量子力学课程人学考试主要内容
811《量子力学》 - 中国科学院
811《量子力学》中科院研究生院硕士研究生入学考试《量子力学》考试大纲本《量子力学》考试大纲适用于中国科学院研究生院物理学相关各专业(包括理论与实验类)硕士研究生的入学考试。
本科目考试的重点是要求熟练掌握波函数的物理解释,薛定谔方程的建立、基本性质和精确的以及一些重要的近似求解方法,理解这些解的物理意义,熟悉其实际的应用。
掌握量子力学中一些特殊的现象和问题的处理方法,包括力学量的算符表示、对易关系、不确定度关系、态和力学量的表象、电子的自旋、粒子的全同性、泡利原理、量子跃迁及光的发射与吸收的半经典处理方法等,并具有综合运用所学知识分析问题和解决问题的能力。
一.考试内容:(一)波函数和薛定谔方程波粒二象性,量子现象的实验证实。
波函数及其统计解释,薛定谔方程,连续性方程,波包的演化,薛定谔方程的定态解,态叠加原理。
(二)一维势场中的粒子一维势场中粒子能量本征态的一般性质,一维方势阱的束缚态,方势垒的穿透,方势阱中的反射、透射与共振,d--函数和d-势阱中的束缚态,一维简谐振子。
(三)力学量用算符表示坐标及坐标函数的平均值,动量算符及动量值的分布概率,算符的运算规则及其一般性质,厄米算符的本征值与本征函数,共同本征函数,不确定度关系,角动量算符。
连续本征函数的归一化,力学量的完全集。
力学量平均值随时间的演化,量子力学的守恒量。
(四)中心力场两体问题化为单体问题,球对称势和径向方程,自由粒子和球形方势阱,三维各向同性谐振子,氢原子及类氢离子。
(五)量子力学的矩阵表示与表象变换态和算符的矩阵表示,表象变换,狄拉克符号,谢振子的占有数表象。
(六)自旋电子自旋态与自旋算符,总角动量的本征态,碱金属原子光谱的双线结构与反常塞曼效应,电磁场中的薛定谔方程,自旋单态与三重态,光谱线的精细和超精细结构,自旋纠缠态。
(七)定态问题的近似方法定态非简并微扰轮,定态简并微扰轮,变分法。
(八)量子跃迁量子态随时间的演化,突发微扰与绝热微扰,周期微扰和有限时间内的常微扰,光的吸收与辐射的半经典理论。
《量子力学》课程考试大纲
《量子力学》课程考试大纲
一、课程的任务、性质和作用
本课程的性质:量子力学是物理学专业的一门重要专业必修课程,是物理相关专业本科生必修的四大理论课之一,是他们今后继续提高物理专业水平的一门专业基础理论课程。
同时,量子力学是近代物理学两大支柱之一,是描述微观世界运动规律的基础理论,已成为当今科学技术的基础,凡是涉及到微观粒子(比如分子、原子、电子等)的各门学科和新兴技术,都必须掌握量子力学。
本课程的任务是:(1)使学生了解微观世界的特殊性,了解经典物理不能正确描述微观粒子的运动规律,认识到创立微观世界的理论——量子力学的必然性。
(2)使学生初步掌握量子力学的基本概念、原理和基本方法,能求解量子力学的一些基本问题。
(3)使学生熟悉量子力学在现代科学技术中各种重大应用。
二、教材
周世勋.量子力学.高等教育出版社,1979年
三、试卷结构与题型
1.试题类型
填空题、选择题、证明题、计算题。
2.试卷难易比例
容易题约占40%,中等难度题约占40%,难题约占20%。
3.试卷内容比例
填空题约占15%,选择题约占15%,证明题约占20%,计算题约占50%。
四、考核的知识点及参考题型。
大学物理易考知识点量子力学
大学物理易考知识点量子力学量子力学是大学物理中的一门重要的学科,是研究微观世界的基本理论之一。
在大学物理考试中,量子力学通常是一个难点,但也是一个相对容易获得高分的知识点。
本文将介绍一些大学物理中易考的量子力学知识点,以帮助学生更好地备考。
一、波粒二象性在量子力学中,物质既可以表现出粒子性,又可以表现出波动性。
这一概念被称为波粒二象性。
在考试中,常见的问题是要求学生解释波粒二象性,并举例说明。
其中一个经典的实验是双缝干涉实验,可以用来说明波动性和粒子性的结合。
二、波函数与薛定谔方程波函数是描述量子力学系统的数学函数。
在考试中,常见的问题是要求学生解释波函数的物理意义,并且了解薛定谔方程的基本形式和意义。
学生需要掌握如何根据薛定谔方程计算波函数的变化,并能够利用波函数计算相关的物理量。
三、量子力学中的不确定性原理不确定性原理是量子力学的基本原理之一,它指出对于一些物理量,如位置和动量,无法同时进行精确测量。
在考试中,常见的问题是要求学生解释不确定性原理,并举例说明。
四、半经典近似在一些情况下,可以使用半经典近似来解决量子力学问题。
半经典近似是将量子理论与经典理论相结合的一种方法。
在考试中,常见的问题是要求学生解释半经典近似的基本原理,并能够应用半经典近似解决简单的物理问题。
五、量子力学中的算符和本征值问题在量子力学中,算符是描述物理量的数学对象,而本征值是算符作用于本征态时得到的物理量的取值。
在考试中,学生需要了解算符和本征值的概念,并能够解决与算符和本征值相关的问题。
六、量子力学中的隧穿效应隧穿效应是量子力学的一个重要现象,它指出在能量低于势垒高度的情况下,粒子可以穿越势垒。
在考试中,常见的问题是要求学生解释隧穿效应的物理原理,并举例说明。
七、量子力学中的简并简并是指在量子力学中,存在多个不同的量子态具有相同的能量。
在考试中,常见的问题是要求学生解释简并的概念,并能够解决与简并相关的问题。
总结:以上是一些大学物理易考的量子力学知识点,包括波粒二象性、波函数与薛定谔方程、量子力学中的不确定性原理、半经典近似、量子力学中的算符和本征值问题、量子力学中的隧穿效应以及量子力学中的简并。
《量子力学》课程研究生入学考试大纲
《量子力学》课程研究生入学考试大纲一、考试性质量子力学考试是长春理工大学物理学科为招收全国统一入学考试硕士研究生而设置的具有选拔性质的专业课考试科目,其目的是科学、公平、有效地测试考生掌握量子力学课程大学本科阶段专业基础知识、基本理论、基本方法的水平和分析问题、解决问题的能力,评价的标准是高等学校本科物理相关学科优秀毕业生所能达到的及格或及格以上水平,以利于所在专业择优选拔,保证招生质量。
二、考查目标量子力学是物理类和信息类的一门基础理论课,是学习相关专业课程的专业基础课。
要求考生系统掌握量子力学的基本理论、基本知识和基本方法,能够运用所学的基本理论、基本知识和基本方法分析和解决有关理论问题和实际问题。
三、考试内容1. 波函数和薛定谔方程波粒二象性,量子现象的实验证实,波函数及其统计解释,薛定谔方程,态叠加原理。
2.一维势场中的粒子一维势场中粒子能量本征态的一般性质,一维方势阱的束缚态,方势垒的穿透,δ--函数和δ-势阱中的束缚态,一维简谐振子。
3.力学量用算符表示坐标及坐标函数的平均值,动量算符及动量值的分布概率,算符的运算规则及其一般性质,厄米算符的本征值与本征函数,共同本征函数,不确定关系,角动量算符,力学量平均值随时间的演化,量子力学的守恒量。
4.中心力场两体问题化为单体问题,球对称势和径向方程,自由粒子和球形方势阱,三维各向同性谐振子,氢原子及类氢离子。
5.量子力学的矩阵表示与表象变换态和算符的矩阵表示,狄拉克符号,表象变换。
6.自旋电子自旋态与自旋算符,总角动量的本征态,碱金属原子光谱的双线结构与反常塞曼效应,电磁场中的薛定谔方程,自旋单态与三重态,光谱线的精细和超精细结构,自旋纠缠态。
7.定态问题的近似方法定态非简并微扰轮,定态简并微扰轮,变分法。
8.多体问题全同粒子系统四、考试要求:1.波函数和薛定谔方程1)了解波粒二象性假设的物理意义及其主要实验事实,2)熟练掌握波函数的标准化条件:有限性、连续性和单值性。
中科大物理化学621考试范围
中科大物理化学621考试范围第一章:量子力学基础本章主要介绍了量子力学的发展历程、量子力学的基本原理以及一些重要的量子力学概念。
考试重点内容包括:•波粒二象性:物质波动性和粒子性的统一•波函数及其物理意义:波函数的定义、归一化条件和本征值问题•不确定关系:海森堡不确定关系原理及其应用•薛定谔方程:含时和不含时的薛定谔方程、简谐振子和氢原子的波函数解析解第二章:量子力学的数学基础本章主要介绍了量子力学所使用的数学工具和形式化描述。
考试重点内容包括:•哈密顿算符:哈密顿算符的定义和性质•算符的本征值问题:算符的本征值和本征函数的定义和求解•算符的可观测量:算符的期望值、方差和一些重要的可观测量•算符的对易关系:对易和不对易算符的定义和性质•角动量代数:角动量算符的定义、性质和角动量算符的对易关系第三章:原子和分子量子化学本章主要介绍了原子和分子体系中的量子化学理论和计算方法。
考试重点内容包括:•氢原子的波函数和能谱:氢原子的薛定谔方程解析解和能级结构•多电子原子:Hartree-Fock自洽场理论和自旋-轨道耦合•分子轨道理论:LCAO-MO法和Hückel法•分子光谱学:基本的光谱仪器和分子光谱的分类第四章:固体量子化学本章主要介绍了固体材料中的量子化学理论和计算方法。
考试重点内容包括:•准粒子理论:电子和晶格的周期性势场和Bloch定理•能带理论:一维晶体的能量和波函数•能带结构计算:近自由电子模型和紧束缚模型•晶体的导电性:金属、半导体和绝缘体的能带结构和导电性质第五章:分子动力学和统计热力学本章主要介绍了分子之间相互作用的统计力学理论和分子动力学模拟方法。
考试重点内容包括:•统计力学基础:微观与宏观的联系、分布函数和统计系综•基本统计物理量:能量、熵和压强的统计定义和计算•分子动力学模拟:牛顿运动方程、分子间相互作用势和时间积分方法•平衡态统计热力学:熵的产生、热力学势和平衡态条件第六章:化学动力学和过渡态理论本章主要介绍了化学反应动力学和过渡态理论的基本原理和应用方法。
量子力学复习资料
量子力学复习资料一、基本概念1、波粒二象性这是量子力学的核心概念之一。
它表明微观粒子既具有粒子的特性,如位置和动量,又具有波动的特性,如波长和频率。
例如,电子在某些实验中表现出粒子的行为,如碰撞和散射;而在另一些实验中,如双缝干涉实验,又表现出波动的行为。
2、量子态量子态是描述微观粒子状态的方式。
与经典物理学中可以精确确定粒子的位置和动量不同,在量子力学中,粒子的状态通常用波函数来描述。
波函数的平方表示在某个位置找到粒子的概率密度。
3、不确定性原理由海森堡提出,指出对于一个微观粒子,不能同时精确地确定其位置和动量,或者能量和时间。
即:\(\Delta x \cdot \Delta p \geq \frac{\hbar}{2}\),\(\Delta E \cdot \Delta t \geq \frac{\hbar}{2}\),其中\(\hbar\)是约化普朗克常数。
二、数学工具1、薛定谔方程这是量子力学中的基本方程,类似于经典力学中的牛顿运动方程。
对于一个质量为\(m\)、势能为\(V(x)\)的粒子,其薛定谔方程为:\(i\hbar\frac{\partial \Psi(x,t)}{\partial t} =\frac{\hbar^2}{2m}\frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t)\)。
2、算符在量子力学中,物理量通常用算符来表示。
例如,位置算符\(\hat{x}\)、动量算符\(\hat{p}\)等。
算符作用在波函数上,得到相应物理量的可能取值。
三、常见量子力学系统1、一维无限深势阱粒子被限制在一个宽度为\(a\)的区域内,势能在区域内为零,在区域外为无穷大。
其能量本征值为\(E_n =\frac{n^2\pi^2\hbar^2}{2ma^2}\),对应的本征函数为\(\Psi_n(x) =\sqrt{\frac{2}{a}}\sin(\frac{n\pi x}{a})\)。
量子力学考试大纲
《电动力学》考试大纲(2007年7月第一次修订,2008年12月第二次修订)《电动力学》考试大纲是根据我校物理学专业人才培养方案和《电动力学》教学大纲制定的。
课程性质、目的和教学内容参考我院物理学专业的《电动力学教学大纲》。
考核内容一般分为四个层次:I -识记、II -理解(或领会)、III -简单应用、IV -综合应用。
考核类型:闭卷考试。
考题类型:试题一般在以下题型中选择4-6种:简答、填空、判断(加“错改正”)、选择(单项、多项)、证明、计算等,题量在20—35小题,考试时间2小时。
注意:黑体字标注的为重点内容。
第一章 电磁现象的普遍规律考核要求:(一)需要掌握的主要数学公式1.识记:(1)矢量代数公式(2)梯度、散度和旋度定义及在直角坐标和球坐标中的表达式(3)矢量场论公式(4)积分变换公式(5)复合函数“三度”公式(6)有关x x r '-= 的一些常用公式2.理解:算符▽的矢量性和微分性3.简单应用:利用算符▽的矢量性和微分性证明矢量场公式4.所需要数学知识不单独出题考试,融合在课程内容中(二)麦克斯韦方程组建立的主要实验定律和假定1.识记:电磁场理论建立的几个重要实验规律2.理解:库仑定律,高斯定理磁场的实验定律――毕萨定律,安培环路定理电磁感应定律――涡旋电场假说,位移电流假说(三)真空中的麦克斯韦方程组1.识记:真空中的麦克斯韦方程组(微分形式、积分形式)2.简单应用:每个方程的物理意义(物理本质)麦克斯韦方程组在电磁学中的重要意义――电磁场理论的基础,揭示电和磁的内在联系,是应用的理论依据能够运用真空中的麦克斯韦方程组做简单的证明(四)介质中的电磁性质方程1.识记:(1)束缚体电荷、束缚面电荷的表达式(2)磁化体电流、磁化面电流和极化电流的表达式(3)电位移矢量和磁场强度的定义(4)均匀线性介质中电位移矢量、磁场强度和电场、磁感应强度的关系2.理解:公式的适用范围。
3.简单应用:能够简单运用上述公式求束缚体电荷密度、面电荷密度以及磁化体电流、面电流(五)介质中的麦克斯韦方程组1.识记:介质中麦克斯韦方程组的微分形式和积分形式2.简单应用:会利用介质中的麦克斯韦方程组做简单的证明题(六)洛仑兹力公式1.识记:单个带电粒子和电荷分布情况的洛仑兹力公式(七)电磁场的边值关系1.识记:(1)电磁场的边值关系(2)其它几个边值关系2.简单应用:利用边值关系做简单证明和计算(八)电磁场的能量1.识记:(1)电磁场能量守恒(2)电磁场的能量密度和玻印停矢量2.理解:能量在场中的传输第二章静电场考核要求:(一)有关静电场的几个定理和定律1.理解:库仑定律、静电场的概念、场的叠加原理、高斯定理(二)电场的基本方程1.理解:静电场下的电场散度和旋度方程(三)静电势及其满足的方程1.识记:(1)电势的表达式(2)点电荷电势(3)连续分布电荷的电势(4)均匀场的电势(5)偶极子电势2.理解:(1)静电势的引入、电势差,电势参考点的选取(2)泊松方程的解等于其特解加上拉谱拉斯方程的通解3.简单应用:已知电势求电场(四)唯一性定理1.识记:唯一性定理的内容2.理解:唯一性定理的意义3.简单应用:会用唯一性定理求解简单问题(五)静电势的边值关系1.理解:静电势的边值关系(介质和导体两种情况)2.简单运用:在求解中能熟练使用边值关系(六)静电场的能量1.理解:(1)静电场的能量密度(2)静电场的总能量(七)分离变量法1.识记:拉普拉斯方程在球、柱坐标中的表达式及解的形式(球对称和轴对称的情况)2.综合应用:(1)能正确给出边界条件和边值关系,在球坐标系中利用比较系数法熟练给出拉普拉斯方程的解(2)个别情况下泊松方程的解(3)由电势求电场及导体表面上的电荷分布(八)电像法1.识记:(1)无穷大导体板情况时的镜像电荷大小和位置(2)导体球情况下的镜像电荷的大小和位置2.理解:何种情况适合使用电象法3.综合应用:熟练掌握无穷大导体板及其组合(直角组合、成一定角度组合)、无穷大导体板与导体球相结合情况下电像法的使用(九)电多极矩1.识记:展开式中第一项(在原点的点电荷激发的电势)和第二项(电偶极矩产生的电势)2.理解:电荷在外电场中的能量第三章 静磁场考核要求:(一)有关静磁场的几个定理和定律1.识记:毕奥-萨伐尔定理2.理解:磁场的概念,毕奥-萨伐尔定理,安培环路定理,静磁场的通量(二)磁场的基本方程1.理解:静磁场下的电场散度和旋度方程(三)矢势及其满足的方程1.识记:(1)矢势泊松方程(2)矢势解的一般形式2.理解:矢势的引入、意义(四)磁标势1.识记: (1)引入条件:0=⋅⎰l d H L (无自由电流分布的单连通域) (2)束缚磁荷密度M m ⋅∇-=0μρ2.理解:ϕϕ与m (静电势)的比较(五)磁多极矩1.识记:(1)磁偶极矩的场和磁标势(2)小区域内电流分布在外磁场中的能量2.理解:磁多极展开(六)A-B 效应和超导体1.识记:超导体的基本电磁现象及电磁性质方程――零电阻效应、完全抗磁性,这两个效应的内容3.理解:(1)超导体作为完全抗磁体(2)超导环内的磁通量子化(3)非局域理论,第一类和第二类超导体第四章 电磁波的传播考核要求:(一)真空中电磁波的波动方程,介质的色散1.理解:(1)会导出真空中电磁波的波动方程,会推导出时谐波的亥姆霍兹方程(2)介质的色散(二)时谐电磁波(定态波、单色波)及其满足的方程1.理解:(1)时谐电磁波的定义(2)时谐电磁波的一般形式2.简单应用:会导出亥姆霍兹方程(对于导体情况 ωσεεi+=',而介质情况εε=')(三)平面电磁波1.理解:(1)平面电磁波的一般形式(2)平面电磁波的特点(3)平面电磁波的能量密度和能流密度 2.简单应用:会推导E ⊥B ,即,0=⋅=⋅=⋅B E k B k E (B E k ,,)构成右手关系,E 与B 同相(四)平面电磁波在介质界面上的反射和折射1.理解:(1)利用边值关系推导反射和折射、振幅关系、菲涅尔公式(2)全反射(五)平面电磁波在导体内的传播1.识记:(1)导体内自由电荷的分布(2)良导体的条件(3)穿透深度2.理解: (1)导体内,αβ i k +=波沿β 传播,沿α 衰减(2)趋肤效应(3)导体表面上的反射(六)谐振腔(1)理想导体的边界条件(2)谐振腔的本征频率2.理解:会推导谐振腔内的电磁波形式,电磁波波模(七)波导管1.识记:波导管的截止频率2.理解:(1)高频电磁能量传输(2)会推导波导中的电磁波形式,电磁波波模第五 电磁波的辐射考核要求:(一)电磁场的矢势和标势1.识记:(1)势函数的引入:tA E AB ∂∂--∇=⨯∇= ϕ, (2)规范变换: ψ∇+='A A ,t ∂ψ∂-='ϕϕ (3)库伦规范0A ∇⋅=,它使规范变换的ϕ满足20ϕ∇=(4)洛伦兹规范210A c t ϕ∂∇⋅+=∂,它使规范变换的ϕ满足222210c tϕϕ∂∇-=∂ 2.简单应用:推导达朗贝尔方程(二)推迟势1.识记:推迟势的形式(表示式)2.理解:推迟势的重要意义(物理意义)(三)电偶极辐射1.识记:(1)矢势展开的条件(小区域的电流)(2)近区、感应区和远区(3)电流是一定频率的交流电时矢势的形式2.理解:(1)矢势的展开及展开式中各项的意义(重点第一项偶极辐射)(2)会计算辐射能流及总辐射功率(四)电磁场的动量(1)电磁场的动量密度和能流密度表达式(2)辐射压力公式2.理解:(1)动量守恒(2)动量密度、动量流密度第六章 狭义相对论考核要求:(一)历史背景和实验基础1.理解:(1)经典时空理论主要特征:绝对时间和空间,时空独立性,伽利略变换(2)对麦克斯韦方程可变性的几种观点――以太(3)麦克尔逊-莫雷实验:目的,实验中的假定,实验装置,结果及意义(二)狭义相对性基本原理1.识记:(1)狭义相对性的两个基本原理及其基本内容(2)洛伦兹变换形式2.理解:间隔不变性2'2S S(三)时空理论1.识记:(1)运动尺度收缩公式(2)运动时钟延缓公式(3)速度变换公式3.理解:(1)光锥(2)同时的相对性(3)长度收缩的相对性(4)时间延缓的相对性(5)运动尺度收缩和运动时钟延缓是时空属性4.简单应用:(1)应用运动尺度收缩公式和运动时钟延缓公式做简单计算(2)应用速度变换公式做简单计算5.综合应用:运动尺度收缩公式、运动时钟延缓公式和速度变换公式等相结合做综合运算(四)相对论的四维形式1.识记:(1)洛伦兹标量(例如固有时)(2)矢量及其变换形式、变换矩阵(3)四维二阶张量的变换形式对于闵可夫斯基四维时空,明确标量、矢量、张量的定义,并能够举出2-3个标量、矢量、张量2.理解:(1)横向多普勒效应(2)物理规律的协变性(五)电动力学的相对论不变性1.识记:(1)电流密度四维矢量形式,电荷守恒定律的四维协变形式(2)四维电磁势矢量形式,达朗贝波动方程的四维协变形式(3)电磁场的四维张量形式,麦克斯韦方程组的四维协变形式2.简单应用:方程协变性的证明(六)相对论力学1.识记:(1)四维动量(动量、能量)(2)运动质量2201c v m m -=及物体的动能(3)物体的能量2mc W =,动量200()T W W m m c =-=-(4)能量动量和质量之间的关系式:40222c m c P W +=(对于光子,00,,,m W pc p k W ω====)(5)运动定律dp F dt =(在相对论中a m F ≠),dtdW v F =⋅ (6)相对论协变的力密度公式。
量子力学主要知识点复习资料
大学量子力学主要知识点复习资料,填空及问答部分1能量量子化辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。
这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍εεεεεn ,,4,3,2,⋅⋅⋅ 对频率为ν 的谐振子, 最小能量ε为: νh =ε2.波粒二象性波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。
波粒二象性是量子力学中的一个重要概念。
在经典力学中,研究对象总是被明确区分为两类:波和粒子。
前者的典型例子是光,后者则组成了我们常说的“物质”。
1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。
1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。
根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。
德布罗意公式h νmc E ==2λhm p ==v3.波函数及其物理意义在量子力学中,引入一个物理量:波函数 ,来描述粒子所具有的波粒二象性。
波函数满足薛定格波动方程0),()](2[),(22=-∇+∂∂t r r V mt r t i ψψ 粒子的波动性可以用波函数来表示,其中,振幅表示波动在空间一点(x ,y,z )上的强弱。
所以,应该表示 粒子出现在点(x,y,z )附件的概率大小的一个量。
从这个意义出发,可将粒子的波函数称为概率波。
自由粒子的波函数)](exp[Et r p i A k -⋅=ψ=ψ波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义常数因子不确定性设C 是一个常数,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。
相位不定性如果常数 ,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。
表示粒子出现在点(x,y,z )附近的概率。
量子力学所有简答题复习资料
简答题1.什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的?答:光照射到某些物质上,引起物质的电性质发生变化,也就是光能量转换成电能。
这类光致电变的现象被人们统称为光电效应。
或光照射到金属上,引起物质的电性质发生变化。
这类光变致电的现象被人们统称为光电效应。
光电效应规律如下:1.每一种金属在产生光电效应时都存在一极限频率(或称截止频率),即照射光的频率不能低于某一临界值。
当入射光的频率低于极限频率时,无论多强的光都无法使电子逸出。
2.光电效应中产生的光电子的速度与光的频率有关,而与光强无关。
3.光电效应的瞬时性。
实验发现,只要光的频率高于金属的极限频率,光的亮度无论强弱,光子的产生都几乎是瞬时的。
4.入射光的强度只影响光电流的强弱,即只影响在单位时间内由单位面积是逸出的光电子数目。
爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完成的。
(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。
(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。
逸出电子的动能、光子能量和逸出功之间的关系可以表示成:221mv A h +=ν这就是爱因斯坦光电效应方程。
其中,h 是普朗克常数;f 是入射光子的频率。
2.写出德布罗意假设和德布罗意公式。
德布罗意假设:实物粒子具有波粒二象性。
德布罗意公式:νωh E == λhk P ==3.简述波函数的统计解释,为什么说波函数可以完全描述微观体系的状态。
几率波满足的条件。
波函数在空间中某一点的强度和在该点找到粒子的几率成正比。
因为它能根据现在的状态预知未来的状态。
波函数满足归一化条件。
4.以微观粒子的双缝干涉实验为例,说明态的叠加原理。
《量子力学》考试知识点(精心整理)
《量子力学》考试知识点第一章:绪论―经典物理学的困难考核知识点:(一)、经典物理学困难的实例(二)、微观粒子波-粒二象性考核要求:(一)、经典物理困难的实例1.识记:紫外灾难、能量子、光电效应、康普顿效应。
2.领会:微观粒子的波-粒二象性、德布罗意波。
第二章:波函数和薛定谔方程考核知识点:(一)、波函数及波函数的统计解释(二)、含时薛定谔方程(三)、不含时薛定谔方程考核要求:(一)、波函数及波函数的统计解释1.识记:波函数、波函数的自然条件、自由粒子平面波2.领会:微观粒子状态的描述、Born几率解释、几率波、态叠加原理(二)、含时薛定谔方程1.领会:薛定谔方程的建立、几率流密度,粒子数守恒定理2.简明应用:量子力学的初值问题(三)、不含时薛定谔方程1. 领会:定态、定态性质2. 简明应用:定态薛定谔方程第三章:一维定态问题一、考核知识点:(一)、一维定态的一般性质(二)、实例二、考核要求:1.领会:一维定态问题的一般性质、束缚态、波函数的连续性条件、反射系数、透射系数、完全透射、势垒贯穿、共振2.简明应用:定态薛定谔方程的求解、无限深方势阱、线性谐振子第四章量子力学中的力学量一、考核知识点:(一)、表示力学量算符的性质(二)、厄密算符的本征值和本征函数(三)、连续谱本征函数“归一化”(四)、算符的共同本征函数(五)、力学量的平均值随时间的变化二、考核要求:(一)、表示力学量算符的性质1.识记:算符、力学量算符、对易关系2.领会:算符的运算规则、算符的厄密共厄、厄密算符、厄密算符的性质、基本力学量算符的对易关系(二)、厄密算符的本征值和本征函数1.识记:本征方程、本征值、本征函数、正交归一完备性2.领会:厄密算符的本征值和本征函数性质、坐标算符和动量算符的本征值问题、力学量可取值及测量几率、几率振幅。
(三)、连续谱本征函数“归一化”1.领会:连续谱的归一化、箱归一化、本征函数的封闭性关系(四)、力学量的平均值随时间的变化1.识记:好量子数、能量-时间测不准关系2.简明应用:力学量平均值随时间变化第五章态和力学量的表象一、考核知识点:(一)、表象变换,幺正变换(二)、平均值,本征方程和Schrodinger equation的矩阵形式(三)、量子态的不同描述二、考核要求:(一)、表象变换,幺正变换1.领会:幺正变换及其性质2.简明应用:表象变换(二)、平均值,本征方程和Schrodinger equation的矩阵形式1.简明应用:平均值、本征方程和Schrodinger equation的矩阵形式2.综合应用:利用算符矩阵表示求本征值和本征函数(三)、量子态的不同描述第六章:微扰理论一、考核知识点:(一)、定态微扰论(二)、变分法(三)、量子跃迁二、考核要求:(一)、定态微扰论1.识记:微扰2.领会:微扰论的思想3.简明应用:简并态能级的一级,二级修正及零级近似波函数4.综合应用:非简并定态能级的一级,二级修正、波函数的一级修正。
河北大学研究生入学考试量子力学题库
河北⼤学研究⽣⼊学考试量⼦⼒学题库考核科⽬量⼦⼒学课程类别必修课考核类型考试考核⽅式闭卷卷别 A⼀、概念题:(共20分,每⼩题4分)1、简述波函数的统计解释;2、对“轨道”和“电⼦云”的概念,量⼦⼒学的解释是什么?3、⼒学量G在⾃⾝表象中的矩阵表⽰有何特点? 4、简述能量的测不准关系;5、电⼦在位置和⾃旋z S ?表象下,波函数=ψ),,(),,(21z y x z y x ψψ如何归⼀化?解释各项的⼏率意义。
⼆(20分)设⼀粒⼦在⼀维势场c bx ax x U ++=2)(中运动(0>a )。
求其定态能级和波函数。
三(20分)设某时刻,粒⼦处在状态)cos (sin )(212kx kx B x +=ψ,求此时粒⼦的平均动量和平均动能。
四(20分)某体系存在⼀个三度简并能级,即E E E E ===)0(3)0(2)0(1。
在不含时微扰H'?作⽤下,总哈密顿算符H在)0(?H 表象下为=**21100E E E H βαβα。
求受微扰后的能量⾄⼀级。
五(20分)对电⼦,求在x S ?表象下的xS ?、y S ?、z S ?的矩阵表⽰。
考核科⽬量⼦⼒学课程类别必修课考核类型考试考核⽅式闭卷卷别 B⼀、概念题:(共20分,每⼩题4分)1、何为束缚态?2、当体系处于归⼀化波函数ψ(,) r t 所描述的状态时,简述在ψ(,)r t 状态中测量⼒学量F 的可能值及其⼏率的⽅法。
3、设粒⼦在位置表象中处于态),(t r ψ,采⽤Dirac 符号时,若将ψ(,) r t 改写为ψ(,)r t 有何不妥?采⽤Dirac 符号时,位置表象中的波函数应如何表⽰? 4、简述定态微扰理论。
5、Stern —Gerlach 实验证实了什么?⼆(20分)设粒⼦在三维势场()ax a z y x U <>??∞=x 0,,中运动,求粒⼦定态能量和波函数。
三(20分)⼀维运动的粒⼦在态()00<>=-x x Axe x x 当当λψ中运动,其中0>λ。
量子力学考试知识点
《量子力学》考试知识点第一章:绪论―经典物理学的困难考核知识点:(一)、经典物理学困难的实例(二)、微观粒子波-粒二象性考核要求:(一)、经典物理困难的实例1.识记:紫外灾难、能量子、光电效应、康普顿效应。
2.领会:微观粒子的波-粒二象性、德布罗意波。
第二章:波函数和薛定谔方程考核知识点:(一)、波函数及波函数的统计解释(二)、含时薛定谔方程(三)、不含时薛定谔方程考核要求:(一)、波函数及波函数的统计解释1.识记:波函数、波函数的自然条件、自由粒子平面波2.领会:微观粒子状态的描述、Born几率解释、几率波、态叠加原理(二)、含时薛定谔方程1.领会:薛定谔方程的建立、几率流密度,粒子数守恒定理2.简明应用:量子力学的初值问题(三)、不含时薛定谔方程1. 领会:定态、定态性质2.简明应用:定态薛定谔方程3.fdfgfdgdfg第三章:一维定态问题一、考核知识点:(一)、一维定态的一般性质(二)、实例二、考核要求:1.领会:一维定态问题的一般性质、束缚态、波函数的连续性条件、反射系数、透射系数、完全透射、势垒贯穿、共振2.简明应用:定态薛定谔方程的求解、无限深方势阱、线性谐振子第四章量子力学中的力学量一、考核知识点:(一)、表示力学量算符的性质(二)、厄密算符的本征值和本征函数(三)、连续谱本征函数“归一化”(四)、算符的共同本征函数(五)、力学量的平均值随时间的变化二、考核要求:(一)、表示力学量算符的性质1.识记:算符、力学量算符、对易关系2.领会:算符的运算规则、算符的厄密共厄、厄密算符、厄密算符的性质、基本力学量算符的对易关系(二)、厄密算符的本征值和本征函数1.识记:本征方程、本征值、本征函数、正交归一完备性2.领会:厄密算符的本征值和本征函数性质、坐标算符和动量算符的本征值问题、力学量可取值及测量几率、几率振幅。
(三)、连续谱本征函数“归一化”1.领会:连续谱的归一化、箱归一化、本征函数的封闭性关系(四)、力学量的平均值随时间的变化1.识记:好量子数、能量-时间测不准关系2.简明应用:力学量平均值随时间变化第五章态和力学量的表象一、考核知识点:(一)、表象变换,幺正变换(二)、平均值,本征方程和Schrodinger equation的矩阵形式(三)、量子态的不同描述二、考核要求:(一)、表象变换,幺正变换1.领会:幺正变换及其性质2.简明应用:表象变换(二)、平均值,本征方程和Schrodinger equation的矩阵形式1.简明应用:平均值、本征方程和Schrodinger equation的矩阵形式2.综合应用:利用算符矩阵表示求本征值和本征函数(三)、量子态的不同描述第六章:微扰理论一、考核知识点:(一)、定态微扰论(二)、变分法(三)、量子跃迁二、考核要求:(一)、定态微扰论1.识记:微扰2.领会:微扰论的思想3.简明应用:简并态能级的一级,二级修正及零级近似波函数4.综合应用:非简并定态能级的一级,二级修正、波函数的一级修正。
《量子力学》课程考试大纲
陇东学院物理学专业课程考试大纲《量子力学》课程考试大纲课程编号课程编号:0611315课程性质课程性质:专业必修课适用专业适用专业::物理学专业考试对象考试对象:物理学专业本科生一、课程课程课程考核目的考核目的考核目的 本课程的考核目的是:了解学生通过本课程的学习,掌握本学科基本理论、基础知识的状况,分析问题、解决问题的能力,以及科学的思维方法运用能力,促进学生复习、巩固所学的知识。
二、课程课程考试方式及时间考试方式及时间考试方式及时间本课程的考试均以闭卷的形式进行,期终的考核成绩以期末成绩为主(70%),期中成绩(20%)、平时和作业情况(10%)也作期终考核成绩的一部分,考核成绩为百分制。
本课程不仅为后续课的学习打基础,而且对学生毕业后的工作以及进一步学习将产生一定的影响。
考试时间一般规定为120分钟。
三、教学教学时数时数时数本课程总学时为54(18周,周课时3)。
四、教材与参考书目教材与参考书目教材教材 1.《量子力学教程》周世勋著 高等教育出版社 1979年参考书目参考书目 2.《量子力学》卷Ⅰ曾谨言著 科学出版社 2000年3.《量子力学导论》曾谨言著 北京大学出版社 1998年4.《量子力学教程》曾谨言著 科学出版社 2003年5.《高等量子力学》喀兴林著 高等教育出版社 1999年6.《量子力学习题精选与剖析》上下册 钱伯初、曾谨言编 科学出版社 1999年7.《量子力学》钱伯初著 高等教育出版社 2006年五、考核内容与考核要求考核内容与考核要求 本考试大纲根据《量子力学》课程标准的教学要求,按照量子力学的理论知识体系,提出考核的内容和考核要求。
考核要求分为三个层次:了解、理解和掌握。
第一章第一章 绪论绪论绪论考核内容考核内容1.经典物理学的困难。
2.光的波粒二象性的实验事实。
3.微观粒子波粒二象性的假设。
4.微观粒子波粒二象性的实验验证。
考核要求考核要求1.了解经典物理学的困难,光的波粒二象性的实验事实及解释。
第一章 量子力学基础知识 (1)
第一章量子力学基础知识1.填空题(1) Ψ是描述的波函数(北京大学1993年考研试题)(2) 实物粒子波动性假设由首先提出来的,实物粒子的波是波。
(3) 德布罗意假设首先由戴维逊和革末用实验证实的。
(4) 在一维无限深势阱中,粒子的活动范围宽度增大,能引起体系的能量。
(5)Planck提出,标志着量子理论的诞生。
(中山大学1998年考研试题)(6) 一维无限深势阱中的粒子,已知处于基态,在处概率密度最大。
(7) 边长为l的立方势箱中粒子的零点能为。
(北京大学1993年考研试题)(8) 边长为l的一维势箱中粒子的零点能为。
(9) 有一质量为m的粒子在一维势箱中运动,其Schrödinger方程为。
(中山大学1998年考研试题)(10) 一维势箱的长度增加,其粒子量子效应(填增强、不变或减弱)。
2. 选择题(1)粒子处于定态意味着:( )A、粒子处于静止状态B、粒子处于势能为0的状态C、粒子处于概率最大的状态D、粒子的力学量平均值及概率密度分布都与时间无关的状态(2)波恩对波函数提出统计解释:在某一时刻t在空间某处发现粒子的概率与下面哪种形式的波函数成正比。
( )A、|Ψ|B、|Ψ |2C、|Ψ |1..5D、xy| Ψ|(3)指出下列条件,哪一个不是态函数的标准化条件?( )A、单值B、正交归一C、有限D、连续(4)微观粒子的不确定关系式,如下哪种表述正确?( )A、坐标和能量无确定值B、坐标和能量不可能同时有确定值C、若坐标准确量很小,则动量有确定值D、动量值越不正确,坐标值也越不正确(5)波长为662.6 pm 的光子和自由电子,光子的能量与自由电子的动能比为何值?( )A 、546 : 1B 、273 : 1C 、1 : 35D 、106 : 4515(6)一电子被1000 V 的电场所加速,打在靶上,若电子的动能可转化为光能,则相应的光波应落在什么区域? ( )A 、X 光区(约10-10 m)B 、紫外区(约10-7 m)C 、可见光区(约10-6 m)D 、红外区(约10-5 m)(7)已知一维谐振子的势能表达式V = kx 2/2,则该体系的定态薛定谔方程应当为: ( )A 、ψψE kx dx d m =⎥⎦⎤⎢⎣⎡+-222212 B 、ψψE kx dx d m =⎥⎦⎤⎢⎣⎡--222212 C 、ψψE kx m =⎥⎦⎤⎢⎣⎡+∇-22212 D 、 ψψE kx m =⎥⎦⎤⎢⎣⎡-∇22212 (8)由一维势箱的薛定谔方程求解结果所得的量子数n ,下面论述正确的是: ( )A 、可取任一整数B 、与势箱宽度一起决定节点数C 、能量与n 2成正比D 、对应于可能的简并态(9)立方势箱中在2246m l h E ≤的能量范围内,能级数和状态数为(中山大学1993年考研试题): ( )A 、5,20B 、6,6C 、5, 11D 、6, 17(10)质量为2×10-31g 的粒子运动速度为3×106 m/s ,速度不确定度为10%,则其位置的不确定度至少为: ( )A 、1.11 nmB 、11.1 μmC 、111 pmD 、111 Å(11)金属钾的临阈频率为5.46×1015 s -1,把它当作光电池的阴极,下列哪种频率的光能使它产生光电效应? ( )A 、5.0×1015 s -1B 、4.0×1015 s -1C 、5.64×1014 s -1D 、2.0×1016 s -1(12)运动速度为2.00×105m/s 的电子波长为 ( )A 、3.64 pmB 、36.4 nmC 、3.64 nmD 、34.6 pm(13)一维势箱中粒子的运动波函数φ5的节点数为 ( )A 、4B 、5C 、6D 、7(14)长度为a 的一维势箱中粒子(质量为m )从第3个能级跃迁到第4个能级所产生的吸收光谱频率为: ( )A 、28ml hB 、285ml hC 、287ml hD 、2812ml h (15)下列四种波中既不是机械波也不是电磁波的是: ( )A 、声波B 、光波C 、水波D 、实物粒子波(16)比较下列能量哪个最大? ( )A 、1 cm -1B 、1 eVC 、1 kJ/molD 、1 a.u.(17)已知电子位置的不确定度为5×10-7m ,则电子运动速度的不确定度至少为: ( )A 、1.45×103 m s -1B 、1.45×104 m s -1C 、3.65×104 m s -1D 、3.65×105 m s -1(18)在长L=0.75 nm 的一维势箱中运动的H 原子,其de Broglie 波长的最大值是: ···( )A 、0.75 nmB 、1 nmC 、1.5 nmD 、2.0 nm3. 判断题(1)黑体辐射实验能用于经典物理学来解释。
大学物理易考知识点量子力学的基本概念和理论
大学物理易考知识点量子力学的基本概念和理论量子力学(Quantum mechanics)是研究微观领域中物质和辐射的行为的物理学理论,也是现代物理学的基石之一。
量子力学的基本概念和理论涵盖了很多方面,本文将介绍大学物理易考的量子力学知识点,帮助读者更好地理解相关内容。
一、波粒二象性(Wave-particle duality)波粒二象性是指微观粒子既具有粒子性质,也具有波动性质。
在量子力学中,粒子的行为既可以用粒子模型解释,也可以用波动模型解释。
这一概念首先由德布罗意(Louis de Broglie)提出,并在实验中得到了验证。
1. 德布罗意假设德布罗意提出,与粒子相对应的波动特性可以用波长(也称为德布罗意波长)来描述,其公式为λ = h/p,其中λ 是波长,h 是普朗克常量,p 是粒子的动量。
这一假设为量子力学奠定了基础。
2. 实验验证实验中,例如双缝干涉实验和扫描隧道显微镜实验,通过观察到物质波的干涉和衍射现象,验证了波粒二象性的存在。
这些实验结果对量子力学的发展产生了深远的影响。
二、波函数和薛定谔方程(Wave function and Schrödinger equation)波函数是量子力学中用来描述粒子状态的数学函数。
在波函数的框架下,薛定谔方程描述了波函数随时间的演化规律,是量子力学的基本方程之一。
1. 波函数的概念波函数用Ψ 表示,其表示了粒子在空间中的分布。
波函数的模长的平方|Ψ|^2 表示了粒子在某个位置被观测到的概率密度。
2. 薛定谔方程薛定谔方程是描述量子力学体系演化的基本方程,可以写作HΨ = EΨ,其中 H 是哈密顿算符,Ψ 是波函数,E 是体系的能量。
薛定谔方程将量子力学问题转化为一个本征值问题,解这个方程可以得到体系的能级和波函数。
三、量子力学的观测和不确定性原理(Observation and uncertainty principle)量子力学中的观测和不确定性原理是描述微观领域的探测和测量所面临的限制。
619量子力学
2023年年全国硕士研究生统一入学考试
量子力学科目考试大纲
一、考查目标
1、了解微观世界矛盾的异常性和微观粒子的运动逻辑,初步控制量子力学的原理和基本主意,并能自立分析和解决有关的问题。
2、了解量子力学在物理学中的地位、作用和在近代物理中的广泛应用。
二、考试形式和试卷结构
1、试卷满分及考试时光
试卷满分:150分;考试时光:180分钟。
2、答题方式
考试形式:闭卷;答题方式:笔试。
3、试卷题型结构
挑选题30分、填空题30分、计算题(含证实题):90分
三、考查范围
1、波函数与薛定谔方程
波函数的统计解释、态叠加原理、薛定谔方程、粒子流密度和粒子数守恒定律、定态薛定谔方程、一维无限深势阱、线性谐振子
2、量子力学中的力学量
力学量的算符表示、动量算符和角动量算符、电子在库仑场中的运动、氢原子、厄密算符本征函数的正交性、算符与力学量的关系、算符的对易关系、两力学量同时有决定值的条件、测不准关系、力学量平均值随时光的变化
3、态和力学量的表象
态的表象、算符的矩阵表示、量子力学公式的矩阵表示、么正变换、狄拉克符号、线性谐振子与占有数表象
4、微扰理论
非简并定态微扰理论、简并情况下的微扰理论、氢原子的一级斯塔克效应、与时光有关的微扰理论、跃迁几率、光的吸收和发射、挑选定则
5、自旋与全同粒子
电子自旋、电子的自旋算符和自旋函数、容易塞曼效应、两个角动量的耦合、
第1 页/共2 页
光谱的精细结构、全同粒子的特性、全同粒子体系的波函数、泡利原理、两个电子的自旋函数。
参考书目:
1.量子力学量子力学教程(第二版)周世勋高等教诲出版社。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
843量子力学考试大纲
适用于物理学所有学科
Ⅰ考查目标
理论物理、粒子物理与原子核物理、凝聚态物理等专业研究生入学考试《量子力学》课程,重点考查考生掌握量子力学基本概念、基本原理以及运用量子力学基本理论解决具体相关物理问题的能力,为进一步学习其它专业课程或从事科研和教学工作奠定坚实的基础。
Ⅱ考试形式和试卷结构
一、试卷满分及考试时间
本试卷满分为150分,考试时间为180分钟。
二、答题方式
答题方式为闭卷、笔试。
三、试卷内容结构
波粒二象性、波函数和薛定谔方程 45分
量子力学的力学量及其表象 30分
微扰理论、自旋与全同粒子、粒子在电磁场中的运动 75分
四、试卷题型结构
简答题 2小题,每小题10分,共20分
证明题 2小题,每小题15分,共30分
计算题 4小题,每小题25分,共100分
Ⅲ考查范围
一、波粒二象性、波函数和薛定谔方程
考查主要内容:
(1)光的波粒二象性的实验事实及其解释。
(2)原子结构的玻尔理论和索末菲的量子化条件。
(3)德布罗意关于微观粒子的波粒二象性的假设。
(4)德布罗意波的实验验证。
(5)波函数的统计假设和量子态的表示形式。
(6)态叠加原理的内容及其物理意义。
(7)薛定谔方程和定态薛定谔方程的一般形式。
(8)粒子流密度的概念及粒子数守恒的物理内容。
(9)一维薛定谔方程求解的基本步骤和方法。
(10)几个典型的一维定态问题:
a.一维无限深势阱;
b.一维谐振子;
c.一维方势垒;
d.一维有限方势阱;
e. 势。
二、量子力学的力学量及其表象
考查主要内容:
(1)动量算符的表示形式及其与坐标算符间的对易关系,动量算符本征函数的归一化。
(2)角动量算符的表示形式及其有关的对易关系,角动量算符2ˆL和z Lˆ的共同本征函数及所对应的本征值。
(3)电子在固定的正点电荷库仑场中运动的定态薛定谔方程及其求解的基本步骤;定态波函数的表示形式;束缚态的能级及其简并度;并由此讨论氢原子的能级、光谱线的规律、电子在核外的概率分布和电离能等。
(4)量子力学中的力学量与厄米算符相对应;厄米算符的本征函数组成正交完备集。
(5)力学量可能值、平均值的计算方法,两个力学量同时具有确定值的条件。
(6)不确定关系及其应用,守恒量的判断方法。
(7)矩阵的运算。
(8)态的矩阵表示。
(9)算符的矩阵表示。
(10)量子力学公式的矩阵表示。
(11)不同表象间的变换。
三、微扰理论、自旋与全同粒子、粒子在电磁场中的运动
考查主要内容:
(1)非简并定态微扰理论。
(2)简并情况下的定态微扰理论。
(3)电子自旋的实验事实。
(4)电子自旋算符和自旋波函数。
(5)全同粒子的不可区分性原理,玻色子和费米子概念。
(6)全同粒子体系的波函数和泡利不相容原理。
(7)两自旋体系的波函数。
(8)电磁场中荷电粒子的运动,两类动量。
(9)正常塞曼效应。
(10)定域电子(考虑自旋)在均匀磁场中的运动。