2016届高考数学二轮复习 1.2 不等式课件
高考数学文(二轮复习)课件《不等式与线性规划》
2.解不等式的四种策略 (1) 解一元二次不等式的策略:先化为一般形式 ax2 + bx + c>0(a>0),再结合相应二次方程的根及二次函数图象确定一元二 次不等式的解集. (2)解简单的分式不等式的策略:将不等式一边化为 0,再将 不等式等价转化为整式不等式(组)求解. (3)解含指、对数不等式的策略:利用指、对数函数的单调性 将其转化为整式不等式求解. (4)解含参数不等式的策略:根据题意确定参数分类的标准, 依次讨论求解.
2.(2014· 全国新课标Ⅱ)设集合 M={0,1,2},N={x|x2-3x+ 2≤0},则 M∩N=( A.{1} C.{0,1} ) B.{2} D.{1,2}
答案:D
解析:N={x|x2-3x+2≤0}={x|1≤x≤2},又 M={0,1,2}, 所以 M∩N={1,2}.故选 D.
基础记忆
试做真题
基础要记牢,真题须做熟
基础知识不“背死” ,就不能“用活” ! 1.牢记四类不等式的解法 (1)一元二次不等式的解法. 先化为一般形式 ax2+bx+c>0(a≠0),再求相应一元二次方 程 ax2+bx+c=0(a≠0)的根, 最后根据相应二次函数图象与 x 轴 的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法.
a+b 2 (4)ab≤ 2 (a,b∈R).
(5)
a2+b2 a+b ≥ ≥ ab(a>0,b>0). 2 2
3.快速判断二元一次不等式表示的平面区域
不等式 B>0 Ax+By+ C>0 Ax+By+ C<0
区域 B<0
直线 Ax+By 直线 Ax+By+ +C=0 上方 C=0 下方
不等式与线性规划
高考数学二轮复习不等式
(2)(2022·新高考全国Ⅱ改编)若x,y满足x2+y2-xy=1,则下列结论正确 的是__②__③____.(填序号) ①x+y≤1;②x+y≥-2;③x2+y2≤2;④x2+y2≥1.
由x2+y2-xy=1可变形为(x+y)2-1=3xy≤3x+2 y2, 解得-2≤x+y≤2, 当且仅当x=y=-1时,x+y=-2, 当且仅当x=y=1时,x+y=2,所以①错误,②正确; 由x2+y2-xy=1可变形为x2+y2-1=xy≤x2+2 y2, 解得x2+y2≤2,当且仅当x=y=±1时取等号,所以③正确; x2+y2-xy=1 可变形为x-2y2+34y2=1,
考点二
线性规划
核心提炼
1.截距型:形如z=ax+by,求这类目标函数的最值常将函数z=ax+by转
化为y=-abx+bz
(b≠0),通过求直线的截距
z b
的最值间接求出z的最值.
2.距离型:形如z=(x-a)2+(y-b)2,设动点P(x,y),定点M(a,b),则z
=|PM|2. 3.斜率型:形如z=yx- -ba (x≠a),设动点P(x,y),定点M(a,b),则z=kPM.
作出不等式组2x-3y-6≤0, x+2y+2≥0
表示的平面区域如图
中阴影部分(包括边界)所示,
函数z=(x+1)2+(y+2)2表示可行域内
的点与点(-1,-2)的距离的平方. 由图知, z= x+12+y+22的最小值为点(-1,-2)到直线 x+2y
+2=0 的距离,
即|-1-4+2|=3 5
C.[-1,3]
D.[-3,1]
作出约束条件的可行域,如图阴影部分(含边界)所示,
其中 A(1,0),B(0,1),C(2,3),z=22yx+-11=yx+-1212, 表示定点 M12,-12与可行域内点(x,y)连线的斜率,
高考数学二轮复习 不等式的基本性质和证明
高考数学二轮复习 不等式的基本性质和证明主干知识整合1.不等式的性质主要是指三条基本性质(对称性、传递性、同加(乘)性)和七条运算性质(加、减、乘、除、乘方、开方及倒数法则),它是解(证)不等式的基础和依据,常与指(对)数函数的性质一起考查.2.证明不等式的方法灵活多样,常用的有比较法、综合法、分析法、反证法、数学归纳法、换元法及放缩法等,它常与函数、数列、三角、解析几何等知识综合在一起,重点考查逻辑推理能力. 典型问题研究1.★若1a <1b <0,则下列不等式:①a +b <ab ;②︱a ︱>︱b ︱;③a <b ;④b a +ab>2中,正确的不等式有 【 】A .1个B .2个C .3个D .4个【解析】 由1a <1b<0得b <a <0,ab >0,则①正确,②错误,③错误,④正确,故选B.【变题】★ 给出三个条件:①ac 2>bc 2;②a c >b c;③a 2>b 2.其中能分别成为a >b 的充分条件的个数为 【 】 A .0B .1C .2D .32.★已知R y R x ∈∈,,则1,1<<y x 是2<-++y x y x 的【 】条件 A 、充分不必要 B 、必要不充分 C 、既不充分也不必要 D 、充要 3.★如果,2y lg x lg =+则y1x 1+的最小值是 【 】 A. 2 B. 21 C. 51 D. 201【解析】:由,2y lg x lg =+得100,xy =21115xy x y x y xy ++=≥=, 10x y ==时取等号答案:C. 514.★★设a 、b 、x 、y 均为正数,且a 、b 为常数,x 、y 为变量.若1=+y x ,则by ax +的最大值为 【 】A. 2b a +B. 21++b a C. b a + D.2)(2b a +【解】:22sin ,cos x y αα==,(0,)2πα∈)αααϕ==+,tan ϕ=≤b a +,2παϕ+=时取等号当且仅当αβ=时取最大值。
高考数学二轮复习函数的同构问题ppt课件
单调递增,即λx≥ln x 恒成立,λ≥(
)max,令 g(x)=
(x>0),g′(x)=
-
,当 0<x<e 时,
g′(x)>0,g(x)单调递增,当 x>e 时,g′(x)<0,g(x)单调递减,故 g(x)max=g(e)= ,所以λ的取值
范围为[,+∞).
的取值范围.
2
+
x
解:由 x +xln a>ae ln x⇒
构造 h(x)=
>
( )
⇒
-
,x∈(0,1),h′(x)=
<
对∀x∈(0,1)恒成立.
>0,h(x)单调递增.
-
所以 x<aex⇒a> ⇒a>( )max,因为 x∈(0,1),所以( )′= >0, 在(0,1)上单调递
造为一个函数,进而和函数的单调性找到联系.可比较大小或解不等式.
③在解析几何中的应用:如果A(x1,y1),B(x2,y2)满足的方程为同构式,则A,B为
方程所表示的曲线上的两点.特别地,若满足的方程是直线方程,则该方程即为
直线AB的方程.
④在数列中的应用:可将递推公式变形为“依序同构”的特征,即关于(an,n)
.
解析:(3)因为 lo t=-log3t=-(1-2log3t)-(3log3t-1),所以 f(1-2log3t)+f(3log3t-1)≥
lo t 可变形为,
高考数学二轮复第习一阶段专题一第一节集合与常用逻辑用语课件理43页PPT
Copyright 2019-2019 Aspose Pty Ltd.
Evaluation only. eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0
(3)“CAo的py充ri分gh不t必20要1条9-件2是01B9”A是s指poBs能e推P出tyAL,td且.A不能
推出B;而“A是B的充分不必要条件”则是指A能推出B,且B不
能推出A.
Evaluation only. eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0
函数这C个op中y心rig,h抓t 2住0导19数-2的0工19具A性s,p以os函e 数Pt、y不L等td式. 、
导数等几个方面围绕它们的定义、运算、性质、图像和
应用展开复习.
定义是学好集合与常用逻辑用语的关键,必须准确掌握各
个基本概念,把握定义的实质和各个概念之间的关系.
Evaluation only. eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0
Copyright 2019-2019 Aspose Pty Ltd.
不等式的性质是不等式的核心,是不等式的求解与证明、
利用基本不等式求解最值问题的重要依据.解不等式时要注意
不等式的等价变形,而利用基本不等式求最值应构造“定积求
和”或“定和求积”的形E式v,al从ua而ti求on得o最n值ly,. 而解决线性规划问题 eate的d关w键it是h 正A确sp做os出e.可S行lid域e.s for .NET 3.5 Client Profile 5.2.0
2016届高考数学(文)二轮复习 专题整合突破课件:1-6-1算法、复数、推理与证明(选择、填空题型
中点设为(x0,y0),则 x0=x1+2 x2,y0=y1+2 y2.将上述两端点代入双曲线方程,
21
主干知识整合
热点探究悟道
建模规范答题
适考素能特训
第二十一页,编辑于星期五:二十一点 四十五 分。
大二轮 ·数学 ·文
得axax212222--ybyb212222==11,,
两式相减,得x22-a2 x21-y22-b2 y12=0,
适考素能特训
第二十二页,编辑于星期五:二十一点 四十五 分。
大二轮 ·数学 ·文
(2)设n为正整数,f(n)=1+ 12 + 13 +…+ 1n ,计算得f(2)= 32 ,f(4)>2,f(8)> 52 ,f(16)>3.观察上述结果, 9
按照上面规律,可推测f(128)>____2____.
[解析] 观察f(2)=32,f(4)>2,f(8)>52,f(16)>3可知,不等式右边的数构成首项为32,公差为12的等差 数列,故f(128)>32+6×12=92.
23
主干知识整合
热点探究悟道
建模规范答题
适考素能特训
第二十三页,编辑于星期五:二十一点 四十五 分。
大二轮 ·数学 ·文
合情推理的解题思路、数学归纳法的应用 1.合情推理的应用 (1)在进行归纳推理时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳 出一般结论. (2)在进行类比推理时,要充分考虑已知对象性质的推理过程,然后通过类比,推导出类比对象的性 质. (3)归纳推理关键是找规律,类比推理关键是看共性.
热点探究悟道
建模规范答题
适考素能特训
第十四页,编辑于星期五:二十一点 四十五分。
大二轮 ·数学 ·文
2016高考理科数学二轮复习与增分策略课件(全国通用):专题四 数列 推理与证明 第4讲
)
解析 由{an}为等差数列,设公差为d,
a1+a2+„+an n-1 则 bn= =a1+ 2 d, n
又正项数列{cn}为等比数列,设公比为q,
n c 则 dn= c1· c2· „· cn= 1 q
n
n
n2 n 2
c1q
n 1 2
,故选 D.
答案 D
x2 y2 (2)若点 P0(x0,y0)在椭圆a2+b2=1(a>b>0)外,过点 P0 作该 椭圆的两条切线,切点分别为 P1,P2,则切点弦 P1P2 所在 x0x y0y x2 y2 直线的方程为 a2 + b2 =1.那么对于双曲线a2-b2=1(a>0, b>0) , 类 似 地 , 可 以 得 到 切 点 弦 所 在 直 线 的 方 程 为 ____________________.
x0x y0y 答案 a2 - b2 =1
x0x y0y 这说明 P1(x1,y1),P2(x2,y2)都在直线 a2 - b2 =1 上, x0x y0y 故切点弦 P1P2 所在直线的方程为 a2 - b2 =1.
热点三 直接证明和间接证明 直接证明的常用方法有综合法和分析法,综合法由因导果, 而分析法则是执果索因,反证法是反设结论导出矛盾的证 明方法.
1 2 3 4
即集合AB表示如图所示的所有圆点 “ ”+所有圆点“ ” +所有圆点“ ”,共45个. 故AB中元素的个数为45.故选C. 答案 C
1 2 3 4
2.(2014· 北京 ) 学生的语文、数学成绩均被评定为三个等级,
依次为“优秀”“合格”“不合格”.若学生甲的语文、数 学成绩都不低于学生乙,且其中至少有一门成绩高于乙, 则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位 学生比另一位学生成绩好,并且不存在语文成绩相同、数 学成绩也相同的两位学生,那么这组学生最多有( A.2人 B.3人 C.4人 D.5人 )
高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-
第二讲函数的图象与性质年份卷别考查角度及命题位置命题分析2018Ⅱ卷函数图象的识别·T3 1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等方面,多以选择、填空题形式考查,一般出现在第5~10或第13~15题的位置上,难度一般.主要考查函数的定义域,分段函数求值或分段函数中参数的求解及函数图象的判断.2.此部分内容有时出现在选择、填空题压轴题的位置,多与导数、不等式、创新性问题结合命题,难度较大.函数奇偶性、周期性的应用·T11Ⅲ卷函数图象的识别·T72017Ⅰ卷函数单调性、奇偶性与不等式解法·T5Ⅲ卷分段函数与不等式解法·T152016Ⅰ卷函数的图象判断·T7Ⅱ卷函数图象的对称性·T12函数及其表示授课提示:对应学生用书第5页[悟通——方法结论]求解函数的定义域时要注意三式——分式、根式、对数式,分式中的分母不为零,偶次方根中的被开方数非负,对数的真数大于零.底数大于零且不大于1.解决此类问题的关键在于准确列出不等式(或不等式组),求解即可.确定条件时应先看整体,后看部分,约束条件一个也不能少.[全练——快速解答]1.(2016·高考全国卷Ⅱ)以下函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=x B.y=lg xC .y =2xD .y =1x解析:函数y =10lg x的定义域与值域均为(0,+∞).结合选项知,只有函数y =1x的定义域与值域均为(0,+∞).应选D.答案:D2.(2018·某某名校联考)函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,那么f (-2 017)=( )A .1B .eC .1eD .e 2解析:由题意f (-2 017)=f (2 017),当x >2时,4是函数f (x )的周期,所以f (2 017)=f (1+4×504)=f (1)=e.答案:B3.函数f (x )=x -1ln (1-ln x )的定义域为________.解析:由函数解析式可知,x 需满足⎩⎪⎨⎪⎧x -1≥01-ln x >0x >01-ln x ≠1,解得1<xf (x )=x -1ln (1-ln x )的定义域为(1,e).答案:(1,e)4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,那么满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值X 围是__________.解析: 当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x 的取值X 围是⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞求函数的定义域,其实质就是以函数解析式所含运算有意义为准那么,列出不等式或不等式组,然后求出解集即可.2.分段函数问题的5种常见类型及解题策略 常见类型 解题策略求函数值弄清自变量所在区间,然后代入对应的解析式,求“层层套〞的函数值,要从最内层逐层往外计算求函数最值 分别求出每个区间上的最值,然后比较大小解不等式根据分段函数中自变量取值X 围的界定,代入相应的解析式求解,但要注意取值X 围的大前提求参数 “分段处理〞,采用代入法列出各区间上的方程利用函数性质求值必须依据条件找到函数满足的性质,利用该性质求解函数图象及应用授课提示:对应学生用书第5页[悟通——方法结论]1.作函数图象有两种基本方法:一是描点法、二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换等.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.(1)(2017·高考全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )解析:令函数f (x )=sin 2x 1-cos x ,其定义域为{x |x ≠2k π,k ∈Z },又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 2 1-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C.答案:C(2)(2017·高考全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )解析:法一:易知函数g (x )=x +sin xx2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.选D.答案:D由函数解析式识别函数图象的策略[练通——即学即用]1.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:法一:ƒ′(x )=-4x 3+2x ,那么ƒ′(x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫0,22,ƒ(x )单调递增;ƒ′(x )<0的解集为⎝ ⎛⎭⎪⎫-22,0∪⎝ ⎛⎭⎪⎫22,+∞,ƒ(x )单调递减. 应选D.法二:当x =1时,y =2,所以排除A ,B 选项.当x =0时,y =2,而当x =12时,y =-116+14+2=2316>2,所以排除C 选项.应选D. 答案:D 2.函数f (x )=⎝⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是( )解析:∵f (x )=⎝⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=-⎝ ⎛⎭⎪⎫21+e x -1cosx =-f (x ),∴函数f (x )为奇函数,其图象关于原点对称,可排除选项A ,C ,又当x ∈⎝⎛⎭⎪⎫0,π2时,e x >e 0=1,21+ex -1<0,cos x >0,∴f (x )<0,可排除选项D ,应选B.答案:B3.(2018·某某调研)函数f (x )的图象如下图,那么f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:由函数图象可知,函数f (xf (x )=x -1x,那么当x →+∞时,f (x )→+∞,排除D ,应选A.答案:A函数的性质及应用授课提示:对应学生用书第6页[悟通——方法结论]1.判断函数单调性的一般规律对于选择、填空题,假设能画出图象,一般用数形结合法;而对于由基本初等函数通过加、减运算或复合运算而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数,用导数法;对于抽象函数,一般用定义法.2.函数的奇偶性(1)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.3.记住几个周期性结论(1)假设函数f(x)满足f(x+a)=-f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(2)假设函数f(x)满足f(x+a)=1f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(1)(2017·高考全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2) B.(-∞,1)C.(1,+∞)D.(4,+∞)解析:由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).答案:D(2)(2017·高考全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.假设f(1)=-1,那么满足-1≤f(x-2)≤1的x的取值X围是( )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3]解析:∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,∴1≤x≤3.答案:D(3)(2018·高考全国卷Ⅲ)函数ƒ(x )=ln(1+x 2-x )+1,ƒ(a )=4,那么ƒ(-a )=________.解析:∵ƒ(x )+ƒ(-x )=ln(1+x 2-x )+1+ln(1+x 2+x )+1=ln(1+x 2-x 2)+2=2,∴ƒ(a )+ƒ(-a )=2,∴ƒ(-a )=-2. 答案:-21.掌握判断函数单调性的常用方法数形结合法、结论法(“增+增〞得增、“减+减〞得减及复合函数的“同增异减〞)、定义法和导数法.2.熟知函数奇偶性的3个特点(1)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. (3)对于偶函数而言,有f (-x )=f (x )=f (|x |).3.周期性:利用周期性可以转化函数的解析式、图象和性质,把不在区间上的问题,转化到区间上求解.4.注意数形结合思想的应用.[练通——即学即用]1.(2018·某某模拟)以下函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选项A 、B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.答案:D2.(2018·某某八中摸底)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,那么以下结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1)D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:因为函数f (x +2)是偶函数, 所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称. 又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52, 即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 答案:B授课提示:对应学生用书第116页一、选择题1.以下四个函数: ①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:①y =3-x 的定义域和值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝ ⎛⎭⎪⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0)的定义域和值域均为R ,所以定义域与值域相同的函数是①④,共有2个,应选B.答案:B2.设定义在R 上的奇函数y =f (x )满足对任意的x ∈R ,都有f (x )=f (1-x ),且当x ∈[0,12]时,f (x )=(x +1),那么f (3)+f (-32)的值为( )A .0B .1C .-1D .2解析:由于函数f (x )是奇函数,所以f (x )=f (1-x )⇒f (x )=-f (x +1)⇒f (x +1)=-f (x )⇒f (x +2)=f (x ),所以f (3)=f (1)=f (1-1)=f (0)=0,f (-32)=f (12)=32f (3)+f (-32)=-1.答案:C3.函数f (x )=1+ln ()x 2+2的图象大致是( )解析:因为f (0)=1+ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D.答案:D4.(2017·高考某某卷)奇函数f (x )在R 上是增函数,g (x )=xf (x ).假设a =g (-log 2 5.1),b =g (2),c =g (3),那么a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:奇函数f (x )在R 上是增函数,当x >0时,f (x )>f (0)=0,当x 1>x 2>0时,f (x 1)>f (x 2)>0,∴x 1f (x 1)>x 2f (x 2),∴g (x )在(0,+∞)上单调递增,且g (x )=xf (x )是偶函数,∴a =g (-log 2 5.1)=g (log 2 5.1).易知2<log 2 5.1<3,1<2<2,由g (x )在(0,+∞)上单调递增,得g (2)<g (log 2 5.1)<g (3),∴b <a <c ,应选C.答案:C5.(2018·某某模拟)函数f (x )=e xx 的图象大致为( )解析:由f (x )=e x x ,可得f ′(x )=x e x -e x x 2=(x -1)e x x2, 那么当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,应选B.答案:B6.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,那么( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,那么f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).答案:D7.(2018·某某模拟)函数f (x )=ex -1+4x -4,g (x )=ln x -1x ,假设f (x 1)=g (x 2)=0,那么( )A .0<g (x 1)<f (x 2)B .f (x 2)<g (x 1)<0C .f (x 2)<0<g (x 1)D .g (x 1)<0<f (x 2) 解析:易知f (x )=e x -1+4x -4,g (x )=ln x -1x在各自的定义域内是增函数,而f (0)=e -1+0-4=1e -4<0,f (1)=e 0+4×1-4=1>0,g (1)=ln 1-11=-1<0,g (2)=ln 2-12=ln 2e f (x 1)=g (x 2)=0,所以0<x 1<1,1<x 2<2,所以f (x 2)>f (1)>0,g (x 1)<g (1)<0,故g (x 1)<0<f (x 2).答案:D8.函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,那么M +m =( )A .4B .2C .1D .0 解析:f (x )=[(x -1)2-1]sin(x -1)+x -1+2,令t =x -1,g (t)=(t 2-1)sin t +t ,那么y =f (x )=g (t)+2,t ∈[-2,2].显然M =g (t)max +2,m =g (t)min +2.又g (t)为奇函数,那么g (t)max +g (t)min =0,所以M +m =4,应选A.答案:A9.g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,g (x ),x >0,假设f (2-x 2)>f (x ),那么x 的取值X 围是( ) A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)解析:因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),那么函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0,作出函数f (x )的图象,如图:由图象可知f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0在(-∞,+∞)上单调递增. 因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1,应选C.答案:C10.(2018·高考全国卷Ⅱ)ƒ(x )是定义域为(-∞,+∞)的奇函数,满足ƒ(1-x )=ƒ(1+x ).假设ƒ(1)=2,那么ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(50)=( )A .-50B .0C .2D .50解析:∵ƒ(x )是奇函数,∴ƒ(-x )=-ƒ(x ),∴ƒ(1-x )=-ƒ(x -1).由ƒ(1-x )=ƒ(1+x ),∴-ƒ(x -1)=ƒ(x +1),∴ƒ(x +2)=-ƒ(x ),∴ƒ(x +4)=-ƒ(x +2)=-[-ƒ(x )]=ƒ(x ),∴函数ƒ(x )是周期为4的周期函数.由ƒ(x )为奇函数得ƒ(0)=0.又∵ƒ(1-x )=ƒ(1+x ),∴ƒ(x )的图象关于直线x =1对称,∴ƒ(2)=ƒ(0)=0,∴ƒ(-2)=0.又ƒ(1)=2,∴ƒ(-1)=-2,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)=ƒ(1)+ƒ(2)+ƒ(-1)+ƒ(0)=2+0-2+0=0,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)+…+ƒ(49)+ƒ(50)=0×12+ƒ(49)+ƒ(50)=ƒ(1)+ƒ(2)=2+0=2.应选C.答案:C11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,假设f (2)=2,那么不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞) 解析:由f (x 1)-f (x 2)x 1-x 2<1, 可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,又是奇函数,且F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2,应选C.答案:C12.(2018·某某三市联考)函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧ e x ,x ≤4,4e 5-x ,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),那么m 的取值X 围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2 C .(ln 2,2] D.⎝ ⎛⎦⎥⎤1,72+ln 2 解析:作出函数y 1=e |x -2|和y =g (x )的图象,如下图,由图可知当x=1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e 5-x ,得e 2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.答案:D二、填空题13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),那么f ⎝ ⎛⎭⎪⎫-52=________.解析:由题意得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫2-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. 答案:-1214.假设函数f (x )=x (x -1)(x +a )为奇函数,那么a =________.解析:法一:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-x )=-f (x )对x ∈R 恒成立,所以-x ·(-x -1)(-x +a )=-x (x -1)(x +a )对x ∈R 恒成立,所以x (a -1)=0对x ∈R 恒成立,所以a =1.法二:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-1)=-f (1),所以-1×(-1-1)×(-1+a )=-1×(1-1)×(1+a ),解得a =1.答案:115.函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,那么实数a 的取值X 围是________.解析: 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,那么⎩⎪⎨⎪⎧ 1-2a >0,1-2a +3a ≥1,解得0≤a <12. 答案:⎣⎢⎡⎭⎪⎫0,12 16.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),那么对函数y =f (x )有以下判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6]上图象是往下的,所以①②④正确,③错误.答案:①②④。
高考总复习二轮理科数学精品课件 专题6 函数与导数 增分2 利用导数证明不等式
由题意可得 f(1)=2,f'(1)=e.故 a=1,b=2.
x
(2)证明 (方法一)要证明 e ln
只需证明 ln
2
x+e
设函数 g(x)=ln
只需证明
>
2e-1
x+ >1(x>0),
1
(x>0),即证明
e
ln
2
1
x+e − e >0,
2
1
x+ − (x>0),
2
1
0<a≤ 时,f(x)≥ ax+
e
2
+ 1.
1e0 -0
1 x
1 0
(1)解 由题意 f'(x)= e .设切点为 A(x0,y0),切线的斜率 k= e =
,
解得
e
e
x0=1,∴A(1,),k=,
∴切线的方程为
e
y-
=
e
(x-1),即
e
y=x.
(2)证明 (方法一)①当 a=1 时,要证
x
x
x-1
1
e-1
1
(x>0),∴只需证明
则下面证明
eln
2
x+
>
ห้องสมุดไป่ตู้
1
(x>0),设
e-1
g(x)min>0,g'(x)= 2 .
g(x)=eln
2
1
x+ − =eln
高中总复习二轮数学精品课件 专题一 函数与导数 第2讲 基本初等函数、函数的应用
θ1=84 ℃,即该物体初始温度是 84 ℃.
突破点二 基本初等函数的图象与性质
[例2-1]当0<a<1时,在同一平面直角坐标系中,函数y=a-x+1与y=-loga(x-1)的
图象大致是(
)
答案 B
解析 由于0<a<1,所以y=a-x=
1
在R上单调递增,且其图象过点(0,1),将
其图象向右平移1个单位长度,得y=a-x+1的图象.y=-logax在区间(0,+∞)内单
调递增,且其图象过点(1,0),将其图象向右平移1个单位长度,得y=-loga(x-1)
的图象,故选B.
[例2-2](多选题)已知函数f(x)=log2(1+4x)-x,则下列说法正确的是(
A.函数f(x)是偶函数
B.函数f(x)是奇函数
C.函数f(x)在区间(-∞,0]内单调递增
D.函数f(x)的值域为[1,+∞)
对点练3
(1)已知函数f(x)=x2-4x-1+ex-2+e-x+2有两个零点x1,x2,则x1+x2=(
A.2
B.4
C.5
D.6
)
|2x -1|,x < 2,
(2)若函数f(x)=
A.3
B.4
C.5
D.6
3
则函数g(x)=f(f(x))-2的零点个数为(
,x ≥ 2,
x-1
)
答案(1)B (2) B
(4)对数值符号规律:已知a>0,且a≠1,b>0,则logab>0⇔(a-1)(b-1)>0,
logab<0⇔(a-1)(b-1)<0.
高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案理
第一讲集合、常用逻辑用语年份卷别考查角度及命题位置命题分析2018Ⅰ卷集合的补集运算·T2本部分作为高考必考内容,多年来命题较稳定,多以选择题形式在第1、2题的位置进行考查,难度较低.命题的热点依然会集中在集合的运算上.对常用逻辑用语考查的频率不高,且命题点分散,多为几个知识点综合考查,难度中等,其中充分必要条件的判断近几年全国卷虽未考查,但为防高考“爆冷”考查,在二轮复习时不可偏颇.该考点多结合函数、向量、三角、不等式、数列等内容命题.Ⅱ卷集合中元素个数问题·T2Ⅲ卷集合交集运算·T12017Ⅰ卷集合的交、并运算与指数不等式解法·T1Ⅱ卷已知集合交集求参数值·T2Ⅲ卷已知点集求交点个数·T12016Ⅰ卷集合的交集运算·T1Ⅱ卷集合的并集运算、一元二次不等式的解法·T2Ⅲ卷集合的交集运算、一元二次不等式的解法·T1集合的概念及运算授课提示:对应学生用书第3页[悟通——方法结论]1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解. (2)若已知的集合是点集,用数形结合法求解. (3)若已知的集合是抽象集合,用Venn 图求解.(1)(2018·南宁模拟)设集合M ={x |x <4},集合N ={x |x 2-2x <0},则下列关系中正确的是( )A .M ∪N =MB .M ∪∁R N =MC .N ∪∁R M =RD .M ∩N =M解析:∵M ={x |x <4},N ={x |0<x <2},∴M ∪N ={x |x <4}=M ,故选项A 正确;M ∪∁R N =R ≠M ,故选项B 错误;N ∪∁R M ={x |0<x <2}∪{x |x ≥4}≠R ,故选项C 错误;M ∩N ={x |0<x <2}=N ,故选项D 错误.故选A.答案:A(2)(2018·宜昌模拟)已知两个集合A ={x ∈R |y =1-x 2},B ={x |x +11-x≥0},则A ∩B =( )A .{x |-1≤x ≤1}B .{x |-1≤x <1}C .{-1,1}D .∅解析:∵A ={x |-1≤x ≤1},B ={x |-1≤x <1},∴A ∩B ={x |-1≤x <1}. 答案:B破解集合运算需掌握2招第1招,化简各个集合,即明确集合中元素的性质,化简集合;第2招,借形解题,即与不等式有关的无限集之间的运算常借助数轴,有限集之间的运算常用Venn图(或直接计算),与函数的图象有关的点集之间的运算常借助坐标轴等,再根据集合的交集、并集、补集的定义进行基本运算.[练通——即学即用]1.(2018·高考全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9 B.8C.5 D.4解析:将满足x2+y2≤3的整数x,y全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.答案:A2.(2018·德州模拟)设全集U=R,集合A={x∈Z|y=4x-x2},B={y|y=2x,x>1},则A∩(∁U B)=( )A.{2} B.{1,2}C.{-1,0,1,2} D.{0,1,2}解析:由题意知,A={x∈Z|4x-x2≥0}={x∈Z|0≤x≤4}={0,1,2,3,4},B={y|y>2},则∁U B={y|y≤2},则A∩(∁U B)={0,1,2},故选D.答案:D3.(2018·枣庄模拟)已知集合A={|m|,0},B={-2,0,2},若A⊆B,则∁B A=( ) A.{-2,0,2} B.{-2,0}C.{-2} D.{-2,2}解析:由A⊆B得|m|=2,所以A={0,2}.故∁B A={-2}.答案:C命题及真假判断授课提示:对应学生用书第4页[悟通——方法结论]1.全称命题和特称命题的否定归纳∀x∈M,p(x) ∃x0∈M,綈p(x0).简记:改量词,否结论.2.“或”“且”联结词的否定形式“p或q”的否定形式是“非p且非q”,“p且q”的否定形式是“非p或非q”.3.命题的“否定”与“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.[全练——快速解答]1.(2018·西安质检)已知命题p:∃x0∈R,log2(3x0+1)≤0,则( )A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)>0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D.p是真命题;綈p:∀x∈R,log2(3x+1)>0解析:∵3x>0,∴3x+1>1,则log2(3x+1)>0,∴p是假命题;綈p:∀x∈R,log2(3x +1)>0.答案:B2.给出下列3个命题:p1:函数y=a x+x(a>0,且a≠1)在R上为增函数;p2:∃a0,b0∈R,a20-a0b0+b20<0;p3:cos α=cos β成立的一个充分不必要条件是α=2kπ+β(k ∈Z).则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∨(綈p 3) C .p 1∨(綈p 3) D .(綈p 2)∧p 3解析:对于p 1,令f (x )=a x +x (a >0,且a ≠1),当a =12时,f (0)=⎝ ⎛⎭⎪⎫120+0=1,f (-1)=⎝ ⎛⎭⎪⎫12-1-1=1,所以p 1为假命题;对于p 2,因为a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3,因为cos α=cos β⇔α=2k π±β(k ∈Z ),所以p 3为真命题,所以(綈p 2)∧p 3为真命题,故选D.答案:D3.命题“若xy =1,则x ,y 互为倒数”的否命题为________;命题的否定为________. 答案:若xy ≠1,则x ,y 不互为倒数 若xy =1,则x ,y 不互为倒数判断含有逻辑联结词命题真假的方法方法一(直接法):(1)确定这个命题的结构及组成这个命题的每个简单命题;(2)判断每个简单命题的真假;(3)根据真值表判断原命题的真假.方法二(间接法):根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性.此法适用于原命题的真假性不易判断的情况.充分、必要条件的判断授课提示:对应学生用书第4页[悟通——方法结论]充分、必要条件的判断:考查形式多与其他知识交汇命题.常见的交汇知识点有:函数性质、不等式、三角函数、向量、数列、解析几何等,有一定的综合性.(1)“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a=-2时,直线l1:2x+y-3=0,l2:2x+y+4=0,所以直线l1∥l2;若l1∥l2,则-a(a+1)+2=0,解得a=-2或a=1.所以“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的充分不必要条件.答案:A(2)(2018·南昌模拟)已知m,n为两个非零向量,则“m与n共线”是“m·n=|m·n|”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当m与n反向时,m·n<0,而|m·n|>0,故充分性不成立.若m·n=|m·n|,则m·n=|m|·|n|cos〈m,n〉=|m|·|n|·|cos 〈m,n〉|,则cos〈m,n〉=|cos〈m,n〉|,故cos〈m,n〉≥0,即0°≤〈m,n〉≤90°,此时m与n不一定共线,即必要性不成立.故“m与n共线”是“m·n=|m·n|”的既不充分也不必要条件,故选D.答案:D快审题看到充分与必要条件的判断,想到定条件,找推式(即判定命题“条件⇒结论”和“结论⇒条件”的真假),下结论(若“条件⇒结论”为真,且“结论⇒条件”为假,则为充分不必要条件).用妙法根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1”或y≠1的某种条件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.避误区“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A是B的充分不必要条件”则是指A能推出B,且B不能推出A.[练通——即学即用]1.(2018·胶州模拟)设x,y是两个实数,命题“x,y中至少有一个数大于1”成立的充分不必要条件是( )A.x+y=2 B.x+y>2C.x2+y2>2 D.xy>1解析:当⎩⎪⎨⎪⎧x≤1y≤1时,有x+y≤2,但反之不成立,例如当x=3,y=-10时,满足x+y≤2,但不满足⎩⎪⎨⎪⎧x≤1y≤1,所以⎩⎪⎨⎪⎧x≤1y≤1是x+y≤2的充分不必要条件.所以“x+y>2”是“x,y中至少有一个数大于1”的充分不必要条件.答案:B2.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:根据祖暅原理,“A,B在等高处的截面积恒相等”是“A,B的体积相等”的充分不必要条件,即綈q是綈p的充分不必要条件,即命题“若綈q, 则綈p”为真,逆命题为假,故逆否命题“若p,则q”为真,否命题“若q,则p”为假,即p是q的充分不必要条件,选A.答案:A授课提示:对应学生用书第115页一、选择题1.(2018·高考全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}解析:∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1}.在数轴上表示出集合A,如图所示.由图可得∁R A={x|-1≤x≤2}.故选B.答案:B2.(2017·高考山东卷)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.3.设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32 B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32 C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1≤x <32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x ≤3解析:A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32. 答案:B4.(2017·高考全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.答案:B5.(2018·合肥模拟)已知命题q :∀x ∈R ,x 2>0,则( ) A .命题綈q :∀x ∈R ,x 2≤0为假命题 B .命题綈q :∀x ∈R ,x 2≤0为真命题 C .命题綈q :∃x 0∈R ,x 20≤0为假命题 D .命题綈q :∃x 0∈R ,x 20≤0为真命题解析:全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x =0时,x 2≤0成立,所以綈q 为真命题.6.(2018·郑州四校联考)命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+cB.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>bD.若a>b,则a+c≤b+c解析:命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a ≤b,则a+c≤b+c”,故选A.答案:A7.(2018·石家庄模拟)“x>1”是“x2+2x>0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.答案:A8.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.答案:D9.(2018·石家庄模拟)已知a,b∈R,下列四个条件中,使“a>b”成立的必要不充分条件是( )A.a>b-1 B.a>b+1C.|a|>|b| D.2a>2b解析:由a>b-1不一定能推出a>b,反之由a>b可以推出a>b-1,所以“a>b-1”是“a>b”的必要不充分条件.故选A.答案:A10.已知命题p:“x=0”是“x2=0”的充要条件,命题q:“x=1”是“x2=1”的充要条件,则下列命题为真命题的是( )A.p∧q B.(綈p)∨qC.p∧(綈q) D.(綈p)∧q解析:易知命题p为真命题,q为假命题,根据复合命题的真值表可知p∧(綈q)为真命题.答案:C11.(2018·济宁模拟)已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:若随机变量X~N(1,σ2)(σ>0),且P(0<X<1)=0.4,则P(0<X<2)=0.8,则下列命题是真命题的是( )A.p∨(綈q) B.p∧qC.p∨q D.(綈p)∧(綈q)解析:因为“x<0”是“x+1<0”的必要不充分条件,所以p为假命题,因为P(0<X<1)=P(1<X<2)=0.4,所以P(0<X<2)=0.8,q为真命题,所以p∨q为真命题.答案:C12.下列命题是假命题的是( )A.命题“若x2+x-6=0,则x=2”的逆否命题为“若x≠2,则x2+x-6≠0”B.若命题p:∃x0∈R,x20+x0+1=0,则綈p:∀x∈R,x2+x+1≠0C.若p∨q为真命题,则p、q均为真命题D.“x>2”是“x2-3x+2>0”的充分不必要条件解析:由复合命题的真假性知,p、q中至少有一个为真命题,则p∨q为真,故选项C 错误.答案:C二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :________. 解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3},所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3},则∁U (M ∪P )={(2,3)}.答案:{(2,3)}15.已知A ={x |x 2-3x +2<0},B ={x |1<x <a },若A ⊆B ,则实数a 的取值范围是________.解析:因为A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以a ≥2.答案:[2,+∞)16.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)。
高考数学二轮复习考点知识与题型专题讲解与训练35 一元二次不等式及其解法
高考数学二轮复习考点知识与题型专题讲解与训练专题35一元二次不等式及其解法考点知识要点1.会从实际问题的情境中抽象出一元二次不等式模型.2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.基础知识融会贯通1.“三个二次”的关系2.常用结论(x-a)(x-b)>0或(x-a)(x-b)<0型不等式的解法解集不等式a<b a=b a>b(x-a)·(x-b)>0{x|x<a或x>b} {x|x≠a}{x|x<b或x>a}(x-a)·(x-b)<0{x|a<x<b}∅{x|b<x<a}口诀:大于取两边,小于取中间.【知识拓展】(1)f xg x>0(<0)⇔f(x)·g(x)>0(<0).(2)f xg x≥0(≤0)⇔f(x)·g(x)≥0(≤0)且g(x)≠0.以上两式的核心要义是将分式不等式转化为整式不等式.重点难点突破【题型一】一元二次不等式的求解命题点1不含参的不等式【典型例题】不等式x2+5x﹣6>0的解集是()A.{x|x<﹣2或x>3}B.{x|﹣2<x<3}C.{x|x<﹣6或x>l}D.{x|﹣6<x<l}【再练一题】不等式6x2+17x+12<0的解集是.命题点2含参不等式【典型例题】设a>1,则关于x的不等式的解集是()A.B.(a,+∞)C.D.【再练一题】已知不等式ax2+bx+c>0的解集是{x|α<x<β}(α>0),则不等式cx2+bx+a>0的解集是()A.(,)B.(﹣∞,)∪(,+∞)C.{x|α<x<β}D.(﹣∞,α)∪(β,+∞)思维升华含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论.(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式;(3)对方程的根进行讨论,比较大小,以便写出解集.【题型二】一元二次不等式恒成立问题命题点1在R上的恒成立问题【典型例题】若不等式ax2﹣x+a>0对一切实数x都成立,则实数a的取值范围为()A.a或a B.a或a<0C.a D.【再练一题】已知关于x的不等式x2﹣x+a﹣1≥0在R上恒成立,则实数a的取值范围是.命题点2在给定区间上的恒成立问题【典型例题】已知[(m﹣1)x+1](x﹣1)>0,其中0<m<2,(1)解不等式.(2)若x>1时,不等式恒成立,求实数m的范围.【再练一题】已知关于x的不等式:x2﹣mx+m>0,其中m为参数.(1)若该不等式的解集为R,求m的取值范围;(2)当x>1时,该不等式恒成立,求m的取值范围.命题点3给定参数范围的恒成立问题【典型例题】已知不等式2x﹣1>m(x2﹣1).(1)若对于所有实数x,不等式恒成立,求m的取值范围;(2)若对于m∈[﹣2,2]不等式恒成立,求x的取值范围.【再练一题】已知不等式mx2﹣2x﹣m+1<0.(1)若对任意实数x上述不等式恒成立,求m的取值范围;(2)若对一切m∈[﹣2,2]上述不等式恒成立,求x的取值范围.思维升华(1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.跟踪训练【题型三】一元二次不等式的应用如果关于x的一元二次不等式ax2+bx+c>0的解集为{x|x<﹣2或x>4},那么对于函数应有()A.f(5)<f(2)<f(﹣1)B.f(2)<f(5)<f(﹣1)C.f(﹣1)<f(2)<f(5)D.f(2)<f(﹣1)<f(5)【再练一题】已知关于x 的不等式x 2﹣4ax +3a 2<0(a <0)的解集为(x 1,x 2),则的最大值是( )A .B .C .D .思维升华 求解不等式应用题的四个步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系.(2)引进数学符号,将文字信息转化为符号语言,用不等式表示不等关系,建立相应的数学模型. (3)解不等式,得出数学结论,要注意数学模型中自变量的实际意义. (4)回归实际问题,将数学结论还原为实际问题的结果.基础知识训练1.【贵州省铜仁市思南中学2018-2019学年高一下学期期中考试】不等式210x mx ++<的解集为空集,则m 的取值范围是( )A .(-2,2)B .[-2,2]C .(,2)(2,)-∞-⋃+∞D .(,2][2,)-∞-+∞2.【北省宜昌市部分示范高中教学协作体2018-2019学年高一下学期期中考试】不等式240ax ax +-<的解集为R ,则a 的取值范围是( ) A .160a ≤<B .16a >-C .160a -<≤D .0a <3.【安徽省安庆市第一中学2018-2019学年高一下学期期中考试】若不等式20ax x a -+>对一切实数x 都成立,则实数a 的取值范围为( ) A .12a <-或12a >B .12a >或0a < C .12a >D .1122a -<<4.【黑龙江省牡丹江市第一高级中学2018-2019学年高二下学期期中考试】不等式20ax bx c ++>的解集为(-4,1),则不等式2(1)(3)0b x a x c +-++>的解集为( )A .4(1,)3-B .4(,1)(,)3-∞-⋃+∞C .4(,1)3-D .4(,)(1,)3-∞-⋃+∞ 5.【广东省佛山市南海区桂城中学2018-2019学年第二学期高一数学第二次阶段考试】已知关于x 的不等式20x ax b --<的解集是()2,3-,则+a b 的值是( )A .11-B .11C .7D .76.【广东省深圳市四校发展联盟体2018-2019学年高二第二学期期中考试】在R 上定义运算():x y=x 1y ⊗⊗-,若对任意x 2>,不等式()x a x a 2-⊗≤+都成立,则实数a 的取值范围是( )A .(7,⎤-∞⎦B .17,⎡⎤-⎣⎦C .(3,⎤-∞⎦D .()17,,⎤⎡-∞-+∞⎦⎣7.【黑龙江省鹤岗市第一中学2018-2019学年高一下学期期中考试】在上定义运算,若存在使不等式成立,则实数的取值范围为A .B .C .D .8.【山东省济宁市2019届高三二模】已知函数,若不等式恒成立,则实数的取值范围为( ) A . B . C .D .9.【江西师范大学附属中学2018-2019学年高一下期期中考试】已知正实数,x y 满足3x y xy ++=,若对任意满足条件的,x y ,都有2()()60x y a x y +-++≥恒成立,则实数a 的最大值为( ) A .26B .7C .46D .810.【湖北省荆州市沙市中学2018-2019学年高一5月月考】若正实数x ,y 满足141x y +=,且234y x a a +>-恒成立,则实数a 的取值范围为( ) A .[]1,4-B .()1,4-C .[]4,1-D .()4,1-11.【福建省上杭县第一中学2018-2019学年高一5月月考】若两个正实数x ,y 满足211x y+=,且不等式2220x y m m +--<有解,则实数m 的取值范围为( )A .(,2)(4,)-∞-⋃+∞B .(,4)(2,)-∞-+∞C .(2,4)-D .(4,2)-12.【河北廊坊2018-2019学年高一年级第二学期期中联合调研考试高一】已知函数,如果不等式的解集为,那么不等式的解集为( )A .B .C .D .13.【内蒙古包头市第九中学2018-2019学年高一下学期期中考试】二次不等式210ax bx ++>的解集为113x x ⎧⎫-<<⎨⎬⎩⎭,则ab 的值为_______.14.【贵州省凯里市第一中学2018-2019学年高一下学期期中考试】已知不等式20ax bx c ++<的解集为{x | 2<x<3},则252b c a +++的最小值为__________. 15.【内蒙古赤峰二中2018-2019学年高一下学期第二次月考】不等式()2230x a a x a -++>的解集为{|x 2x a < 或x a >},则实数a 的取值范围______.16.【江西省南昌市第十中学2018-2019学年高一下学期第二次月考】已知关于x 的不等式20ax bx c ++<的解集是1{|2,}2x x x <->-或,则20ax bx c -+>的解集为_____.17.【四川省大竹中学2018-2019学年高一第二学期5月月考考前模拟】已知函数2()45()f x x x x R =-+∈. (1)求关于x 的不等式()2f x <的解集;(2)若不等式()|3|f x m >-对任意x R ∈恒成立,求实数m 的取值范围.18.【福建省三明市三地三校2018-2019学年高一下学期期中联考】已知函数2()28f x x x =-- (1)解不等式()0f x ≥;(2)若对一切0x >,不等式()9f x mx ≥-恒成立,求实数m 的取值范围.19.【内蒙古赤峰市2018-2019学年高一下学期期中考试】已知函数2()3f x x x m =++. (1)当m=-4时,解不等式()0f x ≤; (2)若m>0,()0f x <的解集为(b ,a),求14a b+的最大値. 20.【黑龙江省哈尔滨市呼兰一中、阿城二中、宾县三中、尚志五中四校2018-2019学年高一下学期期中考试】已知函数()22f x x x a =++.(1)当2a =时,求不等式()1f x >的解集(2)若对于任意[)1,x ∈+∞,()0f x >恒成立,求实数a 的取值范围.21.【安徽省固镇县第一中学2018-2019学年高二5月月考】设命题p :实数x 满足22430x mx m -+<;命题q :实数x 满足31x -<(1)若1m =,且p q ∧为真,求实数x 的取值范围;(2)若0m >,且p ⌝是q ⌝的充分不必要条件,求实数m 的取值范围.22.【湖北省荆州市沙市中学2018-2019学年高一5月月考】设函数()24f x ax x b =++(I )若1b =,且对于[]0,1x ∈,有()0f x ≥恒成立,求a 的取值范围; (II )若4a b +=,解关于x 的不等式()0f x ≥能力提升训练1.【2019年河北省藁城市第一中学高一下学期7月月考】设1a >,则关于x 的不等式1(1)()0a x a x a ⎛⎫---< ⎪⎝⎭的解集是( )A .1(,),a a ⎛⎫-∞+∞ ⎪⎝⎭B .(),a +∞C .1,a a ⎛⎫ ⎪⎝⎭D .()1,,a a ⎛⎫-∞+∞ ⎪⎝⎭2.【河南省濮阳市2018-2019学年高二下学期升级考试】设,a b 是关于x 的一元二次方程2260x mx m -++=的两个实根,则22(1)(1)a b -+-的最小值是( )A .494-B .18C .8D .-63.【江苏省无锡市锡山区天一中学2019年高一期末】已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( )A .01k ≤≤B .01k <≤C .k 0<或1k >D .0k ≤或1k4.【江西省南昌市东湖区第二中学2018-2019学年高二下学期期末】已知0,0x y >>,且211x y+=,若对任意的正数,x y ,不等式222x y m m +>+恒成立,则实数m 的取值范围是( ) A .4m ≥或2m ≤- B .2m ≥或4m ≤- C .24m -<<D .42m -<<5.【宁夏回族自治区银川一中2018-2019高二下学期期中考试】若存在1[,3]2x ∈,使不等式210x ax -+≥成立,则实数a 取值范围是( ) A .2a ≤B .522a ≤≤C .103a ≤D .1023a ≤≤6.【浙江省绍兴市第一中学2018-2019学年高二下学期期中考试】已知01b a <<+,若关于x 的不等式2()x b ->2()ax 的解集中的整数恰有3个,则a 的取值范围为( )A .11a -<<B .02a <<C .13a <<D .25a <<7.【安徽省淮南市第一中学2018-2019年高一年级第二学期第二次段考】已知关于x 的不等式2420ax x -+>的解集为{|}x x b ≠.(1)求实数,a b 的值; (2)解关于x 的不等式0x cax b-≥-.(c 为常数)8.【浙江省嘉兴市2018-2019学年高一下学期期末考试】已知函数2()2f x x ax =++. (Ⅰ)当3a =时,解不等式()0f x <;(Ⅱ)当[1,2]x ∈时,()0f x ≥恒成立,求a 的取值范围.9.【浙江“七彩阳光”新高考研究联盟2018-2019学年高一下学期期中考试】设函数()42,x a x f x a a R +=--∈.(Ⅰ)当2a =时,解不等式:()30f x >;(Ⅱ)当()1,1x ∈-时,()f x 存在最小值2-,求a 的值.10.【安徽省淮南市第一中学2018-2019年高一年级第二学期第二次段考】设函数2()2f x x ax a =++,2()2()g x x bx c b c =++≠.已知关于x 的不等式()55b c g x -≤≤的解集恰好为,55b c ⎡⎤-⎢⎥⎣⎦.(1)求()g x ;(2)对于0(2,)x ∈-+∞使得()()00f x g x <恒成立,求实数a 的取值范围.。
高考数学第2讲 不等式选讲(大题细做)
大二轮复习 数学(文)
解:(1)f(x)>f(1)就是 2|x+1|+|2x-1|>5. ①当 x>12时,2(x+1)+(2x-1)>5,得 x>1. ②当-1≤x≤12时,2(x+1)-(2x-1)>5,得 3>5,不成立. ③当 x<-1 时,-2(x+1)-(2x-1)>5, 得 x<-32. 综上可知,不等式 f(x)>f(1)的解集是-∞,-32∪(1,+∞).
核心知识 突破热点 高考押题 限时规范训练
大二轮复习 数学(文)
热点三 不等式证明
——看“目标”,找“条件”,想“变形” [一题多解]设 f(x)=-x+|2x+1|,不等式 f(x)<2 的解集 是 M. (1)求集合 M; (2)设 a,b∈M,证明:2|ab|+1>|a|+|b|.
核心知识 突破热点 高考押题 限时规范训练
核心知识 突破热点 高考押题 限时规范训练
大二轮复习 数学(文)
[一题多变] 若 f(x)=|x+1|+|ax-1|,当 a=1 时,解不等式 f(x)<4. 解析:由题意得|x+1|+|x-1|<4. 即 x 到-1 的距离与到 1 的距离之和小于 4. 当 x=±2 时,|x+1|+|x-1|=4. ∴f(x)<4 的解集为(-2,2).
核心知识 突破热点 高考押题 限时规范训练
大二轮复习 数学(文)
1.(2019·安庆二模)已知 f(x)=2|x+1|+|2x-1|. (1)解不等式 f(x)>f(1); (2)若不等式 f(x)≥m1 +n1(m>0,n>0)对任意的 x∈R 都成立,证明: m+n≥43.
核心知识 突破热点 高考押题 限时规范训练
高三数学二轮复习教学案——基本不等式(1)(2)
高三数学二轮复习教学案——基本不等式(1)班级 学号 姓名【基础训练】1.设R y x ∈,,且0≠xy ,则⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+2222411y x y x 的最小值为_____________。
2.若实数y x ,满足122=++xy y x ,则y x +的最大值是_____________。
3.己知0>b ,直线012=++y x b 与02)4(2=++-y b ax 互相垂直,则ab 的最小值为______________。
4.若实数b a ,满足)1(014>=+--a b a ab ,则)2)(1(++b a 的最小值为_____________。
5.若不等式ax x x x ≥-++2222对)4,0(∈x 恒成立,则实数a 的取值范围是_________。
6.不等式011≥-+-+-ac c b b a λ,对满足c b a >>恒成立,则λ的取值范围是________。
7.己知0,,>c b a 且94222=+++bc ac ab a ,则c b a ++的最小值为______________。
【典型例题】8.某厂家拟在2012年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元)0(≥m 满足13+-=m k x (k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件。
己知2007年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金)。
(1)将2012年该产品的利润y 万元表示为年促销费用m 万元的函数;(2)该厂家2012年的促销费用投入多少万元时,厂家的利润最大?9.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热屋建造成本为6万元。
第三节二次函数与一元二次方程不等式专题课件高三数学二轮复习
【解析】由+10Fra bibliotek(-2)
2
2
2
>1,得
x+10>(x-2)
=x
-4x+4,且
x≠2,整理得,x
-5x-6<0, -6 · + 1 <0,
2
解得-1<x<6,又因为 x≠2,所以解集为 -1,2 ∪ 2,6 .
【解析】(1)原不等式因式分解得(x2+1)(x2-2)≥0,
因为 x2+1>0,所以 x2-2≥0,解得 x≤- 2或 x≥ 2,
若一元二次不等式 mx2-2mx-1≤0 恒成立,
<0
则
,解得-1≤m<0,此时不等式恒成立.
2
= 4 + 4 ≤ 0
答案:[2,10)
【解析】因为 x +x+2= +
2
1 2 7
2
+ >0,
4
所以原不等式等价于 kx2+kx+6>2x2+2x+4,
即 -2 x2+ -2 x+2>0 恒成立.
( A )
A.k>1
B.-1<k<1
C.k<-1
D.k>-1
【解析】当 k=0 时,-2x>0 不恒成立;
>0
当 k≠0 时,
,解得 k>1;
2
= 4(1- ) < 0
综上,k>1.
核心题型·分类突破
A
1
【解析】x 2 + 7 ≥-3 可变形为 2x +7x+3≥0,令 2x +7x+3=0,得 x1=-3,x2=- ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 ������
-16能力突破点一 能力突破点二 能力突破点三
2 ������
1 ������
2 ������
C.
= ������
1
4 ������ + -3 ������ ������
9 4
D.3
=1,
=
������������ ������ 2 -3xy +4������ 2 ������ 4������ ������ ������
≤
1
������ 4 ������ 2 · -3 ������ ������
∴f(x)的最大值为 1.
-10能力突破点一 能力突破点二 能力突破点三
能力突破方略
能力突破模型
能力迁移训练
1 1 2������+8-2������ (3)y=x(8-2x)= [2x· (8-2x)]≤ 2 2 2
2
=8,
当且仅当 2x=8-2x,即 x=2 时取等号. 所以 y=x(8-2x)的最大值为 8. (4)因为 x,y∈(0,+∞),且 + 所以 x+y=(x+y)
������ ������ ������ ������
1 -������ 1 -������
������ ������
关闭
∵ c<d< 0,∴ -c>-d> 0,∴ 0< < .即 > >0. 命题定位 :本题主要考查不等式的基本性质 ,侧重对基础知识,不等式的
1 -������
基本性质的变形应用.
4������ ������ 4 16 + ������ ������ 4 ������ 16 =1, ������ 4������ 16������ 4������ 16������ + +20≥2 · +20=36,当且仅当 ������ ������ ������ ������
=
=
16����以最低总造价是 160 元.
关闭
160
解析 答案
-7能力突破点一 能力突破点二 能力突破点三
能力突破方略
能力突破模型
能力迁移训练
能力突破点一 基本不等式的应用
思考 1:x>0,y>0. (1)如果 xy 是定值 P,如何求 x+y 的最小值? (2)如果 x+y 是定值 S,如何求 xy 的最大值? 提示:(1)如果 xy 是定值 P,当且仅当 x=y 时,x+y 有最小值 2 ������(积定和 最小). (2)如果 x+y 是定值 S,当且仅当 思考 2:若
能力突破方略
能力突破模型
能力迁移训练
1.设正实数 x,y,z 满足 x2-3xy+4y2-z=0,则当 取得最大值时, + − 的 最大值为 ( ) 由 x2-3xy+4y2-z=0, A.0 2 B.1 2 得 z=x -3xy+4y .
所以
������������ ������
关闭
������������ ������
-9能力突破点一 能力突破点二 能力突破点三
能力突破方略
能力突破模型
能力迁移训练
我的解答:
������2 +7x+10 (������+1) +5(x+1)+4 解:(1)y= = ������+1 ������+1 4 =x+1+ +5. ������+1
2
当 x+1>0,即 x>-1 时,y≥2 (������ + 1)·
-4能力目标解读 热点考题诠释
1 2
3
1.(2014 四川高考,理 4)若 a>b>0,c<d<0,则一定有( A. > C. >
������ ������ ������ ������ ������ ������ ������ ������
)
B. < D. <
1 -������
������ ������
关闭
A.10 C.3
B.8 D.2
命题定位:本题主要考查用图示求解线性目标函数的最值,对运算能力、 空间想象能力有一定的要求.
将直线 l0:y=2x 平行移动,当直线 l0 经过点 M(5,2)时,直线 y=2x-z 在 y 轴上的截距最小, 也就是 z 取最大值,此时 zmax=2×5-2=8.
关闭
能力突破方略
能力突破模型
能力迁移训练
������ + 4������-13 ≤ 0, 【例 2】 已知变量 x,y 满足约束条件 2������-������ + 1 ≥ 0, 且有无穷多个点 ������ + ������-4 ≥ 0, (x,y)使目标函数 z=x+my 取得最小值,则 m= . 分析推理目标函数中的参数往往与直线的斜率有关 ,这类 问题还有另一个特征,就是其最优解是可知的 (一个或者无穷多个),因此解 题时可充分利用斜率的特征加以转化 .
B
解析
答案
-6能力目标解读 热点考题诠释
1 2
3
关闭
4 3.(2014 福建高考,理 13) 要制作一个容积为 4 m ,高为 1 m 的无盖长方 设池底长 x m,宽 y m,则 xy=4,所以 y= ,则总造价为: ������ 体容器.已知该容器的底面造价是每平方米 20 元,侧面造价是每平方米 10 80 元,则该容器的最低总造价是 (单位 :元). 4 f(x)=20xy+2(x+y)×1×10=80+ +20x=20 ������ + +80,x∈(0,+∞). ������ ������ 命题定位:本题主要考查函数、基本不等式在实际问题中的应用,解决 4 ,抽象概括能力要求较高. 的关键是抽象出数学模型4 ,对学生的基本运算能力 所以 f(x)≥20×2 ������· +80=160,当且仅当 x= ,即 x=2 时,等号成立. ������ ������
2
的大小关系如何?
≤ ������������ ≤
≤
,此结论可运用作差法及基本不等式
进行证明,作为基本不等式的一个延伸性结论.
-8能力突破点一 能力突破点二 能力突破点三
能力突破方略
能力突破模型
能力迁移训练
������2 +7x+10 【例 1】 (1)求 y= (x≠-1)的值域; ������+1 5 1 (2)已知 x< ,求函数 f(x)=4x-2+ 的最大值; 4 4������-5
(3)当 0<x<4 时,求 y=x(8-2x)的最大值; (4)若 x,y∈(0,+∞),且满足 +
4 ������ 16 =1,求 ������
x+y 的最小值.
分析推理基本不等式的功能在于“和与积”的相互转化,使 用基本不等式求最值时,给定的形式不一定能直接适合基本不等式,这时往 往需要拆添项或配凑因式(一般是凑和或积为定值的形式),构造出基本不 等式的形式再进行求解.
4 +5=9(当且仅当 ������+1 4 =1(当且仅当 ������+1
x=1 时取等
号).当 x+1<0,即 x<-1 时,y≤5-2 (������ + 1)·
x=-3 时取等号).
������2 +7x+10 ∴y= (x≠-1)的值域为(-∞,1]∪[9,+∞). ������+1 5 (2)∵x< ,∴5-4x>0, 4 1 1 1 ∴f(x)=4x-2+ =- 5-4������ + +3≤-2 (5-4������)· +3=-2+3=1, 4������-5 5-4������ 5-4������ 1 当且仅当 5-4x= ,即 x=1 时等号成立. 5-4������
x=12,且 y=24 时等号成立,所以 x+y 的最小值是 36.
点评:当函数或代数式具有“和是定值”“积是定值”的结构特点时,常利 用基本不等式求其最大、最小值.在具体题目中,一般很少考查基本不等式 的直接应用,而是需要对式子进行变形,寻求其中的内在关系,然后利用基本 不等式得出结果.
-11能力突破点一 能力突破点二 能力突破点三
-5能力目标解读 热点考题诠释
1 2
3
������ + ������-7 ≤ 0, 2.(2014 课标全国Ⅱ高考,理 9)设 x,y 满足约束条件 ������-3������ + 1 ≤ 0,则 3������-������-5 ≥ 0,
线性目标函数 z=2 . z=2x-y 的最大值为 (x-y 满足的可行域如图所示 )
又∵ a>b>0,∴ > ,∴ < .
������ -������ ������ -������ ������ ������ ������ ������ ������ -������ ������ -������ ������ ������ ������ ������
D
∴ > ,∴ < .
关闭
解析
答案
专题2
不等式
-2能力目标解读 热点考题诠释
本部分主要考查不等式的性质、解不等式、基本不等式及线性规划等 知识.其中热点是线性规划知识、基本不等式,单纯对不等式的性质考查并 不常见,此部分知识往往与集合、常用逻辑用语,基本初等函数等知识进行 交叉融合. (1)对于线性规划知识的考查主要通过图示的方法获得最优解或已知 最优解求参数,本题型有时需要借助一个实际背景,有时与逻辑知识综合考 查,凸显了本部分知识正向着一个新的命题方式转型.