5.3.1平行线的性质(第8课时)

合集下载

七年级数学下册 5.3平行线的性质(八大题型)(解析版 )

七年级数学下册 5.3平行线的性质(八大题型)(解析版 )

七年级下册数学《第五章相交线与平行线》5.3平行线的性质平行线性质定理性质定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.几何语言表示:∵a∥b(已知),∴∠2=∠3(两直线平行,同位角相等).性质定理2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,同位角相等.几何语言表示:∵a∥b(已知),∴∠2=∠4.(两直线平行,内错角相等).性质定理3:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.几何语言表示:∵a∥b(已知),∴∠1+∠2=180°(同旁内角互补,两直线平行).平行线的判定与性质(1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.(2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.(3)平行线的判定与性质的联系与区别:区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.(4)辅助线规律,经常作出两平行线平行的直线或作出联系两直线的截线,构造出三类角.概念:判断一件事情的语句,叫做命题.【注意】(1).只要对一件事情作出了判断,不管正确与否,都是命题.(2).如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.命题的组成每个命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.【注意】在改写成“如果……那么……”的形式时,需对命题的语序进行调整或增减词语,使句子完整通顺,但不改变原意.真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题;假命题:题设成立时,不能保证结论一定成立,这样的命题叫做假命题.【注意】判断一个命题是假命题,只要举出一个反例,它符合命题的题设,但不满足结论就可以了.定理:经过推理证实的真命题叫做定理,定理可以作为继续推理论证的依据.【拓展】数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.如直线公理:两点确定一条直线.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.()2=a(a≥0)(任何一个非负数都可以写成一个数的平方的形式).【注意】(1)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是学过的定义、基本事实、定理等.(2).定理一定是真命题,但真命题不一定是定理.证明的一般步骤:①根据题意画出图形;②依据题设、结论,结合图形,写出已知、求证;③经过分析,找出由已知条件推出结论的方法,或依据结论探寻所需要的条件,再由题设进行挖掘,寻求证明的途径;④书写证明过程.是()A.40°B.50°C.60°D.70°【分析】由垂线可得∠ACB=90°,从而可求得∠B的度数,再结合平行线的性质即可求∠BCD的度数.【解答】解:∵BC⊥AE,∴∠ACB=90°,∵∠A=50°,∴∠B=180°﹣∠ACB﹣∠A=40°,∵CD∥AB,∴∠BCD=∠B=40°.故选:A.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.解题技巧提炼两直线平行时,应联想到平行线的三个性质,由两条直线平行的位置关系得到两个相关角的数量关系,由角的关系求相应角的度数.【变式1-1】(2023秋•简阳市期末)如图,a∥b,∠1=40°,∠2=∠3,则∠4=()A.70°B.110°C.140°D.150°【分析】先根据a∥b,∠1=40°得出∠2+∠3的度数,由平角的定义得出∠5的度数,再由∠2=∠3得出∠2的度数,再得出∠2+∠5的度数,进而可得出结论.【解答】解:∵a∥b,∠1=40°,∴∠2+∠3=180°﹣40°=140°,∴∠5=180°﹣140°=40°,∵∠2=∠3,∴∠2=70°,∴∠2+∠5=70°+40°=110°,∴∠4=∠2+∠5=110°.故选:B.【点评】本题考查的是平行线的性质,熟知两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.【变式1-2】(2022春•五莲县期末)如图,已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,则∠BCD的度数为()A.10°B.15°C.20°D.35°【分析】由AB∥CF,∠ABC=70°,易求∠BCF,又DE∥CF,∠CDE=130°,那么易求∠DCF,于是∠BCD=∠BCF﹣∠DCF可求.【解答】解:∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,又∵DE∥CF,∴∠DCF+∠CDE=180°,∴∠DCF=50°,∴∠BCD=∠BCF﹣∠DCF=70°﹣50°=20°.故选:C.【点评】本题主要考查了平行线的性质,两直线平行,内错角相等;两直线平行,同旁内角互补.【变式1-3】(2021秋•霍州市期末)如图,如果AB∥EF、EF∥CD,若∠1=50°,则∠2+∠3的和是()A.200°B.210°C.220°D.230°【分析】由平行线的性质可用∠2、∠3分别表示出∠BOE和∠COF,再由平角的定义可得出答案.【解答】解:∵AB∥EF,∴∠2+∠BOE=180°,∴∠BOE=180°﹣∠2,同理可得∠COF=180°﹣∠3,∵O在EF上,∴∠BOE+∠1+∠COF=180°,∴180°﹣∠2+∠1+180°﹣∠3=180°,∴∠2+∠3=180°+∠1=180°+50°=230°,故选:D.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.【变式1-4】(2022秋•安岳县期末)已知∠1的两边分别平行于∠2的两边,若∠1=40°,则∠2的度数为.【分析】①图1时,由两直线平行,同位角相等,等量代换和角的和差计算出∠2的度数为40°;②图2时,同两直线平行,内错角相等,两直线平行,同旁内角互补,等量代换和角的和差计算出∠2的度数为140°.【解答】解:①若∠1与∠2位置如图1所示:∵AB∥DE,∴∠1=∠3,又∵DC∥EF,∴∠2=∠3,∴∠1=∠2,又∵∠1=40°,∴∠2=40°;②若∠1与∠2位置如图2所示:∵AB∥DE,∴∠1=∠3,又∵DC∥EF,∴∠2+∠3=180°,∴∠2+∠1=180°,又∵∠1=40°∴∠2=180°﹣∠1=180°﹣40°=140°,综合所述:∠2的度数为40°或140°,故答案为:40°或140°.【点评】本题综合考查了平行线的性质,角的和差,等量代换,邻补角性质,对顶角性质等相关知识点,重点掌握平行线的性质,难点是两个角的两边分别平行是射线平行,分类画出符合题意的图形后计算.【变式1-5】(2022春•海淀区月考)如图,点C在∠MON的一边OM上,过点C的直线AB∥ON,CD 平分∠ACM.当∠DCM=60°时,求∠O的度数.【分析】根据角平分线的定义,即可得到∠ACM的度数,进而得出∠OCB的度数,再依据平行线的性质,即可得到∠O的度数.【解答】解:∵CD平分∠ACM,∴∠ACM=2∠DCM.∵∠DCM=60°,∴∠ACM=120°.∵直线AB与OM交于点C,∴∠OCB=∠ACM=120°(对顶角相等),∵AB∥ON,∴∠O+∠OCB=180°(两直线平行,同旁内角互补),∴∠O=60°.【点评】本题主要考查了角的计算,平行线的性质以及角平分线的定义.解题的关键是熟练掌握平行线的性质:两直线平行,同旁内角互补.【变式1-6】(2023秋•海门区期末)如图,直线CE,DF相交于点P,且CE∥OB,DF∥OA.(1)若∠AOB=45°,求∠PDB的度数;(2)若∠CPD=45°,求∠AOB的度数;(3)像(1)(2)中的∠AOB,∠CPD称四边形PCOD的一组“对角”,则该四边形的另一组对角相等吗?请说明理由.【分析】(1)根据两直线平行,同位角相等即可求得答案;(2)根据两直线平行,同位角相等及两直线平行,内错角相等即可求得答案;(3)根据两直线平行,同旁内角互补即可证得结论.【解答】解:(1)∵DF∥OA,∠AOB=45°,∴∠PDB=∠AOB=45°;(2)∵CE∥OB,∴∠CPD=∠PDB,∵DF∥OA,∴∠PDB=∠AOB,∴∠AOB=∠CPD,∵∠CPD=45°,∴∠AOB=45°;(3)相等,理由如下:∵CE∥OB,DF∥OA,∴∠OCP+∠AOB=180°,∠CPD+∠ODP=180°,∵∠AOB=∠CPD,∴∠OCP=∠ODP.【点评】本题考查平行线性质,熟练掌握并利用平行线的性质是解题的关键.【变式1-7】(2021春•黄冈期中)如图,DB∥FG∥EC,A是FG上的一点,∠ADB=60°,∠ACE=36°,AP平分∠CAD,求∠PAG的度数.【分析】根据平行线的性质,可以得到∠DAG和∠CAG度数,然后根据AP平分∠CAD,即可得到∠PAG 的度数.【解答】解:∵DB∥FG∥EC,∴∠BDA=∠DAG,∠ACE=∠CAG,∵∠ADB=60°,∠ACE=36°,∴∠DAG=60°,∠CAG=36°,∴∠DAC=96°,∵AP平分∠CAD,∴∠CAP=48°,∴∠PAG=12°.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.【变式1-8】(2023秋•原阳县校级期末)如图,已知AB∥CD,BE平分∠ABC.BE垂直于CE,求证:CE平分∠BCD.【分析】过E作EF∥AB交BC于点F,根据平行线的性质可求得∠ABC+∠BCD=180°,再结合垂线的定义可得∠ABE+∠DCE=90°,∠EBC+∠ECB=90°,再利用角平分线的定义可证明结论.【解答】证明:过E作EF∥AB交BC于点F,∴∠ABE=∠FEB,∵AB∥CD,∴EF∥CD,∠ABC+∠BCD=180°,∴∠DCE=∠FEC,∵BE⊥CE,∴∠BEF+∠CEF=∠ABE+∠DCE=90°,∴∠EBC+∠ECB=90°,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠DCE=∠BCE,∴CE平分∠BCD.【点评】本题主要考查平行线的性质,角平分线的定义,垂线的定义,证明∠ABE+∠DCE=90°,∠EBC+∠ECB=90°是解题的关键.【例题2】已知,如图所示,四边形ABCD中,∠B=90°,DE平分∠ADC,CE平分∠DCB,∠1+∠2=90°,试说明DA⊥AB.【分析】由角平分线的定义和条件可得∠ADC+∠BCD=180°,可证明DA∥BC,再由平行线的性质可得到∠A=90°,可证明DA⊥AB.【解答】证明:∵DE平分∠ADC,CE平分∠DCB,∴∠ADC=2∠1,∠BCD=2∠2,∵∠1+∠2=90°,∴∠ADC+∠BCD=180°,∴AD∥BC,∴∠A+∠B=180°,∴∠A=180°﹣∠B=90°,∴DA⊥AB.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.解题技巧提炼准确识别图形,理清图中各角度之间的关系是解题的关键,再综合角平分线的定义、对顶角的性质及邻补角的定义求解.【变式2-1】(2022春•龙岗区期末)已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.【分析】先根据垂直的定义得出∠BHF=90°,再由∠1=∠ACB得出DE∥BC,故可得出∠2=∠BCD,根据∠2=∠3得出∠3=∠BCD,所以CD∥FH,由平行线的性质即可得出结论.【解答】证明:FH⊥AB(已知),∴∠BHF=90°.∵∠1=∠ACB(已知),∴DE∥BC(同位角相等,两直线平行),∴∠2=∠BCD.(两直线平行,内错角相等).∵∠2=∠3(已知),∴∠3=∠BCD(等量代换),∴CD∥FH(同位角相等,两直线平行),∴∠BDC=∠BHF=90°,(两直线平行,同位角相等)∴CD⊥AB.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.【变式2-2】如图,已知DA⊥AB,DE平分∠ADC,CE平分∠DCB,且∠1+∠2=90°,试说明BC⊥AB.【分析】过E作EF∥AD,交CD于F,求出∠FEC=∠2=∠BCE,根据平行线的判定推出BC∥EF,即可得出答案.【解答】解:过E作EF∥AD,交CD于F,则∠ADE=∠DEF,∵DE平分∠ADC,∴∠1=∠ADE,∴∠1=∠DEF,∵∠1+∠2=90°,∴∠DEC=90°,∴∠DEF+∠FEC=90°,∴∠2=∠FEC,∵CE平分∠DCB,∴∠2=∠BCE,∴∠FEC=∠BCE,∴BC∥EF,∴BC∥AD,∵DA⊥AB,∴BC⊥AB.【点评】本题考查了平行线的性质和判定,三角形内角和定理,角平分线定义的应用,能正确作出辅助线,并综合运用定理进行推理是解此题的关键.【变式2-3】(2022春•海淀区校级月考)如图,AD∥BE,∠B=∠D,∠BAD的平分线交BC的延长线于点E,CF平分∠DCE.求证:CF⊥AE.【分析】由AD∥BE,∠B=∠D,可推出∠B+∠BAD=180°,∠B=∠DCE,AB∥CD,再由角平分线定义可得:∠BAE=12∠BAD,∠FCG=12∠DCE,进而得出:∠CGF=12∠BAD,∠FCG=12∠B,可推出:∠CGF+∠FCG=12(∠BAD+∠B)=12×180°=90°,根据三角形内角和为180°,可得∠CFG=90°,由垂直定义可证得结论.【解答】证明:∵AD∥BE,∴∠DCE=∠D,∠B+∠BAD=180°,∵∠B=∠D,∴∠B=∠DCE,∴AB∥CD,∴∠CGF=∠BAE,∵AE平分∠BAD,∴∠BAE=12∠BAD,∴∠CGF=12∠BAD,∵CF平分∠DCE,∴∠FCG=12∠DCE,∴∠FCG=12∠B,∴∠CGF+∠FCG=12(∠BAD+∠B)=12×180°=90°,∴∠CFG=180°﹣(∠CGF+∠FCG)=180°﹣90°=90°,∴CF⊥AE.【点评】本题考查了平行线的性质和判定,角平分线定义,垂直定义,三角形内角和定理等知识,解题的关键是掌握平行线判定定理和性质定理.【例题3】(2023秋•深圳期末)太阳灶、卫星信号接收锅、探照灯及其他很多灯具都与抛物线有关.如图,从点O照射到抛物线上的光线OB,OC反射后沿着与PO平行的方向射出,已知图中∠ABO=44°,∠BOC=133°,则∠OCD的度数为()A.88°B.89°C.90°D.91°【分析】依题意得AB∥OP∥CD,进而根据平行线的性质得∠BOP=∠ABO=44°,∠OCD=∠POC,从而可求出∠POC=∠BOC﹣∠BOP=89°,进而可得∠OCD的度数.【解答】解:∵AB∥OP∥CD,∠ABO=44°,∴∠BOP=∠ABO=44°,∠OCD=∠POC,∵∠BOC=133°,∴∠POC=∠BOC﹣∠BOP=133°﹣44°=89°,∴∠OCD=∠POC=89°.故选:B.【点评】此题主要考查了平行线的性质,准确识图,熟练掌握平行线的性质是解决问题的关键.解题技巧提炼给出一个实际问题,联系平行线的性质解答实际问题,有时需要通过作辅助线构造平行线,同时还会综合运用平行线的判定和性质.【变式3-1】如图,在A、B两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48°,A,B 两地同时开工,若干天后公路准确接通,若公路AB长8千米,另一条公路BC长是6千米,且BC的走向是北偏西42°,则A地到公路BC的距离是千米.【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【解答】解:根据两直线平行,内错角相等,可得∠ABG=48°,∵∠ABC=180°﹣∠ABG﹣∠EBC=180°﹣48°﹣42°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=8千米,故答案为:8.【点评】此题是方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.【变式3-2】(2022春•沧县期中)某学员在驾校练习驾驶汽车,两次拐弯后的行驶方向与原来的方向相反,则两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向左拐45°,第二次向左拐45°C.第一次向左拐60°,第二次向右拐120°D.第一次向左拐53°,第二次向左拐127°【分析】根据平行线的性质分别判断得出即可.【解答】解:∵两次拐弯后,按原来的相反方向前进,∴两次拐弯的方向相同,形成的角是同旁内角,且互补,故选:D.【点评】此题主要考查了平行线的性质,利用两直线平行,同旁内角互补得出是解题关键.【变式3-3】如图是潜望镜工作原理示意图,阴影部分是平行放置在潜望镜里的两面镜子.已知光线经过镜子反射时,有∠1=∠2,∠3=∠4,请解释进入潜望镜的光线l为什么和离开潜望镜的光线m是平行的?【分析】根据平行线的性质结合条件可得∠1=∠2=∠3=∠4,可证得∠5=∠6,可证明l∥m,据此填空即可.【解答】解:∵AB∥CD(已知),∴∠2=∠3(两直线平行,内错角相等),∵∠1=∠2,∠3=∠4(已知),∴∠1=∠2=∠3=∠4(等量代换),∴180°﹣∠1﹣∠2=180°﹣∠3﹣∠4(平角定义),即:∠5=∠6(等量代换),∴l∥m.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.【变式3-4】(2023秋•市南区期末)如图是一种躺椅及其简化结构示意图,扶手AB与底座CD都平行于地面,靠背DM与支架OE平行,前支架OE与后支架OF分别与CD交于点G和点D,AB与DM交于点N,当前支架OE与后支架OF正好垂直,∠ODC=32°时,人躺着最舒服,则此时扶手AB与靠背DM的夹角∠ANM=.【分析】由AB∥CD可求得∠BOD的度数,再根据OE∥DM即可求出∠ANM的度数.【解答】解:∵AB∥CD,∠ODC=32°,∴∠BOD=∠ODC=32°.∵OE⊥OF,∴∠EOF=90°,∴∠EOB=90°+32°=122°.∵OE∥DM,∠ANM=∠EOB=122°.故答案为:122°.【点评】本题考查了平行线的性质,垂直的定义,熟练掌握平行线的性质是解答本题的关键.【变式3-5】(2023秋•东莞市校级期末)如图为某椅子的侧面图,∠DEF=120°.DE与地面平行,∠ABD=50°,则∠ACB=.【分析】根据平行得到∠ABD=∠EDC=50°,再利用外角的性质和对顶角相等,进行求解即可.【解答】解:由题意得:DE∥AB,∴∠ABD=∠EDC=50°,∵∠DEF=∠EDC+∠DCE=120°,∴∠DCE=70°,∴∠ACB=∠DCE=70°,故答案为:70°.【点评】本题考查平行线的性质,三角形外角的性质,对顶角.熟练掌握相关性质,是解题的关键.【变式3-6】(2022•小店区校级开学)如图1是一个由齿轮、轴承、托架等元件构成的手动变速箱托架,其主要作用是动力传输.如图2是乎动变速箱托架工作时某一时刻的示意图,已知AB∥CD,CG∥EF,∠BAG=150°,∠AGC=80°,则∠DEF的度数为()A.110°B.120°C.130°D.140°【分析】过点F作FM∥CD,因为AB∥CD,所以AB∥CD∥FM,再根据平行线的性质可以求出∠MFA,∠EFA,进而可求出∠EFM,再根据平行线的性质即可求得∠DEF.【解答】解:如图,过点F作FM∥CD,∵AB∥CD,∴AB∥CD∥FM,∴∠DEF+∠EFM=180°,∠MFA+∠BAG=180°,∴∠MFA=180°﹣∠BAG=180°﹣150°=30°.∵CG∥EF,∴∠EFA=∠AGC=80°.∴∠EFM=∠EFA﹣∠MFA=80°﹣30°=50°.∴∠DEF=180°﹣∠EFM=180°﹣50°=130°.故选:C.【点评】本题考查平行线的性质,解题关键是结合图形利用平行线的性质进行角的转化和计算.【变式3-7】(2023春•岱岳区期末)如图,EF,MN分别表示两面互相平行的镜面,一束光线AB照射到镜面MN上,反射光线为BC,此时∠1=∠2;光线BC经镜面EF反射后的反射光线为CD,此时∠3=∠4,试判断AB与CD的位置关系,并说明理由.【分析】先根据MN∥EF得出∠2=∠3,再由∠1=∠2,∠3=∠4可得出∠1=∠2=∠3=∠4,故可得出∠1+∠2=∠3+∠4,再由∠ABC=180°﹣(∠1+∠2),∠BCD=180°﹣(∠3+∠4),故可得出∠ABC=∠BCD,据此得出结论.【解答】解:AB∥CD.理由:∵MN∥EF,∴∠2=∠3,∵∠1=∠2,∠3=∠4,∴∠1=∠2=∠3=∠4,∴∠1+∠2=∠3+∠4,∵∠ABC=180°﹣(∠1+∠2),∠BCD=180°﹣(∠3+∠4),∴∠ABC=∠BCD,∴AB∥CD.【点评】本题考查的是平行线的判定与性质,熟知两直线平行,内错角相等是解题的关键.【例题4】(2022春•秦淮区校级月考)已知直线a∥b,将一块含30°角的直角三角板(∠BAC=30°,∠ACB =90°)按如图所示的方式放置,并且顶点A,C分别落在直线a,b上,若∠1=22°.则∠2的度数是()A.38°B.45°C.52°D.58°【分析】根据已知易得∠DAC=52°,然后利用平行线的性质即可解答.【解答】解:如图:∵∠1=22°,∠BAC=30°,∴∠DAC=∠1+∠BAC=52°,∵直线a∥b,∴∠2=∠DAC=52°,故选:C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.【变式4-1】(2022秋•琼海期中)如图,将三角板的直角顶点按如图所示摆放在直尺的一边上,则下列结论不一定正确的是()A.∠1=∠2B.∠2+∠3=90°C.∠3+∠4=180°D.∠1+∠2=90°【分析】根据平行线的性质定理求解.【解答】解:∵两直线平行,同位角相等,∴∠1=∠2,故选项A不符合题意;∠1+∠2不一定等于90°,故D符合题意;由题意可得:90°+∠2+∠3=180°,∴∠2+∠3=90°,故选项B不符合题意;∵两直线平行,同旁内角互补,∴∠3+∠4=180°,故选项C不符合题意;故选:D.【点评】本题主要考查平行线的性质,解题关键是熟练掌握平行线的性质定理.【变式4-2】(2023秋•榆树市校级期末)把一副三角板按如图所示摆放,使FD∥BC,点E落在CB的延长线上,则∠BDE的大小为度.【分析】由题意可得∠EDF=45°,∠ABC=60°,由平行线的性质可得∠BDF=∠ABC=60°,从而可求∠BDE的度数.【解答】解:由题意得:∠EDF=45°,∠ABC=60°,∵FD∥BC,∴∠BDF=∠ABC=60°,∴∠BDE=∠BDF﹣∠EDF=15°.故答案为:15.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.【变式4-3】(2023秋•新野县期末)如图,直线m∥n,且分别与直线l交于A,B两点,把一块含60°角的三角尺按如图所示的位置摆放,若∠2=98°,则∠1=.【分析】先根据平角的定义求出∠4的度数,再根据角平分线的性质即可得出答案.【解答】解:由已知可得,∠3=30°,∵∠2=98°,∴∠4=180°﹣∠2﹣∠3=52°,∵m∥n,∴∠1=∠4=52°.故答案为:52°.【点评】本题主要考查了平行线的性质,解题的关键是牢记平行线的性质.【变式4-4】(2022•大渡口区校级模拟)将一副直角三角板按如图所示的方式叠放在一起,若AC∥DE.则∠BAE的度数为()A.85°B.75°C.65°D.55°【分析】由题意得∠E=60°,∠DAE=∠B=90°,∠BAC=45°,由平行线的性质可求得∠CAE=120°,从而可求得∠CAD=30°,则∠BAD=15°,即可求∠BAE的度数.【解答】解:由题意得:∠E=60°,∠DAE=∠B=90°,∠BAC=45°,∵AC∥DE,∴∠E+∠CAE=180°,∴∠CAE=180°﹣∠E=120°,∴∠CAD=∠CAE﹣∠DAE=30°,∴∠BAD=∠BAC﹣∠CAD=15°,∴∠BAE=∠DAE﹣∠BAD=75°.故选:B.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质并灵活运用.【变式4-5】(2022秋•绿园区校级期末)如图,AB∥CD,一副三角尺按如图所示放置,∠AEG=20°,则∠HFD的度数为()A.40°B.35°C.30°D.25°【分析】将∠AEG,∠GEF的度数,代入∠AEF=∠AEG+∠GEF中,可求出∠AEF的度数,由AB∥CD,利用“两直线平行,内错角相等”,可求出∠DFE的度数,再结合∠HFD=∠DFE﹣∠EFH,即可求出∠HFD 的度数.【解答】解:∵∠AEG=20°,∠GEF=45°,∴∠AEF=∠AEG+∠GEF=20°+45°=65°.∵AB∥CD,∴∠DFE=∠AEF=65°,∴∠HFD=∠DFE﹣∠EFH=65°﹣30°=35°.故选:B.【点评】本题考查了平行线的性质,牢记“两直线平行,内错角相等”是解题的关键.【变式4-6】(2023秋•盐城期末)将一副三角板按如图所示的方式摆放,其中∠ACB=∠ECD=90°,∠A=45°,∠D=60°.若AB∥DE,则∠ACD的度数为.【分析】过点C作CF∥AB,则有AB∥CF∥DE,从而可得∠ACF=∠A=45°,∠DEF=∠D=60°,即可求∠ACD的度数.【解答】解:过点C作CF∥AB,如图,∵AB∥DE,∴AB∥CF∥DE,∴∠ACF=∠A=45°,∠DEF=∠D=60°,∴∠ACD=∠ACF+∠DCF=105°.故答案为:105°.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.【例题5】如图所示,把一张长方形纸条ABCD沿EF折叠,若∠1=58°,则∠AEG的度数()A.58°B.64°C.72°D.60°【分析】由平行线的性质得∠DEF=∠1=58°,由折叠的性质得∠GEF=∠DEF=58°,再由平角定义求出∠AEG即可.【解答】解:∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=∠1=58°,由折叠的性质得:∠GEF=∠DEF=58°,∴∠AEG=180°﹣58°﹣58°=64°;故选:B.【点评】本题考查了平行线的性质、翻折变换的性质、长方形的性质以及平角定义;熟练掌握平行线的性质和翻折变换的性质是解题的关键.【变式5-1】(2022秋•陈仓区期末)如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是()A.77°B.64°C.26°D.87°【分析】依据平行线的性质,即可得到∠AEG的度数,再根据折叠的性质,即可得出∠α的度数.【解答】解:∵矩形纸条ABCD中,AD∥BC,∴∠AEG=∠BGD'=26°,∴∠DEG=180°﹣26°=154°,由折叠可得,∠α=12∠DEG=12×154°=77°,故选:A.【点评】本题主要考查了平行线的性质,折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【变式5-2】(2023•台州)用一张等宽的纸条折成如图所示的图案,若∠1=20°,则∠2的度数为.【分析】利用平行线的性质和各角之间的关系即可求解.【解答】解:如图,标注三角形的三个顶点A、B、C.∠2=∠BAC=180°﹣∠ABC﹣∠ACB.∵图案是由一张等宽的纸条折成的,∴AB=AC,∴∠ABC=∠ACB.又∵纸条的长边平行,∴∠ABC=∠1=20°,∴∠2=∠BAC=180°﹣2∠ABC=180°﹣2∠1=180°﹣2×20°=140°.故答案为:140°.【点评】本题比较简单,主要考查了平行线的性质的运用.【变式5-3】(2022秋•昭阳区期中)如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE;若∠B=50°,则∠BDF的度数为()A.40°B.50°C.80°D.100°【分析】首先利用平行线的性质得出∠ADE=50°,再利用折叠前后图形不发生任何变化,得出∠ADE=∠EDF,从而求出∠BDF的度数.【解答】解:∵BC∥DE,若∠B=50°,∴∠ADE=50°,又∵△ABC沿线段DE折叠,使点A落在点F处,∴∠ADE=∠EDF=50°,∴∠BDF=180°﹣50°﹣50°=80°,故选:C.【点评】此题主要考查了折叠问题与平行线的性质,利用折叠前后图形不发生任何变化,得出∠ADE=∠EDF是解决问题的关键.【变式5-4】(2023秋•阳城县期末)将一张长方形纸条折成如图所示的形状,若∠1=110°,则∠2=.【分析】证明∠2=∠4,再利用三角形的外角的性质解决问题.【解答】解:如图,∵a∥b,∴∠2=∠5,由翻折变换的性质可知∠4=∠5,∴∠4=∠2,∵∠1=∠2+∠4=110°,∴∠2=∠4=55°,故答案为:55°.【点评】本题考查平行线的性质,翻折变换等知识,解题的关键是理解翻折变换的性质,属于中考常考题型.【变式5-5】(2022•沭阳县模拟)已知长方形纸条ABCD,点E,G在AD边上,点F,H在BC边上.将纸条分别沿着EF,GH折叠,如图,当DC恰好落在EA'上时,∠1与∠2的数量关系是()A.∠1+∠2=135°B.∠2﹣∠1=15°C.∠1+∠2=90°D.2∠2﹣∠1=90°【分析】根据折叠的性质和平角的定义解答即可.【解答】解:∵DC恰好落在EA'上,∴∠ED′G=90°,∴∠D′EG+∠D′GE=90°,∴∠A′EA+∠D′GD=360°﹣90°=270°,由折叠得,∠1=12∠A′EA,∠2=12∠D′GD,∴∠1+∠2=135°,故选:A.【点评】本题考查折叠的性质和角平分线的定义,由折叠的性质得到∠1=12∠A′EA,∠2=12∠D′GD是解题关键.【变式5-6】如图,长方形ABCD中,沿折痕CE翻折△CDE得△CD′E,已知∠ECD′被BC分成的两个角相差18°,则图中∠1的度数为()A.72°或48°B.72°或36°C.36°或54°D.72°或54°【分析】设∠FCD'=α,则∠BCE=α+18°或α﹣18°,分两种情况进行讨论:①当∠BCE=α+18°时,∠ECD'=2α+18°=∠DCE,②当∠BCE=α﹣18°时,∠ECD'=2α﹣18°=∠DCE,分别根据∠BCD=90°列式计算即可.【解答】解:如图,设∠FCD'=α,则∠BCE=α+18°或α﹣18°,①当∠BCE=α+18°时,∠ECD'=2α+18°=∠DCE,∵∠BCD=90°,∴α+18°+2α+18°=90°,解得α=18°,∴∠CFD'=90°﹣18°=72°=∠1;②当∠BCE=α﹣18°时,∠ECD'=2α﹣18°=∠DCE,∵∠BCD=90°,∴α﹣18°+2α﹣18°=90°,解得α=42°,∴∠CFD'=90°﹣42°=48°=∠1;综上所述,图中∠1的度数为72°或48°,故选:A.【点评】本题主要考查了折叠问题,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【例题6】(2023秋•仁寿县期末)如图,在△ABC中,AD⊥BC,EF∥BC,EC⊥CF,∠EFC=∠ACF,则下列结论:①AD⊥EF;②CE平分∠ACB;③∠FEC=∠ACE;④AB∥CF.其中正确的结论个数是()A.1个B.2个C.3个D.4个【分析】根据平行线的性质得到AD⊥EF,故①符合题意;∠CEF=∠BCE,根据余角的性质得到∠CEF =∠ACE,故③符合题意;根据角平分线的定义得到CE平分∠ACB,故②符合题意;根据已知条件无法证明AB∥CF,故④不符合题意.【解答】解:∵AD⊥BC,EF∥BC,∴AD⊥EF,故①符合题意;∵EF∥BC,∴∠CEF=∠BCE,∵EC⊥CF,∴∠ECF=90°,∴∠CEF+∠F=∠ACE+∠ACF=90°,∵∠EFC=∠ACF,∴∠CEF=∠ACE,故③符合题意;∴∠ACE=∠BCE,∴CE平分∠ACB,故②符合题意;∵EC⊥CF,要使AB∥CF,则CE⊥AB,∵CE平分∠ACB,但AC不一定与BC相等,∴无法证明AB∥CF,故④不符合题意,故选:C.【点评】本题考查了平行线的判定与性质,根据题目的已知条件并结合图形进行分析是解题的关键.【变式6-1】(2023秋•浚县期末)如图a∥b,c与a相交,d与b相交,下列说法:①若∠1=∠2,则∠3=∠4;②若∠1+∠4=180°,则c∥d;③∠4﹣∠2=∠3﹣∠1;④∠1+∠2+∠3+∠4=360°,正确的有()A.①③④B.①②③C.①②④D.②③【分析】根据平行线的性质和判定逐一进行判断求解即可.【解答】解:①若∠1=∠2,则a∥e∥b,则∠3=∠4,故此说法正确;②若∠1+∠4=180°,由a∥b得到,∠5+∠4=180°,则∠1=∠5,则c∥d;故此说法正确;③由a∥b得到,∠5+∠4=180°,由∠2+∠3+∠5+180°﹣∠1=360°得,∠2+∠3+180°﹣∠4+180°﹣∠1=360°,则∠4﹣∠2=∠3﹣∠1,故此说法正确;④由③得,只有∠1+∠4=∠2+∠3=180°时,∠1+∠2+∠3+∠4=360°.故此说法错误.故选:B.【点评】此题考查了平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.【变式6-2】(2022秋•南岗区校级期中)如图,AB∥CD∥EF,则下列各式中正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2=180°+∠3C.∠1+∠3=180°+∠2D.∠2+∠3=180°+∠1【分析】根据两直线平行,同旁内角互补可得∠2+∠BDC=180°,再根据两直线平行,内错角相等可得∠3=∠CDE,而∠CDE=∠1+∠BDC,整理可得∠2+∠3﹣∠1=180°.【解答】解:∵AB∥CD∥EF,∴∠2+∠BDC=180°,∠3=∠CDE,又∠BDC=∠CDE﹣∠1,∴∠2+∠3﹣∠1=180°.故选:D.【点评】本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键.【变式6-3】(2023春•镇江期中)如图,AB∥CF,∠ACF=80°,∠CAD=20°,∠ADE=120°.(1)直线DE与AB有怎样的位置关系?说明理由;(2)若∠CED=71°,求∠ACB的度数.【分析】(1)根据平行线的性质,得出∠BAC=∠ACF=80°,根据∠CAD=20°,求出∠BAD=60°,根据∠BAD+∠ADE=180°,即可得出结论;(2)根据平行线的性质得出∠B=∠CED=71°,根据三角形内角和定理求出∠ACB=29°.【解答】解:(1)DE∥AB;理由如下:∵AB∥CF,∠ACF=80°,∴∠BAC=∠ACF=80°,∵∠CAD=20°,∴∠BAD=∠BAC﹣∠DAC=60°,∵∠ADE=120°,∴∠BAD+∠ADE=60°+120°=180°,∴DE∥AB.(2)DE∥AB,∠CED=71°,∴∠B=∠CED=71°,∵∠BAC=80°,∴∠ACB=180°﹣∠B﹣∠BAC=180°﹣71°﹣80°=29°.【点评】本题主要考查了平行线的判定和性质,三角形内角和定理的应用,解题的关键是熟练掌握平行线的判定.【变式6-4】(2022春•舞阳县期末)如图,点D在AC上,点F、G分别在AC、BC的延长线上,CE平分∠ACB并交BD于H,且∠EHD+∠HBF=180°.(1)若∠F=30°,求∠ACB的度数;(2)若∠F=∠G,求证:DG∥BF.【分析】(1)由对顶角相等、同旁内角互补,两直线平行判定BF∥EC,则同位角∠ACE=∠F,再根据角平分线的性质即可求解;(2)结合已知条件,角平分线的定义,利用等量代换推知同位角∠BCE=∠G,则易证DG∥BF.【解答】(1)解:∵∠EHD+∠HBF=180°,∠EHD=∠BHC,∴∠BHC+∠HBF=180°,∴BF∥EC,∴∠ACE=∠F=30°,又∵CE平分∠ACB,∴∠ACB=2∠ACE=60°.故∠ACB的度数为60°;(2)证明:∵CE平分∠ACB,∴∠BCE=∠ACE,∵∠ACE=∠F,∠F=∠G,∴∠BCE=∠G,∴DG∥EC,又∵BF∥EC,∴DG∥BF.【点评】本题考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.【变式6-5】(2022春•温江区校级期中)如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠D+∠AED=180°,∠C=∠EFG.。

5.3.1《 平行线的性质》教材解读-人教版数学七年级下册

5.3.1《 平行线的性质》教材解读-人教版数学七年级下册

5.3.1《平行线的性质》教材解读一、课标内容《课程标准》相关内容:1.在探索直线平行的性质的过程中,掌握平行线的三条性质,并能用它们进行简单的推理和计算。

2.进一步发展空间观念,体会通过合情推理探索数学结论,运用演绎推理加以证明的过程,在多种形式下的数学活动中,发展合情推理和演绎推理的能力。

3.经历观察、操作、想象、推理、交流等活动,培养学生参与活动和交流合作的意识。

4.敢于发表自己的想法,勇于质疑、敢于创新,养成认真勤奋、独立思考、合作交流等学习习惯,形成严谨求实的科学态度。

二、教材分析(一)教材的地位作用《平行线的性质》是新人教版七年级数学下册第五章第三小节的内容,本节课是在学生已经学习了同位角、内错角、同旁内角和平行线的判定的基础上进行教学的。

这节课是空间与图形领域的基础知识,在以后的学习中经常要用到。

它为今后三角形内角和、三角形全等、三角形相似等知识的学习奠定了理论基础。

(二)知识要点及重难点平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。

重点:探究平行线的性质。

难点:明确平行线的性质和判定的区别。

三、教材编写特点教材由平行线的判定引入对平行线性质的研究,既渗透了图形的判定和性质之间的互逆关系,又体现了知识的连贯性,平行线的三条性质都是需要证明的,但是为了与学生思维发展水平相适应,性质1是通过操作确认的方式得出的,在性质1的基础上经过进一步推理,得到性质2和性质3,这一过程体现了由实验几何到论证几何的过渡,渗透了简单推理,体现了数学在培养良好思维品质方面的价值。

四、教学建议教材所选的例题及课后练习题1,都是平行线性质的直接运用,较为简单。

练习题2是平行线判定和性质的综合运用,是为了让学生区分判定和性质,推理也比较简单。

考虑到学生还处于几何初步阶段,进度不可过快,教师可以设计一些有两步推理的证明题,让学生填充理由。

在应用知识的过程中,组织学生进行讨论,结合题目的已知条件和结论,让学生自己总结出判定和性质的区别,只有自己构造起的知识,才能真正被灵活应用。

平行线的性质 优秀课件ppt

平行线的性质    优秀课件ppt

素材:探索平行线的性质(播放状态下,点击画面操作)
探索平行线的性质.swf
当堂练习
1.如图,已知平行线AB、CD被直线AE所截
(1)从 ∠1=110o可以知道∠2 是多少度吗,为什么?
(2)从∠1=110o可以知道 ∠3是多少度吗,为什么?
(3)从 ∠1=110o可以知道∠4 是多少度吗,为什么?
又∵∠A=100°,∠C=110°(已知),
∴∠ 1 = 80 °, ∠ 2 = 70 °.
∴∠AEC=∠1+∠2= 80 °+ 70 ° = 150 °.
4.已知AB⊥BF,CD⊥BF,∠1= ∠2,试说明∠3=∠E.
65
度数
78
c
观察 ∠1~ ∠8中,哪些是同位角?它们的度数 之间有什么关系?说出你的猜想:
a
21
34
b
65
78
c
猜想 两条平行线被第三条直线所截,同位角_相_等_.
再任意画一条截线d,同样度量各个角的度 数,你的猜想还成立吗?
d
a
b
如果两直线不平行,上述结论还成立吗?
总结归纳
一般地,平行线具有如下性质:
当堂练习
1.填空:如图,
(1)∠1=∠2 时,AB∥CD. (2)∠3= ∠5或∠4时,AD∥BC.
A 1 B
D
5 2
3 C
4 F
E
2.直线a,b与直线c相交,给出下列条件:
①∠1= ∠2;
②∠3= ∠6;
③∠4+∠7=180o; ④∠3+ ∠5=180°, c
其中能判断a//b的是( B )
A. ①②③④ B .①③④
3.如图,直线 a ∥ b,直线b垂直于直线c,那么直线a

5.3.1 平行线的性质(导学案)

5.3.1 平行线的性质(导学案)

5.3 平行线的性质5.3.1 平行线的性质一、新课导入1.导入课题:利用同位角、内错角、同旁内角之间的关系可以判定两条直线平行.你还记得这些判定方法分别是如何叙述的吗?反过来,如果两条直线平行,那么同位角、内错角、同旁内角又各有什么关系呢?这就是本节课我们所要研究的内容.(板书课题)2.学习目标:(1)能叙述平行线的三条性质.(2)能运用平行线的三条性质进行简单的推理和计算.3.学习重、难点:重点:对平行线性质的理解及它们与平行线的判定之间的关系.难点:性质2和性质3的推理过程的逻辑表述.二、分层学习1.自学指导:(1)自学内容:课本P18的内容.(2)自学时间:8分钟.(3)自学要求:正确画图、测量、验证、归纳.(4)探究提纲:①画图:画两条平行线a∥b,再画一条截线c与直线a、b相交(如图1所示).②测量:测量这些角的度数,把结果填入表内.③分析:∠1~∠8中,哪些是同位角?它们的度数之间有什么关系?答案:同位角有:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8,相等.④猜想:两条平行线被第三条直线截得的同位角有什么关系?⑤验证:如果改变截线的位置,你的猜想还成立吗?⑥归纳:a.你能用文字语言表述你发现的结论吗?b.你还能用符号语言表述该结论吗?2.自学:学生按探究提纲进行研讨式学习.3.助学:(1)师助生:①明了学情:了解学生围绕探究提纲进行学习的情况及存在的困惑.②差异指导:对个别学生在学法和认知有偏差时进行点拨引导.(2)生助生:小组内学生之间相互交流,展示成果,查找并纠正不正确的认识或结论.4.强化:(1)平行线的性质1及其几何表述.(2)经历平行线的性质1的探究过程,体会研究几何图形的一般方法.1.自学指导:(1)自学内容:课本P19的内容.(2)自学时间:8分钟.(3)自学要求:阅读教材,重要的部分做好圈点,疑点处做好记号.(4)自学参考提纲:①与平行线的判定类似,你能由性质1推出两条平行线被第三条直线截得的内错角之间的关系吗?a.结合图2,你能写出推理过程吗?b.类比性质1,你能用文字语言表述上面的结论吗?答案:两直线平行,内错角相等.c.你还能用几何语言表述该结论吗?②a.类似地,可以推出平行线关于同旁内角的性质3:两直线平行,同旁内角互补,如图2,用几何语言表述为:∵a∥b,∴∠2+∠4=180°.b.试写出用性质1推出性质3的推理过程.c.试写出用性质2推出性质3的推理过程.③如图3,平行线AB、CD被直线AE所截.a.从∠1=110°,可以知道∠2是多少度吗?为什么?答案:∠2=110°.两直线平行,内错角相等.b.从∠1=110°,可以知道∠3是多少度吗?为什么?答案:∠3=110°.两直线平行,同位角相等.c.从∠1=110°,可以知道∠4是多少度吗?为什么?答案:∠4=70°.两直线平行,同旁内角互补.④如图4,AB∥CD,AE∥CF,∠A=39°,∠C是多少度?为什么?答案:∠C=39°.∵AB∥CD,∴∠C=∠FGB,又∵AE∥CF,∴∠A=∠FGB,∴∠A=∠C=39°.2.自学:同学们可参照自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂巡视了解学生的自学情况,尤其是性质2和性质3的推理过程,看学生能否写出来.②差异指导:对部分感到困难的学生进行点拨引导.(2)生助生:小组内相互交流、研讨、订正.4.强化:(1)平行线的性质1、2、3及其几何表述.(2)判定与性质的区别:从角的关系得到两直线平行,就是判定;从已知直线平行得到角相等或互补,就是性质.(3)练习:课本P20“练习”第1题和第2题.三、评价1.学生学习的自我评价:各小组组长对本组的学习成果和困惑进行总结交流.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法、成效及不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):这节课比较成功的地方是:①对教学的方式进行了一定的尝试,注重学生的分析能力,启发学生用不同方法解决问题.②尽量锻炼学生使用规范性的几何语言.不足的是师生之间的互动配合和默契程度有待加强.(时间:12分钟满分:100分)一、基础巩固(60分)1.(10分)如图,由AB∥CD可以得到(C)A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4第1题图第2题图2.(10分)如图,如果AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=(C)A.180°B.270°C.360°D.540°3.(10分)如图,一条公路两次转弯后,和原来的方向相同,那么如果第一次拐的角是76°,那么第二次拐的角是76度,根据是两直线平行,内错角相等.4.(10分)如图,要在公路的两侧铺设平行管道,如果公路一侧铺设的管道与纵向联通管道的角度为120°,那么,为了使管道对接,另一侧应以60°角度铺设纵向联通管道,根据是两直线平行,同旁内角互补.第3题图第4题图第5题图5.(20分)如图,已知a∥b,c、d是截线,若∠1=80°,∠5=70°,求∠2、∠3、∠4各是多少度?为什么?解:∵a∥b,∴∠2=∠1=80°(两直线平行,内错角相等),∠3=180°-∠5=110°(两直线平行,同旁内角互补).∵∠4=∠3(两直线平行,同位角相等),∴∠4=110°.二、综合运用(20分)6.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,∠1=45°,∠2=122°,求图中其他角的度数.解:由题意得:∠3=∠1=45°,∠1+∠7=180°,∴∠7=180°-∠1=135°.∴∠8=∠7=135°.又∠4=∠2=122°,∠2+∠5=180°,∴∠5=180°-∠2=58°.∴∠6=∠5=58°.三、拓展延伸(20分)7.如图,直线DE经过点A,DE∥BC,∠B=44°,∠C=57°.(1)∠DAB等于多少度?为什么?(2)∠EAC等于多少度?为什么?(3)∠BAC等于多少度?(4)由(1)、(2)、(3)的结果,你能说明为什么三角形的内角和是180°吗?解:(1)∵DE∥BC,∴∠DAB=∠B=44°(两直线平行,内错角相等).(2)∵DE∥BC,∴∠EAC=∠C=57°(两直线平行,内错角相等).(3)∵∠DAB+∠BAC+∠EAC=180°,∴∠BAC=180°-∠DAB-∠EAC=180°-44°-57°=79°.。

5.3.1平行线的性质

5.3.1平行线的性质
3 2 4
b
∠2+∠3=180°(两直线平行,同旁内角互补)
∴ ∠3= 180°- ∠2= 180° - 54°=126° 即 ∠2=54° ,∠3=126°, ∠4=54°。
小结与回顾:
(1)请你谈谈本节课的收获和感受。 (2)说说平行线的“判定”与“性质”有什么不同?
已知
同位角相等 内错角相等 同旁内角互补
o o ∠ 2=110 ∠ 3=110 o
B
D
达标测试 2、如图,一条公路两次拐弯前后两条路 互相平行。第一次拐的角∠B是142゜,
第二次 拐的角∠C是多少度?为什么?
C B
∠C=142
o
∵两直线平行,内错角相等
达标测试
3、如图直线 a ∥ b,直线b垂直于直 线c,则直线a垂直于直线c吗? a⊥b ?
已知角之间的关系(相等或互补),得到两直线平行 的结论是平行线的判定。 已知两直线平行,得到角之间的关系(相等或互补) 的结论是平行线的性质。
范例
例2、如图, AB∥DC ,GM、HN分别是
∠ BGH 、∠DHF的平分线,GM、HN有 E 什么关系?为什么? G A B
H C F N M
D
练习
2、如图, AB∥DC ,GM、HN分别是
∠AGH 、∠ GHD的平分线,GM、HN有 E 什么关系?为什么? G A B
M H C F N
D
3、如图,直线a∥b, ∠1=54°,∠2, ∠3, ∠4各是多少度? a 解: 1
∵ ∠2=∠1 (对顶角相等) ∴ ∠2=∠1 =54° ∵ a∥b(已知) ∴ ∠4=∠1=54°(两直线平行,同位角相等)
c a b
根据右图,填空: E ①如果∠1=∠C, 4 1 A B 同位角相等,两直线平行 ) 3 2 那么__∥__( AB CD ② 如果∠1=∠B 那么__ EC ∥__ BD ( 内错角相等,两直线平行 ) D C ③ 如果∠2+∠B=180°, EC ∥__ 那么__ ) BD ( 同旁内角互补,两直线平行

SX-7-008第五章5.3.1平行线的性质导学案附教学反思

SX-7-008第五章5.3.1平行线的性质导学案附教学反思
(1)请写出图中面积相等的各对三角形;
(2)如果A、B、C为三个定点,点D在m上移动。
那么,无论D点移动到任何位置,
总有三角形与三角形ABC的面积相等,理由是。
D C m
O
A B n
【展示提升】
(一)例(教材20)如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形另外两个角分别是多少度?
∵a∥b(已知)
∴∠1=∠2()
又∵()。
∴。
(三)两条平行线的距离
1、如图,已知直线AB∥CD,E是直线
CD上任意一点,过E向直线AB
作垂线,垂足为F,这样做出的垂线
段EF的长度是平行线的距离。
2、结论:两条平行线的距离处处相等,而不随垂线段的位置而改变
3、对应练习:如下图,已知:直线m∥n,A、B为直线n上的两点,C、D为直线m上的两点。
1、分析\
①梯形这条件说明∥。
②∠A与∠D、∠B与∠C的位置关系是,数量关系是。




5.3.1平行线的性质
平行线的性质
1
2
3
平行线的距离




(一)选择题:
1.如图1所示,AB∥CD,则与∠1相等的角(∠1除外)共有( )毛
A.5个B.4个C.3个D.2个
(1)(2)(3)
2.如图2所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为( )
4.(2002.河南)如图6所示,已知AB∥CD,直线EF分别交AB,CD于E,F,EG平分∠B-EF,若∠1=72°,则∠2=_______.
(三)解答题
1.如图,AB∥CD,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?

5.3.1 平行线的性质(第2课时)平行线的性质和判定的综合运七年级数学下册同步备课系列(人教版)

5.3.1 平行线的性质(第2课时)平行线的性质和判定的综合运七年级数学下册同步备课系列(人教版)

又∵∠A=100°,∠C=110°(已知),
∴∠ 1 = 80 °,∠ 2 = 70 °(等量代换).
∴∠AEC=∠1+∠2= 80 °+ 70 ° = 150 °.
当堂巩固
1. 填空:如图,
A
(1)∠1=∠2 时,AB∥CD.
1
(2)∠3= ∠5 或∠4 时,AD∥BC. B
D
5 2
3 C
4 F
解:过点C作CF∥AB,
A
则 _∠__B_=_∠__1( 两直线平行,内错角相等 )
C
又∵AB∥DE,AB∥CF,
D
∴___C_F__∥__D_E___(平行于同一直线的两条直线互相平行 )
∴∠E=∠__2__( 两直线平行,内错角相等 )
∴∠B+∠E=∠1+∠2
即∠B+∠E=∠BCE.
B 1F 2
感受中考
2.(3分)(2021•包头8/26)如图,直线l1∥l2,直线l3交l1于点A,交l2于点B, 过点B的直线l4交l1于点C.若∠3=50°,∠1+∠2+∠3=240°,则∠4等于( )
A.80°
B.70°
C.60°
D.50°
【 分 析 】 由 题 意 得 , ∠ 2=60° , 由 平 角 的 定 义 可 得 ∠5=70°,再根据平行线的性质即可求解.
c 图1
b
c
a 图2
3. 运用平行线的性质填一填
图形
同a 位 角b
1 2 c
内 错 角
a 3
b
2
c
同 旁
a
内 角
b
42 c
已知 a//b
结果 ∠1 = ∠2

5.3.1平行线的性质(集体备课)

5.3.1平行线的性质(集体备课)

5.3.1平行线的性质(集体备课)集体备课记录表章节名称第五章相交线与平行线内容5.3.1 平行线的性质主备人刘建新案别一案授课教师集体备课时间授课时间领导审核签字具体内容集体研讨教学目标知识与技能1.探索并掌握平行线的性质.2.能用平行线的性质定理进行简单的计算、证明.3.知道对平行线的性质和判定进行的区别.过程与方法1.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.2.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.情感态度与价值观1.通过对平行线性质的探究,使学生初步认识数学与现实生活的密切联系.2.通过师生的共同活动,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认识他人.教学重点平行线三个性质的探究及运用教学难点平行线的性质定理与判定定理的区别及综合运用.教学方法观察、发现、归纳、总结教学资源多媒体教学过程教学内容学生活动设计意图一、搭桥引课,明确目标(一)活动1(二)创设情景,引入新知(三)上一节课我们学习了平行线的判定,也就是说知道角的关系能够判断两条直线是否平行。

可是老师从一张轻轨的图片和伸缩门的情景看到的却恰好是另一种有意思的情况,这种情况具有普遍意义吗?二、探究新知,展示交流活动2自主探究,构建新知1. 猜想:∠1, ∠2有怎样的大小关系?问题:你能验证你的猜想吗?(测量法、叠合法)欣赏直线相交的图片,学生独立思考抽象出的数学问题,学生代表将自己的想法在全班进行交流.学生提出猜想后,结合图形的特点,简单谈谈理由.请学生说出自己量出的同位角的度数.教师进行分类板书,并对踊跃回答问题的学生进行及时的表扬.老师引导学生注意他们量的角虽然不一样,但是总体是分为三类的,并且强调指出这种研究方法叫“测量法”.由现实中的的实际问题入手,设置情景问题,激发学生对生活热情和学习兴趣,让学生谈理由也是为公理的得出作好铺垫,同时也自然的引出课题.加深对“两直线平行,同位角相等”的直观感受,培养学生的分类意识.在启发性设问的引导下发现规律,并用自己的语言叙述:“两直线平行,同位角相等”教师和学生还要一起总结平行线的性质的符号语言,并写在黑板上.性质1∵a∥b,∴∠1= ∠2教师演示,学生观察教师倾听学生交流,并和学生一起总结性质2、性质3.在黑板上板书并总结平行线的三条性质(文字语言和符号语言).性质2∵a∥b,∴∠ 2 = ∠3性质3∵a∥b,∴∠2+ ∠4=180老师提炼性质的关键词并指导学生在书本上勾画,强调平行线的性质的前提条件是两直线的位置关系平行.只有在两直线平行的条件下才有同位角、内错角相等,同旁内角互补.学法指导:这道题我选择学生独立完成,并请一名学生到黑板展示他做题的过程.并且要强调解题的步骤与格式.解:∵AD ∥BC(已知)∴∠A+∠B=180°,∠D+∠C=180°(两直线平行,同旁内角互补)∴∠B=180°-115°=65°,学生自主探索,动手剪一剪、叠一叠、比一比并让部分同学上台展示.学生讨论之后简述验证过程.°学生自主辨析.问题1以学生进行抢答的形式进行,并对其中的一个简要说明理由学生独立出题,解答然后进行组内交流,判断正误,评选全班交流作品。

人教版数学七年级下册5.3.1平行线的判定(教案)

人教版数学七年级下册5.3.1平行线的判定(教案)
3.重点难点解析:在讲授过程中,我会特别强调平行线的判定方法,包括同位角相等、内错角相等、同旁内角互补。对于难点部分,我会通过图形示例和对比分析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如使用直尺和量角器来验证平行线的判定方法。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“平行线的判定”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永远不会相交的情况?”比如,铁轨或者教室的黑板边缘。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
人教版数学七年级下册5.3.1平行线的判定(教案)
一、教学内容Biblioteka 本节课选自《人教版数学七年级下册》第五章第三节第一部分“5.3.1平行线的判定”。教学内容主要包括以下两点:
1.掌握平行线的定义:在同一平面内,两条直线不相交,且在平面内没有任何其他直线与这两条直线同时相交,则这两条直线互相平行。
2.学会平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
举例解释:在讲解平行线的判定方法时,可以通过具体图形展示同位角、内错角、同旁内角的概念,并通过实际例题让学生练习如何使用这些方法。
2.教学难点
-理解“同一平面”的概念:学生需要理解为什么要在同一平面内讨论直线是否平行,不同平面内的直线是否有平行的可能性。
-判定方法的适用条件:学生需要明确在什么情况下可以使用同位角相等、内错角相等、同旁内角互补这些判定方法,以及这些方法之间的关系。

5.3.1平行线的性质教案

5.3.1平行线的性质教案

5.3.1平行线的性质教案课题课时:第五章§5.3.1平行线的性质授课人:许昌县实验中学刘冬冬课型:新授课教学目标:1.经历观察、操作、推理、交流等学习活动,进一步发展空间观念、推理能力和有条理表达的能力.2. 经历探索平行线性质的过程,掌握平行线的性质,并能解决一些问题.教学重点与难点:重点:掌握平行线的性质。

难点:运用平行线的性质进行有条理的分析、表达教法及学法指导:教法:采用尝试指导、引导发现法,充分利用学生手中的资源,发挥学生的主体作用,引导学生经历操作、探究、验证、应用性质的数学活动过程,帮助学生在探究学习的过程中理解、掌握新知识,提高他们的讨论能力和解决实际问题的能力.学法:在教师的指导下积极动手操作、对比及归纳猜想,参与性质的探究,从学习中感受乐趣,并学会用性质进行简单推理和解决问题.课前准备:教师准备多媒体课件.学生准备条格纸、量角器。

教学过程:一、前置诊断,复习旧知师:前面我们探索了两条直线平行的条件,学习了哪些判断两条直线平行的条件?生:(齐答)1.同位角相等,两直线平行.2.内错角相等,两直线平行.3.同旁内角互补,两直线平行.师:观察图形,回答下面问题:(多媒体展示)(1)因为∠1=∠5 (已知)所以a∥b()(2)因为∠4=∠ (已知)所以a∥b(内错角相等,两直线平行)(3)因为∠4+∠ =1800 (已知)所以a∥b()生:口头填空,并回答理由。

【设计意图】平行线的性质与判定直线平行的条件是互逆的,对初学者来说易将它们混淆,并为新课的学习做准备。

活动注意事项:因为学生在应用平行线的性质与条件推理时非常容易混淆,因此在学生回答判定直线平行的三个条件后,又给学生结合图形直观地进行直线平行的条件的推理,加深学生的印象,节约学生复习的时间,提高复习的效果。

二、创设情境引入新课师:想一想:反过来,若改变已知与结论的位置。

即:已知两条平行线被第三条直线所截,那么所形成的同位角、内错角、同旁内角,有什么关系呢?这就是本节课要学习的平行线的性质。

5.3.1平行线的性质

5.3.1平行线的性质

练习
1.如图,直线a∥b, ∠1=54°,∠2, ∠3, ∠4各是多少 度?
解:
a
∵ ∠1= 54°(已知)
1 2 4
对顶角相等) ∴ ∠2=∠1 =54°(________
b
∵ a∥b(已知)
∴ ∠2+∠3=180° _________________ (两直线平行 ,同旁内角互补)3
∴ ∠3= 180°- ∠2= 180° -54°=126°
E C
(已知)
(同位角相等,两直线平行)
D
B
(2)∵ DE∥BC (已证明) 又∵∠AED=40° (已知) ∴∠C= ∠ AED=40 ° (两直线平行,同位角相等)
4.如图,已知AG//CF,AB//CD,∠A=40,求 ∠C的度数。 G
解:如图 ∵ AG//CF(已知)
∴ ∠A=∠1
F
A
1
∴ ∠4=∠1=54° ________________ (两直线平行 ,同位角相等)
2.如图,D是AB上一点,E是AC上一点,∠ADE=60 °, ∠B=
60 °,∠AED=40° (1)DE和BC平行吗?为什么?
(2) ∠C是多少度,为什么?
A
解:(1)∵∠ADE=60 ° ∠B=60 ° ∴∠ADE=∠B (等量代换) ∴DE∥BC
c
a
2 3 1
b
平行线的性质3 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
平行线的性质3 两条平行线被第三条直线所截,同旁内角互补。 简单说成:两直线平行,同旁内角互补。
c
a
2 3 1
【应用格式】
b
∵ a∥b (已知) ∴ ∠3+∠2=1800 (两直线平行,同旁内角互补)

5.3.1《平行线的性质》重难点专项练习【六大题型】(解析版)

5.3.1《平行线的性质》重难点专项练习【六大题型】(解析版)

5.3.1《平行线的性质》重难点题型专项练习考查题型一 两直线平行同位角相等的应用典例1.(2022秋·重庆铜梁·七年级校考阶段练习)如图,直线a ,b 被直线c 所截,若a b ∥,2110Ð=°,则1Ð的度数为( )A .70°B .75°C .80°D .85°【答案】A【分析】由a b ∥,根据两直线平行,同位角相等,即可求得3Ð的度数,又由邻补角的定义即可求得1Ð的度数.【详解】解:如图:∵a b ∥,2110Ð=°,∴32110Ð=Ð=°,∵13180Ð+Ð=°,∴170=°∠.故选:A .【点睛】此题考查了平行线的性质与邻补角的定义.解题的关键是熟练掌握平行线的性质,正确运用数形结合思想.变式1-1.(2022·四川德阳·模拟预测)如图,直线//a b ,将三角尺的直角顶点放在直线b 上,如果260Ð=°,那么1Ð的度数为( )A .30°B .40°C .50°D .60°【答案】A【分析】根据平行线的性质求出3Ð,由平角性质可知1180390ÐÐ=°--°即可得出结论.【详解】如图://a b Q ,2360\Ð=Ð=°,1180903180906030\Ð=°-°-Ð=°-°-°=°,故选:A .【点睛】本题考查了平行线的性质,熟练运用平行线的性质推理是解题的关键.变式1-2.(2022·宁夏固原·校考模拟预测)如图,把一个三角尺的直角顶点放在直尺的一边上,如果123Ð=°,那么2Ð的大小为( )A .23°B .46°C .57°D .67°【答案】D【分析】根据余角的定义求出3Ð,再根据两直线平行,同位角相等可得23ÐÐ=.【详解】解:∵123Ð=°,∴3902367°°Ð=-=°,∵直尺的两边互相平行,∴2367Ð=Ð=°.故选:D .【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.变式1-3.(2022秋·陕西西安·七年级校考期中)如图,将直尺与30°角的三角尺叠放在一起,若165Ð=°,则2Ð的大小是( )A .45°B .55°C .65°D .75°【答案】B【分析】由30°三角尺可知360Ð=°,由平角可求4Ð,再根据平行线的性质可知24ÐÐ=.【详解】解:如图:由30°三角尺可知360Ð=°,∵1+3+4180ÐÐÐ=°,∴418013180656055Ð=°-Ð-Ð=°-°-°=°,由平行线的性质可知2455Ð=Ð=°.故选:B .【点睛】本题考查了平行线的性质及直角三角形的性质,充分运用三角板和直尺的几何特征是解题的关键.考查题型二 两直线平行内错角相等的应用典例2.(2021·新疆乌鲁木齐·校考一模)如图,直线12l l ∥,直角三角板的直角顶点C 在直线1l 上,一锐角顶点B 在直线2l 上,若135Ð=°,则2Ð的度数是( )A .65°B .55°C .45°D .35°【答案】B【分析】先根据角的和差求出3Ð的度数,然后根据平行线的性质求解即可.【详解】解:如图,135Ð=°Q ,90ACB Ð=°,390155\Ð=°-Ð=°,又12l l ∥,2355\Ð=Ð=°.故选:B .【点睛】本题考查了平行线的性质,掌握两直线平行,内错角相等是解题的关键.变式2-1.如图,AB CD P ,40B Ð=°,则ECD Ð的度数为( )A .160°B .140°C .50°D .40°【答案】B【分析】利用平行线的性质先求解DCB Ð,再利用邻补角的性质求解ECD Ð即可.【详解】解:∵AB CD P ,40B Ð=°,∴40DCB B Ð=Ð=°,∴180140ECD DCB Ð=°-Ð=°,故选B .【点睛】本题考查的是平行线的性质,邻补角的性质,熟知两直线平行,内错角相等是解题的关键.变式2-2.(2022·河南洛阳·统考一模)如图,ACD Ð是ABC V 的外角,AB CE ∥,80BAC Ð=°,35DCE Ð=°,则ACB Ð的度数为( )A .55°B .65°C .75°D .85°【答案】B【分析】由80AB CE BAC Ð=°,∥可得80ACE Ð=°,进而即可求ACB Ð;【详解】∵80AB CE BAC Ð=°,∥,∴80BAC ACE Ð=Ð=°,∵35DCE Ð=°,∴()18065ACB ACE DCE Ð=°-Ð+Ð=°.故选:B.【点睛】本题主要考查平行线的性质,掌握“两直线平行,内错角相等”定理是解题的关键.变式2-3.如图,直线AB ,CD 被直线DE 所截,AB CD ∥,140Ð=°,则D Ð的度数为( )A .20°B .40°C .50°D .140°【答案】B【分析】根据两直线平行内错角相等可得出答案.【详解】解:∵AB CD ∥,140Ð=°,∴140D Ð=Ð=°,故选:B .【点睛】本题考查了平行线的性质,熟知两直线平行,内错角相等是解本题的关键.考查题型三 两直线平行同旁内角互补的应用典例3.(2022春·黑龙江哈尔滨·七年级校考阶段练习)如图,已知直线AB CD ∥,130GEF Ð=°,135EFH Ð=°,则12Ð+Ð的度数为( )A .35°B .45°C .65°D .85°【答案】D【分析】由130GEF Ð=°,135EFH Ð=°可得1324265°Ð+Ð+Ð+Ð=,由AB CD P 得34180Ð+Ð=°,进而可求出12Ð+Ð的度数.【详解】解:如下图所示,∵130GEF Ð=°,∴13130°Ð+Ð=,∵135EFH Ð=°,∴24135°Ð+Ð=,∴1324265°Ð+Ð+Ð+Ð=∵AB CD P ,∴34180Ð+Ð=°,∴121324(34)26518085°Ðа+Ð=Ð+Ð+Ð+Ð-+Ð=°=-,故选:D .【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.变式3-1.如图,已知直线a b ∥,把三角板的直角顶点放在直线b 上.若140Ð=°,则2Ð的度数为( )A .140°B .130°C .120°D .110°【答案】B【分析】根据互余计算出3904050Ð=°-°=°,再根据平行线的性质由a b ∥得到21803130Ð=°-Ð=°.【详解】解:∵1+3=90Ðа,∴3904050Ð=°-°=°,∵a b ∥,∴23180Ð+Ð=°.∴218050130°°=Ð=-°.故选:B .【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.变式3-2.(2022秋·福建福州·七年级校考期中)如图,AB CD P ,170=°∠,则2Ð=( )A .70°B .80°C .110°D .120°【答案】C【分析】先利用对顶角相等,再利用两直线平行,同旁内角互补得出答案.【详解】解:170Ð=°Q ,3170\Ð=Ð=°,//AB CD Q ,2180318070110\Ð=°-Ð=°-°=°.故选:C .【点睛】此题主要考查了平行线的性质,对顶角相等,熟练掌握性质是解答题的关键.变式3-3.如图,AC BD ∥,AE 平分BAC Ð交BD 于点E ,若166а=,则2Ð= ( )A .123°B .128°C .132°D .142°【答案】A【分析】如图:根据平角的定义及角平分线的性质求得3Ð的度数,再根据平行线的性质求解即可.【详解】解:如图:∵166Ð=°,∴180118066114BAC Ð=°-Ð=°-°=°,∵AE 平分BACÐ∴1131145722BAC °°Ð=Ð=´=,∵AC BD ∥,∴23180Ð+Ð=°,∴2180318057123Ð=°-Ð=°-°=°.故选:A .【点睛】本题主要考查了平行线的性质、角平分线的定义等知识点,灵活运用平行线的性质是解答本题的关键.考查题型四 根据平行线的性质探究角的关系典例4.(2022秋·重庆铜梁·七年级校考期中)如图,已知AB DE ∥,且∠C=110°,则∠1与∠2的数量关系为__________________ .【答案】2170Ð=Ð+°【分析】过点C 作CF AB ∥,则CF AB DE ∥∥,根据平行线的性质可得角之间的关系,从而∠1与∠2的数量关系即可求解.【详解】解:过点C 作CF AB ∥,如图:则CF AB DE ∥∥,∴1BCF Ð=Ð,2180DCF Ð+Ð=°,∵110BCD Ð=°,∴1101101DCF BCF Ð=°-Ð=°-Ð,∴11012180°-Ð+Ð=°,∴2170Ð=Ð+°.故答案为:2170Ð=Ð+°.【点睛】本题考查了平行线的性质,解题的关键是作出平行线,利用平行线的性质得出角之间的关系.变式4-1.(2022·浙江杭州·杭州绿城育华学校校考模拟预测)如图,已知AB CD ∥,CE BF ∥,则B C Ð+Ð= ______ .【答案】180°##180度【分析】根据两直线平行,同位角相等与两直线平行,同旁内角互补,得到EHB C Ð=Ð,180EHB B Ð+Ð=°,等量代换即可求得B C Ð+Ð的值.【详解】解:如图,设AB 与CE 交于点H ,∵AB CD ∥,CE BF ∥,∴EHB C Ð=Ð,180EHB B Ð+Ð=°,∴180B C Ð+Ð=°.故答案为:180°.【点睛】此题考查了平行线的性质.解题的关键是注意两直线平行,同位角相等与两直线平行,同旁内角互补定理的应用,注意数形结合思想的应用.变式4-2.(2022秋·内蒙古乌海·七年级校考期中)如图,AB ∥EF ,则∠A ,∠C ,∠E 满足的数量关系是______.【答案】360A C E Ð+Ð+Ð=°【分析】根据两直线平行,同旁内角互补可直接得到答案.【详解】如下图所示,过点C 作//CD AB ,∵//CD AB ,∴180A ACD Ð+Ð=°(两直线平行,同旁内角互补),∵//AB EF ,//CD AB ,∴//CD EF ,∴180E DCE Ð+Ð=°(两直线平行,同旁内角互补),∴360A ACD E DCE Ð+Ð+Ð+Ð=°,∴360A ACE E Ð+Ð+Ð=°,∴在原图中360A C E Ð+Ð+Ð=°,故答案为:360A C E Ð+Ð+Ð=°.【点睛】本题考查平行直线的性质,解题的关键是熟练掌握两直线平行,同旁内角互补.变式4-3.(2022秋·山东青岛·七年级统考期末)如图,直线AB//CD ,∠AEM =2∠MEN ,∠CFM =2∠MFN ,则∠M 和∠N 的数量关系是________.【答案】∠EMF=23∠ENF【分析】利用平行线的性质以及已知条件解决问题即可.【详解】解:过点M 作MJ ∥AB ,过点N 作NK ∥AB .∵AB ∥CD ,∴MJ ∥AB ∥CD ,NK ∥AB ∥CD ,∴∠EMJ=∠AEM ,∠FMJ=∠CFM ,∠ENK=∠AEN ,∠FNK=∠CFN ,∴∠EMF=∠AEM+∠CFM ,∠ENF=∠AEN+∠CFN ,∵∠AEM=2∠MEN ,∠CFM=2∠MFN ,∴∠AEM+∠CFM=23(∠AEN+∠CFN ),即∠EMF=23∠ENF .故答案为:∠EMF=23∠ENF .【点睛】本题考查平行线的性质,解题的关键是学会探究规律的方法,属于中考常考题型.考查题型五 利用平行线的性质求角的度数典例5.(2022秋·北京西城·七年级期中)如图,若AB CD ∥,EF 与AB ,CD 分别相交于点E ,F ,EP EF ^,EFD Ð平分线与EP 相交于点P ,20BEP Ð=°,则PFD Ð=__________°.【答案】35°【分析】由题可求出BEF Ð,然后根据两直线平行,同旁内角互补可知DFE Ð,根据角平分线的定义可得到结果.【详解】∵EP EF ^,∴90PEF Ð=°,∵20BEP Ð=°,∴110BEF PEF BEP Ð=Ð+Ð=°,∵AB CD P ,∴18070EFD BEF Ð=°-Ð=°,∵FP 平分EFD Ð,∴1352PFD EFD Ð=Ð=°.【点睛】本题考查了平行线的性质与角平分线的定义,以及三角形的内角和定理,注意数形结合思想是解题关键.变式5-1.(2022春·黑龙江哈尔滨·七年级哈尔滨市第四十九中学校校考阶段练习)如图,已知AB EF ∥,BC DE ∥,若70B Ð=°,则E Ð=________°.【答案】110【分析】先根据“两直线平行,内错角相等”得出BGE Ð,再根据“两直线平行,同旁内角互补”得出答案.【详解】如图所示.∵AB EF ∥,∴70B B G E Ð=Ð=°.∵BC DF ∥,∴180BGE E Ð+Ð=°,∴180110E B G E Ð=°-Ð=°.故答案为:110.【点睛】本题主要考查了平行线的性质,灵活选择平行线的性质是解题的关键.变式5-2.如图,AB CD ∥,若40A Ð=°,26C Ð=°,则∠E=______.【答案】66°##66度【分析】如图所示,过点E 作EF AB ∥,则AB CD EF ∥∥,根据两直线平行内错角相等分别求出4026AEF CEF =°=°∠,∠,则66AEC AEF CEF =+=°∠∠∠.【详解】解:如图所示,过点E 作EF AB ∥,∵EF AB AB CD ∥,∥,∴AB CD EF ∥∥,∴4026AEF A CEF C ==°==°∠∠,∠∠,∴66AEC AEF CEF =+=°∠∠∠,故答案为:66°.【点睛】本题主要考查了平行线的性质,正确作出辅助线求出4026AEF CEF =°=°∠,∠是解题的关键.变式5-3.将一块长方形纸折成如图的形状,若已知1=110а,则2Ð=____°.【答案】55【分析】根据平行线的性质以及折叠的性质,即可得到2Ð的度数.【详解】解:如图所示:∵AB CD P ,∴1==110ACD Ðа,∵由折叠可知122ECD ACD Ð=Ð=Ð,∴2=55а,故答案为:55.【点睛】本题主要考查了平行线的性质和折叠的性质,根据题意正确作出辅助线是解答本题的关键.考查题型六 平行线的判定与性质的综合应用典例6.(2022秋·陕西渭南·七年级统考期中)如图,已知点B 、C 在线段AD 的异侧,连接、AB CD ,点E 、F 分别是线段、AB CD 上的点,连接CE BF 、,分别与AD 交于点G ,H ,且AEG AGE Ð=Ð,C DGC Ð=Ð.(1)求证:AB CD ∥;(2)若180AGE AHF °Ð+Ð=,求证:B C Ð=Ð;(3)在(2)的条件下,若117BFC C Ð=Ð,求AHB Ð的度数.【答案】(1)证明见解析(2)证明见解析(3)70°【分析】(1)只需要证明AEG C Ð=Ð即可证明AB CD ∥;(2)先证明HGE AHF =∠∠得到BF CE P 则B AEG =∠∠,再由AEG C Ð=Ð即可证明B C Ð=Ð;(3)根据平行线的性质得到180BFC C Ð+Ð=°,AHB DGC Ð=Ð,再结合已知条件求出C Ð的度数即可得到答案.【详解】(1)证明:∵AEG AGE Ð=Ð,C DGC Ð=Ð,AGE DGC Ð=Ð,∴AEG C Ð=Ð,∴AB CD ∥;(2)证明:∵180180AGE HGE AGE AHF +=°+=°∠∠,∠∠,∴HGE AHF =∠∠,∴BF CE P ,∴B AEG =∠∠,又∵AEG C Ð=Ð,∴B C Ð=Ð;(3)解:由(2)得BF CE P ,∴180BFC C Ð+Ð=°,AHB DGC Ð=Ð,又∵117BFC C Ð=Ð,∴111807C C +=°∠∠,∴70C Ð=°,∴70AHB DGC C ===°∠∠∠.【点睛】本题主要考查了平行线的性质与判定,对顶角相等,熟知平行线的性质与判定条件是解题的关键.变式6-1.(2022秋·广东东莞·七年级统考期中)如图,点B ,C 在线段AD 的异侧,点E ,F 分别是线段AB ,CD 上的点,已知12Ð=Ð,3C Ð=Ð.(1)求证:AB CD ∥;(2)若24180Ð+Ð=°,求证:180BFC C Ð+Ð=°;(3)在(2)的条件下,若3021BFC Ð-°=Ð,求B Ð的度数.【答案】(1)见解析(2)见解析(3)50B Ð=°【分析】(1)已知12Ð=Ð,所以32Ð=Ð,又因为3C Ð=Ð,可以得出1CÐ=Ð即可判定AB CD ∥;(2)已知23ÐÐ=,24180Ð+Ð=°,可以得出//BF EC ,即可得出180BFC C Ð+Ð=°;(3)由(1)(2)可知AB CD ∥,//BF EC ,可以得出1C Ð=Ð,180BFC C Ð+Ð=°;可以得出30212BFC C Ð-°=Ð=Ð,可以得出C Ð,又因为1C B Ð=Ð=Ð,即可求出B Ð的度数.【详解】(1)证明:12Ð=ÐQ ,3C Ð=Ð,23ÐÐ=,1C \Ð=Ð,//AB CD \;(2)证明:24180Ð+Ð=°Q ,23ÐÐ=,34180\Ð+Ð=°,//BF EC \,180BFC C \Ð+Ð=°;(3)180BFC C Ð+Ð=°Q ,30212BFC C Ð-°=Ð=ÐQ ,230BFC C \Ð=Ð+°,230180C C \Ð+°+Ð=°,50C \Ð=°,130BFC \Ð=°,//AB CD Q ,180B BFC \Ð+Ð=°,50B \Ð=°.【点睛】本题考查了对顶角相等,平行线的性质与判定,掌握平行线的性质与判定是解题的关键.变式6-2.如图,已知12AB CD Ð=Ð∥,.(1)求证:EF NP ∥;(2)若FH 平分EFG Ð,交CD 于点H ,交NP 于点O ,且14010FHG Ð=°Ð=°,,求FGD Ð的度数.【答案】(1)见解析(2)60°【分析】(1)根据平行线的性质及等量代换得出1BNP Ð=Ð,即可判定EF NP ∥;(2)过点F 作FM AB ∥,根据平行公理得出AB FM CD ∥∥,根据平行线的性质及角平分线定义得到50GFH EFH Ð=Ð=°,根据三角形外角性质求解即可.【详解】(1)证明:∵AB CD ∥,50GFH EFH Ð=Ð=°∴2BNP Ð=Ð,∵12Ð=Ð,∴1BNP Ð=Ð,∴EF NP ∥;(2)解:如图,过点F 作FM AB ∥,∵AB CD ∥,∴AB FM CD ∥∥,∴14010EFM HFM FHG Ð=Ð=°Ð=Ð=°,,∴50EFH EFM HFM Ð=Ð+Ð=°,∵FH 平分EFG Ð,∴50GFH EFH Ð=Ð=°,∴60FGD GHF HFG Ð=Ð+Ð=°.【点睛】此题考查了平行线的判定与性质,角平分线的定义,熟记平行线的判定与性质是解题的关键.变式6-3.(2022秋·福建福州·七年级校考期中)如图,在ABC V 中,AGF ABC ÐÐ=,12180Ð+Ð=°.(1)求证:DE BF ∥;(2)若DE AC ^,2140Ð=°,求AFG Ð的度数.【答案】(1)见解析(2)50°【分析】(1)由于AGF ABC ÐÐ=,可判断GF BC ∥,则1CBF ÐÐ=,由12180Ð+Ð=°得出2180CBF ÐÐ+=°判断出BF DE ∥;(2)由BF DE ∥,BF AC ^得到DE AC ^,由2140Ð=°得出140Ð=°,得出AFG Ð的度数.【详解】(1)解:BF DE ∥,理由如下:AGF ABC ÐÐ=Q ,GF \BC ∥,1CBF ÐÐ\=,12180Ð+Ð=°Q ,2180CBF ÐÐ\+=°,BF \DE ∥;(2)解:BF Q DE ∥,BF AC ^,DE AC \^,12180Ð+Ð=°Q ,2140Ð=°,140Ð\=°,904050AFG Ð\=°-°=°.【点睛】本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同位角相等,同旁内角互补.。

5.3.1平行线的性质

5.3.1平行线的性质
5.3.1 平行线的性质(两课时)
回答:如图
(1)∠3=∠B,则EF∥AB,依据是
同位角相等,两直线平行

(2)∠2+∠A=180°,则DC∥AB, 依据是 同旁内角互补,两直线平行 (3)∠1=∠4,则GC∥EF,依据是
内错角相等,两直线平行
(4) GC∥EF,AB∥EF,则GC∥AB, 依据是 平行于同一直线的两直线平行. (5)EF⊥BC,AB⊥BC,则EF∥AB, 依据是 平面内,垂直于同一直线的两直线平行.
比一比
平行线的“判定”与“性质”有什么不
判定:已知角的关系得平行的关系. 推平行,用判定. 性质:已知平行的关系得角的关系. 知平行,用性质.
已知 判定
同位角相等 内错角相等 同旁内角互补
得到
两直线平行
性质 已知
得到
4.如图,已知AB、CD、EF互相平行,且 ∠ABE =70°,∠ECD = 150°,则 ∠BEC =________.
整理归纳: 平行线的性质 性质1:两直线平行,同位角相等. ∵ a∥b ( 已知 )
∴ ∠1=∠2(两直线平行,同位角相等) 性质2:两直线平行,内错角相等. ∵a∥b( 已知 ) ∴ ∠1=∠3(两直线平行,内错角相等)
性质3:两直线平行,同旁内角互补. ∵a∥b( 已知 ) ∴ ∠1+∠4=180° (两直线 平行,同旁内角互 补)
1.已知:如图,a// b ,那么3与2有什么关系? 解: ∠ 2 = ∠3,理由如下: ∵ a∥b ∴∠1= ∠2( 两直线平行,同位角相等 ) ∠1 又∵∠3 = ___(对顶角相等), ∴∠ 2 = ∠3.
平行线的性质2 两条平行线被第三条直线所截,内错角相等 简单说成:两直线平行,内错角相等。

2020--2021学年人教版数学七年级下册第五章:5.3.1 平行线的性质

2020--2021学年人教版数学七年级下册第五章:5.3.1  平行线的性质

平行线的性质一.平行线的判定和性质综合--平行的判定1.如图,CE平分∠BCD,DE平分∠ADC,当∠CED=______°时,AD∥BC.2.如图,已知∠EAC=90∘,∠1+∠2=90,∠1=∠3,∠2=∠4.则DE与BC______(填位置关系)3.如图,E是直线AB,CD内部一点,连接BE,DE,若∠ABE=40°,∠CDE=60°,当∠BED的度数为______度时,AB∥CD.4.已知:如图EF⊥AB于点O,FG交CD于点P,当∠1=30°时,当∠EFG的度数为______度时,AB∥CD5.如图,已知直线c和a、b分别交于A、B两点,点P在直线c上运动.若P点在AB两点之间运动,试探究:当∠1、∠2和∠3之间满足的数量关系是∠2=______时,a∥b.二.平行线的性质--同位角1.如图,直线c与直线a,b相交,且a∥b,∠1=60°,则∠2的度数是()2.如图,AB∥CD,AC∥BD,∠1=28°,则∠2的度数为______°.3.如图,已知AB∥CD,GM∥HN, GM平分∠EGB,若∠MGB=40°.则∠NHD=______°4.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=57°,则∠2的度数是()三.平行线的性质--内错角1.如图,l1∥l2,∠1=110∘,则∠2的度数是()2.如图,直线AB,CD被直线EF所截,AB∥CD,AG平分∠BAE交CD于点G,∠2=30°,则∠1=______度3.一副直角三角板按如图所示的方式摆放,其中点C在FD的延长线上,且AB∥FC,则∠CBD的度数为()4.如图,将一副三角板如图放置,∠BAC=∠ADE=90°,∠B=60°,∠EAD=45°,若AE∥BC,则∠CAD=______度四.平行线的性质--同旁内角1.如图,a∥b,直线c与a,b相交,∠1=120∘,则∠2=______°2.如图:AB∥CD,AE平分∠BAC,CE平分∠ACD,则∠1+∠2=______度3.如图,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数()4.将一副三角板如图放置,∠ABE=30°,∠DAC=45°,若DA∥BC,则∠EBC=______度.五.平行线的性质综合--角度计算1.如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C=______°2.如图,直线AB∥CD//EF.若CF平分∠ECD,且满足CF∥BE,∠ECD=80°,则∠ABE的度数为______度.3.如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD,则图中∠EGF=______°.4.如图,AC∥BD,∠A=60°,∠C=62°,则∠2=______°,∠3=______°,∠1=______°5.已知:如图,点C在∠AOB的一边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于点C.若∠O=40°,则∠ECF的度数为______度;∠OCG=______度.六.平行线的性质综合--找相等的角1.如图,AB∥EF,EF∥CD,EG∥BD,则图中与∠1相等的角(除∠1外)共有()2.如图,EG∥BC,CD交EG于点F,那么图中与∠1相等的角共有______个.3.如图,AB∥EF∥CD,GH∥PN,MN∥HK,则图中与∠CHM相等的角(∠CHM 除外)共有()4.如图,AD∥EG∥BC,AC∥EF,则图中与∠1相等的角(不含∠1)有______个七.平行线的性质综合--拐弯问题1.如图,安装某管道,需经过两次拐弯,若要求拐弯后的管道与拐弯前的管道平行,第一次拐弯处的∠B=142°,那么第二次拐弯处的∠C=______°.2.某学生上学路线如图所示,他总共拐了三次弯,最后行车路线与开始的路线相互平行,已知第一次转过的角度,第三次转过的角度,则第二次拐弯角(∠C)的度数是()3.如图所示,一辆汽车,经过两次转弯后,行驶的方向与原来保持平行,如果第一次转过的角度为α,第二次转过的角度为β,则β等于()4.如图,某学员在广场上练习驾驶汽车,第一次向左拐弯15度行驶一段后,第二次向左拐弯13度,再次行驶一段后,那么第三次要向______拐弯______度,则行驶方向与原来行驶方向相同.八.平行线的性质综合--折叠问题1.将长方形纸片ABCD 按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将长方形ABFE与长方形EFCD分别沿折痕MN 和PQ折叠,使点A、点D都与点F重合,展开纸片,若∠AMN=60°,则∠MFP=______°.2.如图,将长方形纸片ABCD折叠,折痕为EF,BC的对应边B′C′与CD交于点P,若∠AEB′=32°,则∠C′FC的度数为______°.3.将一张长方形纸片折叠成如图所示的形状,若∠DBC=56°,则∠1=______°.4.如图,把一张对面互相平行的纸条折成如图所示那样,EF是折痕,若∠EFB =32°,则下列结论中:①∠C′EF=32°,②∠AEC=116°,③∠BGE=64°,④∠BFD=116°,正确的有______.(按从小到大的序号填写)九.平行线的性质综合--三角板问题1.将直尺和直角三角板按如图方式摆放,已知∠1=30∘,则∠2的大小是( )2.将直尺和直角三角板按如图方式摆放,已知∠1=30∘,则∠2的大小是( )3.将直尺和直角三角板按如图方式摆放,已知∠1=35∘,则∠2的大小是( )4.将直尺和直角三角板按如图方式摆放,AB//EF,已知∠1=55∘,则∠2的度数是______度.5.将一副三角板如图放置,使点A在EF上,BC∥EF,则∠ACE的度数为______度.6.将一副三角板如图放置,使点A在DE上,BC∥DE,则∠ACE的度数为______度.十.平行线的性质综合--铅笔型1.判断:如图,AB∥CD,∠A+∠E+∠C=180°.______(填“对”或“错”)2.小芳给自己家的小狗乐乐做了一个小木屋,其侧面如图所示.AE//CF,若她已测出∠A=135°,∠C=125°,由于受条件影响,屋顶的∠B的度数无法测出.哥哥看到后说,不用测量,他能算出∠B=______°3.如图,l//m,∠1=115∘,∠2=95∘,则∠3=______°.4.如图,已知AB∥CF,CF∥DE,∠1=120°,∠2=105°,则∠3=______°.5.如图,直线a∥b,射线DF与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,∠2=______°.十一.平行线的性质综合--锯齿型1.如图,直线AB∥CD,∠1=25∘,∠F=90∘,则∠2的度数为( ).2.如图,已知直线m∥n,∠1=36°,∠2=90°,则∠3的度数为( )3.如图,在△ABC中,∠ABC=90°,直线l1,l2,l3分别经过△ABC的顶点A,B,C,且l1∥l2∥l3,若∠1=40°,则∠2的度数为( )4.如图所示,AB//CD,BF平分∠ABE,DF平分∠CDE,∠BED=80∘,则∠BFD的度数为______°.5.如图所示,AB//CD,BF平分∠ABE,DF平分∠CDE,∠BFD=35∘,那么∠BED的度数为______度.十二.平行线的性质综合--牛角型1.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠DEF=120∘,∠CDE=25∘,则∠BCD的度数是()2.如图,AB//CD,∠B=160°,∠D=120°,则∠E=______°.3.如图,AB//DE,∠ABC=60∘,∠CDE=150∘,则∠BCD=______°.4.如图所示,AB//CD//EF,若∠ABC=50°,∠BCE=20°,则∠CEF=______°.5.如图,EF//AD,AD//BC,CE平分∠BCF,∠DAC=114°,CE、CF是∠ACB 的三等分线,则∠EFC=______°.十三.平行线的性质综合--锄头型1.如图,直线AB//CD,∠B=50∘,∠C=40∘,则∠E等于______度.2.如图,已如AB//CD,若∠A=25∘,∠E=40∘,则∠C=______度.3.如图,直线EF//GH,点A在EF上,AC交GH于点B,若∠EAB=110∘,∠C=60∘,点D在GH上,则∠BDC的度数为______度.4.如图,BC//DE,若∠A=35∘,∠C=24∘,则∠E等于______度.5.如图,a//b,c⊥d,∠1=25∘,则∠2=______度.十四.平行线的性质综合--模型综合1.如图所示,AB∥CD,∠C=125∘,∠E=80∘,则∠A=______°.2.如图,AB//CD,∠P=90∘,∠C=140°,则∠A+∠E的度数为( )3.如图,正五边形ABCD中,11∥12,∠1-∠2的度数为______°(提示:正五边形的每个内角都是108°)4.如图,直线m∥n,AB⊥BC,∠1=35°,∠2=62°,则∠BCD的度数为( )5.如图所示,已知 FC∥AB∥DE,∠α:∠D:∠B=2:3:4,则∠B=______度.6.如图,AB//CD,∠ABE和∠CDE的平分线相交于点F,若∠E=30°,则∠F=______°十五.平行线的性质综合--几个角之间的数量关系1.如图所示,AB∥CD,且点E在射线AB与CD之间,则∠A+∠C______∠AEC (填大于、小于、等于)2.如图,AB∥CD,点E在AB与CD的上方,则∠1+∠2-∠E=______°.3.如图,直线m∥n,则∠1、∠2、∠3、∠4间的数量关系是( )十六.平行线的判定和性质综合--反射问题1.如图,两条平行光线射向平面镜面后被反射,其中一条光线AB反射后的光线是BC,此时∠1=∠2=46°,另一条光线的反射光线EF与镜面的夹角∠3的度数为( )2.根据光反射定律,射到平面镜上的光线与被反射出的光线与平面镜的夹角相同,如图,已知∠AOB的两边OA、OB均为平面反光镜,∠AOB=36°,在OB 上有一个点E,从点E射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠CDE的度数是( )3.如图所示,两平面镜α、β的夹角为60°,入射光线AO平行于β入射到α上,经两次反射后的反射光线O′B平行于α,则∠1的度数为( )4.如图,两平面镜OA,OB的夹角为∠O,入射光线CD平行于OB入射到镜面OA上,经两次反射后的反射光线EF恰好平行于OA,则∠O的度数为______度.5.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=38°,则∠2=______°,∠5=______°十七.平行线的判定和性质综合--角度计算1.如图,已知:AD⊥BC于D,EF⊥BC于F,∠3=∠E=45°,则∠1=______°.2.如图,已知∠1=∠2,∠B=40°,则∠3=______度.3.如图,已知∠1=∠2=∠3=62°,则∠4=()4.如图,∠1=∠2=30°,∠A=60°,则∠ADB=______度.5.如图在三角形ABC中, D,E,F三点分别在AB,AC,BC上,过点D的直线与线段EF的交点为点M,已知2∠1-∠2=150°,2∠2-∠1=30°,∠DEF=∠EFC,∠C =50°,则∠3=______°.6.如图,∠ABC=∠ACB=70°,且∠EAC=2∠ABC,AD平分∠EAC,BD平分∠ABC.则∠ADB=______°.。

平行线的性质北师大版八年级数学上册教学课件

平行线的性质北师大版八年级数学上册教学课件
课堂小结(2分钟)
1.平行线的性质定理是:
同位角相等
两直线平行
内错角相等
同旁内角互补
2.平行线的性质定理与判定定理在条件和结论方面的
关系是_条__件__与__结__论__互__换__
3.完成一个命题的证明,需要的主要环节是:
1)弄清命题的条件与结论 (易错) 2)根据命题的条件画出图形.(易漏) 3)根据命题的条件与结论写出已知,求证.(易漏) 4)写出有理有据的证明过程(难点)
总结归纳
一般地,平行线具有如下性质:
定理1:两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
应用格式:
∵a∥b(已知)
a
1
∴∠1=∠2
b
2
(两直线平行,同位角相等)
c
议一议
利用上述定理,你能证明哪些熟悉的结论? 两直线平行,内错角相等. 两直线平行,同旁内角互补.
尝试来证明一下
7.4平行线的性质-北师大版八年级数 学上册 课件
1.如图1,已知AB∥ED,∠ECF=65°,则∠BAF的度数 7.4平行线的性质-北师大版八年级数学上册课件
自学检测1( 6分钟)
为( A )
A.115° B.65° C.60° D.25°
2.如图2,已知∠1=70°.如果CD∥BE,那么∠B的度
6.如图,∠1与∠2互补,∠3=135°,则∠4的度
数是( A )
A.45°
B.55°
7.4平行线的性质-北师大版八年级数 学上册 课件
C.65°
D.75°
7.4平行线的性质-北师大版八年级数 学上册 课件
7.如图,∠AOB的两边OA,OB均为平面反光镜,∠AOB=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

XX学校教学设计集体备课教案
2017年3 月28 日七年级数学科第周教学内容主备课人:
课题名称 5.3.1平行线的性质
页码P /共课时
第课时
集体备课成员齐龙桥、陈丽梅、课型
新授/练习/复习
新授
授课教师授课班级授课时间
教学目标知识目标:
了解平行线的性质
能力目标:
能够进行推理说明平行线的性质。

情感态度价值观:
教学手段
教具准备
教学重难点
重点:探索并掌握平行线的性质,能用平行线性质进行简单的
推理和计算;难点:能区分平行线的性质和判定
教学思路主要教学环节流程及时间分配
主要环节流程时间分配→



教学过程修改意见
一、【知识链接】:
1、平行线的判定定理1中“两条直线被第三条直线所
截,如果同位角相等,那么这两条直线平行”。

其中同位
角是条件,两条直线平行是结论,那么把这个结论反过来
成立吗?
即:“如果两条平行线被第三条直线所截,那么同位角
相等。

”成立吗?
二【自主学习】
(一)预习自我检测(阅读课本19-21页,完成下列各
题)
1、平行线的性质1:两条被第三条直线所截,
同位角。

可以简单的说:
平行线的性质2:
平行线的性质3:
2、自学20页思考,并完成课本上的填空。


图中:a∥b,说明+=1800
(提示:应该性质1)
3、自学20页例题
4、课本21页练习1、2 (二)预习疑难:
三、【合作探究】
问题:1。

平行线的判定方法有哪三种,我们是先知道什么,后推什么?
先知道后知道
1.同等角相等
2.内错角相等两直线平行
3.同旁内角互补
4.如果两直线都与第三条直线平行,那么这两条直线子相互平行。

问题2 根据同位角相等可以判定两直线平行,反过来,如果两直线平行,同位角之间有什么关系呢?内错
角、同旁内角之间有什么关系呢?
动手画一画:“用直尺和三角板画出平行线a∥b再画一条截线c,使之与a、b相交,并标上所形成的八角,测量上述八角的大小,记录下来,你能发现什么?
问题3、如果两直线平行,那么这两条平行线被第三条直线所截而成的同位角有什么数量关系?
结论:
1.两直线平行,同位角相等.
平行线性质 2.两直线平行,内错角相等.
3.两直线平行,同旁内角互补.
例 1.如图是一个梯形铁片的残余部分,已知∠A=100〃∠B=115〃
梯形的另外两个角分别是多少度?
解:
四:【达标测试】
1、判断题
(1)两条直线被第三条直线所截,则同旁内角互
补.( )
(2)两条直线被第三条直线所截,如果同旁内角互补,
那么同位角相等.( )
2、如图:直线a∥b,=540,那么,,各是
多少度?
3、如图(3),AB∥EF,∠ECD=∠E,则CD∥AB.说理如下:
因为∠ECD=∠E,
所以CD∥EF( )
又AB∥EF,
所以CD∥AB( ).
教学过程修改意见
见解与困

作业布置板书设计课后反思。

相关文档
最新文档