福建省2018届高三毕业班质量检查测试理数试题

合集下载

2018年福建省普通高中毕业班数学质量检查模拟试卷(理科)带答案

2018年福建省普通高中毕业班数学质量检查模拟试卷(理科)带答案

2018年福建省普通高中毕业班单科质量检查理科数学试题模拟卷(满分:150分 考试时间:120分钟)注意事项:1.本试题分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷1至2页,第Ⅱ卷3至4页。

2.答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置。

3.全部答案答在答题卡上,答在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第I 卷一、选择题:本大题有12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)如果复数)1)((2mi i m ++是实数,则实数m = (A )1(B )-1 (C )2(D )-2(2)设集合}2|||{},0|{2<=<-=x x N x x x M ,则(A )=N M ∅ (B )M N M = (C )M N M =(D )=N M R(3)设}{n a 是公差为正数的等差数列,若321321,15a a a a a a =++=80,则131211a a a ++=(A )120 (B )105 (C )90(D )75(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c . 若a 、b 、c 成等比数列,且==B a c cos ,2则(A )41 (B )43(C )42 (D )32 (5)我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果 (A )2 (B )3 (C )4 (D )5 (6)某几何体的正视图和俯视图如右图所示,则该几何体的侧视图可以是(A ) (B ) (C ) (D )(7)抛物线2x y -=上的点到直线0834=-+y x 距离的最小值是(A )34(B )57 (C )58 (D )3(8)五名同学进行百米赛跑比赛,先后到达终点,则甲比乙先到达的情况有(A )240种 (B )120种 (C )60种 (D )30种 (9)函数sin sin y x x =+图象的一条对称轴是(A )4x π=-(B )4x π=(C )2x π=(D )34x π=(10)设平面向量a 1、a 2、a 3的和a 1+a 2+a 3=0. 如果平面向量b 1、b 2、b 3满足 i i i a a b 且|,|2||=顺时针旋转30°后与b i 同向,其中i =1,2,3,则(A )0321=++-b b b (B )0321=+-b b b(C )0321=-+b b b(D )0321=++b b b(11)点P 是椭圆22122:11x y C a a +=+与双曲线22222:11x y C a a -=-的交点,F 1与F 2是椭圆C 1的焦点,则12F PF ∠等于(A )3π (B )2π(C )23π (D )与a 的取值有关(12)国际上常用恩格尔系数(恩格尔系数=食品支出金额总支出金额)来衡量一个国家和地区人民生活水平的状况。

2018年福建省高三毕业班质量检查理科数学(精校word版)

2018年福建省高三毕业班质量检查理科数学(精校word版)

2018年福建省高三毕业班质量检查测试理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2|log 0A x x =<,133x B x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A .{}|11x x -<<B .{}|01x x <<C .{}|0x x >D .R2.将函数sin 2y x =的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()y f x =的图象,则( )A .()y f x =的图象关于直线8x π=对称 B .()f x 的最小正周期为2π C .()y f x =的图象关于点(,0)2π对称 D .()f x 在(,)36ππ-单调递增 3.庄严美丽的国旗和国徽上的五角星是革命和光明的象征.正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系:在如图所示的正五角星中,以A ,B ,C ,D ,E 为顶点的多边形为正五边形,且51PT AT -=.下列关系中正确的是( )A .51BP TS RS +-=B .51CQ TP TS ++=C .512ES AP BQ --=D . 512AT BQ CR -+= 4.已知()()501221x x a a x +-=+2345623456a x a x a x a x a x +++++,则024a a a ++=( )A .123B .91C .-120D .-1525.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S 为( )A .120B .84C .56D .286.已知函数22()22x f x x x =-+. 命题1p :()y f x =的图象关于点()1,1对称;命题2p :若2a b <<,则()()f a f b <.则在命题1q :12p p ∨,2q :()()12p p ⌝∧⌝,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是( )A .1q ,3qB .1q ,4qC .2q ,3qD .2q ,4q7.如图,在平面直角坐标系xOy 中,质点M ,N 间隔3分钟先后从点P 出发,绕原点按逆时针方向作角速度为6π弧度/分钟的匀速圆周运动,则M 与N 的纵坐标之差第4次达到最大值时,N 运动的时间为( )A .37.5分钟B .40.5分钟C .49.5分钟D .52.5分钟8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,俯视图中的两条曲线均为圆弧,则该几何体的体积为( )A .32643π-B .648π-C .16643π-D .8643π- 9.已知5台机器中有2台存在故障,现需要通过逐台检测直至区分出2台故障机器为止.若检测一台机器的费用为1000元,则所需检测费的均值为( )A .3200元B .3400元C .3500元D .3600元10.已知抛物线E :22(0)y px p =>的焦点为F ,过F 且斜率为1的直线交E 于A ,B 两点,线段AB 的中点为M ,其垂直平分线交x 轴于点C ,MN y ⊥轴于点N .若四边形CMNF 的面积等于7,则E 的方程为( )A .2y x =B .22y x =C .24y x =D .28y x = 11.已知A ,B ,C ,D 四点均在以点1O 为球心的球面上,且25AB AC AD ===,42BC BD ==8BD =.若球2O 在球1O 内且与平面BCD 相切,则球2O 直径的最大值为( )A .1B .2C .4D .812.已知函数()()33f x x a x a =--+(0)a >在[]1,b -上的值域为[]22,0a --,则b 的取值范围是( )A .[]0,3B .[]0,2C .[]2,3D .(]1,3- 二、填空题:本题共4小题,每小题5分,共20分.13.已知复数z 满足()12z i z +=-,则2z = . 14.若x ,y 满足约束条件402400x y x y x y +-≥⎧⎪--≤⎨⎪-≥⎩,则2z x y =+的最小值为 .15.已知双曲线C :22221(0,0)x y a b a b-=>>的右焦点为F ,左顶点为A .以F 为圆心,FA 为半径的圆交C 的右支于P ,Q 两点,APQ ∆的一个内角为60,则C 的离心率为 .16.在平面四边形ABCD 中,1AB =,5AC =,BD BC ⊥,2BD BC =,则AD 的最小值为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.各项均为正数的数列{}n a 的首项11a λ=,前n 项和为n S ,且211n n n S S a λ+++=.(1)求{}n a 的通项公式;(2)若数列{}n b 满足n n n b a λ=,求{}n b 的前n 项和n T . 18.如图1,在矩形ABCD 中,35AB =,25BC =,点E 在线段DC 上,且5DE =,现将AED ∆沿AE 折到'AED ∆的位置,连结'CD ,'BD ,如图2.(1)若点P 在线段BC 上,且5BP =,证明:'AE D P ⊥; (2)记平面'AD E 与平面'BCD 的交线为l .若二面角'B AE D --为23π,求l 与平面'D CE 所成角的正弦值. 19.如图是某小区2017年1月至2018年1月当月在售二手房均价(单位:万元/平方米)的散点图.(图中月份代码1—13分别对应2017年1月—2018年1月)根据散点图选择y a x =+ln y c d x =+两个模型进行拟合,经过数据处理得到两个回归方程分别为0.9369y =+0.95540.0306ln y x =+,并得到以下一些统计量的值:(1)请利用相关指数2R 判断哪个模型的拟合效果更好;(2)某位购房者拟于2018年6月份购买这个小区(70160)m m ≤≤平方米的二手房(欲购房为其家庭首套房).若购房时该小区所有住房的房产证均已满2年但未满5年,请你利用(1)中拟合效果更好的模型解决以下问题:(i )估算该购房者应支付的购房金额.(购房金额=房款+税费;房屋均价精确到0.001万元/平方米) (ii )若该购房者拟用不超过100万元的资金购买该小区一套二手房,试估算其可购买的最大面积.(精确到1平方米)附注:根据有关规定,二手房交易需要缴纳若干项税费,税费是按房屋的计税价格进行征收.(计税价格=房款)征收方式见下表:参考数据:ln 20.69≈,ln3 1.10≈,ln17 2.83≈,ln19 2.94≈ 1.41≈ 1.73≈ 4.12≈,4.36≈.参考公式:相关指数22121()1()n i i i n ii y y R y y ==-=--∑∑.20.椭圆E :22221(0)x y a b a b+=>>的右顶点为A ,右焦点为F ,上、下顶点分别是B ,C ,AB =直线CF 交线段AB 于点D ,且2BD DA =.(1)求E 的标准方程;(2)是否存在直线l ,使得l 交E 于M ,N 两点,且F 恰是BMN ∆的垂心?若存在,求l 的方程;若不存在,说明理由.21.已知函数2()(21)2x f x ax ax e =++-.(1)讨论()f x 的单调区间;(2)若17a <-,求证:当0x ≥时,()0f x <. (二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.已知曲线M 的参数方程为1cos 1sin x y ϕϕ=+⎧⎨=+⎩(ϕ为参数),1l ,2l 为过点O 的两条直线,1l 交M 于A ,B 两点,2l 交M 于C ,D 两点,且1l 的倾斜角为α,6AOC π∠=.(1)求1l 和M 的极坐标方程;(2)当0,6πα⎛⎤∈ ⎥⎝⎦时,求点O 到A ,B ,C ,D 四点的距离之和的最大值.23.[选修4-5:不等式选讲] 已知函数()2f x x =-,()1g x a x =-.(1)若不等式()33g x -≥-的解集为[]2,4,求a 的值;(2)若当x R ∈时,()()f x g x ≥,求a 的取值范围.2018年福建省高三毕业班质量检查测试理科数学答题分析一、选择题1-5: BDADB 6-10: BACCC 11、12:DA二、填空题13. -4 14. 6 15. 43三、解答题17.(1)【考查意图】本小题以n a 与n S 的关系为载体,考查递推数列、等差数列的定义及通项公式及等基础知识,考查运算求解能力,考查化归与转化思想、分类与整合思想等.【解法综述】只要掌握n a 与n S 的关系、等差数列的定义及通项公式即可顺利求解.思路:由211n n n S S a λ+++=通过赋值得到:当2n ≥时,21n n n S S a λ-+=.从而当2n ≥时,11n n a a λ+-=,并注意到211a a λ-=,所以{}n a 是首项为1λ,公差为1λ的等差数列,进而求得n n a λ=. 【错因分析】考生可能存在的错误有:不会通过赋值由211n n n S S a λ+++=得到21n n n S S a λ-+=(2)n ≥,从而无从求解;或没有注意到2n ≥,思维不严密导致解题不完整.【难度属性】易.(2)【考查意图】本小题以数列求和为载体,考查错位相减法、等差数列的前n 项和公式、等比数列的前n 项和公式等基础知识,考查运算求解能力,考查化归与转化思想、分类与整合思想、函数与方程思想等.【解法综述】只要掌握错位相减法、等差数列的前n 项和公式、等比数列的前n 项和公式便可顺利求解. 思路:因为{}n b 是由等差数列{}n 与等比数列{}1n λ-的对应项的积组成的数列,所以可用错位相减法求和,在解题过程中要注意对λ的取值进行分类讨论.【错因分析】考生可能存在的错误有:不懂得根据数列通项的特征选择错位相减法求和,从而无从下手;用错位相减法求和时计算出错;没有对λ的取值进行分类讨论导致解题不完整等.【难度属性】中.18.(1)【考查意图】本小题以平面图形的翻折问题为载体,考查直线与平面垂直的判定与性质等基础知识,考查空间想象能力,推理论证能力,考查化归与转化思想.【解法综述】只要理清图形翻折前后相关要素的关系,掌握直线与平面垂直的判定定理及直线与平面垂直的性质,便可解决问题.思路:先在图1中连结DP ,根据tan tan PDC DAE ∠=∠得到90DOA ∠=,从而有AE OD ⊥,AE OP ⊥,即在图2中有'AE OD ⊥,AE OP ⊥,所以得到AE ⊥平面'POD ,进而得到'AE PD ⊥.【错因分析】考生可能存在的错误有:不能理清图形翻折前后相关要素的关系,未能在图1中作出线段DP ,从而无从下手;由于对直线与平面垂直的判定及性质理解不清导致逻辑混乱.【难度属性】中.(2)【考查意图】本小题以多面体为载体,考查二面角、直线与平面所成角、公理3、直线与平面平行的判定定理与性质定理、空间向量等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想、函数与方程思想.【解法综述】只要掌握二面角的定义,会正确作出平面'AD E 与平面'BCD 的交线,或能利用直线与平面平行的判定定理与性质定理将直线l 与平面'D CE 所成角转化为平行于l 的直线与平面'D CE 所成角,并通过建立适当的空间直角坐标系利用向量方法解决直线与平面所成角的计算问题,便可顺利求解.思路一:延长AE ,BD 交于点Q ,连接'D Q ,根据公理3得到直线'D Q 即为l ,再根据二面角定义得到2'3D OP π∠=.然后在平面'POD 内过点O 作OF OP ⊥交'D P 于点F ,并以O 为原点,分别为OA ,OP ,OF 为x 轴、y 轴、z 轴正方向建立空间直角坐标系,结合直线与平面所成角的计算公式,便可求得l 与平面'D CE 所成角的正弦值.思路二:分别在'AD ,'BD 上取点M ,G ,根据线段的长度及位置关系得到CE MG ⊥,且CE MG =,从而得到四边形MGCE 为平行四边形,进而证得//ME l ,将直线l 与平面'D CE 所成角转化为直线EM 与平面'D CE 所成角.根据二面角定义得到2'3D OP π∠=.然后在平面'POD 内过点O 作OF OP ⊥交'D P 于点F ,并以O 为原点,分别为OA ,OP ,OF 为x 轴、y 轴、z 轴正方向建立空间直角坐标系,结合直线与平面所成角的计算公式,便可求得l 与平面'D CE 所成角的正弦值.【错因分析】考生可能存在的错误有:无法利用公理3确定直线l 的位置,或不能利用直线与平面平行的判定定理与性质定理将所求角转化为平行于l 的直线与平面'D CE 所成角,导致无从下手;不能根据二面角的定义求得2'3D OP π∠=;不能根据题意建立适当的空间直角坐标系;在求解过程中点的坐标或法向量等计算错误.【难度属性】中.19.(1)【考查意图】本小题以购房问题为背景,以散点图、相关指数2R 为载体,考查回归分析等基础知识,考查数据处理能力、推理论证能力、运算求解能力和应用意识,考查统计与概率思想等.【解法综述】只要理解相关指数2R 的意义便可通过简单估算解决问题.【错因分析】考生可能存在的错误有:不懂相关指数2R 的意义导致判断错误.【难度属性】易.(2)(i )【考查意图】本小题以估算购房金额为载体,考查回归分析、函数等基础知识,考查抽象概括能力、运算求解能力、应用意识,考查统计与概率思想、分类与整合思想、函数与方程思想等.考查学生在复杂的问题情境中获取有用信息分析问题和解决问题的能力.【解法综述】通过散点图确定2018年6月对应的x 的取值,代入(1)中拟合效果更好的模型,并利用参考数据即可求出二手房均价的预测值,通过阅读税收征收方式对应的图表信息,选择有用的信息,进行合理分类建立正确的函数模型,便能顺利求解.思路:由(1)的结论知,模型0.95540.0306ln y x =+的拟合效果更好,通过散点图确定2018年6月对应的x 的取值为18,代入0.95540.0306ln y x =+并利用参考数据即可求出二手房均价的预测值,通过阅读税收征收方式对应的图表信息,选择有用的信息,进行合理分类建立正确的函数模型,便能顺利求解.【错因分析】考生可能存在的错误有:不能根据散点图得到2018年6月对应的x 的取值为18,导致2018年6月当月在售二手房均价预测错误;不能从大量复杂的文字和图表中获取有用信息,混淆买方缴纳契税与卖方缴纳的相关税费;不能合理分类导致错误.【难度属性】中.(2)(ii )【考查意图】本小题以估算可购房屋最大面积问题为载体,考查函数与不等式等基础知识,考查运算求解能力及应用意识,考查函数与方程思想等.【解法综述】首先直观估算100万可购买的最大面积的大致范围,再利用(2)(i )中相应的结论求解. 思路:首先通过估算得到,90平方米的购房金额小于100万而100平方米的房款大于100万,从而判断100万可购买的面积在90至100平方米之间,便可利用(2)(i )中相应的结论求解.【错因分析】考生可能存在的错误有:不会估算出100万可购买房屋的最大面积在90至100平方米之间,导致无从下手;未先估算100万可购买房屋的最大面积所在的范围,根据(2)(i )中的函数解析式逐一计算,使得解题过程繁杂导致计算出错.【难度属性】中.20.(1)【考查意图】本小题以椭圆为载体,考查直线的方程、椭圆的标准方程及其简单几何性质等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想等.【解法综述】只要掌握直线的方程、椭圆的标准方程及其简单几何性质,能将线段的长度关系转化为向量关系,或利用平面几何知识进行转化,从而得到a ,b ,c 满足的方程,便可求得椭圆的标准方程.思路一:先分别求出直线AB ,CF 的方程,再求得D 的坐标.然后将2BD DA =转化为2BD DA =,得到2a c =,再结合AB =便可求得1c =,2a =,b =从而得到椭圆的标准方程为22143x y +=. 思路二:利用椭圆的对称性得到//BG CF ,将2BD DA =转化为2GF FA =,得到2a c =,再结合AB =1c =,2a =,b =22143x y +=. 【错因分析】考生可能存在的错误有:不能将2BD DA =转化为2BD DA =,或不能利用椭圆的对称性得到//BG CF ,将2BD DA =转化为2GF FA =,导致无从下手.【难度属性】中.(2)【考查意图】本小题以探索性问题为载体,考查椭圆的简单几种性质、直线与圆锥曲线的位置关系、三角形垂心的性质等基础知识,考查运算求解能力、推理论证能力,考查数形结合思想、函数与方程思想、化归与转化思想等.【解法综述】只要能通过假设存在满足题意的直线,根据F 是BMN ∆的垂心,得到BF MN ⊥,进而确定直线MN 的斜率,由此设出直线MN 的方程并与椭圆方程联立;再根据F 是BMN ∆的垂心,得到MF BN ⊥,将其转化为0MF BN ⋅=或1MF BN k k ⋅=-,并结合韦达定理,便可得到结论.思路:先假设存在满足条件的直线MN ,由垂心的性质可得BF MN ⊥,从而得到直线l 的斜率k =由此可设l 的方程为y x m =+,()11,M x y ,()22,N x y ,再将l 的方程与椭圆方程联立得到m <<12x x +=()21212313m x x -=.将MF BN ⊥转化为0MF BN ⋅=或1MF BN k k ⋅=-,即()(121210x x y y ---=,从而求出m 的值,并根据m 的取值范围检验得到结论.【错因分析】考生可能存在的错误有:不能根据F 是BMN ∆的垂心得到BF MN ⊥及MF BN ⊥,导致无从下手;在消元、化简的过程中计算出错;未检验导致解题不完整等.【难度属性】中.21.(1)【考查意图】本小题以含指数函数的初等函数为载体,利用导数研究函数的单调性,考查运算求解能力,考查函数与方程思想、分类与整合思想等.【解法综述】只要掌握基本初等函数的求导公式及导数的运算法则、导数与函数单调性的关系和含参数一元二次不等式的解法,便可解决问题.思路:求得()()2'421x f x ax ax a e =+++,对()2421u x ax ax a =+++的符号进行讨论.先讨论0a =的情况,再对0a ≠的情况结合()u x 的图象和判别式进一步分成三种情况进行讨论,即可求解.【错因分析】考生可能存在的错误有:求导函数出错;求根计算错误或两根大小关系判断错误;分类讨论错误或不完整.【难度属性】中.(2)【考查意图】本小题以不等式证明为载体,考查利用导数研究函数的极值、最值等基础知识,考查运算求解能力、推理论证能力、抽象概括能力和创新意识,考查函数与方程思想、数形结合思想、分类与整合思想、特殊与一般思想等.【解法综述】只要掌握利用导数研究函数性质的基本思路,具备较强的运算求解能力、推理论证能力和一定的创新意识,并能灵活运用数形结合思想、分类与整合思想、转化与化归思想等,便可解决问题.思路一:将a 的取值分成1,2⎛⎤-∞- ⎥⎝⎦,11,27⎛⎫-- ⎪⎝⎭两部分进行讨论,对于1,2a ⎛⎤∈-∞- ⎥⎝⎦的情形可直接根据(1)的结论进行证明:对于11,27a ⎛⎫∈-- ⎪⎝⎭的情形,将所证不等式转化为证明()f x 的最大值()()12111212x f x ax ax e =++-小于零,再利用2114210ax ax a +++=得到211142a x x =-++,进而得到()()11121121242x x f x e x x +=-++,通过分析法转化为证明函数()()2142x g x x e x x =+---在()0,1恒小于零. 思路二:通过变换主元将()f x 改写成关于a 的函数()()22x a e x x ϕ⎡⎤=+⎣⎦2x a e +-,将求证不等式转化为证明()227x e x x +-20x e +-<,再利用分析法进一步转化为证明()227140x e x x +-+>,然后构造()()227x g x e x x =+-()140x +≥,证明()g x 的最小值大于零即可.思路三:同思路一得到()()11121121242x x f x e x x +=-++,通过分析法转化为求证函数()()2421x x x g x x e ++=+在()0,1恒大于1.思路四:同思路一得到()()11121121242x x f x e x x +=-++,通过分析法转化为求证函数()2421xx x g x e x ++=-+在()0,1恒小于零. 【错因分析】考生可能存在的错误有:不会对参数a 的取值进行合理分类;不会通过消元将函数最值转化为仅关于极值点的表达式;不能变换主元对问题进行合理转化;不会根据题意构造恰当的函数.【难度属性】难.22.(1)【考查意图】本小题以直线和圆为载体,考查直线的极坐标方程、参数方程与普通方程、直角坐标方程与极坐标方程的互化等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.【解法综述】只要能写出极坐标系中简单图形的极坐标方程,能进行极坐标和直角坐标的互化,能进行参数方程和普通方程的互化,便可解决问题.思路:首先,结合图形易得直线l 的极坐标为()R θαρ=∈.其次,先将M 的参数方程化为普通方程,再由极坐标与直角坐标的互化公式将M 的普通方程化为极坐标方程,便可得到正确答案.【错因分析】考生可能存在的错误有:极坐标的概念不清晰,在求1l 的极坐标方程时,忽略R ρ∈的限制导致错误;直角坐标与极坐标的互化错误.【难度属性】易.(2)【考查意图】本小题以两点间的距离为载体,考查极坐标的几何意义、韦达定理及三角恒等变换等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想.【解法综述】只要明确极坐标中ρ,θ的几何意义,并能正确进行三角恒等变换,便可以解决问题. 思路:根据极坐标的几何意义,OA ,OB ,OC ,OD 分别是点A ,B ,C ,D 的极径,从而可利用韦达定理得到:OA OB OC OD +++1234ρρρρ=+++()2cos sin αα=+2cos sin 66ππαα⎡⎤⎛⎫⎛⎫++++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,把问题转化为求三角函数的最值问题,易得所求的最大值为2+.【错因分析】考生可能存在的错误有:不熟悉极坐标的几何意义,无法将问题转化为A ,B ,C ,D四点的极径之和;无法由1l ,2l 及M 的极坐标方程得到()122cos sin ρραα+=+,34ρρ+2cos sin 66ππαα⎡⎤⎛⎫⎛⎫=+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦;在求1234ρρρρ+++的最值时,三角恒等变形出错. 【难度属性】中.23.(1)【考查意图】本小题以含绝对值不等式为载体,考查含绝对值不等式的解法等基础知识,考查运算求解能力,考查函数与方程思想等.【解法综述】根据解集特征判断a 的符号,并结合含绝对值不等式的解法,求得()33g x -≥-的解集,根据集合相等即可求出a 的值.思路:先将()33g x -≥-转化为32a x -≥-,再根据不等式()33g x -≥-的解集为[]2,4得出0a <,从而得到()33g x -≥-的解集为223,3a a ⎡⎤+-⎢⎥⎣⎦,进而由232234a a⎧+=⎪⎪⎨⎪-=⎪⎩得2a =-. 【错因分析】考生可能存在的错误有:无法判断a 的符号导致无从入手;不等式()33g x -≥-的解集求错;不会根据集合相等求出a 的值.【难度属性】易.(2)【考查意图】本小题以不等式恒成立问题为载体,考查含绝对值不等式、绝对值三角不等式等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、数形结合思想、分类与整合思想等.【解法综述】通过分离参数将含参数的绝对值不等式恒成立问题转化为求函数最值问题,或将不等式转化为两个函数图象的位置关系,均能求出a 的取值范围.思路一:当0x =时,易得()()f x g x ≥对任意实数a 成立;当0x ≠时,将()()f x g x ≥转化为21x a x -+≤,再通过分段讨论确定函数()()210x h x x x-+=≠的最小值,从而得到a 的取值范围. 思路二:当0x =时,易得()()f x g x ≥对任意实数a 成立;当0x ≠时,将()()f x g x ≥转化为21x a x -+≤,再利用绝对值三角不等式得到()()210x h x x x-+=≠的最小值,从而得到a 的取值范围. 思路三:当0a ≤时,10a x -<,20x -≥,得到21x a x -≥-成立;当0a >时,不等式()()f x g x ≥等价于函数()2f x x =-的图象恒不在函数()1g x a x =-的图象的下方,从而根据这两个函数图象的位置关系便可得到a 的取值范围.【错因分析】考生可能存在的错误有:不能通过合理分类简化问题;不会通过分离参数转化问题;无法分段讨论去绝对值或利用绝对值三角不等式确定函数()()210x h x x x-+=≠的最小值;不能将不等式转化为两个函数图象的位置关系进行求解.【难度属性】中.。

福建省2018届高三质量检查测试(4月)数学(理)(2021年整理)

福建省2018届高三质量检查测试(4月)数学(理)(2021年整理)

(完整)福建省2018届高三质量检查测试(4月)数学(理)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)福建省2018届高三质量检查测试(4月)数学(理)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)福建省2018届高三质量检查测试(4月)数学(理)(word版可编辑修改)的全部内容。

2018年福建省高三毕业班质量检查测试理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1。

设集合{}2|log 0A x x =<,133xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A .{}|11x x -<<B .{}|01x x <<C .{}|0x x >D .R2。

将函数sin 2y x =的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()y f x =的图象,则( )A .()y f x =的图象关于直线8x π=对称 B .()f x 的最小正周期为2πC .()y f x =的图象关于点(,0)2π对称D .()f x 在(,)36ππ-单调递增3.庄严美丽的国旗和国徽上的五角星是革命和光明的象征.正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系:在如图所示的正五角星中,以A ,B ,C ,D ,E 为顶点的多边形为正五边形,且512PT AT -=.下列关系中正确的是( )A .512BP TS RS +-=B .512CQ TP TS ++=C .512ES AP BQ --=D . 512AT BQ CR -+= 4.已知()()501221x x a a x +-=+2345623456a x a x a x a x a x +++++,则024a a a ++=( ) A .123 B .91 C .—120 D .—1525。

2018年福州市高中毕业班质量检测参考答案(理科数学)

2018年福州市高中毕业班质量检测参考答案(理科数学)

(9) 【答案】C.
【解析】由三视图可知,该几何体是由直四棱柱与半圆锥组合而成的简单组合体.因
1 1 1 为 V四棱柱 = 1 2 2 2 6, V半圆锥 = 12 2 ,所以该几何体的体积为 2 2 3 3
V V四棱柱 V圆锥 6 (10) 【答案】C.

题意,排除 A;故选 C.
(11) 【答案】D.
理科数学参考答案及评分细则 第 2 页(共 14 页)
所以 D 与 B1 重合. 分别过点 A, B 作 AA1 , BB1 垂直于 l , 【解析】 依题意, 易证 BD // x 轴, 且 垂 足 分 别 为 A1 , B 1 , 由 已 知 条 件 BE 2 BF 得 BE 2 BF 2 BB1 , 所 以
(7) 【答案】D.
【解析】根据程序框图的功能,可知判断框内应填 S 1 000 .由程序框图知,当首次 满足 S 1 000 时,已多执行两次“ i i 1 ”,故输出框中应填写“输出 i 2 ”.
(8) 【答案】B.
【解析】 可分两步: 第一步, 甲、 乙两个展区各安排一个人, 有 A62 种不同的安排方法; 第二步,剩下两个展区各两个人,有 C42 C22 种不同的安排方法;根据分步计数原理,有 不同的安排方案的种数为 A62 C42 C22 180 .
x x2 y 2 1 ,所以 E 的渐近线方程为 y . 4 2
2 1 i 2 1 i , z 对应的点为 1,1 , i 1 i 11 i
(2)C (8)B
(3)B (9)C
(4)B (10)C
(5)D (11)D
(6)A (12)B

福建省2018届高三质量检查测试(4月)数学(理)

福建省2018届高三质量检查测试(4月)数学(理)

2018年福建省高三毕业班质量检查测试理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2|lo g 0A x x =<,133xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则AB =( )A .{}|11x x -<<B .{}|01x x <<C .{}|0x x >D .R2.将函数s in 2y x =的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()y f x =的图象,则( )A .()y f x =的图象关于直线8x π=对称 B .()f x 的最小正周期为2πC .()y f x =的图象关于点(,0)2π对称 D .()f x 在(,)36ππ-单调递增3.庄严美丽的国旗和国徽上的五角星是革命和光明的象征.正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系:在如图所示的正五角星中,以A ,B ,C ,D ,E 为顶点的多边形为正五边形,且12P T A T=.下列关系中正确的是( )A .512B P T S R S +-=B .512C Q T P T S ++=C .512E S A P B Q --= D . 512A TB QC R -+=4.已知()()501221x x a a x +-=+2345623456a x a x a x a x a x +++++,则024a a a ++=( )A .123B .91C .-120D .-1525.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S 为( )A .120B .84C .56D .28 6.已知函数22()22xf x x x =-+.命题1p :()y f x =的图象关于点()1,1对称;命题2p :若2a b <<,则()()f a f b <.则在命题1q :12p p ∨,2q :()()12p p ⌝∧⌝,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是( )A .1q ,3qB .1q ,4qC .2q ,3qD .2q ,4q7.如图,在平面直角坐标系x O y 中,质点M ,N 间隔3分钟先后从点P 出发,绕原点按逆时针方向作角速度为6π弧度/分钟的匀速圆周运动,则M 与N 的纵坐标之差第4次达到最大值时,N 运动的时间为( )A .37.5分钟B .40.5分钟C .49.5分钟D .52.5分钟8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,俯视图中的两条曲线均为圆弧,则该几何体的体积为( )A .32643π-B .648π-C .16643π-D .8643π-9.已知5台机器中有2台存在故障,现需要通过逐台检测直至区分出2台故障机器为止.若检测一台机器的费用为1000元,则所需检测费的均值为( )A .3200元B .3400元C .3500元D .3600元10.已知抛物线E :22(0)y p x p =>的焦点为F ,过F 且斜率为1的直线交E 于A ,B 两点,线段A B 的中点为M ,其垂直平分线交x 轴于点C ,M N y ⊥轴于点N .若四边形C M N F 的面积等于7,则E 的方程为( )A .2y x = B .22y x = C .24y x = D .28y x =11.已知A ,B ,C ,D 四点均在以点1O 为球心的球面上,且A B A C A D ===,B C B D ==8B D =.若球2O 在球1O 内且与平面B C D 相切,则球2O 直径的最大值为( )A .1B .2C .4D .812.已知函数()()33f x x a x a =--+(0)a >在[]1,b -上的值域为[]22,0a --,则b 的取值范围是( )A .[]0,3B .[]0,2C .[]2,3D .(]1,3-二、填空题:本题共4小题,每小题5分,共20分.13.已知复数z 满足()12z i z +=-,则2z = .14.若x ,y 满足约束条件402400x y x y x y +-≥⎧⎪--≤⎨⎪-≥⎩,则2z x y =+的最小值为 .15.已知双曲线C :22221(0,0)x y a b ab-=>>的右焦点为F ,左顶点为A .以F 为圆心,F A 为半径的圆交C 的右支于P ,Q 两点,A P Q ∆的一个内角为60,则C 的离心率为 . 16.在平面四边形A B C D 中,1A B =,A C =B D B C ⊥,2B D B C =,则A D 的最小值为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.各项均为正数的数列{}n a 的首项11a λ=,前n 项和为n S ,且211n n n S S a λ+++=.(1)求{}n a 的通项公式;(2)若数列{}n b 满足nn n b a λ=,求{}n b 的前n 项和n T .18.如图1,在矩形A B C D中,A B =,B C =,点E 在线段D C上,且D E =A E D ∆沿A E 折到'A E D ∆的位置,连结'C D ,'B D ,如图2.(1)若点P 在线段B C 上,且2B P ='A E D P ⊥;(2)记平面'A D E 与平面'B C D 的交线为l .若二面角'B A E D --为23π,求l 与平面'D C E 所成角的正弦值.19.如图是某小区2017年1月至2018年1月当月在售二手房均价(单位:万元/平方米)的散点图.(图中月份代码1—13分别对应2017年1月—2018年1月)根据散点图选择y a =+ln y c d x =+两个模型进行拟合,经过数据处理得到两个回归方程分别为0.93690.028y =+0.95540.0306ln y x =+,并得到以下一些统计量的值:(1)请利用相关指数2R 判断哪个模型的拟合效果更好;(2)某位购房者拟于2018年6月份购买这个小区(70160)m m ≤≤平方米的二手房(欲购房为其家庭首套房).若购房时该小区所有住房的房产证均已满2年但未满5年,请你利用(1)中拟合效果更好的模型解决以下问题:(i )估算该购房者应支付的购房金额.(购房金额=房款+税费;房屋均价精确到0.001万元/平方米) (ii )若该购房者拟用不超过100万元的资金购买该小区一套二手房,试估算其可购买的最大面积.(精确到1平方米)附注:根据有关规定,二手房交易需要缴纳若干项税费,税费是按房屋的计税价格进行征收.(计税价格=房款) 征收方式见下表:参考数据:ln 20.69≈,ln 3 1.10≈,ln 17 2.83≈,ln 19 2.94≈ 1.41≈ 1.73≈,4.12≈ 4.36≈.参考公式:相关指数22121()1()ni i i ni i y y R y y ==-=--∑∑.20.椭圆E :22221(0)x y a b ab+=>>的右顶点为A ,右焦点为F ,上、下顶点分别是B ,C ,A B =C F 交线段A B 于点D ,且2B D D A =.(1)求E 的标准方程;(2)是否存在直线l ,使得l 交E 于M ,N 两点,且F 恰是B M N ∆的垂心?若存在,求l 的方程;若不存在,说明理由.21.已知函数2()(21)2xf x a x a x e =++-. (1)讨论()f x 的单调区间; (2)若17a <-,求证:当0x ≥时,()0f x <.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.[选修4-4:坐标系与参数方程]在直角坐标系x O y 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.已知曲线M 的参数方程为1c o s 1sin x y ϕϕ=+⎧⎨=+⎩(ϕ为参数),1l ,2l 为过点O 的两条直线,1l 交M 于A ,B 两点,2l 交M 于C ,D 两点,且1l 的倾斜角为α,6A O C π∠=.(1)求1l 和M 的极坐标方程; (2)当0,6πα⎛⎤∈ ⎥⎝⎦时,求点O 到A ,B ,C ,D 四点的距离之和的最大值.23.[选修4-5:不等式选讲]已知函数()2f x x =-,()1g x a x =-.(1)若不等式()33g x -≥-的解集为[]2,4,求a 的值; (2)若当x R ∈时,()()f x g x ≥,求a 的取值范围.2018年福建省高三毕业班质量检查测试理科数学答题分析一、选择题1-5: BDADB 6-10: BACCC 11、12:DA二、填空题13. -4 14. 6 15.43三、解答题17.(1)【考查意图】本小题以n a 与n S 的关系为载体,考查递推数列、等差数列的定义及通项公式及等基础知识,考查运算求解能力,考查化归与转化思想、分类与整合思想等. 【解法综述】只要掌握n a 与n S 的关系、等差数列的定义及通项公式即可顺利求解.思路:由211n n n S S a λ+++=通过赋值得到:当2n ≥时,21n n n S S a λ-+=.从而当2n ≥时,11n n a a λ+-=,并注意到211a a λ-=,所以{}n a 是首项为1λ,公差为1λ的等差数列,进而求得n na λ=.【错因分析】考生可能存在的错误有:不会通过赋值由211n n n S S a λ+++=得到21n n n S S a λ-+=(2)n ≥,从而无从求解;或没有注意到2n ≥,思维不严密导致解题不完整.【难度属性】易.(2)【考查意图】本小题以数列求和为载体,考查错位相减法、等差数列的前n 项和公式、等比数列的前n 项和公式等基础知识,考查运算求解能力,考查化归与转化思想、分类与整合思想、函数与方程思想等.【解法综述】只要掌握错位相减法、等差数列的前n 项和公式、等比数列的前n 项和公式便可顺利求解.思路:因为{}n b 是由等差数列{}n 与等比数列{}1n λ-的对应项的积组成的数列,所以可用错位相减法求和,在解题过程中要注意对λ的取值进行分类讨论.【错因分析】考生可能存在的错误有:不懂得根据数列通项的特征选择错位相减法求和,从而无从下手;用错位相减法求和时计算出错;没有对λ的取值进行分类讨论导致解题不完整等.【难度属性】中.18.(1)【考查意图】本小题以平面图形的翻折问题为载体,考查直线与平面垂直的判定与性质等基础知识,考查空间想象能力,推理论证能力,考查化归与转化思想.【解法综述】只要理清图形翻折前后相关要素的关系,掌握直线与平面垂直的判定定理及直线与平面垂直的性质,便可解决问题.思路:先在图1中连结D P,根据tan tanP D C D A E∠=∠得到90D O A∠=,从而有A E O D⊥,A E O P⊥,即在图2中有'A E O D⊥,A E O P⊥,所以得到A E⊥平面'P O D,进而得到'A E P D⊥.【错因分析】考生可能存在的错误有:不能理清图形翻折前后相关要素的关系,未能在图1中作出线段D P,从而无从下手;由于对直线与平面垂直的判定及性质理解不清导致逻辑混乱.【难度属性】中.(2)【考查意图】本小题以多面体为载体,考查二面角、直线与平面所成角、公理3、直线与平面平行的判定定理与性质定理、空间向量等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想、函数与方程思想.【解法综述】只要掌握二面角的定义,会正确作出平面'A D E与平面'B C D的交线,或能利用直线与平面平行的判定定理与性质定理将直线l与平面'D C E所成角转化为平行于l的直线与平面'D C E所成角,并通过建立适当的空间直角坐标系利用向量方法解决直线与平面所成角的计算问题,便可顺利求解.思路一:延长A E,B D交于点Q,连接'D Q,根据公理3得到直线'D Q即为l,再根据二面角定义得到2'3D O Pπ∠=.然后在平面'P O D内过点O作O F O P⊥交'D P于点F,并以O为原点,分别为O A,O P,O F为x轴、y轴、z轴正方向建立空间直角坐标系,结合直线与平面所成角的计算公式,便可求得l与平面'D C E所成角的正弦值.思路二:分别在'A D,'B D上取点M,G,根据线段的长度及位置关系得到C E M G⊥,且C E M G=,从而得到四边形M G C E为平行四边形,进而证得//M E l,将直线l与平面'D C E所成角转化为直线E M与平面'D C E所成角.根据二面角定义得到2'3D O Pπ∠=.然后在平面'P O D内过点O作O F O P⊥交'D P于点F,并以O为原点,分别为O A,O P,O F为x轴、y轴、z轴正方向建立空间直角坐标系,结合直线与平面所成角的计算公式,便可求得l与平面'D C E所成角的正弦值.【错因分析】考生可能存在的错误有:无法利用公理3确定直线l的位置,或不能利用直线与平面平行的判定定理与性质定理将所求角转化为平行于l的直线与平面'D C E所成角,导致无从下手;不能根据二面角的定义求得2'3D O Pπ∠=;不能根据题意建立适当的空间直角坐标系;在求解过程中点的坐标或法向量等计算错误.【难度属性】中.19.(1)【考查意图】本小题以购房问题为背景,以散点图、相关指数2R为载体,考查回归分析等基础知识,考查数据处理能力、推理论证能力、运算求解能力和应用意识,考查统计与概率思想等. 【解法综述】只要理解相关指数2R的意义便可通过简单估算解决问题.【错因分析】考生可能存在的错误有:不懂相关指数2R的意义导致判断错误.【难度属性】易.(2)(i)【考查意图】本小题以估算购房金额为载体,考查回归分析、函数等基础知识,考查抽象概括能力、运算求解能力、应用意识,考查统计与概率思想、分类与整合思想、函数与方程思想等.考查学生在复杂的问题情境中获取有用信息分析问题和解决问题的能力.【解法综述】通过散点图确定2018年6月对应的x的取值,代入(1)中拟合效果更好的模型,并利用参考数据即可求出二手房均价的预测值,通过阅读税收征收方式对应的图表信息,选择有用的信息,进行合理分类建立正确的函数模型,便能顺利求解.思路:由(1)的结论知,模型0.95540.0306lny x=+的拟合效果更好,通过散点图确定2018年6月对应的x的取值为18,代入0.95540.0306lny x=+并利用参考数据即可求出二手房均价的预测值,通过阅读税收征收方式对应的图表信息,选择有用的信息,进行合理分类建立正确的函数模型,便能顺利求解.【错因分析】考生可能存在的错误有:不能根据散点图得到2018年6月对应的x的取值为18,导致2018年6月当月在售二手房均价预测错误;不能从大量复杂的文字和图表中获取有用信息,混淆买方缴纳契税与卖方缴纳的相关税费;不能合理分类导致错误.【难度属性】中.(2)(ii )【考查意图】本小题以估算可购房屋最大面积问题为载体,考查函数与不等式等基础知识,考查运算求解能力及应用意识,考查函数与方程思想等.【解法综述】首先直观估算100万可购买的最大面积的大致范围,再利用(2)(i )中相应的结论求解.思路:首先通过估算得到,90平方米的购房金额小于100万而100平方米的房款大于100万,从而判断100万可购买的面积在90至100平方米之间,便可利用(2)(i )中相应的结论求解. 【错因分析】考生可能存在的错误有:不会估算出100万可购买房屋的最大面积在90至100平方米之间,导致无从下手;未先估算100万可购买房屋的最大面积所在的范围,根据(2)(i )中的函数解析式逐一计算,使得解题过程繁杂导致计算出错. 【难度属性】中.20.(1)【考查意图】本小题以椭圆为载体,考查直线的方程、椭圆的标准方程及其简单几何性质等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想等.【解法综述】只要掌握直线的方程、椭圆的标准方程及其简单几何性质,能将线段的长度关系转化为向量关系,或利用平面几何知识进行转化,从而得到a ,b ,c 满足的方程,便可求得椭圆的标准方程.思路一:先分别求出直线A B ,C F 的方程,再求得D 的坐标.然后将2B D D A =转化为2B D D A =,得到2a c =,再结合A B =1c =,2a =,b =,从而得到椭圆的标准方程为22143xy+=.思路二:利用椭圆的对称性得到//B G C F ,将2BD DA =转化为2G F F A =,得到2a c =,再结合A B =,便可求得1c =,2a =,b =,从而得到椭圆的标准方程为22143xy+=.【错因分析】考生可能存在的错误有:不能将2B D D A =转化为2B D D A =,或不能利用椭圆的对称性得到//B G C F ,将2B D D A =转化为2G F F A =,导致无从下手. 【难度属性】中.(2)【考查意图】本小题以探索性问题为载体,考查椭圆的简单几种性质、直线与圆锥曲线的位置关系、三角形垂心的性质等基础知识,考查运算求解能力、推理论证能力,考查数形结合思想、函数与方程思想、化归与转化思想等.【解法综述】只要能通过假设存在满足题意的直线,根据F 是B M N ∆的垂心,得到B F M N ⊥,进而确定直线M N 的斜率,由此设出直线M N 的方程并与椭圆方程联立;再根据F 是B M N ∆的垂心,得到M F B N ⊥,将其转化为0M F B N ⋅=或1M F B N k k ⋅=-,并结合韦达定理,便可得到结论.思路:先假设存在满足条件的直线M N ,由垂心的性质可得B F M N ⊥,从而得到直线l 的斜率3k =,由此可设l 的方程为3y x m =+,()11,Mx y ,()22,N x y ,再将l 的方程与椭圆方程联立得到33m -<<及1213x x +=-,()21212313m x x -=.将M F B N ⊥转化为0M F B N ⋅=或1M F B N k k ⋅=-,即()(121210x x y y ---=,从而求出m 的值,并根据m 的取值范围检验得到结论.【错因分析】考生可能存在的错误有:不能根据F 是B M N ∆的垂心得到B F M N ⊥及M F B N ⊥,导致无从下手;在消元、化简的过程中计算出错;未检验导致解题不完整等. 【难度属性】中.21.(1)【考查意图】本小题以含指数函数的初等函数为载体,利用导数研究函数的单调性,考查运算求解能力,考查函数与方程思想、分类与整合思想等.【解法综述】只要掌握基本初等函数的求导公式及导数的运算法则、导数与函数单调性的关系和含参数一元二次不等式的解法,便可解决问题.思路:求得()()2'421x f x a x a x a e =+++,对()2421u x ax ax a =+++的符号进行讨论.先讨论0a =的情况,再对0a ≠的情况结合()u x 的图象和判别式进一步分成三种情况进行讨论,即可求解. 【错因分析】考生可能存在的错误有:求导函数出错;求根计算错误或两根大小关系判断错误;分类讨论错误或不完整. 【难度属性】中.(2)【考查意图】本小题以不等式证明为载体,考查利用导数研究函数的极值、最值等基础知识,考查运算求解能力、推理论证能力、抽象概括能力和创新意识,考查函数与方程思想、数形结合思想、分类与整合思想、特殊与一般思想等.【解法综述】只要掌握利用导数研究函数性质的基本思路,具备较强的运算求解能力、推理论证能力和一定的创新意识,并能灵活运用数形结合思想、分类与整合思想、转化与化归思想等,便可解决问题.思路一:将a 的取值分成1,2⎛⎤-∞-⎥⎝⎦,11,27⎛⎫-- ⎪⎝⎭两部分进行讨论,对于1,2a ⎛⎤∈-∞- ⎥⎝⎦的情形可直接根据(1)的结论进行证明:对于11,27a ⎛⎫∈--⎪⎝⎭的情形,将所证不等式转化为证明()f x 的最大值()()12111212x fx a xa x e=++-小于零,再利用2114210a x a x a +++=得到211142a x x =-++,进而得到()()11121121242x x f x ex x +=-++,通过分析法转化为证明函数()()2142xg x x ex x =+---在()0,1恒小于零.思路二:通过变换主元将()f x 改写成关于a 的函数()()22xa exx ϕ⎡⎤=+⎣⎦2xa e +-,将求证不等式转化为证明()227xexx +-20xe +-<,再利用分析法进一步转化为证明()227140xexx +-+>,然后构造()()227xg x exx =+-()140x +≥,证明()g x 的最小值大于零即可.思路三:同思路一得到()()11121121242x x f x ex x +=-++,通过分析法转化为求证函数()()2421xx x g x x e++=+在()0,1恒大于1.思路四:同思路一得到()()11121121242x x f x ex x +=-++,通过分析法转化为求证函数()2421xx x gx e x ++=-+在()0,1恒小于零.【错因分析】考生可能存在的错误有:不会对参数a 的取值进行合理分类;不会通过消元将函数最值转化为仅关于极值点的表达式;不能变换主元对问题进行合理转化;不会根据题意构造恰当的函数. 【难度属性】难.22.(1)【考查意图】本小题以直线和圆为载体,考查直线的极坐标方程、参数方程与普通方程、直角坐标方程与极坐标方程的互化等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.【解法综述】只要能写出极坐标系中简单图形的极坐标方程,能进行极坐标和直角坐标的互化,能进行参数方程和普通方程的互化,便可解决问题.思路:首先,结合图形易得直线l 的极坐标为()R θαρ=∈.其次,先将M 的参数方程化为普通方程,再由极坐标与直角坐标的互化公式将M 的普通方程化为极坐标方程,便可得到正确答案. 【错因分析】考生可能存在的错误有:极坐标的概念不清晰,在求1l 的极坐标方程时,忽略R ρ∈的限制导致错误;直角坐标与极坐标的互化错误. 【难度属性】易.(2)【考查意图】本小题以两点间的距离为载体,考查极坐标的几何意义、韦达定理及三角恒等变换等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想.【解法综述】只要明确极坐标中ρ,θ的几何意义,并能正确进行三角恒等变换,便可以解决问题. 思路:根据极坐标的几何意义,O A ,O B ,O C ,O D 分别是点A ,B ,C ,D 的极径,从而可利用韦达定理得到:O A O B O C O D +++1234ρρρρ=+++()2co s sin αα=+2c o s sin 66ππαα⎡⎤⎛⎫⎛⎫++++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,把问题转化为求三角函数的最值问题,易得所求的最大值为2+.【错因分析】考生可能存在的错误有:不熟悉极坐标的几何意义,无法将问题转化为A ,B ,C ,D 四点的极径之和;无法由1l ,2l 及M 的极坐标方程得到()122co s sin ρραα+=+,34ρρ+2c o s sin 66ππαα⎡⎤⎛⎫⎛⎫=+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦;在求1234ρρρρ+++的最值时,三角恒等变形出错.【难度属性】中.23.(1)【考查意图】本小题以含绝对值不等式为载体,考查含绝对值不等式的解法等基础知识,考查运算求解能力,考查函数与方程思想等.【解法综述】根据解集特征判断a 的符号,并结合含绝对值不等式的解法,求得()33g x -≥-的解集,根据集合相等即可求出a 的值.思路:先将()33g x -≥-转化为32a x -≥-,再根据不等式()33g x -≥-的解集为[]2,4得出0a <,从而得到()33g x -≥-的解集为223,3a a ⎡⎤+-⎢⎥⎣⎦,进而由232234aa ⎧+=⎪⎪⎨⎪-=⎪⎩得2a =-. 【错因分析】考生可能存在的错误有:无法判断a 的符号导致无从入手;不等式()33g x -≥-的解集求错;不会根据集合相等求出a 的值. 【难度属性】易.(2)【考查意图】本小题以不等式恒成立问题为载体,考查含绝对值不等式、绝对值三角不等式等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、数形结合思想、分类与整合思想等.【解法综述】通过分离参数将含参数的绝对值不等式恒成立问题转化为求函数最值问题,或将不等式转化为两个函数图象的位置关系,均能求出a 的取值范围.思路一:当0x =时,易得()()f x g x ≥对任意实数a 成立;当0x ≠时,将()()f x g x ≥转化为21x a x-+≤,再通过分段讨论确定函数()()210x h x x x-+=≠的最小值,从而得到a 的取值范围.思路二:当0x =时,易得()()f x g x ≥对任意实数a 成立;当0x ≠时,将()()f x g x ≥转化为21x a x-+≤,再利用绝对值三角不等式得到()()210x h x x x-+=≠的最小值,从而得到a 的取值范围.思路三:当0a ≤时,10a x -<,20x -≥,得到21x a x -≥-成立;当0a >时,不等式()()fx g x ≥等价于函数()2f x x =-的图象恒不在函数()1g x a x =-的图象的下方,从而根据这两个函数图象的位置关系便可得到a 的取值范围.【错因分析】考生可能存在的错误有:不能通过合理分类简化问题;不会通过分离参数转化问题;无法分段讨论去绝对值或利用绝对值三角不等式确定函数()()210x h x x x-+=≠的最小值;不能将不等式转化为两个函数图象的位置关系进行求解. 【难度属性】中.。

【高三数学试题精选】2018届高三数学质量检查测试(4月)试卷(福建理带答案)

【高三数学试题精选】2018届高三数学质量检查测试(4月)试卷(福建理带答案)

2018届高三数学质量检查测试(4月)试卷(福建理带答案)
5 c 152
5程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字化圈的数学发展起了重要的作用卷八中第33问是“今有三角果一垛,底阔每面七个问该若干?”如图是解决该问题的程序框图执行该程序框图,求得该垛果子的总数为()
A.15不等式选讲]
已知函数,
(1)若不等式的解集为,求的值;
(2)若当时,,求的取值范围
10 BAccc 11、12DA
二、填空题
13 -4 14 6 15 16
三、解答题
17(1)【考查意图】本小题以与的关系为载体,考查递推数列、等差数列的定义及通项式及等基础知识,考查运算求解能力,考查化归与转化思想、分类与整合思想等
【解法综述】只要掌握与的关系、等差数列的定义及通项式即可顺利求解
思路由通过赋值得到当时,从而当时,,并注意到,所以是首项为,差为的等差数列,进而求得
【错因分析】考生可能存在的错误有不会通过赋值由得到,从而无从求解;或没有注意到,思维不严密导致解题不完整【难度属性】易
(2)【考查意图】本小题以数列求和为载体,考查错位相减法、。

2018高三数学理质量检查测试4月试卷福建附答案

2018高三数学理质量检查测试4月试卷福建附答案

以一




相一




,一
在一


过一
程一
中一
要一
注一
意一
对一
n
的一
取一
值一
进一
行一
分一
类一
讨一
论一
错一
因一
分一
析一
考-
生一
可一
能一
存一
在一
的一
错一
误一
有一
不一
懂一
得一
根一
据一
数一
列一
通-
项一
的一
特一
征一
选一
择一
错-
位一
相一
减一
法一
求一
和-
,-
从一
而一
无一
从一

手一
用-
错一

相一
减一
法一
求一
和一

2

存在故障
章,

1需
即要
通过逐
刍检
令测直至区分出
2
台^
故障机器为
丿止
-

若检测-
.台
宁机器的费用
寸为
1000元,则所需检测费的均值为()
A.3200元B.3400元C.3500元D・3600元
10.已知抛物线丨: 的焦点为 ,过且斜
率为
1

直线
交]于
两点|
,线段
n的中
点为
,
其垂
直平分线交
轴于'

[首发]福建省福州市2018届高三5月质检数学(理)试题

[首发]福建省福州市2018届高三5月质检数学(理)试题

(7)
在平面直角坐标系 xOy
中,过椭圆 C :
x2 a2
y2 b2
1(a
b
0)
的右焦点 F 作 x 轴的垂线,交 C 于点 P ,若 OP OF 2 , cos OPF
3 3
,则椭圆
C

数学试题(第 1 页共 4 页)
方程为
(A)
x2 4
y2 3
1
(B)
x2 4
y2 2
1
(C)
x2 4
(A) 相x R关,ln视x x频1观 0看www.xu(eBe)rsxiR1,2ln3x . xco1m 0 (5) (在C某)“猜入x羊”R群游,ln戏更x中 x新,一1课只 0羊程随机w躲w在w.两s扇h(门eD背n)后x,ux参e赛Rb,选aln.手xc选ox择m1其中0一个门并打开,
如果这只羊就在该门后,则为猜对;否则,为猜错.已知一位选手获得了 4 次“猜羊”
切点在双曲线 E 上,则 E 的离心率等于
(A) 2 5
(B) 5
(C)
5 3
(D)
5 2
(10) 已知 △ABC 为等边三角形,动点 P 在以 BC 为直径的圆上,若 AP AB AC ,则
2 的最大值为
(A) 1 2
(B)1
3 3
(C) 5 2
(D) 2
3 2
(11) 在三棱锥 P ABC 中,PA PB PC 2 , AB AC 1, BC 3 ,则该三棱锥外接球 的体积是
y2
1
(D)
x2 2
y2
1
(8)
若将函数
f
(x)
sin(2x
π 6
)

2018年高中毕业班教学质量检查理数试题含答案

2018年高中毕业班教学质量检查理数试题含答案

福建省龙岩市2018年高中毕业班教学质量检查数学(理科)试题第I 卷(选择题60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选 项中,只有一项是符合题目要求的•11-若集合 A={y|y=x 3} , B={x y = l n (x —1)},则 A“B =()A. [1,-- ) B . (0,1)C. (1厂)D. (_::,1)2. 已知纯虚数z 满足(1 -2i )z =1 ai ,则实数a 等于()1 1 A.B .C. -2D . 22223. 在等差数列{a n }中,已知是函数f (x )二x -4x 3的两个零点,贝U {a n }的前9项 和等于( ) A. -18B . 9C. 18 D . 364.阅读下边的程序框图,运行相应的程序,输出的结果为()5. 下列关于命题的说法错误的是( )A.命题“若x 2 -3x • 2 =0,则x =2 ”的逆否命题为“若A. 31 C.-2D.x = 2,贝U x 2 -3x 2 = 0 ”;BB. “ a =2 ”是“函数f(x) =log a x在区间(0,上为增函数”的充分不必要条件;若命题 p: n N , 2n 1000,则—p: -n N , 2n1000 ;7.已知向量OA 与OB 的夹角为60°,且|OA|=3, |OB^2,若OC ^mOA nOB ,寸),若二取3,其体积为13.5 (立方寸),则图中的X 为((第8邈图)A. 2.4 B . 1.8 C . 1.6 D . 1.2X -1 I9.设不等式组 x - y 乞0,表示的平面区域为 M ,若直线y 二kx - 2上存在M 内的点,则x y 空4实数k 的取值范围是( )A [1,3]B .(」:,1]U 【3,二)C. [2,5]D.(」:,2山[5,二)10.已知三棱锥P - ABC 的四个顶点均在同一球面上,其中ABC 是正三角形,PA —平面 ABC , PA =2AB =2.3,则该球的表面积为() A. 8 二B . 16二C. 32二D. 36■:J52211.已知离心率为 —的双曲线C : ~ 1(a 0, b 0)的c.D. 命题"-.X 三(- ::,0) , 2X :::3x ”是假命题. 6.(x -1)(x 2)6的展开式中 4X 的系数为(A. 100 B . 15 C.-35 D . -220OC_AB ,则实数m 的值为n1 B.—41 A.-68•中国古代数学著《九章算术》 C. 6 D . 4中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:左、右焦点分别为F2, M2 a2b2是双曲线C的一条渐近线上的点,且OM _MF2, O为坐标原点,若S.p M F2 =16,则双曲线C的实轴长是( )A. 32 B . 16 C . 8 D . 412.已知函数f(x)的定义域为R,其图象关于点(一1,0)中心对称,其导函数f'(x),当X :::-1 时,(x • 1)[f (x) (x 1)f '(x)] < 0,则不等式xf (x -1) • f (0)的解集为( ) A. (1,」;) B. (_::,_1) C. (—1,1) D.(-::,第u卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)―313. 设v为钝角,若sin(八§),则COST的值为 ____________ .14. 过抛物线C : y2 = 4x的焦点F作直线l交抛物线C于A,B,若AF = 4BF ,贝U直线I的斜率是_______ .15.已知各项不为零的数列{a n}的前n项的和为S n,且满足S n「a n -1,若{a n}为递增数列,贝y ■的取值范围为__________ .216.若实数a, b, C, d 满足2a g = 3C ~2=1,则(a - c)2■ (b - d)2的最小值b d三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知f(x) 2 x sin x cos x -(1 )求f(x)的单调增区间;(2)已知ABC中,角A,B,C的对边分别为a,b,c,若A为锐角且f(A) ,b,c = 4,2求a的取值范围.18.如图,在梯形ABCD 中,AB // CD,AD = DC =CB = 2,Z ABC =60°,平面ACEF —平面ABCD,四边形ACEF是菱形,• CAF =60。

2018届福建省福州市高三3月质量检测数学(理)试题(解析版)

2018届福建省福州市高三3月质量检测数学(理)试题(解析版)

2018届福建省福州市⾼三3⽉质量检测数学(理)试题(解析版)2018届福建省福州市⾼三3⽉质量检测数学(理)试题⼀、单选题1.已知复数满⾜,则在复平⾯内,对应的点位于( )A. 第⼀象限B. 第⼆象限C. 第三象限D. 第四象限【答案】B【解析】由题易得:∴对应的点为,,在第⼆象限,故选:B2.为了解某地区的“微信健步⾛”活动情况,拟从该地区的⼈群中抽取部分⼈员进⾏调查,事先已了解到该地区⽼、中、青三个年龄段⼈员的“微信健步⾛”活动情况有较⼤差异,⽽男⼥“微信健步⾛”活动情况差异不⼤.在下⾯的抽样⽅法中,最合理的抽样⽅法是( )A. 简单随机抽样B. 按性别分层抽样C. 按年龄段分层抽样D. 系统抽样【答案】C【解析】我们常⽤的抽样⽅法有:简单随机抽样、分层抽样和系统抽样,事先已了解到该地区⽼、中、青三个年龄段⼈员的“微信健步⾛”活动情况有较⼤差异,⽽男⼥“微信健步⾛”活动情况差异不⼤.了解某地区的“微信健步⾛”活动情况,,按年龄分层抽样,这种⽅式具有代表性,⽐较合理.故选:C.3.已知双曲线的两顶点间的距离为4,则的渐近线⽅程为( )A. B. C. D.【答案】B【解析】由双曲线的⽅程可知:,即,∴,解得:令,得到故选:B4.若⾓的顶点与原点重合,始边与轴的⾮负半轴重合,终边在直线上,则( )A. B. C. D.【答案】B【解析】由题意易得:,,故选:B5.已知三棱锥的四个顶点都在球的表⾯上,平⾯,,且,若平⾯截球所得截⾯的⾯积为,则球的表⾯积为( )A. B. C. D.【答案】D【解析】∵AB⊥BC,平⾯截球所得截⾯的⾯积为,∴AC为截⾯ABC的直径,AC=6,∴PC=,∵PA⊥平⾯ABC,∴PC的中点为球O的球⼼,∴球O的半径r==5,∴球O的⾯积S=4πr2=.故选:D.6.函数的图象⼤致为( )A. B. C. D.【答案】A【解析】的定义域为,,为偶函数,排除C;当x时,,排除B,D故选:A点睛:识图常⽤的⽅法(1)定性分析法:通过对问题进⾏定性的分析,从⽽得出图象的上升(或下降)的趋势,利⽤这⼀特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利⽤这⼀函数模型来分析解决问题.7.下⾯程序框图是为了求出满⾜的最⼤正整数的值,那么在和两个空⽩框中,可以分别填⼊( )A. “”和“输出”B. “”和“输出”C. “”和“输出”D. “”和“输出”【答案】D【解析】执⾏程序框图:,,得到,,判断不符合,∴“”排除A,B选项;,,判断不符合,,,判断不符合,,,,判断符合,则“输出”故选:D点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时⼀定注意以下⼏点:(1) 不要混淆处理框和输⼊框;(2) 注意区分程序框图是条件分⽀结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时⼀定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算⽅法逐次计算,直到达到输出条件即可.8.福州西湖公园花展期间,安排6位志愿者到4个展区提供服务,要求甲、⼄两个展区各安排⼀个⼈,剩下两个展区各安排两个⼈,不同的安排⽅案共有( )A. 90种B. 180种C. 270种D. 360种【答案】B【解析】第⼀步,为甲地选⼀名志愿者,有=6种选法;第⼆步,为⼄地选⼀名志愿者,有=5种选法;第三步,为剩下两个展区各安排两个⼈,有种选法.故不同的安排⽅案共有6×5×6=180种.故选:B.9.如图,⽹格纸上⼩正⽅形的边长为1,粗实线画出的是某⼏何体的三视图,则该⼏何体的体积为( )A. B. C. D.【答案】C【解析】由三视图可知,该⼏何体为组合体:上⽅为半个圆锥,下⽅为放倒的直四棱柱,∴该⼏何体的体积为:故选:C点睛:由三视图画出直观图的步骤和思考⽅法:1、⾸先看俯视图,根据俯视图画出⼏何体地⾯的直观图;2、观察正视图和侧视图找到⼏何体前、后、左、右的⾼度;3、画出整体,然后再根据三视图进⾏调整.10.设函数,则满⾜的的取值范围是( ) A. B.C. D.【答案】C【解析】作出函数的图象,如图:等价于:或解得:或故选:C11.在平⾯直⾓坐标系中,抛物线的焦点为,准线为,过的直线交于两点,交于点,直线交于点.若,且.则( )A. 1B. 3C. 3或9D. 1或9【答案】D【解析】连接BD,易知:BD轴,G为准线与x轴的焦点,由抛物线的定义,|BF|=|BD|,|AF|=|AH|=3,∵,∴|BE|=2|BD|,∴∠BED=30°,故|AE|=2|AH|=6,∴,∴,交换A与B的位置,同理可得:故选:D12.已知函数的图象与直线恰有三个公共点,这三个点的横坐标从⼩到⼤分别为,则( )A. B. C. 0 D. 1【答案】B【解析】直线,即,直线过定点,,函数的图象与直线恰有三个公共点即直线与的图象相切于B,C两点,,,,且∴∴∴.故答案为:B点睛:本题考查函数零点问题.函数零点问题有两种解决⽅法,⼀个是利⽤⼆分法求解,另⼀个是化原函数为两个函数,利⽤两个函数的交点来求解.本题采⽤第⼆种⽅法,充分利⽤函数的中⼼对称性及相切的关系布列⽅程即可.⼆、填空题13.已知集合,,则集合中元素的个数为____________.【答案】6【解析】∵,,∴,,,,∴,,,,,∴集合中元素的个数为6.故答案为:614.在钝⾓三⾓形中,,,,则⾯积为____________.【答案】或【解析】当∠B为钝⾓时,如图1,过点B作BD⊥AC,∵∠BAC=30°,∴BD=AB,∵AB=3,∴BD=,由勾股定理可得:AD==,∵BC=,∴由勾股定理得:CD==,∴AC=CD+AD=2,∴S ABC= ? =×2×=;当∠C为钝⾓时,如图2,过点B作BD⊥AC,交AC延长线于点D,∵∠BAC=30°,∴BD=AB,∵AB=3,∴BD=,∵BC=,∴由勾股定理得:CD==,AD==,∴AC=AD﹣DC=,∴S ABC= ? =××=.故答案为:或.15.设变量满⾜约束条件,则的取值范围为____________.【答案】【解析】作出可⾏域,如图所⽰:当直线经过B,时取到最⼩值,没有最⼤值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年福建省高三毕业班质量检查测试理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2|lo g 0A x x =<,133xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则AB =( )A .{}|11x x -<<B .{}|01x x <<C .{}|0x x >D .R2.将函数s in 2y x =的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()y f x =的图象,则( )A .()y f x =的图象关于直线8x π=对称 B .()f x 的最小正周期为2πC .()y f x =的图象关于点(,0)2π对称 D .()f x 在(,)36ππ-单调递增3.庄严美丽的国旗和国徽上的五角星是革命和光明的象征.正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系:在如图所示的正五角星中,以A ,B ,C ,D ,E为顶点的多边形为正五边形,且2P T A T=.下列关系中正确的是( )A .512B P T S R S +-=B .512C Q T P S ++=C .512E S A P B Q --= D . 512A TB Q R -+=4.已知()()501221x x a a x +-=+2345623456a x a x a x a x a x +++++,则024a a a ++=( )A .123 B .91 C .-120 D .-1525.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S 为( )A .120B .84C .56D .28 6.已知函数22()22xf x x x =-+.命题1p :()y f x =的图象关于点()1,1对称;命题2p :若2a b <<,则()()f a f b <.则在命题1q :12p p ∨,2q :()()12p p ⌝∧⌝,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是( )A .1q ,3qB .1q ,4qC .2q ,3qD .2q ,4q7.如图,在平面直角坐标系x O y 中,质点M ,N 间隔3分钟先后从点P 出发,绕原点按逆时针方向作角速度为6π弧度/分钟的匀速圆周运动,则M 与N 的纵坐标之差第4次达到最大值时,N 运动的时间为( )A .37.5分钟B .40.5分钟C .49.5分钟D .52.5分钟8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,俯视图中的两条曲线均为圆弧,则该几何体的体积为( )A .32643π-B .648π-C .16643π-D .8643π-9.已知5台机器中有2台存在故障,现需要通过逐台检测直至区分出2台故障机器为止.若检测一台机器的费用为1000元,则所需检测费的均值为( )A .3200元B .3400元C .3500元D .3600元10.已知抛物线E :22(0)y p x p =>的焦点为F ,过F 且斜率为1的直线交E 于A ,B 两点,线段A B 的中点为M ,其垂直平分线交x 轴于点C ,M N y ⊥轴于点N .若四边形C M N F 的面积等于7,则E 的方程为( )A .2y x = B .22y x = C .24y x = D .28y x =11.已知A ,B ,C ,D 四点均在以点1O 为球心的球面上,且A B A C A D ===,B C B D ==8B D =.若球2O 在球1O 内且与平面B C D 相切,则球2O 直径的最大值为( )A .1B .2C .4D .812.已知函数()()33f x x a x a =--+(0)a >在[]1,b -上的值域为[]22,0a --,则b 的取值范围是( ) A .[]0,3 B .[]0,2 C .[]2,3 D .(]1,3-二、填空题:本题共4小题,每小题5分,共20分.13.已知复数z 满足()12z i z +=-,则2z = .14.若x ,y 满足约束条件402400x y x y x y +-≥⎧⎪--≤⎨⎪-≥⎩,则2z x y =+的最小值为 .15.已知双曲线C :22221(0,0)x y a b ab-=>>的右焦点为F ,左顶点为A .以F 为圆心,F A 为半径的圆交C 的右支于P ,Q 两点,A P Q ∆的一个内角为60,则C 的离心率为 .16.在平面四边形A B C D 中,1A B =,A C =B D B C ⊥,2B D B C =,则A D 的最小值为 . 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.各项均为正数的数列{}n a 的首项11a λ=,前n 项和为n S ,且211n n n S S a λ+++=.(1)求{}n a 的通项公式;(2)若数列{}n b 满足nn n b a λ=,求{}n b 的前n 项和n T .18.如图1,在矩形A B C D 中,A B =,B C =E 在线段D C 上,且D E =A E D∆沿A E 折到'A E D ∆的位置,连结'C D ,'B D ,如图2.(1)若点P 在线段B C 上,且2B P =,证明:'A E D P ⊥;(2)记平面'A D E 与平面'B C D 的交线为l .若二面角'B A E D --为23π,求l 与平面'D C E 所成角的正弦值.19.如图是某小区2017年1月至2018年1月当月在售二手房均价(单位:万元/平方米)的散点图.(图中月份代码1—13分别对应2017年1月—2018年1月)根据散点图选择y a b=+ln y c d x =+两个模型进行拟合,经过数据处理得到两个回归方程分别为0.93690.028y =+0.95540.0306ln y x =+,并得到以下一些统计量的值:(1)请利用相关指数2R 判断哪个模型的拟合效果更好;(2)某位购房者拟于2018年6月份购买这个小区(70160)m m ≤≤平方米的二手房(欲购房为其家庭首套房).若购房时该小区所有住房的房产证均已满2年但未满5年,请你利用(1)中拟合效果更好的模型解决以下问题:(i )估算该购房者应支付的购房金额.(购房金额=房款+税费;房屋均价精确到0.001万元/平方米) (ii )若该购房者拟用不超过100万元的资金购买该小区一套二手房,试估算其可购买的最大面积.(精确到1平方米)附注:根据有关规定,二手房交易需要缴纳若干项税费,税费是按房屋的计税价格进行征收.(计税价格=房款)征收方式见下表:参考数据:ln 20.69≈,ln 3 1.10≈,ln 17 2.83≈,ln 19 2.94≈ 1.41≈ 1.73≈4.12≈,4.36≈.参考公式:相关指数22121()1()ni i i ni i y y R y y ==-=--∑∑.20.椭圆E :22221(0)x y a b ab+=>>的右顶点为A ,右焦点为F ,上、下顶点分别是B ,C ,A B =,直线C F 交线段A B 于点D ,且2B D D A =. (1)求E 的标准方程;(2)是否存在直线l ,使得l 交E 于M ,N 两点,且F 恰是B M N ∆的垂心?若存在,求l 的方程;若不存在,说明理由.21.已知函数2()(21)2xf x a x a x e =++-. (1)讨论()f x 的单调区间; (2)若17a <-,求证:当0x ≥时,()0f x <.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.[选修4-4:坐标系与参数方程]在直角坐标系x O y 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.已知曲线M 的参数方程为1c o s 1sin x y ϕϕ=+⎧⎨=+⎩(ϕ为参数),1l ,2l 为过点O 的两条直线,1l 交M 于A ,B 两点,2l 交M 于C ,D 两点,且1l 的倾斜角为α,6A O C π∠=.(1)求1l 和M 的极坐标方程; (2)当0,6πα⎛⎤∈ ⎥⎝⎦时,求点O 到A ,B ,C ,D 四点的距离之和的最大值.23.[选修4-5:不等式选讲]已知函数()2f x x =-,()1g x a x =-.(1)若不等式()33g x -≥-的解集为[]2,4,求a 的值; (2)若当x R ∈时,()()f x g x ≥,求a 的取值范围.2018年福建省高三毕业班质量检查测试理科数学答题分析一、选择题1-5: BDADB 6-10: BACCC 11、12:DA二、填空题13. -4 14. 6 15.43三、解答题17.(1)【考查意图】本小题以n a 与n S 的关系为载体,考查递推数列、等差数列的定义及通项公式及等基础知识,考查运算求解能力,考查化归与转化思想、分类与整合思想等.【解法综述】只要掌握n a 与n S 的关系、等差数列的定义及通项公式即可顺利求解.思路:由211n n n S S a λ+++=通过赋值得到:当2n ≥时,21n n n S S a λ-+=.从而当2n ≥时,11n n a a λ+-=,并注意到211a a λ-=,所以{}n a 是首项为1λ,公差为1λ的等差数列,进而求得n na λ=.【错因分析】考生可能存在的错误有:不会通过赋值由211n n n S S a λ+++=得到21n n n S S a λ-+=(2)n ≥,从而无从求解;或没有注意到2n ≥,思维不严密导致解题不完整. 【难度属性】易.(2)【考查意图】本小题以数列求和为载体,考查错位相减法、等差数列的前n 项和公式、等比数列的前n 项和公式等基础知识,考查运算求解能力,考查化归与转化思想、分类与整合思想、函数与方程思想等. 【解法综述】只要掌握错位相减法、等差数列的前n 项和公式、等比数列的前n 项和公式便可顺利求解. 思路:因为{}n b 是由等差数列{}n 与等比数列{}1n λ-的对应项的积组成的数列,所以可用错位相减法求和,在解题过程中要注意对λ的取值进行分类讨论.【错因分析】考生可能存在的错误有:不懂得根据数列通项的特征选择错位相减法求和,从而无从下手;用错位相减法求和时计算出错;没有对λ的取值进行分类讨论导致解题不完整等. 【难度属性】中.18.(1)【考查意图】本小题以平面图形的翻折问题为载体,考查直线与平面垂直的判定与性质等基础知识,考查空间想象能力,推理论证能力,考查化归与转化思想.【解法综述】只要理清图形翻折前后相关要素的关系,掌握直线与平面垂直的判定定理及直线与平面垂直的性质,便可解决问题.思路:先在图1中连结D P ,根据tan tan P D C D A E ∠=∠得到90D O A ∠=,从而有A E O D ⊥,A E O P ⊥,即在图2中有'A E O D ⊥,A E O P ⊥,所以得到A E ⊥平面'P O D ,进而得到'A E P D ⊥.【错因分析】考生可能存在的错误有:不能理清图形翻折前后相关要素的关系,未能在图1中作出线段D P ,从而无从下手;由于对直线与平面垂直的判定及性质理解不清导致逻辑混乱. 【难度属性】中.(2)【考查意图】本小题以多面体为载体,考查二面角、直线与平面所成角、公理3、直线与平面平行的判定定理与性质定理、空间向量等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想、函数与方程思想.【解法综述】只要掌握二面角的定义,会正确作出平面'A D E 与平面'B C D 的交线,或能利用直线与平面平行的判定定理与性质定理将直线l 与平面'D C E 所成角转化为平行于l 的直线与平面'D C E 所成角,并通过建立适当的空间直角坐标系利用向量方法解决直线与平面所成角的计算问题,便可顺利求解.思路一:延长A E ,B D 交于点Q ,连接'D Q ,根据公理3得到直线'D Q 即为l ,再根据二面角定义得到2'3D O P π∠=.然后在平面'P O D 内过点O 作O F O P ⊥交'D P 于点F ,并以O 为原点,分别为O A ,O P ,O F 为x 轴、y 轴、z 轴正方向建立空间直角坐标系,结合直线与平面所成角的计算公式,便可求得l 与平面'D C E 所成角的正弦值.思路二:分别在'A D ,'B D 上取点M ,G ,根据线段的长度及位置关系得到C E M G ⊥,且CE MG =,从而得到四边形M G C E 为平行四边形,进而证得//M E l ,将直线l 与平面'D C E 所成角转化为直线E M 与平面'D C E 所成角.根据二面角定义得到2'3D O P π∠=.然后在平面'P O D 内过点O 作O F O P ⊥交'D P于点F ,并以O 为原点,分别为O A ,O P ,O F 为x 轴、y 轴、z 轴正方向建立空间直角坐标系,结合直线与平面所成角的计算公式,便可求得l 与平面'D C E 所成角的正弦值.【错因分析】考生可能存在的错误有:无法利用公理3确定直线l 的位置,或不能利用直线与平面平行的判定定理与性质定理将所求角转化为平行于l 的直线与平面'D C E 所成角,导致无从下手;不能根据二面角的定义求得2'3D O P π∠=;不能根据题意建立适当的空间直角坐标系;在求解过程中点的坐标或法向量等计算错误. 【难度属性】中.19.(1)【考查意图】本小题以购房问题为背景,以散点图、相关指数2R 为载体,考查回归分析等基础知识,考查数据处理能力、推理论证能力、运算求解能力和应用意识,考查统计与概率思想等.【解法综述】只要理解相关指数2R的意义便可通过简单估算解决问题.【错因分析】考生可能存在的错误有:不懂相关指数2R的意义导致判断错误.【难度属性】易.(2)(i)【考查意图】本小题以估算购房金额为载体,考查回归分析、函数等基础知识,考查抽象概括能力、运算求解能力、应用意识,考查统计与概率思想、分类与整合思想、函数与方程思想等.考查学生在复杂的问题情境中获取有用信息分析问题和解决问题的能力.【解法综述】通过散点图确定2018年6月对应的x的取值,代入(1)中拟合效果更好的模型,并利用参考数据即可求出二手房均价的预测值,通过阅读税收征收方式对应的图表信息,选择有用的信息,进行合理分类建立正确的函数模型,便能顺利求解.思路:由(1)的结论知,模型0.95540.0306ln=+的拟合效果更好,通过散点图确定2018年6月对y x应的x的取值为18,代入0.95540.0306ln=+并利用参考数据即可求出二手房均价的预测值,通过阅y x读税收征收方式对应的图表信息,选择有用的信息,进行合理分类建立正确的函数模型,便能顺利求解. 【错因分析】考生可能存在的错误有:不能根据散点图得到2018年6月对应的x的取值为18,导致2018年6月当月在售二手房均价预测错误;不能从大量复杂的文字和图表中获取有用信息,混淆买方缴纳契税与卖方缴纳的相关税费;不能合理分类导致错误.【难度属性】中.(2)(ii)【考查意图】本小题以估算可购房屋最大面积问题为载体,考查函数与不等式等基础知识,考查运算求解能力及应用意识,考查函数与方程思想等.【解法综述】首先直观估算100万可购买的最大面积的大致范围,再利用(2)(i)中相应的结论求解.思路:首先通过估算得到,90平方米的购房金额小于100万而100平方米的房款大于100万,从而判断100万可购买的面积在90至100平方米之间,便可利用(2)(i)中相应的结论求解.【错因分析】考生可能存在的错误有:不会估算出100万可购买房屋的最大面积在90至100平方米之间,导致无从下手;未先估算100万可购买房屋的最大面积所在的范围,根据(2)(i)中的函数解析式逐一计算,使得解题过程繁杂导致计算出错.【难度属性】中.20.(1)【考查意图】本小题以椭圆为载体,考查直线的方程、椭圆的标准方程及其简单几何性质等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想等.【解法综述】只要掌握直线的方程、椭圆的标准方程及其简单几何性质,能将线段的长度关系转化为向量关系,或利用平面几何知识进行转化,从而得到a ,b ,c 满足的方程,便可求得椭圆的标准方程. 思路一:先分别求出直线A B ,C F 的方程,再求得D 的坐标.然后将2B D D A =转化为2B D D A =,得到2a c =,再结合A B =便可求得1c =,2a =,b =,从而得到椭圆的标准方程为22143xy+=.思路二:利用椭圆的对称性得到//B G C F ,将2B D D A =转化为2G F F A =,得到2a c =,再结合A B =,便可求得1c =,2a =,b =,从而得到椭圆的标准方程为22143xy+=.【错因分析】考生可能存在的错误有:不能将2B D D A =转化为2B D D A =,或不能利用椭圆的对称性得到//B G C F ,将2B D D A =转化为2G F F A =,导致无从下手. 【难度属性】中.(2)【考查意图】本小题以探索性问题为载体,考查椭圆的简单几种性质、直线与圆锥曲线的位置关系、三角形垂心的性质等基础知识,考查运算求解能力、推理论证能力,考查数形结合思想、函数与方程思想、化归与转化思想等.【解法综述】只要能通过假设存在满足题意的直线,根据F 是B M N ∆的垂心,得到B F M N ⊥,进而确定直线M N 的斜率,由此设出直线M N 的方程并与椭圆方程联立;再根据F 是B M N ∆的垂心,得到M F B N ⊥,将其转化为0M F B N ⋅=或1M F B N k k ⋅=-,并结合韦达定理,便可得到结论.思路:先假设存在满足条件的直线M N ,由垂心的性质可得B F M N ⊥,从而得到直线l 的斜率3k =,由此可设l 的方程为3y x m =+,()11,Mx y ,()22,N x y ,再将l 的方程与椭圆方程联立得到33m -<<及1213x x +=-()21212313m x x -=.将M F B N ⊥转化为0M F B N ⋅=或1M F B N k k ⋅=-,即()(121210x x y y ---=,从而求出m的值,并根据m 的取值范围检验得到结论.【错因分析】考生可能存在的错误有:不能根据F 是B M N ∆的垂心得到B F M N ⊥及M F B N ⊥,导致无从下手;在消元、化简的过程中计算出错;未检验导致解题不完整等. 【难度属性】中.21.(1)【考查意图】本小题以含指数函数的初等函数为载体,利用导数研究函数的单调性,考查运算求解能力,考查函数与方程思想、分类与整合思想等.【解法综述】只要掌握基本初等函数的求导公式及导数的运算法则、导数与函数单调性的关系和含参数一元二次不等式的解法,便可解决问题.思路:求得()()2'421x f x a x a x a e =+++,对()2421u x axax a =+++的符号进行讨论.先讨论0a =的情况,再对0a ≠的情况结合()u x 的图象和判别式进一步分成三种情况进行讨论,即可求解.【错因分析】考生可能存在的错误有:求导函数出错;求根计算错误或两根大小关系判断错误;分类讨论错误或不完整. 【难度属性】中.(2)【考查意图】本小题以不等式证明为载体,考查利用导数研究函数的极值、最值等基础知识,考查运算求解能力、推理论证能力、抽象概括能力和创新意识,考查函数与方程思想、数形结合思想、分类与整合思想、特殊与一般思想等.【解法综述】只要掌握利用导数研究函数性质的基本思路,具备较强的运算求解能力、推理论证能力和一定的创新意识,并能灵活运用数形结合思想、分类与整合思想、转化与化归思想等,便可解决问题. 思路一:将a 的取值分成1,2⎛⎤-∞-⎥⎝⎦,11,27⎛⎫-- ⎪⎝⎭两部分进行讨论,对于1,2a ⎛⎤∈-∞- ⎥⎝⎦的情形可直接根据(1)的结论进行证明:对于11,27a ⎛⎫∈--⎪⎝⎭的情形,将所证不等式转化为证明()f x 的最大值()()12111212x fx a xa x e=++-小于零,再利用2114210a x a x a +++=得到211142a x x =-++,进而得到()()11121121242x x fx ex x +=-++,通过分析法转化为证明函数()()2142xg x x ex x =+---在()0,1恒小于零.思路二:通过变换主元将()f x 改写成关于a 的函数()()22xa exx ϕ⎡⎤=+⎣⎦2xa e +-,将求证不等式转化为证明()227xexx +-20x e +-<,再利用分析法进一步转化为证明()227140xexx +-+>,然后构造()()227xg x ex x =+-()140x +≥,证明()g x 的最小值大于零即可.思路三:同思路一得到()()11121121242x x f x ex x +=-++,通过分析法转化为求证函数()()2421xx x g x x e++=+在()0,1恒大于1.思路四:同思路一得到()()11121121242x x f x ex x +=-++,通过分析法转化为求证函数()2421xx x g x e x ++=-+在()0,1恒小于零.【错因分析】考生可能存在的错误有:不会对参数a 的取值进行合理分类;不会通过消元将函数最值转化为仅关于极值点的表达式;不能变换主元对问题进行合理转化;不会根据题意构造恰当的函数. 【难度属性】难.22.(1)【考查意图】本小题以直线和圆为载体,考查直线的极坐标方程、参数方程与普通方程、直角坐标方程与极坐标方程的互化等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想. 【解法综述】只要能写出极坐标系中简单图形的极坐标方程,能进行极坐标和直角坐标的互化,能进行参数方程和普通方程的互化,便可解决问题.思路:首先,结合图形易得直线l 的极坐标为()R θαρ=∈.其次,先将M 的参数方程化为普通方程,再由极坐标与直角坐标的互化公式将M 的普通方程化为极坐标方程,便可得到正确答案.【错因分析】考生可能存在的错误有:极坐标的概念不清晰,在求1l 的极坐标方程时,忽略R ρ∈的限制导致错误;直角坐标与极坐标的互化错误. 【难度属性】易.(2)【考查意图】本小题以两点间的距离为载体,考查极坐标的几何意义、韦达定理及三角恒等变换等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想.【解法综述】只要明确极坐标中ρ,θ的几何意义,并能正确进行三角恒等变换,便可以解决问题. 思路:根据极坐标的几何意义,O A ,O B ,O C ,O D 分别是点A ,B ,C ,D 的极径,从而可利用韦达定理得到:O A O B O C O D +++1234ρρρρ=+++()2cos sin αα=+2c o s sin 66ππαα⎡⎤⎛⎫⎛⎫++++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,把问题转化为求三角函数的最值问题,易得所求的最大值为2+【错因分析】考生可能存在的错误有:不熟悉极坐标的几何意义,无法将问题转化为A ,B ,C ,D 四点的极径之和;无法由1l ,2l 及M 的极坐标方程得到()122co s sin ρραα+=+,34ρρ+2c o s sin 66ππαα⎡⎤⎛⎫⎛⎫=+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦;在求1234ρρρρ+++的最值时,三角恒等变形出错.【难度属性】中.23.(1)【考查意图】本小题以含绝对值不等式为载体,考查含绝对值不等式的解法等基础知识,考查运算求解能力,考查函数与方程思想等.【解法综述】根据解集特征判断a 的符号,并结合含绝对值不等式的解法,求得()33g x -≥-的解集,根据集合相等即可求出a 的值.思路:先将()33g x -≥-转化为32a x -≥-,再根据不等式()33g x -≥-的解集为[]2,4得出0a <,从而得到()33g x -≥-的解集为223,3a a ⎡⎤+-⎢⎥⎣⎦,进而由232234aa ⎧+=⎪⎪⎨⎪-=⎪⎩得2a =-.【错因分析】考生可能存在的错误有:无法判断a 的符号导致无从入手;不等式()33g x -≥-的解集求错;不会根据集合相等求出a 的值. 【难度属性】易.(2)【考查意图】本小题以不等式恒成立问题为载体,考查含绝对值不等式、绝对值三角不等式等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、数形结合思想、分类与整合思想等. 【解法综述】通过分离参数将含参数的绝对值不等式恒成立问题转化为求函数最值问题,或将不等式转化为两个函数图象的位置关系,均能求出a 的取值范围.思路一:当0x =时,易得()()f x g x ≥对任意实数a 成立;当0x ≠时,将()()f x g x ≥转化为21x a x-+≤,再通过分段讨论确定函数()()210x h x x x-+=≠的最小值,从而得到a 的取值范围.思路二:当0x =时,易得()()f x g x ≥对任意实数a 成立;当0x ≠时,将()()f x g x ≥转化为21x a x-+≤,再利用绝对值三角不等式得到()()210x h x x x-+=≠的最小值,从而得到a 的取值范围. 思路三:当0a ≤时,10a x -<,20x -≥,得到21x a x -≥-成立;当0a >时,不等式()()f x g x ≥等价于函数()2f x x =-的图象恒不在函数()1g x a x =-的图象的下方,从而根据这两个函数图象的位置关系便可得到a 的取值范围.【错因分析】考生可能存在的错误有:不能通过合理分类简化问题;不会通过分离参数转化问题;无法分段讨论去绝对值或利用绝对值三角不等式确定函数()()210x h x x x-+=≠的最小值;不能将不等式转化为两个函数图象的位置关系进行求解. 【难度属性】中.。

相关文档
最新文档