三相异步电动机及其控制电路

合集下载

三相异步电动机控制电路

三相异步电动机控制电路

SB3
SB1
KM1
KM2
FR
KM1
SB22 KM2
KM2 KM1
二、接触器联锁正反转控制电路
L1 L2 L3
×××
Q
KM1
FR
M 3~
KM2
反转运行时正转 控制支路被断开
SB3
SB1
KM1
KM2
FR
KM1
SB2 KM2
KM2 KM1
互锁
二、接触器联锁正反转控制电路
二、接触器联锁正反转控制电路
电气互锁 特点及适用范围:


U1 W2
V1 W1 U2 V 2
(Y) 联 接
L1 3L~2 L3


U1
V1
W1
形 (△)

W2
U2
V2 接
方法:改变电源进线中任意两相相序,就可实现反转。
正转
反转
反转
反转
一、倒顺开关正反转控制电路
关倒 顺 开
一、倒顺开关正反转控制电路
一、倒顺开关正反转控制电路
特点及适用范围: ①所用电器少,线路简单; ②不能频繁换向; ③操作安全性差。 适用于控制额定电流10A、功率在 3KW以下的小容量电动机。
FU1
FU2
L1
L2
L3
FR
按下反转按
钮SB2
SB3
KM2主触 点闭合
KM2
KM1
SB1
发生两相短 路故障
KM1
SB2 KM2
M
试想:若KM1
3~
发生故障,此时
按下反转按钮
SB2会发生什么
情况?
KM1

三相异步电动机电气控制线路

三相异步电动机电气控制线路

可能是轴承磨损、转子不平衡等原因引起 的,需要停机检查并更换相关部件。
电动机温升过高
电动机振动过大
可能是负载过大、通风不良等原因引起的 ,需要减轻负载、改善通风条件等措施。
可能是转子不平衡、轴承磨损等原因引起 的,需要停机检查并更换相关部件。
THANKS
谢谢
详细描述
当电动机无法正常启动时,首先应检查电源电压是否正常,确保电源电压在规定范围内。 同时检查电源是否缺相,如发现缺相应及时处理。对于负载过大的情况,应减轻负载或
更换功率更大的电动机。
运行故障
总结词
运行故障表现为电动机在运行过程中出现异 常响声、振动、过热等现象,可能的原因有 机械故障、电气故障等。
详细描述
对于异常响声和振动,应检查电动机的轴承、 转子等机械部件是否正常,如有问题应及时 更换或维修。对于过热现象,应检查电动机 的负载是否过大、通风是否良好,以及电动 机的绕组和轴承是否正常,如有异常应及时 处理。
停车故障
总结词
停车故障表现为电动机无法正常停车或停车时间过长 ,可能的原因有控制电路故障、制动装置故障等。
过载保护
总结词
过载保护是为了防止电机长时间超负荷运转而设置的保护措施。
详细描述
当电机长时间超负荷运转时,绕组中的电流会超过额定值,导致电机过热。过载保护装置在检测到电流过大时, 会切断电源或降低电机的输入电压,以防止电机过热和损坏。常见的过载保护装置包括热继电器和电子过载保护 器。
欠压保护
总结词
直接启动控制线路
直接启动控制线路是最简单的电动机 控制线路,通过接触器将电动机的三 相绕组直接接入三相电源,实现电动 机的启动和停止控制。
这种控制线路简单、成本低,适用于 小容量电动机的启动和停止控制。

三相异步电动机的控制

三相异步电动机的控制

92
SB3 SB1 KM 1 SB2 KM 2 KM 1 KM 2 FR KM 2 KM 1
图 5-16 带电气互锁的正反转控制 缺点: 电路在具体操作时, 若电动机处于正转状态要反转时必须先按停止按钮 SB3, 使互锁触点 KM1 闭合后按下反转起动按钮 SB2 才能使电动机反转; 若电动机处于反转状 态要正转时必须先按停止按钮 SB3,使互锁触点 KM2 闭合后按下正转起动按钮 SB1 才能 使电动机正转。
S FU SB3 KM 1 FR M 3~ KM 2 SB1 KM 1 SB2 KM 2 KM 1
(2)停止过程。按下停止按钮 SB3, 接触器 KM1 线圈断电,与 SB1 并联的 KM1 的辅助触点断开,以保证 KM1 线圈持续失电, 串联在电动机回路中的 KM1 的主触点 图 5-15 简单的正反转控制 持续断开,切断电动机定子电源,电动机停转。 (3)反向起动过程。按下起动按钮 SB2,接触器 KM2 线圈通电,与 SB2 并联的 KM2 的辅助常开触点闭合, 以保证线圈持续通电, 串联在电动机回路中的 KM2 的主触点持续 闭合,电动机连续反向运转。 缺点: KM1 和 KM2 线圈不能同时通电,因此不能同时按下 SB1 和 SB2,也不能在电动 机正转时按下反转起动按钮,或在电动机反转时按下正转起动按钮。如果操作错误,将 引起主回路电源短路。 2) .带电气互锁的正反转控制电路 将接触器 KM1 的辅助常闭触点串入 KM2 的线圈 回路中,从而保证在 KM1 线圈通电时 KM2 线圈回 路总是断开的; 将接触器 KM2 的辅助常闭触点串入 KM1 的线圈回路中,从而保证在 KM2 线圈通电时 KM1 线圈回路总是断开的。 这样接触器的辅助常闭 触点 KM1 和 KM2 保证了两个接触器线圈不能同时 通电,这种控制方式称为互锁或者联锁,这两个辅 助常开触点称为互锁或者联锁触点。

三相异步电动机启动控制原理及接线图

三相异步电动机启动控制原理及接线图

三相异步电动机启动控制原理图1.三相异步电动机的点动控制点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路;所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转;典型的三相异步电动机的点动控制电气原理图如图3-1a所示;点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成;其中以转换开关QS作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止;点动控制原理:当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源;按下启动按钮SB,接触器KM的线圈得电,带动接触器KM的三对主触头闭合,电动机M便接通电源启动运转;当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,带动接触器KM的三对主触头恢复断开,电动机M失电停转;在生产实际应用中,电动机的点动控制电路使用非常广泛,把启动按钮SB换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行;2.三相异步电动机的自锁控制三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM的一对常开辅助触头;接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用;它主要由按钮开关SB起停电动机使用、交流接触器KM用做接通和切断电动机的电源以及失压和欠压保护等、热继电器用做电动机的过载保护等组成;欠压保护:“欠压”是指线路电压低于电动机应加的额定电压;“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护;因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”即电动机接通电源但不转动的现象,以致损坏电动机;采用接触器自锁正转控制线路就可避免电动机欠压运行,这是因为当线路电压下降到一定值一般指低于额定电压85%以下时,接触器线圈两端的电压也同样下降到一定值,从而使接触器线圈磁通减弱,产生的电磁吸力减小;当电磁吸力减小到小于反作用弹簧的拉力时,动铁心被迫释放,带动主触头、自锁触头同时断开,自动切断主电路和控制电路,电动机失电停转,达到欠压保护的目的;失压保护:失压保护是指电动机在正常运行中,由于外界某中原因引起突然断电时,能自动切断电动机电源;当重新供电时,保证电动机不能自行启动,避免造成设备和人身伤亡事故;采用接触器自锁控制线路,由于接触器自锁触头和主触头在电源断电时已经断开,使控制电路和主电路都不能接通;所以在电源恢复供电时,电动机就不能自行启动运转,保证了人身和设备的安全;控制原理:当按下启动按钮SB2后,电源U1相通过热继电器FR动断接点、停止按钮SB1的动断接点、启动按钮SB2动合接点及交流接触器KM的线圈接通电源V1相,使交流接触器线圈带电而动作,其主触头闭合使电动机转动;同时,交流接触器KM的常开辅助触头短接了启动按钮SB2的动合接点,保持交流接触器线圈始终处于带电状态,这就是所谓的自锁自保;与启动按钮SB2并联起自锁作用的常开辅助触头称为自锁触头或自保触头;3.三相异步电动机的正反转控制三相异步电动机接触器联锁的正反转控制的电气原理图如图3-4所示;线路中采用了两个接触器,即正转用的接触器KM1和反转用的接触器KM2,它们分别由正转按钮SB2和反转按钮SB3控制;这两个接触器的主触头所接通的电源相序不同,KM1按L1—L2—L3相序接线,KM2则对调了两相的相序;控制电路有两条,一条由按钮SB2和KM1线圈等组成的正转控制电路;另一条由按钮SB3和KM2线圈等组成的反转控制电路;控制原理:当按下正转启动按钮SB2后,电源相通过热继电器FR的动断接点、停止按钮SB1的动断接点、正转启动按钮SB2的动合接点、反转交流接触器KM2的常闭辅助触头、正转交流接触器线圈KM1,使正转接触器KM1带电而动作,其主触头闭合使电动机正向转动运行,并通过接触器KM1的常开辅助触头自保持运行;反转启动过程与上面相似,只是接触器KM2动作后,调换了两根电源线U、W相即改变电源相序,从而达到反转目的;互锁原理:接触器KM1和KM2的主触头决不允许同时闭合,否则造成两相电源短路事故;为了保证一个接触器得电动作时,另一个接触器不能得电动作,以避免电源的相间短路,就在正转控制电路中串接了反转接触器KM2的常闭辅助触头,而在反转控制电路中串接了正转接触器KM1的常闭辅助触头;当接触器KM1得电动作时,串在反转控制电路中的KM1的常闭触头分断,切断了反转控制电路,保证了KM1主触头闭合时,KM2的主触头不能闭合;同样,当接触器KM2得电动作时, KM2的常闭触头分断,切断了正转控制电路,可靠地避免了两相电源短路事故的发生;这种在一个接触器得电动作时,通过其常闭辅助触头使另一个接触器不能得电动作的作用叫联锁或互锁;实现联锁作用的常闭触头称为联锁触头或互锁触头;4、三相异步电动机的Y—Δ起动控制1Y—Δ起动自动控制图3-5 三相异步电动机Y—Δ降压启动控制线路图三相异步电动机的Y—Δ起动自动控制如图3-5所示;主要元器件介绍:a.起动按钮SB2;手动按钮开关,可控制电动机的起动运行;b.停止按钮SB1;手动按钮开关,可控制电动机的停止运行;c.主交流接触器KM1;电动机主运行回路用接触器,起动时通过电动机起动电流,运行时通过正常运行的线电流;形连接的交流接触器KM3;用于电动机起动时作Y形连接的交流接触器,起动时通过Y形连接降压起动的线电流,起动结束后停止工作;e.Δ形连接的交流接触器KM2;用于电动机起动结束后恢复Δ形连接作正常运行的接触器,通过绕组正常运行的相电流;f.时间继电器KT;控制Y—Δ变换起动的起动过程时间电机起动时间,即电动机从起动开始到额定转速及运行正常后所需的时间;g.热继电器或电机保护器FR;热继电器主要设置有三相电动机的过负荷保护;电机保护器主要设置有三相电动机的过负荷保护、断相保护、短路保护和平横保护等;控制原理:三相异步电动机Y—Δ转换启动的控制原理大致如下:a.按下启动按钮SB2后,电源通过热继电器FR的动断接点、停止按钮SB1的动断接点、Δ形连接交流接触器KM2常闭辅助触头,接通时间继电器KT的线圈使其动作并延时开始;此时时间继电器KT虽已动作,接点应断开,但其延时接点是瞬间闭合延时断开的延时结束后断开,同时通过此KT延时接点去接通Y形连接的交流接触器KM3的线圈回路,则交流接触器KM3带电动作,其主触头去接通三相绕组,使电动机处于Y形连接的运行状态;KM3辅助常开触头闭合去接通主交流接触器KM1的线圈;b.主交流接触器KM1带电启动后,其辅助触头进行自保持功能自锁功能;而KM1的主触头闭合去接通三相交流电源,此时电动机启动过程开始;c.当时间继电器KT延时断开接点动断接点KT的时间达到或延时到电动机启动过程结束时间后,时间继电器KT接点随即断开;d.时间继电器KT接点断开后,则交流接触器KM3失电;KM3主触头切断电动机绕组的Y形连接回路;同时接触器KM3的常闭辅助触头闭合,去接通Δ形连接交流接触器KM2的线圈电源;e.当交流接触器KM2动作后,其主触头闭合,使电动机正常运行于Δ形连接状态;而KM2的常闭辅助触头断开使时间继电器KT线圈失电,并对交流接触器KM3联锁;电动机处于正常运行状态;f.启动过程结束后,电动机按Δ形连接正常运行;2Y—Δ起动手动控制图3-6 三相异步电动机Y—Δ降压启动接线图Y—Δ起动手动控制接线如图3-6所示;图中手动控制开关SA有两个位置,分别是电动机定子绕组星形和三角形连接;线路动作原理为:起动时,将开关SA置于“起动”位置,电动机定子绕组被接成星形降压起动,当电动机转速上升到一定值后,再将开关SA置于“运行”位置,使电动机定子绕组接成三角形,电动机全压运行;5. 三相异步电动机的自偶降压起动1电动机自耦降压启动自动控制接线图图3-7 电动机自耦降压起动接线图图3-7 是交流电动机自耦降压启动自动切换控制接线图,自动切换靠时间继电器完成,用时间继电器切换能可靠地完成由启动到运行的转换过程,不会造成启动时间的长短不一的情况,也不会因启动时间长造成烧毁自耦变压器事故控制过程如下:a、合上空气开关QF接通三相电源;b、按启动按钮SB2交流接触器KM1线圈通电吸合并自锁,其主触头闭合,将自耦变压器线圈接成星形,与此同时由于KM1辅助常开触点闭合,使得接触器KM2线圈通电吸合,KM2的主触头闭合由自耦变压器的低压低压抽头例如65%将三相电压的65%接入电动;c、KM1辅助常开触点闭合,使时间继电器KT线圈通电,并按已整定好的时间开始计时,当时间到达后,KT的延时常开触点闭合,使中间继电器KA线圈通电吸合并自锁;d、由于KA线圈通电,其常闭触点断开使KM1线圈断电,KM1常开触点全部释放,主触头断开,使自耦变压器线圈封星端打开;同时 KM2线圈断电,其主触头断开,切断自耦变压器电源;KA的常闭触点闭合,通过KM1已经复位的常闭触点,使KM3线圈得电吸合,KM3主触头接通电动机在全压下运行;e、KM1的常开触点断开也使时间继电器KT线圈断电,其延时闭合触点释放,也保证了在电动机启动任务完成后,使时间继电器KT可处于断电状态;f、欲停车时,可按SB1则控制回路全部断电,电动机切除电源而停转;g、电动机的过载保护由热继电器FR完成;2电动机自耦降压启动手动控制接线图3-8 电动机自耦降压起动接线图自耦变压器降压起动手动控制接线如图3—8所示,图中操作手柄有三个位置:“停止”、“起动”和“运行”;操作机构中设有机械连锁机构,它使得操作手柄未经“起动”位置就不可能扳到“运行”位置,保证了电动机必须先经过起动阶段以后才能投入运行;动作原理为:当操作手柄置于“停止”位置时,所有的动、静触点都断开,电动机定子绕组断电,停止转动;当操作手柄向上推至“起动”位置时,起动触点和中性触点同时闭合,电流经起动触点流入自耦变压器,再由自耦变压器的65%或85%抽头处输出到电动机的定子绕组,使定子绕组降压起动;随着起动的进行,当转子转速升高到接近额定转速附近时,可将操作手柄扳到“运行”位置,此时起动工作结束,电动机定子绕组得到电网额定电压,电动机全压运行;停止时须按下SB按钮,使失压脱扣器的线圈断电而造成衔铁释放,通过机械脱扣装置将运行触点断开,切断电源;同时也使手柄自动跳回到“停止”位置,为下一次起动作准备;自耦变压器备有65%和85%两挡电压抽头,出厂时接在65%抽头上,可根据电动机的负载情况选择不同的起动电压;自耦变压器只在起动过程中短时工作,在起动完毕后应从电源中切除;6. 三相绕线式异步电动机转子串电阻起动三相绕线式电动机转子串电阻启动接线如图3—9所示;3—9 三相绕线式电动机转子串电阻启动接线图主要元器件介绍一次部分从上到下依次a、电源;b、Q,隔离开关,一般按电机额定电流的—2倍选择;c、FU1,主保险,般按电机额定电流的倍选择,当Q采用空气开关等有过载、短路保护的开关时,不用;d、KM1,主接触器,一般按电机额定电流的2倍选择;e、热继电器,当Q采用空气开关等有过载、短路保护的开关时,不用;f、M、电动机,一般是大容量的电动机才采用转子串电阻启动7、等,启动电阻,组成限流电阻箱;g、KM2、KM3、KM4等,启动接触器常开触点.二次部分:从上到下依次a、FU2,二次保险5—10A;b、SB1,停止按钮;c、SB3,启动按扭;d、等,接触器线圈、常开或常闭触点;e、等,时间继电器的线圈、触点;f、接线端子排;7、三相异步电动机的软启动器图3—10软启动器外形图图3—11 软启动器主接线图软启动器的外型如图3—10所示,主接线如图3—11所示;软启动器的工作原理:控制其内部晶闸管的导通角,使电机输入电压从零以预设函数关系逐渐上升,直至起动结束,赋予电机全电压,即为软起动,在软起动过程中,电机起动转矩逐渐增加,转速也逐渐增加;软起动结束,旁路接触器闭合,使软起动器退出运行,直至停车时,再次投入,这样即延长了软起动器的寿命,又使电网避免了谐波污染,还可减少软起动器中的晶闸管发热损耗;软启动器内部结构虽然复杂,但使用却十分方便,用户只需接入电源,接出输出,操作按钮即可;用软启动器运行时不工作的特点,还可以实现一台软启动器启动多台电动机;图3—12 软启动器的一拖二示意图工作原理1 启动过程:首先选择一台电动机在软启动器拖动下按所选定的启动方式逐渐提升输出电压,达到工频电压后,旁路接触器接通;然后,软启动器从该回路中切除,去启动下一台电机;2 停止过程:先启动软启动器与旁路接触器并联运行,然后切除旁路,最后软启动器按所选定的停车方式逐渐降低输出电压直到停止; 三台以上以此类推……8、变频器变频器具有调压、调频、稳压、调速等基本功能,应用了现代的科学技术,价格昂贵但性能良好,内部结构复杂但使用简单,所以不只是用于启动电动机,而是广泛的应用到各个领域,各种各样的功率、各种各样的外形、各种各样的体积、各种各样的用途等都有;随着技术的发展,成本的降低,变频器一定还会得到更广泛的应用;。

三相异步电动机双重联锁正反转控制线路

三相异步电动机双重联锁正反转控制线路

定义
双重联锁正反转控制线路是一种 通过双重联锁保护实现电动机正 反转的控制线路。
特点
具有较高的安全性和稳定性,能 够有效地避免误操作和意外事故 的发生。
工作原理
工作原理
通过两个接触器KM1和KM2的常闭触点和互锁触点实现双重联锁,控制电动机 的正反转。当需要改变电动机的旋转方向时,只需改变接触器的状态即可。
感谢您的观看
三相异步电动机双重 联锁正反转控制线路
目录
• 双重联锁正反转控制线路的概述 • 电路组成与元件作用 • 双重联锁正反转控制线路的工作过程 • 双重联锁正反转控制线路的优缺点 • 双重联锁正反转控制线路的故障排除与维
护 • 双重联锁正反转控制线路的发展趋势与展

01
双重联锁正反转控制线 路的概述
定义与特点
用于接通或断开主电路,是整个 电路的电源入口。
三相异步电动机
作为被控制对象,实现电动机的正 反转运行。
接触器
用于控制电动机的启动和停止,通 过主触点连接电动机的三相电源。
控制电路
01
02
03
按钮开关
用于发出控制指令,常分 为启动、停止、正转和反 转等按钮。
继电器
用于接收控制信号并传递 给接触器,控制电动机的 启动和停止。
熔断器
作为电路的短路保护,当 电路发生短路故障时,熔 断器会熔断,切断电路。
双重联锁保护
机械联锁
通过机械结构实现正反转接触器的互锁,防止同时接通正反 转接触器,从而避免电动机正反转同时运行造成损坏。
电气联锁
通过继电器实现正反转接触器的互锁,当一个接触器接通时 ,相应的继电器触点会断开另一个接触器的控制回路,确保 不会同时接通正反转接触器。

三相异步电动机启动控制原理及接线图

三相异步电动机启动控制原理及接线图

三相异步电动机启动控制原理图1、三相异步电动机得点动控制点动正转控制线路就是用按钮、接触器来控制电动机运转得最简单得正转控制线路。

所谓点动控制就是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。

典型得三相异步电动机得点动控制电气原理图如图3-1(a)所示。

点动正转控制线路就是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。

其中以转换开关QS 作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM得线圈得电、失电,接触器KM 得主触头控制电动机M得启动与停止。

点动控制原理:当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。

按下启动按钮SB,接触器KM得线圈得电,带动接触器KM得三对主触头闭合,电动机M便接通电源启动运转。

当电动机需要停转时,只要松开启动按钮SB,使接触器KM得线圈失电,带动接触器KM得三对主触头恢复断开,电动机M失电停转。

在生产实际应用中,电动机得点动控制电路使用非常广泛,把启动按钮SB换成压力接点、限位节点、水位接点等,就可以实现各种各样得自动控制电路,控制小型电动机得自动运行。

2、三相异步电动机得自锁控制三相异步电动机得自锁控制线路如图3-2所示,与点动控制得主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2得两端并接了接触器KM得一对常开辅助触头。

接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要得特点,就就是具有欠压与失压保护作用。

它主要由按钮开关SB(起停电动机使用)、交流接触器KM(用做接通与切断电动机得电源以及失压与欠压保护等)、热继电器(用做电动机得过载保护)等组成。

欠压保护:“欠压”就是指线路电压低于电动机应加得额定电压。

“欠压保护”就是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行得一种保护。

因为当线路电压下降时,电动机得转矩随之减小,电动机得转速也随之降低,从而使电动机得工作电流增大,影响电动机得正常运行,电压下降严重时还会引起“堵转”(即电动机接通电源但不转动)得现象,以致损坏电动机。

三相异步电动机的基本控制电路精品PPT课件

三相异步电动机的基本控制电路精品PPT课件

M
采用此种接线方式。
3~
3.异步电动机的直接起动 + 过载保护
A BC
热继电
QS
器触头
FU
KM SB1 SB2
KM
FR
KM
发热
FR
元件
电流成回路,
M
只要接两相就可以了。
3~
4.多地点控制
例如:甲、乙两地同时控制一台电机。 方法:两起动按钮并联;两停车按钮串联。
KM
SB1甲
SB2甲
KM
甲地
SB3乙
先合上开关QS
1、正转控制
按下SB1
SB1常闭触点先分断对KM2的联锁 SB1常开触点后闭合 KM1线圈得电(自锁)
KM1常闭辅助触点断开 KM1辅助触点闭合 KM1主触点闭合
电动机M正转
继续
先合上开关QS
1、反转控制
按下SB2
SB2常闭触点先分断对KM1的联锁 SB2常开触点后闭合 KM2线圈得电
SQA
KM1
SQB
KM2
FR
KM2
KM1 限位开关
控制回路
行程控制(2) --自动往复运动
电机
逆程
正程
工作要求:1. 能正向运行也能反向运行 2. 到位后能自动返回
自动往复运动控制电路
FR
SB3
KM2
SQA KM1
SB1
关键措施
限位开关采用 复合式开关。正 向运行停车的同 时,自动起动反 向运行;反之亦 然。
三相异步电动机的 基本控制电路
基本控制电路
一、三相异步电动机起动、停车(点动、连续运 行、多地点控制等) 二、三相异步电动机正反转控制 三、顺序控制 四、行程控制 五、时间控制

三相异步电动机启动控制原理及接线图

三相异步电动机启动控制原理及接线图

三相异步电动机启动控制原理图1。

三相异步电动机的点动控制点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。

所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。

典型的三相异步电动机的点动控制电气原理图如图3-1(a)所示.点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。

其中以转换开关QS作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM 的主触头控制电动机M的启动与停止。

点动控制原理:当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源.按下启动按钮SB,接触器KM的线圈得电,带动接触器KM的三对主触头闭合,电动机M便接通电源启动运转。

当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,带动接触器KM的三对主触头恢复断开,电动机M失电停转。

在生产实际应用中,电动机的点动控制电路使用非常广泛,把启动按钮SB换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。

2。

三相异步电动机的自锁控制三相异步电动机的自锁控制线路如图3—2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM的一对常开辅助触头。

接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。

它主要由按钮开关SB(起停电动机使用)、交流接触器KM(用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。

欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。

“欠压保护"是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。

因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转"(即电动机接通电源但不转动)的现象,以致损坏电动机.采用接触器自锁正转控制线路就可避免电动机欠压运行,这是因为当线路电压下降到一定值(一般指低于额定电压85%以下)时, 接触器线圈两端的电压也同样下降到一定值,从而使接触器线圈磁通减弱,产生的电磁吸力减小。

三相异步电动机正反转控制电路

三相异步电动机正反转控制电路

应用案例二:自动化设备
总结词
三相异步电动机正反转控制电路在自动化设 备领域应用广泛,能够提高设备的自动化程 度和运行效率,降低维护成本。
详细描述
自动化设备在生产过程中需要精确控制电机 运动方向和速度,三相异步电动机正反转控 制电路能够满足这些需求。例如,在自动化 生产线、自动化物流系统、自动化检测设备 等应用中,通过控制电机的正反转实现设备 的自动化运行,提高设备的运行效率和稳定 性,降低维护成本和故障率。
总结词
三相异步电动机正反转控制电路在工业生产中应用广泛,能够实现高效、精准的控制,提高生产效率和产品质量 。
详细描述
在工业生产线上,三相异步电动机正反转控制电路被广泛应用于各种机械设备的驱动,如传送带、包装机、印刷 机等。通过控制电机的正反转,可以实现设备的自动化运行,提高生产效率,减少人工干预和操作误差,确保产 品质量的稳定性和一致性。
在交通运输领域中,三相 异步电动机被用于驱动车 辆、船舶和飞机等。
02
CATALOGUE
正反转控制电路的必要性
生产需求
生产过程中,经常需要改变三相异步 电动机的旋转方向,以满足设备运行 和工艺流程的需求。例如,在物料输 送、机械手臂运动等场合,需要电动 机正反转来调整运动方向。
VS
正反转控制电路能够方便、快速地实 现电动机旋转方向的改变,提高生产 效率。
应用案例三:交通运
总结词
三相异步电动机正反转控制电路在交通运输领域应用广泛,能够提高运输效率和安全性 ,降低能耗和排放。
详细描述
在城市轨道交通、公共交通车辆、高速公路收费站等交通运输领域,三相异步电动机正 反转控制电路被广泛应用于车辆的启动、制动和方向控制。通过控制电机的正反转实现 车辆的加速、减速和转向,提高运输效率和安全性,降低能耗和排放,对环境保护和可

三相异步电动机三相异步电动机及其控制线路

三相异步电动机三相异步电动机及其控制线路

三相异步电动机三相异步电动机及其控制线路实现电能与机械能相互转换的电工设备总称为电机。

电机是利用电磁感应原理实现电能与机械能的相互转换。

把机械能转换成电能的设备称为发电机,而把电能转换成机械能的设备叫做电动机。

在生产上主要用的是交流电动机,特别三相异步电动机,因为它具有结构简单、坚固耐用、运行可靠、价格低廉、维护方便等优点。

它被广泛地用来驱动各种金属切削机床、起重机、锻压机、传送带、铸造机械、功率不大的通风机及水泵等。

对于各种电动机我们应该理解以下几个方面的问题:(1)基本构造;(2)工作原理;(3)表示转速与转矩之间关系的机械特性;(4)起动、调速及制动的基本原理和基本方法;(5)应用场合和如何准确使用。

5.1.1 三相异步电动机的结构与工作原理1.三相异步电动机的构造三相异步电动机的两个基本组成局部为定子(固定局部)和转子(旋转局部)。

此外还有端盖、风扇等附属局部,如图5-1所示。

图一图(一)是三相电动机的结构示意图1).定子三相异步电动机的定子由三局部组成:2).转子三相异步电动机的转子由三局部组成:图二鼠笼式电动机因为构造简单,价格低廉,工作可靠,使用方便,成为了生产上应用得最广泛的一种电动机。

为了保证转子能够自由旋转,在定子与转子之间必须留有一定的空气隙,中小型电动机的空气隙约在0.2~1.0mm之间。

2.三相异步电动机的转动原理1).基本原理为了说明三相异步电动机的工作原理,我们做如下演示实验,如图(二)所示。

图(二)是三相异步电动机工作原理(1).演示实验:在装有手柄的蹄形磁铁的两极间放置一个闭合导体,当转动手柄带动蹄形磁铁旋转时,将发现导体也跟着旋;若改变磁铁的转向,则导体的转向也跟着改变。

(2).现象解释:当磁铁旋转时,磁铁与闭合的导体发生相对运动,鼠笼式导体切割磁力线而在其内部产生感应电动势和感应电流。

感应电流又使导体受到一个电磁力的作用,于是导体就沿磁铁的旋转方向转动起来,这就是异步电动机的基本原理。

三相异步电动机控制电路

三相异步电动机控制电路

线圈(KM)通电 电机转动;
触头(KM)闭合
按钮松开
线圈(KM)断电 电机停转。
触头(KM)打开
(二) 单向连续运转控制电路
U QS FU KM V W 停车 按钮 SB2
SB1
起动 按钮 KM
C'
B'
自锁
自锁的作用
按下按钮(SB2),线圈(KM)通电, M 3~ 电机起动;同时辅助触头(KM)闭合, 即使按钮松开,线圈保持通电状态,电机 连续运转。
U QS FU
V W 停车按钮 SB1 SB2
KM
KM
停机时: KM主触点断开 按下SB1 M 3~ KM线圈断电 KM辅助触点断开
电机断电停车 松开SB1,线圈保持断电
二、 电动机正反转控制电路
应用: 生产上往往要求运动部件能够向正反两个方向运动, 如:机床工作台的前进、后退;起重机的提升、下降等。 正、反转的实现: 把接入电源的任意两根联线对调。 用两个交流接触器实现两根电源线的调换。
控制方法: (一)倒顺开关可逆旋转控制电路,5.5kw以下 (二)按钮控制的正反转控制电路 (三)基于行程控制原则的正反转控制电路
(二)按钮控制的正反转 控制电路
主电路
U V
W
QS
FU
正转接触器KM1通电, 电动机正转;
反转接触器KM2通电, 电动机反转; KM1 FR
KM2
注意! 决不允许KM1和KM2 同时通电,否则,会 造成电源短路!
M 3~
控制电路(1)
控制过程:
按下SB2 按下SB3 按下SB1 电机正转 电机反转 电机停车
该电路必须先停车才能由正转到反转或 由反转到正转。SB2和SB3不能同时按下, 否则会造成短路!

三相异步电动机常用控制电路图

三相异步电动机常用控制电路图

三相异步电动机的控制电路1.直接启动控制电路直接启动即启动时把电动机直接接入电网,加上额定电压,一般来说,电动机的容量不大于直接供电变压器容量的20%—30%时,都可以直接启动。

1).点动控制合上开关S,三相电源被引入控制电路,但电动机还不能起动。

按下按钮SB,接触器KM开主触点接通,电动机定子接入三相电源起动运转。

松开按钮SB,接触器KM线圈断电,衔铁松开,常开主触点断开,电动机因断电而停转。

2).直接起动控制(1)起动过程。

按下起动按钮SB1,接触Array器KM线圈通电,与SB1并联的KM的辅助常开触点闭合,以保证松开按钮SB1后KM线圈持续通电,串联在电动机回路中的KM的主触点持续闭合,电动机连续运转,从而实现连续运转控制。

(2)停止过程。

按下停止按钮SB2,Array接触器KM线圈断电,与SB1并联的KM的辅助常开触点断开,以保证松开按钮SB2后KM线圈持续失电,串联在电动机回路中的KM的主触点持续断开,电动机停转。

与SB1并联的KM的辅助常开触点的这种作用称为自锁。

图示控制电路还可实现短路保护、过载保护和零压保护。

a)起短路保护的是串接在主电路中的熔断器FU。

一旦电路发生短路故障,熔体立即熔断,电动机立即停转。

b)起过载保护的是热继电器FR。

当过载时,热继电器的发热元件发热,将其常闭触点断开,使接触器KM线圈断电,串联在电动机回路中的KM的主触点断开,电动机停转。

同时KM辅助触点也断开,解除自锁。

故障排除后若要重新起动,需按下FR的复位按钮,使FR的常闭触点复位(闭合)即可。

c)起零压(或欠压)保护的是接触器KM本身。

当电源暂时断电或电压严重下降时,接触器KM线圈的电磁吸力不足,衔铁自行释放,使主、辅触点自行复位,切断电源,电动机停转,同时解除自锁。

2.正反转控制 1).简单的正反转控制(1)正向起动过程。

按下起动按钮SB 1,接触器KM 1线圈通电,与SB 1并联的KM 1的辅助常开触点闭合,以保证KM 1线圈持续通电,串联在电动机回路中的KM 1的主触点持续闭合,电动机连续正向运转。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三相异步电动机及其控制电路Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-第5章三相异步电动机及其控制线路三相异步电动机实现电能与机械能相互转换的电工设备总称为电机。

电机是利用电磁感应原理实现电能与机械能的相互转换。

把机械能转换成电能的设备称为发电机,而把电能转换成机械能的设备叫做电动机。

在生产上主要用的是交流电动机,特别三相异步电动机,因为它具有结构简单、坚固耐用、运行可靠、价格低廉、维护方便等优点。

它被广泛地用来驱动各种金属切削机床、起重机、锻压机、传送带、铸造机械、功率不大的通风机及水泵等。

对于各种电动机我们应该了解下列几个方面的问题:(1)基本构造;(2)工作原理;(3)表示转速与转矩之间关系的机械特性;(4)起动、调速及制动的基本原理和基本方法;(5)应用场合和如何正确使用。

5.1.1 三相异步电动机的结构与工作原理1.三相异步电动机的构造三相异步电动机的两个基本组成部分为定子(固定部分)和转子(旋转部分)。

此外还有端盖、风扇等附属部分,如图5-1所示。

图 5-1 三相电动机的结构示意图1).定子三相异步电动机的定子由三部分组成:2).转子三相异步电动机的转子由三部分组成:鼠笼式电动机由于构造简单,价格低廉,工作可靠,使用方便,成为了生产上应用得最广泛的一种电动机。

为了保证转子能够自由旋转,在定子与转子之间必须留有一定的空气隙,中小型电动机的空气隙约在~1.0mm之间。

2.三相异步电动机的转动原理1).基本原理为了说明三相异步电动机的工作原理,我们做如下演示实验,如图5-2所示。

图 5-2 三相异步电动机工作原理(1).演示实验:在装有手柄的蹄形磁铁的两极间放置一个闭合导体,当转动手柄带动蹄形磁铁旋转时,将发现导体也跟着旋;若改变磁铁的转向,则导体的转向也跟着改变。

(2).现象解释:当磁铁旋转时,磁铁与闭合的导体发生相对运动,鼠笼式导体切割磁力线而在其内部产生感应电动势和感应电流。

感应电流又使导体受到一个电磁力的作用,于是导体就沿磁铁的旋转方向转动起来,这就是异步电动机的基本原理。

转子转动的方向和磁极旋转的方向相同。

(3).结论:欲使异步电动机旋转,必须有旋转的磁场和闭合的转子绕组。

2).旋转磁场(1).产生图5-3表示最简单的三相定子绕组AX 、BY 、CZ ,它们在空间按互差1200的规律对称排列。

并接成星形与三相电源U 、V 、W 相联。

则三相定子绕组便通过三相对称电流:随着电流在定子绕组中通过,在三相定子绕组中就会产生旋转磁场(图5-4)。

图 5-3 三相异步电动机定子接线当t=00时,0A i =,AX 绕组中无电流;B i 为负,BY 绕组中的电流从Y 流入B 1流出;C i 为正,CZ 绕组中的电流从C 流入Z 流出;由右手螺旋定则可得合成磁场的方向如图5-4(a )所示。

当t=1200时,0B i =,BY 绕组中无电流;A i 为正,AX 绕组中的电流从A 流入X 流出;C i 为负,CZ 绕组中的电流从Z 流入C 流出;由右手螺旋定则可得合成磁场的方向如图5-4(b )所示。

当t=2400时,0C i =,CZ 绕组中无电流;A i 为负,AX 绕组中的电流从X 流入A 流出;B i 为正,BY 绕组中的电流从B 流入Y 流出;由右手螺旋定则可得合成磁场的方向如图5-4(c )所示。

可见,当定子绕组中的电流变化一个周期时,合成磁场也按电流的相序方向在空间旋转一周。

随着定子绕组中的三相电流不断地作周期性变化,产生的合成磁场也不断地旋,因此称为旋转磁场。

图 5-4 旋转磁场的形成(2).旋转磁场的方向旋转磁场的方向是由三相绕组中电流相序决定的,若想改变旋转磁场的方向,只要改变通入定子绕组的电流相序,即将三根电源线中的任意两根对调即可。

这时,转子的旋转方向也跟着改变。

3).三相异步电动机的极数与转速(1).极数(磁极对数p )三相异步电动机的极数就是旋转磁场的极数。

旋转磁场的极数和三相绕组的安排有关。

当每相绕组只有一个线圈,绕组的始端之间相差1200空间角时,产生的旋转磁场具有一对极,即p=1;当每相绕组为两个线圈串联,绕组的始端之间相差600空间角时,产生的旋转磁场具有两对极,即p=2;同理,如果要产生三对极,即p=3的旋转磁场,则每相绕组必须有均匀安排在空间的串联的三个线圈,绕组的始端之间相差400(=1200/p )空间角。

极数p 与绕组的始端之间的空间角的关系为: 0120p θ=(2).转速n三相异步电动机旋转磁场的转速n 0与电动机磁极对数p 有关,它们的关系是:1060f n p= (5-1)由(5-1)可知,旋转磁场的转速n 0决定于电流频率f 1和磁场的极数p 。

对某一异步电动机而言,f 1和p 通常是一定的,所以磁场转速n 0是个常数。

在我国,工频f 1=50Hz ,因此对应于不同极对数p 的旋转磁场转速n 0,见表5-1表5-1(3).转差率s电动机转子转动方向与磁场旋转的方向相同,但转子的转速n 不可能达到与旋转磁场的转速n 0相等,否则转子与旋转磁场之间就没有相对运动,因而磁力线就不切割转子导体,转子电动势、转子电流以及转矩也就都不存在。

也就是说旋转磁场与转子之间存在转速差,因此我们把这种电动机称为异步电动机,又因为这种电动机的转动原理是建立在电磁感应基础上的,故又称为感应电动机。

旋转磁场的转速n 0常称为同步转速。

转差率s ——用来表示转子转速n 与磁场转速n 0相差的程度的物理量。

即:000n n n s n n -∆==(5-2) 转差率是异步电动机的一个重要的物理量。

当旋转磁场以同步转速n 0开始旋转时,转子则因机械惯性尚未转动,转子的瞬间转速n =0,这时转差率S =1。

转子转动起来之后,n >0,(n 0-n )差值减小,电动机的转差率S <1。

如果转轴上的阻转矩加大,则转子转速n 降低,即异步程度加大,才能产生足够大的感受电动势和电流,产生足够大的电磁转矩,这时的转差率S 增大。

反之,S 减小。

异步电动机运行时,转速与同步转速一般很接近,转差率很小。

在额定工作状态下约为~之间。

根据式(4-2),可以得到电动机的转速常用公式()01n s n =-(5-3) 例 有一台三相异步电动机,其额定转速 n =975r/min ,电源频率f =50Hz ,求电动机的极数和额定负载时的转差率S 。

解:由于电动机的额定转速接近而略小于同步转速,而同步转速对应于不同的极对数有一系列固定的数值。

显然,与975r/min 最相近的同步转速n 0=1000r/min ,与此相应的磁极对数p =3。

因此,额定负载时的转差率为:(4).三相异步电动机的定子电路与转子电路三相异步电动机中的电磁关系同变压器类似,定子绕组相当于变压器的原绕组,转子绕组(一般是短接的)相当于副绕组。

给定子绕组接上三相电源电压,则定子中就有三相电流通过,此三相电流产生旋转磁场,其磁力线通过定子和转子铁心而闭合,这个磁场在转子和定子的每相绕组中都要感应出电动势。

总结:1、三相异步电动机的两个基本组成部分为定子(固定部分)和转子(旋转部分)。

2、欲使异步电动机旋转,必须有旋转的磁场和闭合的转子绕组,并且旋转的磁场和闭合的转子绕组的转速不同,这也是“异步”二字的含义;3、三相电源流过在空间互差一定角度按一定规律排列的三相绕组时,便会产生旋转磁场;4、旋转磁场的方向是由三相绕组中电源相序决定的;5、三相异步电动机旋转磁场的转速n0与电动机磁极对数p有关,它们的关系是:6、转差率s——用来表示转子转速n与磁场转速n0相差的程度的物理量。

即:转差率是异步电动机的一个重要的物理量,异步电动机运行时,转速与同步转速一般很接近,转差率很小。

在额定工作状态下约为~之间。

7、三相异步电动机中的电磁关系同变压器类似,定子绕组相当于变压器的原绕组,转子绕组(一般是短接的)相当于副绕组。

5.1.2 三相异步电机的转矩特性与机械特性1.电磁转矩(简称转矩)异步电动机的转矩T是由旋转磁场的每极磁通与转子电流I2相互作用而产生的。

电磁转矩的大小与转子绕组中的电流I及旋转磁场的强弱有关。

经理论证明,它们的关系是:22cos T T K I ϕ=Φ (5-4)其中 T 为电磁转矩 K T 为与电机结构有关的常数为旋转磁场每个极的磁通量 I 2为转子绕组电流的有效值 2为转子电流滞后于转子电势的相位角若考虑电源电压及电机的一些参数与电磁转矩的关系,(5-4)修正为:22122220()T sR U T K R sX '=+ (5-5)其中T K '为常数 U 1为定子绕组的相电压 S 为转差率 R 2为转子每相绕组的电阻X 20为转子静止时每相绕组的感抗 由上式可知,转矩T 还与定子每相电压U 1的平方成比例,所以当电源电压有所变动时,对转矩的影响很大。

此外,转矩T 还受转子电阻R 2的影响。

图4-15为异步电动机的转矩特性曲线。

2.机械特性曲线图 5-5 三相异步电动机的机械特性曲线在一定的电源电压U 1和转子电阻R 2下,电动机的转矩T 与转差率n 之间的关系曲线T=f(s)或转速与转矩的关系曲线n=f(T),称为电动机的机械特性曲线,它可根据式(5-4)得出,如图5-5所示。

在机械特性曲线上我们要讨论三个转矩:1).额定转矩T N额定转矩T N 是异步电动机带额定负载时,转轴上的输出转矩。

29550N P T n (5-6) 式中P 2是电动机轴上输出的机械功率,其单位是瓦特,n 的单位是转/分,T N 的单位是牛·米。

当忽略电动机本身机械摩擦转矩T 0时,阻转矩近似为负载转矩T L ,电动机作等速旋转时,电磁转矩T 必与阻转矩T L 相等,即T = T L 。

额定负载时,则有T N = T L 。

2).最大转矩T mT m 又称为临界转矩,是电动机可能产生的最大电磁转矩。

它反映了电动机的过载能力。

最大转矩的转差率为S m ,此时的S m 叫做临界转差率,见图5-5(a )最大转矩Tm 与额定转矩T N 之比称为电动机的过载系数,即= Tm / T N一般三相异步的过载系数在之间。

在选用电动机时,必须考虑可能出现的最大负载转矩,而后根据所选电动机的过载系数算出电动机的最大转矩,它必须大于最大负载转矩。

否则,就是重选电动机。

3).起动转矩T st ,T st 为电动机起动初始瞬间的转矩,即n=0,s =1时的转矩。

为确保电动机能够带额定负载起动,必须满足:T st T N ,一般的三相异步电动机有T st /T N =1。

3.电动机的负载能力自适应分析电动机在工作时,它所产生的电磁转矩T 的大小能够在一定的范围内自动调整以适应负载的变化,这种特性称为自适应负载能力。

相关文档
最新文档