2011年中考数学试题分类 梯形
2011年中考数学试题及答案
2011年九年级教学质量检测数 学 试 题注意事项:本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;共120分.考试时间为120分钟.第Ⅰ卷 选择题 (共36分)一、选择题 (本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来填入题后的括号内,每小题选对得3分.) 1.下列根式中与18是同类二次根式的是( ). A .321 B .27 C .6 D .32.抛物线y =2x 2+4x -3的顶点坐标是( ).A .(1,-5)B .(-1,-5)C .(-1,-4)D .(-2,-7) 3.国家游泳中心——“水立方”是2008年北京奥运会标志性建筑之一,其工程占地面积为62828平方米,将62828用科学记数法表示是(保留三个有效数字)( ). A .62.8×103 B .6.28×104 C .6.2828×104 D .0.62828×105 4.数据0,-1,6,1,x 的众数为-1,则这组数据的方差是( ). A .2B .534C .2D .5265.如图,⊙O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段OM 的长的取值范围是( ). A .3≤OM ≤5 B .4≤OM ≤5 C .3<OM <5 D .4<OM <56.小明随机地在如图所示的正三角形及其内部区域投针,则针扎 到其内切圆(阴影)区域的概率为( ). A .21 B .π63C .π93 D .π33第6题图第11题图7.如图,□ABCD 中,对角线AC 和BD 相交于点O , 如果AC =12,BD =10,AB =m ,那么m 的取值范围是( ).A .1<m <11B .2<m <22C .10<m <12D .5<m <68.如图,P 1、P 2、P 3是双曲线上的三点.过这三点分别 作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O , 设它们的面积分别是S 1、S 2、S 3,则( ). A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 1<S 3<S 2 D .S 1=S 2=S 39.直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( ).A .1x >-B .1x <-C .2x <-D .无法确定10.如图,将A B C △沿D E 折叠,使点A 与B C边的中点F 重合,下列结论中①EF AB ∥且12E F A B =;②BAF C AF ∠=∠;③DE AF 21S ADFE∙=四边形;④2B D F F E C B A C ∠+∠=∠, 一定正确的个数是( ). A .1B .2C .3D .411.若关于x 的一元二次方程ax 2+2x -5=0的两根中有且仅有一根在0和1 之间(不含0和1),则a 的取值范围是( ). A .a <3 B .a >3 C .a <-3 D .a >-312.如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A = 100°,∠C = 30°,则∠DFE 的度数是 ( ).A .55°B .60°C .65°D .70°DABCO第7题图xb +x第9题图第8题图第12题图第16题图第Ⅱ卷 非选择题(共84分)二、填空题(本题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.当m = 时,关于x 的分式方程213x m x +=--无解.14.已知关于x 的不等式组⎩⎨⎧--≥-0125a >x x 无解,则a 的取值范围是 .15.已知关于的一元二次方程012)1(2=-++x x k 有两个不相同的实数根,则k 的取值范围是 .16.如图,梯形ABCD 中,BC AD //,1===AD CD AB ,︒=∠60B直线MN 为梯形ABCD 的对称轴,P 为MN 上一点,那么PD PC +的最小值是 .17.在实数的原有运算法则中我们补充定义新运算“⊕”如下:当a ≥b 时,a ⊕b =b 2;当a <b 时,a ⊕b =a .则当x =2时,(1⊕x )-(3⊕x )的值为 . 三、解答题(本题共7小题,共69分.解答应写出文字说明、证明过程或推演步骤.)18.(本题满分8分)据《生活报》报道,有关部门要求各中小学要把“每天锻炼一小时”写入课表.为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图.请结合统计图回答下列问题: (1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?图2图1最喜欢的体育活 动项目的人数/人育活动项目19.(本题满分9分)某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w (千克)随销售单价x (元/千克)的变化而变化,具体关系式为:w =-2x +240.设这种绿茶在这段时间内的销售利润为y (元),解答下列问题: (1)求y 与x 的关系式; (2)当x 取何值时,y 的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?20.(本题满分9分)经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得∠ACB=68°.(1)求所测之处江的宽度(.48.268tan ,37.068cos ,93.068sin ≈≈≈ ); (2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.21.(本题满分10分)如图,B D 为圆O 的直径,A B A C =,A D 交B C 于E ,2A E =,4E D =.(1)求证:A B E A D B △∽△,并求A B 的长;(2)延长D B 到F ,使B F B O =,连接F A ,那么直线F A 与⊙O 相切吗?为什么?22.(本题满分10分)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.C23.(本题满分11分)如图,等腰梯形ABCD中,AD∥BC,AB=DC,AC⊥BD,过D点作DE∥AC 交BC的延长线于E点.(1)求证:四边形ACED是平行四边形;(2)若AD=3,BC=7,求梯形ABCD的面积.24.(本题满分12分)如图所示,在平面直角坐标系中,⊙M 经过原点O ,且与x 轴、y轴分别相交于A (-6,0),B (0,-8)两点.(1)请求出直线AB 的函数表达式;(2)若有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在⊙M 上,开口向下,且经过点B ,求此抛物线的函数表达式;(3)设(2)中的抛物线交x 轴于D ,E 两点,在抛物线上是否存在点P ,使得115PDE ABCS S =△△?若存在,请求出点P 的坐标;若不存在,请说明理由.数学参考答案一、选择题1.A2.B3.B4.B5.B6.C7.A8.D9.B10.B11.B12.C 二、填空题13.-6 14.a ≥3 15.k >-2,且k ≠-1 16.3 17.-318.解:(1)由图1知:4810181050++++=(名)………2分 答:该校对50名学生进行了抽样调查.(2)本次调查中,最喜欢篮球活动的有18人.………………3分x181003650⨯=%%………………………………………….4分∴最喜欢篮球活动的人数占被调查人数的36%. (3)1(302624)20-++=%%%% 20020100÷=% (人)…6分8100100016050⨯⨯=% (人)答:估计全校学生中最喜欢跳绳活动的人数约为160人.………8分 19.解:⑴ y =(x -50)∙ w =(x -50) ∙ (-2x +240)=-2x 2+340x -12000,∴y 与x 的关系式为:y =-2x 2+340x -12000........3分 ⑵ y =-2x 2+340x -12000=-2 (x -85) 2+2450,∴当x =85时,y 的值最大. ……………………………6分 ⑶ 当y =2250时,可得方程 -2 (x -85 )2+2450=2250. 解这个方程,得 x 1=75,x 2=95. 根据题意,x 2=95不合题意应舍去.∴当销售单价为75元时,可获得销售利润2250元.…………9分20.解:(1)在BAC Rt ∆中, 68=∠ACB ,∴24848.210068tan =⨯≈⋅= AC AB (米)答:所测之处江的宽度约为248米…………………………………3分 (2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的,只要正确即可得分……………9分21.(1)证明:A B A C = ,ABC C ∴=∠∠,C D = ∠∠,ABC D ∴=∠∠.又BAE D AB = ∠∠,ABE AD B ∴△∽△.A B A E A D A B∴=. AB 2=AD ·AE=(AE+ED )·AE=(2+4)×2=12.AB ∴=. ……………………………………………………5分(2)直线F A 与⊙O 相切.理由如下: 连接O A .BD 为⊙O 的直径,∴∠.BD ∴====1122B F B O B D ∴===⨯=AB = ,BF BO AB ∴==.90OAF ∴= ∠.∴直线F A 与⊙O 相切. ……………………………………10分22.解:(1)设租用一辆甲型汽车的费用是元,租用一辆乙型汽车的费用是元.由题意得解得答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.……………………………………………………………3分 (2)设租用甲型汽车辆,则租用乙型汽车辆.由题意得解得……………………………………………………6分由题意知,为整数,或或共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆; 方案二:租用甲型汽车3辆,租用乙型汽车3辆; 方案三:租用甲型汽车4辆,租用乙型汽车2辆. 方案一的费用是(元); 方案二的费用是(元);方案三的费用是(元),所以最低运费是4900元.……………9分答:共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆; 方案二:租用甲型汽车3辆,租用乙型汽车3辆; 方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.……………………………………………10分 23.证: ⑴∵AD ∥BC ∴AD ∥CE 又∵DE ∥AC∴四边形ACED 是平行四边形……………… 3分 ⑵过D 点作DF ⊥BE 于F 点 ……………………4分∵DE ∥AC ,AC ⊥BD ∴DE ⊥BD ,即∠BDE=90° 由⑴知DE=AC ,CE=AD=3∵四边形ABCD 是等腰梯形∴AC=DB ………………………………………7分 ∴DE=DB ……………………………………8分∴△DBE 是等腰直角三角形,∴△DFB 也是等腰直角三角形 ∴DF=BF=21(7-3)+3=5……………………9分(也可运用:直角三角形斜边上的中线等于斜边的一半)()2553721DF BC)(AD 21S ABCD=⨯+=∙+=梯形……11分注:⑴过对角线交点O 作OF ⊥BC 于F ,延长FO 交AD 于H ,于是OH ⊥AD由△ABC ≌△DCB ,得到△OBC 是等腰直角三角形,OF=21BC=27同理OH=21AD=23,高HF=52327=+⑵过A 作AF ⊥BC 于F ,过D 作DH ⊥BC 于H ,由△AFC ≌△DHB得高AF=FC=21(AD+BC)=5⑶DOA COD BOC AOB ABCD S S S S S ∆∆∆∆+++=梯形(进行计算)24. 解:(1)设直线AB 的函数表达式为(y kx b k =+∵直线AB经过(60)(08)A B --,,,,∴由此可得60,8.k b b -+=⎧⎨=-⎩解得4,38.k b ⎧=-⎪⎨⎪=-⎩∴直线AB的函数表达式为483y x =--. (4)分(2)在R t AO B △中,由勾股定理,得10AB ===,x∵圆M 经过O A B ,,三点,且90AO B ∠=°,AB∴为圆M 的直径,∴半径5M A =,设抛物线的对称轴交x 轴于点N ,M N x ⊥∵,∴由垂径定理,得132A N O N O A ===.在R t A M N △中,4M N ===,541C N M C M N ∴=-=-=,∴顶点C 的坐标为(31)-,, 设抛物线的表达式为2(3)1y a x =++, 它经过(08)B -,,∴把0x =,8y =-代入上式,得28(03)1a -=++,解得1a =-,∴抛物线的表达式为22(3)168y x x x =-++=---.…………8分(3)如图,连结A C ,B C ,35213521ON MC 21AN MC 21S S S BMC AMC ABC ⨯⨯+⨯⨯=∙+∙=+=∆∆∆ =15在抛物线268y x x =---中,设0y =, 则2680x x ---=, 解得12x =-,24x =-.D E ∴,的坐标分别是(40)-,,(20)-,, 2D E ∴=;设在抛物线上存在点()P x y ,,使得111511515P D E A B C S S =⨯=△△=,则1y 221y DE 21S PDE =⨯⨯=∙=∆,1y ∴=±,当1y =时,2681x x ---=,解得123x x ==-,1(31)P ∴-,;当1y =-时,2681x x ---=-,解得13x =-+,23x =--2(3)P ∴-+-1,3(3)P ---1.综上所述,这样的P 点存在,且有三个,1(31)P -,,2(3)P -+-1,3(31)P ---.…………………….12分。
中考数学 第五章四边形第22讲 梯形精品课件(含11真题和12预测题)
(2011·广东)如图所示,在直角梯形纸片ABCD中, AD∥BC,∠A=90°,∠C=30°.折叠纸片使BC经过点D, 点C落在点E处,BF是折痕,且BF=CF=8.
(1)求∠BDF的度数; (2)求AB的长. 【点拨】在直角三角形中求线段的长度,常运用锐角三角函数求解. 折叠的本质是轴对称. 【解答】(1)∵FB=FC,∠C=30°,∴∠FBC=∠C=30°. 由折叠的性质得∠DBF=∠FBC=30°.又∵∠DFB=∠C+∠FBC=60° ,∴∠BDF=180°-∠DBF-∠DFB=180°-30°-60°=90°.
【解析】CD=DE=AB=6,CE=BC-BE=BC-AD=8-5= 3.∴△CDE的周长=DE+DC+EC=6+6+3=15.
【答案】15
15.(2011·呼和浩特)如图,在梯形ABCD中,AD∥BC,CE是∠BCD 的平分线,且CE⊥AB,E为垂足,BE=2AE,若四边形AECD的面积为1, 则梯形ABCD的面积为________.
考点三 梯形的中位线 1.定义:连接梯形 两腰中点 的线段叫做梯形中位线. 2.判定:(1)经过梯形一腰中点与 底平行 的直线必平分另一腰; (2)定义法. 3.性质:梯形的中位线平行于两底,并且等于两底和 的一半.
考点四 解决梯形问题的基本思路及辅助线的作法
1.基本思路:梯形问题分割―转、―化→拼接三角形或平行四边形. 2.常见辅助线的作法:
【答案】A
9.(2011·潍坊)如图,已知直角梯形ABCD中,AD∥BC,∠BCD= 90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P ,连接CP并延长交AB于点Q,连接AF,则下列结论不正确的是( )
A.CP平分∠BCD B.四边形ABED为平行四边形 C.CQ将直角梯形ABCD分为面积相等的两部分 D.△ABF为等腰三角形
湖南省14市州2011年中考数学试题分类解析汇编 专题10 四边形
某某14市州2011年中考数学试题分类解析汇编专题10:四边形一、选择题1.(某某某某3分)如图,等腰梯形ABCD中,AD∥BC,∠B=45°,AD=2,BC=4,则梯形的面积为A.3 B.4 C.6 D.8【答案】 A。
【考点】等腰梯形的性质,等腰直角三角形的性质。
【分析】过A作AE⊥BC交BC于点E。
∵四边形ABCD是等腰梯形.∴BE=(4-2)÷2=1。
∵∠B=45°,∴AE=BE=1。
∴梯形的面积为:12×(2+4)×1=3。
故选A。
2.(某某某某3分)如图,下列四组条件中.不能判定四边形ABCD是平行四边形的是A、AB=DC,AD=BCB、AB∥DC,AD∥BCC、AB∥DC,AD=BCD、AB∥DC,AB=DC【答案】C。
【考点】平行四边形的判定。
【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形。
根据平行四边形的判定,A、B、D均符合是平行四边形的条件,C则不能判定是平行四边形。
故选C。
3.(某某某某3分)下列四边形中,对角线相等且互相垂直平分的是A、平行四边形B、正方形C、等腰梯形D、矩形【答案】B。
【考点】平行四边形的性质,正方形的性质,等腰梯形的性质,矩形的性质。
【分析】对角线相等且互相垂直平分的四边形是正方形,故选B。
4.(某某某某3分)顺次连接任意一个四边形四边的中点所得到的四边形一定是A、平行四边形B、矩形 C菱形 D正方形【答案】A。
【考点】平行四边形的判定,三角形中位线定理。
【分析】顺次连接任意四边形四边中点所得的四边形,一组对边平行并且等于原四边形某一对角线的一半,说明新四边形的对边平行且相等.所以是平行四边形。
故选A。
5.(某某某某4分)如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于12AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是...A.矩形B.菱形C.正方形D.等腰梯形【答案】B。
2011年初中毕业升学考试(中考)数学试卷及答案
数学试卷第1页(共10页)准考证号:**市2011年初中毕业生学业考试数学试卷【说明】全卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷1-2页,第Ⅱ卷3-10页。
考试时间120分钟,满分150分。
考试结束后,第Ⅱ卷和答题卡按规定装袋上交。
第Ⅰ卷(选择题 共40分)注意事项:1.答第Ⅰ卷前,考生务必将自己的学校、姓名、准考证号、考试科目填涂在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡 皮擦干净后,再选涂其他答案,不能答在试题卷上。
3.考试结束后,本试卷由考场统一收回,集中管理。
一、选择题:本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求 1.-2的相反数A .-2B .2C .2±D .-2 2.下列分式是最简分式的A.b a a 232 B .a a a 32- C .22b a b a ++ D .222ba ab a -- 3.下列运算错误的是A .235a a a ⋅=B .347()m m =C .3363282c b a bc a =)( D .624m m m ÷= 4.一幅扑克牌(不含大小王),任意抽取一张,抽中方块的概率是 A .21 B .521 C .31 D .415.函数31--=x x y 的自变量x 的取值范围是 A .1x > B .1x >且3x ≠ C .1≥x D. 1≥x 且3x ≠数学试卷第2页(共10页)6.点(-2,3)关于原点对称的点的坐标是A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2) 7.如图:等腰梯形ABCD 中 ,AD ∥BC ,AB=DC , AD=3,AB=4,∠B=60︒,则梯形的面积是 A.310 B.320 C.346+ D.3812+ 8.计算2sin30︒-sin 245︒+cot60︒的结果A.3321+ B.3321+ C.23+ D.23-1+ 9.如图:△ABC 中,DE ∥BC ,AD:DB=1:2,下列选项正确的是A .DE:BC=1:2B .AE:AC=1:3C .BD:AB=1:3D .S DE A ∆:S ABC ∆=1:4( 第9题) (第10题)10.如图:在△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,下列说法中正确的个数是①CD AB BC AC ⋅=⋅ ②DB AD AC ⋅=2③BA BD BC ⋅=2 ④DB AD CD ⋅=2A .1个B .2个C .3个D .4个CBEDABDAC数学试卷第3页(共10页)绝密★启用前【考试时间:2011年6月】**市2011年初中毕业生学业考试数学试卷第Ⅱ卷(非选择题 共110分)注意事项:1.第Ⅱ卷共8页,用钢笔或中性笔直接答在试卷上。
2011中考数学知识点梳理+试题分类汇编(18)梯形
2011中考数学试题分类汇编(18)梯形按住ctrl 键 点击查看更多中考数学资源知识点:1、梯形:一组对边平行而另一组对边不平行的四边形叫做梯形。
2、梯形的底:梯形中平行的两边叫做梯形的底(通常把较短的底叫做上底,较长的边叫做下底)3、梯形的腰:梯形中不平行的两边叫做梯形的腰。
4、梯形的高:梯形有两底的距离叫做梯形的高。
5、直角梯形:一腰垂直于底的梯形叫做直角梯形。
6、等腰梯形:两腰相等的梯形叫做等腰梯形。
7、等腰梯形性质定理1:等腰梯形在同一底上的两个角相等。
8、等腰梯形性质定理2:等腰梯形的两条对角线相等。
9、等腰梯形的判定定理l 。
:在同一个底上钩两个角相等的梯形是等腰梯形。
10、等腰梯形的判定定理2:对角线相等的梯形是等腰梯形。
研究等腰梯形常用的方法有:化为一个等腰三角形和一个平行四边形;或两个全等的直角三角形和一矩形;或作对角线的平行线交下底的延长线于一点;或延长两腰交于一点。
七、中位线1、三角形的中位线连结三角形两边中点的线段叫做三角形的中位线。
说明:三角形的中位线与三角形的中线不同。
2、梯形的中位线:连结梯形两腰中点的线段叫做梯形中位线。
3、三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。
4、梯形中位线定理:梯形中位线平行于两底,并且等于两底和的一半(2010台州市)7.梯形ABCD 中,AD ∥BC ,AB=CD=AD =2,∠B =60°,则下底BC 的长是(▲)A .3B .4C . 23D .2+23 答案:B(2010年无锡)17.如图,梯形ABCD 中,AD ∥BC ,EF 是梯形的中位线,对角线AC 交EF 于G ,若BC=10cm ,EF=8cm ,则GF 的长等于 ▲ cm . 答案 3(2010年兰州)17. 如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD = 2,将腰CD 以D 为中心逆时针旋转90°至DE ,连接AE 、CE ,△ADE 的面积为3,则BC 的长为 . 答案 5GF E D CBA (第17题)60°30°D CBA第16题(2010宁波市)16.如图,在等腰梯形ABCD 中,AD ∥BC ,AB =AD =CD .若∠ABC =60°,BC =12,则梯形ABCD 的周长为________30_____.10. (2010年金华)如图,在等腰梯形ABCD 中,AB ∥CD , 对角线AC ⊥BC ,∠B =60º,BC =2cm ,则梯形ABCD 的面积为( ▲ )A A .33cm 2 B .6 cm 2C .6cm2D .12 cm 215.(2010年长沙)等腰梯形的上底是4cm ,下底是10 cm ,一个底角是60 ,则等腰梯形的腰长是 cm . 答案:6(2010年眉山)18.如图,已知梯形ABCD 中,AD ∥BC ,∠B =30°,∠C =60°,AD =4,AB =,则下底BC 的长为 __________. 答案:10(2010陕西省)16、如图,在梯形ABCD 中, DC ∥AB ,∠A+∠B=90°若AB=10, AD=4,DC=5, 则梯形ABCD 的面积为 181.(2010黄冈)如图,在等腰梯形ABCD 中,AC ⊥BD ,AC =6cm ,则等腰梯形ABCD 的面积为_____cm 2.181.(2010昆明)已知:如图,在梯形ABCD 中,AD ∥BC ,∠DCB = 90°,E 是AD 的中点,点P 是BC 边上的动点(不与点B重合),EP 与BD 相交于点O.AC BD (第10题图)(1)当P 点在BC 边上运动时,求证:△BOP ∽△DOE ;(2)设(1)中的相似比为k ,若AD ︰BC = 2︰3. 请探究:当k 为下列三种情况时,四边形ABPE 是什么四边形?①当k = 1时,是 ;②当k = 2时,是 ;③当k = 3时,是 . 并证明...k = 2时的结论.解: (1)证明:∵AD ∥BC∴∠OBP = ∠ODE ……………1分在△BOP 和△DOE 中 ∠OBP = ∠ODE∠BOP = ∠DOE …………………2分∴△BOP ∽△DOE (有两个角对应相等的两三角形相似) ……………3分(2)① 平行四边形 (4)分② 直角梯形 (5)分③ 等腰梯形 (6)分证明:∵k = 2时,BP2DE∴ BP = 2DE = AD又∵AD ︰BC = 2︰3 BC = 32AD PC = BC - BP =32AD - AD =12AD = ED ED ∥PC , ∴四边形PCDE 是平行四边形 ∵∠DCB = 90°∴四边形PCDE 是矩形 (7)分∴ ∠EPB = 90° (8)分又∵ 在直角梯形ABCD 中 AD ∥BC, AB 与DC 不平行 ∴ AE ∥BP, AB 与EP 不平行四边形ABPE 是直角梯形 (9)AB DEO分(本题其它证法参照此标准给分)(2010河北省)25.(本小题满分12分)如图16,在直角梯形ABCD 中,AD ∥BC ,90B ∠=︒,AD = 6,BC = 8,33=AB ,点M 是BC 的中点.点P 从点M 出发沿MB 以每秒1个单位长的速度向点B 匀速运动,到达点B 后立刻以原速度沿BM 返回;点Q 从点M 出发以每秒1个单位长的速度在射线MC 上匀速运动.在点P ,Q 的运动过程中,以PQ 为边作等边三角形EPQ ,使它与梯形ABCD 在射线BC 的同侧.点P ,Q 同时出发,当点P 返回到点M 时停止运动,点Q 也随之停止. 设点P ,Q 运动的时间是t 秒(t >0).(1)设PQ 的长为y ,在点P 从点M 向点B 运动的过程中,写出y 与t 之间的函数关系式(不必写t 的取值范围).(2)当BP = 1时,求△EPQ 与梯形ABCD 重叠部分的面积.(3)随着时间t 的变化,线段AD 会有一部分被△EPQ 覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接..写出t 的取值范围;若不能,请说明理由.解:(1)y = 2t ;(2)当BP = 1时,有两种情形:①如图6,若点P 从点M 向点B 运动,有 MB = BC 21= 4,MP = MQ = 3,∴PQ = 6.连接EM ,∵△EPQ 是等边三角形,∴EM ⊥PQ .∴33=EM . ∵AB = 33,∴点E 在AD 上.∴△EPQ 与梯形ABCD 重叠部分就是△EPQ ,其面积为39.②若点P 从点B 向点M 运动,由题意得 5=t .PQ = BM + M Q -BP = 8,PC = 7.设PE 与AD 交于点F ,Q E 与AD 或AD 的延长线交于点G ,过点P 作PH ⊥AD 于点H ,则PQ 图16(备用图)图6A第20题HP = 33,AH = 1.在Rt △HPF 中,∠HPF = 30°, ∴HF = 3,PF = 6.∴FG = FE = 2.又∵FD = 2, ∴点G 与点D 重合,如图7.此时△EPQ 与梯形ABCD 的重叠部分就是梯形FPCG ,其面积为3227.(3)能.4≤t ≤5.(2010·浙江温州)10.用若干根相同的火柴棒首尾顺次相接围成一个梯形(提供的火柴棒全部用完),下列根数的火柴棒不能围成梯形的是(B) .A .5B .6C .7D .81.(2010,安徽芜湖)在等腰梯形ABCD 中,AD ∥BC,对角线AC ⊥BD 于点O,AE ⊥BC,DF ⊥BC,垂足分别为E,F,AD=4,BC=8,则AE+EF=( )A .9B .10C .11D .20【答案】B(2010·浙江湖州)20.(本小题8分)如图,已知在梯形ABCD 中,DC ∥AB ,AD =BC ,BD 平分∠ABC ,∠A =60°. (1)求∠ABD 的度数;(2)若AD =2,求对角线BD 的长.。
中考数学专题二十二:梯形(含详细参考答案)
中考数学专题复习第二十二讲梯形【基础知识回顾】一、 梯形的定义、分类、和面积:1、定义:一组对边平行,而另一组对边的四边形,叫做梯形。
其中,平行的两边叫做两底间的距离叫做梯形的2、分类:梯形3、梯形的面积:梯形= (上底+下底) X 高【赵老师提醒:要判定一个四边形是梯形,除了要注明它有一组对边外,还需注明另一组对边不平行或的这组对边不相等】二、等腰梯形的性质和判定:1、性质:⑴等腰梯形的两腰相等,相等⑵等腰梯形的对角线⑶等腰梯形是对称图形一般梯形特殊梯形等腰梯形:两腰 的梯形叫做等腰梯形直角梯形:一腰与底 的梯形叫做直角梯形2、判定:⑴用定义:先证明四边形是梯形,再证明其两腰相等⑵同一底上两个角的梯形是等腰梯形⑶对角线的梯形是等腰梯形【赵老师提醒:1、梯形的性质和判定中同一底上的两个角相等“不被成”两底角相等2、等腰梯形所有的判定方法都必须先证它是梯形3、解决梯形问题的基本思路是通过做辅助线将梯形转化为形式常见的辅助线作法有要注意根据题目的特点灵活选用辅助线】【重点考点例析】考点一:梯形的基本概念和性质例1 (2012•内江)如图,四边形ABCD是梯形,BD=AC且BD⊥AC,若AB=2,CD=4,则S梯形ABCD= 9.思路分析:过点B作BE∥AC交DC的延长线于点E,过点B 作BF⊥DC于点F,判断出△BDE是等腰直角三角形,求出BF,继而利用梯形的面积公式即可求解.解答:解:过点B作BE∥AC交DC的延长线于点E,过点B 作BF⊥DC于点F,则AC=BE,DE=DC+CE=DC+AB=6,又∵BD=AC 且BD⊥AC,∴△BDE是等腰直角三角形,∴BF=DE=3,故可得梯形ABCD的面积为(AB+CD)×BF=9.故答案为:9.点评:此题考查了梯形的知识,平移一条对角线是经常用到的一种辅助线的作法,同学们要注意掌握,解答本题也要熟练等腰直角三角形的性质,难度一般.对应训练1.(2012•无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边形ABED 的周长等于()A.17B.18C.19D.201.考点:;.分析:由CD的垂直平分线交BC于E,根据线段垂直平分线的性质,即可得DE=CE,即可得四边形ABED的周长为AB+BC+AD,继而求得答案.解答:解:∵CD的垂直平分线交BC于E,∴DE=CE,∵AD=3,AB=5,BC=9,∴四边形ABED的周长为:AB+BE+DE+AD=AB+BE+EC+AD=AB+BC+AD=5+9+3=17.故选A.点评:此题考查了线段垂直平分线的性质.此题比较简单,注意掌握数形结合思想与转化思想的应用是解此题的关键.考点二:等腰梯形的性质例2 (2012•呼和浩特)已知:在等腰梯形ABCD中,AD∥BC,AC⊥BD,AD=3,BC=7,则梯形的面积是()A.25B.50C.25 D.思路分析:过点D作DE∥AC交BC的延长线于点E,作DF⊥BC 于F,证平行四边形ADEC,推出AC=DE=BD,∠BDE=90°,根据等腰三角形性质推出BF=DF=EF= BE,求出DF,根据梯形的面积公式求出即可.解答:解:过点D作DE∥AC交BC的延长线于点E,∵AD∥BC (已知),即AD∥CE,∴四边形ACED是平行四边形,∴AD=CE=3,AC=DE,在等腰梯形ABCD中,AC=DB,∴DB=DE (等量代换),∵AC⊥BD,AC∥DE,∴DB⊥DE,∴△BDE是等腰直角三角形,作DF⊥BC于F,则DF=BE=5,S梯形ABCD=(AD+BC)•DF=(3+7)×5=25,故选A.点评:本题主要考查对等腰三角形性质,平行四边形的性质和判定,等腰梯形的性质,等腰直角三角形等知识点的理解和掌握,能求出高DF的长是解此题的关键.对应训练2.(2012•厦门)如图,在等腰梯形ABCD中,AD∥BC,对角线AC与BD相交于点O,若OB=3,则OC= 3.2.3考点:.分析:先根据梯形是等腰梯形可知,AB=CD,∠BCD=∠ABC,再由全等三角形的判定定理得出△ABC≌△DCB,由全等三角形的对应角相等即可得出∠DBC=∠ACB,由等角对等边即可得出OB=OC=3.解答:解:∵梯形ABCD是等腰梯形,∴AB=CD,∠BCD=∠ABC,在△ABC与△DCB中,∵,∴△ABC≌△DCB,∴∠DBC=∠ACB,∴OB=OC=3.故答案为:3.点评:本题考查的是等腰梯形的性质及全等三角形的判定与性质,熟知在三角形中,等角对等边是解答此题的关键.考点三:等腰梯形的判定例3 (2012•襄阳)如图,在梯形ABCD中,AD∥BC,E为BC的中点,BC=2AD,EA=ED=2,AC与ED相交于点F.(1)求证:梯形ABCD是等腰梯形;(2)当AB与AC具有什么位置关系时,四边形AECD是菱形?请说明理由,并求出此时菱形AECD的面积.考点:;;.分析:(1)由AD∥BC,由平行线的性质,可证得∠DEC=∠EDA,∠BEA=∠EAD,又由EA=ED,由等腰三角形的性质,可得∠EAD=∠EDA,则可得∠DEC=∠AEB,继而证得△DEC≌△AEB,即可得梯形ABCD是等腰梯形;(2)由AD∥BC,BE=EC=AD,可得四边形ABED和四边形AECD均为平行四边形,又由AB⊥AC,AE=BE=EC,易证得四边形AECD是菱形;过A作AG⊥BE 于点G,易得△ABE是等边三角形,即可求得答案AG的长,继而求得菱形AECD的面积.解答:(1)证明:∵AD∥BC,∴∠DEC=∠EDA,∠BEA=∠EAD,又∵EA=ED,∴∠EAD=∠EDA,∴∠DEC=∠AEB,又∵EB=EC,∴△DEC≌△AEB,∴AB=CD,∴梯形ABCD是等腰梯形.(2)当AB⊥AC时,四边形AECD是菱形.证明:∵AD∥BC,BE=EC=AD,∴四边形ABED和四边形AECD均为平行四边形.∴AB=ED,∵AB⊥AC,∴AE=BE=EC,∴四边形AECD是菱形.过A作AG⊥BE于点G,∵AE=BE=AB=2,∴△ABE是等边三角形,∴∠AEB=60°,∴AG=,∴S菱形AECD=EC•AG=2×=2。
山东省17市2011年中考数学试题分类解析汇编 专题4 图形的变换
山东17市2011年中考数学试题分类解析汇编专题4:图形的变换一、选择题1.(日照3分)如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为【答案】 C 。
【考点】由三视图判断几何体。
【分析】俯视图中的每个数字是该位置小立方体的个数,从而从正面看可看到3列从左到右的列数分别是2,2,1,故选C 。
3.(滨州3分)如图.在△ABC 中,∠B=90°,∠A=30°,AC =4cm ,将△ABC 绕顶点C 顺时针方向旋转至△A'B'C 的位置,且A 、C 、B'三点在同一条直线上,则点A 所经过的最短路线的长为A 、B 、8cm 8cmC 、163cm π D 、83cm π【答案】D 。
【考点】旋转的性质,弧长的计算。
【分析】点A 所经过的最短路线是以C 为圆心、CA 为半径的一段弧线,运用弧长公式计算求解:∵∠B=90°,∠A=30°,A 、C 、B'三点在同一条直线上,∴∠ACA′=120°。
又∵AC=4,∴ ()120481803'AAL cm ππ⋅⋅==。
故选D 。
4.(滨州3分)如图,在一张△ABC 纸片中,∠C=90°,∠B=60°,DE 是中位线,现把纸片沿中位线DE 剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为A 、1B 、2C 、3D 、4【答案】C 。
【考点】三角形中位线定理,图形的拼接。
【分析】将该三角形剪成两部分,拼图使得△ADE和直角梯形BCDE不同的边重合,即可解题:①使得CE与AE重合,即可构成邻边不等的矩形,如图1,∴BD≠BC;② 使得BD与AD重合,即可构成等腰梯形,如图2:③使得BD与DE重合,即可构成有一个角为锐角的菱形,如图3:故可拼出①②③.故选C。
2011年全国各地中考数学试卷试题分类汇编——第17章《事件与概率》
1 9
B.
1 3
C.
2 3
D.
2 9
【答案】A 8. (2011 浙江绍兴,7,4 分)在一个不透明的盒子中装有 8 个白球,若干个黄球,它们除 颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为 ( ) A.2 【答案】B 9. (2011 浙江义乌,9,3 分)某校安排三辆车,组织九年级学生团员去敬老院参加学雷 锋活动, 其中小王与小菲都可以从这三辆车中任选一辆搭乘, 则小王与小菲同车的概率为 ( ) 1 A. 3 【答案】A 10. (2011 浙江省嘉兴,12,5 分)从标有 1 到 9 序号的 9 张卡片中任意抽取一张,抽到序 号是 3 的倍数的概率是 【答案】 . 1 B. 9 1 C. 2 2 D. 3 B.4 C.12 D.16
【答案】C 21. (2011 山东临沂,10,3 分)如图,A、B 是数轴上的亮点,在线段 AB 上任取一点 C, 则点 C 到表示-1 的点的距离不大于 ...2 的概率是( A. ) D.
1 2
B.
2 3
C.
3 4
4 5
【答案】D 22. (2011 四川凉山州,4,4 分)下列说法正确的是( A.随机抛掷一枚均匀的硬币,落地后反面一定朝上。 B.从 1,2,3,4,5 中随机取一个数,取得奇数的可能性较大。 C.某彩票中奖率为 36 0 0 ,说明买 100 张彩票,有 36 张中奖。 D.打开电视,中央一套正在播放新闻联播。 【答案】B 23. (2011 四川绵阳 3,3)掷一个质地均匀且六个面上分别刻有 1 到 6 的点数的正方体骰 子,如图.观察向上的ー面的点数,下列属必然事件的是 )
1 【答案】 3 2. (2011 浙江省舟山,12,4 分)从标有 1 到 9 序号的 9 张卡片中任意抽取一张,抽到序 号是 3 的倍数的概率是 【答案】 .
2009—2011年全国各地中考数学试卷分类汇编:梯形
新世纪教育网精选资料版权所有@新世纪教育网2009— 2011 年全国各地中考数学试卷分类汇编:一元二次方程一、选择题1.( 2011 湖北鄂州, 11, 3 分)以下说法中①一个角的两边分别垂直于另一个角的两边,则这两个角相等②数据5,2,7, 1, 2, 4 的中位数是 3,众数是 2③等腰梯形既是中心对称图形,又是轴对称图形④Rt △ ABC 中,∠ C=90 °,两直角边a,b 分别是方程x2- 7x+ 7=0 的两个根,则AB 边上135的中线长为 2正确命题有()A.0 个B.1 个C.2 个D.3 个【答案】 C2. ( 2011 湖北荆州, 9,3 分)对于x的方程ax2(3a1) x2(a1)有两个不相等的实根 x1、 x2,且有x1x1 x2x2 1a,则 a 的值是A.1B.- 1C.1 或- 1D. 2【答案】 B3.( 2011 福建福州, 7, 4 分)一元二次方程x(x2)0 根的状况是()A. 有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D. 没有实数根【答案】 A4.( 2011 山东滨州, 3, 3 分)某商品原售价289元 ,经过连续两次降价后售价为256 元 ,设均匀每次降价的百分率为x,则下边所列方程中正确的选项是()289 12256 12289A.x256B.xC.289(1-2x)=256D.256(1-2x)=289【答案】 A5. ( 2011 山东威海, 9,3 分)对于 x 的一元二次方程x2(m 2)x m1 0有两个相等的实数根,则m 的值是()A .0B .8C.42D.或8【答案】 D6.( 2011 四川南充市,6, 3分)方程 (x+1)(x -2)=x+1 的解是()(A )2(B)3(C)- 1,2(D)- 1,3【答案】 D7.( 2011 浙江省嘉兴,2, 4分)一元二次方程x( x 1)0 的解是()(A )x 0(B)x 1( C)x0 或 x 1( D)x0 或 x 1新世纪教育网精选资料版权所有@新世纪教育网【答案】 C8.(2011台湾台北,20)若一元二次方程式 ax(x+1)+( x+1)(x+2) + bx( x+2)=2 的两根为 0、 2,则3a+4b之值为什么?A . 2B. 5C.7 D . 8【答案】 B9. ( 2011 台湾台北, 31)如图 (十三 ) ,将长方形 ABCD 切割成 1 个灰色长方形与148 个面积相等的小正方形。
2011年各地中考梯形汇总
AD AO , BC CO AO 1 . CO 3
∵AD=1,BC=3. ∴错误!未找到引用源。
故选 B. 点评:此题主要考查了梯形的性质,利用梯形的上下底平行得到三角形相似,然后用相 似三角形的性质解决问题. 6. (2011 江苏连云港,7,3 分)如图,在正五边形 ABCDE 中,对角线 AD,AC 与 EB 分别交于点 M,N.下列说法错误 的是( ) .. A.四边形 EDCN 是菱形 C.△AEM 与△CBN 相似 B.四边形 MNCD 是等腰梯形 D.△AEN 与△EDM 全等
A、6 错误!未找到引用源。 C、10﹣2 错误!未找到引用源。 考点:梯形;菱形的性质。
B、8 错误!未找到引用源。 D、10+2 错误!未找到引用源。
第5页
专题:计算题。 分析:利用菱形和正方形的性质分别求得 HE 和 ID、DE 的长,利用梯形的面积计算方法算 得梯形的面积即可. 解答:解:四边形 ABCD 为菱形且∠A=60°⇒ ∠ADE=180°﹣60°=120°, 又 AD∥HE⇒ ∠DEH=180°﹣120°=60°, 作 DM⊥HE 于 M 点,则△DEM 为 30°﹣60°﹣90°的三角形, 又 DE=4⇒ EM=2,DM=2 错误!未找到引用源。 , 且四边形 EFGH 为正方形⇒ ∠H=∠I=90°, 即四边形 IDMH 为矩形⇒ ID=HM=5﹣2=3, 梯形 HEDI 面积=错误!未找到引用源。=8 错误!未找到引用源。 . 故选 B.
1 6 BC= ,由勾股定理得:OB= 3 , 2 2 ∵∠BAC=60° ,∴∠ABO=30° ,由勾股定理得:OA=1,AB=2,
∵OF⊥BC,∴OF=BF=CF=
同法可求 OD=OA=1,AD= 2 ,OE= S
2011年中考数学试题分类27 梯形
第27章 梯形一、选择题1. (2011江苏扬州,7,3分)已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等。
其中假命题有( )A. 1个B. 2个C. 3个D. 4个 【答案】B2. (2011山东滨州,12,3分)如图,在一张△ABC 纸片中, ∠C=90°, ∠B=60°,DE 是中位线,现把纸片沿中位线DE 剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为( ) A.1 B.2 C.3 D.4【答案】C3. (2011山东烟台,6,4分)如图,梯形ABCD 中,AB ∥CD ,点E 、F 、G 分别是BD 、AC 、DC 的中点.已知两底差是6,两腰和是12,则△EFG 的周长是( ) A.8 B.9 C.10 D.12【答案】B4. (2011浙江台州,7,4分)如图,在梯形ABCCD 中,AD ∥BC ,∠ABC=90º,对角线BD 、AC 相交于点O 。
下列条件中,不能判断对角线互相垂直的是( )(第6题图)ED CB A(第12题图)A.∠1=∠4B.∠1=∠3C.∠2=∠3D.OB2+OC2=BC2【答案】B5. (2011台湾台北,15)图(五)为梯形纸片ABCD,E点在BC上,且∠90DC=AEC,AD=3,BC=9,CD=8。
若以AE为折线,将C折至∠=︒=∠BE上,使得CD与AB交于F点,则BF长度为何?A.4.5 B。
5 C。
5.5 D.6【答案】B6. (2011山东潍坊,11,3分)已知直角梯形ABCD中,A D∥BC,∠BCD=90°, BC =CD=2AD , E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF,则下列结论不正确...的是()A . CP 平分∠BCD B. 四边形ABED 为平行四边形C. CQ将直角梯形ABCD 分为面积相等的两部分;D. △ABF为等腰三角形【答案】C7. (2011山东临沂,12,3分)如图,梯形ABCD中,AD∥BC,AB=CD,AD=2,BC=6,∠B=60°,则梯形ABCD的周长是()A .12B .14C .16D .18 【答案】C8. (2011四川绵阳11,3)如图,在等腰梯形站ABCD 中,AB//CD ,对角线AC 、BD 相交于O ,∠ABD =30°,AC ⊥BC , AB = 8cm,则△COD 的面积为AA. 2B. 243cmC. 2D. 223cm 【答案】A9. (2011湖北武汉市,7,3分)如图,在梯形ABCD 中,AB ∥DC ,AD =DC =CB ,若∠ABD=25°,则∠BAD 的大小是A .40°.B .45°.C .50°.D .60°.【答案】C10.(2011湖北宜昌,12,3分)如图,在梯形ABCD 中,AB∥CD,AD=BC ,点E,F,G,H 分别是AB,BC ,CD ,DA 的中点,则下列结论一定正确的是( ). A. ∠HGF = ∠GHE B. ∠GHE = ∠HEF C. ∠HEF = ∠EFG D. ∠HGF = ∠HEF【答案】D第7题图二、填空题1. (2011福建福州,13,4分)如图4,直角梯形ABCD 中,AD ∥BC ,90C ∠=o ,则A B C ∠+∠+∠= 度.【答案】2702. (2011 浙江湖州,14,4)如图,已知梯形ABCD ,AD ∥BC ,对角线AC ,BD 相交于点O ,△AOD 与△BOC 的面积之比为1:9,若AD =1,则BC 的长是 .【答案】33. (2011湖南邵阳,16,3分)如图(六)所示,在等腰梯形ABCD 中,AB ∥CD ,AD=BC ,AC ⊥BC ,∠B=60°,BC=2cm ,则上底DC 的长是_______cm 。
2011年全国中考数学模拟汇编二 35梯形
A 组 一 选择题1(2011番禺区综合训练)下列命题中,正确的是(※). (A )对顶角相等 (B )梯形的对角线相等 (C )同位角相等 (D )平行四边形对角线相等 答案:A .2. (2011某某六校一摸)如图,梯形ABCD 的对角线AC 、BD 相交于点O ,△ADO 的面积记作S 1, △BCO 的面积记作S 2,△ABO 的面积记作S 3,△CDO 的面积记作S 4,则下列关系正确是( ) A. S 1= S 2B. S 1 × S 2= S 3× S 4C. S 1 + S 2 = S 4 + S 3D. S 2= 2S 3 答案:B二 填空题1.(某某市建邺区2011年中考一模)如图,在梯形ABCD 中,AD ∥BC ,点E 、F 、G 、H 是两腰上的点,AE =EF =FB ,CG =GH =HD ,且四边形EFGH 的面积为6cm 2,则梯形2答案:182. (2011萝岗区综合测试一)如图,直角梯形ABCD 中,BA CD ,,2AB BC AB ⊥= ,将腰DA 以A为旋转中心逆时针旋转90°至AE ,连接,,BE DE ABE ∆的面积为3,B C(第1题图)则CD 的长为﹡. 答案:5三 解答题1.(2011某某市杨浦区中考模拟)已知△ABC 中,点D 、E 、F 分别是线段AC 、BC 、AD 的中点,连FE 、ED ,BF 的延长线交ED 的延长线于点G ,联结GC 。
求证:四边形CEFG 为梯形。
【答案】证明:(1)∵点D 、E 分别是线段AC 、BC 的中点,∴DE//AB ,-------------1分 ∴∠A=∠FDG ,∠ABF=∠FGD---------------------------------------------2分 ∵F 是线段AD 的中点,∴AF=FD∴△ABF ≌△DGF ,-------------------------------------------1分 ∴BF=FG----------------------------------------------------------1分∴1BFFG=--------------------------------------------------1分 ∵E 为BC 中点,∴BC=EC ,∴1BEEC=,-----------------------------------------1分∴BE BF EC FG=------------------------------------------------------1分 ∴EF//CG----------------------------------------------------------1分而GF 与CE 交于点A ,∴四边形CEFG 为梯形------------------------------------1分ABCDEFG2.(2011某某金衢十一校联考)(6分)如图,已知:梯形ABCD 中,AD ∥BC ,E 为对 角线AC 的中点,连结DE 并延长交BC 于点F ,连结AF . (1)求证:AD=CF ;(2)在原有条件不变的情况下,当AC 满足条件▲时(不再增添辅助线),四边形AFCD 成为菱形, 【答案】(1)略……………………(4分);(2) AC 平分∠BCD 或AC⊥DF或AC 平分∠FAD …………(2分)3.(某某市溧水县2011年中考一模)(8分)在平面上有且只有4个点,这4个点中有一个独特的性质:连结每两点可得到6条线段,这6条线段有且只有两种长度.我们把这四个点称作准等距点.....例如正方形ABCD 的四个顶点(如图1),有AB=BC=CD=DA ,AC=BD .其实满足这样性质的图形有很多,如图2中A 、B 、C 、O 四个点,满足AB=BC=CA ,OA=OB=OC ;如图3中A 、B 、C 、O 四个点,满足OA=OB=OC=BC ,AB=AC .(1)如图,若等腰梯形ABCD 的四个顶点是准等距点,且AD ∥BC . ①写出相等的线段(不再添加字母); ②求∠BCD 的度数.(2)请再画出一个四边形,使它的四个顶点为准等距点,.....并写出相等的线段.解:(1)①AB=DC=AD , AC=BD=BC .……………………………………………2分②∵AC=BD ,AB=DC ,BC=BC ,∴△ABC ≌△DCB ,∴∠DBC =∠ACB ,……3分 ∵AD ∥BC ,∴∠DAC=∠ACB ,BCAD∵DC=AD ,∠DAC=∠ACD ,∴∠ACD=∠ACB ,………………………………4分 ∵BC=BD ,∠BDC=∠BCD =2∠ACB ,……………………………………………5分 设∠ACB =x °,则∠BDC=∠BCD =2 x °,∠DBC= x °, ∴2 x +2 x + x =180,解得x =36,∴∠BCD =72°.…………………………………………………………………6分(2)AB=BD=AD =AC ,BC = CD .或AB= BC= CD=BD=AD ,AC ,.……8分4.(某某市溧水县2011年中考一模)(9分)已知24AB AD ==,,90DAB ∠=,AD BC ∥(如图).E 是射线BC 上的动点(点E 与点B 不重合),M 是线段DE 的中点.(1)设BE x =,ABM △的面积为y ,求y 关于x 的函数关系式,并写出自变量x 的取值X 围;(2)如果以线段AB 为直径的圆与以线段DE 为直径的圆外切,求线段BE 的长; (3)连结BD ,交线段AM 于点N ,如果以A N D ,,为顶点的三角形与BME △相似,求线段BE 的长.解:解:(1)取AB 中点H ,连结MH ,M 为DE 的中点,MH BE ∴∥,1()2MH BE AD =+. ········· 1分又AB BE ⊥,MH AB ∴⊥.······················· 2分 12ABM S AB MH ∴=△,得12(0)2y x x =+>; ·············· 3分 (2)过D 作DP ⊥BC ,垂足为P ,∠DAB =∠ABC =∠BPD =90°,∴四边形ABPD 是矩形.BADMEC 第3题图BADC备用图以线段AB 为直径的圆与以线段DE 为直径的圆外切,1122MH AB DE ∴=+, 又1()2MH BE AD =+,∴DE=BE+AD-AB =x +4-2=x +2……4分 PD =AB=2,PE= x -4,DE 2= PD 2+ PE 2,…………………………………………………5分∴(x +2)2=22+(x -4)2,解得:34=x . ∴线段BE 的长为34.…………………………………………………………………………6分 (3)由已知,以A N D ,,为顶点的三角形与BME △相似,又易证得DAM EBM ∠=∠. ························ 7分 由此可知,另一对对应角相等有两种情况:①ADN BEM ∠=∠;②ADB BME ∠=∠. ①当ADN BEM ∠=∠时,AD BE ∥,ADN DBE ∴∠=∠.DBE BEM ∴∠=∠.DB DE ∴=,易得2BE AD =.得8BE =; 8分②当ADB BME ∠=∠时,AD BE ∥,ADB DBE ∴∠=∠.DBE BME ∴∠=∠.又BED MEB ∠=∠,BED MEB ∴△∽△. DE BE BE EM ∴=,即2BE EM DE ==221DE ,得x 2=21[22+(x -4)2]. 解得12x =,210x =-(舍去).即线段BE 的长为2. ············· 9分 综上所述,所求线段BE 的长为8或2. 5.(某某市浦口区2011年中考一模)(10分)如图,已知直角梯形ABCD 中,AD //BC , DC ⊥BC ,AB =5,BC =6,∠B =53°. 点O 为BC 边上的一个点,连结OD ,以O 为圆心,BO 为半径的⊙O 分别交边AB 于点P ,交线段OD 于点M ,交射线BC 于点N ,连结MN . (1)当BO =AD 时,求BP 的长;(2)在点O 运动的过程中,线段BP 与MN 能否相等?若能,请求出当BO 为多长时BP =MN ;若不能,请说明理由;(3)在点O 运动的过程中,以点C 为圆心,为半径作⊙C ,请直接写出....当⊙C 存在时,⊙O 与⊙C 的位置关系,以及相应的⊙C 半径的取值X 围.(参考数据:cos53°≈0.6;sin53°≈0.8;tan74°≈3.5)A D解:(1)∵AD//BC ,BO=AD ∴四边形AB0D为平行四边形-------------------------------------------------------------------------1分 ∴AB//OD, ∠COD=∠ABO=53°,DO=AB=5在Rt ∆OCD 中,36.05cos =⨯=∠⨯=COD DO CO 分 在RtPOB中,BO=PO,∴BP=.6.353cos 20=⨯⨯BO -------------------------------------------3分 (2)不存在.---------------------------------------------------------------4分 如图,过A 点作AE ⊥BC 交BC 于E 点.若BP = MN ,则△BOP ≌△MON--------------------------------5分 ∴∠BOP=∠MON=180°- 2∠B = 74° DC=AE=.453sin 0=⨯AB-------------------------------------------------------------------------6分在Rt ∆OCD 中,7874tan 0==DC CO . BO=BC-CO=734在△POB 中,BP=83.56.0734253cos 20≈⨯⨯=⨯⨯BO因为AB=5,所以BP>AB. 又因为P 点在边AB 上,即BP <AB. 所以BP与MN不可能相等.--------------------------------------------------------------------------- 8分(3)当时,30<<BO ⊙O 与⊙C 外切, 取值X 围为 0< < 6 ------------ 9分A BCD O P M N E当时,6253≤<BO ⊙O 与⊙C 内切, 取值X 围为 370≤<CN ------------- 10分6.(某某市下关区秦淮区沿江区2011年中考一模)(6分)如图,已知,四边形ABCD为梯形,分别过点A 、D 作底边BC 的垂线,垂足分别为点E 、F .四边形ADFE 是何种特殊的四边形?请写出你的理由.答案:四边形ADFE 是矩形.…………1分证明:因为四边形ABCD 为梯形,所以AD ∥EF .……………………2分因为AE 是底边BC 的垂线,所以∠AEF =90°.同理,∠DFE =90°. 所以,AE ∥DF ,……………………4分 所以,四边形ADFE 为平行四边形. 又因为∠AEF =90°,……………………6分 所以四边形ADFE 是矩形.7、(2011海淀一模)如图,在梯形ABCD 中,AD ∥BC ,∠B=60°,∠ADC=105°,AD =6,且AC⊥AB ,求AB 的长.考查内容:答案:解:过点D 作DE ⊥AC 于点E ,则∠AED =∠DEC =90°.………….……………………1分 ∵ AC ⊥AB ,∴∠BAC =90°.FE DCBAA DCBADCBE∵∠B =60°,∴∠ACB =30°. ∵AD ∥BC ,∴∠DAC =∠ACB =30°.………….……………………2分∴在Rt △ADE 中,DE =12AD =3,AE =,∠ADE =60°. (3)分∵∠ADC=105°,∴∠EDC =45°.∴在Rt △CDE 中, CE =DE =3.…………….……………………………4分∴AC =AE +CE =3.∴ 在Rt △ABC 中,AB =AC ⋅tan ∠ACB =3)3=. …….……………………5分B 组一 选择题1.(2011年白云区初中毕业班综合测试)选择题等腰梯形的一底角为60°,两底之和为11,下底比上底的2倍多2.则腰长为(*) (A)3 (B)5 (C)8 (D)9 答案 B2、(市西城区2011年初三一模试卷)如图,在梯形ABCD 中,AB ∥CD ,∠A =60°,∠B =30°, 若AD =CD =6,则AB 的长等于( ).A .9B .12C .633+D .18 答案D3.(2011路桥二中一模)如图1,在直角梯形ABCD 中,∠B=90°,DC ∥AB ,动点P 从B 点出发,沿折线B →C →D →A 运动,点P 运动的速度为2个单位长度/秒,若设点P 运动的时间为x 秒,△ABP 的面积为y ,如果y 关于x 的函数图像如图2所示,则M 点的纵坐标为( ▲ )A .16B .48C .24D .64答案 B4. (2011某某样卷) 在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =BC ,E 为AB 边上一点,∠BCE =15°,且AE =AD ,连接DE 交对角线AC 于H ,连接BH .下列结论: ①△ACD ≌△ACE ;②△CDE 为等边三角形;③EHBE =2;④S △EBC S △EHC =AHCH. 其中结论正确的是( )A .只有①②B .只有①②④C .只有③④D .①②③④答案 A二 解答题1.(2011昌平区统一练习一)在梯形ABCD 中,AB ∥CD ,BD ⊥AD ,BC =CD ,∠A =60°,BC =2cm . (1)求∠CBD 的度数; (2)求下底AB 的长. 解:∵AD BD ⊥,∴︒=∠90ADB . ∵︒=∠60A ,∴︒=∠30ABD .………………………………1分A BCD DC PB A 图1ABC DE H第12题∵AB ∥CD ,∴︒=∠=∠30CBD ABD .……………………2分 ∵BC=CD,∴︒=∠=∠30CBD CDB . ……………………3分 ∴︒=∠60ABC . ∴ABC A ∠=∠.∴梯形ABCD 是等腰梯形. …………………4分 ∴AD=BC =2.在中,︒=∠90ADB ,︒=∠30ABD , ∴AB=2AD=4. ………………………………5分2.(某某四中2011年初三第一次模拟测试)已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE AC =.(1)求证:BG FG =; 答案(2)若2AD DC ==,求AB 的长. 答案 (1)证明:90ABC DE AC ∠=°,⊥于点F ,ABC AFE ∴∠=∠.·········· (1分) AC AE EAF CAB =∠=∠,, ABC AFE ∴△≌△(2分)AB AF ∴=. ············ (3分)连接AG , ·············· (4分)AG AG AB AF ==,,DCEB GA (2 题)FD CEB GA FRt Rt ABG AFG ∴△≌△. ······ (5分) BG FG ∴=. ············ (6分)(2)解:AD DC DF AC =,⊥,1122AF AC AE ∴==. ························ (7分) 30E ∴∠=°.30FAD E ∴∠=∠=°, ························ (8分)3AF ∴= ····························· (9分) 3AB AF ∴== ·························· (10分)3.(2011平谷区一模).已知,如图,梯形ABCD 中,AD ∥BC ,∠A =90°,∠C =45°,BE ⊥DC 于E ,BC =5,AD :BC =2:5.求ED 的长.答案 解:作DF ⊥BC 于F,EG ⊥BC 于G.……1分∵∠A =90°,AD ∥BC ∴四边形ABFD 是矩形. ∵BC =5,AD :BC =2:5.∴ AD=BF=2.………………………………………..2分 ∴ FC=3. 在Rt △DFC 中, ∵∠C =45°,∴ DC=23.…………………………………………3分 在Rt △BEC 中,∴EC =225……………………………………………….……………………………....4分 EB CDA∴DE =2222523=-……………………………………………………………….5分4.(2011某某一模).如图,在梯形ABCD 中,AD//BC ,︒=∠90DBC ,BC =BD ,在AB 上截取BE ,使BE =BC ,过点B 作AB BF ⊥于B ,交CD 于点F .连接CE ,交BD 于点H ,交BF于点G .(1)求证:EH =CG ;(2)已知AD =3,BG =2,求AB 的长.答案 证明:(1) ∵︒=∠90DBC ∴︒=∠+∠9031 ∵BF ⊥AB 于B ∴︒=∠+∠9021 ∴32∠=∠ ∵EB =CB∴54∠=∠ ∴EHB ∆≌CGB ∆ ∴EH =CG(也可证明EBG ∆≌CBH ∆)(2)方法一:过点C 作BC 的垂线交BF 的延长线于M ∵BC AD //∴︒=∠=∠90DBC ADB ∵BC CM ⊥ ∴︒=∠90MCB ∴ADC MCB ∠=∠A DHEBGFC7654321MF GHEDCBA又∵DB =BC 由(1)知32∠=∠ ∴ADB ∆≌MCB ∆ ∴AB =BM AD=CM=3由(1)知EHB ∆≌CGB ∆ ∴BH =BG=2 ∴76∠=∠∵︒=∠=∠90DBC BCM ∴CM DB //∴MCG ∠=∠6,GMC ∠=∠7 ∴GMC MCG ∠=∠ ∴MG =MC =3 ∴BM =AB =5。
2011年全国各地中考数学压轴题专集之七、平行四边形、矩形、菱形、正方形、梯形
七、平行四边形、矩形、菱形、正方形、梯形1.图形既关于点O 中心对称,又关于直线AC ,BD 对称,AC =10,BD =6,已知点E ,M 是线段AB 上的动点(不与端点重合),点O 到EF ,MN 的距离分别为h 1,h 2.△OEF 与△OGH 组成的图形称为蝶形. (1)求蝶形面积S 的最大值;(2)当以EH 为直径的圆与以MQ 为直径的圆重合时,求h 1与h 2满足的关系式,并求h 1的取值范围.2.如图1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点,P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .(1)求点D 的坐标(用含m 的代数式表示); (2)当△APD 是等腰三角形时,求m 的值; (3)设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2).当点P 从点O 向点C 运动时,点H 也随之运动,请直接写出点H 所经过的路径长.(不必写解答过程)3.以平行四边形ABCD 的边AB 、BC 、CD 、DA 为斜边分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,顺次连结这四个点,得四边形EFGH ,设∠ADC =α(0°<α<90°). (1)求∠HAE 的大小(用含 α 的代数式表示); (2)求证:HE =HG ;(3)判断四边形EFGH 是什么四边形?并说明理由.4.在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F . (1)在图1中证明CE =CF ;(2)若∠ABC =90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数 (3)若∠ABC =120°,FG ∥CE ,FG =CE ,分别连结DB 、DG (如图3),求∠BDG 的度数. C A D BG PEM N F QHO图1EB F GD H A C AD BC E ABC DE ABCD E5.如图,有一张长为5宽为3的矩形纸片ABCD ,要通过适当的剪拼,得到一个与之面积相等的正方形. (1)该正方形的边长为____________;(2)现要求只能用两条裁剪线.请你设计一种裁剪的方法.在图中画出裁剪线,并简要说明剪拼的过程.6.如图,矩形ABCD 中,AB =6,BC =8,对角线AC 与BD 相交于点O ,点E 在射线BM 上. (1)连接OE ,与边CD 交于点F .若CE =OC ,求CF 的长;(2)连接DE 、AE ,AE 与对角线BD 相交于点P .若△ADE 为等腰三角形,求DP 的长.7.如图,梯形ABCD 中,AD ∥BC ,∠DCB =45°,CD =2,BD ⊥CD .过点C 作CE ⊥AB 于E ,交对角线BD 于F ,点G 为BC 中点,连结EG 、AF .(1)求EG 的长;(2)求证:CF =AB +AF .8.如图,正方形ABCD 的四个顶点分别在四条平行线l 1、l 2、l 3、l 4上,这四条直线中相邻两条之间的距离依次为h 1、h 2、h 3(h 1>0,h 2>0,h 3>0). (1)求证:h 1=h 3;(2)设正方形ABCD 的面积为S ,求证:S =(h 1+h 2)2+h 12;(3)若32h 1+h 2=1,当h 1变化时,说明正方形ABCD 的面积为S 随h 1的变化情况.9.如图,已知四边形ABDE 、ACFG 都是△ABC 外侧的正方形,连接DF ,若M 、N 分别为DF 、BC 的中点,求证:MN ⊥BC 且MN =12BC . A BCDB CDAOEMF BC DAOM备用图A BCDGEFl l l l10.矩形纸片ABCD 中,AD =12cm ,现将这张纸片按下列图示方式折叠,AE 是折痕.(1)如图1,P ,Q 分别为AD ,BC 的中点,点D 的对应点F 在PQ 上,求PF 和AE 的长; (2)如图2,DP =13AD ,CQ =13BC ,点D 的对应点F 在PQ 上,求AE 的长; (3)如图3,DP =1 n AD ,CQ = 1nBC ,点D 的对应点F 在PQ 上. ①直接写出AE 的长(用含n 的代数式表示);②当n 越来越大时,AE 的长越来越接近于_________.11.如图,等腰梯形ABCD 中,AD =4,BC =9,∠B =45°.动点P 从点B 出发沿BC 向点C 运动,动点Q 同时以相同速度从点C 出发沿CD 向终D 运动,其中一个动点到达端点时,另一个动点也随之停止运动. (1)求AB 的长;(2)设BP =x ,问当x 为何值时△PCQ 的面积最大,并求出最大值;(3)探究:探究:在AB 边上是否存在点M ,使得四边形PCQM 为菱形?请说明理由.12.如图①,将矩形ABCD 折叠,使点B 落在边AD (含端点)上,落点记为E ,此时折痕与边BC 或边CD (含端点)交于点F ,然后展开铺平,则以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”. (1)由“折痕三角形”的定义可知,矩形ABCD 的任意一个“折痕△BEF ”是一个_________三角形; (2)如图②,在矩形ABCD 中,AB =2,BC =4,当它的“折痕△BEF ”的顶点E 位于AD 的中点时,画出这个“折痕△BEF ”,并求出点F 的坐标;(3)如图③,在矩形ABCD 中,AB =2,BC =4,该矩形是否存在面积最大的“折痕△BEF ”?若存在,说明理由,并求出此时点E 的坐标?若不存在,为什么? CAFBDEGMN图1CAFBD EP Q 图2C AFBD EP Q 图3C AFBD EPQ13.如图,在梯形ABCD 中,AB ∥CD ,∠A =90°,AB =3,CD =6,BE ⊥BC 交直线AD 于点E . (1)当点E 与D 恰好重合时,求AD 的长;(2)当点E 在边AD 上时(E 不与A 、D 重合),设AD =x ,ED =y ,求y 关于x 的函数关系式,并写出自变量x 取值范围;(3)是否可能使△ABE 、△CDE 与△BCE 都相似?若能,请求出此时AD 的长;若不能,请说明理由.14.如图,矩形ABCD 中,AB =3,BC =4,M 为CD 中点,点E 在线段MC 上运动,FG 垂直平分AE ,垂足为O ,分别交AD 、BC 于F 、G .(1)求AEFG的值; (2)设CE =x ,四边形AGEF 的面积为y ,求y 关于x 的函数关系式;当y 取最大值时,判断四边形AGEF 的形状,并说明理由.15.如图1,矩形ABCD 中,AB =10cm ,BC =6cm ,在BC 边上取一点E ,将△ABE 沿AE 翻折,使点B 落在DC 边上的点F 处. (1)求CF 和EF 的长;(2)如图2,一动点P 从点A 出发,以每秒1cm 的速度沿AF 向终点F 作匀速运动,过点P 作PM ∥EF 交AE 于点M ,过点M 作MN ∥AF 交EF 于点N .设点P 运动的时间为t (0<t<10),四边形PMNF 的面积为S ,试探究S 的最大值?(3)以A 为坐标原点,AB 所在直线为x 轴,建立平面直角坐标系,如图3,在(2)的条件下,连接FM ,若△AMF 为等腰三角形,求点M 的坐标.16.如图,四边形OABC 是矩形,点A 、C 的坐标分别为(6,0),(0,2),M 是线段BC 上的动点(与端点B 、C 不重合),过点M 的直线y =-2 3x +m 交折线OAB 于点N .(1)记△MOE 的面积为S ,求S 与m 的函数关系式,并写出m 的取值范围;(2)当点N 在线段OA 上时,若矩形OABC 关于直线MN 的对称图形为四边形O 1A 1B 1C 1.①当m 为何值时,B 、N 、B 1三点在同一直线上;②试探究四边形O 1A 1B 1C 1与矩形OABC 重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由. D ABC EEMG(图2)E(图1) DBC EFA17.如图,边长为1的正方形ABCD 中,以A 为圆心,1为半径作BD ︵,将一块直角三角板的直角顶点P放置在BD ︵(不包括端点B 、D )上滑动,一条直角边通过顶点A ,另一条直角边与边BC 相交于点Q ,连接PC ,设PQ =x .(1)△CPQ 能否为等边三角形?若能,求出x 的值;若不能,说明理由; (2)求△CPQ 周长的最小值;(3)当△CPQ 分别为锐角三角形、直角三角形和钝角三角形时,求x 的取值范围.18.如图,菱形ABCD 中,AB =10,sin A =45,点E 在AB 上,AE =4,过点E 作EF ∥AD ,交CD 于F ,点P 从点A 出发,以每秒1个单位长的速度沿线段AB 向终点B 匀速运动,同时点Q 从点E 出发,以相同的速度沿线段EF 向终点F 匀速运动,设运动时间为t (秒). (1)当t =5秒时,求PQ 的长;(2)当BQ 平分∠ABC 时,直线PQ 将菱形ABCD 的周长分成两部分,求这两部分的比;(3)以P 为圆心,PQ 长为半径的⊙P 是否能与直线AD 相切?如果能,求此时t 的值;如果不能,说明理由.19.如图,在平面直角坐标系中,四边形ABCD 为菱形,AB =10,AB 边在x 轴上,点D 在y 轴上,点A 的坐标是(-6,0). (1)求点C 的坐标;(2)连接BD ,点P 是线段CD 上一动点(点P 不与C 、D 两点重合),过点P 作PE ∥BC 交BD 于点E ,过点B 作BQ ⊥PE 交PE 的延长线于点Q .设PC 的长为x ,PQ 的长为y ,求y 与x 之间的函数关系式(直接写出自变量x 的取值范围);4备用图备用图A PB C D QAB C D 备用图ABCD备用图ADCB E备用图 F心,以5为半径的⊙P 与直线BC 的位置关系,请说明理由.20.在正方形ABCD 的边AB 上任取一点E ,作EF ⊥AB 交BD 于点F ,如图1.(1)将图1中的△BEF 绕点B 逆时针旋转90°,取DF 的中点G ,连接EG ,CG ,如图2,则线段EG 和CG 有怎样的数量关系和位置关系?请直接写出你的猜想; (2)将图1中的△BEF 绕点B 逆时针旋转180°,取DF 的中点G ,连接EG ,CG ,如图3,则线段EG 和CG 有怎样的数量关系和位置关系?请写出你的猜想,并加以证明;(3)将图1中的△BEF 绕点B 逆时针旋转任意角度,取DF 的中点G ,连接EG ,CG ,如图3,则线段EG 和CG 又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.21.如图,将矩形OABC 放置在平面直角坐标系中,点D 在边OC 上,点E 在边OA 上,把矩形沿直线DE 翻折,使点O 落在边AB 上的点F 处,且tan ∠BFD =4 3.若线段OA 的长是一元二次方程x2-7x -8=0的一个根,又2AB =3OA .请解答下列问题: (1)求点B 、F 的坐标; (2)求直线ED 的解析式;(3)在直线ED 、FD 上是否存在点M 、N ,使以点C 、D 、M 、N 为顶点的四边形是等腰梯形?若存在,求点M 的坐标;若不存在,请说明理由.备用图C AB DE GF图2 C ABDEGF图4C AB DEGF 图3 C A B DEF图122.如图,在平面直角坐标系中,四边形OABC 是梯形,BC ∥OA ,点A 的坐标为(10,0),点C 的坐标为(0,8),OA =OB . (1)求点B 的坐标;(2)点P 从点A 出发,沿线段AO 以1个单位/秒的速度向终点O 匀速运动,过点P 作PH ⊥OA ,交折线A -B -O 于点H ,设点P 的运动时间为t 秒(0≤t ≤10).①是否存在某个时刻t ,使△OPH 的面积等于△OAB 面积的320?若存在,求出t 的值,若不存在,请说明理由;②以P 为圆心,P A 长为半径作⊙P ,当⊙P 与线段OB 只有一个公共点时,求t 的值或t 的取值范围.23.如图,在Rt △OAB 中,∠A =90°,∠ABO =30°,OB =833,边AB 的垂直平分线CD 分别与AB 、x 轴、y 轴交于点C 、E 、D .(1)求点E 的坐标;(2)求直线CD 的解析式; (3)在直线CD 上和坐标平面内是否分别存在点Q 、P ,使得以O 、D 、P 、Q 为顶点的四边形是菱形?若存在,求出点Q 的坐标;若不存在,请说明理由.24.在四边形ABCD 中,对角线AC 、BD 相交于点O ,设锐角∠DOC =α,将△DOC 绕点O 按逆时针方向旋转得到△D ′OC ′(0°<旋转角<90°),连接AC ′、BD ′,AC ′ 与BD ′ 相交于点M .(1)当四边形ABCD 是矩形时,如图1,请猜想AC ′ 与BD ′ 的数量关系以及∠AMB 与α的大小关系,并证明你的猜想;(2)当四边形ABCD 是平行四边形时,如图2,已知AC =kBD ,请猜想此时AC ′ 与BD ′ 的数量关系以及∠AMB 与α的大小关系,并证明你的猜想;(3)当四边形ABCD 是等腰梯形时,如图3,AD ∥BC ,此时(1)AC ′ 与BD ′ 的数量关系是否成立?∠AMB 与α的大小关系是否成立?不必证明,直接写出结论.MBCAODC ′D ′M BCAODC ′D ′M BC AODC ′D ′25.如图l ,己知正方形ABCD ,点E 、F 分别在边AB 、AD 上,且AE =AF . (1)如图2,将△AEF 绕点A 顺时针旋转∠α,当0°<α<90°时,连接BE 、DF ,判断线段BE 、DF 的数量关系和位置关系,并加以证明;(2)如图3,将△AEF 绕点A 顺时针旋转∠α,当α=90°时,连接BE 、DF ,当AE 与AD 满足什么数量关系时,直线DF 垂直平分BE ?请说明理由;(3)如图4,将△AEF 绕点A 顺时针旋转∠α,当90°<α<180°时,连接BD 、DE 、EF 、FB 得到四边形BDEF ,则顺次连接四边形BDEF 各边中点所组成的四边形是什么特殊四边形?请说明理由.26.如图,ABCD 是一张矩形纸片,AD =BC =1,AB =CD =5.在矩形ABCD 的边AB 上取一点M ,在CD 上取一点N ,将纸片沿MN 折叠,使MB 与DN 交于点K ,得到△MNK .(1)若∠1=70°,求∠MKN 的度数;(2)△MNK 的面积能否小于12?若能,求出此时∠1的度数;若不能,试说明理由;(3)如何折叠能够使△MNK 的面积最大?请你用备用图探究可能出现的情况,求最大值.27.如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合.现将正方形ABCD 在梯形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶点与Q 重合即停止滚动.(1)请在所给的图中,用尺规画出点A 在正方形整个翻滚过程中所经过的路线图;(2)求正方形在整个翻滚过程中点A 所经过的路线与梯形MNPQ 的三边MN 、NP 、PQ 所围成图形的面积S .BDA CEF 图1BDACEF图2BDA CEF图3 BDACEF图4B D AC BD A M N C K 1B D AC BD A C AQ28.已知四边形ABCD 是边长为4的正方形,以AB 为直径在正方形内作半圆,P 是半圆上的动点(不与点A 、B 重合),连接P A 、PB 、PC 、PD . (1)如图①,当P A 的长度等于_________时,∠PAB =60°;当P A 的长度等于_________时,△PAD 是等腰三角形;(2)如图②,以AB 边所在直线为x 轴、AD 边所在直线为y 轴,建立如图所示的直角坐标系(点A 即为原点O ),记△PAD 、△PAB 、△PBC 的面积分别为S 1、S 2、S 3.设P 点坐标为(a ,b ),试求2S 1S 3-S 22的最大值,并求出此时a 、b 的值.29.如图,把边长为1的正方形纸片OABC 放在直线l 上,OA 边与直线l 重合.将正方形纸片绕着顶点A 按顺时针方向旋转90°,此时点O 运动到了点O 1处(即点B 处),点C 运动到了点C 1处,点B 运动到了点B 1处;再将正方形纸片AO 1C 1B 1绕顶点B 1按顺时针方向旋转90°,……,按上述方法经过若干次旋转.请解答下列问题:(1)求正方形纸片OABC 经过3次旋转,顶点O 经过的路程以及顶点O 在此过程中所形成的图形与直线l 围成图形的面积;(2)求正方形纸片OABC 经过5次旋转,顶点O 经过的路程; (3)正方形纸片OABC 经过多少次旋转,顶点O 经过的路程是 41+2022π?30.如图,将矩形纸片ABCD 按如下顺序进行折叠:对折、展平,得折痕EF (如图①);沿GC 折叠,使点B 落在EF 上的点B ′ 处(如图②);展平,得折痕GC (如图③);沿GH 折叠,使点C 落在DH 上的点C ′ 处(如图④);沿GC ′ 折叠(如图⑤);展平,得折痕GC ′、GH (如图⑥). (1)求图②中∠BCB ′ 的大小;(2)图⑥中的△GCC ′ 是正三角形吗?请说明理由.AP BCD(图①)(图②)A OB 1 A E DC B F 图① A ED C B F 图② B ′ G A D C B 图③ G A D C B 图④ C ′G H A D C B 图⑤ C ′ G H A ′A E D CB F 图⑥ GC ′ H31.如图,在边长为2的正方形ABCD 中,P 为AB 的中点,Q 为边CD 上一动点,设DQ =t (0≤t ≤2),线段PQ 的垂直平分线分别交边AD 、BC 于点M 、N ,过Q 作QE ⊥AB 于点E ,过M 作MF ⊥BC 于点F . (1)当t ≠1时,求证:△PEQ ≌△NFM ;(2)顺次连接P 、M 、Q 、N ,设四边形PMQN 的面积为S ,求出S 与自变量t 之间的函数关系式,并求S 的最小值.32.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,ab ≠0),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.33.如图,在直角梯形ABCD 中,AD ∥BC ,∠A =90°,AB =6,BC =8,AD =14,点E 、F 、G 分别在BC 、AB 、AD 上,且BE =3,BF =2,以EF 、FG 为邻边作□EFGH ,连接CH 、DH . (1)直接写出点H 到AD 的距离;(2)若点H 落在梯形ABCD 内或其边上,求△HGD 面积的最大值与最小值; (3)当△EHC 为等腰三角形时,求AG 的长.34.已知菱形ABCD 中,点E 、F 分别在边BC 、CD 上(点E 、F 分别不与点C 、D 重合),且AE =AF ,∠EAF =54°.(1)如图1,当AC 平分∠EAF 时,若AB =AE ,求∠AEB 的度数;(2)如图2,当AC 不平分∠EAF 时,若△ABE 是一个等腰三角形,求∠AEB 的度数. A D CE P BF M N Q图2ADC EOB F 图1 备用图 QADCGB FEH35.如图,△ABC 是等腰直角三角形,∠BAC =90º,BC =2,D 是线段BC 上一点,以AD 为边,在AD 的右侧作正方形ADEF .直线AE 与直线BC 交于点G ,连接CF . (1)猜想线段CF 与线段BD 的数量关系和位置关系,并说明理由; (2)连接FG ,当△CFG 是等腰三角形时,求BD 的长.36.在矩形ABCD 中,点E 是AD 边上一点,∠ABE =30°,BE =DE ,连接BD .动点M 从点E 出发沿射线ED 运动,过点M 作MN ∥BD 交直线BE 于点N .(1)如图1,当点M 在线段ED 上时,求证:BE =PD +33MN ; (2)若BC =6,设MN 长为x ,以M 、N 、D 为顶点的三角形面积为y ,求y 关于x 的函数关系式;(3)在(2)的条件下,当点M 运动到线段ED 的中点时,连接NC ,过点M 作MF ⊥NC 于F ,MF 交对角线BD 于点G (如图2),求线段MG 的长.37.在矩形ABCD 中,点P 在AD 上,AB =2,AP =1.将直角尺的顶点放在P 处,直角尺的两边分别交AB 、BC 于点E 、F ,连接EF (如图1).(1)当点E 与点B 重合时,点F 恰好与点C 重合(如图2),求PC 的长;(2)探究:将直尺从图2中的位置开始,绕点P 顺时针旋转,当点E 和点A 重合时停止.在这个过程中,请你观察、猜想,并解答:①tan ∠PEF 的值是否发生变化?请说明理由; ②直接写出从开始到停止,线段EF 的中点经过的路线长.ADCB F E 图1 A DC B F E 图2D C B FE A G CB A 备用图 AE MBD N C 图1AEBD C 备用图AE M BDNC图2G FA E BD FCP 图1A B DC P 图2(F )(E )38.已知菱形ABCD 的边长为1,∠ADC =60°,等边△AEF 两边分别交边DC 、CB 于点E 、F .(1)特殊发现:如图1,若点E 、F 分别是边DC 、CB 的中点,求证:菱形ABCD 对角线AC 、BD 的交点O 即为等边△AEF 的外心;(2)若点E 、F 始终分别在边DC 、CB 上移动,记等边△AEF 的外心为点P .①猜想验证:如图2,猜想△AEF 的外心P 落在哪一直线上,并加以证明;②拓展运用:如图3,当△AEF 面积最小时,过点P 任作一直线分别交边DA 于点M ,交边DC 的延长线于点N ,试判断1DM+1DN是否为定值.若是,请求出该定值;若不是,请说明理由.39.如图,在直角梯形ABCD 中,∠D =∠BCD =90°,∠B =60°,AB =6,AD =9,点E 是CD 上的一个动点(E 不与D 重合),过点E 作EF ∥AC ,交AD 于点F (当E 运动到C 时,EF 与AC 重合),把△DEF 沿着EF 对折,点D 的对应点是点G .设DE =x ,△GEF 与梯形ABCD 重叠部分的面积为y . (1)求CD 的长及∠1的度数;(2)若点G 恰好在BC 上,求此时x 的值;(3)求y 与x 之间的函数关系式,并求x 为何值时,y 的值最大?最大值是多少?40.如图,梯形ABCD 中,AD ∥BC ,∠A =90°,AD =10,AB =3,BC =14,点E 、F 分别在BC 、DC 上,将梯形ABCD 沿直线EF 折叠,使点C 落在AD 上一点C ′,再沿C ′G 折叠四边形C ′ABE ,使AC ′ 与C ′E 重合,且C ′A 过点E . (1)试证明C ′G ∥EF ;(2)若点A ′ 与点E 重合,求此时图形重叠部分的面积.41.如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =AB =1,BC =2.将点A 折叠到CD 边上,记折叠后A 点对应的点为P (P 与D 点不重合),折痕EF 只与边AD 、BC 相交,交点分别为E 、F .过点P 作PN ∥BC 交AB 于N ,交EF 于M ,连结PA 、PE 、AM ,EF 与P A 相交于O .图1AEBD FC O图2图3BAB C EDFG1A B CD备用图G A B C D EFA ′B ′C ′(1)指出四边形PEAM 的形状(不需证明);(2)记∠EPM =α,△AOM 、△AMN 的面积分别为S 1、S 2.①求证:S 1tanα2=18PA2;②设AN =x ,y =S 1-S 2tanα2,试求出以x 为自变量的函数y 的解析式,并确定y 的取值范围.42.如图1,边长为2的正方形ABCD 中,E 是BA 延长线上一点,且AE =AB ,点P 从点D 出发,以每秒1个单位长度的速度沿D →C →B 向终点B 运动,直线EP 交AD 于F ,过点F 作直线FG ⊥DE 于G ,交AB 于Q .设点P 运动时间为t (秒). (1)求证:AF =AQ ;(2)当t 为何值时,四边形PQBC 是矩形?(3)如图2,连接PB ,当t 为何值时,△PQB 是等腰三角形?43.如图1,已知梯形ABCD 中,AD ∥BC ,∠A =90°,AB =AD =4,BC =6.点E 为AB 边上一点,EF ∥DC ,交BC 边于点F ,FG ∥ED ,交DC 边于点G . (1)若四边形DEFG 为矩形,求AE 的长;(2)如图2,将(1)中的∠DEF 绕E 点逆时针旋转,得到∠D ′EF ′,EF ′交BC 边于F ′点,且F ′点与C 点不重合,射线ED ′交AD 边于点M ,作F ′N ∥ED ′交DC 边于点N .设AM 的长为x ,△NF ′C 中,F ′C 边上的高为y ,求y 关于x 的函数关系式,并确定自变量x 的取值范围.44.如图,四边形OABC 的四个顶点坐标分别为O (0,0),A (8,0),B (4,4),C (0,4),直线l :y =kx +b 保持与四边形OABC 的边交于点M 、N (M 在折线AOC 上,N 在折线ABC 上)设四边形OABC在l 右下方部分的面积为S 1,在l 左上方部分的面积为S 2,记S =|S 1-S 2|.OA BCDPE F MN CD FG P图1 CDF G P 图2 A B C E D F G 图1 A B C E D F ′ N图2 M D ′(1)求∠OAB 的大小;(2)当M 、N 重合时,求l 的解析式;(3)当b ≤0时,问线段AB 上是否存在点N 使得S =0?若存在,求b 的值;若不存在,请说明理由; (4)求S 与b 的函数关系式。
全国2011年中考数学试题分类解析汇编专题位似
全国2011年中考数学试题分类解析汇编专题位 似一、选择题1.(广西贵港3分)如图所示,在梯形ABCD 中,AB ∥CD ,E 是BC 的中点,EF ⊥AD 于点F ,AD =4,EF =5,则梯形ABCD 的面积是A .40B .30C .20D .10 【答案】C 。
【考点】位似变换和性质。
【分析】根据位似的概念,如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形。
把一个图形变换成与之位似的图形是位似变换。
如图,作四边形ECDF 的位似图形EBGH ,位似中心为点E ,位似比为1:1。
这样梯形ABCD 的面积就等于梯形AFHG 的面 积,且HG =FD ,HG +FA =AD =4,HF =2 EF =10。
因此,它们的面积就等于1410=202⨯⨯。
故选C 。
2.(山东聊城3分)如图,矩形OABC 的顶点O 是坐标原点,边OA在x 轴上,边OC 在y 轴上.若矩形OA 1B 1C 1与矩形OABC 关于点O位似,且矩形OA 1B 1C 1的面积等于矩形OABC 面积的 1 4,则点B 1 的坐标是A .(3,2)B .(-2,-3)C .(2,3)或(-2,-3)D .(3,2)或(-3,-2)【答案】D 。
【考点】位似的性质。
【分析】根据位似的性质,位似图形的面积比是对应边比的平方,而矩形OA 1B 1C 1的面积等于矩形OABC 面积的 1 4,故它们的边长比是 1:2。
根据位似图形的对应点和位似中心在同一直线上,它们到位似中心的距离之比等于相似比,故有两点满足题意,如图所示。
故选D 。
投影 3.(山东东营3分)如图,△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(1 0-,).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A’B’C ,并把△ABC 的的边长放大到原来的2倍.设点B 的对应点B’的横坐标是a ,则点B 的横坐标是A .12a -B .()112a -+ C .()112a -- D .()132a -+ 【答案】D 。
2011年中考动态问题-梯形-三角形
动态问题梯形三角形一、选择题的对角线AC上一动点,过P垂直于AC的直线交菱形ABCD的边于M、N两点,设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象的大致形状是()A.B.C.D.【答案】C2. (2011山东威海,12,3分)如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD—DC—CB以每秒3cm的速度运动,到达B点时运动同时停止,设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是()【答案】B3. (2011甘肃兰州,14,4分)如图,正方形ABCD的边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为S,AE为x,则S关于x的函数图象大致是A .B .C .D .【答案】B4. (2011山东德州23,12分)在直角坐标系xoy 中,已知点P 是反比例函数)>0(32x xy =图象上一个动点,以P 为圆心的圆始终与y 轴相切,设切点为A .(1)如图1,⊙P 运动到与x 轴相切,设切点为K ,试判断四边形OKP A 的形状,并说明理由.(2)如图2,⊙P 运动到与x 轴相交,设交点为B ,C .当四边形ABCP 是菱形时: ①求出点A ,B ,C 的坐标.②在过A ,B ,C 三点的抛物线上是否存在点M ,使△MBP 的面积是菱形ABCP 面积的21.若存在,试求出所有满足条件的M 点的坐标,若不存在,试说明理由.AP2y =K O图1C DG【答案】解:(1)∵⊙P 分别与两坐标轴相切, ∴ P A ⊥OA ,PK ⊥OK . ∴∠P AO =∠OKP =90°. 又∵∠AOK =90°,∴ ∠P AO =∠OKP =∠AOK =90°. ∴四边形OKP A 是矩形. 又∵OA =OK ,∴四边形OKP A 是正方形.……………………2分 (2)①连接PB ,设点P 的横坐标为x ,则其纵坐标为x32. 过点P 作PG ⊥BC 于G . ∵四边形ABCP 为菱形, ∴BC =P A =PB =PC . ∴△PBC 为等边三角形.在Rt △PBG 中,∠PBG =60°,PB =P A =x , PG =x32. sin ∠PBG =PBPGx x =. 解之得:x =±2(负值舍去).∴ PG,P A =B C=2.……………………4分 易知四边形OGP A 是矩形,P A =OG =2,BG =CG =1, ∴OB =OG -BG =1,OC =OG +GC =3.∴ A (0),B (1,0) C (3,0).……………………6分 设二次函数解析式为:y =ax 2+bx +c .据题意得:0930a b c a b c c ⎧++=⎪++=⎨⎪=⎩OAP 2y =B C图2GM解之得:ab= c.∴二次函数关系式为:2y x =9分 ②解法一:设直线BP 的解析式为:y =ux +v ,据题意得:2u v u v +=⎧⎪⎨+=⎪⎩解之得:uv=-∴直线BP的解析式为:y =-.过点A 作直线AM ∥PB ,则可得直线AM的解析式为:y =+解方程组:233y y x x ⎧=+⎪⎨=-⎪⎩得:110x y =⎧⎪⎨=⎪⎩;227x y =⎧⎪⎨=⎪⎩ 过点C 作直线CM ∥PB ,则可设直线CM的解析式为:y t =+. ∴0=t .∴t =-∴直线CM的解析式为:y =-.解方程组:233y y x x ⎧=-⎪⎨=-⎪⎩得:113x y =⎧⎨=⎩ ;224x y =⎧⎪⎨=⎪⎩. 综上可知,满足条件的M 的坐标有四个,分别为:(0),(3,0),(4),(7,.…………………12分 解法二:∵12PAB PBC PABCS S S ∆∆==,∴A(0,C(3,0)显然满足条件.延长AP交抛物线于点M,由抛物线与圆的轴对称性可知,PM=P A.又∵AM∥BC,∴12PBM PBA PABCS S S∆∆==.∴点M又点M的横坐标为AM=P A+PM=2+2=4.∴点M(4点(7,综上可知,满足条件的M的坐标有四个,分别为:(0),(3,0),(4),(7,.…………………12分解法三:延长AP交抛物线于点M,由抛物线与圆的轴对称性可知,PM=P A.又∵AM∥BC,∴12PBM PBA PABCS S S∆∆==.∴点M2x x=.解得:10x=(舍),24x=.∴点M的坐标为(4.点(7,综上可知,满足条件的M的坐标有四个,分别为:(0),(3,0),(4),(7,.…………………12分6. (2011山东济宁,23,10分)如图,在平面直角坐标系中,顶点为(4,1-)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧). 已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;(3)已知点P 是抛物线上的一个动点,且位于A ,C 两点之间,问:当点P 运动到什么位置时,PAC ∆的面积最大?并求出此时P 点的坐标和PAC ∆的最大面积.【答案】(1)解:设抛物线为2(4)1y a x =--. ∵抛物线经过点A (0,3),∴23(04)1a =--.∴14a =. ∴抛物线为2211(4)12344y x x x =--=-+. ……………………………3分 (2) 答:l 与⊙C 相交. …………………………………………………………………4分 证明:当21(4)104x --=时,12x =,26x =. ∴B 为(2,0),C 为(6,0).∴AB =设⊙C 与BD 相切于点E ,连接CE ,则90BEC AOB ∠=︒=∠. ∵90ABD ∠=︒,∴90CBE ABO ∠=︒-∠.又∵90BAO ABO ∠=︒-∠,∴BAO CBE ∠=∠.∴AOB ∆∽BEC ∆. ∴CE BCOB AB =.∴2CE =.∴2CE =>.…………………………6分 ∵抛物线的对称轴l 为4x =,∴C 点到l 的距离为2.∴抛物线的对称轴l 与⊙C 相交. ……………………………………………7分 (3) 解:如图,过点P 作平行于y 轴的直线交AC 于点Q .可求出AC 的解析式为132y x =-+.…………………………………………8分 设P 点的坐标为(m ,21234m m -+),则Q 点的坐标为(m ,132m -+).x(第23题)∴2211133(23)2442PQ m m m m m =-+--+=-+. ∵22113327()6(3)24244PAC PAQ PCQ S S S m m m ∆∆∆=+=⨯-+⨯=--+,∴当3m =时,PAC ∆的面积最大为274.此时,P 点的坐标为(3,34-). ……………………………10分7. (2011山东威海,25,12分)如图,抛物线2y ax bx c =++交x 轴于点(3,0)A -,点(1,0)B ,交y 轴于点(0,3)E -.点C 是点A 关于点B 的对称点,点F 是线段BC 的中点,直线l 过点F 且与y 轴平行.直线y x m =-+过点C ,交y 轴于点D . (1)求抛物线的函数表达式;(2)点K 为线段AB 上一动点,过点K 作x 轴的垂线与直线CD 交于点H ,与抛物线交于点G ,求线段HG 长度的最大值;(3)在直线l 上取点M ,在抛物线上取点N ,使以点A ,C ,M ,N 为顶点的四边是平行四边形,求点N 的坐标.图① 备用图【答案】 解:(1)设抛物线的函数表达式(1)(3)y a x x =-+x(第23题)∵抛物线与y 轴交于点(0,3)E -,将该点坐标代入上式,得1a =. ∴所求函数表达式(1)(3)y x x =-+,即223y x x =+-. (2)∵点C 是点A 关于点B 的对称点,点(3,0)A -,点(1,0)B , ∴点C 的坐标是(5,0)C .将点C 的坐标是(5,0)C 代入y x m =-+,得5m =. ∴直线CD 的函数表达式为5y x =-+.设K 点的坐标为(,0)t ,则H 点的坐标为(,5)t t -+,G 点的坐标为2(,23)t t t +-. ∵点K 为线段AB 上一动点, ∴31t -≤≤.∴222341(5)(23)38()24HG t t t t t t =-+-+-=--+=-++. ∵3312-≤-≤, ∴当32t =-时,线段HG 长度有最大值414.(3)∵点F 是线段BC 的中点,点(1,0)B ,点 (5,0)C , ∴点F 的坐标为(3,0)F . ∵直线l 过点F 且与y 轴平行, ∴直线l 的函数表达式为3x =. ∵点M 在直线l 上,点N 在抛物线上 ,∴设点M 的坐标为(3,)M m ,点N 的坐标为2(,23)N n n n +-. ∵点(3,0)A -,点 (5,0)C ,∴8AC =. 分情况讨论: ①若线段AC 是以点A ,C ,M ,N 为顶点的四边是平行四边形的边,则须MN ∥AC ,且MN =AC =8.当点N 在点M 的左侧时,3MN n =-. ∴38n -=,解得5n =-.∴N 点的坐标为(5,12)N -.当点N 在点M 的右侧时,3MN n =-. ∴38n -=,解得11n =. ∴N 点的坐标为(11,40)N .②若线段AC 是以点A ,C ,M ,N 为顶点的平行四边形的对角线,由“点C 与点A 关于点B 中心对称”知:点M 与点N 关于点B 中心对称.取点F 关于点B 对称点P ,则点P 的坐标为(1,0)P -.过点P 作NP ⊥x 轴,交抛物线于点N . 将1x =-代入223y x x =+-,得4y =-. 过点N ,B 作直线NB 交直线l 于点M . 在△BPN 和△BFM 中,∵90NPB MBF BF BP BPN BFM ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴△BPN ≌△BFM . ∴NB =MB .∴四边形点ANCM 为平行四边形. ∴坐标为(1,4)--的点N 符合条件.∴当点N 的坐标为(5,12)-,(11,40),(1,4)--时,以点A ,C ,M ,N 为顶点的四边是平行四边形.25. (2011山东济宁,23,10分)如图,第一象限内半径为2的⊙C 与y 轴相切于点A ,作直径AD ,过点D 作⊙C 的切线l 交x 轴于点B ,P 为直线l 上一动点,已知直线P A 的解析式为:3y kx =+.(1)设点P 的纵坐标为p ,写出p 随k 变化的函数关系式;(2)设⊙C 与P A 交于点M ,与AB 交于点N ,则不论动点P 处于直线l 上(除点B 以外)的什么位置时,都有△AMN ∽△ABP ,请你对于点P 处于图中位置时的两个三角形相似给予证明;(3)是否存在使△AMN 的面积等于3235的k 倍?若存在,请求出符合条件的k值;若不存在,请说明理由.【答案】解:(1)∵y 轴和直线l 都是⊙C 的切线, ∴OA ⊥AD ,BD ⊥AD ,又OA ⊥OB , ∴∠AOB=∠OAD =∠ADB= 90°,∴四边形OADB 是矩形, ∵⊙C 的半径为2,∴AD =OB ,∵点P 在直线l 上,∴点P 的坐标为(4,p ) 又∵点P 也在直线AP 上,∴p=4k +3. (2)连接DN ,∵AD 是⊙C 的直径,∴∠AND= 90°, ∵∠ADN= 90°—∠DAN ,∠ABD= 90°—∠DAN , ∴∠ADN=∠ABD ,∵∠ADN=∠AMN ,∴∠AMN=∠ABD , 又∵∠MAN=∠BAP , ∴△AMN ∽△ABP . (3)存在.理由:把x =0代入y =kx +3得y =3,即OA =BD =3, 在Rt △ABD 中,由勾股定理得5AB ===,∵S △ABD =1122AB DN AD DB ⋅=⋅, ∴431255AD DB DN AB ⋅⨯===, ∴22222122564()525AN AD DN =-=-=,∵△AMN ∽△ABP . ∴2()AMN ABP S AN S AP∆∆=, 即222()ABP AMNABP AN S AN S S AP AP∆∆∆⋅=⋅=, 当点P 在B 点上方时,∵22222222()4(433)16(1)AP AD PD AD PB BD k k =+=+-=++-=+,或2222222()4(343)16(1)A P A D P D A DB D P B k k =+=+-=+--=+ 11(43)42(43)22ABP S PB AD k k ∆=⋅=+⨯=+, ∴22222562(43)32(43)322516(1)25(1)25ABP AMNAN S k k S AP k k ∆∆⋅⨯++====⨯++. 整理得2420k k --=,解得12k =22k =, 当点P 在B 点下方时,∵2222224(343)16(1)AP AD PD k k =+=+--=+,[]11(43)42(43)22ABP S PB AD k k ∆=⋅=-+⨯=-+, ∴2222562(43)322516(1)25ABP AMNAN S k S AP k ∆∆⋅-⨯+===⨯+,化简,得21(43)k k +=-+,解得2k =-,综合以上所述得,当2k =±或2k =-时,△AMN 的面积等于3235.2. (2011山东滨州,12,3分)如图,在一张△ABC 纸片中, ∠C=90°, ∠B=60°,DE 是中位线,现把纸片沿中位线DE 剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为( ) A.1 B.2 C.3 D.4【答案】C2. (2011 浙江湖州,14,4)如图,已知梯形ABCD ,AD ∥BC ,对角线AC ,BD 相交于点O ,△AOD 与△BOC 的面积之比为1:9,若AD =1,则BC 的长是 .【答案】38. (2011四川重庆,24,10分)如图,梯形ABCD 中,AD ∥BC ,∠DCB =45°,CD =2,BD ⊥CD .过点C 作CE ⊥AB 于E ,交对角线BD 于F .点G 为BC 中点,连结EG 、AF .(1)求EG 的长;(2)求证:CF =AB +AF .【答案】 (1) 解∵BD ⊥CD ,∠DCB =45°,∴∠DBC =∠DCB =45°, ∴CD =DB =2,∴CB =DB2+CD2=22,∵CE ⊥AB 于E ,点G 为BC 中点,∴EG =12CB =2.ED CB A(第12题图)(2)证明:证法一:延长BA、CD交于点H,∵BD⊥CD,∴∠CDF=∠BDH=90°,∴∠DBH+∠H=90°,∵CE⊥AB于E,∴∠DCF+∠H=90°,∴∠DBH=∠DCF,又CD=BD,∠CDF=∠BDH,∴△CDF≌△BDH(ASA),DF=DH,CF=BH=BA+AH,∵AD∥BC,∴∠DBC=∠ADF=45°,∠HDA=∠DCB=45°,∴∠ADF=∠HAD,又DF=DH,DA=DA,∴△ADF≌△ADH(SAS),∴AF=AH,又CF=BH=BA+AH ,∴CF=AB+AF.证法二:在线段DH上截取CH=CA,连结DH.∵BD⊥CD,BE⊥CE,∴∠EBF+∠EFB=90°,∠DCF+∠DFC=90°.又∠EFB=∠DFC,∴∠EBF=∠DCF.又BD=CD,BA=CH,∴△ABD≌△HCD.∴AD=HD,∠ADB=∠HDC.又AD∥BC,∴∠ADB=∠DBC=45°.∴∠HDC=45°.∴∠HDB=∠BDC-∠HDC=45°.∴∠ADB=∠HDB.又AD=HD,DF=DF,∴△ADF≌△HDF,∴AF=HF.∴CF=CH+HF=AB+AF.17. (2011山东枣庄,24,10分)如图,直角梯形ABCD中,AD∥BC,∠A=90°,⊥交AB于E,DF平分∠EDC交BC于F,连结EF.6==,DE DCAB AD=;(1)证明:EF CF(2)当tan ADE ∠=31时,求EF 的长.解:(1)过D 作DG ⊥BC 于G .由已知可得,四边形ABGD 为正方形. …………1分 ∵DE ⊥DC ,∴∠ADE +∠EDG =90°=∠GDC +∠EDG ,∴∠ADE =∠GDC . ………………………3分 又∵∠A=∠DGC ,且AD =GD , ∴△ADE ≌△GDC .∴DE =DC ,且AE =GC . ……………………4分 在△EDF 和△CDF 中,∠EDF =∠CDF ,DE =DC ,DF 为公共边, ∴△EDF ≌△CDF .∴EF =CF . …………………………………6分(2)∵tan ∠ADE =AD AE =31, ∴2A E G C ==. ………………………7分设E F x =,则88B F C F x =-=-,BE =6-2=4.由勾股定理,得 222(8)4x x =-+. 解之,得 5x =, 即5EF =. …………………10分 F DBAECGFDBA EC3. (2011山东菏泽,3,3分)一次数学活动课上,小聪将一副三角板按图中方式叠放,则∠α等于A.30°B.45°C.60°D.75°【答案】D16. (2011山东东营,5,3分)一副三角板,如图所示叠放在一起,则图中∠α的度数是()A.75B.60C.65D.55【答案】A18. (2011湖北鄂州,6,3分)如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.【答案】2第6题图B CE30°45°α。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第27章 梯形一、选择题1. (2011江苏扬州,7,3分)已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等。
其中假命题有( )A. 1个B. 2个C. 3个D. 4个 【答案】B2. (2011山东滨州,12,3分)如图,在一张△ABC 纸片中, ∠C=90°, ∠B=60°,DE 是中位线,现把纸片沿中位线DE 剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为( ) A.1 B.2 C.3 D.4【答案】C3. (2011山东烟台,6,4分)如图,梯形ABCD 中,AB ∥CD ,点E 、F 、G 分别是BD 、AC 、DC 的中点.已知两底差是6,两腰和是12,则△EFG 的周长是( ) A.8 B.9 C.10 D.12【答案】B4. (2011浙江台州,7,4分)如图,在梯形ABCCD 中,AD ∥BC ,∠ABC=90º,对角线BD 、AC 相交于点O 。
下列条件中,不能判断对角线互相垂直的是( )(第6题图)ED CBA(第12题图)A.∠1=∠4B.∠1=∠3C.∠2=∠3D.OB2+OC2=BC2【答案】B5. (2011台湾台北,15)图(五)为梯形纸片ABCD,E点在BC上,且∠90DC=AEC,AD=3,BC=9,CD=8。
若以AE为折线,将C折至∠=︒=∠BE上,使得CD与AB交于F点,则BF长度为何?A. 4.5 B。
5 C。
5.5 D.6【答案】B6. (2011山东潍坊,11,3分)已知直角梯形ABCD中,A D∥BC,∠BCD=90°, BC =CD=2AD , E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF,则下列结论不正确...的是()A . CP 平分∠BCD B. 四边形ABED 为平行四边形C. CQ将直角梯形ABCD 分为面积相等的两部分;D. △ABF为等腰三角形【答案】C7. (2011山东临沂,12,3分)如图,梯形ABCD中,AD∥BC,AB=CD,AD=2,BC=6,∠B=60°,则梯形ABCD的周长是()A .12B .14C .16D .18 【答案】C8. (2011四川绵阳11,3)如图,在等腰梯形站ABCD 中,AB//CD ,对角线AC 、BD 相交于O ,∠ABD =30°,AC ⊥BC , AB = 8cm,则△COD 的面积为AA.23B.243cmC.23D.223cm【答案】A9. (2011湖北武汉市,7,3分)如图,在梯形ABCD 中,AB ∥DC ,AD =DC =CB ,若∠ABD=25°,则∠BAD 的大小是A .40°.B .45°.C .50°.D .60°.【答案】C10.(2011湖北宜昌,12,3分)如图,在梯形ABCD 中,AB∥CD,AD=BC ,点E,F,G,H 分别是AB,BC ,CD ,DA 的中点,则下列结论一定正确的是( ). A. ∠HGF = ∠GHE B. ∠GHE = ∠HEF C. ∠HEF = ∠EFG D. ∠HGF = ∠HEF【答案】D第7题图二、填空题1. (2011福建福州,13,4分)如图4,直角梯形ABC D 中,AD ∥BC ,90C ∠=o ,则A B C ∠+∠+∠=度.【答案】2702. (2011 浙江湖州,14,4)如图,已知梯形ABCD ,AD ∥BC ,对角线AC ,BD 相交于点O ,△AOD 与△BOC 的面积之比为1:9,若AD =1,则BC 的长是 .【答案】33. (2011湖南邵阳,16,3分)如图(六)所示,在等腰梯形ABCD 中,AB ∥CD ,AD=BC ,AC ⊥BC ,∠B=60°,BC=2cm ,则上底DC 的长是_______cm 。
【答案】2.提示:∠CAB=90°-60°=30°, 又∵等腰梯形ABCD 中,∠BAD=∠B=60°, ∴∠CAD=∠BAD-∠BAC=30°。
又∵CD ∥AB ,∴∠DCA=∠CAB=30°=∠DAC 。
∴CD=AD=BC=2cm 。
4. (2011江苏连云港,16,3分)一等腰梯形两组对边中点连线段的平方和为8,则这个等腰梯形的对角线长为_______.【答案】5. (2011江苏宿迁,15,3分)如图,在梯形ABCD 中,AB ∥DC ,∠ADC 的平分线与∠BDC的平分线的交点E 恰在AB 上.若AD =7cm ,BC =8cm ,则AB 的长度是 ▲ cm .BCD图4A【答案】156. ( 2011重庆江津, 13,4分)在梯形ABCD 中,AD ∥BC,中位线长为5,高为6,则它的面积是___________. 【答案】30·7. .(2011江苏南京,10,2分)等腰梯形的腰长为5㎝,它的周长是22㎝,则它的中位线长为___________㎝. 【答案】68. (2011山东临沂,19,3分)如图,上面各图都是用全等的等边三角形拼成的一组图形,则在第10个这样的图形中,共有 个等腰梯形.⑴ ⑵ ⑶ 【答案】1009. (2011湖北襄阳,17,3分)如图4,在梯形ABCD 中,AD ∥BC ,AD =6,BC =16,E是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间t = 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.【答案】2或31410.(2011江苏盐城,15,3分)将两个形状相同的三角板放置在一张矩形纸片上,按图示画线得到四边形ABCD ,则四边形ABCD 的形状是 ▲ .B图4DCB A【答案】等腰梯形三、解答题1. (2011安徽芜湖,21,8分)如图,在梯形ABCD 中,DC ‖AB ,AD=BC , BD 平分,60.ABC A ∠∠=过点D 作DE AB ⊥,过点C 作C F BD ⊥,垂足分别为E 、F ,连接EF ,求证:D EF △为等边三角形.【答案】证明:因为DC ‖AB ,,60AD BC A =∠= ,所以60ABC A ∠=∠= . 又因为B D 平分A B C ∠,所以130.2A B D C B D A B C ∠=∠=∠=……2分因为DC ‖AB ,所以30BDC ABD ∠=∠=,所以,CBD CDB ∠=∠ 所以.C B C D = 4分因为C F BD ⊥,所以F 为BD 中点,又因为D E AB ⊥, 所以.D F B F E F == ……6分 由30ABD ∠=,得60BDE ∠=,所以D EF △为等边三角形. ………………8分2. (2011山东菏泽,17(2),7分)如图,在梯形ABCD 中,AD ∥BC ,∠B =90°,∠C =45°,AD =1,BC =4, E 为AB 中点,EF ∥DC 交BC 于点F , 求EF 的长.【答案】解:过点A 作AG ∥DC ,∵AD ∥BC ,∴四边形AGCD 是平行四边形, ∴GC =AD ,∴BG =BC -AD =4-1=3, 在Rt △ABG 中, AG=∵EF ∥DC ∥AG , ∴12EF BE AGAB==,∴EF =12AG=2.3. (2011山东泰安,27 ,10分)已知,在梯形ABCD 中,AD ∥BC ,∠ABC =900,BC =2AD ,E 是BC 的中点,连接AE 、AC .(1)点F 是DC 上一点,连接EF ,交AC 于点O (如图①),求证:△AOE ∽△COF (2)若点F 是DC 的中点,连接BD ,交AE 于点G (如图②),求证:四边形EFDG 是菱形。
EB F CA D【答案】证明:∵点E 是BC 的中点,BC =2AD ∴EC=BE=12BC=AD又∵AD ∥EC∴四边形AECD 为平行四边形 ∴AE ∥DC∴∠AEO=∠CFO ,∠EAO=∠FCO ∴△AOE ∽△COF (2)证明:连接DE ∵AD ∥BE ,AD =BE∴四边形ABED 是平行四边形 又∠ABE =900 ∴□ABED 是矩形∴GE=GA=GB=GD=12BD=12AE∵E 、F 分别是BC 、CD 的中点 ∴EF 、GE 是△CBD 的两条中位线 ∴EF=12BD=GD ,GE=12CD=DF又GE =GD ∴EF=GD=GE=DF 则四边形EFDG 是菱形4. (2011四川南充市,17,6分)如图,四边形ABCD 是等腰梯形,AD ∥BC,点E,F 在BC 上,且BE=CF,连接DE,AF. 求证:DE=AF.FEDCB A【答案】证明:∵BE=FC ∴BE+EF=FC+EF,即BF=CE ∵四边形ABCD 是等腰梯形∴AB=DC ∠ B =∠C 在⊿DCE 和⊿ABF 中, DC=AB ∠B =∠C CE=BF∴⊿DCE ≌⊿ABF(SAS) ∴DE=AF5. (2011四川南充市,21,8分)如图,等腰梯形ABCD 中,AD ∥BC,AD=AB=CD=2,∠C=600,M 是BC 的中点。
(1)求证:⊿MDC 是等边三角形;(2)将⊿MDC 绕点M 旋转,当MD(即MD′)与AB 交于一点E,MC 即MC′)同时与AD 交于一点F 时,点E,F 和点A 构成⊿AEF.试探究⊿AEF 的周长是否存在最小值。
如果不存在,请说明理由;如果存在,请计算出⊿AEF 周长的最小值.D 'C 'M FEDCB A【答案】(1)证明:过点D 作D P ⊥BC,于点P ,过点A 作AQ ⊥BC 于点Q,∵∠C=∠B=600 ∴CP=BQ=21AB,CP+BQ=AB又∵ADPQ 是矩形,AD=PQ,故BC=2AD, 由已知,点M 是BC 的中点, BM=CM=AD=AB=CD,即⊿MDC 中,CM=CD, ∠C=600,故⊿MDC 是等边三角形.(2)解:⊿AEF的周长存在最小值,理由如下:连接AM,由(1)平行四边形ABMD是菱形,⊿MAB,⊿MAD和⊿MC′D′是等边三角形,∠BMA=∠BME+∠AME=600, ∠EMF=∠AMF+∠AME=600∴∠BME=∠AMF)在⊿BME与⊿AMF中,BM=AM,∠EBM=∠FAM=600∴⊿BME≌⊿AMF(ASA)∴BE=AF, ME=MF,AE+AF=AE+BE=AB∵∠EMF=∠DMC=600 ,故⊿EMF是等边三角形,EF=MF.∵MF的最小值为点M到AD的距离3,即EF的最小值是3.⊿AEF的周长=AE+AF+EF=AB+EF,⊿AEF的周长的最小值为2+3.6. (2011浙江杭州,22,10)在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,对角线AC与BD相交于点O,线段OA,OB的中点分别为点E,F.(1)求证:△FOE≌△DOC;(2)求sin∠OEF的值;(3)若直线EF与线段AD,BC分别相交于点G,H,求AB C DG H的值.【答案】(1)证明:∵E,F分别为线段OA,OB的中点,∴EF∥AB,AB=2EF,∵AB=2CD,∴EF=CD,∵AB∥CD,∴EF∥CD,∴∠OEF=∠OCD,∠OFE=∠ODC,∴△FOE≌△DOC;,(2) 在△ABC 中,∵∠ABC =90°,∴AC ===,sin 5B C C A B A C∠==∵EF ∥AB ,∴∠OEF =∠CAB,∴sin sin 5O E F C A B ∠=∠=(3) ∵△FOE ≌ △DOC ,∴OE =OC ,∵AE =OE ,AE =OE =OC ,∴23C E C A =.∵EF ∥AB ,∴△CE H ∽△CAB ,∴23EH C E ABC A==,∴2433C E EH AB C D C A===,∵EF =CD ,∴43EH EF =1133FH EF C D ==,同理13G E C D =,∴53G H C D =,∴29553AB CD CD CD GHCD++==7. (2011浙江温州,18,8分)如图,在等腰梯形ABCD 中,AB ∥CD ,点M 是AB 的中点. 求证:△A DM ≌△BCM.【答案】证明:在等腰梯形ABCD 中,AB ∥CD ,∴AD =BC ,∠A =∠B , ∵点M 是AB 的中点, ∴ MA =MB , ∴△ADM ≌△BCM8. (2011四川重庆,24,10分)如图,梯形ABCD 中,AD ∥BC ,∠DCB =45°,CD =2,BD ⊥CD .过点C 作CE ⊥AB 于E ,交对角线BD 于F .点G 为BC 中点,连结EG 、AF .(1)求EG 的长;(2)求证:CF =AB +AF .【答案】 (1) 解∵BD ⊥CD ,∠DCB =45°,∴∠DBC =∠DCB =45°, ∴CD =DB =2,∴CB =DB2+CD2=22,∵CE ⊥AB 于E ,点G 为BC 中点,∴EG =12CB =2.(2)证明:证法一:延长BA 、CD 交于点H ,∵BD ⊥CD ,∴∠CDF =∠BDH =90°, ∴∠DBH +∠H =90°,∵CE ⊥AB 于E ,∴∠DCF +∠H =90°,∴∠DBH =∠DCF ,又CD =BD ,∠CDF =∠BDH ,∴△CDF ≌△BDH(ASA), DF =DH , CF = BH =BA +AH ,∵AD ∥BC ,∴∠DBC =∠ADF =45°, ∠HDA =∠DCB =45°,∴∠ADF =∠HAD ,又DF =DH ,DA =DA , ∴△ADF ≌△ADH(SAS),∴AF =AH , 又CF =BH =BA +AH ,∴CF =AB +AF . 证法二:在线段 DH 上截取CH=CA ,连结DH .∵BD ⊥CD ,BE ⊥CE ,∴∠EBF +∠EFB =90°,∠DCF +∠DFC =90°. 又∠EFB=∠DFC ,∴∠EBF=∠DCF . 又BD=CD ,BA=CH ,∴△ABD ≌△HCD . ∴AD=HD ,∠ADB=∠HDC .又AD ∥BC ,∴∠ADB =∠DBC =45°.∴∠HDC =45°.∴∠HDB =∠BDC -∠HDC =45°. ∴∠ADB =∠HDB .又AD=HD , DF=DF ,∴△ADF ≌△HDF ,∴AF =HF . ∴CF =CH +HF=AB +AF .9. (2011湖南邵阳,19,8分)在四边形ABCD 中,E,F,G ,H 分别是AB ,BC ,CD ,DA 的中点,顺次连结EF ,FG ,GH ,HE 。