中考基础复习(三): 函数及其图象试题

合集下载

2020年九年级数学中考三轮专题复习:函数及其图象(含答案)

2020年九年级数学中考三轮专题复习:函数及其图象(含答案)

2020年中考数学三轮专题复习函数及其图象(含答案)一、选择题(本大题共6道小题)1. 二次函数y=(x-1)2+3的图象的顶点坐标是 ()A.(1,3)B.(1,-3)C.(-1,3)D.(-1,-3)2. 若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为直线x=-1,则使函数值y>0成立的x的取值范围是()A.x<-4或x>2B.-4≤x≤2C.x≤-4或x≥2D.-4<x<23. 如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75°方向处B.在5 km处C.在南偏东15°方向5 km处D.在南偏东75°方向5 km处4. 第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是()5. 从某容器口以均匀地速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为()6. 如图,☉O的半径为2,双曲线的解析式分别为y=和y=-,则阴影部分的面积为()A.4πB.3πC.2πD.π二、填空题(本大题共5道小题)7. 星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家,他离家的距离y(千米)与时间t(分)的关系如图所示,则上午8:45小明离家的距离是千米.8. 如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为.9. 已知二次函数y=ax2+bx+c(a≠0)中的x和y满足下表:x…-1 0 1 2 3 …y… 3 0 -1 0 m…(1)观察上表可求得m的值为;(2)这个二次函数的解析式为;(3)若点A(n+2,y1),B(n,y2)在该抛物线上,且y1>y2,则n的取值范围为.10. 已知抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:①b>0;②a-b+c<0;③b+2c>0;④当-1<x<0时,y>0,正确的是__________________(填写序号).11. 如图,矩形OABC的顶点A,C分别在y轴、x轴的正半轴上,D为AB的中点,反比例函数y=(k>0)的图象经过点D,且与BC交于点E,连接OD,OE,DE,若△ODE的面积为3,则k的值为.三、解答题(本大题共6道小题)12. 为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A型节能灯和5只B型节能灯共需50元,2只A型节能灯和3只B型节能灯共需31元.(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.13. 小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x(h)之间的函数关系.请你根据图象进行探究:(1)小王和小李的速度分别是多少?(2)求线段BC所表示的y与x之间的函数解析式,并写出自变量x的取值范围.14. 如图,二次函数的图象与x轴交于A(-3,0),B(1,0)两点,交y轴于点C(0,3),点C,D是二次函数图象上的一对对称点,一次函数的图象过点B,D.(1)请直接写出点D的坐标;(2)求二次函数的解析式;(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.15. 如图,抛物线y=-x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=-x2+bx+c的另一个交点为D,已知A(-1,0),D(5,-6),P点为抛物线y=-x2+bx+c上一动点(不与A,D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的点,探究是否存在点M,使得以点N,C,M,P为顶点的四边形为平行四边形.若存在,求出点M的坐标;若不存在,请说明理由.16. 某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长度为50 m.设饲养室长为x(m),占地面积为y(m2).(1)如图①,问饲养室长x为多少时,占地面积y最大?(2)如图②,现要求在图中所示位置留2 m宽的门,且仍使饲养室的占地面积最大.小敏说:“只要饲养室长比(1)中的长多2 m就行了.”请你通过计算,判断小敏的说法是否正确.17. 在画二次函数y=ax2+bx+c(a≠0)的图象时,甲写错了一次项的系数,列表如下:x…-1 0 1 2 3 …y甲… 6 3 2 3 6 …乙写错了常数项,列表如下:x…-1 0 1 2 3 …y乙…-2 -1 2 7 14 …通过上述信息,解决以下问题:(1)求原二次函数y=ax2+bx+c(a≠0)的表达式;(2)对于二次函数y=ax2+bx+c(a≠0),当x时,y的值随x的值增大而增大;(3)若关于x的方程ax2+bx+c=k(a≠0)有两个不相等的实数根,求k的取值范围. 2020年中考数学三轮专题复习函数及其图象-答案一、选择题(本大题共6道小题)1. 【答案】A2. 【答案】D[解析]∵二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为直线x=-1,∴二次函数的图象与x轴另一个交点为(-4,0),∵a<0,∴抛物线开口向下,则使函数值y>0成立的x的取值范围是-4<x<2.3. 【答案】D[解析]目标A的位置在南偏东75°方向5 km处,故选D.4. 【答案】B[解析]根据题意可知兔子先让乌龟跑了一段距离,但是比乌龟晚到终点,故选项B正确.5. 【答案】C6. 【答案】C[解析]根据反比例函数y=,y=-及圆的中心对称性和轴对称性知,将二、四象限的阴影部分旋转到一、三象限对应部分,显然所有阴影部分的面积之和等于一、三象限内两个扇形的面积之和,也就相当于一个半径为2的半圆的面积.=π×22=2π.故选C.∴S阴影二、填空题(本大题共5道小题)7. 【答案】1.58. 【答案】x>3[解析]当x=3时,x=×3=1,∴点A在一次函数y=x的图象上,且一次函数y=x的图象经过第一、三象限,∴当x>3时,一次函数y=x的图象在y=kx+b的图象上方,即kx+b<x.9. 【答案】解:(1)3[解析]观察表格,根据抛物线的对称性可得x=3和x=-1时的函数值相等,∴m的值为3,故答案为:3.(2)y=(x-1)2-1[解析]由表格可得,二次函数y=ax2+bx+c图象的顶点坐标是(1,-1),∴y=a(x-1)2-1.又当x=0时,y=0,∴a=1,∴这个二次函数的解析式为y=(x-1)2-1.(3)n>0[解析]∵点A(n+2,y1),B(n,y2)在该抛物线上,且y1>y2,∴结合二次函数的图象和性质可知n>0.10. 【答案】①③④[解析]根据图象可得:a<0,c>0,对称轴:直线x=-=1,∴b=-2a.∵a<0,∴b>0,故①正确;把x=-1代入y=ax2+bx+c,得y=a-b+c.由抛物线的对称轴是直线x=1,且过点(3,0),可得当x=-1时,y=0,∴a-b+c=0,故②错误;当x=1时,y=a+b+c>0.∵b=-2a,∴-+b+c>0,即b+2c>0,故③正确;由图象可以直接看出④正确.故答案为:①③④.11. 【答案】4[解析]过点D作DH⊥x轴于H点,交OE于M,∵反比例函数y=(k>0)的图象经过点D,E,∴S△ODH=S△ODA=S△OEC=,∴S△ODH-S△OMH=S△OEC-S△OMH,即S△OMD=S四边形EMHC,∴S△ODE=S梯形DHCE=3,设D(m,n),∵D为AB的中点,∴B(2m,n).∵反比例函数y=(k>0)的图象经过点D,E,∴E2m,,∴S梯形=+n m=3,DHCE∴k=mn=4.三、解答题(本大题共6道小题)12. 【答案】解:(1)设1只A型节能灯的售价是x元,1只B型节能灯的售价是y元,根据题意,得解得答:1只A型节能灯的售价是5元,1只B型节能灯的售价是7元.(2)设购买A型节能灯a只,则购买B型节能灯(200-a)只,总费用为w元,w=5a+7(200-a)=-2a+1400,∵a≤3(200-a),∴a≤150,∵-2<0,w随a的增大而减小,∴当a=150时,w取得最小值,此时w=1100,200-a=50.答:最省钱的购买方案是:购买A型节能灯150只,B型节能灯50只.13. 【答案】解:(1)从线段AB得:两人从相距30 km的两地同时出发,1 h后相遇,则v小王+v小李=30 km/h,小王从甲地到乙地行驶了3 h,∴v小王=30÷3=10(km/h),∴v小李=20 km/h.(2)C点的意义是小李骑车从乙地到甲地用了30÷20=1.5(h),此时小王和小李的距离是1.5×10=15(km),∴C点坐标是(1.5,15).设直线BC的解析式为y=kx+b,将B(1,0),C(1.5,15)分别代入解析式,得解得:∴线段BC的解析式为y=30x-30(1≤x≤1.5).14. 【答案】解:(1)D(-2,3).(2)设二次函数的解析式为y=ax2+bx+c(a,b,c为常数,且a≠0),根据题意,得解得∴二次函数的解析式为y=-x2-2x+3.(3)x<-2或x>1.15. 【答案】[分析] (1)将点A,D的坐标分别代入直线表达式、抛物线的表达式,即可求解;(2)设出P点坐标,用参数表示PE,PF的长,利用二次函数求最值的方法.求解;(3)分NC是平行四边形的一条边或NC是平行四边形的对角线两种情况,分别求解即可.解:(1)将点A,D的坐标代入y=kx+n得:解得:故直线l的表达式为y=-x-1.将点A,D的坐标代入抛物线表达式,得解得故抛物线的表达式为:y=-x2+3x+4.(2)∵直线l的表达式为y=-x-1,∴C(0,-1),则直线l与x轴的夹角为45°,即∠OAC=45°,∵PE∥x轴,∴∠PEF=∠OAC=45°.又∵PF∥y轴,∴∠EPF=90°,∴∠EFP=45°.则PE=PF.设点P坐标为(x,-x2+3x+4),则点F(x,-x-1),∴PE+PF=2PF=2(-x2+3x+4+x+1)=-2(x-2)2+18,∵-2<0,∴当x=2时,PE+PF有最大值,其最大值为18.(3)由题意知N(0,4),C(0,-1),∴NC=5,①当NC是平行四边形的一条边时,有NC∥PM,NC=PM.设点P坐标为(x,-x2+3x+4),则点M的坐标为(x,-x-1),∴|y M-y P|=5,即|-x2+3x+4+x+1|=5,解得x=2±或x=0或x=4(舍去x=0),则点M坐标为(2+,-3-)或(2-,-3+)或(4,-5);②当NC是平行四边形的对角线时,线段NC与PM互相平分.由题意,NC的中点坐标为0,,设点P坐标为(m,-m2+3m+4),则点M(n',-n'-1),∴0==,解得:n'=0或-4(舍去n'=0),故点M(-4,3).综上所述,存在点M,使得以N,C,M,P为顶点的四边形为平行四边形,点M的坐标分别为:(2+,-3-),(2-,-3+),(4,-5),(-4,3).16. 【答案】解:(1)∵y=x·=-(x-25)2+,∴当x=25时,占地面积y最大.(2)y=x·=-(x-26)2+338,∴当x=26时,占地面积y最大.即当饲养室长为26 m时,占地面积最大.∵26-25=1≠2,∴小敏的说法不正确.17. 【答案】解:(1)根据甲同学的错误可知x=0时,y=c=3是正确的,由甲同学提供的数据,选择x=-1,y=6;x=1,y=2代入y=ax2+bx+3,得解得a=1是正确的.根据乙同学提供的数据,选择x=-1,y=-2;x=1,y=2代入y=x2+bx+c,得解得b=2是正确的,∴y=x2+2x+3.(2)≥-1[解析]抛物线y=x2+2x+3的对称轴为直线x=-1,∵二次项系数为1,故抛物线开口向上,∴当x≥-1时,y的值随x值的增大而增大.故答案为≥-1.(3)∵方程ax2+bx+c=k(a≠0)有两个不相等的实数根,即x2+2x+3-k=0有两个不相等的实数根,∴Δ=4-4(3-k)>0,解得k>2.。

中考数学总复习 第三单元 函数及其图象 课时16 二次函

中考数学总复习 第三单元 函数及其图象 课时16 二次函

(1)求y与x之间的函数关系式,并写出自变量x的取值范围.
(2)若矩形空地的面积为160 m2,求x的值.
(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地
面积如下表),问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理
课前考点过关 考点自查
考点 用二次函数的性质解决实际问题 二次函数的应用关键在于建立二次函数的数学模型,利用二次函数解决实际问题,常见的是根据二次函 数的最值确定最大利润、最优方案等问题.
【疑难典析】在实际问题中,自变量的取值往往受到制约,不要忽视自变量的取值范围,要在其允许的范 围内取值.
课堂互动探究
第三单元 函数及其图像
课时 16 二次函数的实际应用
课前考 1. [2018·衡阳] 一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为10元/件,已 知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的 销售量y(件)与销售价x(元/件)之间的函数关系如图16-1. (1)求y与x之间的函数关系式,并写出自变量x的取值范围. (2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件 销售价为多少元时,每天的销售利润最大,最大利润是多少?
A. 10 m B. 15 m
C. 20 m D. 22. 5 m
【答案】B
������ = 54, 【解析】由题意得 400������ + 20������ + ������ = 57.9,
1600������ + 40������ + ������ = 46.2,

九年级数学函数图像练习题及答案

九年级数学函数图像练习题及答案

九年级数学函数图像练习题及答案练习题一:函数图像综合练习1. 给出函数 y = x^2 的图像,请写出下列函数图像的方程和图像的特点:(1) y = -x^2(2) y = (x + 1)^2(3) y = -(x - 2)^22. 给出函数 y = |x| 的图像,请写出下列函数图像的方程和图像的特点:(1) y = |x - 1|(2) y = -|x + 2|(3) y = 2|x|练习题二:函数图像的平移与伸缩1. 给出函数 y = x^3 的图像,请写出下列函数图像的方程和图像的特点:(1) y = (x - 1)^3(2) y = (x + 2)^3(3) y = -2(x - 2)^32. 给出函数 y = |x| 的图像,请写出下列函数图像的方程和图像的特点:(1) y = |x - 1|(2) y = 2|x + 2|(3) y = -0.5|x|答案:练习题一:1. (1) y = -x^2,图像特点:开口向下的抛物线,顶点在原点。

(2) y = (x + 1)^2,图像特点:开口向上的抛物线,顶点在 (-1, 0) 处。

(3) y = -(x - 2)^2,图像特点:开口向下的抛物线,顶点在 (2, 0) 处。

2. (1) y = |x - 1|,图像特点:折线,折点在 (1, 0) 处。

(2) y = -|x + 2|,图像特点:折线,折点在 (-2, 0) 处。

(3) y = 2|x|,图像特点:折线,折点在原点。

练习题二:1. (1) y = (x - 1)^3,图像特点:开口向上的尖顶抛物线,顶点在 (1, 0) 处。

(2) y = (x + 2)^3,图像特点:开口向上的钝顶抛物线,顶点在 (-2, 0) 处。

(3) y = -2(x - 2)^3,图像特点:开口向下的尖顶抛物线,顶点在 (2, 0) 处。

2. (1) y = |x - 1|,图像特点:折线,折点在 (1, 0) 处。

山东省德州市2022年中考数学复习 第3章 函数及其图象 二次函数试题

山东省德州市2022年中考数学复习 第3章 函数及其图象 二次函数试题

二次函数命题点分类集训(时间:120分钟 共26题 答对______题)命题点1 二次函数的性质1. (湘潭)抛物线y =2(x -3)2+1的顶点坐标是( )A. (3,1)B. (3,-1)C. (-3,1)D. (-3,-1)2. (衢州)二次函数y =ax 2+bx +c (a ≠0)图象上部分点的坐标(x ,y )对应值列表如下:x… -3 -2 -1 0 1 … y…-3-2-3-6-11…则该函数图象的对称轴是( ) A. 直线x =-3 B. 直线x =-2 C. 直线x =-1 D. 直线x =03. (兰州)二次函数y =x 2-2x +4化为y =a (x -h )2+k 的形式,下列正确的是( )A. y =(x -1)2+2B. y =(x -1)2+3C. y =(x -2)2+2D. y =(x -2)2+44. (玉林)抛物线y =12x 2,y =x 2,y =-x 2的共同性质是:①都是开口向上;②都以点(0,0)为顶点;③都以y 轴为对称轴;④都关于x 轴对称.其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个5. (来宾)已知函数y =-x 2-2x ,当________时,函数值y 随x 的增大而增大. 命题点2 二次函数图象的平移6. (上海)如果将抛物线y =x 2+2向下平移1个单位,那么所得新抛物线的表达式是( )A. y =(x -1)2+2B. y =(x +1)2+2C. y =x 2+1D. y =x 2+37. (2015临沂)要将抛物线y =x 2+2x +3平移后得到抛物线y =x 2,下列平移方法正确的是( )A. 向左平移1个单位,再向上平移2个单位B. 向左平移1个单位,再向下平移2个单位C. 向右平移1个单位,再向上平移2个单位D. 向右平移1个单位,再向下平移2个单位8. (眉山)若抛物线y =x 2-2x +3不动,将平面直角坐标系........xOy 先沿水平方向向右平移1个单位,再沿铅直方向向上平移3个单位,则原抛物线图象的解析式应变为( )A. y =(x -2)2+3B. y =(x -2)2+5C. y =x 2-1D. y =x 2+49. (滨州)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线y =x 2+5x +6,则原抛物线的解析式是( )A. y =-(x -52)2-114B. y =-(x +52)2-114C. y =-(x -52)2-14D. y =-(x +52)2+14命题点3 二次函数图象与系数的关系10. (2015泰安)某同学在用描点法画二次函数y =ax 2+bx +c 图象时,列出了下面的表格:x … -2 -1 0 1 2 … y…-11-21-2-5…由于粗心,他算错了其中一个y 值,则这个错误的数值是( ) A. -11 B. -2 C. 1 D. -511. (黄石)以x 为自变量的二次函数y =x 2-2(b -2)x +b 2-1的图象不经过第三象限,则实数b 的取值范围是( )A. b ≥54B. b ≥1或b ≤-1C. b ≥2D. 1≤b ≤212. (遂宁)已知直线y =bx -c 与抛物线y =ax 2+bx +c 在同一直角坐标系中的图象可能是( )13. (义乌)抛物线y =x 2+bx +c (其中b ,c 是常数)过点A (2,6),且抛物线的对称轴与线段y =0(1≤x ≤3)有交点,则c 的值不可能是( )A. 4B. 6C. 8D. 1014. (常德)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①b <0;②c >0;③a +c <b ;④b 2-4ac >0,其中正确的个数是( )A. 1B. 2C. 3D. 4第14题图 15. (2014扬州)如图,抛物线y =ax 2+bx +c (a >0)的对称轴是过点(1,0)且平行于y 轴的直线,若点P (4,0)在该抛物线上,则4a -2b +c 的值为________.第15题图命题点4 二次函数图象与方程、不等式16. (宿迁)若二次函数y =ax 2-2ax +c 的图象经过点(-1,0),则方程ax 2-2ax +c =0的解为( )A. x 1=-3,x 2=-1B. x 1=1,x 2=3C. x 1=-1,x 2=3D. x 1=-3,x 2=117. (泸州)若二次函数y =2x 2-4x -1的图象与x 轴交于A (x 1,0)、B (x 2,0)两点,则1x 1+1x 2的值为________.18. (2017原创)如图,直线y =x +m 和抛物线y =x 2+bx +c 都经过点A (1,0)和B (3,2),不等式x 2+bx +c >x +m 的解集为____________.第18题图命题点5 二次函数的实际应用 19. (台州)竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t 秒时在空中与第二个小球的离地高度相同,则t =________.20. (扬州)某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a 元(a >0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t (t · 为正整数....)的增大而增大,a 的取值范围应为________. 21. (青岛8分)如图,需在一面墙上绘制几个相同的抛物线型图案,按照图中的直角坐标系,最左边的抛物线可以用y =ax 2+bx (a ≠0)表示.已知抛物线上B ,C 两点到地面的距离均为34 m ,到墙边OA 的距离分别为12 m ,32m.(1)求该抛物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10 m ,则最多可以连续绘制几个这样的抛物线型图案?第21题图22. (成都8分)某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵果树就会少结5个橙子,假设果园多种x 棵橙子树.(1)直接写出平均每棵树结的橙子数y (个)与x 之间的关系式;(2)果园多种多少棵橙子树时,可以使橙子的总产量最大?最大为多少个?23. (十堰8分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg ,销售单价不低于120元/kg ,且不高于180元/kg.经销一段时间后得到如下数据:销售单价x (元/kg) 120 130 … 180 每天销量y (kg)10095…70设y 与x 的关系是我们所学过的某一种函数关系.(1)直接写出y 与x 的函数关系式,并指出自变量x 的取值范围; (2)当销售单价为多少时,销售利润最大?最大利润是多少?命题点6 二次函数综合题24. (宁波10分)如图,已知抛物线y =-x 2+mx +3与x 轴交于点A ,B 两点,与y 轴交于点C ,点B 的坐标为(3,0).(1)求m 的值及抛物线的顶点坐标;(2)点P 是抛物线对称轴l 上的一个动点,当PA +PC 的值最小时,求点P 的坐标.第24题图25. (百色12分)正方形OABC 的边长为4,对角线相交于点P ,抛物线L 经过O 、P 、A 三点,点E 是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O ,P ,A 三点坐标;②求抛物线L 的解析式;(2)求△OAE 与△OCE 面积之和的最大值.第25题图 26. (无锡10分)已知二次函数y =ax 2-2ax +c (a >0)的图象与x 轴的负半轴和正半轴分别交于A 、B 两点,与y 轴交于点C ,它的顶点为P ,直线CP 与过点B 且垂直于x 轴的直线交于点D ,且CP ∶PD =2∶3.(1)求A 、B 两点的坐标;(2)若tan ∠PDB =54,求这个二次函数的关系式.第26题图。

人教版数学中考复习训练专题三 函数图象与性质综合题 附答案

人教版数学中考复习训练专题三  函数图象与性质综合题  附答案

专题三 函数图象与性质综合题类型一 交点问题典例精析例 在平面直角坐标系xOy 中,已知点A (-1,2),点B (3,2),点C (-2,-3)是平面内3个点.(1)连接AB ,若直线y =34x +b 与线段AB 有交点,求b 的取值范围;(2)连接BC ,若直线y =34x +b 与线段BC 在第三象限内有交点,求b 的取值范围;(3)若直线y =kx +3与直线BC 无交点,求k 的值;(4)若直线AB 、直线y =kx +3与直线BC 能够围成三角形,求k 的取值范围;(5)若双曲线y =k x 过点A 且与直线y =34x +b 在(-5≤x ≤-1)有交点,求b 的取值范围;(6)连接AB ,若抛物线y =x 2+c 与线段AB 有公共点,求c 的取值范围;(7)若抛物线y =x 2+c (-2≤x ≤2)与直线BC 有一个交点,求c 的取值范围;(8)连接AB ,若抛物线y =(x -k )2与线段AB 有公共点,求k 的取值范围;(9)若双曲线y =k x过点B 且与抛物线y =x 2 +c 在2≤x ≤6有交点,求c 的取值范围.1. (2020河北24题10分)表格中的两组对应值满足一次函数y =kx +b ,现画出了它的图象为直线l ,如图.而某同学为观察k ,b 对图象的影响,将上面函数中的k 与b 交换位置后得另一个一次函数,设其图象为直线l ′.(1)求直线l 的解析式;(2)请在图上画出..直线l ′(不要求列表计算),并求直线l ′被直线l 和y 轴所截线段的长; (3)设直线y =a 与直线l ,l ′及y 轴有三个不同的交点,且其中两点关于第三点对称,直接..写出a 的值.第1题图2. (2016河北26题12分)如图,抛物线L :y =-12(x -t )(x -t +4)(常数t >0)与x 轴从左到右的交点为B ,A ,过线段OA 的中点M 作MP ⊥x 轴,交双曲线y =k x(k >0,x >0)于点P ,且OA ·MP =12. (1)求k 值;(2)当t =1时,求AB 长,并求直线MP 与L 对称轴之间的距离;(3)把L 在直线MP 左侧部分的图象(含与直线MP 的交点)记为G ,用t 表示图象G 最高点的坐标;(4)设L 与双曲线有个交点的横坐标为x 0,且满足4≤x 0≤6,通过L 位置随t 变化的过程,直接..写出t的取值范围.第2题图针对演练3. (2020承德二模)如图,在平面直角坐标系中,点A,B,C三点的坐标分别为(2,0),(1,2),(4,3),直线l的解析式为y=kx+4-3k(k≠0).(1)当k=1时,直线l与x轴交于点D,则点D的坐标为________,S△ABD=________;(2)小明认为点C也在直线l上,他的判断是否正确,请说明理由;(3)若线段AB与直线l有交点,求k的取值范围.第3题图4. 如图,在平面直角坐标系中,边长为2的正方形ABCD 位于第二象限,且AB ∥x 轴,点B 在点C的正下方,双曲线y =1-2m x(x <0)经过点C. (1)求m 的取值范围;(2)若点B (-1,1),判断双曲线是否经过点A ;(3)设点B (a ,2a +1).①若双曲线经过点A ,求a 的值;②若直线y =2x +2交AB 于点E ,双曲线与线段AE 有交点,求a 的取值范围.第4题图5.(2020石家庄模拟)如图,已知点A(0,2),B(2,2),C(-1,-2),抛物线F:y=x2-2mx+m2-2与直线x=-2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y p,求y p的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤-2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围.第5题图6. 如图,已知抛物线y =ax 2-2x +3a (a >0)与x 轴相交于不同的两点A (x 1,0),B (x 2,0),且x 1<x 2.点P 为双曲线y =k x(1≤x ≤4)上的任意一点,过点P 作x 轴的垂线,交x 轴于点C ,交抛物线y =ax 2-2x +3a (a >0)于点Q .(1)若△POC 的面积为6,求k 值;(2)若k =3.①当a =12时,求点A 、B 的坐标,并求当点P 到抛物线对称轴的距离最大时,PQ 的值; ②若抛物线与双曲线有一个交点,直接写出a 的取值范围.第6题图7. (2020唐山开平区一模)已知,如图,二次函数L ∶y =mx 2+2mx +k (其中m ,k 是常数,k 为正整数),(1)若L 经过点(1,k +6),求m 的值;(2)当m =2,若L 与x 轴有公共点时且公共点的横坐标为非零的整数,确定k 的值;(3)在(2)的条件下,将L ∶y =mx 2+2mx +k 的图象向下平移8个单位,得到函数图象M ,求M 的解析式;(4)在(3)的条件下,将M 的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象N ,请结合新的图象解答问题,若直线y =12x +b 与N 有两个公共点时,请直接写出b 的取值范围.第7题图8.如图①,二次函数y=ax2-3ax+c的图象与x轴交于点A、B,与y轴交于点C,直线y=-x+4经过点B、C.(1)求抛物线的表达式;(2)过点A的直线y=kx+k交抛物线于点M,交直线BC于点N,连接AC,当直线y=kx+k平分△ABC 的面积时,求点M的坐标;(3)如图②,把抛物线位于x轴上方的图象沿x轴翻折,当直线y=kx+k与翻折后的整个图象只有三个交点时,求k的取值范围.第8题图类型二整点问题例我们把横,纵坐标都是整数的点叫作整点.在平面直角坐标系中,点A(5,0),B(0,5),C(-1,0).(1)若直线l过点A,B,求直线l与坐标轴围成的区域W1内(含边界)整点的个数;(2)连接AB,BC,AC,求△ABC所围成的区域W2内(不含边界)整点的个数;(3)若直线y=a、线段AB与y轴所围成的三角形区域W3内(含边界)恰有6个整点,求a的取值范围;(4)若直线y=x+b与直线AB及y轴所围成的三角形区域W4内(不含边界)恰有4个整点,求b的取值范围;(5)若直线y=kx+2与直线BC及x轴所围成的区域W5内(不含边界)恰有4个整点,求k的取值范围;(6)若双曲线y =4x (x >0)与线段AB 交于D ,E 两点(点D 在点E 的上方),求曲线DE 与线段DE 所围成的区域W 6内(含边界)整点的个数;(7)在(6)的条件下,若直线y =x +b 与双曲线y =4x 交于点F ,与y 轴交于点G ,连接DG ,若线段DG ,FG ,曲线DF 所围成的区域W 7内(含边界)恰有5个整点,求b 的取值范围;(8)若抛物线y =x 2-2x +m -2与过点B 的直线y =5所围成的区域W 8内(不含边界)有4个整点,求m 的取值范围;(9)若抛物线y =x 2-2x +m -2与直线y =-x +2交于M ,N 两点(点M 在点N 的左侧),将曲线MN 与线段MN 所围成的区域记为W 9,若W 9内(不含边界)恰好有4个整点,求m 的取值范围.1.(2019河北26题12分)如图,若b是正数..,直线l:y=b与y轴交于点A;直线a:y=x-b与y轴交于点B;抛物线L:y=-x2+bx的顶点为C,且L与x轴正半轴的交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上..写出b...,把横、纵坐标都是整数的点称为“美点”,分别直接=2019和b=2019.5时“美点”的个数.第1题图针对演练2.在平面直角坐标系xOy中,直线x=5与直线y=3,x轴分别交于点A,B,直线y=kx+b(k≠0)经过点A且与x轴交于点C(9,0).(1)求直线y=kx+b的表达式;(2)横、纵坐标都是整数的点叫做整点.记线段AB,BC,CA围成的区域(不含边界)为W.①结合函数图象,直接写出区域W内的整点个数;②将直线y=kx+b向下平移n个单位,当平移后的直线与区域W没有公共点时,请结合图象直接写出n的取值范围.第2题图3. 已知点A (4,1),若直线y 1=14x +b 与双曲线y 2=4x(x >0)交于点B ,与y 轴交于点C.探究:由双曲线y 2=4x (x >0)与线段OA ,OC ,BC 围成的区域M 内(不含边界)整点的个数(点的横、纵坐标都是整数的点称为整点).(1)当b =-1时,如图,求区域M 内的整点的个数;(2)当b <0时,若区域M 内恰好有4个整点,求b 的取值范围.第3题图4. 如图,函数y 1=-x 2+12x +c (-2020≤x ≤1)的图象记为L 1,最大值为M 1;函数y 2=-x 2+2cx +1(1≤x≤2020) 的图象记为L 2,最大值为M 2.L 1的右端点为A ,L 2的左端点为B ,L 1,L 2合起来的图形记为L .(1)当c =1时,求M 1,M 2的值;(2)若把横、纵坐标都是整数的点称为“美点”,当点A ,B 重合时,求L 上“美点”的个数; (3)若M 1,M 2的差为4716,直接写出c 的值.第4题图5. 如图,在平面直角坐标系中,设抛物线y =-x 2+bx +b -1为L 1,A (-5,-2),B (5,-2). (1)若L 1经过原点,求抛物线L 1的解析式,并求出此时抛物线的顶点坐标;(2)无论b 取何值,L 1总经过一个定点M ,随着b 的变化,抛物线L 1的顶点总在另一条抛物线上运动,且这条抛物线的顶点为M ,若设另一条抛物线为L 2.①求点M 的坐标; ②求出抛物线L 2的解析式;(3)若把抛物线L 1:y =-x 2+bx +b -1经过线段AB 端点时与线段AB 所围成的封闭图形称为C ,图形C 边界上横、纵坐标都是整数的点为“理想点”,求图形C 上“理想点”的个数.第5题图专题三 函数图象与性质综合题类型一 交点问题例 解:(1)∵直线y =34x +b 与线段AB 有交点,即直线y =34x +b 与线段AB 两端点交点为临界点,如解图①②,将A (-1,2)代入y =34x +b ,得b =114,将B (3,2)代入y =34x +b ,得b =-14,∴b 的取值范围为-14≤b ≤114;例题解图①例题解图②(2)设线段BC 的解析式为y =kx +m (k ≠0),将B (3,2),C (-2,-3)代入,得⎩⎪⎨⎪⎧3k +m =2-2k +m =-3,解得⎩⎪⎨⎪⎧k =1m =-1,∴线段BC 的解析式为y =x -1(-2≤x ≤3), ∴线段BC 与y 轴的交点为(0,-1). 当y =34x +b 过点(0,-1),如解图③,∴即b =-1,当y =34x +b 过点C (-2,-3),如解图④,∴-3=-32+b ,∴b =-32,∴当直线y =34x +b 与线段BC 在第三象限内有交点,b 的取值范围为-32≤b <-1;例题解图③例题解图④(3)由(2)知,直线BC 的解析式为y =x -1, 若y =kx +3与直线BC 无交点,∴直线y =kx +3与直线BC 平行,如解图⑤, ∴当k =1时,直线y =kx +3与直线BC 无交点;例题解图⑤(4)由(2)知直线BC 的解析式为y =x -1, 由题可知直线AB 的解析式为y =2,若直线AB ,直线y =kx +3与直线BC 能够围成三角形, 即直线y =kx +3与直线AB 、直线BC 都有交点, ∴k ≠1,k ≠0.∵直线AB 与直线BC 交于点B ,∴当直线y =kx +3过点B (3,2)时,直线AB 、直线y =kx +3与直线BC 交于一点,不能围成三角形.∴将B (3,2)代入y =kx +3,得3k +3=2,∴k =-13.综上所述,k ≠-13,0,1;(5)∵双曲线y =kx 过点A (-1,2),∴k =-2,∴双曲线的解析式为y =-2x .∵-5≤x ≤-1. ∴令x =-5,则y =25.当直线y =34x +b 与双曲线y =-2x 相切时,如解图⑥,∴34x +b =-2x ,整理得34x 2+bx +2=0, ∴b 2-6=0,∴b =6或b =-6(舍去).当直线y =34x +b 过点(-5,25),如解图⑦,∴25=-5×34+b , ∵b =8320.由解图可知,b 的取值范围为6≤b ≤8320;例题解图⑥例题解图⑦(6)由题可知A (-1,2),B (3,2), 抛物线y =x 2+c 的对称轴为直线x =0,∴当抛物线顶点在线段AB 上时,如解图⑧, ∴c =2.当抛物线过点B 时,如解图⑨, ∴2=9+c ,∴c =-7, ∴c 的取值范围为-7≤c ≤2;例题解图⑧例题解图⑨(7)联立⎩⎪⎨⎪⎧y =x -1y =x 2+c ,整理得x 2-x +c +1=0,如解图○10, ∴(-1)2-4(c +1)=0, ∴c =-34.例题解图○10对于抛物线y=x2+c,当x=2时,y=4+c,当点(2,4+c)在直线BC上时,如解图⑪,此时抛物线与直线BC有两个交点,将(2,4+c)代入直线BC解析式y=x-1,得2-1=4+c,解得c=-3;例题解图⑪当x=-2时,y=4+c,当点(-2,4+c)在直线BC上时,如解图⑫,此时抛物线与直线BC有一个交点,将(-2,4+c)代入直线BC解析式y=x-1,得-2-1=4+c,解得c=-7;例题解图⑫综上所述,抛物线y=x2+c(-2≤x≤2)与直线BC有一个交点,c的取值范围为-7≤c<-3,或c=-34;(8)∵A(-1,2),B(3,2),抛物线y=(x-k)2与线段AB有公共点,则当y=(x-k)2过点A(-1,2),如解图⑬,∴2=(-1-k)2,∴k=-1-2或k=-1+2(舍).当y=(x-k)2过点B(3,2),如解图⑭,∴2=(3-k)2,∴k=3+2或k=3-2(舍).∴k 的取值范围为-1-2≤k ≤3+2;例题解图⑬ 例题解图⑭(9)∵双曲线y =kx 过点B (3,2),∴2=k 3,∴k =6,∴双曲线的解析式为y =6x .∵2≤x ≤6, ∴当x =2时,y =3, 当x =6时,y =1,当抛物线过点(2,3)时,如解图⑮,将(2,3)代入y =x 2+c , 即3=4+c , ∴c =-1,同理当抛物线过点(6,1)时,将(6,1)代入y =x 2+c , 即1=36+c ,∴c =-35, ∴c 的取值范围为-35≤c ≤-1.例题解图⑮1. 解:(1)∵(-1,-2),(0,1)在函数y =kx +b 的图象上,∴⎩⎪⎨⎪⎧-2=-k +b 1=b ,解得⎩⎪⎨⎪⎧k =3b =1.∴直线l 的解析式为y =3x +1;(3分) (2)依题意,直线l ′的解析式为y =x +3, ∴直线l ′的图象如解图,第1题解图联立方程组⎩⎪⎨⎪⎧y =3x +1,y =x +3,解得⎩⎪⎨⎪⎧x =1,y =4,(5分)∴直线l 与直线l ′的交点坐标为(1,4). 又∵直线l ′与y 轴的交点坐标为(0,3),∴直线l ′被直线l 和y 轴所截得的线段长为(1-0)2+(4-3)2=2;(7分) (3)a 的值为52或175或7.(10分)2. 解:(1)设点P (x ,y ),则MP =y ,由OA 的中点为M ,知OA =2x ,代入OA ·MP =12,得2x ·y =12,即xy =6, ∵点P 在双曲线y =kx (k >0,x >0)上,∴k =xy =6;(3分)(2)当t =1时,令y =0,则0=-12(x -1)(x +3),解得x 1=1,x 2=-3,∵点B 在点A 左边, ∴B (-3,0),A (1,0), ∴AB =4.(5分)∴L 的对称轴为直线x =-1,∵点M 的坐标为(12,0),∴MP 与L 对称轴的距离为32;(6分)(3)∵A (t ,0),B (t -4,0), ∴L 的对称轴为直线x =t -2.(7分) 又∵点M 的横坐标为t2,∴当t -2≤t2,即t ≤4时,顶点(t -2,2)就是G 的最高点;当t -2>t 2,即t >4时,L 与MP 的交点(t 2,-18t 2+t )就是G 的最高点;(10分)(4)5≤t ≤8-2或7≤t ≤8+ 2.(12分)第2题解图3. 解:(1)(-1,0),3;4. 解:(1)∵双曲线y =1-2mx (x <0)位于第二象限,∴1-2m <0, ∴m >12;(2)∵点B (-1,1), ∴A (-3,1),C (-1,3), ∵双曲线y =1-2mx (x <0)经过点C ,∴双曲线的解析式为y =-3x ,∵-3×1=-3, ∴双曲线经过点A ; (3)①∵点B (a ,2a +1),∴A (a -2,2a +1),C (a ,2a +3).∵双曲线y =1-2mx (x <0)经过点A 、C ,∴(a -2)(2a +1)=a (2a +3), 解得a =-13;②∵点E 在AB 上, ∴点E 的纵坐标为2a +1, 代入y =2x +2得,x =a -12,∴E (a -12,2a +1),∵C (a ,2a +3),双曲线y =1-2mx(x <0)经过点C , ∴双曲线为y =a (2a +3)x,把E (a -12,2a +1)代入得,2a +1=a (2a +3)a -12,解得a =-16,由①知,双曲线过点A 时,a =-13.∴双曲线与线段AE 有交点,a 的取值范围是-13≤a ≤-16.5. 解:(1)∵抛物线F 经过点C (-1,-2), ∴-2=1+2m +m 2-2. ∴m =-1.∴抛物线F 的表达式是y =x 2+2x -1;(2)当x =-2时,y P =4+4m +m 2-2=(m +2)2-2. ∴当m =-2时,y P 的最小值为-2. 此时抛物线F 的表达式是y =(x +2)2-2. ∴当x ≤-2时,y 随x 的增大而减小. ∵x 1<x 2≤-2, ∴y 1>y 2;(3)-2≤m ≤0或2≤m ≤4. 6. 解:(1)∵△POC 的面积为6,∴12x P ·y P =6. ∴x P ·y P =12. ∴k =12; (2)①∵a =12,∴抛物线的解析式为y =12x 2-2x +32.当y =0时,12x 2-2x +32=0,解得x 1=1,x 2=3.∵x 1<x 2,∴A (1,0),B (3,0).∵抛物线的解析式为y =12x 2-2x +32,∴抛物线的对称轴为直线x =2, ∵k =3,∴y =3x(1≤x ≤4).当点P 位于(4,34)时,点P 到x =2的距离最大,当x =4时,y =12×42-2×4+32=32,∴PQ =32-34=34;②3576≤a ≤54. 7. 解:(1)将点(1,k +6)代入y =mx 2+2mx +k 中,得m =2; (2)y =mx 2+2mx +k =2x 2+4x +k ,由题意得:b 2-4ac =16-8k ≥0,解得k ≤2, ∵k 为正整数, ∴k =1或2.当k =1时,方程2x 2+4x +0没有整数解,故舍去, 则k =2;(3)由(2)得m =2,k =2,∴y =2x 2+4x +2,向下平移8个单位,平移后的表达式为y =2x 2+4x +2-8=2x 2+4x -6;(4)-12<b <32或b >27332.第7题解图8. 解:(1)由直线y =-x +4知,点B 、C 的坐标分别为(4,0)、(0,4), 把点B 、C 的坐标分别为(4,0)、(0,4), 代入y =ax 2-3ax +c 中,得⎩⎪⎨⎪⎧c =416a -12a +c =0, 解得⎩⎪⎨⎪⎧a =-1c =4,∴抛物线的表达式为y =-x 2+3x +4; (2)由y =-x 2+3x +4,得A (-1,0). 如解图,过点N 作NG ⊥AB 于点G ,第8题解图∵直线y =kx +k 平分△ABC 的面积, ∴NG =12OC =2,∴当y =2时,2=-x +4,∴x =2, ∴N (2,2).把N (2,2)代入y =kx +k ,得k =23,∴直线AM 的解析式为k =23x +23,联立⎩⎪⎨⎪⎧y =23x +23y =-x 2+3x +4,解得⎩⎨⎧x 1=103y 1=269,⎩⎪⎨⎪⎧x 2=-1y 2=0.∴M (103,269);(3)翻折后的整个图象包括两部分:分别是抛物线y =x 2-3x -4(-1≤x ≤4)与y =-x 2+3x +4(x >4或x <-1).①当直线y =kx +k 与抛物线y =x 2-3x -4=(x -32)2-254(-1≤x ≤4)相交时,由⎩⎪⎨⎪⎧y =kx +ky =x 2-3x -4,得x 2-3x -4=kx +k , 整理,得x 2-(k +3)x -(k +4)=0, 解得x 1=-1,x 2=k +4. ∴y 1=0,y 2=k 2+5k . ∴两个函数图象有两个交点,其中一个交点为A (-1,0),另一个交点坐标为(k +4,k 2+5k ).观察图象可知:另一个交点在x 轴下方,横坐标在-1与4之间,纵坐标在-254与0之间.∴-1<k +4<4,解得-5<k <0. -254<k 2+5k <0,整理,得 4k 2+20k +25>0且k 2+5k <0, 解得,(2k +5)2>0且-5<k <0. k 为任意实数,(2k +5)2>0恒成立, ∴-5<k <0;②当直线y =kx +k 与图象y =-x 2+3x +4(x >4或x <-1)相交时, -x 2+3x +4=kx +k , 整理得x 2+(k -3)x +(k -4)=0 解得x 1=-1,x 2=4-k ,∴y 1=0,y 2=5k -k 2. ∴两个函数图象有两交点,其中一个是点A (-1,0),另一个交点坐标为(4-k ,5k -k 2). 观察图象可知:另一个交点的横坐标大于4,纵坐标小于0, 即4-k >4,解得k <0. 5k -k 2<0,∴k (5-k )<0, ∵k <0,∴5-k >0,∴k <5. ∴k <0.∴综上所述,当直线y =kx +k 与翻折后的整个图象只有三个交点时,k 的取值范围是-5<k <0.类型二 整点问题例 解:(1)如解图①,设直线l 的解析式为y =px +q , 将A (5,0),B (0,5)代入得,⎩⎪⎨⎪⎧5p +q =0,q =5,解得⎩⎪⎨⎪⎧p =-1,q =5. ∴直线l 的解析式为y =-x +5.结合图象可知,线段OA 上共有6个整点,线段OB (不含原点)上共有5个整点,线段AB 上(不含端点)共有4个整点,△AOB 内部共有6个整点,∴直线l 与坐标轴围成的区域W 1内(含边界)整点的个数为6+5+4+6=21个;例题解图①(2)如解图②,设直线BC 的解析式为y =p 1x +q 1, 将B (0,5),C (-1,0)代入得,⎩⎪⎨⎪⎧q 1=5,-p 1+q 1=0,解得⎩⎪⎨⎪⎧p 1=5,q 1=5, ∴直线BC 的解析式为y =5x +5,结合图象,△BOC(不含边界)所围成的区域内无整点,由(1)知,△AOB(不含边界)所围成的区域内有6个整点,∴△ABC所围成的区域W2内(不含边界)整点的个数等于线段OB(不含端点)上的整点个数加上△AOB 内部的整点个数为4+6=10个;例题解图②(3)如解图③,当a=3时,直线y=3,线段AB与y轴所围成的三角形区域W3内(含边界)恰好有6个整点,∴结合图象可知,当2<a≤3时,直线y=a,线段AB与y轴所围成的三角形区域W3内(含边界)恰好有6个整点;例题解图③(4)如解图④,当b=0时,y=x,此时y=x与直线AB及y轴所围成的三角形区域W4内(不含边界)有2个整点,当b=-1时,y=x-1,此时y=x-1与直线AB及y轴所围成的三角形区域W4内(不含边界)有4个整点,结合图象可知,-1≤b<0;例题解图④(5)如解图⑤,x <时当直线y =kx +2过(-5,1)时,直线y =kx +2与直线BC 及x 轴所围成的三角形区域W 5内(不含边界)有4个整点,将(-5,1)代入y =kx +2得k =15,当直线y =kx +2过(-4,1)时,直线y =kx +2与直线BC 及x 轴所围成的三角形区域W 5内(不含边界)有3个整点,将(-4,1)代入y =kx +2得k =14,结合图象可知,15≤k <14;同理,x >0时,当直线y =kx +2过(3,1)时,直线y =kx +2与直线BC 及x 轴所围成的三角形区域W 5内(不含边界)有3个整点,将(3,1)代入y =kx +2得k =-13,当直线y =kx +2过(4,1)时,直线y =kx +2与直线BC 及x 轴所围成的三角形区域W 5内(不含边界)有4个整点,将(4,1)代入y =kx +2得k =-14,∴-13≤k <-14,综上可得,15≤k <14或-13≤k <-14;例题解图⑤(6)如解图⑥,由图象可知曲线DE 上有(1,4)(2,2),(4,1)共3个整点,线段DE (不含端点)上有(2,3),(3,2)共2个整点,曲线DE 与线段DE 围成的区域内部无整点,∴曲线DE 与线段DE 所围成的区域W 6内(含边界)有5个整点;例题解图⑥(7)如解图⑦,当G 点与原点重合时,此时线段DG ,FG 与曲线DF 所围成的区域W 7内(含边界)有6个整点,此时b=0,如解图⑧,当点G的纵坐标在0与-1之间时,此时线段DG,FG与曲线DF所围成的区域W7内(含边界)有5个整点,如解图⑨,当G点与过(0,-1)时,此时线段DG,FG与曲线DF所围成的区域W7内(含边界)有8个整点,此时b=-1,∴-1<b<0;例题解图⑦例题解图⑧例题解图⑨(8)由抛物线y=x2-2x+m-2可得,抛物线的对称轴为直线x=1,且抛物线恒过点(0,m-2),如解图○10,当抛物线的顶点为(1,2)时,此时抛物线与直线y=5所围成的区域W8内(不含边界)有4个整点,分别为(1,3),(0,4),(1,4),(2,4),将(1,2)代入抛物线解析式得,1-2+m-2=2,解得m=5,当抛物线的顶点为(1,3)时,此时抛物线与直线y=5所围成的区域W8内(不含边界)有1个整点(1,4),将(1,3)代入抛物线解析式得,1-2+m-2=3,解得m=6,结合图象可知,5≤m<6.例题解图○10(9)由抛物线y=x2-2x+m-2可得,抛物线的对称轴为直线x=1,且抛物线恒过点(0,m-2),如解图⑪,当抛物线的顶点为(1,-2)时,此时抛物线与直线y=-x+2所围成的区域W9内(不含边界)有4个整点,分别为(0,0),(0,1),(1,0),(1,-1),将(1,-2)代入抛物线解析式得,1-2+m-2=-2,解得m=1,当抛物线的顶点为(1,-1)时,此时抛物线与直线y=-x+2所围成的区域W9内(不含边界)有2个整点,分别为(0,1),(1,0),将(1,-1)代入抛物线解析式得,1-2+m-2=-1,解得m=2,∴综上所述,1≤m<2.例题解图⑪1.解:(1)当x=0时,y=x-b=-b,∴B(0,-b),∵AB=8,A(0,b),∴b-(-b)=8.∴b=4;(2分)∴L 的解析式为y =-x 2+4x , ∴L 的对称轴为直线x =2,将x =2代入直线a 的解析式中得y =2-4=-2, ∴L 的对称轴与a 的交点坐标为(2,-2);(4分) (2)∵y =-x 2+bx =-(x -b 2)2+b 24, ∴L 的顶点C 的坐标为(b 2,b 24).∵点C 在l 下方,∴点C 与l 的距离为b -b 24=-14(b -2)2+1≤1,∴点C 与l 距离的最大值为1;(7分)(3)由题意可得,y 1=b ,y 2=x 0-b ,y 3=-x 20+bx 0, ∵y 3是y 1,y 2的平均数, ∴y 3=y 1+y 22,即-x 20+bx 0=x 02, 化简得x 0(2x 0-2b +1)=0, 解得x 0=0或x 0=b -12,∵x 0≠0, ∴x 0=b -12,对于L ,当y =0时,0=-x 2+bx ,即0=-x (x -b ).解得x 1=0,x 2=b , ∵b >0,∴D 点坐标为(b ,0),∴点(x 0,0)与点D 间的距离为b -(b -12)=12;(10分)(4)当b =2019时,“美点”的个数为4040;(11分) 当b =2019.5时,“美点”的个数为1010.(12分) 2. 解:(1)如解图,则点A 的坐标为(5,3), ∵直线y =kx +b 过点A (5,3),点C (9,0),∴⎩⎪⎨⎪⎧5k +b =39k +b =0,解得⎩⎨⎧k =-34b =274, 即直线y =kx +b 的表达式是y =-34x +274;(2)①3个;第2题解图3. 解:(1)∵A (4,1), ∴直线OA 的解析式为y =14x .∵直线y 1=14x +b ,∴直线y 1与OA 平行,当b =-1时,直线解析式为y 1=14x -1,解方程4x =14x -1得x 1=2-25(舍去),x 2=2+25,则B (2+25,5-12),∵C (0,-1),∴区域M 内的整点为(1,0),(2,0),(3,0),共3个;(2)当直线y 1在OA 的下方时,当直线y 1=14x +b 过点(1,-1)时,b =-54,则直线y 1=14x +b 经过(5,0),∴区域M 内恰有4个整点,则b 的取值范围是-54≤b <-1.当直线l 在OA 的上方时,∵点(2,2)在函数y 2=4x(x >0)的图象上,当直线y 1=14x +b 过(1,2)时,b =74,此时区域M 内有3个整点.当直线y 1=14x +b 过(1,3)时,b =114,∴区域M 内恰有4个整点时,b 的取值范围是74<b ≤114.综上所述,区域M 内恰有4个整点时,b 的取值范围是-54≤b <-1或74<b ≤114.4. 解:(1)当c =1时,y 1=-x 2+ 12x +c =-x 2+ 12x +1=-(x -14)2+1716 .又∵-2020≤x ≤1,∴M 1=1716. y 2=-x 2+2cx +1=-x 2+2x +1=-(x -1)2+2. 又∵1≤x ≤2020, ∴M 2=2;(2)当x =1时,y 1=-x 2+12x +c =c -12;y 2=-x 2+2cx +1=2c .若点A ,B 重合,则c -12=2c ,解得c =-12.∴L 1∶y 1=-x 2+12 x -12(-2020≤x ≤1);L 2∶y 2=-x 2-x +1(1≤x ≤2020).在L 1上,x 为奇数的点是“美点”,则L 1上有1011个“美点”, 在L 2上,x 为整数的点是“美点”,则L 2上有2020个“美点”. 又∵点A ,B 重合,则L 上“美点”的个数是1011+2020-1=3030; (3)c =-238或2.5. 解:(1)∵L 1:y =-x 2+bx +b -1经过原点, ∴将(0,0)代入得b =1,∴抛物线L 1的解析式为y =-x 2+x , 将y =-x 2+x 配方得y =-(x -12)2+14,∴顶点坐标为(12,14);(2)①对于抛物线L 1:y =-x 2+bx +b -1=(x +1)b -x 2-1,当x =-1时,y =-2,故抛物线y =-x 2+bx +b -1总经过一个定点M (-1,-2);②∵抛物线L 2的顶点为M , ∴设它的解析式为y =a (x +1)2-2, 又∵抛物线L 1的顶点总在抛物线L 2上, ∴将点(12,14)代入解得a =1,∴抛物线L 2的解析式为y =(x +1)2-2,即y =x 2+2x -1;(3)当抛物线L 1经过点B 时,将B (5,-2)代入抛物线L 1解析式y =-x 2+bx +b -1得b =4, ∴抛物线L 1的解析式为y =-x 2+4x +3,令y =-2,得-2=-x 2+4x +3,解得x 1=-1,x 2=5,∴抛物线L 1与线段AB 交于(-1,-2),(5,-2)两点,由解析式可以得出,只要x 取整数,则抛物线L 1上点的纵坐标也一定是整数.∴抛物线L 1经过端点B 时形成的封闭图形C 上的“理想点”个数为12个;当抛物线L 1经过点A 时,将A (-5,-2)代入抛物线L 1解析式y =-x 2+bx +b -1得b =-6, ∴抛物线L 1的解析式为y =-x 2-6x -7,从解析式可以得出,只要x 取整数,则抛物线L 1上点的纵坐标也一定是整数,令y =-2,得-2=-x 2-6x -7,解得x 1=-5,x 2=-1, ∴抛物线L 1与线段AB 交于(-5,-2),(-1,-2)两点,故当抛物线L 1经过端点A 时形成的封闭图形C 上的“理想点”的个数为8个; 综上所述,封闭图形C 上的“理想点”的个数为8个或12个.。

中考数学总复习第一编教材知识梳理篇第三章函数及其图象第一节函数及其图象精试题

中考数学总复习第一编教材知识梳理篇第三章函数及其图象第一节函数及其图象精试题

第三章函数及其图象第一节函数及其图象怀化七年中考命题规律)标2021选择6函数自变量的取值范围求含有二次根式且位于分母的自变量的取值范围3填空13求函数值自变量的值,求函数的值36命题规律纵观怀化七年中考,有五年考察了此考点内容,并且以选择题、填空题的形式呈现,其中求函数自变量的取值范围考察了4次,平面直角坐标系考察了2次.命题预测预计2021年怀化中考,本课时的考察重点为求函数自变量的取值范围与函数图象的判断,可能会及其他知识结合,特别是及几何图形结合的图象,题型以选择题为主.,怀化七年中考真题及模拟)平面直角坐标系(2次)1.(2021怀化中考)在平面直角坐标系中,点(-3,3)所在象限是( B)A.第一象限B.第二象限C.第三象限D.第四象限2.(2021怀化中考)如图,假设在象棋盘上建立直角坐标系,假设“帅〞位于点(-1,-2),“馬〞位于点(2,-2),那么“兵〞位于点( C)A.(-1,1) B.(-2,-1)C .(-3,1)D .(1,-2)求自变量的取值范围与函数值(5次)3.(2021怀化中考)函数y =x -1x -2中,自变量x 的取值范围是( C )A .x ≥1B .x>1C .x ≥1且x≠2D .x ≠24.(2021怀化中考)在函数y =2x -3中,自变量x 的取值范围是( D )A .x>32B .x ≤32C .x ≠32D .x ≥325.(2021怀化中考)函数y =1x -2中,自变量x 的取值范围是( A )A .x>2B .x ≥2C .x ≠2D .x ≤26.(2021怀化中考)函数y =x -3中,自变量x 的取值范围是__x≥3__.7.(2021怀化中考)函数y =-6x ,当x =-2时,y 的值是__3__.及实际相结合的函数图象(1次)8.(2021怀化一模)小敏家距学校1 200 m ,某天小敏从家里出发骑自行车上学,开场她以v 1 m /min 的速度匀速行驶了600 m ,遇到交通堵塞,耽误了3 min ,然后以v 2 m /min 的速度匀速前进一直到学校(v 1<v 2),你认为小敏离家的距离y 及时间x 之间的函数图象大致是( A ),A ) ,B ) ,C ) ,D )9.(2021沅陵模拟)一艘轮船在同一航线上往返于甲、乙两地.轮船在静水中的速度为15 km /h ,水流速度为5 km /h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t(h ),航行的路程为s(km ),那么s 及t 的函数图象大致是( C ),A ),B ),C ),D )10.(2021怀化考试说明)如图,在矩形中截取两个一样的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长与宽分别为y 与x ,那么y 及x 的函数图象大致是( A ),A ) ,B ) ,C ) ,D )11.(2021中考预测)如图,梯形ABCD 中,AB ∥DC ,DE ⊥AB ,CF ⊥AB ,且AE =EF =FB =5,DE =12,动点P 从点A 出发,沿折线AD —DC —CB 以每秒1个单位长的速度运动到点B 停顿.设运动时间为t s ,y =S △EPF ,那么y 及t 的函数图象大致是( A ),A ) ,B ) ,C ) ,D )12.(2021怀化学业考试指导)在物理实验课上,小明用弹簧秤将铁块悬于盛有水的水槽中(铁块完全淹没于水中),然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度.如图能反映弹簧秤的读数y(单位:N )及铁块被提起的高度x(单位:cm )之间的函数关系的大致图象是( C ),A ) ,B ) ,C ) ,D )13.(2021 麻阳模拟)小翔在如图1所示的场地上匀速跑步,他从点A 出发,沿箭头所示方向经过点B 跑到点C ,共用时30 s .他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:s ),他及教练的距离为y(单位:m ),表示y 及t 的函数关系的图象大致如图2所示,那么这个固定位置可能是图1中的( D )A .点MB .点NC .点PD .点Q14.(2021 中方模拟)点M(1-2m ,m -1)关于x 轴对称的点在第一象限,那么m 的取值范围在数轴上表示正确的选项是( A ),A ),B ),C ) ,D )15.(2021怀化二模)根据如下图的程序计算函数值,假设输入的x 的值为-1,那么输出的函数值为( A )A .1B .-2C .13 D .3,中考考点清单)平面直角坐标系及点的坐标1.有序实数对:坐标平面上任意一点都可以用唯一一对有序实数来表示;反过来,任意一对有序实数都可以表示坐标平面上唯一一个点.【方法技巧】一般地,点P(a ,b)到x 轴的距离为|b|;到y 轴的距离为|a|;到原点的距离为a 2+b 2.2.平面直角坐标系中点的坐标特征各象限点的坐标的符号特征 第一象限(+,+);第二象限①__(-,+)__;第三象限(-,-);第四象限②__(+,-)__ 坐标轴上点的坐标特征x 轴上的点的纵坐标为③__0__,y 轴上的点的横坐标为0,原点的坐标为(0,0)各象限角平分线上点的坐标特征 第一、三象限角平分线上点的横、纵坐标相等;第二、四象限角平分线上点的横、纵坐标④__互为相反数__对称点的坐标特征点P(a ,b)关于x 轴对称的点的坐标为(a ,-b);点P(a ,b)关于y 轴对称的点的坐标为⑤__(-a ,b)__;点P(a ,b)关于原点对称的点的坐标为P′(-a ,-b) 平移点的坐标特征将点P(x ,y)向右或向左平移a 个单位,得到对应点的坐标P′是(x +a ,y)或(x -a ,y);将点P(x ,y)向上或向下平移b 个单位,得到对应点的坐标P′是(x ,y +b)或(x ,y -b);将点P(x ,y)向右或向左平移a 个单位,再向上或向下平移b 个单位,得到对应点P′的坐标是⑥__(x +a ,y +b)或(x -a ,y -b)__,简记为:左减右加,上加下减函数的相关概念3.变量:在一个变化过程中,可以取不同数值的量叫做变量. 4.常量:在一个变化过程中,数值保持不变的量叫做常量.5.函数:一般地,在某个变化过程中,有两个变量,就能相应地确定y 的一个值,那么,我们就说y 是x 的函数.其中,x 叫做自变量.函数自变量的取值范围表达式 取值范围 整式型 取全体实数 分式型,如y =ax分母不为0,即x≠0 根式型,如y =x 被开方数大于等于0,即x≥0分式+根式型,如y =ax同时满足两个条件:①被开方数大于等于0即x≥0;②分母不为0,即x≠0函数的表示方法及其图象函数图象的判断近7年共考察3次,题型都为选择题,出题背景有:(1)及实际问题结合;(2)及几何图形结合;(3)及几何图形中的动点问题结合,设问方式均为“判断函数图象大致是〞.6.表示方法:数值表、图象、表达式是函数关系的三种不同表达形式,它们分别表现出具体、形象直观与便于抽象应用的特点.7.图象的画法:知道函数的表达式,一般用描点法按以下步骤画出函数的图象.(1)取值.根据函数的表达式,取自变量的一些值,得出函数的对应值,按这些对应值列表.(2)画点.根据自变量与函数的数值表,在直角坐标系中描点.(3)连线.用平滑的曲线将这些点连接起来,即得函数的图象.8.函数表达式,判断点P(x,y)是否在函数图象上的方法:假设点P(x,y)的坐标适合函数表达式,那么点P(x,y)在其图象上;假设点P(x,y)的坐标不适合函数表达式,那么点P(x,y)不在其图象上.【方法技巧】判断符合题意的函数图象的方法(1)及实际问题结合:判断符合实际问题的函数图象时,需遵循以下几点:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找相对应点;②找特殊点:即指交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性;④看是否及坐标轴相交:即此时另外一个量为0.(2)及几何图形(含动点)结合:以几何图形为背景判断函数图象的题目,一般的解题思路为设时间为t,找因变量及t之间存在的函数关系,用含t的式子表示,再找相对应的函数图象,要注意的是是否需要分类讨论自变量的取值范围.(3)分析函数图象判断结论正误:分清图象的横纵坐标代表的量及函数中自变量的取值范围,同时也要注意:①分段函数要分段讨论;②转折点:判断函数图象的倾斜方向或增减性发生变化的关键点;③平行线:函数值随自变量的增大而保持不变.再结合题干推导出实际问题的运动过程,从而判断结论的正误.,中考重难点突破)平面直角坐标系中点的坐标特征【例1】假设将点A(-4,3)先向右平移3个单位,再向下平移1个单位,得到点A1,点A1的坐标为( )A.(-1,3) B.(-1,2)C.(-7,2) D.(-7,4)【解析】∵点A(-4,3)先向右平移3个单位,再向下平移1个单位,∴点A1的坐标为(-1,2).【学生解答】B1.在平面直角坐标系中,假设点P的坐标为(-3,2),那么点P所在的象限是( B)A.第一象限B.第二象限C .第三象限D .第四象限函数自变量的取值范围【例2】(2021原创)函数y =xx -3-(x -2)0中,自变量x 的取值范围是________.【解析】根据题意得,x ≥0且x -3≠0且x -2≠0,解得x≥0且x≠3且x≠2.【学生解答】x ≥0且x≠3且x≠2【方法指导】对于分式、根式、零指数幂相结合型求自变量取值范围的,先求出各自变量的取值范围,然后取公共解集即可.2.(2021娄底中考)函数y =xx -2中自变量x 的取值范围是( A )A .x ≥0且x≠2B .x ≥0C .x ≠2D .x>2函数图象的判断【例3】(2021 营口中考)如图,在矩形ABCD 中,AB =2,AD =3,点E 是BC 边上靠近点B 的三等分点,动点P 从点A 出发,沿路径A→D→C→E 运动,那么△APE 的面积y 及点P 经过的路径长x 之间的函数关系用图象表示大致是( ),A ) ,B ) ,C ) ,D )【解析】∵在矩形ABCD 中,AB =2,AD =3,∴CD =AB =2,BC =AD =3,∵点E 是BC 边上靠近点B 的三等分点,∴CE =23×3=2.①点P 在AD 上时,△APE 的面积y =12x ·2=x(0≤x≤3);②点P 在CD 上时,S △APE =S四边形AECD-S△ADP -S △CEP =12×(2+3)×2-12×3×(x -3)-12×2×(3+2-x)=5-32x +92-5+x =-12x +92,∴y =-12x +92(3<x≤5);③点P 在CE 上时,S △APE =12×(3+2+2-x)×2=-x +7,∴y =-x +7(5<x≤7),纵观各选项,只有A 选项图形符合. 【学生解答】A【方法指导】根据动点P 的运动路径A→D→C→E 可得,在计算△APE 的面积时应该分为3种情况,①当P 在AD 上时,②当P 在DC 上时,③当P 在CE 上时,分别计算出即可.要注意转折点有x =3时与x =5时.3.(2021广东中考)如图,在正方形ABCD 中,点P 从点A 出发,沿着正方形的边顺时针方向运动一周,那么△APC 的面积y 及点P 运动的路程x 之间形成的函数关系的图象大致是( C),A) ,B),C) ,D)。

初中数学函数及其图像训练题

初中数学函数及其图像训练题

精心整理函数及其图像初中数学一、选择题1.当ab >0时,y=2ax 与y=ax+b 的图象大致是( ).. ..3.彼此相似的矩形1111A B C D ,2222A B C D ,3333A B C D ,…,按如图所示的方式放置.点1A ,2A ,3A ,…,和点1C ,2C ,3C ,…,分别在直线y=kx+b (k >0)和x 轴上,已知点1B 、2B 的坐标分别为(1,2),(3,4),则n B 的坐标是( ). A .(12n -,2n ) B .(2n ﹣12,2n )C .(12n -﹣12,12n -) D .(12n -﹣1,12n -)4.如图所示,已知△ABC 中,BC=8,BC 上的高h=4,D 为BC 上一点,EF ∥BC ,交AB 于点E ,交AC 于点F (EF 不过A 、B ),设E 到BC 的距离为x ,则△DEF 的面积y 关于x 的函数的图象大致为( ).. D .. B .. D 6.二次函数y=2ax +bx+c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c >3b ;(3)8a+7b+2c >0;(4)若点A (﹣3,1y )、点B (12-,2y )、点C (72,3y )在该函数图象上,则1y <3y <2y ;(5)若方程a (x+1)(x ﹣5)=﹣3的两根为1x 和2x ,且1x <2x ,则1x <﹣1<5<2x .其中正确的结论有( ).A .2个B .3个C .4个D .5个7.如图,矩形OABC 上,点A 、C 分别在x 、y 轴上,点B 在反比例y=k x位于第二象限的图象上,矩形面积为6,则k 的值是( ). A .3 B .6 C .﹣3 D .﹣68.某同学在用描点法画二次函数y=2ax +bx+c 的图象时,列出了为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标. 10.如图,已知二次函数y=212x +bx+c 的图象经过A (2,0)、B (0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA 、BC ,求△ABC 的面积.11.如图是函数y=3x与函数y=6x在第一象限内的图象,点P 是y=6x 的图象上一动点,PA ⊥x 轴于点A ,交y=3x的图象于点C ,PB ⊥y 轴于点B ,交y=3x的图象于点D .(1)求证:D 是BP 的中点; (2)求四边形ODPC 的面积.12.如图,已知直线y=kx+6与抛物线y=2ax +bx+c 相交于A ,B 两x (元/个)的函数关系式;(3)销售价格应定为多少元时,获得利润最大,最大利润是多少? 14.如图,抛物线y=212x +bx+c 与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知A (﹣1,0),C (0,2).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,△CBF的面积最大?求出△CBF的最大面积及此时E点的坐标.18.某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件,如果每件涨价1元(售价不可以高于45),那么每星期少卖出10件,设每件涨价x元,每星期销量为y件.(1)求y关于x的函数关系式(不要求写出自变量x的取值范围);(2)如何定价才能使每星期的利润为1560元?每星期的销量是多少?19.如图,一次函数1y =x+1的图象与反比例函数2y =kx(k 为常数,且k ≠0)的图象都经过点A (m ,2), (1)求点A 的坐标及反比例函数的表达式;(2)结合图象直接比较:当x >0时,1y 和2y 的大小. 三、解答题20.设抛物线y=2x +8x ﹣k 的顶点在x 轴上,则k= .填“>”、“=”、“<”).参考答案1.D . 【解析】试题分析:根据题意,ab >0,即a 、b 同号,分a >0与a <0两种情况讨论,分析选项可得答案.根据题意,ab >0,即a 、b 同号,当a【解析】试题分析:根据矩形的性质求出点1A (0,2),2A (1,4)的坐标,然后根据这两点的坐标利用待定系数法求一次函数解析式y=2x+2,进而求出3A 的坐标(3,8),然后求出3B 的坐标(7,8),…,最后根据点的坐标特征的变化规律写出n B 的坐标为(12n -,2n ).故选:A.考点:相似多边形的性质;一次函数图象上点的坐标特征. 4.C . 【解析】试题分析:可过点A 向BC 作AH ⊥BC 于点H ,所以根据相似三角形的【解析】试题分析:(1)∵2ba-=2,∴4a+b=0.故(1)正确.(2)∵x=﹣3时,y <0,∴9a ﹣3b+c <0,∴9a+c <3b ,故(2)错误.(3)由图象可知抛物线经过(﹣1,0)和(5,0),∴02550a b c a b c -+=⎧⎨++=⎩,解得45b ac a=-⎧⎨=-⎩,∴8a+7b+2c=8a ﹣28a ﹣10a=﹣30a ,∵a <0,∴8a+7b+2c >0,故(3)正确.(4)∵点A ((﹣3,1y )、点B (12-,2y )、点C (72,3y ),∵72﹣2=32,2﹣(12-)=52,∴32<52,∴点C 离对称轴的距离近,∴3y >2y ,∵a <0,﹣3<12-<2,∴1y <2y ,∴1y <2y <3y ,故(4)错误.(5)∵a <0,∴(x+1)(x ﹣5)=3a->0,即(x+1)(x ﹣5)>0,故x <﹣1或x >5,故(5)正确.∴正确的有三个.案.由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,﹣2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得a-b+c=-2,c=1,a+b+c=-2,解得a=-3,b=0,c=1,所以函数解析式为y=23x -+1,x=2时y=﹣11. 故选:D .考点:二次函数的图象.9.(1)y=212x +x ﹣4;(2) S=2m -﹣4m ;m=﹣2时S 有最大值S=4;(3)(﹣4,4)或(2-+2-2--2+. 【解析】试题分析:(1)设抛物线解析式为y=2ax +bx+c ,然后把点A 、B 、C∴M 点的坐标为:(m ,212m +m ﹣4),∴AOM OBMAOB S S S S =+﹣=12×4×(212m +m ﹣4)+12×4×(﹣m )﹣12×4×4=2m -﹣4m=()224m -++, ∵﹣4<m <0,当m=﹣2时,S 有最大值为:S=﹣4+8=4,答:S 关于 m 的函数关系式为S=2m -﹣4m ;m=﹣2时S 有最大值S=4; (3)∵点Q 是直线y=﹣x 上的动点, ∴设点Q 的坐标为(a ,﹣a ), ∵点P 在抛物线上,且PQ ∥y 轴, ∴点P 的坐标为(a ,212a +a ﹣4),综上所述,Q 坐标为(﹣4,4)或(2-+2-2--2+P ,Q ,B ,O 为顶点的四边形是平行四边形.考点:二次函数综合题. 10.(1)y=212x -+4x ﹣6;(2)6. 【解析】试题分析:(1)二次函数图象经过A (2,0)、B (0,﹣6)两点,两点代入y=212x -+bx+c ,算出b 和c ,即可得解析式.(2)先求出对称轴方程,写出C 点的坐标,计算出AC ,然后由面积公式计算值.试题解析:(1)把A (2,0)、B (0,﹣6)代入y=212x -+bx+c , ABC S=12考点:二次函数综合题.试题分析:(1)根据函数图象上的点满足函数解析式,可得P 、D 点坐标,根据线段中点的定义,可得答案;(2)根据图象割补法,可得面积的和差,可得答案. 试题解析:(1)∵点P 在函数y=6x上, ∴设P 点坐标为(6m,m ).∵点D 在函数y=3x上,BP ∥x 轴,∴设点D 坐标为(3m ,m ), 由题意得BD=3m ,BP=6m=2BD ,∴D 是BP 的中点. (2)OAPB S 四边形=6m?m=6, OBD =OAC =OBDOAC S S ﹣=6﹣考点:反比例函数与一次函数的交点问题.3BOQ ∽3Q EA ,列出比例式建立方程求解即可.试题解析:(1)把A (1,4)代入y=kx+6, ∴k=﹣2, ∴y=﹣2x+6, 由y=﹣2x+6=0,得x=3∴B (3,0). ∵A 为顶点∴设抛物线的解析为y=()21a x -+4, ∴a=﹣1,∴y=()21x --+4=2x -+2x+3;22(3)①如图,当1Q AB ∠=90°时,作AE ⊥y 轴于E , ∴E (0,4)∵1DAQ ∠=∠DOB=90°,1ADQ ∠=∠BDO , ∴1DAQ ∽△DOB ,∴1DQ AD OD DB==,∴1DQ =52,∴1OQ =72,∴1Q (0,72);2BOQ ∽△OQ OB OD OB =3OQ∴33BOQ Q EA ∽, ∴33OQ OB Q E AE =,即33341OQ OQ =-, ∴233OQ 4OQ 3+﹣=0, ∴3OQ =1或3,∴3Q (0,1)或(0,3).综上,Q点坐标为(0,72)或(0,32-)或(0,1)或(0,3).考点:二次函数综合题.13.(1)y=﹣0.1x+8(30≤x≤60);(2)W=()()20.11021030602400706080x x xxx⎧-+-≤≤⎪⎨-+≤⎪⎩;(3)当销售价格定为50元/件或80元/件,获得利润最大,最大利润8b=⎩∴y=﹣0.1x+8(30≤x≤60);(2)根据题意,当30≤x≤60时,W=(x﹣20)y﹣50=(x﹣20)(﹣0.1x+8)﹣50=20.1x-+10x﹣210,当60<x≤80时,W=(x﹣20)y﹣50=(x﹣20)?120x ﹣50=2400x-+70,综上所述:W=()()20.11021030602400706080x x x x x ⎧-+-≤≤⎪⎨-+≤⎪⎩; (3)当30≤x ≤60时,W=20.1x -+10x ﹣210=()20.15040x --+, 当x=50时,W 最大=40(万元); 当60<x ≤80时,W=2400x-+70,求解即可;(3)求出直线BC 的解析式,设E(m ,122m -+),则F(m ,213222m m -++),构建二次函数,利用二次函数的性质即可解决问题.试题解析:(1)把A (﹣1,0),C (0,2)代入y=212x -+bx+c 得122b c c ⎧--+=⎪⎨⎪=⎩,解得b=32,c=2,∴抛物线的解析式为y=212x -+32x+2;(2)存在.如图1中,∵C (0,2),D (32,0), ∴OC=2,OD=32,52,①当CP=CD 时,可得1P (32,4),∴当E 运动到BC 的中点时,△EBC 面积最大,∴△EBC 最大面积=12×4×EF=12×4×2=4,此时E (2,1). 考点:二次函数综合题.15.(1) B (2,1);y=x ﹣1;(2) P (0,1)或(0,3). 【解析】试题分析:(1)由点在函数图象上,得到点的坐标满足函数解析式,利用待定系数法即可求得;(2)分两种情况,一种是∠BPA=90°,另一种是∠PBA=90°,所以有两种答案.试题解析:(1)∵B在的图象上,∴=4,∴OP=4﹣1=3,∴P点的坐标为(0,3),∴P点的坐标为(0,1)或(0,3).考点:反比例函数与一次函数的交点问题.16.(1) y=31x -+;(2)2. 【解析】试题分析:(1)设出函数解析式,把相应的点代入即可; (2)把自变量的取值代入(1)中所求的函数解析式即可.试题解析:(1)设y=1kx +,∴A (﹣1,0),又B 点横坐标为2,代入y=x+1可求得y=3, ∴B (2,3),∵抛物线顶点在y 轴上, ∴可设抛物线解析式为y=2ax +c ,把A 、B 两点坐标代入可得043a c a c +=⎧⎨+=⎩,解得11a c =⎧⎨=-⎩, ∴抛物线解析式为y=2x ﹣1;(2)△ABM 为直角三角形.理由如下:销售量=总利润,列方程求解.试题解析:(1)∵如果售价每涨1元,那么每星期少卖10件, ∴每件涨价x 元(x 为非负整数),每星期销量为:y=150﹣10x ; (2)设每件涨价x 元,依题意得(10+x )=1560, 解这个方程,得1x =2,2x =3,∵售价不高于45元, ∴1x =2,2x =3均符合题意,当1x =2时,每星期的销量是150﹣10×2=130(件); 当2x =3时,每星期的销量是150﹣10×3=120(件);答:该商品每件定价42元或43元才能使每星期的利润为1560元,故点A 坐标为(1,2),将点A 的坐标代入2y =k x,得:2=1k , 解得:k=2,则反比例函数的表达式2y =2x ; (2)结合函数图象可得:当0<x<1时,y<2y;1当x=1时,y=2y;1当x>1时,y>2y.1考点:反比例函数与一次函数的交点问题.20.﹣16.考点:反比例函数图象上点的坐标特征;菱形的性质.22.y=3-.x【解析】(k≠0),设C 试题分析:设经过C点的反比例函数的解析式是y=kx(x,y),根据平行四边形的性质求出点C的坐标(﹣1,3),∵点C在反比例函数y=kx (k≠0)的图象上,∴3=1k-,解得,k=﹣3,∴经过C点的反比例函数的解析式是y=3x-.故答案为:y=3x-.考点:待定系数法求反比例函数解析式;平行四边形的性质.23.y=2x﹣6x+8.口向上,∴a>0,∴b=﹣2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以④正确.故答案为:①④.考点:二次函数图象与系数的关系.25.<.【解析】试题分析:根据反比例函数的增减性解答.把点(﹣1,3)代入双曲,得k=﹣3<0,故反比例函数图象的两个分支在第二、四象线y=kx限,且在每个象限内y随x的增大而增大,∵A(a,1b),B(2a,2b)1两点在该双曲线上,且a<2a<0,∴A、B在同一象限,∴1b<2b.1。

山东省德州市2022年中考数学复习 第3章 函数及其图象 一次函数试题

山东省德州市2022年中考数学复习 第3章 函数及其图象 一次函数试题

一次函数命题点分类集训(时间:45分钟 共18题 答对______题)命题点1 一次函数的图象与性质1. (湘西)一次函数y =-2x +3的图象不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. (丽水)在直角坐标系中,点M ,N 在同一个正比例函数图象上的是( )A. M (2,-3),N (-4,6)B. M (-2,3),N (4,6)C. M (-2,-3),N (4,-6)D. M (2,3),N (-4,6)3. (枣庄)若关于x 的一元二次方程x 2-2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的图象可能是( )4. (桂林)如图,直线y =ax +b 过点A (0,2)和点B (-3,0),则方程ax +b =0的解是( )第4题图A. x =2B. x =0C. x =-1D. x =-35. (陕西)设点A (a ,b )是正比例函数y =-32x 图象上的任意一点,则下列等式一定成立的是( )A. 2a +3b =0B. 2a -3b =0C. 3a -2b =0D. 3a +2b =06. (玉林)关于直线l :y =kx +k (k ≠0),下列说法不正确...的是( ) A. 点(0,k )在l 上 B. l 经过定点(-1,0)C. 当k >0,y 随x 的增大而增大D. l 经过第一、二、三象限7. (无锡)一次函数y =43x -b 与y =43x -1的图象之间的距离等于3,则b 的值为( ) A. -2或4 B. 2或-4 C. 4或-6 D. -4或68. (资阳)已知关于x 的方程mx +3=4的解为x =1,则直线y =(m -2)x -3一定不经过第________象限.9. (娄底)将直线y =2x +1向下平移3个单位长度后所得直线的解析式是____________.10. (眉山)若函数y=(m-1)x|m|是正比例函数,则该函数的图象经过第________象限.11. (天津)若一次函数y=-2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是________(写出一个即可).12. (永州)已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所能取到的整数值为________.13. (枣庄)如图,点A的坐标为(-4,0),直线y=3x+n与坐标轴交于点B,C,连接AC,如果∠ACD=90°,则n的值为________.第13题图14. (南昌6分)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B 在原点上方,点C在原点下方,已知AB=13.第14题图(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.命题点2 一次函数的实际应用15. (重庆B卷)为增强学生体质,某中学在体育课中加强了学生的长跑训练.第15题图在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第________秒.16. (陕西7分)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回.如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?第16题图17. (义乌8分)根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8∶00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11∶30全部排完,游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.第17题图18. (漳州10分)某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如下表所示(教师按成人票价购买,学生按学生票价购买):运行区间成人票价(元/张)学生票价(元/张)出发站终点站一等座二等座二等座南靖厦门262216 若师生均购买二等座票,则共需1020元.(1)参加活动的教师有________人,学生有________人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y 元.①求y关于x的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?。

中考数学三轮专题复习函数及其图象-试卷

中考数学三轮专题复习函数及其图象-试卷

中考数学三轮专题复习函数及其图象-试卷一、选择题(每小题2分,共30分)1.下列函数中,是一次函数的是()A.y=x^2+3x+2B.y=2x-1C.y=3x^2+4x+2D.y=1/x2.若函数y=f(x)在定义域[1,5]上单调递增,则f(x)可能是()A.y=-2x+3B.y=3x^2-9x+6C.y=(x-2)^2+1D.y=1/x3.若函数y=f(x)在定义域(-∞,3)上单调递增,且f(2)=3,则f(x)可能是()A.y=x+3B.y=x^2+1C.y=2x+1D.y=1/x4.函数y=2x+3的图象与y=-2x+3的图象关于()对称。

A.x轴B.y轴C.原点D.直线y=x5.已知函数y=f(x)的图象经平移和伸缩后得到y=2f(3x)+4,则f(x)可能是()A.y=x^2B.y=-x^2C.y=x^3D.y=-x^36.下列四组曲线中,可以表示函数y=x+1/2的是()7.若曲线y=f(x)的图象关于y轴对称,那么曲线y=f(2x)的图象关于()对称。

A.x轴B.y轴C.原点D.直线y=x8.若函数y=f(x)满足f(-2)=0,则它的图象上一定有一点的横坐标为()A.-2B.2C.0D.19. 曲线y = ax^2 + bx + c的对称轴的方程是()A.x=-b/2aB.y=-b/2aC.x=b/2aD.y=b/2a10.若函数y=f(x)的图象经过点(1,2),则f(x)的表达式可以是()A.y=xB.y=x+1C.y=2xD.y=2x+111.函数y=f(x)在定义域[1,3]上单调递减,那么f(3)和f(1)的大小关系是()A.f(3)<f(1)B.f(3)>f(1)C.f(3)=f(1)D.无法定性12.已知曲线y=f(x)的图象经平移和伸缩后得到y=2f(3x+4)+5,则f(x)可能是()A.y=x^2B.y=-x^2C.y=x^3D.y=-x^313.若函数y=f(x)的图象关于直线y=x对称,那么y=f(-x)的图象关于()对称。

历年初三数学中考总复习函数及其图像专题训练及答案

历年初三数学中考总复习函数及其图像专题训练及答案

中考数学总复习专题训练(函数及其图象)考试时间:120分钟 满分150分一、选择题(每小题4分,共52分) 1.一次函数y=3x-1的图象不经过( )。

A .第一象限B .第二象限C .第三象限D .第四象限 2.某闭合电路中,电源电压为定值,电流I (A )与电阻R (Ω)成反比例.如图表示的是该电路中电流I 与电阻R 之间函数关系的图象,则用电阻R 表示电流I 的函数解析式为( )。

A .I =6R B .I =-6RC .I =3RD .I =2R3.函数xy 1=和函数y=x 的图象在同一平面直角坐标系内的交点个数是( )。

A.1个B.2个C.3个D.0个 4.设A (x 1,y 1)、B (x 2,y 2)是反比例函数y=x2-图象上的两点,若x 1<x 2<0,则y 1与y 2之间的关系是( )。

A. y 2<y 1<0B. y 1<y 2<0C. y 2>y 1>0D. y 1>y 2>0 5.已知方程组⎩⎨⎧-=--=-3232y x y x 的解为⎩⎨⎧=-=11y x ,则函数y=2x+3与y= 12 x+32的交点坐标为( )。

A .(l ,5)B .(-1,1)C .(l ,2)D .(4,l ) 6.反比例函数xk y 3+=的图象在二、四象限,则k 的取值范围是( )。

A .K ≤3 B .K ≥-3 C .K >3 D .K <-3. 7.当k <0时,反比例函数y =xk和一次函数y =kx +2的图象大致是图中的( )。

oxyoxyoxyoyxABC D8.如图,正比例函数y=x 和y=mx 的图象与反比例函数y =xk的图象分别交于第一象限内的A 、C 两点,过A 、C 分别向x 轴作垂线,垂足分别为B 、D.若直角三角形AOB 与直角三角形COD 的面积分别为S 1、S 2,则S 1与S 2的关系为( )。

初三数学函数与图像练习题及答案

初三数学函数与图像练习题及答案

初三数学函数与图像练习题及答案一、选择题1. 下列函数中,是奇函数的是()A. y = x^2 + 1B. y = |x|C. y = x^3 + 2xD. y = sin(x)答案:B2. 函数y = 2x - 5在x = 3处的函数值为()A. -1B. 1C. -5D. 1答案:A3. 若函数的定义域为[-2, 2],则函数y = |x| + 1的值域为()A. [0, 3]B. [1, 2]C. [-1, 2]D. [1, 3]答案:D4. 数集S = {x | -3 ≤ x ≤ 3},则数集S的平均数为()A. 3B. 0C. -3D. 1答案:B二、填空题1. 设函数y = f(x),若f(-2) = 4,f(0) = 1,则f(x)的导数f'(x) =_______。

答案:-32. 若函数y = f(x)的图像关于x轴对称,则f(x)是一个_________函数。

答案:偶3. 函数y = ax^2 + bx + c的图像与x轴交于两个点,且这两个点的横坐标之和为-3,则a + b + c = _______。

答案:-3三、计算题1. 设函数y = f(x) = 2x^2 - 3x + 1,求f(-1)的值。

解:将x = -1代入函数y = 2x^2 - 3x + 1中,得到:f(-1) = 2(-1)^2 - 3(-1) + 1= 2 - (-3) + 1= 2 + 3 + 1= 6所以f(-1)的值为6。

2. 函数y = f(x)的图像经过点P(1, 3),且过点P的切线斜率为4,求函数f(x)的表达式。

解:由题意得,函数f(x)在点P(1, 3)处的导数为4,即f'(1) = 4。

设f'(x) = a,则有f'(1) = a = 4。

对f(x)进行求导,得到f'(x) = 4,则f(x) = 4x + b。

将点P(1, 3)代入函数f(x)中,得到:3 = 4(1) + b= 4 + b∴ b = 3 - 4 = -1所以函数f(x)的表达式为f(x) = 4x - 1。

中考总复习第三单元函数及其图象ppt、中考真题及模拟(附答案)(1)

中考总复习第三单元函数及其图象ppt、中考真题及模拟(附答案)(1)

二、京考真题
【考情分析】
年份 题型 选择 填空 解答 点的 坐标 点的 坐标 点的 坐标 2009
函数 图象
2010
2011
函数 图象
2012
函数 图象
2013
函数 图象
2014 猜猜看
点的 坐标 点的 坐标
解析式 点的 坐标
【热考精讲】
► 热考一 函数自变量的取值范围
1 1 x≠ 2 . 例 1 在函数 y= 中,自变量 x 的取值范围是________ 2x-1 1 [解析] 2x-1≠0 ,x≠ . 2
点到两坐标轴 的距离 点到原点的距离
(1)x 轴上两点 P1(x1,0)与 P2(x2,0)的距离 P1P2 =|x1-x2|; 坐标轴 (2)y 轴上两点 Q1(0,y1)与 Q2(0,y2)的距离 Q1Q2 上两点 =|y1-y2|; 间距离 (3)x 轴上一点 P(x,0)与 y 轴上一点 Q(0,y)的 距离 PQ= x2+y2
防错提醒 (1)函数不是数,它是指某一变化过程 中的两个变量之间的关系;(2)函数定 义中的“唯一性”,是指对于变量x的 每一个值,y都有唯一的值与它对应
考点6
函数的表示方法
表示方法
(1)列表法
(2)图象法
(3)解析法
使用指导
表示函数时,要根据具体情况选择适 当的方法,解决问题时,常常综合应 用这三种方法来深入研究函数的性质
考点3 图形变换引起点的坐标的变化
在平面直角坐标系中,将点(x,y)向右(或 向左)平移a个单位长度,可以得到对应点 点的平移 ________( (x+a,y) 或( x-a,y) ;将点(x,y)向上( ________) 或下)平移b个单位长度,可以得到对应点 (x,y+b) 或( ________ (________) x, y - b) 图形的 平移 图形的平移只改变图形的位置(图形上所 有点的坐标都要发生相应的变化),不改 变图形的大小和形状

2021学年初中数学五年河北经典中考题03 函数及其图像(含答案解析)

2021学年初中数学五年河北经典中考题03  函数及其图像(含答案解析)

专题03 函数及其图像(五年河北)1 .如图,从笔直的公路旁一点出发,向西走到达;从出发向北走也到达.下列说法错误的是()A.从点向北偏西45°走到达B.公路的走向是南偏西45°C.公路的走向是北偏东45°D.从点向北走后,再向西走到达【答案】A【解析】【分析】根据方位角的定义及勾股定理逐个分析即可.【详解】解:如图所示,过P点作AB的垂线PH,选项A:∵BP=AP=6km,且∠BPA=90°,∴△PAB为等腰直角三角形,∠PAB=∠PBA=45°,又PH⊥AB,∴△PAH为等腰直角三角形,∴PH=km,故选项A错误;选项B:站在公路上向西南方向看,公路的走向是南偏西45°,故选项B正确;选项C:站在公路上向东北方向看,公路的走向是北偏东45°,故选项C正确;选项D:从点向北走后到达BP中点E,此时EH为△PEH的中位线,故EH= AP=3,故再向西走到达,故选项D正确.故选:A.【点睛】本题考查了方位角问题及等腰直角三角形、中位线等相关知识点,方向角一般以观测者的位置为中心,所以观测者不同,方向就正好相反,但角度不变.2 .如图,现要在抛物线上找点,针对的不同取值,所找点的个数,三人的说法如下,甲:若,则点的个数为0;乙:若,则点的个数为1;丙:若,则点的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对【答案】C【解析】【分析】分别令x(4-x)的值为5,4,3,得到一元二次方程后,利用根的判别式确定方程的根有几个,即可得到点P的个数.【详解】当b=5时,令x(4-x)=5,整理得:x2-4x+5=0,△=(-4)2-4×5=-6<0,因此点P的个数为0,甲的说法正确;当b=4时,令x(4-x)=4,整理得:x2-4x+4=0,△=(-4)2-4×4=0,因此点P有1个,乙的说法正确;当b=3时,令x(4-x)=3,整理得:x2-4x+3=0,△=(-4)2-4×3=4>0,因此点P有2个,丙的说法不正确;故选:C.【点睛】本题考查二次函数与一元二次方程,解题的关键是将二次函数与直线交点个数,转化成一元二次方程根的判别式.3 .如图,函数的图象所在坐标系的原点是()A.点B.点C.点D.点【答案】A【解析】【分析】由函数解析式可知函数关于y轴对称,当x>0时,图象在一象限,当x<0时,图象在二象限,即可求解.【详解】由已知可知函数y关于y轴对称,∴y轴与直线PM重合.当x>0时,图象在一象限,当x<0时,图象在二象限,即图象在x轴上方,所以点M是原点.故选A.【点睛】本题考查了反比例函数的图象及性质;熟练掌握函数的解析式与函数图象的关系是解题的关键.4 .对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确【答案】D【解析】【分析】分两种情况进行讨论,①当抛物线与直线相切,△=0求得c=1,②当抛物线与直线不相切,但在0≤x≤3上只有一个交点时,找到两个临界值点,可得c=3,4,5,故c =3,4,5【详解】解:∵抛物线L:y=-x(x-3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点.∴①如图1,抛物线与直线相切,联立解析式得x2-2x+2-c=0△=(-2)2-4(2-c)=0解得:c=1,当c=1时,相切时只有一个交点,和题目相符所以不用舍去;②如图2,抛物线与直线不相切,但在0≤x≤3上只有一个交点此时两个临界值分别为(0,2)和(3,5)在抛物线上∴c的最小值=2,但取不到,c的最大值=5,能取到∴2<c≤5又∵c为整数∴c=3,4,5综上,c=1,3,4,5,所以甲乙合在一起也不正确,故选D.【点睛】本题考查了二次函数图象上点的坐标特征和一次函数图象上点的坐标特征和一元二次方程的根的判别式等知识点,数形结合是解此题的关键.5 .如图,码头在码头的正西方向,甲、乙两船分别从、同时出发,并以等速驶向某海域,甲的航向是北偏东,为避免行进中甲、乙相撞,则乙的航向不能是( )A.北偏东B.北偏西C.北偏东D.北偏西【答案】D【解析】试题分析:因为甲乙两船航行的时间相等,速度相等,所以相遇时航行的路程相等,则相遇点与A,B构成一个等腰三角形,此时乙的航向是北偏西35°,故答案选D. 考点:方向角.6 .如图,若抛物线与轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为,则反比例函数()的图象是( )A.B.C.D.【答案】D【解析】试题分析:因为在封闭区域内的整数点的个数是4,所以k=4,故答案选D. 考点:二次函数的图象,反比例函数的图象.7 .若k≠0,b<0,则y=kx+b的图象可能是()A.A B.B C.C D.D【答案】B【解析】因为b<0时,直线与y轴交于负半轴,故选B.8 .如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作(为1~8的整数).函数()的图象为曲线.(1)若过点,则_________;(2)若过点,则它必定还过另一点,则_________;(3)若曲线使得这些点分布在它的两侧,每侧各4个点,则的整数值有_ ________个.【答案】-16 5 7【解析】【分析】(1)先确定T1的坐标,然后根据反比例函数()即可确定k的值;(2)观察发现,在反比例函数图像上的点,横纵坐标只积相等,即可确定另一点;(3)先分别求出T1~T8的横纵坐标积,再从小到大排列,然后让k位于第4个和第5个点的横纵坐标积之间,即可确定k的取值范围和k的整数值的个数.【详解】解:(1)由图像可知T1(-16,1)又∵.函数()的图象经过T1∴,即k=-16;(2)由图像可知T1(-16,1)、T2(-14,2)、T3(-12,3)、T4(-10,4)、T5(-8,5)、T6(-6,6)、T7(-4,7)、T8(-2,8)∵过点∴k=-10×4=40观察T1~T8,发现T5符合题意,即m=5;(3)∵T1~T8的横纵坐标积分别为:-16,-28,-36,-40,-40,-36,-28,-16∴要使这8个点为于的两侧,k必须满足-36<k<-28∴k可取-29、-30、-31、-32、-33、-34、-35共7个整数值.故答案为:(1)-16;(2)5;(3)7.【点睛】本题考查了反比例函数图像的特点,掌握反比例函数图像上的点的横纵坐标积等于k是解答本题的关键.9 .用承重指数衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数与木板厚度(厘米)的平方成正比,当时,.(1)求与的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为(厘米),.①求与的函数关系式;②为何值时,是的3倍?(注:(1)及(2)中的①不必写的取值范围)【答案】(1);(2)①;②.【解析】【分析】(1)设W=kx2,利用待定系数法即可求解;(2)①根据题意列出函数,化简即可;②根据题意列出方程故可求解.【详解】(1)设W=kx2,∵时,∴3=9k∴k=∴与的函数关系式为;(2)①∵薄板的厚度为xcm,木板的厚度为6cm∴厚板的厚度为(6-x)cm,∴Q=∴与的函数关系式为;②∵是的3倍∴-4x+12=3×解得x1=2,x2=-6(不符题意,舍去)经检验,x=2是原方程的解,∴x=2时,是的3倍.【点睛】此题主要考查函数与方程的应用,解题的关键是根据题意找到等量关系列出函数或方程求解.10 .表格中的两组对应值满足一次函数,现画出了它的图象为直线,如图.而某同学为观察,对图象的影响,将上面函数中的与交换位置后得另一个-1 0-2 1(1)求直线的解析式;(2)请在图上画出直线(不要求列表计算),并求直线被直线和轴所截线段的长;(3)设直线与直线,及轴有三个不同的交点,且其中两点关于第三点对称,直接写出的值.【答案】(1):;(2)作图见解析,所截线段长为;(3)的值为或或7【解析】【分析】(1)根据待定系数法即可求解;(2)根据题意得到直线,联立两直线求出交点坐标,再根据两点间的距离公式即可求解;(3)分对称点在直线l,直线和y轴分别列式求解即可.【详解】(1)依题意把(-1,-2)和(0,1)代入,得,解得,∴直线的解析式为,(2)依题意可得直线的解析式为,作函数图像如下:令x=0,得y=3,故B(0,3),令,解得,∴A(1,4),∴直线被直线和轴所截线段的长AB=;(3)①当对称点在直线上时,令,解得x=,令,解得x=,∴2×=a-3,解得a=7;②当对称点在直线上时,则2×(a-3)=,解得a=;③当对称点在y轴上时,则+()=0,解得a=;综上:的值为或或7.【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知待定系数法、一次函数的图像与性质及坐标的对称性.11 .如图1和图2,在中,,,.点在边上,点,分别在,上,且.点从点出发沿折线匀速移动,到达点时停止;而点在边上随移动,且始终保持.(1)当点在上时,求点与点的最短距离;(2)若点在上,且将的面积分成上下4:5两部分时,求的长;(3)设点移动的路程为,当及时,分别求点到直线的距离(用含的式子表示);(4)在点处设计并安装一扫描器,按定角扫描区域(含边界),扫描器随点从到再到共用时36秒.若,请直接写出点被扫描到的总时长.【答案】(1);(2);(3)当时,;当时,;(4)【解析】【分析】(1)根据当点在上时,PA⊥BC时PA最小,即可求出答案;(2)过A点向BC边作垂线,交BC于点E,证明△APQ∽△ABC,可得,根据=可得,可得,求出AB=5,即可解出MP;(3)先讨论当0≤x≤3时,P在BM上运动,P到AC的距离:d=PQ·sinC,求解即可,再讨论当3≤x≤9时,P在BN上运动,BP=x-3,CP=8-(x-3)=11-x,根据d=CP·sinC即可得出答案;(4)先求出移动的速度==,然后先求出从Q平移到K耗时,再求出不能被扫描的时间段即可求出时间.【详解】(1)当点在上时,PA⊥BC时PA最小,∵AB=AC,△ABC为等腰三角形,∴PA min=tanC·=×4=3;(2)过A点向BC边作垂线,交BC于点E,S上=S△APQ,S下=S四边形BPQC,∵,∴PQ∥BC,∴△APQ∽△ABC,∴,∴,当=时,,∴,AE=·,根据勾股定理可得AB=5,∴,解得MP=;(3)当0≤x≤3时,P在BM上运动,P到AC的距离:d=PQ·sinC,由(2)可知sinC=,∴d=PQ,∵AP=x+2,∴,∴PQ=,∴d==,当3≤x≤9时,P在BN上运动,BP=x-3,CP=8-(x-3)=11-x,d=CP·sinC=(11-x)=-x+,综上;(4)AM=2<AQ=,移动的速度==,①从Q平移到K,耗时:=1秒,②P在BC上时,K与Q重合时CQ=CK=5-=,∵∠APQ+∠QPC=∠B+∠BAP,∴∠QPC=∠BAP,又∵∠B=∠C,∴△ABP∽△PCQ,设BP=y,CP=8-y,,即,整理得y2-8y=,(y-4)2=,解得y1=,y2=,÷=10秒,÷=22秒,∴点被扫描到的总时长36-(22-10)-1=23秒.【点睛】本题考查了相似三角形的判定和性质,锐角三角函数,一次函数的应用,结合知识点灵活运用是解题关键.12 .长为的春游队伍,以的速度向东行进,如图1和图2,当队伍排尾行进到位置时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为,当甲返回排尾后,他及队伍均停止行进.设排尾从位置开始行进的时间为,排头与的距离为(1)当时,解答:①求与的函数关系式(不写的取值范围);②当甲赶到排头位置时,求的值;在甲从排头返回到排尾过程中,设甲与位置的距离为,求与的函数关系式(不写的取值范围)(2)设甲这次往返队伍的总时间为,求与的函数关系式(不写的取值范围),并写出队伍在此过程中行进的路程.【答案】(1)①;②;(2)与的函数关系式为:,此时队伍在此过程中行进的路程为.【解析】【分析】(1)①排头与O的距离为S头(m).等于排头行走的路程+队伍的长300,而排头行进的时间也是t(s),速度是2m/s,可以求出S头与t的函数关系式;②甲赶到排头位置的时间可以根据追及问题的数量关系得出,代入求S即可;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m)是在S的基础上减少甲返回的路程,而甲返回的时间=总时间t-甲从排尾赶到排头的时间,于是可以求S 与t的函数关系式;甲(2)甲这次往返队伍的总时间为T(s),是甲从排尾追到排头用的时间与从排头返回排尾用时的和,可以根据追及问题和相遇问题的数量关系得出结果;在甲这次往返队伍的过程中队伍行进的路程=队伍速度×返回时间.【详解】(1)①排尾从位置O开始行进的时间为t(s),则排头也离开原排头t(s),∴S头=2t+300;②甲从排尾赶到排头的时间为300÷(2v﹣v)=300÷v=300÷2=150s,此时S头=2t+300=600m,甲返回时间为:(t﹣150)s,∴S甲=S头﹣S甲回=2×150+300﹣4(t﹣150)=﹣4t+ 1200;因此,S头与t的函数关系式为S头=2t+300,当甲赶到排头位置时,S的值为600m,在甲从排头返回到排尾过程中,S甲与t的函数关系式为S甲=﹣4t+1200.(2)T=t追及+t返回,在甲这次往返队伍的过程中队伍行进的路程为:v400;因此T与v的函数关系式为:T,此时队伍在此过程中行进的路程为400m.【点睛】本题考查了行程问题中相遇、追及问题,同时还考查了函数思想方法的应用,切实理解变量之间的变化关系,由于时间有重合的部分,容易出现错误.13 .如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.【答案】(1)b=4,(2,﹣2 );(2)1;(3);(4)当b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.【解析】【分析】(1)求出A、B的坐标,由AB=8,可求出b的值.从而得到L的解析式,找出L的对称轴与a的交点即可;(2)通过配方,求出L的顶点坐标,由于点C在l下方,则C与l的距离,配方即可得出结论;(3)由題意得y1+y2=2y3,进而有b+x0﹣b=2(﹣x02+bx0)解得x0的值,求出L与x轴右交点为D的坐标,即可得出结论;(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x直线解析式a:y=x﹣2019,美点”总计4040个点,②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,“美点”共有1010个.【详解】(1)当x=0吋,y=x﹣b=﹣b,∴B(0,﹣b).∵AB=8,而A(0,b),∴b﹣(﹣b)=8,∴b=4,∴L:y=﹣x2+4x,∴L的对称轴x=2,当x=2时,y=x﹣4=﹣2,∴L的对称轴与a的交点为(2,﹣2 );(2)y=﹣(x)2,∴L的顶点C(,).∵点C在l下方,∴C与l的距离b(b﹣2)2+1≤1,∴点C与l距离的最大值为1;(3)∵y3是y1,y2的平均数,∴y1+y2=2y3,∴b+x0﹣b=2(﹣x02+bx0),解得:x0=0或x0=b.∵x0≠0,∴x0=b,对于L,当y=0吋,0=﹣x2+bx,即0=﹣x(x﹣b),解得:x1= 0,x2=b.∵b>0,∴右交点D(b,0),∴点(x0,0)与点D间的距离b﹣(b).(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x,直线解析式a:y=x﹣2019.联立上述两个解析式可得:x1=﹣1,x2=2019,∴可知每一个整数x的值都对应的一个整数y值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点,∴总计4042个点.∵这两段图象交点有2个点重复,∴美点”的个数:4042﹣2=4040(个);②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,联立上述两个解析式可得:x1=﹣1,x2=2019.5,∴当x取整数时,在一次函数y=x﹣2019.5上,y取不到整数值,因此在该图象上“美点”为0,在二次函数y=x2+2019.5x 图象上,当x为偶数时,函数值y可取整数,可知﹣1到2019.5之间有1010个偶数,因此“美点”共有1010个.故b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.【点睛】本题考查了二次函数,熟练运用二次函数的性质以及待定系数法求函数解析式是解题的关键.14 .如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.【答案】(1)m=2,l2的解析式为y=2x;(2)S△AOC﹣S△BOC=15;(3)k的值为或2或﹣.【解析】【分析】(1)先求得点C的坐标,再运用待定系数法即可得到l2的解析式;(2)过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,再根据A(10,0),B (0,5),可得AO=10,BO=5,进而得出S△AOC﹣S△BOC的值;(3)分三种情况:当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l平行时,k=﹣;故k的值为或2或﹣.3【详解】(1)把C(m,4)代入一次函数y=﹣x+5,可得4=﹣m+5,解得m=2,∴C(2,4),设l2的解析式为y=ax,则4=2a,解得a=2,∴l2的解析式为y=2x;(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,y=﹣x+5,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∴S△AOC﹣S△BOC=×10×4﹣×5×2=20﹣5=15;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,∴当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l3平行时,k=﹣;故k的值为或2或﹣.【点睛】本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.15 .如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5,M ,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1. 8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.【答案】(1)k=18,h=5t2;(2)x=5t+1,y=﹣5t2+18,y=,当y= 13时,运动员在与正下方滑道的竖直距离是10米;(3)t=1.8,v乙>7.5【解析】【分析】(1)用待定系数法解题即可;(2)根据题意,分别用t表示x、y,再用代入消元法得出y与x之间的关系式;(3)求出甲距x轴1.8米时的横坐标,根据题意求出乙位于甲右侧超过4.5米的v乙.【详解】(1)由题意,点A(1,18)代入y=,得:18=,∴k=18,设h=at2,把t=1,h=5代入,∴a=5,∴h=5t2;(2)∵v=5,AB=1,∴x=5t+1,∵h=5t2,OB=18,∴y=﹣5t2+18,由x=5t+1,则t=(x-1),∴y=﹣(x-1)2+18=,当y=13时,13=﹣(x-1)2+18,解得x=6或﹣4,∵x≥1,∴x=6,把x=6代入y=,y=3,∴运动员在与正下方滑道的竖直距离是13﹣3=10(米);(3)把y=1.8代入y=﹣5t2+18得t2=,解得t=1.8或﹣1.8(负值舍去)∴x=10∴甲坐标为(10,1.8)恰号落在滑道y=上,此时,乙的坐标为(1+1.8v乙,1.8),由题意:1+1.8v乙﹣(1+5×1.8)>4.5,∴v乙>7.5.【点睛】本题考查了二次函数的应用,反比例函数的应用,综合性较强,有一定的难度,读懂题意,正确应用反比例函数和二次函数的知识解决问题是关键.本题也考查了函数图象上的临界点问题.16 .如图,直角坐标系中,,直线与轴交于点,直线与轴及直线分别交于点,.点,关于轴对称,连接.(1)求点,的坐标及直线的解析式;(2)设面积的和,求的值;(3)在求(2)中时,嘉琪有个想法:“将沿轴翻折到的位置,而与四边形拼接后可看成,这样求便转化为直接求的面积不更快捷吗?”但大家经反复验算,发现,请通过计算解释他的想法错在哪里.【答案】(1)C(-13,0),E(-5,-3),;(2)32;(3)见解析.【解析】试题分析:(1)由与x轴和直线x=-5的交点求得点C,E的坐标,点B,E关于x轴对称,求得B的坐标,由待定系数法求直线AB的解析式;(2)分别求△CDE的面积和梯形ABDO的面积;(3)点C不在直线AB上.试题解析:(1)把y=0代入,解得x=-13,∴C(-13,0).把x=-5代入,解得y=-3,∴E(-5,-3).∵点B,E关于x轴对称,∴B(-5,3).设直线AB的解析式为y=kx+b,则解得∴直线AB的解析式为.(2)∵CD=8,DE=DB=3,OA=OD=5,∴,,即S=32.(3)当x=-13时,=-0.2≠0.∴点C不在直线AB上,即A,B,C三点不共线.∴他的想法错在将△CDB与四边形ABDO拼接后看成了△AOC.考点:待定系数法,多边形的面积,一次函数的性质.17 .某厂按用户的月需求量(件)完成一种产品的生产,其中.每件的售价为18万元,每件的成本(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量(件)成反比.经市场调研发现,月需求量与月份(为整数,)符合关系式(为常数),且得到了表中的数据.月份(月) 1 2成本(万元/件) 11 12需求量(件/月) 120 100(1)求与满足的关系式,请说明一件产品的利润能否是12万元;(2)求,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第个月和第个月的利润相差最大,求.【答案】(1),不可能;(2)不存在;(3)1或11.【解析】试题分析:(1)根据每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,结合表格,用待定系数法求y与x之间的函数关系式,再列方程求解,检验所得结果是还符合题意;(2)将表格中的n,对应的x 值,代入到,求出k,根据某个月既无盈利也不亏损,得到一个关于n的一元二次方程,判断根的情况;(3)用含m的代数式表示出第m个月,第(m+1)个月的利润,再对它们的差的情况讨论.试题解析:(1)由题意设,由表中数据,得解得∴.由题意,若,则.∵x>0,∴.∴不可能.(2)将n=1,x=120代入,得120=2-2k+9k+27.解得k=13.将n=2,x=100代入也符合.∴k=13.由题意,得18=6+,求得x=50.∴50=,即.∵,∴方程无实数根.∴不存在.(3)第m个月的利润为w==;∴第(m+1)个月的利润为W′=.若W≥W′,W-W′=48(6-m),m取最小1,W-W′=240最大.若W<W′,W′-W=48(m-6),m+1≤12,m取最大11,W′-W=240最大.∴m=1或11.考点:待定系数法,一元二次方程根的判别式,二次函数的性质,二次函数的应用.18 .某商店能过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单第1个第2个第3个第4个…第n个调整前单价x(元)x1x2=6 x3=72 x4…x n调整后单价x(元)y1y2=4 y3=59 y4…y n已知这n个玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导出过.【答案】(1) , ;(2) 19元; (3) ,见解析.【解析】【分析】(1)根据题意用待定系数法求解析式即可;(2)代入求得调整后的钱数,用原来的单价减去调整后的单价即可;(3),根据平均数的计算方法,代入计算即可.【详解】(1)设y=kx+b,依题意,得x=6,y=4;x=72,y=59,∴,∴解得∴依题意,得,解得,即为x的取值范围;(2)将x=108代入,得,108-89=19,∴省了19元.(3).推导过程如下:由(1),,...,,∴=.考点:一次函数;平均数.19 .如图,抛物线L:(常数t>0)与x轴从左到右的交点为B,A ,过线段OA的中点M作MP⊥x轴,交双曲线于点P,且OA·MP=12.(1)求k值;(2)当t=1时,求AB长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G 最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.【答案】(1)6;(2);(3)当t-2≤,即t≤4时,顶点(t-2,2)就是G的最高点;当t>4时,L与MP的交点()就是G的最高点.(4).【解析】试题分析:(1)设设点P(x,y),则MP=y,由OA的中点为M知OA=2x,代入OA·MP=12,即可得xy=6,即k=6;(2)当t=1时,令y=0,0=,解得.即可得AB=4,求得抛物线的对称轴,根据点M的坐标即可得直线MP 与L对称轴之间的距离;(3)由抛物线的解析式可得A(t,0),B(t-4,0),即可得抛物线的对称轴为x=t-2,又因MP为直线x=,当t-2≤,即t≤4时,顶点(t-2,2)就是G的最高点;当t>4时,L与MP的交点()就是G的最高点.(4)对双曲线,当4≤x0≤6时,1≤y≤,即L与双曲线C(4,),D(6,1)之间的一段有个交点.①由=,解得;②由1=,解得;随着t的逐渐增大,L的位置随着点A(t,0)向右平移,如图3所示.当t=5时,L右侧过点C;当时,L右侧过点D;即.当时,L右侧离开了点D,而左侧未到点C,即L与该段无交点,舍去.当t=7时,L左侧过点C;当时,L左侧过点D;即.试题解析:(1)设点P(x,y),则MP=y,由OA的中点为M知OA=2x,代入OA·MP=12,得,即xy=6,∴k=xy=6.(2)当t=1时,令y=0,0=,∴.∴由B在A的左边,得B(-3,0),A(1,0),∴AB=4.∵L的对称轴为x=-1,而M(,0),∴MP与L对称轴的距离为.(3)∵A(t,0),B(t-4,0),∴L的对称轴为x=t-2,又MP为x=,当t-2≤,即t≤4时,顶点(t-2,2)就是G的最高点;当t>4时,L与MP的交点()就是G的最高点.(4).考点:二次函数与反比例函数综合题.。

中考辅导 函数及其图象(含答案)-.doc

中考辅导 函数及其图象(含答案)-.doc

2007中考数学辅导之—函数及其图象一、学习目标1、能正确画出直角坐标系;并能在直角坐标系中,根据点的坐标找出点,由点求出点的坐标。

2、能分清实例中出现的常量与变量、自变量与函数;对简单的函数表达式,能确定自变量的取值范围,并会求出函数值。

3、能画出简单函数的图象;知道不仅可以用解析法,而且还可以用列表法和图象法表示函数。

二、教材简析函数是数学中的重要概念之一,它使我们从研究不变的量,转化为研究变量之间的相依关系。

函数不仅是一个重要的概念,也是一种很重要的数学思想方法。

通过函数概念和图象的学习可以用几何图形来解析代数问题,使代数问题变得更形象、直观,便于理解,另一方面,也可以用代数方法来研究几何问题。

本章内容包括三个单元。

第一单元是直角坐标系的初步知识,第二单元是函数及其图象,第三单元是常见的几种函数,包括一次函数(正比例函数)、二次函数、反比例函数及其图象。

(本讲主要学习巩固第一、二单元,第三单元留待下学期复习)。

学习直角坐标系,建立有序实数与平面内的点的一一对应关系,为研究函数的图象作准备。

学习函数概念,首先要了解常量、变量概念,用动态的观点来看问题。

弄清函数的本质是具有某些特点的对应关系,抓住函数对自变量的依从关系就是函数与自变量的对应关系。

函数关系中自变量的取值范围是函数存在的不可缺少的部分。

了解函数有三种表示方法,即解析法、列表法和图象法。

能正确迅速地列表、描点并绘出函数图象,(以下为下学期内容)要逐步学会用图象总结函数的性质,由函数的性质能想象出表达式中自变量x与函数y的变化情况。

本章重点是函数的概念、函数解析式与图象性质的内在联系。

能灵活地进行数与形之间的变换是难点。

三、本讲(即第一、二单元)的重点内容有1、掌握x轴、y轴上和四个象限内点的坐标的特征。

2、懂得建立了平面直角坐标系,就使平面上的点与一对有序实数之间建立起一一对应关系,建立数与形之间的联系,初步了解数形结合思想。

3、对函数概念的理解和自变量取值范围的确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考基础复习(三): 函数及其图象试题
一、选择题:
(3分/题) 1. 函数1y =

2.在平面直角坐标系中,以点(3,2)为圆心、3为半径的圆,一定( )
A .与x 轴相切,与y 轴相切
B .与x 轴相切,与y 轴相交
C .与x 轴相交,与y 轴相切
D .与x 轴相交,与y 轴相交
3.若直线x +2y =2m 与直线2x +y =2m +3(m 为常数)的交点在第四象限,则整数m 的值为( )
A .―3,―2,―1,0
B .―2,―1,0,1
C .―1,0,1,2
D .0,1,2,3 4.已知函数2
5
(1)m
y m x -=+是反比例函数,且图像在第二、四象限内,则m 的值是( )
A .2
B .2-
C .2±
D .12
-
5.均匀地向如图所示的容器注水,最后把容器注满.在注水过程中,能大致反映水面高度h 随时间t 变化
的图象是( )
6.已知函数1y x
=的图象如下,当1x ≥-时,y 的取值范围是( )
A .
1y <-
B .1y ≤-
C .1y ≤- 或0y >
D .1y <-或0y ≥
7.双曲线y = 4 x 与y = 2
x
在第一象限内的图象如图所示,作一条平行于y 轴的直线分别交双曲线于A 、B
两点,连接OA 、OB ,则△AOB 的面积为( ) A .1 B .2 C .3 D .4
h
t O
A
-1 -1
y
x O
8.已知一次函数y =kx +b ,当0≤x ≤2时,对应的函数值y 的取值范围是-2≤y ≤4, 则kb 的值为( ) A. 12 B. -6
C. -6或-12
D. 6或12
9.如图2,点P (3a ,a )是反比例函y = k
x
(k >0)与⊙O 图中阴影部分的面积为10π,则反比例函数的解析式为( ) A .y =3x B .y =5x C .y =10x D .y =12
x
10.如图,直线l是经过点(1,0)且与y 轴平行的直线.Rt △ABC 中直角边AC=4,BC=3.将BC 边在直线l上滑动,使A ,B 在函数x
k y =
的图象上.
那么k 的值是( )
A .3
B .6 C.12 D .
4
15
二、填空题( 3分/题 )
11. 在平面直角坐标系中,点A 1(1,1),A 2(2,4),A 3(3,9),A 4(4,16),…,用你发现的规律 确定点A 9的坐标为
.
12.在平面直角坐标系中,线段AB 的端点A 的坐标为(-3,2),将其先向右平移4个单位,再向下平移3个单位,得到线段A ′B ′,则点A 对应点A ′的坐标为 . 13.函数3
y x =
-的自变量x 的取值范围是 .
14. 请写出符合以下两个条件的一个函数解析式 . ①过点(-2,1), ②在第二象限内,y 随x 增大而增大.
15.若二次函数k x x y ++-=22的部分图象如图所示,
则关于x 的一元二次方程
022
=++-k x x
的一个解
31=x ,另一个解=2x ;
16.某种火箭被竖直向上发射时,它的高度(m)h 与时间(s)t 的关系可以用公式2
515010h t t =-++表示,经过________s ,火箭达到它的最高点.
(第15题图)
17.如图,在直角坐标系中,以坐标原点为圆心、半径为1的
⊙O 与x 轴交于A ,B 两点,与y 轴交于C ,D 两点.E 为
⊙O 上在第一象限的某一点,直线BF 交⊙O 于点F ,并且 ∠ABF =∠AEC ,则直线BF 的函数表达式为 .
18.如图,已知A 、B
两点的坐标分别为()
、(0,2), P 是△AOB 外接圆上的一点,
且∠AOP=45°,则点P 的坐标为 .
三、解答题
19. (10分)已知点P ()x y ,是第一象限内的点,且8x y +=,点A 的坐标为(10,0)。

设△OAP 的面积为S 。

(1)求S 关于x 的函数解析式,并写出自变量的取值范围; (2)画出此函数的图象。

20.(12分)已知:如图,抛物线c bx ax y ++=2与x 轴相交于两点A(1,0),B(3,0),与y 轴相交于点C (0,3).
(1)求抛物线的函数关系式; (2)若点D (
2
7,m )是抛物线c bx ax y ++=2
请求出m 的值,并求出此时△ABD 的面积.
21.(12分)如图,四边形OABC是面积为4的正方形,函数
k
y
x
=(x>0)的图象经过点B.
(1)求k的值;
(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、MA′BC.设线段MC′、NA′分别与
函数
k
y
x
=(x>0)的图象交于点E、F,求线段EF所在直线的解析式.
22. (12分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:
限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.
(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?
(2)如果先进行精加工,然后进行粗加工.
①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;
②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?
函数应用题
1、国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x (套)与每套的售价1y (万元)之间满足关系式x y 21701-=,月产量x (套)与生产总成本2y (万元)存在如图所示的函数关系.
(1)直接写出....2y 与x 之间的函数关系式; (2)求月产量x 的范围;
(3)当月产量x (套)为多少时,
这种设备的利润W (万元)最大?最大利润是多少?
2.如图所示,某地区对某种药品的需求量y 1(万件),供应量y 2(万件)与价格x (元/件)分别近似满
足下列函数关系式:y 1=-x + 70,y 2=2x -38,需求量为0时,即停止供应.当y 1=y 2时,该药品的价格称
为稳定价格,需求量称为稳定需求量. (1)求该药品的稳定价格与稳定需求量.
(2)价格在什么范围内,该药品的需求量低于供应量?
(3)由于该地区突发疫情,政府部门决定对药品供应方提供价格补贴来提高供货价格,以利提高供
应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量.
元/件)。

相关文档
最新文档