专题01 空间几何体的三视图、表面积与体积(原卷版)

合集下载

空间几何体的三视图、表面积和体积 高考数学真题与解析

空间几何体的三视图、表面积和体积  高考数学真题与解析

专题八立体几何8.1空间几何体的三视图、表面积和体积考点一空间几何体的三视图与直观图1.(2016天津文,3,5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()答案B由几何体的正视图、俯视图以及题意可画出几何体的直观图,如图所示.该几何体的侧视图为选项B中图形.故选B.评析本题主要考查空间几何体的三视图与直观图,考查学生的空间想象能力和识图、画图能力.2.(2014课标Ⅰ,8,5分,0.795)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱答案B 由题中三视图可知该几何体的直观图如图所示,则这个几何体是三棱柱,故选B.3.(2014北京理,7,5分)在空间直角坐标系O-xyz 中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,2).若S 1,S 2,S 3分别是三棱锥D-ABC 在xOy,yOz,zOx 坐标平面上的正投影图形的面积,则()A.S 1=S 2=S 3B.S 2=S 1且S 2≠S 3C.S 3=S 1且S 3≠S 2D.S 3=S 2且S 3≠S 1答案D 三棱锥D-ABC 如图所示.S 1=S △ABC =12×2×2=2,S 2=12×2×2=2,S 3=12×2×2=2,∴S 2=S 3且S 1≠S 3,故选D.4.(2014课标Ⅰ理,12,5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.62B.6C.42D.4答案B 由多面体的三视图可知该几何体的直观图为一个三棱锥,如图所示.其中面ABC⊥面BCD,△ABC 为等腰直角三角形,AB=BC=4,取BC 的中点M,连接AM,DM,则DM⊥面ABC,在等腰△BCD 中,BD=DC=25,BC=DM=4,所以在Rt△AMD 中,AD=B 2+D 2=42+22+42=6,又在Rt△ABC 中,AC=42<6,故该多面体的各条棱中,最长棱为AD,长度为6,故选B.评析本题考查空间几何体的三视图与直观图之间的互相转化,考查面面垂直性质定理的应用.同时考查考生的空间想象能力和运算求解能力.正确画出三棱锥的直观图是解决本题的关键.5.(2013课标Ⅱ,理7,文9,5分)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()答案A设O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),将以O、A、B、C为顶点的四面体补成一正方体后,由于OA⊥BC,所以该几何体以zOx平面为投影面的正视图为A.方法归纳由几何体直观图画三视图的要求:①注意三个视图对应的观察方向;②注意视图中虚线与实线的区别;③画出的三视图要符合“长对正,高平齐,宽相等”的基本特征.6.(2013湖南理,7,5分)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于()A.1B.2C.2-12D.2+12答案C若该正方体的放置方式如图所示,当正视的方向与正方体的任一侧面垂直时,正视图的面积最小,其值为1,当正视的方向与正方体的对角面BDD1B1或ACC1A1垂直时,正视图的面积最大,其值为2,由于正视的方向不同,因此正视图的面积S∈[1,2].故选C.评析本题考查空间几何体的三视图与直观图,考查学生空间想象能力及有关知识的应用能力,解答本题应设法求出正视图的面积的取值范围,而不应该逐项计算.7.(2011课标理,6文,8,5分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()答案D 由几何体的正视图和俯视图可知,该几何体应为一个半圆锥和一个有一侧面垂直于底面的三棱锥组成的组合体,故其侧视图应为D 选项.错因分析将组合体看成半圆柱和三棱锥的组合或不注意C 和D 中中线实虚的含义,易误选A 或C.评析本题主要考查空间几何体的三视图,考查学生的识图能力和空间想象能力.考点二空间几何体的表面积与体积1.(2018课标Ⅰ文,5,5分)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122πB.12πC.82πD.10π答案B 本题主要考查圆柱的表面积及圆柱的轴截面.设圆柱的底面半径为r,高为h,由题意可知2r=h=22,∴圆柱的表面积S=2πr 2+2πr·h=4π+8π=12π.故选B.解题关键正确理解圆柱的轴截面及熟记圆柱的表面积公式是解决本题的关键.2.(2016课标Ⅱ文,4,5分)体积为8的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.323πC.8πD.4π答案A 设正方体的棱长为a,则a 3=8,解得a=2.设球的半径为R,则2R=3a,即R=3,所以球的表面积S=4πR 2=12π.故选A.方法点拨对于正方体与长方体,其体对角线为其外接球的直径,即外接球的半径等于体对角线的一半.3.(2016课标Ⅲ,理10,文11,5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+365B.54+185C.90D.81答案B由三视图可知,该几何体是底面为正方形(边长为3),高为6,侧棱长为35的斜四棱柱.其表面积S=2×32+2×3×35+2×3×6=54+185.故选B.易错警示学生易因空间想象能力较差而误认为侧棱长为6,或漏算了两底面的面积而致错.4.(2015课标Ⅰ理,11,5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.8答案B由已知条件可知,该几何体由圆柱的一半和半球组成,其表面积为2πr2+πr2+4r2+2πr2=5πr2+4r2.由5πr2+4r2=16+20π得r=2.故选B.5.(2015北京理,5,5分)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+5B.4+5C.2+25D.5答案C 由三视图可得该三棱锥的直观图如图所示,其中PA=1,BC=2,取BC 的中点M,连接AM,MP,则AM=2,AM⊥BC,故AC=AB=B 2+A 2=1+4=5,由正视图和侧视图可知PA⊥平面ABC,因此可得PC=PB=B 2+A 2=1+5=6,PM=B 2+A 2=1+4=5,所以三棱锥的表面积为S △ABC +S △PAB +S △PAC +S △PBC =12×2×2+12×5×1+12×5×1+12×2×5=2+25,故选C.6.(2015陕西,理5,文5,5分)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4D.3π+4答案D 由题中三视图知该几何体是底面半径为1,高为2的半个圆柱,故其表面积S=2×12×π×12+π×1×2+2×2=3π+4.评析本题考查三视图的概念和性质以及圆柱的表面积,考查运算及推理能力和空间想象能力.由三视图确定几何体的直观图是解题的关键.7.(2015课标Ⅱ,理9,文10,5分,0.685)已知A,B 是球O 的球面上两点,∠AOB=90°,C 为该球面上的动点.若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为()A.36πB.64πC.144πD.256π答案C ∵S △OAB 是定值,且V O-ABC =V C-OAB ,∴当OC⊥平面OAB 时,V C-OAB 最大,即V O-ABC 最大.设球O 的半径为R,则(V O-ABC )max =13×12R 2×R=16R 3=36,∴R=6,∴球O 的表面积S=4πR 2=4π×62=144π.思路分析由△OAB 的面积为定值分析出当OC⊥平面OAB 时,三棱锥O-ABC 的体积最大,从而根据已知条件列出关于R 的方程,进而求出R 值,利用球的表面积公式即可求出球O 的表面积.导师点睛点C 是动点,在三棱锥O-ABC 中,如果以面ABC 为底面,则底面面积与高都是变量,而S △OAB 为定值,因此转化成以面OAB 为底面,这样高越大,体积越大.8.(2014浙江理,3,5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2答案D由三视图可知该几何体由一个直三棱柱与一个长方体组合而成(如图),其表面积为S=3×5+2×12×4×3+4×3+3×3+2×4×3+2×4×6+3×6=138(cm2).9.(2014福建文,5,5分)以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于()A.2πB.πC.2D.1答案A由题意得圆柱的底面半径r=1,母线l=1.∴圆柱的侧面积S=2πrl=2π.故选A.10.(2018浙江,3,4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.8答案C本小题考查空间几何体的三视图和直观图以及几何体的体积公式.由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上,下底边的长分别为1cm,2cm,高为2 cm,直四棱柱的高为2cm.故直四棱柱的体积V=1+22×2×2=6cm3.思路分析(1)利用三视图可判断几何体是直四棱柱;(2)利用“长对正,高平齐,宽相等”的原则,可得直四棱柱的各条棱长.11.(2016山东理,5,5分)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.13+23πB.13+C.13+答案C由三视图可知四棱锥为正四棱锥,底面正方形的边长为1,四棱锥的高为1,球的直径等于正四棱锥底面正方形的对角线的长,所以球的直径2R=2,即所以半球的体积为23πR3又正四棱锥的体积为13×12×1=13,所以该几何体的体积为13+故选C.易错警示不能从俯视图中正确地得到球的半径,而错误地从正视图中得到球的半径R=12.评析本题考查了空间几何体的三视图和体积公式.正确得到几何体的直观图并准确地计算是解题关键.12.(2016北京,6,5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.1答案A由三视图可画出三棱锥的直观图如图所示,其底面是等腰直角三角形ACB,直角边长为1,三棱锥的高为1,故体积V=13×12×1×1×1=16.故选A.13.(2015课标Ⅰ,理6,文6,5分,0.451)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛答案B设圆锥底面的半径为R尺,由14×2πR=8得R=16π,从而米堆的体积V=14×13πR2×5=16×203π(立方尺),因此堆放的米约有16×203×1.62π≈22(斛).故选B.14.(2015课标Ⅱ,理6,文6,5分,0.426)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()A.18B.17C.16D.15答案D如图,由已知条件可知,在正方体ABCD-A1B1C1D1中,截去三棱锥A-A1B1D1后剩余的部分即为题中三视图对应的几何体,设该正方体的棱长为a,则截去部分的体积为16a3,剩余部分的体积为a3-16a3=56a3.它们的体积之比为15.故选D.15.(2015重庆理,5,5分)某几何体的三视图如图所示,则该几何体的体积为()A.13+2πB.13π6C.7π3D.5π2答案B由三视图可知,该几何体是一个底面半径为1,高为2的圆柱和底面半径为1,高为1的半圆锥拼成的组合体.所以该几何体的体积为12×13×π×12×1+π×12×2=13π6,故选B.16.(2015浙江理,2,5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8cm3B.12cm3C.323cm3D.403cm3答案C由三视图知,该几何体是由棱长为2cm的正方体和底面边长为2cm,高为2cm的正四棱锥组合而成的几何体.所以该几何体的体积V=23+13×22×2=323cm3,故选C.17.(2015山东理,7,5分)在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.2π3B.4π3C.5π3D.2π答案C如图,此几何体是底面半径为1,高为2的圆柱挖去一个底面半径为1,高为1的圆锥,故所求体积V=2π-π3=5π3.评析本题主要考查几何体的体积及空间想象能力.18.(2015湖南文,10,5分)某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为材料利用率=新工件的体积)原工件的体积A.89πB.827πC.24(2-1)3πD.8(2-1)3π答案A由三视图可知,原工件是一个底面半径为1,母线长为3的圆锥,则圆锥的高为22,新工件是该圆锥的内接正方体,如图,此截面中的矩形为正方体的对角面,设正方体的棱长为x,则22x1=22-x22,解得x=223.所以正方体的体积V1223=16227,又圆锥的体积V2=13π×12×22=223π,所以原工件材料的利用率为12=89π,故选A.19.(2014陕西理,5,5分)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A.32π3B.4πC.2πD.4π3答案D 如图为正四棱柱AC 1.根据题意得AC=2,∴对角面ACC 1A 1为正方形,∴外接球直径2R=A 1C=2,∴R=1,∴V 球=4π3,故选D.20.(2014课标Ⅱ,理6,文6,5分,0.506)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727 B.59C.1027D.13答案C 该零件是两个圆柱体构成的组合体,其体积为π×22×4+π×32×2=34πcm 3,圆柱体毛坯的体积为π×32×6=54πcm 3,所以切削掉部分的体积为54π-34π=20πcm 3,所以切削掉部分的体积与原来毛坯体积的比值为20π54π=1027,故选C.21.(2014课标Ⅱ文,7,5分,0.495)正三棱柱ABC-A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A-B 1DC 1的体积为()A.3B.32C.1答案C 在正三棱柱ABC-A 1B 1C 1中,∵AD⊥BC,AD⊥BB 1,BB 1∩BC=B,∴AD⊥平面B 1DC 1,∴t1D1=13△1D1·AD=13×12×2×3×3=1,故选C.22.(2013课标Ⅰ,理8,文11,5分,0.718)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π答案A由三视图可知该几何体由长方体和圆柱的一半组成.其中长方体的长、宽、高分别为4、2、2,圆柱的底面半径为2,高为4.所以该几何体的体积V=4×2×2+12π×22×4=16+8π.故选A.思路分析由三视图分析该几何体的构成,从而利用三视图中的数据计算几何体的体积.23.(2013浙江文,5,5分)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100cm3C.92cm3D.84cm3答案B由三视图可知,该几何体是一个长方体截去了一个三棱锥,结合所给数据,可得其体积为6×6×3-13×12×4×4×3=100(cm3),故选B.24.(2012大纲全国,理7,文7,5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.18答案B由三视图可得,该几何体为如图所示的三棱锥S-ABC,其中底面△ABC为等腰三角形,底边AC=6,AC 边上的高为3,SB⊥底面ABC,且SB=3,所以该几何体的体积V=13×12×6×3×3=9.故选B.评析本题考查了三视图和三棱锥的体积,考查了空间想象能力.由三视图正确得到该几何体的直观图是求解的关键.25.(2011陕西文,5,5分)某几何体的三视图如图所示,则它的体积为()A.8-2π3B.8-π3C.8-2πD.2π3答案A由给出的三视图可得原几何体为正方体中挖去一圆锥,且此圆锥以正方体的上底面内切圆为底,以正方体的棱长为高.故所求几何体的体积为8-13×π×12×2=8-2π3.评析三视图是考查空间想象能力很好的一个题材,正确解答此类题目的关键是平时空间想象能力的培养,对文科学生来说,本题属中等难度题.26.(2016课标Ⅰ,6,5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π,则它的表面积是()A.17πB.18πC.20πD.28π答案A由三视图知该几何体为球去掉了18所剩的几何体(如图),设球的半径为R,则78×43πR3=28π3,故R=2,从而它的表面积S=78×4πR2+34×πR2=17π.故选A.27.(2016课标Ⅱ,6,5分)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π答案C由三视图可得圆锥的母线长为22+(23)2=4,∴S圆锥侧=π×2×4=8π.又S圆柱侧=2π×2×4=16π,S圆柱底=4π,∴该几何体的表面积为8π+16π+4π=28π.故选C.思路分析先求圆锥的母线长,从而可求得圆锥的侧面积,再求圆柱的侧面积与底面积,最后求该几何体的表面积.28.(2017课标Ⅱ文,15,5分)长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.答案14π解析本题考查长方体和球的性质,考查了球的表面积公式.由题意知长方体的体对角线为球O的直径,设球O的半径为R,则(2R)2=32+22+12=14,得R2=72,所以球O的表面积为4πR2=14π.疑难突破明确长方体的体对角线为球O的直径是求解的关键.易错警示易因用错球的表面积公式而致错.29.(2013课标Ⅱ,15,5分,0.158)已知正四棱锥O-ABCD底面边长为3,则以O为球心,OA为半径的球的表面积为.答案24π解析设底面中心为E,连接OE,AE,则|AE|=12|AC|=∵体积V=13×|AB|2∴|OA|2=|AE|2+|OE|2=6.从而以OA为半径的球的表面积S=4π·|OA|2=24π.思路分析先根据已知条件直接利用锥体的体积公式求得正四棱锥O-ABCD的高,再利用勾股定理求出|OA|,最后根据球的表面积公式计算即可.30.(2013课标Ⅰ,15,5分,0.123)已知H是球O的直径AB上一点,AH∶HB=1∶2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为.答案9π2解析平面α截球O所得截面为圆面,圆心为H,设球O的半径为R,则由AH∶HB=1∶2得OH=13R,由圆H的面积为π,得圆H的半径为1,+12=R2,得出R2=98,所以球O的表面积S=4πR2=4π·98=92π.31.(2013福建理,12,4分)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是.答案12π解析由三视图知:棱长为2的正方体内接于球,故正方体的体对角线长为23,即为球的直径.所以球的表面积为232=12π.32.(2017江苏,6,5分)如图,在圆柱O 1O 2内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则12的值是.答案32解析本题考查空间几何体的体积.设圆柱内切球的半径为R,则由题设可得圆柱O 1O 2的底面圆的半径为R,高为2R,∴12=π2·2R 43π3=32.33.(2018天津理,11,5分)已知正方体ABCD-A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M-EFGH 的体积为.答案112解析本题主要考查正方体的性质和正四棱锥的体积.由题意知四棱锥的底面EFGH 为正方形,其边长为22,即底面面积为12,由正方体的性质知,四棱锥的高为12.故四棱锥M-EFGH 的体积V=13×12×12=112.34.(2016天津理,11,5分)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为m3.答案2解析四棱锥的底面是平行四边形,由三视图可知其面积为2×1=2m2,四棱锥的高为3m,所以四棱锥的体积V=13×2×3=2m3.易错警示该题有两点容易出错:一是锥体的体积公式中的系数13易漏写;二是底面平行四边形的面积易错误地写成3×1=3m2.评析本题考查了三视图和直观图,考查了锥体的体积.35.(2016四川,13,5分)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.答案解析由题意及正视图可知三棱锥的底面等腰三角形的底长为23,三棱锥的高为1,则三棱锥的底面积为12×22-(3)2×23=3,∴该三棱锥的体积为13×3×1=评析正确理解正视图中的数据在直观图中表示的含义很关键.36.(2014山东理,13,5分)三棱锥P-ABC中,D,E分别为PB,PC的中点,记三棱锥D-ABE的体积为V1,P-ABC的体积为V2,则12=.答案14解析如图,设S△ABD=S1,S△PAB=S2,E到平面ABD的距离为h1,C到平面PAB的距离为h2,则S 2=2S1,h2=2h1,V1=1S1h1,V2=1S2h2,∴1=1ℎ1=1.评析本题考查三棱锥的体积的求法以及等体积转化法在求空间几何体体积中的应用.本题的易错点是不能利用转化与化归思想把三棱锥的体积进行适当的转化,找不到两个三棱锥的底面积及相应高的关系,从而造成题目无法求解或求解错误.37.(2012安徽,12,5分)某几何体的三视图如图所示,则该几何体的体积等于.答案56解析由题意知,该三视图对应的几何体如图,其体积12(2+5)×4×4=56.评析本题主要考查三视图的知识,考查学生的空间想象能力.由三视图得到直观图是解题关键.38.(2011课标理,15,5分)已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=23,则棱锥O-ABCD的体积为.答案83解析如图,连接AC,BD,交于O1,则O1为矩形ABCD所在小圆的圆心,连接OO1,则OO1⊥面ABCD,易求得O1C=23,又OC=4,∴OO1=B2-12=2,∴棱锥体积V=13×6×23×2=83.失分警示立体感不强,空间想象能力差,无法正确解出棱锥的高而得出错误结论.评析本题主要考查球中截面圆的性质及空间几何体的体积的计算,通过球这个载体考查学生的空间想象能力及推理运算能力.39.(2011课标文,16,5分)已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.答案13解析如图,设球的半径为R,圆锥底面半径为r,由题意得πr2=316×4πR2.=12R.体积较小的圆锥的高AO1=R-12R=12R,体积较大的圆锥的高BO1=R+12R=32R.1故这两个圆锥中,体积较小者的高与体积较大者的高的比值为13.评析本题考查球、球内接圆锥的相关问题,考查R,r的关系,由题意得到是解答本题的关键. 40.(2020课标Ⅰ文,19,12分)如图,D为圆锥的顶点,O是圆锥底面的圆心,△ABC是底面的内接正三角形,P 为DO上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO=2,圆锥的侧面积为3π,求三棱锥P-ABC的体积.解析(1)由题设可知,PA=PB=PC.由于△ABC是正三角形,故可得△PAC≌△PAB,△PAC≌△PBC.又∠APC=90°,故∠APB=90°,∠BPC=90°.从而PB⊥PA,PB⊥PC,故PB⊥平面PAC,所以平面PAB⊥平面PAC.(2)设圆锥的底面半径为r,母线长为l.由题设可得rl=3,l2-r2=2.解得r=1,l=3.从而AB=3.由(1)可得PA2+PB2=AB2,故所以三棱锥P-ABC的体积为13×12×PA×PB×PC=13×12×第21页共21页。

高三 空间几何体的三视图、表面积与体积(一)

高三 空间几何体的三视图、表面积与体积(一)

空间几何体的三视图专题复习题1.已知一个几何体是由上、下两部分构成的组合体,其三视图如图所示,若图中圆的半径为1,等腰三角形的腰长为5,则该几何体的体积是.A .43πB .2πC .83πD .103π2.一几何体的三视图如图所示,则该几何体的体积为A .13πB .12πC .2πD .π3.某几何体的三视图如图所示,则该几何体的表面积为 A .54 B .60 C .66 D .724.已知体积为3的正三棱柱(底面是正三角形且侧棱垂直底面)的三视图如图所示,则此三棱柱的高为A .31B .32C .1D .34 俯视图侧视图正视图俯视图侧视图正视图21222俯视图左视图正视图32545.已知四棱锥P ABCD-的三视图如图所示,则四棱锥P ABCD-的四个侧面中的最大面积为A.3B.C.6D.86.某三棱锥的三视图如图所示,则该三棱锥的表面积是A.2B.4C.2+D.57.已知一个三棱柱的三视图如图所示,则该三棱柱的表面积为A.5B.52CD.38.一个几何体的三视图及其尺寸如图所示,则该几何体的体积为.A.28 3B.3C.28D.22+222433侧视图俯视图正视图俯视图侧(左)视图正(主)视图11215212俯视图侧(左)视图正(主)视图222244229.一个几何体的三视图如图所示,其中正视图、俯视图中的圆以及侧视图中的圆弧的半径都相等,侧视图中的两条半径互相垂直,若该几何体的体积是π,则它的表面积是A.πB.4π3C.3πD.4π10.如图为某几何体的三视图,则该几何体的内切球的表面积为A.4πB.3πC.4πD.4 3π11.已知某几何体的外接球的半径为3,其三视图如图所示,图中均为正方形,则该几何体的体积为.A.16B.16 3C.8 3D.812.若某几何体的三视图如图所示,则该几何体的体积是A.15B.20C.25D.303 32俯视图正视图13.如图所示,网格纸上小正方体的边长是1,粗实数及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为.A.8πB.25 2πC.12πD.41 4π14.某几何体的三视图如图所示,则该几何体的体积为A.BCD.315.某几何体的三视图,则该几何体体积是A.4B.4 3C.8 3D.2正视图俯视图俯视图侧(左)视图正(主)视图侧视图俯视图正视图16.某四面体的三视图如图所示,该四面体的六条棱中,长度最长的是 A.B. C. D.17.若四面体的三视图如右图所示,则该四面体的外接球表面积为 .18.一个几何体的三视图如图所示,则该几何体的体积为 .19.已知某几何体的三视图如图所示,则该几何体的表面积为 .正(主)视图俯视图侧视图俯视图正视图3侧视图俯视图正视图复习题详解1.已知一个几何体是由上、下两部分构成的组合体,其三视图如图所示,若图中圆的半径为1,则该几何体的体积是.A .43πB .2πC .83πD .103π解:由三视图可得该几何体是半径为1的半球,和底面半径为1, 高为2的圆锥的组合体,所以3314141122333V π=⨯π⨯+⨯π⨯⨯=.故选A .2.一几何体的三视图如图所示,则该几何体的体积为A .13πB .12πC .2πD .π解:分析知该几何体为圆柱的一半,故体积为()2122V =⨯π⨯1⨯=π.故选D . 3.某几何体的三视图如图所示,则该几何体的表面积为 A .54 B .60 C .66 D .72俯视图侧视图正视图侧视图正视图俯视图左视图正视图32545解:该几何体的直观图如图所示,易知该几何体的表面积是由两个直角三角形,两个直角梯形和一个矩形组成的,则其表面积()()25525411343535602222S +⨯+⨯=⨯⨯+⨯⨯+++⨯=.故选B . 4.已知体积为3的正三棱柱(底面是正三角形且侧棱垂直底面)的三视图如图所示,则此三棱柱的高为A .31B .32C .1D .34解:由正三棱柱的三视图还原几何体,如图所示.据侧视图知,底面正三角形的高为3,则其边长为2,1112323ABC A B C ABC V S h h -=⋅=⨯⨯=△,1h =.故选C .5.已知四棱锥P ABCD -的三视图如图所示,则四棱锥P ABCD -的四个侧面中的最大面积为A .3B .25C .6D .8 解:由几何体的三视图,画出其立体图形P ABCD -,如图所示.由题可知,顶点P 在底面上的投影是边CD 的中点,底面是边长为4AB =,2BC =的矩形.PCD △的高为22325-=,所以侧面PCD △的面积为C 1B 1A 1CBA222433侧视图俯视图正视图P142⨯=. 两个侧面PAD △,PBC △的面积相等为12332⨯⨯=.侧面PAB △的面积为1462⨯=.所以四个侧面中的最大面积为6.故选C .6.某三棱锥的三视图如图所示,则该三棱锥的表面积是A .2B .4C .2+D .5 解:据三棱锥的三视图,还原几何体P ABC -,且PA ⊥平面ABC ,底面ABC △为等腰三角形,12222ABC S =⨯⨯=△,1122PAB PAC S S ==⨯=△△,122PBC S =⨯=△2222PAB PAC ABC PBC S S S S +++=+++=+△△△△.7.已知一个三棱柱的三视图如图所示,则该三棱柱的表面积为A.5B.52C.33D.3俯视图侧(左)视图正(主)视图11215212俯视图侧(左)视图正(主)视图2111P CB A解:由三视图可得该几何体是一个直三棱柱,如图所示. 解法一:3个侧面的面积为2(125)S =++侧,由余弦定理可以求得底面的钝角为34π,所以一个底面三角形的面积为13112sin 242S π=⨯⨯=底,所以总面积为2S 底+S 侧=122(125)322252⨯+++=++.故选D .解法二:侧面积同解法一.由左视图中的1得棱锥的底面三角形的高为1,所以一个底面三角形的面积为111122S =⨯⨯=底,所以总面积为2S 底+S 侧=32225++.故选D . 8.一个几何体的三视图及其尺寸如图所示,则该几何体的体积为. A .283B .2823C .28D .2263+ 解:由题意,还原的几何体ABC DEF -如图所示,上底面ABC △是直角边长为2的等腰直角三角形,下底面DEF △是直角边长为4的等腰直角三角形,高2CF =.则几何体ABC DEF -的体积为11112844422232323⨯⨯⨯⨯-⨯⨯⨯⨯=.故选A . 9.一个几何体的三视图如图所示,其中正视图、俯视图中的圆以及侧视图中的圆弧的半径都相等,侧视图中的两条半径互相垂直,若该几何体的体积是π,则它的表面积是 A .π22224422FEDCBAB .4π3C .3πD .4π 解:由三视图知,原几何体为球体挖去14的部分而形成的几何体,设球的半径为r ,334=43V r =⨯ππ,1r =,2234+=44S r r =⨯πππ.故选D .10.如图为某几何体的三视图,则该几何体的内切球的表面积为A .4πB .3πC .4πD .43π 解:由三视图可得几何体为如图所示的四棱锥,其中PA ⊥底面ABCD ,底面ABCD 是边长为3的正方形,4PA =,所以5PB PD ==,所以13462PAD PAB S S ==⨯⨯=△△,115=3522PCD PBC S S =⨯⨯=△△,239ABCD S ==,所以11491233P ABCD ABCD V PA S -=⋅⋅=⨯⨯=,1562+2+9=362P ABCD S -=⨯⨯.设内切圆半径为R ,则球心到棱锥各面的距离均为R ,所以13P ABCD P ABCD S R V --⋅=,所以1R =,所以内切球的表面积244S R =π=π.故选C .11,其三视图如图所示,图中均为正方形,则该几何体的体积为. A .16俯视图正视图PDABCB .163C .83D .8 解:为了便于理解,在正方体中还原此几何体,如图所示. 设正方体棱长为a ,则323a =,得2a =, 三棱锥的体积1182224222323V =⨯⨯-⨯⨯⨯⨯⨯=.故选C .12.若某几何体的三视图如图所示,则该几何体的体积是 A .15 B .20 C .25 D .30 解:该几何体的直观图如图所示,1134345520232V ⨯=⨯⨯⨯-⨯⨯=.故选B .13.如图所示,网格纸上小正方体的边长是1,粗实数及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为. A .8π B .252π C .12π D .414π 解:由三视图可知,该多面体是四棱锥S ABCD -,如图所示,四棱锥所在正方体的棱长为2,SC BC ==()222223cos 52SCB ⨯-∠==⨯,则4sin 5SCB ∠=,所以SBC △的外接圆的半径152sin 4SB r SCB =⋅=∠,所以四棱锥的外接球的半径4R ==,故外接球的表面积24144S R π=π=.故选D . 14.某几何体的三视图如图所示,则该几何体的体积为 A.BC.3 D.3解:体积为1(12)2×32+⨯=.故选B .15.某几何体的三视图,则该几何体体积是 A .4B .43C .83D .2正视图俯视图P俯视图侧(左)视图正(主)视图解:借助长方体,在长方体中构建几何体.据三视图分析可得,还原后的几何体如图所示,三棱锥P ABC -.该几何体的体积1142323V =⨯⨯⨯=.故选B .16.某四面体的三视图如图所示,该四面体的六条棱中,长度最长的是 A.B. C.D. 解:由三视图还原几何体四棱锥D ABC -,如图所示,由主视图知CD ABC ⊥平面,设AC 的中点为E ,则BE AC ⊥,BE =2AE CE ==,由左视图得4CD =,BE =Rt BCE △中,4BC ===,同理4AB =,在Rt BCD△中,BD == 在Rt ACD△中,AD ===综上,四面体的六条棱中,长度最长的是A .DCBA正(主)视图俯视图侧视图俯视图正视图解:由三视图得四面体的直观图,如图所示为三棱锥A BCD -,且该四面体的外接球即为图中的长方体的外接球,得()222222219R =++=,则249S R=π=π表.18.一个几何体的三视图如图所示,则该几何体的体积为 .解:由几何体的三视图,在长为22的长方体中,还原其立体图形,如图中所示的AEF BCD -.故13V S h S h =-柱锥底底 =1112221232⨯-⨯⨯=.19.已知某几何体的三视图如图所示,则该几何体的表面积为 .DCBA 122侧视图俯视图正视图32侧视图俯视图正视图解:如图所示,还原该几何体为四棱锥B ACED -,其中CE ⊥底面ABC ,AD ⊥底面ABC ,且四边形ACED 为矩形,ABC △为等腰三角形,AC AB ⊥,2EC DA BC ===,AC AB ==则=ABC DAB ECB EDB ACED S S S S S S ++++△△△△四边形=21111222232222+⨯⨯⨯+=+故填3+.EDCBA。

空间几何体与三视图、体积表面积(含答案)

空间几何体与三视图、体积表面积(含答案)

1.几种常凸多面体间的关系2.一些特殊棱柱、棱锥、棱台的概念和主要性质名称棱柱直棱柱正棱柱图形定义有两个面互相平行,而其余每相邻两个面的侧棱垂直于底面的棱柱底面是正多边形的直棱柱有一个底面是用一个由正棱的高要保持平齐相等长度变为原来的一半;④擦去辅助线,图画好后,要擦去X 轴、Y 轴及为画图添加的辅助线(虚线)。

(2)平行投影与中心投影平行投影的投影线是互相平行的,中心投影的投影线相交于一点投影线垂直于投影面产生的投影叫做正投影,投影线不垂直于投影面产生的投影叫做斜投影。

物体投影的形状、大小与它相对于投影面的位置和角度有关。

三视图指正投影(3)射影:所谓射影,就是正投影其中,从一点到一条直线所作垂线的垂足,叫做这点在这条直线上的正投影。

一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这直线上的正投影题型1.空间几何体的结构例题1正方体ABCD—1A 1B 1C 1D 的棱上到异面直线AB ,C 1C 的距离相等的点的个数为(c )A .2B .3 C. 4 D. 5【答案】:C【解析】解析如图示,则BC 中点,1B 点,D 点,A1D1的中点分别到两异面直线的距离相等。

即满足条件的点有四个,故选C 项变式练习:到两互相垂直的异面直线的距离相等的点(A )只有1个 (B )恰有3个(C )恰有4个(D )有无穷多个①②:当截面与正方体的某一面平行时,可得①,将截面旋转可得点时可得③,即正方体的对角面,不可能得④.答案:( )【答案】2、一个几何体的三视图如图积为10A. 28+65B. 30+6 D.读出的长度,黑色数字【答案】D的体。

空间几何体的三视图、表面积、体积专题复习

空间几何体的三视图、表面积、体积专题复习

空间几何体的三视图、表面积、体积专题复习简单几何体的表面积与体积:(1)柱体、锥体、台体和球的表面积:①S 直棱柱侧面积=ch ,其中c 为底面多边形的周长,h 为直棱柱的高.②'=ch S 21正棱锥形面积,其中c 为底面多边形的周长,h '为正棱锥的斜高. ③''+=h c c S )(21正棱台侧面积,其中c ',c 分别是棱台的上、下底面周长,h '为正棱台的斜高.④S 圆柱侧面积=2πRh ,其中R 是圆柱的底面半径,h 是圆柱的高. ⑤S 圆锥侧面积=πRl ,其中R 是圆锥的底面半径,l 是圆锥的母线长. ⑥S 球=4πR 2,其中R 是球的半径. (2)柱体、锥体、台体和球的体积:①V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.②Sh V 31=锥体,其中S 是锥体的底面积,h 是锥体的高. ③)(31'+'+=S SS S h V 台体,其中S ',S 分别是台体的上、下底面的面积,h 为台体的高.④3π34R V =球,其中R 是球的半径.练习:1. 已知某几何体的俯视图是如图所示的边长为2的正方形,主视图与左视图是边长为2的正∆, 则其全面积是 A .8B .12 C.4(1+ D.2. 一个几何体的三视图如图所示,则该几何体的体积为A .14+πB .134+πC .834+πD .84+π3. 如右图,已知一个锥体的正视图,侧视图和俯视图均为Rt ∆,且面积分别为3,4,6,则该锥体的体积为( ) A .24 B .8 C .12 D .44. 如右图,一个简单空间几何体的三视图其主视图与左视图是边长为2的正三角形、俯视 图轮廓为正方形,则其体积是( ) A.423 B.433 C.36 D.835. 用大小相同的且体积为1的小立方块搭一个几何体,使它的主视图和俯视图如上图所示,则它的体积的最小值与 最大值分别为( )A .9与13B .7与10C .10与16D .10与15 6. 下列几何体各自的三视图中,有且仅有两个视图相同的是( ) A .①② B .①③ C .①④ D .②④7. 一个几何体的三视图如图所示,其中正视图中ABC ∆是边长为2的正∆,俯视图为俯视图正视侧视CA5题正六边形,那么该几何体的侧视图的面积为A.12B.32C.23 D.6 8. 如右图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的图象可能是( )9. 某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为( ) A. 22 B. 23 C. 4 D. 2 510.一个正三棱柱的三视图如下所示,则这个正三棱柱的高和底面边长分别为( )A . 2,B .,2 C . 4,2 D . 2,4 11.某三棱锥的三视图如图所示,该三棱锥的体积是( )A .403B.3C .503D.612.下图是某个四面体的三视图,该四面体的体积为( )A .72B .36C .24D .1213.已知一个空间几何体的三视图如右图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是 ( )A .4 cm 3B .5 cm 3C .6 cm 3D .7 cm 314.一个圆锥的正视图及其尺寸如图2所示.若一个平行于圆锥底面的平面将此圆锥截成体积之比为1﹕7的上、下两部分,则截面的面积为( )A .4πB .πC .94πD .4π主视图正视图侧视图俯视图俯视图左视图13题15.已知某四棱锥的三视图,如图.则此四棱锥的体积为( ) A .3 B .4C .5D .616.已知某几何体的三视图如图所示,则该几何体的体积为( )A .8π3B .3πC.10π3D .6π17.已知一个几何体的三视图及其大小如图1,这个几何体的体积=V ( )A .π12B .π16C .π18D .π6418.已知某个几何体的三视图如图2所示,根据图中标出的尺寸(单位:cm ),则这个几何体的体积是( )A .38cmB .312cmC .324cmD .372cm19.一个直棱柱被一个平面截去一部分后所剩几何体的三视图如图所示,则该几何体的体积为( )A .9B .10C .11D .23220.一空间几何体的三视图如右上图所示,该几何体的体积为12π+则正视图与侧视图中x 的值为( ) A .5 B .4 C .3 D .221.已知正三棱柱(侧棱与底面垂直,底面是正∆)的高与底面边长均为2,其直观图和正视图如下,则它的侧视图的面积是 .俯视图侧视图正视图第16题图图222.设某几何体的三视图如下左边所示(尺寸的长度单位为m )。

高三数学二轮专题复习第1讲 空间几何体的三视图、表面积和体积

高三数学二轮专题复习第1讲 空间几何体的三视图、表面积和体积
面积为________. 解析 如图,连接OA,OB,因为SA=AC,SB=BC,SC为球
O的直径,所以OA⊥SC,OB⊥SC.
因为平面SAC⊥平面SBC,平面SAC∩平面SBC=SC,且OA⊂
平面SAC,所以OA⊥平面SBC.
设球的半径为r,则OA=OB=r,SC=2r, 所以 VA-SBC=13×S△SBC×OA=13×12×2r×r×r=13r3, 所以13r3=9⇒r=3,所以球的表面积为 4πr2=36π. 答案 36π
C.8 2π
D.10π
解析 因为过直线 O1O2 的平面截该圆柱所得的截面是面积为 8 的正方形,所以圆
柱的高为 2 2,底面圆的直径为 2 2.所以 S 表面积=2×π×( 2)2+2π× 2×2 2=12π.
答案 B
3.(2018·天津卷)已知正方体ABCD-A1B1C1D1的棱长为1,除面ABCD外,该正方体其 余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M-EFGH的体积为 ________.
A.17π
B.18π
C.20π
D.28π
(2)(2018·烟台二模)某几何体的三视图如图所示,其中俯视图右侧曲线为半圆弧,则几 何体的表面积为( )
A.3π+4 2-2 C.32π+2 2-2
B.3π+2 2-2 D.32π+2 2+2
解析 (1)由题知,该几何体的直观图如图所示,它是一个球(被过球心 O 且互相垂 直的三个平面)切掉左上角的18后得到的组合体,其表面积是球面面积的78和三个14圆 面积之和,易得球的半径为 2,则得 S=78×4π×22+3×14π×22=17π.
【训练3】 (1)(2018·江苏卷)如图所示,正方体的棱长为2,以其所有面的中心为顶 点的多面体的体积为________.

空间几何体的三视图及表面积体积

空间几何体的三视图及表面积体积

空间几何体的三视图及表面积体积一.选择题1.如图,长方体中,.设长方体的截面四边形的内切圆为O,圆O的正视图是椭圆,则椭圆的离心率等于A. B. C. D.2.某几何体的三视图如上图所示,则该几何体的体积是()A.B.C. D.3.某几何体的三视图如图,该几何体的顶点都在球O的球面上,球O的表面积是()A. B.C. D.4.一个三棱锥的三视图如图所示,其中正视图和侧视图是全等的等腰三角形,则此三棱锥外接球的表面积为( )A. B. C.4 D.5.某三棱柱的三视图如图所示,则该三棱柱的体积是()A.B.C. 2 D. 26.一个几何体的三视图如图,则该几何体的体积为()A.π B.C.D.7.若一个几何体的三视图,其正视图和侧视图均为矩形、俯视图为正三角形,尺寸如图所示,则该几何体的体积为()A.B.C.D. 28.某几何体的三视图如图所示,则该几何体的体积为A. B.C. D.9.如图,一个空间几何体的正视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么这个几何体的内切球表面积为()A. B. C. D.10.已知某几何体的三视图如上图所示,则该几何体的体积为 ( )A. B. C. D.11.(5分)(2015•淄博一模)某几何体的三视图如图所示,图中的四边形都是边长为1的正方形,其中正视图、侧视图中的两条虚线互相垂直,则该几何体的体积是()A.B.C.D.12.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积为()A.10πB.11πC.12π D.13π13.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是()A. 2 B. 2 C. 2 D. 414.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A. B.100 C.92 D.8415.某几何体的三视图如图所示, 则其表面积为()A、 B、 C、 D、16.某几何体的三视图如图所示,则该几何体的体积为()17.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是()A. 2 B.C.D. 318.如图是一个几何体的三视图,则此三视图所描述几何体的表面积为()A.B. 20π C.D. 28π19.已知某锥体的正视图和侧视图如图2,其体积为,则该锥体的俯视图可以是()A. B. C. D.20一个几何体的三视图如图所示,如该几何体的表面积为,则的值为.....21.已知三棱锥的三视图如图所示,则它的体积为()A.B.C.D.22.一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是()A、1B、2C、3D、423.若某几何体的三视图如右图所示,则此几何体的体积等于A、30B、12C、24D、424.已知三棱锥的三视图,则该三棱锥的体积是A. B.C. D.25.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A.28+6 B.30+6C.56+12 D.60+ 1226.一个几何体的三视图如上图所示,则该几何体的体积为()A. B. C. D.27.一个三棱柱的侧视图、俯视图如图所示,则三棱柱的表面积是(A) (B) (C) (D)28.一个长方体,其正视图面积为,侧视图面积为,俯视图面积为,则长方体的外接球的表面积为()A. B. C. D.29.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某几何体的三视图,该几何体的体积为( )A. B.C. D.30.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为(A) (B) (C) (D)31.若某几何体的三视图如图所示,则这个几何体的体积是( )A.5 B.6 C.7 D.832.某几何体的三视图如右上图所示,则该几何体的体积是()A. B. C. D.33.右图是一个几何体的正(主)视图和侧(左)视图, 其俯视图是面积为8的矩形, 则该几何体的表面积是()A.2 0+8 B.2 4+8 C.8 D.1634.已知四棱锥的三视图如图所示,则围成四棱锥的五个面中,最大的面积是A.3B.6C.8D.1035.已知某几何体的三视图如图所示,则该几何体的体积为A. B. C. D.二.填空题36.已知某几何体的三视图如图所示,这该几何的体积为,表面积为.37.已知某几何体的三视图如右图所示,则该几何体的外接球体积为___________.38.某几何体的三视图如图所示,则该几何体的体积为____________39.某空间几何体的三视图(单位:cm)如图所示,则其体积是cm3,表面积是cm 2.40.某几何体的三视图如图所示,则其体积为.41.若某多面体的三视图如右图所示,则此多面体的体积是,此多面体外接球的表面积是 .42.一空间几何体的三视图如右图所示,则该几何体的体积为 .43.一个几何体的三视图如图所示,(其中的长度单位为cm),其中俯视图是一个腰长为2cm的等腰直角三角形,则这几何体外接球的表面积为____________cm2.44.一个几何体的三视图如图所示,则该几何体的体积为45.某几何体的三视图如图所示,则它的体积为.46.已知四棱锥,它的底面是边长为的正方形,其俯视图如图所示,侧视图为直角三角形,则该四棱锥的侧面中直角三角形的个数有个,该四棱锥的体积为.47.某几何体的三视图(单位:)如图所示,则此几何体侧视图的面积为,此几何体的体积为.48.如图,某几何体的三视图均为腰长为1的等腰直角三角形,则此几何体最长的棱长为___三.解答题:49.(12分)如图1,在四棱锥中,底面,底面为正方形,为侧棱上一点,为上一点.该四棱锥的正(主)视图和侧(左)视图如图2所示.(1)求四面体的体积;(2)证明:∥平面;(3)证明:平面平面.50.如图,在四棱锥P -ABCD中,AD DB,其中三棱锥P- BCD的三视图如图所示,且(I)求证:AD PB(Ⅱ)若AD=6,求四棱锥P-ABCD的体积。

专题三小题专项1空间几何体的表面积与体积课件共61张PPT

专题三小题专项1空间几何体的表面积与体积课件共61张PPT

侧棱长为 2,则四棱台的体积为( )
A.20+12 3 B.28 2
C.283 2
D.536

解析 如图,分别取上、下底面的中心 O1,O,过 B1 作 B1M⊥OB 于点 M,
案 则 OB=2 与
2,O1B1=
2,BM=
2,B1M=
4-2=
2,故四棱台的体积为 V=
解 析
1 3(S
上+S
下+
S上·S下)h=13×(4+16+8)×
(4)已知三视图中的某两个,找余下一个的三视图的方法。 先根据已知的三视图中的某两个,还原、推测直观图的可能形式,找余下一个三视图 的可能形式。作为选择题,也可将选项依次代入,再看看给出的三视图是否符合。
2.空间几何体的表面积 (1)多面体的侧面积和表面积。 因为多面体的各个面都是平面,所以多面体的侧面积就是侧面展开图的面积,表面积 是侧面积与底面积的和。 (2)旋转体的侧面积和表面积。 ①若圆柱的底面半径为 r,母线长为 l,则 S 侧=2πrl,S 表=2πr(r+l)。 ②若圆锥的底面半径为 r,母线长为 l,则 S 侧=πrl,S 表=πr(r+l)。
面圆心),且 S△PCD= 27,则这个等边圆锥的表面积为(
)
A.2π+ 2π B.3π
C.2π+ 3π D.π+ 3π
答 解析 如图,连接 PO,设圆锥的母线长为 2a,则圆锥的底面圆的半径为 a,
案 与 圆锥的高 PO=
3a。由已知得 CD=
2a,PC=PD=2a,则 S△PCD=12×
2a×
答 解析 如图所示,取 OA 的中点 M,连接 FM,OE,OF,则 OE=OF=EF=
案 1,所以△OEF 是等边三角形,从而易知△AOF,△BOE 也是等边三角形,则 FM

高考数学(文科)-空间几何体的三视图、表面积与体积-专题练习 (含答案与解析)

高考数学(文科)-空间几何体的三视图、表面积与体积-专题练习 (含答案与解析)

高考数学(文科)专题练习空间几何体的三视图、表面积与体积一、选择题.B...2.如图,一个棱柱的正视图和侧视图分别是矩形和正三角形,则这个三棱柱的俯视图为A....(2016·河南郑州一测如图是一个四面体的三视图,这三个视图均是腰长为和俯视图的虚线是三角形的中线,则该四面体的体积为(C.8 3及其三视图中的正视图和侧视图如图所示,则棱C.38D.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该B.54185+D.81某几何体的三视图如图所示,则该几何体的体积等于C.5 2如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是C.8π《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为“在屋内墙角处堆放米尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已立方尺,圆周率约为3,估算出堆放的米约有C.36斛如图,网格纸上正方形小格的边长为1(表示,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯C.10 27均在球O的球面上,AB)的正三角形的三个顶点都在球的表面积为____________.已知一个三棱柱,其底面是正三角形,且侧棱与底面垂直,一个体积为高考数学(文科)专题练习空间几何体的三视图、表面积与体积答案一、选择题1~5.CDABB 6~10.CBBCC二、填空题11;12.40π;13..14.13高考数学(文科)专题练习空间几何体的三视图、表面积与体积解析一、选择题1.解析:该几何体的侧视图即为其在面BCC1B1上的射影,又A点射影为点B,E点射影为线段CC1的中点,故选C.2.解析:由正视图和侧视图可知,这是一个横放的正三棱柱,一个侧面水平放置,则俯视图应为D.3.解析:四面体的直观图如图A-BCD,所以V=×(×1×2)×2=。

2020年高考数学(理)总复习:空间几何体的三视图、表面积与体积(原卷版)

2020年高考数学(理)总复习:空间几何体的三视图、表面积与体积(原卷版)

2020年高考数学(理)总复习: 空间几何体的三视图、表面积与体积题型一 空间几何体的三视图与直观图【题型要点】 三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图.由三视图还原几何体的步骤(1)根据俯视图确定几何体的底面;(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置;(3)确定几何体的形状,即可得到结果.【例1】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16【例2】.已知某锥体的正(主)视图和侧(左)视图如图,则该锥体的俯视图不可能是( )题组训练一 空间几何体的三视图与直观图1.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )2.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.12 B.18C.24 D.30题型二空间几何体的表面积与体积【题型要点】(1)求解几何体的表面积及体积的技巧①求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是关键所在.求三棱锥的体积,等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.②求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.(2)根据几何体的三视图求其表面积与体积的三个步骤第一步:根据给出的三视图判断该几何体的形状.第二步:由三视图中的大小标示确定该几何体的各个度量.第三步:套用相应的面积公式与体积公式计算求解.【例3】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90π B.63πC.42π D.36π【例4】.某几何体的三视图如图所示,若该几何体的体积为12π+8,则该几何体的表面积为()A.18π+82+4 B.20π+8 2C.10π+4 2 D.45π+272+9题组训练二空间几何体的表面积与体积1.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(单位:cm),则该“阳马”的外接球的体积为()A .100π cm 3B.500π3 cm 3C .400π cm 3D.4 000π3cm 32.由一个长方体和两个14圆柱体构成的几何体的三视图如下图,则该几何体的体积为________.3.一个四棱锥的三视图如图所示,其俯视图为等腰直角三角形,则该几何体的体积为( )A.223B.43 C. 2D .4题型三 多面体与球 【题型要点】(1)解决球与几何体的切、接问题的关键在于确定球的半径与几何体的度量之间的关系,这就需要灵活利用球的截面性持以及组合体的截面特征来确定.对于旋转体与球的组合体,主要利用它们的轴截面性质建立相关数据之间的关系;而对于多面体,应抓住多面体的结构特征灵活选择过球心的截面,把多面体的相关数据和球的半径在截面图形中体现出来.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,则4R 2=a 2+b 2+c 2求解.【例5】某几何体的三视图如图所示,则该几何体的外接球的体积为( )A.43πB.32327πC.28327πD.282127π【例6】.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2 D.π4题组训练三 多面体与球1.等腰△ABC 中,AB =AC =5,BC =6,将△ABC 沿BC 边上的高AD 折成直二面角B -AD -C ,则三棱锥B -ACD 的外接球的表面积为( )A .5π B.203π C .10πD .34π 2.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A.500π3 cm 3B.866π3 cm 3C.1 372π3cm 3D.2 048π3cm 3题型四 转化思想在三视图与直观图中的应用空间几何体的三视图还原为直观图求其表面积与体积能让学生经历由三视图到实物图,再到直观图的过程,能较好地考查学生的空间想象能力,命题涉及几何体的结构特征、表面积和体积问题是课标区高考的热点之一.(1)根据三视图判断空间几何体的形状,应特别注意三个视图中的实线与虚线,知道为什么是实线或虚线,为什么有这些线或没有某些线,对于正视图、侧视图中的直角,更要弄清楚它们是直角的原因.(2)要弄清三视图的有关数据与空间几何体的哪些数据相当,只需搞清由空间几何体如何得到三视图即可,平时应多加练习,总结规律.【例7】 已知一个空间几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是________cm 3.题组训练四 转化思想在三视图与直观图中的应用1.如图,网络纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则在该几何体中,最长的棱与最短的棱所成角的余弦值是( )A.22B.32 C.12D.33【专题训练】 一、选择题1.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1 B.π2+3 C.3π2+1 D.3π2+3 2.在正三棱锥S -ABC 中,点M 是SC 的中点,且AM ⊥SB ,底面边长AB =22,则正三棱锥S -ABC 的外接球的表面积为( )A .6πB .12πC .32πD .36π3.如图所示是一个组合几何体的三视图,则该几何体的体积为( )A.163πB.643C.16π+643D .16π+644.如图所示,将图(1)中的正方体截去两个三棱锥,得到图(2)中的几何体,则该几何体的侧视图为()5.如图,在正方体ABCD-A1B1C1D1中,点P是线段A1C1上的动点,则三棱锥P-BCD 的俯视图与正视图面积之比的最大值为()A.1 B. 2C. 3 D.26.一个长方体被一个平面截去一部分后,所剩几何体的三视图如图所示,则该几何体的体积为()A.24 B.48C.72 D.967.已知三棱锥S-ABC,△ABC是直角三角形,其斜边AB=8,SC⊥平面ABC,SC=6,则三棱锥的外接球的表面积为()A.64π B.68πC.72π D.100π8.下图中,是某几何体的三视图,且该几何体的顶点都在同一球面上,则该几何体的外接球的表面积为()A.32π B.48πC.50π D.64π9.如图所示,平面四边形ABCD中,AB=AD=CD=1,BD=2,BD⊥CD,将其沿对角线BD折成四面体A′­BCD,使平面A′BD⊥平面BCD,若四面体A′­BCD的顶点在同一个球面上,则该球的体积为()A.32π B.3πC.23π D.2π10.一光源P在桌面A的正上方,半径为2的球与桌面相切,且P A与球相切,小球在光源P的中心投影下在桌面产生的投影为一椭圆,如图所示,形成一个空间几何体,且正视图是Rt△P AB,其中P A=6,则该椭圆的短轴长为()A.6 B.8C.4 3 D.311.已知在三棱锥P—ABC中,P A⊥平面ABC,AB=AC=P A=2,且在△ABC中,∠BAC=120°,则三棱锥P —ABC 的外接球的体积为________.12.如图是某组合体的三视图,则内部几何体的体积的最大值为( )A.52()2-1π B.254()3-22π C .25()3-22π D.1256()52-7π 二、填空题13.如图所示,三棱锥P -ABC 中, △ABC 是边长为3的等边三角形, D 是线段AB 的中点, DE ∩PB =E ,且DE ⊥AB ,若∠EDC =120°, P A =32, PB =332,则三棱锥P -ABC 的外接球的表面积为________.14.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥平面AB 1C 1,AA 1=1,底面△ABC 是边长为2的正三角形,则此三棱柱的体积为________.15.已知三棱锥A -BCD 中,AB =AC =BC =2,BD =CD =2,点E 是BC 的中点,点A 在平面BCD 上的射影恰好为DE 的中点,则该三棱锥外接球的表面积为________.16.如图,四棱锥P -ABCD 中,四边形ABCD 为矩形,平面P AD ⊥平面ABCD .若∠BPC =90°,PB =2,PC =2,则四棱锥P -ABCD 的体积最大值为________.11。

高考数学立体几何专题1空间立体几何的三视图、表面积和体积

高考数学立体几何专题1空间立体几何的三视图、表面积和体积

专题1空间立体几何的三视图、表面积和体积【考点点击】1.以选择、填空题形式考查空间位置关系的判断,及文字语言、图形语言、符号语言的转换,难度适中;2.以熟悉的几何体为背景,考查多面体或旋转体的侧面积、表面积和体积计算,间接考查空间位置关系的判断及转化思想等,常以三视图形式给出几何体,辅以考查识图、用图能力及空间想象能力,难度中等.3.几何体的三视图与表(侧)面积、体积计算结合;【重点知识】一、空间几何体1.柱体、锥体、台体、球的结构特征名称几何特征棱柱①有两个面互相平行(底面可以是任意多边形);②其余各面都是平行四边形,并且每相邻两个四边形的公共边互相平行棱锥①有一个面是多边形(底面);②其余各面是有公共顶点的三角形.棱台①底面互相平行;②所有侧棱延长后交于一点(即原棱锥的顶点)圆柱①有两个互相平行的圆面(底面);②有一个侧面是曲面(母线绕轴旋转一周形成的),且母线与底面垂直圆台①底面互相平行;②有一个侧面是曲面,可以看成母线绕轴旋转一周形成的球①有一个曲面是球面;②有一个球心和一条半径长R,球是一个几何体(包括内部),可以看成半圆以它的直径所在直线为旋转轴旋转一周形成的2.柱体、锥体、台体、球的表面积与体积名称体积表面积棱柱V棱柱=Sh(S为底面积,h为高)S棱柱=2S底面+S侧面棱锥V棱锥=13Sh(S为底面积,h为高)S棱锥=S底面+S侧面棱台V棱台=13h(S+SS′+S′)S棱台=S上底+S下底+S侧面圆柱V圆柱=πr2h(r为底面半径,h为高)S圆柱=2πrl+2πr2(r为底面半径,l为母线长)圆锥V圆锥=13πr2h(r为底面半径,h为高)S圆锥=πrl+πr2(r为底面半径,l为母线长)圆台V圆台=13πh(r2+rr′+r′2)S圆台=π(r+r′)l+πr2+πr′2球V球=43πR3(R为球的半径)S球=4πR2(R为球的半径)3.空间几何体的三视图和直观图(1)空间几何体的三视图三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,三视图的画法规则为“长对正、高平齐、宽相等”.(2)空间几何体的直观图空间几何体直观图的画法常采用斜二测画法.用斜二测画法画平面图形的直观图规则为“轴夹角45°(或135°),平行长不变,垂直长减半”.4.几何体沿表面某两点的最短距离问题一般用展开图解决;不规则几何体求体积一般用割补法和等积法求解;三视图问题要特别留意各种视图与观察者的相对位置关系.【考点分析】考点一空间几何体的结构【例1】已知正三棱锥P­ABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.【答案】33【解析】正三棱锥P­ABC 可看作由正方体PADC­BEFG 截得,如图所示,PF 为三棱锥P­ABC 的外接球的直径,且PF ⊥平面ABC.设正方体棱长为a ,则22,2,1232=====BC AC AB a a ,3223222221=⨯⨯⨯=∆ABC S ,由,PAC B ABC P V V --=得222213131⨯⨯⨯⨯=⋅∆ABC S h ,所以332=h 因此球心到平面ABC 得距离为33考点二三视图、直观图【例2】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A )20π(B )24π(C )28π(D )32π【答案】C【解析】由题意可知,圆柱的侧面积为12π2416πS =⋅⋅=,圆锥的侧面积为2π248πS =⋅⋅=,圆柱的底面面积为23π24πS =⋅=,故该几何体的表面积为12328πS S S S =++=,故选C.【例3】某三棱锥的三视图如图所示,则该三棱锥的表面积是()A .2+5B .4+5C .2+25D .5【答案】C【解析】该三棱锥的直观图如图所示:过D 作DE ⊥BC ,交BC 于E ,连接AE ,则BC =2,EC =1,AD =1,ED =2,ABCABD ACD BCD S S S S S ∆∆∆∆+++=表5225221152115212221+=⨯⨯+⨯⨯+⨯⨯+⨯⨯=考点三几何体的表面积【例4】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为【答案】14π.【解析】球的直径是长方体的体对角线,所以222232114,4π14π.R S R =++===【例5】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是()(A )17π(B )18π(C )20π(D )28π【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的81,设球的半径为R ,则32834873ππ=⨯=R V ,解得R 2=,所以它的表面积是87的球面面积和三个扇形面积之和πππ172413248722=⨯⨯+⨯⨯=S 故选A .考点四几何体的体积【例6.】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A .πB .3π4C .π2D .π4【答案】B【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2AC AB ==,结合勾股定理,底面半径2213122r ⎛⎫=-= ⎪⎝⎭,由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h ⎛==⨯⨯= ⎝⎭,故选B.考点五与球的组合体问题纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.【例7】棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为()A .22B .1C .212+D .2解:由题意可知,球为正方体的外接球.平面11AA DD 截面所得圆面的半径12,22AD R ==11EF AA DD ⊂ 面,∴直线EF 被球O 截得的线段为球的截面圆的直径22R =.【例8】正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最值,为.【例9】在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是.解:如图,正三棱锥对棱相互垂直,即,AC SB ⊥又,,,.SB MN MN AC MN AM MN SAC ∴⊥⊥∴⊥∥又平面于是,,,SB SAC SB SA SB SC ⊥∴⊥⊥平面从而.SA SC ⊥此时正三棱锥S ABC -的三条侧棱互相垂直并且相等,故将正三棱锥补形为正方体.球的半径23,3,436.2R SA R S R ππ=∴=∴==【例10】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为()A .12πB .C .3πD .【答案】C【解析】把原来的几何体补成以DA DC DP 、、为长、宽、高的长方体,原几何体四棱锥与长方体是同一个外接球,2=R l ,=2R ,234434S R πππ==⨯=球.【例11】在三棱锥P -ABC 中,PA =,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为()A .πB.3π C.4πD.43π解:如图所示,过P 点作底面ABC 的垂线,垂足为O ,设H 为外接球的球心,连接,,AH AO 因60,PAO PA ∠== 故2AO =,32PO =又△AHO 为直角三角形,222,,AH PH r AH AO OH ==∴=+22233344(),1,1.2233r r r V ππ∴=+-∴=∴=⨯=【例12】矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积是()A.π12125 B.π9125C.π6125D.π3125解:由题意分析可知,四面体ABCD 的外接球的球心落在AC 的中点,此时满足,OA OD OB OC ===522AC R ∴==,343V R π=1256π=.【总结归纳】1个特征——三视图的长度特征“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。

高考数学立体几何专题1空间立体几何的三视图、表面积和体积试题(含答案)

高考数学立体几何专题1空间立体几何的三视图、表面积和体积试题(含答案)
本题考查利用三视图求几何体的体积,考查长方体及圆柱的体积公式,考查计算能力, 属于基础题. 解:由长方体长为 2,宽为 1,高为 1,则长方体的体积 1 = t 1 t 1 = , 圆柱的底面半径为 1,高为 1,则圆柱的体积 = 1 t t 1 t 1 = ,
则该几何体的体积 = 1 + 1 = + ,故答案为: + .
A. 1 B. 16 C.
D.
. 如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图,该几何 体由一平面将一圆柱截去一部分后所得,则该几何体的体积为
A. t
B. 6
C.
D. 6
第题
第题
第题
3. 已知一个简单几何体的三视图如图所示,则该几何体的体积为 .
A. +6 B. 6 +6 C. +1 D.ቤተ መጻሕፍቲ ባይዱ12
4. 如图正方形 OABC 的边长为 1,它是水平放置的一个平面图形的直观图,则原图形
的面积为 A.
B. 1 C.
D. 1 +
5. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为
第题
第6题
第题
A. t
B.
C.
D.
6. 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若
知 = ,所以由斜二测画法知,对应原图形,即平行四边形的高为 , 所以原图形的面积为:1 t = .故选 A.
5.【答案】C
【分析】本题考查由三视图求表面积,空间立体几何三视图,属于基础题.
空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是 4,圆锥的高是 , 在轴截面中圆锥的母线长使用勾股定理求出,写出表面积,下面是一个圆柱,圆柱的底

高考数学二轮复习(文)专题三第1讲空间几何体的三视图、表面积与体积课件(57张)

高考数学二轮复习(文)专题三第1讲空间几何体的三视图、表面积与体积课件(57张)
径,由题知,ME=2,EN=4,∴MN= 42 22 =2 5 .故选B.
图1
图2
考点一
栏目索引
3.(2019课标全国Ⅱ,16,5分)中国有悠久的金石文化,印信是金石文化的代表
之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信
高考导航
的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多
考点二 空间几何体的表面积与体积
命题角度一 空间几何体的表面积
高考导航
1.(2018课标全国Ⅰ,5,5分)已知圆柱的上、下底面的中心分别为O1,O2,过直线 O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为
(B ) A.12 2 π B.12π C.8 2 π D.10π
考点二
考点一
栏目索引
高考导航
A.①② B.①④ C.②③ D.②④ 答案 B 由于P为BD1的中点,结合正投影的性质知B正确.
考点一
栏目索引
2.(2019湖南模拟)如图,网格纸上小正方形的边长为1,粗线画出的是三棱锥P-
ABC的三视图,PA是其最长的棱,则直线PA与平面ABC所成角的正切值为
高考导航
(C )
高考导航
的各面为底面的棱锥,利用多面体的体积等于各棱锥的体积之和求出内切球 的半径.
考点三 栏目索引
1.(2019运城联考)一块木料的三视图如图所示,将它经过切削、打磨成半径
高考导航
最大的球,则该木料最多加工出球的个数是 ( B )
高考导航
A. 3 + 2+ 5
2
2
C. 1 + 2 + 5
2
B. 1 +2 2 + 5

专题01 空间几何体专题复习

专题01 空间几何体专题复习

本重点包括柱、锥、台、球的概念、性质、表面积与体积,直观图与三视图,这些是立体几何的基础,也是研究空间问题的基本载体,所以是高考考查的热点。

知识框架1、空间几何体的结构2、空间几何体的三视图和直观图3、空间几何体的表面积和体积一、考查形式与特点1、本章内容多以客观题出现,考查基本知识,对空间几何体的特征与性质的理解,三视图和直观图,几何体表面积与体积的计算等。

三视图考查特点:一是给出空间图形,选择其三视图;二是已知其中两种三视图,画出另外一种视图;三是三视图与面积体积计算结合在一起考查。

2、球体在近几年的高考中出现频率较高,特别是棱柱、棱锥中球的内切、外接问题,在复习时更要注意多练习相关的题目。

对球中的体积、表面积、球面距离等问题也要进行重点掌握。

3、培养与发展考生的空间想象能力、推理证明能力、运用图形语言进行交流的能力。

考查空间想象能力及空间模型的构造能力。

二、方法策略1、“化整为零”是本章的基本思想。

将一个复杂的几何体分割成若干个常见的熟悉的几何体,或者把几个简单的几何体组合成一个新的几何体,目的在于化繁为简,寻求解题的捷径。

立体几何和平面几何有着密切的联系,空间图形的局部性往往可以透过平面图形的性质去研究,利用截面可以把锥体中的元素关系转化为三角形中的元素关系。

2、“以直代曲”的思想方法即通过空间图形的展开将立体几何问题转化为平面几何问题,曲面问题转化为平面问题,如在推导圆柱、圆锥、圆台的侧面积公式时,就是将其侧面展开,转化为长方形、扇形、圆环来解决。

3、三视图之间的投影规律为:正、俯视图――长对正;正、侧视图――高平齐;俯、侧视图――宽相等。

三视图是新增内容,是高考考查重点,它能极大培养学生的空间想象能力与感知能力,熟悉常见简单几何体三视图在数量上的关系,善于将三视图中的数量关系与原几何体的数量关系联系起来,进行相关的计算。

4、球的表面积与体积的计算的关键是求出球的半径,然后再利用表面积公式及体积公式求解.球的表面积与体积问题常置于多面体的组合体中,解答时要充分利用切、接点正确作出过球心截面,从而使空间问题转化为平面问题,再利用球的半径与多面体的元素的关系求解.特别要注意的题型是球与长方体、正方体的组合体.5、解决问题的重要手段:截、展、拆、拼(1)“截”是指截面,平行于柱、锥、台底面的截面,旋转体的轴截面是帮助我们解题的有力“工具”。

【高考数学】第三部分_重点板块_专题三立体几何:第1讲空间几何体的三视图、表面积及体积

【高考数学】第三部分_重点板块_专题三立体几何:第1讲空间几何体的三视图、表面积及体积

专题三立体几何第1讲空间几何体的三视图、表面积及体积[全国卷3年考情分析]年份全国卷Ⅰ全国卷Ⅱ全国卷Ⅲ2019三棱锥的外接球、球的体积·T12空间几何体的结构特征、直观图、几何运算、数学文化·T16空间两直线的位置关系的判定·T8简单几何体的组合体、长方体和棱锥的体积·T16 2018空间几何体的三视图、直观图及最短路径问题·T7圆锥的性质及侧面积的计算·T16三视图与数学文化·T3与外接球有关的空间几何体体积的最值问题·T10 2017空间几何体的三视图与直观图、面积的计算·T7空间几何体的三视图及组合体体积的计算·T4球的内接圆柱、圆柱的体积的计算·T8“两小”或“一小”主要考查三视图,几何体的表面积与体积,空间点、线、面位置关系(特别是平行与垂直).(2)考查一个小题时,本小题一般会出现在第4~8题的位置上,难度一般;考查两个小题时,其中一个小题难度一般,另一小题难度稍高,一般会出现在第12或16题的位置上,本小题虽然难度稍高,主要体现在计算量上,但仍是对基础知识、基本公式的考查.考点一空间几何体的三视图、直观图与截面图[例1](1)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()(2)(2019·江西八所重点中学联考)某四面体的三视图如图所示,则该四面体最长的棱长与最短的棱长的比值是()A .52B .2C .355D .32(3)(2018·全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A .334B .233C .324D .321.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .25C .3D .22.已知球O 是正三棱锥A ­BCD 的外接球,BC =3,AB =23,点E 在线段BD 上,且BD =3BE ,过点E 作球O 的截面,则所得截面中面积最小的截面圆的面积是________.考点二 几何体的表面积与体积 题型一 求空间几何体的表面积[例2] (1)《九章算术》是我国古代内容极为丰富的数学名著,书中提到了一种名为“刍甍”的五面体,如图所示,四边形ABCD 为矩形,棱EF ∥AB .若此几何体中,AB =4,EF =2,△ADE 和△BCF 都是边长为2的等边三角形,则该几何体的表面积为( )A .83B .8+83C .62+23D .8+62+23(2)我国古代数学名著《算法统宗》中有如下问题:“今有倚壁外角堆米,下周九十尺,高十二尺.”其意思为:在屋外墙角处堆放米(其三视图如图所示),米堆底部的弧长为90尺,米堆的高为12尺.圆周率约为3.若将此堆米用草席盖上,则此草席的面积至少约为(计算结果保留整数,如544≈23,550≈23)( )A .250平方尺B .990平方尺C .1 035平方尺D .518平方尺题型二 求空间几何体的体积[例3] (1)(2019·天津高考)已知四棱锥的底面是边长为2的正方形,侧棱长均为 5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.(2)(2019·江西省五校协作体试题)某几何体的三视图如图所示,正视图是一个上底为2,下底为4的直角梯形,俯视图是一个边长为4的等边三角形,则该几何体的体积为______.1.(2019·重庆市学业质量调研)已知某几何体的三视图如图所示,则该几何体的体积为( )A.323 B .643C.1283 D .16032.已知一个底面是菱形、侧面是矩形的四棱柱,侧棱长为5,菱形的对角线的长分别是9和15,则这个棱柱的侧面积是( )A .3034B .6034C .3034+135D .1353.已知直四棱柱ABCD ­A 1B 1C 1D 1的所有棱长都是1,∠ABC =60°,AC ∩BD =O ,A 1C 1∩B 1D 1=O 1,点H 在线段OB 1上,OH =3HB 1,点M 是线段BD 上的动点,则三棱锥M ­C 1O 1H 的体积的最小值为________.考点三 与球有关的切、接问题 题型一 外接球[例4] (2019·全国卷Ⅰ)已知三棱锥P ­ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .86πB .46πC .26πD .6π题型二 内切球[例5] 已知一个平放的各棱长为4的三棱锥内有一个小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,当注入的水的体积是该三棱锥体积的78时,小球与该三棱锥各侧面均相切(与水面也相切),则小球的表面积等于( )A.7π6 B .4π3C.2π3 D .π2题型三 与球有关的最值问题[例6] (2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D ­ABC 体积的最大值为( )A .123B .183C .243D .5431.已知圆锥的高为3,底面半径为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于( )A .83πB .323πC .16πD .32π2.(2019·福建五校第二次联考)已知直三棱柱ABC ­A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的直径为______.3.已知四棱锥S ­ABCD 的所有顶点在同一球面上,底面ABCD 是正方形且球心O 在此平面内,当四棱锥的体积取得最大值时,其表面积等于16+163,则球O 的体积为______.4.已知某几何体的三视图如图所示,则该几何体的体积等于( )A .2π+4B .4π+2 C.2π3+4 D .4π3+8【课后专项练习】A 组一、选择题1.如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )2.(2019·福州市质量检测)棱长为1的正方体ABCD ­A 1B 1C 1D 1木块的直观图如图所示,平面α过点D 且平行于平面ACD 1,则该木块在平面α内的正投影面积是( )A.3 B .323C.2D .13.已知矩形ABCD ,AB =2BC ,把这个矩形分别以AB ,BC 所在直线为轴旋转一周,所成几何体的侧面积分别记为S 1,S 2,则S 1与S 2的比值等于( )A.12 B .1 C .2D .44.设球O 是正方体ABCD ­A 1B 1C 1D 1的内切球,若平面ACD 1截球O 所得的截面面积为6π,则球O 的半径为( )A.32 B .3 C.32D .35.(2019·武汉市调研测试)如图,在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,M 为CD 的中点,则三棱锥A ­BC 1M 的体积VA ­BC 1M =( )A.12 B .14C.16 D .1126.(2019·武汉市调研测试)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A.23π B .43πC .2πD .25π7.在三棱锥A ­BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ADB 的面积分别为22,32,62,则该三棱锥的体积为( ) A. 6 B .66 C .6 D .268.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C.π2 D .π49.若一个球与四面体的六条棱都相切,则称此球为四面体的棱切球.已知正四面体的棱长为2,则它的棱切球的体积为( )A .3π54B .π6C .π3D .3π210.已知点A ,B ,C ,D 均在球O 上,AB =BC =3,AC =3.若三棱锥D ­ABC 体积的最大值为334,则球O 的表面积为( )A .36πB .16πC .12πD .163π11.已知一个半径为7的球中有一个各条棱长都相等的内接正三棱柱,则正三棱柱的体积是( )A .18B .16C .12D .812.(2019·福州市质量检测)如图,以棱长为1的正方体的顶点A 为球心,以2为半径作一个球面,则该正方体的表面被球面所截得的所有弧长之和为( )A.3π4 B .2π C.3π2 D .9π4二、填空题13.(2019·长春市质量监测(一))已知一所有棱长都是2的三棱锥,则该三棱锥的体积为______.14.已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M ­EFGH 的体积为______.15.古人采取“用臼舂米”的方法脱去稻谷的外壳,获得可供食用的大米,用于舂米的“臼”多用石头或木头制成.一个“臼”的三视图如图所示,则凿去部分(看成一个简单的组合体)的体积为______.16.已知三棱锥P ­ABC 的四个顶点都在球O 的表面上,P A ⊥平面ABC ,AB ⊥BC ,且P A =8.若平面ABC 截球O 所得截面的面积为9π,则球O 的表面积为______.B 组1.(2019·合肥市第二次质量检测)如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )A .2对B .3对C .4对D .5对2.在棱长为3的正方体ABCD ­A 1B 1C 1D 1中,P 在线段BD 1上,且BP PD 1=12,M 为线段B 1C 1上的动点,则三棱锥M ­PBC 的体积为( )A .1B .32C.92 D .与M 点的位置有关3.已知正方体ABCD ­A 1B 1C 1D 1的体积为1,点M 在线段BC 上(点M 异于B ,C 两点),点N 为线段CC 1的中点,若平面AMN 截正方体ABCD ­A 1B 1C 1D 1所得的截面为四边形,则线段BM 的取值范围为( )A.⎝⎛⎦⎤0,13 B .⎝⎛⎦⎤0,12 C.⎣⎡⎭⎫12,1 D .⎣⎡⎦⎤12,234.已知直三棱柱ABC ­A 1B 1C 1的侧棱长为6,且底面是边长为2的正三角形,用一平面截此棱柱,与侧棱AA 1,BB 1,CC 1分别交于三点M ,N ,Q ,若△MNQ 为直角三角形,则该直角三角形斜边长的最小值为( )A .22B .3C.23D.45.(2019·郑州市第二次质量预测)在△ABC中,已知AB=23,BC=26,∠ABC=45°,D是边AC上的一点,将△ABD沿BD折叠,得到三棱锥A­BCD,若该三棱锥的顶点A在底面BCD上的射影M在线段BC上,设BM=x,则x的取值范围是() A.(0,23)B.(3,6)C.(6,23)D.(23,26)6.如图,在正三棱柱ABC­A1B1C1中,D为棱AA1的中点.若AA1=4,AB=2,则四棱锥B­ACC1D的体积为________.7.已知在正四棱锥S­ABCD中,SA=63,那么当该棱锥的体积最大时,它的高为________.8.(2019·河南八市重点高中联盟测评改编)已知一个高为1的三棱锥,各侧棱长都相等,底面是边长为2的等边三角形,则三棱锥的表面积为________,若三棱锥内有一个体积为V 的球,则V的最大值为________.。

高中数学二轮 空间几何体的三视图、体积、表面积与传统文化(原卷版)

高中数学二轮 空间几何体的三视图、体积、表面积与传统文化(原卷版)
3
3.忽视三视图的实、虚线,导致几何体的形状结构理解错误. 【主题考向】 考向一 空间几何体的三视图
【 解决法宝】在分析空间几何体的三视图 问题时,先根据俯视图确定几何体的底面,然后根据正视图或侧 视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即 可得到结果.在处理三视图问题时,要根据“长对正,宽相等、高平齐”的原则由三视图确定对应几何体中的 量,或由几何体确定三视图中的量. 例 1【2020 届陕西省二质检】某三棱锥的三视图如图所示,其俯视图是一个等腰直角三角形,在此三棱锥 的六条棱中,最长棱的长度为( )
A. 2 2 S,且2 3 S
B. 2 2 S,且2 3 S
C. 2 2 S,且2 3 S D. 2 2 S,且2 3 S 21.【2020 届浙江发展共同体上学期期末】如图所示,一个空间几何体的三视图如图所示(单位: cm ).则 该几何体的体积为_______ cm3 .表面积为___________ cm2 .
②三视图排列规则:俯视图放在正(主)视图的下面,长度与正(主)视图一样;侧(左)视图放在正(主)视图的右 面,高度和正(主)视图一样,宽度与俯视图一样. 2.柱、锥、台、球体的表面积和体积
侧面展开图
表面积Biblioteka 体积直棱 柱长方形
S=2S 底+S 侧
V=S 底·h
圆柱
长方形
S=2πr2+2πrl
V=πr2·l
A. 8 3
B. 4
16
C.
3
20
D.
3
16.【2020 届广东广州一模】陀螺是中国民间最早的娱乐工具,也称陀罗. 如图,网格纸上小正方形的边长
为1,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为( )

1 第1讲 空间几何体的三视图、表面积与体积

1 第1讲 空间几何体的三视图、表面积与体积

由三视图还原到直观图的三个步骤 (1)根据俯视图确定几何体的底面. (2)根据正(主 )视图或侧 (左)视图确定几何体的侧棱与侧面的特 征,调整实线和虚线所对应的棱、面的位置. (3)确定几何体的直观图形状.
[注意]
在读图或者画空间几何体的三视图时,应注意三视图
中的实线和虚线.
栏目 导引
专题四
立体几何与空间向量
栏目 导引
专题四
立体几何与空间向量
4.(2018· 长春质量监测(二))如图,网格纸上小正方形的边长为 1,粗线条画出的是一个三棱锥的三视图,则该三棱锥中最长棱 的长度为( )
A.2 C.2 2
B.
5
D.3
栏目 导引
专题四
ห้องสมุดไป่ตู้
立体几何与空间向量
解析:选 D.如图,三棱锥 ABCD 即为所求几何体,根据题设 条件,知辅助的正方体棱长为 2,CD=1,BD=2 2,BC= 5, AC=2,AB=3,AD= 5,则最长棱为 AB,长度为 3.
栏目 导引
专题四
立体几何与空间向量
命题角度二
空间几何体的体积
(1)(2018· 武汉调研)某几何体的三视图如图所示,则该几 何体的体积为( 1 A. 2 3 C. 3 ) 2 B. 2 2 D. 3
(2)(2018· 高考全国卷Ⅱ)已知圆锥的顶点为 S,母线 SA,SB 互 相垂直,SA 与圆锥底面所成角为 30° .若△SAB 的面积为 8,则 该圆锥的体积为________.
【答案】
(1)B (2)C
栏目 导引
专题四
立体几何与空间向量
求几何体的表面积的方法 (1) 求表面积问题的基本思路是将立体几何问题转化为平面几 何问题,即空间图形平面化,这是解决立体几何的主要出发点. (2)求不规则几何体的表面积时,通常将所给几何体分割成基本 的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求 和或作差得几何体的表面积.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题01 空间几何体的三视图、表面积与体积一、分类透析分类透析一空间几何体的结构特征例1.如图所示,从三棱台A'B'C'-ABC中截去三棱锥A'-ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.三棱台【解析】由题图易知剩余部分是四棱锥A'-BB'C'C.【答案】B例2.如图是由哪个平面图形旋转得到的() ()A B C D【解析】题图中所给的几何体是由上部的圆锥和下部的圆台组合而成的,结合A,B,C,D可知D 正确,故选D.【答案】D例3.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E上,则点P到直线CC1的距离的最小值为.【解析】点P到直线CC1的距离等于点P在平面ABCD上的射影到点C的距离,设点P在平面ABCD上的射影为P',显然点P到直线CC1的距离的最小值为P'C的长度的最小值.当P'C⊥DE时,P'C的长度最小,此时P'C==.【答案】例4.如图所示,一个圆锥的高为2,母线与轴的夹角为30°.则圆锥的母线长和圆锥的轴截面面积分别为,.【解析】由题意得,设圆锥的母线长为l,底面半径为r,轴截面面积为S,则母线长l==,底面半径r=2·tan 30°=,所以S=×2××2=43,即圆锥的母线长为43,轴截面面积是43.【答案】4343【方法技巧】在处理圆锥的结构特征时可记住常见结论,截面与底面的面积之比是两个圆锥高的比值的平方,所得两个圆锥的体积之比是两个圆锥高的比值的立方.分类透析二空间几何体的三视图与直观图例5.图1是一个棱长为2的正方体被削去一个角后所得到的几何体的直观图,其中DD1=1,AB=BC=AA1=2.若此几何体的俯视图如图2所示,则可以作为其正视图的是()图1图2A. B. C. D.【解析】由题意,结合该几何体的直观图和俯视图知,其正视图的长应为底面正方形的对角线长,宽应为正方体的棱长,故排除B,D;在三视图中看不见的棱用虚线表示,故排除A,选C.【答案】C例6.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1B.C.D.2【解析】由题中三视图知,此四棱锥的直观图如图所示,其中侧棱SA⊥底面ABCD,且底面是边长为1的正方形,SA=1,所以四棱锥最长棱的棱长为SC=,故选C.【答案】C例7.如图,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积为.【解析】直观图的面积S'=×(1+1+)×=.故原平面图形的面积S==2+.【答案】22【方法技巧】三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.分类透析三柱体、锥体、台体、球的表面积例8.《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的侧面积为()A.2B.4+2C.4+4D.6+4【解析】由题意可知,该几何体的底面为等腰直角三角形,等腰直角三角形的斜边长为2,腰长为,棱柱的高为2.所以其侧面积S=2×2+2×2=4+4,故选C.【答案】C例9.正三棱柱的底面边长为,侧棱长为2,且三棱柱的顶点都在同一个球面上,则该球的表面积为()A.4πB.8πC.12πD.16π【解析】由正弦定理得=2r(其中r为正三棱柱底面三角形外接圆的半径),∴r=1,∴外接球的半径R==,∴外接球的表面积S=4πR2=8π.故选B.【答案】B【方法技巧】1.已知几何体的三视图求其表面积,一般是先根据三视图判断空间几何体的形状,再根据题目所给数据与几何体的表面积公式,求其表面积.2.多面体的表面积是各个面的面积之和,组合体的表面积应注意重合部分的处理,以确保不重复、不遗漏.3.求多面体的侧面积时,应对每一个侧面分别求解后再相加;求旋转体的侧面积时,一般要将旋转体展开为平面图形后再求面积.分类透析四柱体、锥体、台体、球的体积例10.《九章算术》商功章有题:一圆台形谷仓,谷仓口直径为六尺,谷仓底直径为一丈八尺,谷仓高一丈八尺,若谷仓屯米高九尺,则谷仓屯米约为(斛为容积单位,1斛≈1.62立方尺,1丈=10尺,π≈3)()A.650斛B.950斛C.1 950斛D.2 850斛【解析】圆台的轴截面如图所示,G,H,F分别为CB,DA,BA的中点,E为GH的中点,由题意得,GB=3尺,HA=9尺,GH=18尺,EH=9尺,所以EF=(HA+GB)=6尺,所以谷仓屯米的体积为V=×9×π(36+6×9+81)=513π≈513×3=1 539(立方尺).因为1 539÷1.62=950,所以谷仓屯米约为950斛.故选B.【答案】B【方法技巧】(1)求解以空间几何体的体积的关键是确定几何体的元素以及线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.二、刷高考改编题1.高考原题(2018年·全国卷Ⅰ理科第7题) 某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.172C.3 D.22B.5【解析】根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.【答案】B(2018年·全国卷Ⅰ理科第7题改编)A .221π+B .52C .21π+D .2【答案】A 2.高考原题(2018年·全国卷Ⅲ理科第3题)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )【解析】观擦图形图可知,俯视图为,故答案为A.。

【答案】A(2018年·全国卷Ⅲ理科第3题改编)A .814π+B .816π+ C .817π+ D .819π+【答案】B3.高考原题【2017年课标1理科第7题】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【解析】【答案】B【2017年课标1理科第7题改编】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中,面积最大的面的面积为()A.B.6 C.D.12【解析】由三视图可知几何体为三棱锥与三棱柱的组合体.作出直观图如图所示:由俯视图可知DE⊥DF,∴S梯形ACFD=S梯形ABED=×(2+4)×2=6,S矩形BCFE=2=4,S△ABC=×(2)2=2,S△DEF==2,故选:B.【答案】B4.高考原题【2017年课标II理科第4题】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()A.90πB.63πC.42πD.36π【解析】【答案】B【2017年课标II理科第4题改编】A.90π B .6π+ C .42π D .4π+【答案】D 5. 高考原题【2017年课标III 理科第8题】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .3π4C .π2D .π4【解析】【答案】B【2017年课标III理科第8题改编】已知圆锥的高为5,底面圆的半径为,它的顶点和底面的圆周都在同一个球的球面上,则该球的表面积为()A.4πB.36πC.48πD.24π【解析】设球的半径为R,因为圆锥的高h=5,底面圆的半径r=,故R2=(R﹣h)2+r2,即R2=(R﹣5)2+5,解得:R=3,故该球的表面积S=4πR2=36π,故选:B.【答案】B三、刷最新模拟1.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该几何体的体积为A. B. C. 16 D.2.如图,一个四面体的三视图如图所示,则该四面体的体积是()A . 12B . 13C . 23D . 1 3.如图为几何体的三视图,则其体积为( )A . 243π+B . 243π+C . 43π+D . 43π+ 4.某几何体的三视图如图所示,则该几何体的表面积为( )A . 52π+ B.42π+ C .44π+ D .54π+5.某几何体的三视图如图所示,则该几何体的表面积为( )A. 18B. 20C. 22D. 246.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A. ()8123π+B. ()813π+C. ()4233π+D. ()423π+来源 7.如图,网格纸上小正方形边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A. 48B. 36C. 32D. 248.如下图所示是一个几何体的三视图,则该几何体的体积是( )A. 42π+B. 342π+C. 4π+D. 42π+ 9.已知某几何体的三视图如图所示,则该几何体的最大边长为A. B. C. D.10.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(网格纸上小正方形的边长为1),则该“阳马”最长的棱长为()A. B. C. D.11.在四面体中,若,,,则四面体的外接球的表面积为()A. B. C. D.12.已知正四棱锥的底面边长为2,侧棱长为6,则正四棱锥的体积为__________.13.已知正四棱柱的底面边长为3cm,侧面的对角线长是35cm,则这个正四棱柱的体积是cm.____314.如图,铜质六角螺帽毛胚是由一个正六棱柱挖去一个圆柱所构成的.已知正六棱柱的底面边93cm.若将该螺帽熔化后铸成一个高为6cm的正三棱柱长、高都为4cm,圆柱的底面积为2零件,则该正三棱柱的底面边长为_________ cm.(不计损耗)15.已知圆锥的高为6,体积为8,用平行于圆锥底面的平面截圆锥,得到的圆台体积是7,则该圆台的高为_______.。

相关文档
最新文档