523),1(321=+--=-x y x y 即 法线方程为:1231231=--=-y x x y ),即( 例9 函数)(x y y =由方程022=+-xyexy 确定,则='y分析:将方程的两端对求导可得;0)(22='+-'+y x y e y xy y xy解得:)2()(xyxy e y x y e y y --=' 例10设函数则,ln )(3x x x f =='')1(f 分析:)1ln 3()(ln ln )()(233+='+'='x x x x x x x fxx x x x x x x x f 3)1ln 3(2)1ln 3()1ln 3()()(222∙++='+++'=''=x x x 5ln 6+所以 5)1(=''f例11函数22x y =的单调增加区间为 分析:函数22x y =的定义域为(-+∞∞,),22ln 22x y '=⨯由0y '>得0x >,所以函数22xy =的单调增加区间为 (0,∞+)例12 函数的最大值为)41(3223≤≤--=x x x y 最小值点为 分析:,,得驻点令100,66212==='-='x x y x x y由于80510411=-=-===-===x x x x yyyy,,,可知函数的最大值为)41(3223≤≤--=x x x y 80 ,最小值点为 x=-1 例13曲线x x x y 6323+-= 的拐点为 分析:x x x y 6323+-=的定义域为(-+∞∞,), 1066,6632==''-=''+-='x y x y x x y 得,令 当401011=''''=x y y x y x ,且时,,时, 所以拐点的坐标为(1,4)例14设2332x x y -= ,则y 的极大点为 极小点为 分析:2332x x y -=的定义域为(-+∞∞,),)1(6-='x x y 令0='y 得驻点x 1=0,x 2=1,而612-=''x y且120160,60x x y y ==''''=-<=>所以x 1=0为y 的极大点,x 2=1为y 的极小点。

相关文档
最新文档