12-7傅里叶级数

合集下载

高等数学:13-7傅里叶(Fourier)级数

高等数学:13-7傅里叶(Fourier)级数

A0 , an
An sinn ,bn
An cosn,t
x ,则得级数
a0
2
(an
n1
cos nx
bn
sin nx) .
(13.7.2)
形如式(13.7.2)的级数称为三角级数,其中常数a0, an,bn (n 1, 2, )
称为三角级数(13.7.2)的系数.
显然式(13.7.2)每一项都是周期为2 的函数,因此,如果级 数(13.7.2)收敛,则其和函数必是周期为2 的周期函数.
⑵ 至多只有有限个极值点(即不作无限次振荡);
则函数 f (x) 的傅里叶级数在(,) 内收敛,并且
⑴ 当 x 为 f (x) 的连续点时, f (x) 的傅里叶级数收敛于 f (x) ;
⑵ 当 x 为 f (x) 的(第一类)间断点时, f (x) 的傅里叶级数收敛
于 f (x) f (x) . 2
n1
f (x) 2
f (x) .
(13.7.8)
37-12
特别地,在点 x 及点 x 处,由函数 f (x) 的周期性知
f ( ) f ( ),f ( ) f ( ) ,因此其傅里叶级数在点x 及
点 x 处收敛于 f ( ) f ( ) .
2
如果函数 f (x) 的傅里叶级数收敛于 f (x) ,就称 f (x) 的傅里
式为
f
(x)
0, 1,
x 0, 将 f (x) 展开成傅里叶级数,并作出该级 0 x .
数和函数的图形.
解 由式(13.7.5)可得
a0
1
f (x)dx 1
dx 1,
0
an
1
f (x)cos nxdx 1

傅里叶级数与傅里叶变换关系与应用

傅里叶级数与傅里叶变换关系与应用

论文题目傅里叶级数与傅里叶变换的关系与应用目录摘要: 0关键词 0Abstract 01绪论 (1)2傅里叶级数的概念 (1)2.1周期函数 (2)2.2傅里叶级数的定义 (2)3 傅里叶变换的概念及性质 (10)3.1傅里叶变换的概念 (10)3.2傅立叶变换的性质 (11)4傅里叶变换与傅里叶级数之间的区别与联系 (12)5傅里叶级数和傅里叶变换的应用 (12)5.1傅里叶级数的应用 (12)5.2傅里叶变换的应用 (13)参考文献 (15)傅里叶级数与傅里叶变换的关系与应用摘要:傅里叶级数是对周期性现象做数学上的分析,而傅里叶变换则可以看作傅里叶级数的极限形式,它也可以看作是对周期现象进行数学上的分析。

除此之外,傅里叶变换还是处理信号领域的一种很重要的算法。

傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。

很多波形可以作为信号的成分,例如余弦波,方波,锯齿波等等,傅里叶变换作为信号的成分。

在电子类学科,物理学科,信号处理学科等众多领域都有着广泛的应用。

傅里叶级数针对的是周期性函数,傅里叶变换针对的是非周期性函数,它们在本质上都是一种把信号表示成复正选信号的叠加,存在相似的特性。

关键词:傅里叶级数;傅里叶变换;周期性Fourier series And Fourier TransformsAbstract: Fourier series is made mathematical analysis to cyclical phenomenon, and Fourier transform can be seen as the limit form of Fourier series, it also can be regarded as a mathematical analysis of cycle phenomenon. In addition, the Fourier transform is a kind of very important in the field of signal processing algorithms.Fourier transform is a method of signal analysis, it can analyze signal component, also can use these ingredients synthetic signal. Many waveform can be used as a signal of ingredients, such as cosine wave, square wave, sawtooth wave, etc., the Fourier transform as a signal of composition. In electronics disciplines, physics, signal processing disciplines etc many fields have a wide range of applications.Fourier series is for periodic function, Fourier transform for is a periodic function, they are in essence a kind of papers said the signal into a complex signal superposition, similar features.Key words: Fourier series; Fourier Transform; Periodic1绪论傅里叶级数是法国数学家J.-B.-J.傅里叶在研究偏微分方程的边值问题时提出来的,从而极大的推动了偏微分方程理论的发展,在数学物理以及工程中都具有重要的应用。

maple 傅里叶级数

maple 傅里叶级数

maple 傅里叶级数Maple是一款强大的数学软件,可以用来进行各种数学计算和分析。

其中,傅里叶级数是Maple中的一个重要功能,可以用来分析周期性信号的频谱特征。

傅里叶级数是一种将周期性信号分解为一系列正弦和余弦函数的方法。

它的基本思想是将一个周期为T的函数f(t)表示为一系列正弦和余弦函数的线性组合,即:f(t) = a0 + Σ(an*cos(nωt) + bn*sin(nωt))其中,a0、an、bn是待求系数,ω=2π/T是角频率,n是正整数。

这个式子被称为傅里叶级数公式。

在Maple中,可以使用FourierSeries函数来计算傅里叶级数。

例如,对于一个周期为2π的方波信号,可以使用以下代码来计算其傅里叶级数:f := piecewise(-Pi < x and x < 0, -1, 0 < x and x < Pi, 1, 0); FourierSeries(f, x = -Pi .. Pi);其中,piecewise函数用来定义方波信号的取值范围,FourierSeries 函数用来计算傅里叶级数。

运行以上代码,可以得到以下结果:1/2*Pi - 4/Pi*sin(x) + 4/(3*Pi)*sin(3*x) - 4/(5*Pi)*sin(5*x) +4/(7*Pi)*sin(7*x) - 4/(9*Pi)*sin(9*x) + 4/(11*Pi)*sin(11*x) -4/(13*Pi)*sin(13*x) + 4/(15*Pi)*sin(15*x) - 4/(17*Pi)*sin(17*x) + 4/(19*Pi)*sin(19*x) - 4/(21*Pi)*sin(21*x) + 4/(23*Pi)*sin(23*x) - 4/(25*Pi)*sin(25*x) + 4/(27*Pi)*sin(27*x) - 4/(29*Pi)*sin(29*x) + 4/(31*Pi)*sin(31*x) - 4/(33*Pi)*sin(33*x) + 4/(35*Pi)*sin(35*x) - 4/(37*Pi)*sin(37*x) + 4/(39*Pi)*sin(39*x) - 4/(41*Pi)*sin(41*x) + 4/(43*Pi)*sin(43*x) - 4/(45*Pi)*sin(45*x) + 4/(47*Pi)*sin(47*x) - 4/(49*Pi)*sin(49*x) + 4/(51*Pi)*sin(51*x) - 4/(53*Pi)*sin(53*x) + 4/(55*Pi)*sin(55*x) - 4/(57*Pi)*sin(57*x) + 4/(59*Pi)*sin(59*x) - 4/(61*Pi)*sin(61*x) + 4/(63*Pi)*sin(63*x)这个结果表示了方波信号的傅里叶级数,其中包含了无穷多个正弦函数的系数。

周期信号的傅里叶级数表

周期信号的傅里叶级数表
17
分量e j0t 可表示为
1
0
cos 0t
1 2
(e
j0t
e
j0tபைடு நூலகம்
)
表示为
1
1
2
2
0 0 0
因此,当把周期信号 x(t)表示为傅里叶级数
x(t) ake jk0t时,就可以将 x(t) 表示为 k
a1a0 a1
a3a2
a2 a3
0 0
这样绘出的图
称为频谱图
18
频谱图其实就是将 a随k 频率的分布表示出来,
14
有 x(t) ake jk0t , k 0, 1, 2
k
显然 x(也t)是以
为2周 期的。该级数就是傅里叶级
0
数, 称为a傅k 立叶级数的系数。
这表明用傅里叶级数可以表示连续时间周期信号,
即: 连续时间周期信号可以分解成无数多个复指数谐 波分量。
例1:
x(t)
cos 0t
1 e j0t 2
6
3.1历史的回顾 (A Historical Perspective)
任何科学理论, 科学方法的建立都是经过许多人 不懈的努力而得来的, 其中有争论, 还有人为之献 出了生命。历史的经验告诉我们, 要想在科学的 领域有所建树,必须倾心尽力为之奋斗。今天我 们将要学习的傅立叶分析法,也经历了曲折漫长 的发展过程,刚刚发布这一理论时,有人反对, 也有人认为不可思议。但在今天,这一分析方法 在许多领域已发挥了巨大的作用。
即: x(t) akeskt
k
同理: x(n)
ak
Z
n k
k
y(t) ak H (sk )eskt
k

【论文】傅里叶变换及应用

【论文】傅里叶变换及应用

摘 要线性变换,尤其是傅里叶变换,是众所周知的解决线性系统问题的技术,人们常将变换作为一种数学和物理工具,把问题转到可以解决的域内.在许多科学分支的理论中,傅里叶变换都扮演着重要的角色.就像其它变换一样,它可以单纯的看作数学泛函.在现代数学中,傅里叶变换是一种非常重要的变换,且在频谱信号、波动及热传导等方面有着广泛的应用.本文首先介绍了傅里叶级数以及傅里叶变换的基本概念、性质及发展;其次介绍了傅里叶变换的不同变种以及多种傅里叶变换的定义;最后介绍了傅里叶变换在周期信号、波动这两个方面的具体的应用,在周期信号方面主要介绍的是基于快速傅里叶变换的信号去噪的应用,而在波动方面主要介绍的是海水仿真系统的研究.最后对本文所讨论的内容进行了总结.关键词:傅里叶变换,波动,频谱信号AbstractLinear transforms ,especially those named for Fourier are well know as provide techniques for solving problems in linear systems characteristically, one uses the transformation as a mathematical or physical tool to alter the problem into one that can be solved.Fourier transforms play an important part in the theory of many branches of science while they may be regarded as purely mathematical functional .In modem mathematics, the Fourier transform is a very important transformation. It has a wide range of application in Spectrum Signal Processing, fluctuations and thermal conductivity, etc. This article introduced the Fourier series and Fourier transform of the basic concepts, the nature and development; followed introduced Fourier transform of the different variants and the definition of a variety of Fourier transform. Finally introduced the specific applications in the frequency spectrum, signal fluctuations and thermal conductivity. Fourier transform in different areas, have different forms ,such as modern studies, voice communications, sonar, seismic and even biomedical engineering study of the signal to play an important role in grams. Finally, the scope of our discussion in this article are summarized.Key words: Fourier transform, volatility , the spectrum signal傅里叶变换及应用目 录第一章 前 言 (1)1.1傅里叶变换的发展 (1)1.2 研究傅里叶变换的意义 (1)第二章 傅里叶级数及变换的理论知识 (3)2.1 傅里叶积分 (3)2.2 实数与复数形式的傅里叶积分 (5)2.3 傅里叶变换式的物理意义 (8)第三章 傅里叶变换的性质及变形 (11)3.1 基本性质 (11)3.2 傅里叶变换的不同形式 (12)第四章 傅里叶变换的应用 (15)4.1波动 (15)4.2周期信号中的傅里叶变换 (19)第五章 工作总结及展望 (25)5.1 总结 (25)5.2 展望 (25)参 考 文 献 (26)致 谢 (27)第一章 前 言1.1傅里叶变换的发展傅里叶分析是分析学中的一个重要分支,在数学发展史上,早在18世纪初期,有关三角级数的论述已在D.Bernoulli,D`Alembert,L.Euler等人的工作中出现,但真正重要的一步是由法国数学家J.Fourier迈出的,他在著作《热的解析理论》(1822年)中,系统地运用了三角级数和三角积分来处理热传导问题,此后各国科学家的完善和发展,极大的扩大了傅里叶分析的应用范围,使得这一理论成为研究周期现象不可缺少的工具,特别是现代实用性很强的“小波分析”理论和方法也是从傅里叶分析的思想方法演变出来的,而Fourier变换变换作为Fourier分析中最为重要的内容正是由于其良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用,本文将对傅里叶变换在其中某些领域的应用加以整理和总结.(由于傅里叶在不同的文献中有“傅里叶”和“傅立叶”两种不同的称谓,为了便于阅读,本片论文统一称为“傅里叶”)1.2 研究傅里叶变换的意义从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换.它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分.在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换.根据傅里叶变换的一些特殊性质我们可以发现[1]1. 傅里叶变换是线性算子;2. 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;4.著名的卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;5.离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT)).1在后面的整理中我们可以发现,这些特性的应用为信号周期和波动的研究提供了坚实的基础.2第二章 傅里叶级数及变换的理论知识2.1 傅里叶级数本节简明扼要地复习傅里叶级数的基本内容. 2.1.1 周期函数的傅里叶展开定义2.1.1 傅里叶级数 傅里叶级数展开式 傅里叶系数[4]若函数以为周期,即为)(x f l 2)()2(x f l x f =+的光滑或分段光滑函数,且定义域为[ ,则可取三角函数族]l l ,−,......sin ,.....,2sin ,sin ,.....,cos ,,......,2cos ,cos ,1lx k l x l xlx k l x l xππππππ (2-1)作为基本函数族将展开为傅里叶级数(即下式右端级数))(x f sin cos ()(10l xk b l x k a a x f k k k ππ++=∑∞= (2-2) 式(2-2)称为周期函数的傅里叶级数展开式(简称傅氏级数展开),其中的展开系数称为傅里叶系数(简称傅氏系数).)(x f 函数族(2-1)是正交的.即为:其中任意两个函数的乘积在一个周期上的积分等于零,即⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=====∫∫∫∫∫−−−−−l llllll l lldx l x n l x k dx lx n l x k dx l x n l x k dx l x k dx lx k 0sin .cos .10sin .sin .10cos .cos .10sin .10cos .1ππππππππ 利用三角函数族的正交性,可以求得(2.1.3)的展开系数为⎪⎪⎩⎪⎪⎨⎧==∫∫−−l l k l l kk dx l x k x f l b dx l x k x f l a )sin()(1)cos()(1ππδ (2-3) 3其中⎩⎨⎧≠==)0( 1)0( 2k k k δ关于傅里叶级数的收敛性问题,有如下定理: 定理 2.1.1狄利克雷(Dirichlet )若函数满足条件:)(x f (1)处处连续,或在每个周期内只有有限个第一类间断点;(2)在每个周期内只有有限个极值点,则级数(2-3)收敛,且在收敛点有:∑∞=++=10)sin cos ()(k k k l xk b l x k a a x f ππ在间断点有:∑∞=++=−++10)sin cos ()]0()0([21k k k l xk b l x k a a x f x f ππ2.1.2 奇函数及偶函数的傅里叶展开 定义 2.1.2 傅里叶正弦级数 傅里叶余弦级数[2]若周期函数是奇函数,则由傅里叶系数的计算公式(2-3)可见,所有 均等于零,展开式(2-2)成为)(x f k a a ,0∑∞==1sin )(k k l xk b x f π (2-4) 这叫作傅里叶正弦级数.容易检验(2-4)中的正弦级数在l x x ==,0处为零.由于对称性,其展开系数为∫=lk dx lx k x f l b 0)sin()(2π若周期函数是偶函数,则由傅里叶系数计算公式可见,所有均等于零,展开式(2-2)成为)(x f k b ∑∞=+=10cos)(k k lxk a a x f π (2-5) 这称为傅里叶余弦级数.同样由于对称性,其展开系数为∫=lk k dx l x k x f l a 0)cos()(2πδ (2-6)由于余弦级数的导数是正弦级数,所以余弦级数的导数在l x x ==,0处为零.而对于定义在有限区间上的非周期函数的傅里叶级数展开,需要采用类似于高等数学中的延拓法,使其延拓为周期函数.)(x g 42.1.3复数形式的傅里叶级数 定义2.1.3 复数形式的傅里叶级数[8]取一系列复指数函数 ,....,...,,,1,,,..., (22)x k ilx ilxilxilx ilx k i eeeeeeππππππ−−− (2-7)作为基本函数族,可以将周期函数展开为复数形式的傅里叶级数)(xf 利用复指数函数族的正交性,可以求出复数形式的傅里叶系数∫∫−−−==lll x k i l l l xk i k dx e x f l dx e x f l C **])[(21])[(21ππ (2-9)式中“*”代表复数的共轭.上式(2- 9)的物理意义为一个周期为2L 的函数 可以分解为频率为)(x f l n π,复振幅为 的复简谐波的叠加.n c ln π称为谱点,所有谱点的集合称为谱.对于周期函数而言,谱是离散的.尽管是实函数,但其傅里叶系数却可能是复数,且满足:)(x f )(x f *kk C C =−或k k C C =− (2-10) 2.2 实数与复数形式的傅里叶积分上一节我们讨论了周期函数的傅里叶级数展开,下面讨论非周期函数的级数展开. 2.2.1 实数形式的傅里叶积分[6]定义 2.2.1 实数形式的傅里叶变换式 傅里叶积分 傅里叶积分表示式设非周期函数为一个周期函数当周期)(x f )(x g ∞→l 2时的极限情形.这样,的傅里叶级数展开式)(x g ∑∞=++=10)sin cos()(k k k l x k b lxk a a x g ππ (2-11)在时的极限形式就是所要寻找的非周期函数的傅里叶展开.面我们研究这一极限过程:设不连续的参量∞→l )(x f lk l k k k k k πωωωπω=−=Δ==−1,...),2,1,0(故(2-11)为(2-12)∑∞=++=10)sin cos ()(k k k k k x b x a a x g ωω傅里叶系数为5⎪⎪⎩⎪⎪⎨⎧==∫∫−−l l k k l l k k k xdx x f l b xdx x f l a ωωδsin )(1cos )(1 (2-13) 代入到 (2-12),然后取∞→l 的极限.对于系数,有限,则0a ∫−ll dx x f )(lim ∫−∞→∞→==l l l l x f l a 0)(21limlim 0而余弦部分为当0,→=Δ∞→ll kπω,不连续参变量k ω变为连续参量,以符号ω代替.对的求和变为对连续参量k ω的积分,上式变为ωωωπxd xdx x f cos ]cos )(1[0∫∫∞∞−∞ 同理可得正弦部分ωωωπxd xdx x f sin ]sin )(1[∫∫∞∞−∞若令⎪⎪⎩⎪⎪⎨⎧==∫∫∞∞−∞∞−xdxx f B xdx x f A ωπωωπωsin )(1)(cos )(1)( (2-14) 式(2-14)称为的(实数形式)傅里叶变换式.故(2-12)在时的极限形式变为(注意到))(x f ∞→l )()(x f x g →∫∫∞∞+=0sin )(cos )()(ωωωωωωxd B xd A x f (2-15)上式(2-15)右边的积分称为(实数形式)傅里叶积分.(2-15)式称为非周期函数的(实数形式)傅里叶积分表示式.事实上,上式(2-15)还可以进一步改写为)(x f )](/)(arctan[)(),()()()](cos[)()(]sin )(cos )([)(220ωωωϕωωωϕωωωωωωωA B B A x f d x x C x f d x B x A x f =+=−=+=∫∫∫∞∞∞(2-16)上式(2-16)的物理意义为:称为的振幅谱,ωc )(x f ωϕ称为的相位谱.可以对应于物理现象中波动(或振动).我们把上述推导归纳为下述严格定理: )(x f 1.傅里叶积分定理[7]定理2.1.1 傅里叶积分定理 :若函数在区间上满足条件)(x f ),(∞−∞(1)在任一有限区间上满足狄利克雷条件;)(x f (2)在上绝对可积,则可表为傅里叶积分形式(2-15),且在 )(x f ),(∞−∞)(x f )(x f 6的不连续点处傅里叶积分值= 2]0[]0([−++x f x f .2.奇函数的傅里叶积分定义 2.1.2 实数形式的傅里叶正弦积分 傅里叶正弦变换若为奇函数,我们可推得奇函数的傅里叶积分为傅里叶正弦变换:)(x f )(x f ∫∞=0sin )()(ωωωxd B x f (2-17)式(2-1)满足条件其中0)0(=f )(ωB 是的傅里叶正弦变换:)(x f ∫∞=0sin )()(ωωωxd x f B (2-18)3. 偶函数的傅里叶积分定义 2.1.3 实数形式的傅里叶余弦积分 傅里叶余弦变换[8]若为偶函数,的傅里叶积分为傅里叶余弦积分:)(x f )(x f ∫∞=0cos )(2)(ωωωπxd A x f (2-19)式(2-3)满足条件.其中0)0(=′f )(ωB 是的傅里叶余弦变换:)(x f ∫∞=0cos )(2)(ωωπωxd x f A (2-20)上述公式可以写成另一种对称的形式⎪⎪⎩⎪⎪⎨⎧==∫∫∞∞00sin )(2)(sin )(2)(xdx x f B xd B x f ωπωωωωπ (2-21)⎪⎪⎩⎪⎪⎨⎧==∫∫∞∞00cos )(2)(cos )(2)(xdxx f A xd A x f ωπωωωωπ (2-22) 4 复数形式的傅里叶积分定义2.1.4 复数形式的傅里叶积分下面我们讨论复数形式的傅氏积分与变换,而且很多情形下,复数形式(也称为指数形式)的傅氏积分变换使用起来更加方便.利用欧拉公式则有 )(21sin ),(21cos x i x i x i x i e e ix e e x ωωωωωω−−−=+=7代入式(2-15)得到ωωωωωωωωd e iB A d e iB A x f x i x i −∞∞++−=∫∫)]()([21)]()([21)(00将右端的第二个积分中的ω换为ω−,则上述积分能合并为∫∞∞−=ωωωd e F x f x i )()( (2-23)其中⎩⎨⎧<+≥−=0)( ,2/)]()([0)( ,2/)]()([)(ωωωωωωωiB A iB A F将(2-14)代入上式可以证明无论对于0≥ω,还是0<ω均可以合并为∫∞∞−=dx e x f F x i *])[(21)(ωπω (2-24)证明:(1) 0≥ω时∫∫∞∞−∞∞−=−=dx e x f dx x i x x f F x i *])[(21)]sin())[cos((21)(ωπωωπω (2) 0<ω时 ∫∫∞∞−∞∞−=+=dx e x f dx x i x x f F x i *])[(21)]sin())[cos((21)(ωπωωπω ∫∫∞∞−∞∞−−==dx e x f dx e x f x i x i *])[(21)(21ωωππ 证毕.(2-23)是的复数形式的傅里叶积分表示式,(2-24)则是的复数形式的傅里叶变换式.述变换可以写成另一种对称的傅氏变换(对)形式)(x f )(x f ⎪⎪⎩⎪⎪⎨⎧==∫∫∞∞−−∞∞−ωπωωωπωωd e x f F d e F x f x i x i )(21)()(21)( (2-25) 2.3 傅里叶变换式的物理意义傅里叶变换和频谱[2,8]有密切的联系.频谱这个术语来自于光学.通过对频谱的分析,可以了解周期函数和非周期函数的一些基本性质.若已知是以T 为周期的周期函数,且满足狄利克雷条件,则可展成傅里叶级数)(x f )sin cos ()(10x b x a a x f n n n n n ωω++=∑∞= (2-26)其中Tn n n πωω2==,我们将x b x a n n n n ωωsin cos +称为的第次谐波,)(x f n n ω称为第n 次谐波的频率.由于)cos(sin cos 22n n n n n n x b a x b x a ϕωωω−+=+其中abarctan =ϕ称为初相,22b a +称为第次谐波的振幅,记为,即n n A 0022 1,2,...)(n a A b a A n ==+= (2-27)若将傅里叶级数表示为复数形式,即(2-28)∑∞−∞==n xi nn e C x f ω)(其中22212||||n n n n n b a A C C +===−恰好是次谐波的振幅的一半.我们称为复振幅.显然n 次谐波的振幅与复振幅有下列关系:n n c n n C A 2= ,...)2,1,0(=n (2-29)当取这些数值时,相应有不同的频率和不同的振幅,所以式(2-14)描述了各次谐波的振幅随频率变化的分布情况.频谱图通常是指频率和振幅的关系图.称为函数的振幅频谱(简称频谱).若用横坐标表示频率.....3,2,1,0=n n A )(x f n ω,纵坐标表示振幅,把点n A .....3,2,1,0),,(=n A n n ω用图形表示出来,这样的图形就是频谱图.由于,所以频谱的图形是不连续的,称之为离散频谱......3,2,1,0=n n A 2.3.1 傅里叶变换的定义[7]由上一节对实数和复数形式的傅里叶积分的讨论,最后我们以简洁的复数形式(即指数形式)作为傅里叶变换的定义. 定义2.3.1 傅里叶变换若满足傅氏积分定理条件,称表达式)(x f (2-30)∫∞∞−−=dx e x f F x i ωω)()( 为的傅里叶变换式,记作.我们称函数)(x f )]([)(1ωF F x f −=)(ωF 为的傅里叶变换,简称傅氏变换(或称为像函数). )(x f 定义2.3.2 傅里叶逆变换 如果∫∞∞−=dxe F xf x i ωωπ)(21)( (2-31)则上式为的傅里叶逆变换式,记为,我们称为)(x f )]([)(1ωF F x f −=)(x f )(ωF (或称为像原函数或原函数)的傅里叶逆变换,简称傅氏逆变换.由(2-30)和(2-31)知傅里叶变换和傅里叶逆变换是互逆变换,即有)()]([)]]([[)]([111x f x f F F x f F F F F ===−−−ω (2-32)或者简写为)()]([1x f x f F F =− 2.3.2多维傅氏变换在多维(n 维)情况下,完全可以类似地定义函数的傅氏变换如下:),,,(21n x x x f L )],...,,([),...,,(2121n n x x x f F F =ωωωn x x x i n dx dx dx e x x x f n n ...),...,,(....21)...(212211∫∫+∞∞−∞∞−+++−=ωωω它的逆变换公式为:()n x x x i n n n d d d e F x x x f n n ωωωωωωπωωω...),...,,(. (21)),...,,(21)...(21212211∫∫+∞∞−∞∞−+++−=2.3.3傅里叶变换的三种定义式在实际应用中,傅里叶变换常常采用如下三种形式,由于它们采用不同的定义式,往往给出不同的结果,为了便于相互转换,特给出如下关系式: 1.第一种定义式∫∞∞−−=dx e x f F xi ωπω)(21)(1,,)(21)(1∫∞∞−=ωωπωd e F x f x i 2.第二种定义式∫∞∞−−=dx e x f F xi ωω)()(2,∫∞∞−=ωωπωd e F x f x i )(21)(2 3.第三种定义式∫∞∞−−=dx e x f F x i πωω23)()(,∫∞∞−=ωωπωd e F x f x i 23)()(三者之间的关系为)2(21)(21321πωπωπF F F ==三种定义可统一用下述变换对形式描述:⎩⎨⎧==−)]([)()]([)(1ωωF F x f x f F F 特别说明:不同书籍可能采用了不同的傅氏变换对定义,所以在傅氏变换的运算和推导中可能会相差一个常数倍数,比如ππ21,21.本文采用的傅氏变换(对)是大量书籍中常采用的统一定义,均使用的是第二种定义式.第三章 傅里叶变换的重要特性傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)的积分的线性组合.在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换.3.1 基本性质[1,8]1.线性性质两函数之和的傅里叶变换等于各自变换之和.数学描述是:若函数和的傅里叶变换和都存在,)(x f )(x g )(f F )(g F α和β为任意常系数,][][][g F f F g f F βαβα+=+. 2.平移性质若函数存在傅里叶变换,则对任意)(x f 实数0ω,函数也存在傅里叶变换,且F x i e x f 0)(ω=])([0x i e x f F ω)(o ωω−. 3.微分关系若函数当)(x f ∞→x 时的极限为0,而其导函数的傅里叶变换存在,则有 ,即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子)(x f )]([)](['x f F i x f F ω=ωi .更一般地,若,且存在,则,即k阶0)(....)()()1('=±∞==±∞=±∞−k f f f )]([)(x f F k ][)()]([)(f F i x f F k k ω=导数的傅里叶变换等于原函数的傅里叶变换乘以因子.k i )(ω4.卷积特性若函数及都在上)(x f )(x g ),(+∞−∞绝对可积,则卷积函数∫+∞∞−−=ξξξd g x f g f )()(*的傅里叶变换存在,且][].[]*[g F f F g f F =.卷积性质的逆形式为)]([*)]([)]()([111ωωωωG F F F G F F −−−=即两个函数乘积的傅里叶逆变换等于它们各自的傅里叶逆变换的卷积. 5.Parseval 定理若函数)(x f 可积且平方可积,其中)(ωF 是的傅里叶变换.(查正确性) )(x f 则∫∫+∞∞−+∞∞−=ωωπd F dx x f 22)(21)( 3.2傅里叶变换的不同变种1.连续傅里叶变换[8]一般情况下,若“傅里叶变换”一词的前面未加任何限定语,则指的是“连续傅里叶变换”.“连续傅里叶变换”将平方可积的函数表示成复指数函数的积分或级数形式.)(t f ∫∞∞−−==dt e t f t f F F t i ωπω)(21)]([)(这是将频率域的函数)(ωF 表示为时间域的函数的积分形式. 连续傅里叶变换的逆变换(inverse Fourier transform )为)(t f ∫∞∞−−==ωωπωωd e F F F t f t i )(21)]([)(1即将时间域的函数表示为频率域的函数)(t f )(ωF 的积分.一般可称函数为)(t f 原函数,而称函数)(ωF 为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair ).除此之外,还有其它型式的变换对,以下两种型式亦常被使用.在通讯或是讯号处理方面,常以πω2=f 来代换,而形成新的变换对 : ∫∞∞−−==dt e t x t x F f X fti π2)()]([)( ∫∞∞−−==df e f X f X F t x ft i π21)()]([)( 或者是因系数重分配而得到新的变换对:∫∞∞−−==dt e t f t f F F t i ωω)()]([)(∫∞∞−−==ωωπωωd eF F F t f ti )(21)]([)(12.离散傅里叶变换定义3.2.1[1]给定一组数据序列{}1.....2,1,0,−==N n y y n ,离散傅里叶变换为序列:10,][10/2−≤≤==∑−=−N n e y y F y N n N kn i n n k π离散傅里叶逆变换为:10,1][1/2−≤≤==∑−=N k ey Ny F y N k Nkn i k k n π定理3.1 对于离散傅里叶变换,以下性质成立.1.移位或平移.若且n s y ∈1+=k k y z ,那么,这里 j j j y F z F ][][ω=n i e /2πω=2.卷积.若且,那么下面的序列n s y ∈n s z ∈∑−=−=10]*[n j j k j k z y z y也在中.序列称为和的卷积.n s z y *y z 3.若是一实数序列,那么n s y ∈k k n k k n y y n k y F y F ))=≤≤=−− 0 , ][][或. 3.快速傅里叶变换快速傅氏变换(FFT),是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。

傅里叶级数

傅里叶级数

u(t)的(傅1)里连叶续级或数只收有敛有于限个 E第m 一Em类 间Em 断 (点Em ) 0,
(2)至多只有有限个极值2点
2
当t k时, u(t)的傅里叶级数收敛于u(t).
a0
1
u(t )dt 1
0
( Em )dt
1
0 Emdt
0
1
an
1
u(t)cos ntdt
0
( Em )cos ntdt
2
a0
u(t )dt
0
2
E sintdt
0
2E
[ cos t]0
4E ,ห้องสมุดไป่ตู้
an
2
2
u(t)cos ntdt
0
E sint cos ntdt
0
E
[sin(n 1)t sin(n 1)t]dt
0
(n 1)
E
cos(n 1)t n1
cos(n 1)t n 1 0
[(
bn
1
f ( x)sin nxdx,
(n 1,2,)
傅里叶级数的收敛性
若周期为 2 的函数 f ( x) 可积,则
f
(x)
a0 2
(an cos nx
n1
bn
sin nx)
问题:
a0
2
(an cos nx
n1
bn sin nx)
?
f
(x)
要满足什么条件?
狄利克雷(Dirichlet)充分条件(收敛定理)
三角函数系的正交性
三角函数系
1,cos x,sin x,cos 2x,sin 2x,
cos nx,sin nx,

常见函数的傅里叶级数

常见函数的傅里叶级数

12
⎛ ⎝⎜
sin 13
x

sin 2x 23
+
sin 3x 33

⎞ ⎠⎟
Fig. 24-6 Fig. 24-7 Fig. 24-8 Fig. 24-9 Fig. 24-10
24.17.
f (x) = ⎧⎨⎪10
0< x <π −α π −α < x <π +α
⎩⎪0 π + α < x < 2π
24.7.
f (x) = ⎧⎨⎩−11
0< x <π −π < x < 0
4 π
⎛ sin ⎝⎜ 1
x
+
sin 3x 3
+
sin 5x 5
+
⎞ ⎠⎟
24.8.
f (x) = | x | = ⎧⎨⎩−xx
0< x <π −π < x < 0ຫໍສະໝຸດ π 2−4 π
⎛ cos x ⎝⎜ 12
+
cos 3x 32
+
x
+
cos 2x 2
+
cos 3x 3
+
⎞ ⎠⎟
24.29.
f
(x)
=
ln
|
cos
1 2
x
|,
−π < x <π

⎛⎝⎜ln
2

cos 1
x
+
cos 2x 2

cos 3x 3
+
⎞ ⎠⎟
24.30.
f (x) =
1 6

傅里叶级数

傅里叶级数

∫πcos nxdx = 0,
π
π
∫πsin nxdx = 0,
π
( n = 1,2,3,L)
0, m ≠ n ∫ πsin mx sin nxdx = π, m = n, 0, m ≠ n ∫ πcos mx cos nxdx = π, m = n,
π
∫π
π
sin mx cos nxdx = 0.
右端级数收敛吗?若收敛是否收敛于 右端级数收敛吗?若收敛是否收敛于f(x)?
f ( x)在 a, b]光滑: f ′( x )在[a , b]连续. [ 光滑: 连续. f ( x)在 a, b]按段光滑: [ 按段光滑:
f ( x )在[a , b]有定义,且至多有有限 个第一类 有定义, 间断点, 间断点, f ′( x )在 [a , b] 除有限个点外有定义且 连续,在这有限个点上 f ′( x ) 左右极限存在. 左右极限存在. 连续,
第, 古今往来,众多数学家一直在寻找用简单函数较好 地近似代替复杂函数的途径,除了理论上的需要外, 地近似代替复杂函数的途径,除了理论上的需要外, 它对实际应用的领域的意义更是不可估量. 它对实际应用的领域的意义更是不可估量. 在微积分发明之前,这个问题一直没有本质上的 在微积分发明之前, 突破. 突破. 熟知的简单函数:幂函数,三角函数. 熟知的简单函数:幂函数,三角函数.
π π
1 π bn = ∫π f ( x)sinnxdx π
( n = 1,2,3,L)
f(x)的傅里叶系数 的傅里叶系数
1 π ) an = π ∫π f ( x)cos nxdx, (n = 0,1,2,L 1 π bn = ∫π f ( x)sinnxdx, (n = 1,2,L) π 1 2π ) an = π ∫0 f ( x)cos nxdx, (n = 0,1,2,L 或 2 bn = 1 π f ( x)sin nxdx, (n = 1,2,L ) ∫0 π

傅里叶级数

傅里叶级数
1 则f(x)的傅立叶级数收敛于 2 [ f ( x 0) f ( x 0)]
并且当x是f(x)的连续点时,级数收敛于f(x); 当x是f(x)的间断点时,级数收敛于
高 等 数 学 电 子 教 案
狄里克雷充分条件的解释: (1)即函数f(x)在[-π,π]上不作无限次振动,函数的傅 立叶级数在连续点处就收敛于该点的函数值f(x). (2)在间断点,则收敛于该点的左极限与右极限的算术 平均值.
1 cos kx cos nx [cos( k n) x cos( k n) x] 2 当k n时有 1 cos kx cos nxdx 2 [cos( k n) x cos( k n) x]dx 1 sin( k n) x sin( k n) x [ ] 0 2 k n k n
展开式表明:矩形波是由一系列不同频率的正弦波叠加
而成的,这些正弦波的频率依次为基波频率的奇数倍.
1
-2π

0
-1
π
x
高 等 数 学 电 子 教 案
4. 周期延拓: 若f(x)不是周期为2π的周期函数,只在[-π,π]上有定义, 并满足狄里克雷充分条件,可在[-π,π)或(-π,π]外补充 函数定义,使f(x)拓广为周期为2π的周期函数F(x),称这种
展开成傅立叶级数.
解: (1) f(x)在[-π,π]上满足狄里克雷充分条件,把f(x)拓 广为周期函数,该周期函数的傅立叶级数在[-π,π]上收 敛于f(x). y -2π -π π 2π
x
高 等 数 学 电 子 教 案
(2)计算傅立叶系数:
an f ( x) cos nxdx

1

( x) cos nxdx

傅立叶级数

傅立叶级数

上它们都是收敛于同一个函数 。展成余弦级数或正弦级数的好处是系
数的计算量比较小。由此可见,对于只在区间 上有定义的函数,只要
它满足收敛定理的条件,即可展成余弦级数,也可展成正弦级数。
例9. 将函数 ( 不是整数)在上展成傅里叶级数。
解:因为给定的函数是偶数,所以可展成余弦级数,有
于是,我们得到函数 的傅里叶级数展开式: (10)
例8. 将函数在展成傅里叶级数.
解:按偶式展开,开拓的函数在是偶函数,它的傅里叶级数是例5
的结果,即
.
按奇式展开,开拓的函数在是奇函数,它的傅里叶系数是
.
.
于是,
.
当时,傅里叶级数收敛于
.
从这个例子看到,上给定的函数 ,在上即可按偶数延拓,也可以按奇
函数延拓,从而有余弦级数与正弦级数。这是两个不同的级数,但是在
于是, . 例7.的傅里叶级数的几何意义是当时,它的部分和的图像无限趋近 函数的图像,即 图像的极限状态就是 的图像,如图9.5,并且在傅里 叶级数收敛于 。
3. 函数f(x)的偶开拓或奇开拓 有时需要将函数在区间展成傅里叶级数,为了便于计算傅里叶系
数,将函数开拓到,使其开拓的函数在区间是偶函数或奇函数,即称函
(7)
设将要证明的收敛定理是,在一定条件下,函数的傅里叶级数的部 分和收敛于函数,即需要证明。为此,一方面,要将函数与化为相同的 数学形式(这里化为积分形式),从而能够进行差的运算;另一方面, 将差化为积分形式之后,要有相应定理,使其极限为。这就是下面的引
理1及其推论和引理2. 设由§9.1例14,不难得到
推论:例9的的傅里叶级数展成式可以得到函数 与 的简单分式展开。
在(10)式中,令,就得到

傅里叶级数数学

傅里叶级数数学

f
(x)
4
[sin
x
1 3
sin
3x
1 sin(2k 2k 1
1)x
]
.
(<x<;x 0, , 2, ).
第7页/共22页
例2 设周期为2的函数f(x)在[)上的表达式为
f (x)0x
x0 0 x
将f(x)展开成傅里叶级数.
解 所给函数满足收敛定理的条件由收敛定理知道f(x)的傅里叶级数收敛. 当x(2k1)时傅里叶级数收敛于
>>>
第1页/共22页
二、函数展开成傅里叶级数
❖傅里叶系数
设f(x)是周期为2的周期函数 且能展开成三角级数:
f
(x)
a0 2
(ak
k 1
cosk
xbk
sin
k
x)
且假定三角级数可逐项积分 则
a0
1
f (x)dx
an
1
f
(x)cosnxdx
(n
12)
提示:
f
f(x()xc)soisnnnxfx(xa2)a020ca0sao002i0nsnnxxk1k(ka1k1[(caok0ksckoxa0snkbxkcs0soinisnnkxx)bk
a0
2
an
2
n2
0
n1, 3, 5, n2, 4, 6,
bn
(1)n1 n
(n
12)
所以当x(2k1)时f(x)的傅里叶级数展开式为
f
(x)
4
(2
cosxsin
x)
1 2
sin
2x ( 322
cos3x
1 sin 3

傅里叶级数课程及知识题讲解

傅里叶级数课程及知识题讲解

第 15 章 傅里叶级数§15.1 傅里叶级数一 基本内容一、傅里叶级数f (x)a n x n在幂级数讨论中 n 1 ,可视为 f (x)经函数系 1, x, x 2 , L , x n , L线性表出而得.不妨称{1,x,x ,L ,x ,L } 为基,则不同的基就有不同的级数.今用三角函数 系作为基,就得到傅里叶级数.1 三角函数系函数列 1, cosx, sinx, cos2x, sin 2x, L , cosnx, sin nx, L称为三角函数系. 其有下 面两个重要性质. (1) 周期性 每一个函数都是以 2 为周期的周期函数;(2) 正交性 任意两个不同函数的积在 [ , ]上的积分等于 零,任意一个函数的平方在上的积分不等于零.对于一个在 [ u n (x),u m (x) 为 , ] 可积的函数系 u n (x): x [a, b], n 1,2,L ,定义两个函数的内积 b u n (x) u m ( x)d x ,u n (x),u m (x) 如果 mn m n ,则称函数系 u n (x): x [a, b], n 1,2,L 为正交系. 由于 1, sinnx sin nxd x m sin mx,sinnx sinmx 0 m cosnxdx m cosmx, cosnx cosmx 0 m sin mx,cosnx sinmx cosnxdx 0 ;1, 1 12dx 21 n n ; ; n ; ; sin nx d x 1 cosnxdx 0 所以三角函数系在 上具有正交性,故称为正交系. 利用三角函数系构成的级数f ?(x)称为三角级数,其中 a 0 , a 1, b 1 ,L ,a n ,b n ,L 为常数2 以 2 为周期的傅里叶级数称为函数 f (x)的傅里叶系数,而三角级数 a 0 称为 f (x) 的傅里叶级数,记作这里之所以不用等号,是因为函数其是否收敛于 f(x) . 二、傅里叶级数收敛定理定理 1 若以 2 为周期的函数 f (x) 在[ , ]上按段光滑,则 其中 a n ,b n 为 f ( x)的傅里叶系数. 定义 2 如果 f (x) C[a, b] ,则称 f(x) 在[a,b] 上光滑.若x [a,b), f ( x 0),f (x 0)存在; x (a,b], f (x 0), f (x 0) 存在,几何解释如图.按段光滑函数图象是由有限条 光滑曲线段组成,它至多有有限个 第一类间断点与角点.推论 如果 f(x)是以 2 为周期的连O 续函数,且在 [ ,x ]上按 段光滑,则 x R ,f (x) 0 a n cosnx b n sin nx 2 n 1定义 3 设 f(x)在( , ] 上有定义,函数x ( , ]x (2k ,2k ],k 1, 2,La 0 2 n1 a n cosnxb n sinnx 定义 1 设函数 f (x) 在 a k 上可积, 1 f ( x),cos kx 1 f (x)coskxdx k 0,1,2,L ;b k 1 f (x),sin kx f(x)sinkxdx k 1,2,L, a 0 f (x) ~ 2a n cosnxb n sinnx 1 且至多存在有限个点的左、右极限不相等,则称 f (x) 在[a,b]上按段光滑. a n cosnx b n sinnxf (x) 按定义 1 所得系数而获得的傅里叶级数并不知a 02a n cosnxb n sinnx n1 f(x 0) f (x 0) 2f(x) f(x 2k )y称 f (x)为的周期延拓.习题解答1 在指定区间内把下列函数展开为傅里叶级数(1) f(x) x, (i) x , (ii) 0 x 2sin nxd x 0由系数公式得1 2 1 2a0 f (x)d x xdx 20 0当n其按段光滑,故可展开为傅里叶级数.由系数公式得11a0 f (x)d x xdx 01时,a n x cosnx d xnx d(sin nx)b n x sin nx dxx d(cosnx)x cosnx|cosnx d x ( 1)n 12 n,所以f(x) 2 (n1(ii)1)n 1 sin nxn ,x (, )为所求.其按段光滑,故可展开为傅里叶级数.当n 1 时,x cosnx d x 2 32a n 0 2 x d(sin nx)b n 所以 (2) xsin 2 nx |0 12 n 0sin nx d x 0 xsinnxdxx cos nx n f(x)f (x)= 2 x d(cosnx) 2 |20 sinnx cosnxdx ,x n , (0,2 ) 为所求. 2 x, - π< x< π,(ii) 0 < x< 2π; ; 1 n (i) 由系数公式得22 a 0 f (x)d x 1 dx 1时, x 2 cosnxdxx 2 d(sin nx) b n所以 x 2 sin nx | xd(cosnx) xcosnx | 2x sin nx dx x 2 sin nxd x 2 cosnx | x d(sin nx) xsin nx |f(x) cosnx d x ( x 2 d(cosnx) xcosnxdx 1) n 4 2 n , 1)n sinnxdx sinnx 2 n , ) 为所求.a 0 当 n 1 时,a 0 当nb n所以 解:其按段光滑,故可展开为傅里叶级数. 由系数公式得 12 0 1时, 12 0 f (x)d x 2 x 2 dx 82 3 x 2 cosnx d x 12 x n 2 sin nx | 2 x d(sin nx) 2xsin nxd x xd(cosnx) 2 xcosnx | x 2 sin nx d x 12 x n 2 cosnx | 0 f (x) f (x) 42 2 cosnxdx 42 0 n 2 , 22 x d(cosnx) 2 x cosnx d x 0 x d(sin nx) 2 xsinnx |0 2 sin nxd x 0n , cosnx sinnx x (0,2 ) 为所求. ax bx (3) 解:函数 f(x), x (a b,a 0,b 0) ( , ) 作周期延拓的图象如下. y 3O 其按段光滑3 ,故可展开为傅里叶级数. 由系数公式得 1f (x)d x 1 0 axdx 1 bxdx (b a)02a n 1 0 ax 2 cosnxdx1 111135740 bxcosnxdx [1 ( 1)n ]a 2 bn1 0 1 b n axsin nx d x bxsinnxdxn 0 n 1 sinnx1)n I n , x ( , ) 为所求.2 设f 是以2 为周期的可积函数,证明对任何实数 c ,有 1 c 2 1 a nc f(x)cosnxdx f ( x)cos nxd x,n 0,1,2,L 1 c 2 1 b nf (x)sin nxdx f (x)sin nxdx,n 1,2,L cf (x)f (x)cos nxd x同理可得b n 1 f (x)sin nxd x f ( x)sin nxdx3 把 函数 0x4 展开成傅里叶级 数,并由 它推出(1)( 1)f(x)所以n (b a) 4 2(b a) 1 2 cos(2n 1)x1 (2n 1)2 (a b) ( n1 证: 因为 f(x),sin nxcosnx 都是以 2 为周期的可积函数,所以令 1 f (x)cos nxd x c 2 f (t 2 )cos n(t 2 )d(t 2 )从而 a n a n 1 c+2 1 f (t)cosntdtc2f (x)cosnxdx cf (x)cosnxdx 1 f ( x)cosnx dx c1 f (x)cos nxd xc+2 c+2 f ( x)cos nxd x f (x)cos nxd x11 1 (3)1时,(2)什么特性.(2)1 1 1 L13 17 11(3)111L11 13 17解:(, )作周期延拓的图象如下.x其按段光滑,故可展开为傅里叶级数. 函数f (x),由系数公式得a 0f (x)d xdx 14dx4a nb n[1f (x)(1)cosnx d x 4sinnxdx41)n 1]21nn11sin(2n 2n 12 ,则 4cosnxdx 0 04sin nxd x41)x, 2k 2k,0) U(0,)为所求.1215 21121113 17所以x取36 3 ,则1154 设函数1111 13 1713 17f ( x)满足条件 f (xf (x) ,问此函数在内的傅里叶级数具有11解: 因为 f(x)满足条件所以f(x 2 ) f (xf(x ) f(x),) f(x),即 f (x)是以 2 为周期的函数.于是由系数公式得1af (x)d x 1f (x)d x 1f (x)d xf (t )dt0 f (x)d xf (t )dt 10 f(x)d xf (t)dt0 f (x)d x 0当n1时,10a nf (x)cos nx d x f (x)cos nxd x b n故当 b 2k 0 .1f (t )cos(nx1)d x f(x)cosnxdx1 ( 1)n 1f(x)cosnxdx2f (x)cosnxdx10f(x 2k 1 2kf ( x)sin nx d x0 f (x)sin nxd x ) f(x) 时,函数 5 设函数 f ( x)满足条件: f (x 什么特性.解: 因为所以 f (x 1 f(x) 满足条件 2 ) f (x a 0f (x)d x 1f (t )dt f (tf (x)sin nx d x2k 1 2k , f(x) 在 内的傅里叶级数的特性是 a 2k 0 , ) f (x) ,问此函数在 内的傅里叶级数具有 f(x), f(x),即 f(x)是以 2 为周期的函数.于是由系数公式得 1 f (x)d x f (x)d x f (x ) 2 )dt0 f (x)d x 10 f(x)d x1 1 20 f(t )dt 0 f(x)dx 0 f(x)d x1 ( 1)nf (x)cosnxd x2k 12k 1 ,当n a n1时,1 01f (x)cos nx d x 0f (x)cos nxd x1f (t )cos( nx n )d x1f (x)cos nx d x2 f ( x)cos nxdx2k b n10f ( x)sin nx d xf (x)sin nx d xf (x)sin nxd x 2k故当 0 f(x f (x) 时,函数 f(x)在 内的傅里叶级数的特性是 a 2k 1 0 , cosnx, n 0,1,2,L 和sin nx, n 1,2,L 都是[0, ]上的正交函数系,但 [0, ] 上的正交函数系. 证:就函数系 {1, cosx,cos2x,L , cosnx, L 6 试证函数系 他们合起来的却不是 }, 因为 n ,1,1 0 dx , cosnx,cos nx 0 cos2nxdx 10 (cos2 nx1)dx2,1,cosnx cosnxdx 0 又0;m, n ,m n时,cosmx,cosnx cosmxcosnx d x 11cos(m n)xdx cos(m n)xdx所以{1, cosx, cos2 x, L , cosnx, L } 在[0,就函数系{sinx, sin 2x, L , sin nx, L } ,因为 n ,]上是正交系.sin nx,sin nx210sin 2nxdx 2 0 (1 cos2nx)d x 2又m, n,m n 时所以{sin x, sin 2x, L , sinnx, L } 在[0, ]上是正交系.但{1, sin x, cosx, sin 2x,cos2 x, L , sinnx, cosnx, L } 不是[0,7 求下列函数的傅里叶级数展开式xf (x) , 0 x 2(1) 2 ;xf (x) , 0 x 2解: 2 y作周期延拓的图象如下.2其按段光滑,故可展开为傅里叶级数.由系数公式得12a0 f (x)d x xdx 02当n 1时,12x cosnxdx21 2 xd(sin nx)n02b n所以(2)解:x2n122nf (x)2 sin nx|12nxsin nxd x2x cosnx |2sinnx2sinnxdx 02xd(cosnx)12ncosnxdxn,xf (x) 1 cosx,(0,2 )为所求.x;f (x) 1 cosx,x作周期延拓的图象如下.sin mx,sin nx 0 sin mxsin nxd x0 cos(m n)xdx cos(m n)xdx 0]上的正交系.实因:1,sin x 0 sin xdx 1 0b)sin nxdx其按段光滑,故可展开为傅里叶级数.f(x) 1 cosx 2sin2 x2sin2xx0因为 2sin x2所以由系数公式得 1a0 f (x)d x sin x dx2sin 2xd x42当n 1时, 2 x sin cosnx d x2b n 22 f(x) 所以 而x f (x)故(3)解: a 0 当n a n b nsin xcosnxdx2 sin xsin nx d x2n1x sin cosnxdx2 42 2 (4n 21) .2sin xsinnxdx 0212 cosnx 4n 2 1f ( 0) 2时, 2 2 4 2f(x) ax 2bx (i) 由系数公式得 11时,1f (x)d2(ax (ax 2(ax2n 4a 2 nbx bx f ( 0)1 n 14n 2c, (i) 0 c)d x,xf(,)cosnx 1 ,x]为所求. , (ii)x;2b 2cc)cos nxd xbx c)sin nx |20 (2ax22(ax 2 bx c)sin nxdx212n,(ii)由系数公式得当 n 1 时, 12a n(ax bx c)cos nx d x(ax2bx c)cos nx(2ax b)cos nxd xn 0当n 1时, an 1chxcosnxdx11 ch xsin nx | nn sh xsin nx dx1 2 sh xd(cosnx) n 2chxdx2shf (x) ax 2 bx c 故4 2a4a 2 cosnxn1n4 a 2b sin nx, x n (0,2)为所求.a 0f (x)d x(ax 2 bx c)d x2cb n1(ax 2 bx n( 1) (ax2bx (ax 2bx1 2bn2 axbx c)sin nx |(2ax (2ax b)sin nxdxb)cos nxd x2 2a31)n4a 2 cosnx( 1)n 2bsin nx,n)为所求.(4) f (x) chx,解: 由系数公式得11 a 0 f (x)d x x;c)sin nxdx1 c)cos nx|nf (x)c( 1)n 4a 2 n,sh xsin nxd xsh xd(sin nx)1sh x cos nxchxcosnxdxn 12nshx 1)n 1(n 22nsh 1x)1)n 1)n1)n2sh n 2shn1 2sh nch x d(sinnx)21 ch xsin nx | n 212 b n n,所以b nn 1 112 shxcosnx|chxcosnxdx( 1) n2sh 2n12 a nna n1)n2sh (n 2 1)chxsinnxdx ch x d(cosnx) chxcosnx |shxcosnxdx所以b nf (x) 故(5)解: a 0shxsinnx |chxsinnxdx 1shxsinnx |chxsinnxdx12 b n n,,chx 2sh f (x) shx,由系数公式得f (x)d x(n11)n12 cosnx n 21x ( , )为所求.sh xdx所以b n1f ( x)sin nx d x4a 4 a 2b2 cosnx sin nx, n 2故由收敛定理得f (x) shx1)n 1 2nsh (n 21)sinnx x(, )为所求.解:求函数f(x)1 12(3x2)的傅里叶级数展开式并应用它推出122 n1nf (x)ax 2 bx c4 2a3f(x)1(3x 2 6 x122)n1 12 cosnxn 2n1n12 cosnx (0,2 ) 而f (0 0) f (20)6,x (0,2f (0 0)f (20)12 cos0 1 n 2f (x)cos nx d x b n1f ( x)cos nx|f ( x)sin nxdx nb n1f (x)sin nx |f ( x)cos nxd x na n1f ( x)sin nx d x当 n 1 时,故结论成立.9设f (x)为,上光滑函数, f ( ) f( ).且 a n , b n为 f (x)的傅里叶系数,a n ,b n 为 f(x) 的导 函数f (x)的傅里叶系数 .证明a 0 0,a n nb n , b nna n(n 1,2,L ) .证:因为f(x) 为上光滑函数,所以f (x) 为,上的连续函数,故可积.由系数公式得a 01f (x)d x1f( ) f ( )0a n115. 2 以2l为周期的函数的展开基本内容、以2l 为周期的函数的傅里叶级数x lt设 f (x)是以2l 为周期的函数,作替换x,则F(t)f lt是以 2 为周期的函数,且 f (x) 在( l, l) 上可积F(t)在( , ) 上可积F(t) : a0a n cosnt b n sinnt于是 2 n1其中1 a n 1F (t )cos nt d t , b nF (t)sin ntdt3na证:, n3b nu0(x) 设0Ma02,(x) 在M 为常数,则上述三角级数收敛,且其和函数具有连续的导函数u n(x) a n cosnx b n sin nx ,n 1,2,L .R上连续,且n 0,u nu0 (x) 0,u n(x) na n sin nx nb n cosnx亦在R上连续.又x R,u n(x) n a n sinnx n b n cosnxn a n n b n2M2 n.2M而2 n收敛,所以u n(x)nb n cos nx na n sin nx在R上一致收敛.s(x) a0 (a n cosnx b n sin nx)故设2 n1 ,则s(x) ( na n cosnx nb n sin nx) u n (x)n1 n 1s(x) (na n cosnx nb n sin nx)且n 1 在R 上连续.a0supn(a n cosnx b n sin nx)10 证明:若三角级数2 n 1 中的系数a n,b n 满足关系f (x) x (0,l) f ( x) x ( l,0)习题解答1 求下列周期函数的傅里叶级数展开式t 令x l 得F(t)f lt f (x) n x n xsinnt sin ,cosnt cos ll: a 0nxnxf (x)an cosb n sin从而2n1l l.a n1lf (x)cosnx dx,其中l llb n1lf (x)sin nxdxl ll .上式就是以 2l 为周期的函数 f (x)的傅里叶系数.在按段光滑的条件下,亦有f(x 0) f(x 0) a 0n x n x a n cos b nsin n l nl其只含余弦项,故称为余弦级数. f(x)是以 2l 为周期的奇函数,则 f( x)cos nx奇,同理,设f ( x)sin nx偶.lla nl f (x)cos n l x dx是f %(x) f (x) x (0,l)偶延拓 f(x) f( x) x ( l,0) 函数 f(x),x (0,l) 要展开为正弦级数必须作奇延拓.奇延拓lyO l xf %(x)(1)f (x) cosx(周期 ) ;解: f (x) 按段光滑,所以可展开为傅里叶级数,又 由于 级数. f (x)是偶函数, 故其展开式为余弦2 ,所以由系数公式得 a 02 2 cosx dx 4 2cosxdx 4 20 当n1时,22cosx cos2nxdx 422cosxcos2nxdxb n222[cos(2n 1)x cos(2n1sin(2n 1)x(2n 1)( 1)n 2 ( 1)n 1 2 (2n 1) (2n 1)1)x]d x 1sin(2n 1)x | 02 (2n 1)141)n2 (4n 21)222cosx sin nx d xf (x) cosx 故24( 1)n 1n121 cos2nx 4n 21( , )为所求.(2)f (x) x1 1解:f (x)按段光滑,所以可展开为傅里叶级数.12 ,所以由系数公式得[x](周期 1) ;由于1223 48a 0 2 21 x [x]2dx 2 10 x [x] dx1 xdx 1a n1时,121 x [x]2 cos2n 1xdx 2 x0 [x] cos2n xdxb n1 x cos2n 0xsin2n 1 22 1 2x [x]xdx1x |101x d(sin 2n x)1 sin2n xdx 0sin2n xdx10 x d(cos2n1xcos2n x |0f (x) x[x]1 xsin2n 0xdx(3)f (x)4sin 解: 由于 级数. a 0a nx)x(周期4函数f (x) sin x,0 cos2n 1sin2n n);xdx,x222 )为所求.延拓后的函数如下图.f (x) 按段光滑,所以可展开为傅里叶级数,又 ,所以由系数公式得2sin 4xdx4 1时,42f (x)是偶函数,故其展开式为余弦2sin 4xdx4 2 1 cos2x2dx1cos2x2 1cos2x 21 cos4 x dx 3841cos4x cos2nxd x 821,n 2bn 2 2cosx sin nx d x 04f (x) sin 4 x 故3 1cos2x 1cos4x x (8 2 8 , x ()为所求.(4)解:f (x) sgn(cosx) (周期2 ).函数 f(x) sgn(cosx) ,x ( , )延拓后的函数如下图.y3322Ox22f (x)按段光滑,所以可展开为傅里叶级数,又 由于 级数.因l f (x)是偶函数,故其展开式为余弦a 0,所以由系数公式得2sgn(cosx)d x 0 sgn(cosx)d x 0 当n1时,a nsgn(cosx)cos nx d x02cosnxdxcosnxdx24n sin n2kb n 4n sin2f (x) 1)k(2k 1)2ksgn(cosx)sin nx d x 0sgn(cosx)4(n11)ncos(2n 1)x 2n 1,xf (x)求函数 解:函数 f(x),3的傅里叶级数并讨论其收敛性.yOx (0,3)延拓后的函数如下图.1由于 f (x) 按段光滑,所以可展开为傅里叶级数,又 f (x) 是偶函数,故其展开式为余弦 级数. 2 ,所以由系数公式得 a 0 2332 0 f(x)d x 1 xdx 0 2 dx 13 2 (3 x)d x 1时,12n xcos 0x dx 32 cos12n xd x b n1 xd 02n 1 sin n31 4n sin n332 (3 2n x)cos xdx32n xsin2n2 2 cos 2n 2 2 33 2n2cos 23sin sin2n32 (3 x)d2n x sin 32n x dx 3 1 2n sinn3 2 2 cos2n2 23222n 322n.f (x)sin nxdx3222n x32n 2 21 4n sin n cos2n31 (3 n 32n 2 22n x x)sin 31 4n sin n34n cos 31 2n 2n x2 cos cos n 23 3 ,x ()为所求.1 3 2n x sin dxn 22n x2 2 cos2n 2 2 33 将函数 f (x) 2 x 在 [0, ]上展开成余弦级数.由于 f (x)按段光滑,所以可展开为傅里叶级数,又 f (x)是偶函数,故其展开式为余弦 级数.由系数公式得1时,22a 022dx12x 2n2 sinnxsinnxdxn 022 cosnx n 2b n级数. 4 2n 02k 2kf (x) 21 2cos(2n 1)x, n 1 (2n 1)2x [0, ]解:函数,故其展开式为正弦由于 由系数公式得 a n 0, n x cos[0, ]2在 [0, ]上展开成正弦级数.将函数f (x) 0,1,2,L b n 2 0 n 0cos x sin nx d x2sin sinx dx cos1 x2 1 n2cos1 21 n 2当ncosnx d x18n2(4n 2 1)f (x)5 把函数 在(0, 4)上展开成余弦级数.2x 1在(0, 1)上展开成余弦级数,并推出6 1 22 312 L解:函数 f(x),x (0,1)延拓为以 2为周期的函数如下图.由于 级数.因la 0当n所以解:f (x)按段光滑,所以可展开为傅里叶级数,又,所以由系数公式得 4f(x)d20 (1 x)d x 42(x3)d x1时,a n40 f ( x)cos nx4dxn (1x)sin nx42 sin822 nf (x)nx cos 42cos n2 cosnx 4 1)nf (x)是偶函数, 20 (1 x)cosnx dx4故其展开式为余弦42(x3)cos n xdx4x dx20 16 22 n2 (x n3)sin4422n4n x sin dx 242 cos 1(2n 1)24k 4k(2n 1) x 2为所求.6 把函数 f (x)f(x)故在[0, ] 上x cos 2n2 sinnx 1 4n 1为所求.22由于 f (x)按段光滑,所以可展开为傅里叶级数,又f (x)是偶函数,故其展开式为余弦级数.因 l=0.5 ,所以由系数公式得122 0(x 1)3 4dx1 cosn xdx422nb n12 n 1 n,即1 n 1 n2 67 求下列函数的傅里叶级数展开式(1) f(x) arcsin(sin x) ;由于 f (x)按段光滑,所以可展开为傅里叶级数,又f (x)是奇函数,故其展开式为正弦级数.由系数公式得 a n 0, n 0,1,2,L .2b narcsin(sin x)sin nxdx3 令 x 0得4xsinnxdx21当n1时, a n10(x1) 2cosn xdx2(x n1)2sin n x1(x 1)sin n xdx(x所以 1)212cosnx, 1nx [0,1]12 0 f (x)d xa 0222 n (x 1)cos n 解:函数f(x) arcsin(sin x)是以 2 为周期的函数如下图.x)sin nxdx222x cos nxn 02cosnxdx220 arcsin(cosx)cos nx d x 0 2 x cosnxdx2cos nxd x4n 2 sinn 22k 所以(2) 由于 级数. x)cos nx2 cosnxd xn 22( 1)kn42 n2k 14f (x) arcsin(sin x)( 1)n 2 sin(2n1(2n 1)21)x, x Rf(x) arcsin(cosx)解: f (x) 按段光滑,所以可展开为傅里叶级数,又 f (x)是偶函数,故其展开式为余弦由系数公式得 a 02 0 arcsin(cosx)d x 0当n1时,b n2 sinnxn0, n f (x)所以1,2,L 2sin nxd x2k 2k4arcsin(cosx)1 2 cos(2n 1)x1(2n 1)2,x R0,8 试问如何把定义在 2叶级数为如下的形式上的可积函数 f (x)延拓到区间内,使他们的傅里a2n 1 cos(2n 1)x b2n 1 sin(2 n 1)x(1) n 1;(2) n 1解:(1)先把 f (x)延拓到[0, ]上,方法如下:f (x) 0 x2f (x) 2f ( x) x2再把 f (x)延拓到[0,2 ]上,方法如下:f?(x) f (x) 0 xf(2 x) x 2 其图象如下.y y f(x)2 O3 2 x232由于 f (x)按段光滑,所以可展开为傅里叶级数,又 f (x)是偶函数,故其展开式为余弦级数由系数公式得20 f (x)d xa0当n1b n1时,n20 f(x)cosnxd x2f (x)sin nxdx 02 2 22 f (x)cosnxdx f (x)cos nx d x2222 f (x)[cos nx cos(n nx)]d x422 f ( x)cos nx d x n 2k 1n 2k所以f (x) a2n 1 cos(2n 1)x x 0,n 1 2(2) 先把 f (x)延拓到[0, ]上,方法如下.f (x) f (x)f ( x) 0x2再把 f (x)延拓到[0,2 ]上,方法如下.§15. 3 收敛定理的证明一 基本内容一、贝塞尔(Bessel)不等式定理 1 设 f(x) 在 [ , ] 上可积,则2a 022 21 a n2 b n 2f 2(x)d x2 n 1其中a n ,b n 为f (x)的傅里叶系数.推论 1设f(x) 在 [ , ] 上可积,则lim f (x)cos nxd x 0 limf ( x)sin nxdx 0f (x)是偶函数,故其展开式为余弦级数.由系数公式得 a0 f (x)d x当nb n1时, 21a n20 f (x)cos nx d x 0f ( x)sin nxdx222f (x)sin nxdx f ( x)sin nxdx22f (x)[sin nx sin(nnx)]d x 42f ( x)sin nxdx n2k 2kf (x) 所以b 2n 1 sin(2 n 1)x x n10,2由于 f (x)按段光滑, 所以可展开为傅里叶级数,又推论 2 设 f(x)在[ , ]上可积,则k11t t 2 tdt2sin 2t此称为 f (x)的傅里叶级数的部分和的积分表达式.二、收敛性定理的证明定理 3 (收敛性定理 ) 设以 2 为周期的函数 f(x)在[ , ]上按段光滑,则 limf (x 0) f(x 0)S n (x) 0 n 2 2 n,定理 4 如果 f(x)在[ , ]上有有限导数,或有有限的两个单侧导数,则f(x 0) f (x 0) a 0a n cosnxb n sinnx n122定理 5 如果 f(x)在[, ]按段单调,则f(x 0) f (x 0) a 0a n cosnxb n sinnx22n1习题解答1 设 f (x)以 2 为周期且具有二阶连续的导函数,证明( , )上一致收敛于 f(x).证:由题目设知 f(x)与 f (x)是以2 为周期的函数,且光滑,f (x) a 0(a n cosnx b n sin nx)故21f (x)a 0(a n cosnxb n sin nx)2n111a 0 1f (x)d x 1f( ) f ( ) 0 且1 a n f (x)cos nx d x当 n 1 时,lim f (x)sin nn 01xdx 0 2limn1f ( x)sin n xdx 02定理 2 设以 2 n为周期的函数 f (x) 在 [ ]上可积,则S n (x)a 0a k coskxb k sinkxsinf(x t)f (x)的傅里叶级数在1 nf ( x)sin nxdx nb nf ( x)cos nx|b n1nf ( x)sin nx d x1f (x)sin nx| f ( x)cos nxd x nana n 是a nnb n 122an2b n212(a nb n2)由贝塞尔不等式得a0 从而2a nn1(an1b n2)收敛,又12n 1 n收敛,bn收敛,(a n cosnx b n sin nx)n在(2 设f为,上可积函数,证明:若f的傅里叶级数在[, ]上一致收敛于则成立贝塞尔(Parseval) 等式1 f2 (x)d x2a02 2an2b n2 2 n1这里a n ,b n 为f的傅里叶系数.S m a0a n cosnx b n sinnx证:设 2 n 1,因为 f (x)的傅里叶级数在[ , ]上一致收敛于f(x),所以0, N 0 ,“m N, x [ , ]f(x) S m ”.)上一致收敛.1na0故22.而于是f(x) S m, f(x) S mf(x) S m,f (x) S m f (x), f ( x)f 2(x)dx 2 a02 m a n2 n12 f ( x), S m S m,S ma022n1a n2b n2nna n2b n2n12f 2(x)d x所以m N 时,2f2(x)d x 22 a n b n2n11 f 2(x)d x4 其中 an , bn 为 f的傅里叶系数,n , n为 g 的傅里叶系数.2a 022a n 2b n 2 故2 n 13 由于贝塞尔等式对于在, ]上满足收敛定理条件的函数也成立.请应用这个结果证明下列各式.2(1) 8n 1(2n11); (2)121n 2(3) 90f (x)解: (1) 取由贝塞尔等式得212即8 n 1 (2n 1)(2) 取 f(x) x, xf(x)2dx16f (x)x 2dx,由§1 习题 3 得sin(2 n 1)x , x ( 2n 1 ,0) U(0, )1 1 (2n 1)2,由§1 习题 1 (1) 得 2 ( 1)n 1 sinnx, x n 1 n( 1)n 12由贝塞尔等式得212故6 n 1nn1(3) 取f (x) 2x,], 2由§1 习题 1 (2) 得x 21)ncosx 2 , x n,)x 4dx由贝塞尔等式得 4( 1)n 4n190收敛于 证明: f和 g,则若 f,g 均为 []上可积函数,且他们的傅里叶级数在[ , ]上分别一致f(x)g(x)d x a020(a n n b n n )n1f (x)f (x)g(x)df(x),g(x)当 n 1 时,a 0证: 由题设知(a n cosnx b n sin nx)1g(x) ( n cosnx n1 nsin nx)f (x), 所以f(x), 20 f (x), 20(n1ncosnx n sin nx)f (x), n cosnx f (x), n sin nx1n 2f (x),a n cosnx na 0 0f (x), 而cosnx b n sin nx, 02b n sinnx ,ncosnxa n cosnx,ncosnxan n,n sinnxa 0a n cosnx 2 n 1 nb n cosnx, n cosnxf (x)g(x)d xa 0 02n(a n1b n sinnx ,n sinnxb nn,b nn)f (x) 2 dxf (x) 2dx .证: 因为 f(x)、f (x) 在,上可积,f(x)dx 0,f( ) f( )f (x) a 0(a n cosnx b n sin nx)设2 n 1a 0f (x)(a n cosnx b n sin nx)2n1由系数公式得a 01f (x)d x 1 f () f ( ) 05 证明若 f 及其导函数 f 均在[ , ]上可积 ,f(x)dx 0 f( ) f( ),且成立贝塞尔等式,则1f (x)cos nx d x1 nf ( x)sin nxdx nb nf ( x)cos nx |傅里叶级数,由系数公式得a 0T n (x),1A2n (A k coskx k1B k sin kx),1A 0当ka k1时, T n (x),coskxn(A k coskx B k sin kx),cos kx k1A kn,b kT n (x),sin kxA20n(A k coskx B k sin kx),sin kx k1B k 0n,故在 () ,T n (x) A 20k(A k coskx B k sinkx) 1的傅里叶级数就是其本身.a 0,a k ,b k (k 1,2,L ,n)为f的傅里叶系数,试证明,当A 0 a 0,A k a k ,B k b k (k 1,2,L ,n) 时,2 设 f为[ , ]上可积函数,b n1nf ( x)sin nx d x1f (x)sin nx |f ( x)cos nxd xna n于是由贝塞尔等式得2f (x) 2dx2 a n 2b n 2 n122n 2an 22an2b n 2n12f (x)2 dx总练习题 151 试求三角多项式A 0T n (x)2n(A k coskx B k sin kx) k1的傅里叶级数展开式.A 0T n (x) 20 解: 因为 2(A k coskx k1B k sin kx)是以 2为周期的光滑函数,所以可展为2f (x) T n(x) dx积分n取最小值,且最小值为2 a 2 nf (x) d x 0(a k2 b k2 )2 k 1上述T n (x)是第1题中的三角多项式, A0, A k ,B k为它的傅里叶系数.f(x) 证:设a02 a n cosnxn1b n sinnxT n(x) A02 (A k coskxk1B k sin kx)且A0a0, A k a k , B k b k (k 1,2,L ,n) ,因为2 f (x) T n(x) dx所以22f 2 (x)d x 2 f ( x)T n ( x)d x T n2(x)d xA anf (x)T n(x)d x A k a k B k b k2 k 1 ,T n2(x)d x A0nA k2B k2n2 k 1,2f (x) T n (x) d x而故当A0积分f 2 (x)d x 2 A0a0222nA k a kk1 B k b kA0n2 2A k2B k22 k12 2 nf(x) dx a0 (a k2b k2)2 k1(A0 a0)2n(A k2 k12 a2 nf (x) dx a0 (a k2b k2)2 k1a0, A k a k,B k b k(k 1,2,L ,n)时,2(x) Tn(x) dx取最小值,且最小值为a k )2 (B kb k)22f (x) d x2 a02k1(a k2b k2)3 设f为以2 周期,且具有二阶连续可微的函数,11b n f ( x)sin nxdx, b n f (x)sin nxdx1 1若级数 bn 绝对收敛,则1b n2 2b nn 1 2 n 1证:因为 f(x)为以 2 周期,且具有二阶连续可微的函数, 1b n f ( x)sin nxdx 所以1 b nsinnx d f (x)1f ( x)sin nx ( x)cos nxd xn cosnx d f (x)b nn1故结论成立.(x)a 0a n cosnxb n sinnx解:设2 n1(x) 0ncosnxnsinnx2n1(1) 则当(x)(x) 时,n,11a n(x)cosnxdx ( t)cos( nt)d( t) 试问 的傅里叶系数a n ,b n与 的傅里叶系数( t)cos nt dt(t)cos nt d tnf ( x)cos nxf (x)sin nxdxn 2b n所以 1 n 1, b n2 n bn绝对收敛,n1b nn1b n ,从而12n 收敛,1, b n2 b nnbn收敛,且b n 1b n4 设周期为 (1)( x)的可积函数 (x);(x)与 (2)(x)满足以下关系式( x) (x).n , n有什么关系?nb n(2)b nn11(x)sin nxdx( t)cosntdt( t)sin( nt)d( t)(t)cos ntdtn1x) (x) 时,(x)cosnxdx( t)cosntdt(x)sin nxdx( t)cos nt dt0,设定义在[a,b]上的连续函数列( t)cos( nt)d( t)(t)cos ntdt( t)sin( nt)d( t)(t)cos nt d tn (x)满足关系bn(x)m(x)d x 1nm对于在[a,b]上的可积函数f,定义a n ba f(x) n(x)d x, n a 1,2,L ,2 a n2 证明n 1 b2 a[ f(x)]2dx a证:2a n2收敛,且有不等式n 1在[a,b]上的所有可积函数构成的集合中定义内积为bf (x)g(x)d xa,f (x), g(x)则函数列n (x)为标准正交系.m a n n (x), m 1,2,Ln 1,则S m(x) 令b2a[ f(x) S m(x)]2dx 又 a mn, a n f (x), n(x) ,2f 2 (x)d x 22f(x)S n(x)d x S n2(x)d xf 2(x)d x 2 f ( x), S n (x) S n(x),S n(x)m m1 x sin nx |f (x), S n ( x) f (x), a n n (x) 而 n 1 a n f (x), n (x) n1 m 2 a n 2n1 S n (x),S n (x) S n (x), a k k (x)k1 m ma k a k k (x), k (x) k1 所以 k 1 , 2 m 2b f 2(x)d x a n 2 a [ f(x) a n1 m m 1, n1 2 S m ( x)]2 dx 0 b 2 a [ f(x)]2dx a 2 2 b a n a n a 1 收敛,且 n 1 a ,即 S m (x) 有上界. [ f (x)]2dx。

傅里叶变换推导过程

傅里叶变换推导过程

傅里叶变换推导过程介绍傅里叶变换是一种将时域信号转换为频域信号的数学工具。

它是以法国数学家傅里叶的名字命名的,用于将信号分解为不同频率的正弦波成分。

傅里叶变换在信号处理、图像处理、通信和控制系统等领域广泛应用。

在本文中,我们将详细讨论傅里叶变换的推导过程,以便更好地理解它的原理和应用。

傅里叶级数傅里叶级数是傅里叶变换的基础。

它将周期函数表示为一系列正弦和余弦函数的和。

傅里叶级数的推导过程如下:1.假设有一个周期为T的函数f(t),可以表示为以下级数的和:2.将f(t)表示为正弦和余弦函数的和形式:3.通过计算等式两端的积分,可以得到傅里叶级数的系数:这些系数表示了f(t)中不同频率的正弦和余弦成分的振幅。

傅里叶变换傅里叶变换是将一个非周期函数表示为连续频谱的工具。

通过对非周期信号进行傅里叶变换,可以得到信号在频域上的表示,进而进行频域的分析和处理。

傅里叶变换的推导过程如下:1.假设有一个函数f(t),可以表示为以下积分的形式: .gif)2.在傅里叶变换中,我们使用复指数形式来表示正弦和余弦波:3.将f(t)表示为复指数函数的和形式:4.通过计算等式两端的积分,可以得到傅里叶变换的表达式:这个表达式表示了函数f(t)在频域上的频谱。

傅里叶逆变换傅里叶逆变换是将频域信号恢复到时域信号的工具。

通过对频域信号进行傅里叶逆变换,可以得到信号在时域上的表示,进而进行时域的分析和处理。

傅里叶逆变换的推导过程如下:1.假设有一个频谱函数F(ω),可以表示为以下积分的形式: .gif)2.在傅里叶逆变换中,我们使用复指数形式来表示正弦和余弦波:3.将F(ω)表示为复指数函数的和形式:4.通过计算等式两端的积分,可以得到傅里叶逆变换的表达式:这个表达式表示了频谱函数F(ω)在时域上的信号。

傅里叶变换的性质傅里叶变换具有许多有用的性质,可以帮助我们更方便地进行信号处理和分析。

下面是一些傅里叶变换的常见性质:1.线性性质:傅里叶变换是线性的,可以对信号进行加法、乘法和缩放等运算。

傅里叶变换(周期和非周期信号)

傅里叶变换(周期和非周期信号)

f (t) Fne jn0t n
n1
e e jn0t jn0t
e e jn0t jn0t
a0 (an
n1
2
bn
2j
)
a0
n1
( an
- jbn 2
e
jn0t
an
2
jbn
e
jn0t
)
*
F0 Fne jn0t F en jn0t
n1
n1
*
F0 a0 是实数,Fn与 F n 是一对共轭复数
n1
c0 a0
cn an2 bn2
a0
1 T
T
2 -T
f (t) dt
2
an
2 T
T
2 T
2
f (t) cosn0t dt
bn
2 T
T
2 T
2
f (t)sin n0t dt
周期信号的傅里叶变换——傅里叶级数
1、 三角函数式傅里叶级数
若周期函数 f (t) 满足狄里赫利( Dirichlet)条件:

f (t) c0 cn cos(n0t n ) n1
谐波形式
ω0是基谐波角频率,简称基波频率。
例1 已知周期信号f(t)如下, 画出其频谱图。
f (t) 1
2
c
os0t
c
os(20t
5
4
)
2
s in 0t
1 2
sin
30t
解 : 将f(t)整理为标准形式
f
(t)
1 2 cos(0t
4
f (t) a0 (an cos0t bn sin0t)
n1
a0

同济大学数学系《高等数学》第7版笔记和课后习题含考研真题详解(无穷级数 下)【圣才出品】

同济大学数学系《高等数学》第7版笔记和课后习题含考研真题详解(无穷级数 下)【圣才出品】

k∈Z)
2.将下列函数 f(x)展开成傅里叶级数:
(1)f(x)=2sin(x/3)(-π≤x≤π) ;
(2)
f
(x)
ex ,
1,
x 0 0 x 。
解:(1)设φ(x)是 f(x)经周期延拓而得的函数,φ(x)在(-π,π)内连续,x
=±π是φ(x)的间断点。又φ(x)满足收敛定理的条件,故在(-π,π)内,它的傅里
cosnxdx
0
n
00
ab n
(1) n1
1 sin n
nx
0
a
n
b
(1) n1(
n 1, 2,
)
f(x)满足收敛定理的条件,而在 x=(2k+1)π(k∈z)处不连续,故
f
(x)
4
(a
b)
n1
1
(1)n n2
(b
a)
cos
nx
(1) n 1 (a n
b)
sin
nx
(x≠(2k+1)π,
an
n(1)n n2
e2 e2 4
(n 1, 2,)
f(x)满足收敛定理的条件,而在 x=(2k+1)π(k∈Z)处不连续,故
f
(x)
e2
e2
1
4
n1
(1)n n2 4
(2
cos
nx
n
sin
nx)
(x≠(2k+1)π,k∈Z)

3

a0
1
0 bxdx
axdx
(a b)
圣才电子书 十万种考研考证电子书、题库视频学习平台

同济大学数学系《高等数学》第 7 版笔记和课后习题含考研真题详解 第 12 章 无穷级数 下

傅里叶变换 - 维基百科,自由的百科全书

傅里叶变换 - 维基百科,自由的百科全书

代表狄拉克δ函数分布.这 个变换展示了狄拉克δ函数的重 要性:该函数是常函数的傅立叶 变换
变换23的频域对应
由变换3和24得到.
由变换1和25得到,应用了欧拉 公式:
由变换1和25得到
这里, 是一个自然数. 是狄拉克δ函数分布的
阶微分。这个变换是根据变换7 和24得到的。将此变换与1结合 使用,我们可以变换所有多项 式。
7/8
三元函数
时域信号
角频率表示 的
傅里叶变换
参见
正交变换 傅里叶级数 连续傅里叶变换 离散时间傅里叶变换 离散傅里叶变换 傅里叶分析 拉普拉斯变换 小波变换
参考资料
弧频率表示的 傅里叶变换
注释
此球有单位半径;fr是频率矢量的量值 {fx,fy,fz}.
1. ^ 林家翘、西格尔著《自然科学中确定性问题的应用数学》,科学出版社,北京。原版书名为C. C. Lin & L. A. Segel, Mathematics Applied to Deterministic Problems in the Natural Sciences, Macmillan Inc., New York, 1974
时频分析变换
小波变换,chirplet转换和分数傅里叶变换试图得到时间信号的频率信息。同时解析频率和时间的能力在数学上受不确 定性原理的限制。
傅里叶变换家族
下表列出了傅里叶变换家族的成员。容易发现,函数在时(频)域的离散对应于其像函数在频(时)域的周期性.反之连 续则意味着在对应域的信号的非周期性.
来自“/w/index.php?title=傅里叶变换&oldid=24462958”
其中an和bn是实频率分量的振幅。
傅里叶分析最初是研究周期性现象,即傅里叶级数的,后来通过傅里叶变换将其推广到了非周期性现象。理解这种推广 过程的一种方式是将非周期性现象视为周期性现象的一个特例,即其周期为无限长。

典型周期信号的傅里叶级数

典型周期信号的傅里叶级数

d
X(j)ejt
X(jk0)ej0t
x(t)21 X(j)ejtd1
0
2 T
k 0
0
于是,对非周期信号,有傅里叶变换对:
x(t)
1
2
X( j)ejtd 1

X( j)
x(t)e jtdt
2正
(e j t )
复 杂 信 号 = 系 数 ( ) 基 本 信 号 ( )
系 数 ( ) = 复 杂 信 号 ( 与 ) 基 本 信 号 ( )
F(j)ejtd
F( ) f(t)ejtdt
也是常用的形式
傅立叶变换的理解
周期信号的叶 指级 f数 T(t数 )型 Fn傅 ejn1t表 里明,
n
周期信号可限 以多 分个 解 n 频 1、 为 复率 无 振为 F幅 n的为 指
数分 ejn1t量 的离散和;
非周期信 傅号 里的 叶变 f(t)换 1
周期矩形脉冲信号的三角形式傅里叶级数为
f(t)E T 1 2 T E 1n 1Sa(n 2 1 )cosn1t
F n1 2(anjn b )1 2anE T 1 S(n a 21 )
f(t)的指数形式的傅里叶级数为
f(t)E S(an 1 )ejn 1t
T1 n
2
2、频谱 c0
E T1
规律收. 敛
例1:试将图示周期矩形脉冲信号 展开为(1)三角型和(2)指数型傅里 叶级数。
T
f (t)
A
T
22
t
解(: 1) f (t)是偶函数,故只含 数有 项常 和余弦项。
T
a0T 1
2 T
f(t)d t 2 T
2AdtA

傅里叶级数课程及习题讲解

傅里叶级数课程及习题讲解

第15章傅里叶级数§ 傅里叶级数一 基本内容一、傅里叶级数f(x)a n x在幂级数讨论中 n1,可视为f(X)经函数系1, x, x 2, m ,x n, m线性表出而得.不妨称{1,x,x 2, ,x n , }为基,则不同的基就有不同的级数.今 用三角函数系作为基,就得到傅里叶级数.1三角函数系函数列 1, cosx, sinx, cos2x, sin2x,卅,cosnx, sin nx,卅 称为三角函数 系.其有下面两个重要性质.(1) 周期性每一个函数都是以2为周期的周期函数;(2) 正交性 任意两个不同函数的积在【,】上的积分等于 零,任意一个函数的平方在上的积分不等于零.对于一个在【,】可积的函数系U n (x):x [a, b], n 佃川,定义两个b函数的内积为 lU n (x),U m (x),.a U n(x)U m (X)dX ,f. l 0 m nU n (x),U m (x)』…山如果 0 m n,则称函数系U n (x):x [a, b], nh2,为正交系.所以三角函数系在,上具有正交性,故称为正交系.利用三角函数系构成的级数由于 1, sinnx1 si nnxdx1 cos nxdx sin mx,sin nx. sin mx sin nxd xm0 m cosmx, cosnx ; cosmx cosnxd xm 0 m sin mx,cos nx sin mx cosnxd x 0 .:1, 112dx 20;nn . nn •3Q 2a n cosnxb n sin nxn 12以2为周期的傅里叶级数 定义1设函数f (x)在,上可积,1 . 1a k — :. f(x),coskx f (x)cos kxdxf(x)sinkxdx k 1,2川,称为函数f (x)的傅里叶系数,而三角级数2称为f(x)的傅里叶级数,记作a 。

f (x)〜2a n cosnxb n sinnx2 n 1 其中务山为f(x)的傅里叶系数.定义2如果f (x) C [a, b ],则称f (x)在[a ,b ]上光滑.若x [a,b), f (x 0), f (x 0)存在; x (a,b ], f(x 0), f (x且至多存在有限个点的左、右极限不相等,则称 几何解释如图. 按段光滑函数图象是由有限条 光滑曲线段组成,它至多有有限个 第一类间断点与角点. 推论如果f(x)是以2为周期 段光滑,则x R , f (x) — a n cosnx b n sinnx有2 n 1定义3 设f(x)在(,]上有定义,函数x (x (2k习题解答k 0,12||| ;a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七节
一、三角级数及三角函数系的正交性二、函数展开成傅里叶级数三、正弦级数和余弦级数
傅里叶级数
一、三角级数及三角函数系的正交性
简单的周期运动:(谐波函数)
( A 为振幅, 复杂的周期运动:
令得函数项级数
ω为角频率,φ为初相)
(谐波迭加)
称上述形式的级数为三角级数.
证:
同理可证:
正交,上的积分等于0 .即其中任意两个不同的函数之积在上的积分不等于0 .且有
但是在三角函数系中两个相同的函数的乘积在
二、函数展开成傅里叶级数
定理2 .设f (x )是周期为2π的周期函数, 且
右端级数可逐项积分, 则有
证:由定理条件,①

对①在
逐项积分, 得
(利用正交性)
类似地, 用sin k x 乘①式两边, 再逐项积分可得
叶系数为系数的三角级数①称为
的傅里叶系数;由公式②确定的①

以的傅里
的傅里叶级数.
称为函数定理3 (收敛定理, 展开定理)设f (x )是周期为2π的周期函数,并满足狄利克雷( Dirichlet )条件:
1) 在一个周期内连续或只有有限个第一类间断点;2) 在一个周期内只有有限个极值点, 则f (x ) 的傅里叶级数收敛, 且有
x 为间断点
其中
( 证明略)
为f (x )的傅里叶系数.x 为连续点注意: 函数展成傅里叶级数的条件比展成幂级数的条件低得多.
例1. 设f (x ) 是周期为2π的周期函数, 它在上的表达式为
解:先求傅里叶系数
将f (x ) 展成傅里叶级数. 1)根据收敛定理可知,
时,级数收敛于
2) 傅氏级数的部分和逼近说明:
f (x ) 的情况见右图.
例2.上的表达式为
将f (x ) 展成傅里叶级数. 解:
设f (x ) 是周期为2π的周期函数, 它在
说明:当
时, 级数收敛于
周期延拓
傅里叶展开
上的傅里叶级数
定义在[–π,π]上的函数f (x )的傅氏级数展开法
其它
例3. 将函数级数.
则解:将f (x )延拓成以展成傅里叶
2π为周期的函数F(x ) ,
利用此展式可求出几个特殊的级数的和.
当x = 0 时, f (0) = 0 , 得
说明:设
已知

三、正弦级数和余弦级数
1. 周期为2π的奇、偶函数的傅里叶级数
定理4 . 对周期为2π的奇函数f (x ) , 其傅里叶级数为周期为2π的偶函数f (x ) , 其傅里叶级数为余弦级数,
它的傅里叶系数为
正弦级数,它的傅里叶系数为
例4. 设的表达式为f (x )=x ,将f (x ) 展成傅里叶级数.是周期为2π的周期函数,它在解:若不计
周期为2π的奇函数, 因此
1根据收敛定理可得f (x ) 的正弦级数:
级数的部分和
n =2
34逼近f (x ) 的情况见右图.
n =5例5. 将周期函数
展成傅里叶级数, 其
中E 为正常数.解:
是周期为2π的
周期偶函数, 因此
)
余弦级数
奇延拓偶延拓
正弦级数
f (x ) 在[0 , π]上展成例6.将函数分别展成正弦级
数与余弦级数.
解:先求正弦级数.去掉端点, 将f (x ) 作奇周期延拓,
注意:在端点x = 0, π, 级数的和为0 ,与给定函数
因此得
f (x ) = x + 1 的值不同.
再求余弦级数.将则有
作偶周期延拓,说明:令x = 0可得

内容小结
1. 周期为2π的函数的傅里叶级数及收敛定理
其中
注意:若
为间断点,则级数收敛于
2. 周期为2π的奇、偶函数的傅里叶级数
•奇函数正弦级数•偶函数
余弦级数
3. 在[ 0 , π] 上函数的傅里叶展开法•作奇周期延拓,展开为正弦级数•作偶周期延拓,展开为余弦级数
1. 在[ 0 , π] 上的函数的傅里叶展开法唯一吗?答:不唯一, 延拓方式不同级数就不同.
思考与练习
处收敛于
2.则它的傅里叶级数在
在处收敛于
.
提示:
设周期函数在一个周期内的表达式为
,
3. 设
又设
求当
的表达式.
解:由题设可知应对作奇延拓:
由周期性:
为周期的正弦级数展开式的和函数, 定义域
4. 写出函数傅氏级数的和函数.
答案:
备用题1.
叶级数展式为
则其中系
提示:
利用“偶倍奇零”
(93 考研)
的傅里 2. 设是以2 为周期的函数,其傅氏系数为

的傅氏系数
提示:

傅里叶(1768 –1830)
法国数学家. 他的著作《热的解析理论》(1822) 是数学史上一部经典性书中系统的运用了三角级数和三角积分, 他的学生将它们命名为傅
里叶级数和傅里叶积分.最卓越的工具. 以后以傅里叶著作为基础发展起来的文献, 他深信数学是解决实际问题傅里叶分析对近代数学以及物理和工程技术的发展都产生了深远的影响.
狄利克雷(18 05 –1859)
德国数学家. 对数论, 数学分析和数学物理有突出的贡献, 是解析数论他是最早提倡严格化方法的数学家.函数f (x ) 的傅里叶级数收敛的第一个充分条件; 了改变绝对收敛级数中项的顺序不影响级数的和, 举例说明条件收敛级数不具有这样的性质.他的主要的创始人之一, 并论文都收在《狄利克雷论文集(1889一1897)中.
1829年他得到了给定
证明。

相关文档
最新文档