平均数、众数和中位数
平均数、中位数、众数的联系和区别
平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。
二、不同点它们之间的区别,主要表现在以下方面。
1、定义不同平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
2、求法不同平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。
中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。
它的求出不需或只需简单的计算。
众数:一组数据中出现次数最多的那个数,不必计算就可求出。
3、个数不同在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。
在一组数据中,可能不止一个众数,也可能没有众数。
平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。
中位数:是一个不完全“虚拟”的数。
当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。
众数:是一组数据中的原数据,它是真实存在的。
5、代表不同平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”。
中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。
众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。
这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。
6、特点不同平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。
什么是中位数,众数,平均数
什么是中位数,众数,平均数中位数,又称中点数,中值。
中数是按顺序排列的一组数据中居于中间位置的数;众数是统计学名词,在统计分布上具有明显集中趋势点的数值,代表数据的一般水平;平均数是指在一组制数据中所有数据之和再除以数据的个数。
什么是中位数,众数,平均数中位数:把一组数据从小到大排列,最中间的那个数就是中位数。
众数:一组数据中出现次数量多的那个数,众数可以是多个。
平均数:一组数据之和,除以这组数的个数,所得的结果就是平均数。
中位数,众数,平均数的作用中位数:表示数据的中等水平。
中位数与数据的排列位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响。
众数:表示数据的普遍情况。
与数据出现的次数有关,着眼于对各数据出现的频率的考察,其大小只与这组数据中的部分数据有关,不受极端值的影响,其缺点是具有不惟一性。
平均数:表示数据的总体水平。
与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。
主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。
中位数,众数,平均数怎么求1.中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。
它的求出不需或只需简单的计算。
2.众数:一组数据中出现次数最多的那个数,不必计算就可求出。
3.平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。
(在选手比赛成绩统计中通常会去掉一个最高分和一个最低分,以示公平)。
“平均数、中位数与众数”的知识点辨析
3.求众数
均数可能相差较大.
确定一组数据的众数,首先找出这组数
例 8 据报道,某公司的 33 名职工的月工
据中的各数据出现的次数,其中出现次数最
资
(以元为单位)
如下:
多的数据就是众数.
职务
董事长 副董事长
董事
例 6 在一次数学考试中,10 名学生的得
人数
1
12学思导引“平均数、中位数与众数”
的知识点辨析
新疆乌鲁木齐 朱绍文
数学篇
平均数、众数、中位数都是描述一组数据
集中趋势的量,但它们的定义、求法以及描述
的角度和适用的范围又不尽相同,同学们常
常将它们弄混淆.那么在具体问题中,
应采用哪
个量来描述一组数据的集中趋势呢?下面对
它们的特征及正确的适用范围进行分析说明.
f1 + f 2 + ⋯ + f k = n.
例 3 在一次体检中,测得八年级(1)班第
一小组 10 名同学的身高情况是:有 2 人是
145cm,3 人 是 148cm,4 人 是 156cm,1 人 是
160cm,
则这 10 位同学的平均身高是( ).
A.150.8cm
B.151cm
C.151.8cm
现1次,
故80分和90分是这组数据的众数.
(1)求该公司职工月工资的平均数、中位
三、
适用范围不同
数、众数;
(精确到个位数)
平均数是最常用的一个代表值.它充分
(2)假设副董事长的工资从 5000 元提升
利用了全部数据的信息,计算方便,但易受极
到 20000 元,董事长的工资从 5500 元提升到
平均数、中位数、众数的联系和区别
一、相同点平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。
二、不同点它们之间的区别,主要表现在以下方面。
1、定义不同平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
2、求法不同平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。
中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。
它的求出不需或只需简单的计算。
众数:一组数据中出现次数最多的那个数,不必计算就可求出。
3、个数不同在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。
在一组数据中,可能不止一个众数,也可能没有众数。
4、呈现不同平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。
中位数:是一个不完全“虚拟”的数。
当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。
众数:是一组数据中的原数据,它是真实存在的。
5、代表不同平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”。
中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。
众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。
这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。
6、特点不同平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。
平均数、中位数、众数的联系和区别
平均数、中位数和众数的联系和区别一、相同点平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。
二、不同点它们之间的区别,主要表现在以下方面。
1、定义不同平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
2、求法不同平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。
中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。
它的求出不需或只需简单的计算。
众数:一组数据中出现次数最多的那个数,不必计算就可求出。
3、个数不同在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。
在一组数据中,可能不止一个众数,也可能没有众数。
4、呈现不同平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。
中位数:是一个不完全“虚拟”的数。
当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。
众数:是一组数据中的原数据,它是真实存在的。
5、代表不同平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”。
中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。
众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。
这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。
6、特点不同平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。
平均数中位数众数之间的区别及联系
平均数中位数众数之间的区别与联系一、相同点平均数、中位数和众数这三个统计量的相同的地方要紧表此刻:都是来描述数据集中趋势的统计量;都可用来反映数据的一样水平;都可用来作为一组数据的代表。
二、不同点它们之间的区别,要紧表此刻以下方面。
一、意义不同平均数:一组数据的总和除以这组数据个数所取得的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列,处在最中间位置的一个数或最中间的两个数的平均数叫做这组数据的中位数。
众数:在一组数据中显现次数最多的数叫做这组数据的众数。
二、求法不同平均数:用所有数据相加的总和除以数据的个数。
与每一个数的大小都有关系。
中位数:将数据依照从小到大或从大到小的顺序排列,若是数据个数是奇数,那么处于最中间位置的数确实是这组数据的中位数;若是数据的个数是偶数,那么中间两个数据的平均数是这组数据的中位数。
它只要找或简单的计算。
众数:一组数据中显现次数最多的那个数。
只要找,没必要计算就可求出。
3、个数不同在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。
在一组数据中,可能不止一个众数,也可能没有众数。
4、呈现形式不同平均数:是一个“虚拟”的数,是通过计算取得的,它不是数据中的原始数据,它可能与原数据中的某一个相同,也可能与原数据中的任何一个都不同。
中位数:是一个不完全“虚拟”的数。
当一组数据是奇数个时,它确实是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情形下,中位数是最中间两个数据的平均数,只有当中间的两个数相同时,它才与这组数据中的两个或两个以上数据相同,是数据中的一个真实的数,若是正中间的两个数不同,现在的中位数确实是一个“虚拟”的数。
众数:是一组数据中显现次数最多的原数据,它是真实存在的。
但当一组数据中的每一个数据都显现相同次数时,这组数据就没有众数了。
五、代表不同平均数:反映了一组数据的平均大小,经常使用来一代表数据的整体“平均水平”。
中位数 众数 平均数三者的区别
所有数据定平均,个数去除数据和,即可得到平均数;大小排列知 中位;
整理数据顺次排,单个数据取中问,双个数据两平均;频数最大是 众数。
众数:(1)通过计数得到;
(2)不易受数据中极端数值的影响
关于“中位数、众数、平均数”这三个知识点的理解,我简单谈谈自己的认 识和理解。
⒈众数。 一组数据中出现次数最多的那个数据,叫做这组数据的众数。
⒉众数的特点。 ①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋 势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它 能比较直观地了解到一组数据的大致情况。但是,当一组数据大小不同, 差异又很大时,就很难判断众数的准确值了。此外,当一组数据的那个众 数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可 靠的。
中位数在一组数据的数值排序中处于中间的位置,故其在统计学分析中 也常常扮演着“分水岭”的角色,人们由中位数可以对事物的大体趋势进行 判断和掌控。
众数着眼于对各数据出现的频数的考察,其大小仅与一组数据中的部分
数据有关,当一组数据中有不少数据多次重复出现时,它的众数往往是我 们关心的一种统计量。
在这部分知识的教学中,要注意讲清上述三个量的联系与区别。使学生 知道它们都是描述一组数据集中趋势的统计量,但描述的角度和适用范围 有所不同,在具体的问题中究竟采用哪种统计量来描述一组数据的集中趋 势,要根据数据的特点及我们所关心的问题来确定。”
3、众数也是数据的一种代表数,反映了一组数据的集中程度.日常 生活中诸如“最佳”、“最受欢迎”、“最满意”等,都与众数有关系,它反映了 一种最普遍的倾向.
二、平均数、中位数和众数它们都有各自的的优缺点.
众数、中位数、平均数
中位数:中位数左边和右边的直方图的面积相等。
频率 组距
数据值为2.03t
0.5 0.4 0.3 0.2 0.1 O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)
说明:
2.03这个中位数的估计值,与样本 的中位数值2.0不一样,这是因为样本数 据的频率分布直方图,只是直观地表明 分布的形状,但是从直方图本身得不出 原始的数据内容,所以由频率分布直方 图得到的中位数估计值往往与样本的 实际中位数值不一致.
平均数:
x x1 s1 x 2 s 2 x n s n
x 1 . 973
频率 组距
0.5 0.4 0.3
0.2
0.1 O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)
三、三种数字特征的优缺点 1、众数体现了样本数据的最大集中点,但它对其它数据信息的 忽视使得无法客观地反映总体特征.如上例中众数是2.25t,它告诉 我们,月均用水量为2.25t的居民数比月均用水量为其它数值的居 民数多,但它并没有告诉我们多多少. 2、中位数是样本数据所占频率的等分线,它不受少数几个极端 值的影响,这在某些情况下是优点,但它对极端值的不敏感有时 也会成为缺点。如上例中假设有某一用户月均用水量为10t,那 么它所占频率为0.01,几乎不影响中位数,但显然这一极端值是不 能忽视的。 3、由于平均数与每一个样本的数据有关,所以任何一个样本 数据的改变都会引起平均数的改变,这是众数、中位数都不具 有的性质。也正因如此 ,与众数、中位数比较起来,平均数可 以反映出更多的关于样本数据全体的信息,但平均数受数据中 的极端值的影响较大,使平均数在估计时可靠性降低。
四、众数、中位数、平均数的简单应用 例、某工厂人员及工资构成如下: 人员 周工资 经理 2200 管理人员 250 高级技工 220 工人 200 学徒 100 合计
平均数、中位数、众数的比较
平均数、中位数、众数三者的联系与区别赵湾镇中心学校周云忠六年级数学总复习时,对小学阶段认识的统计量平均数、中位数、众数三种统计量进行了对比,平均数、中位数、众数三种统计量的运用如下:一组数据中如果有特别大的数或特别小的数时,一般用中位数。
一组数据比较多(20个以上),范围比较集中,一般用众数。
其余情况一般还是平均数比较精确。
一、联系与区别:1、平均数是通过(挖高补低)计算得到的,因此它会因每一个数据的变化而变化。
2、中位数是通过排序得到的,中位数在一组数据的数值排序中处中间的位置,它不受最大、最小两个极端数值的影响.中位数在一定程度上综合了平均数和众数的优点,具有比较好的代表性。
部分数据的变动对中位数没有影响,当一组数据中的个别数据变动较大时,常用它来描述这组数据的集中趋势。
3、众数也是数据的一种代表数,反映了一组数据的集中程度.日常生活中诸如“最佳”、“最受欢迎”、“最满意”等,都与众数有关系,它反映了一种最普遍的倾向.二、平均数、中位数和众数它们都有各自的的优缺点平均数:(1)需要全组所有数据来计算(2)易受数据中极端数值的影响.中位数:(1)仅需把数据按顺序排列后即可确定;(2)不易受数据中极端数值的影响.众数:(1)通过计数得到;(2)不易受数据中极端数值的影响关于“中位数、众数、平均数”这三个知识点的理解,我的理解是:⒈众数一组数据中出现次数最多的那个数据,叫做这组数据的众数。
⒉众数的特点。
①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。
但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。
此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。
3.众数与平均数的区别。
众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。
平均数、中位数、众数
平均数、众数、中位数平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
平均数:(1)需要全组所有数据来计算;(2)易受数据中极端数值的影响.中位数:(1)仅需把数据按顺序排列后即可确定;(2)不易受数据中极端数值的影响.众数:(1)通过计数得到;(2)不易受数据中极端数值的影响人理解,说简单点:一组数据中如果有特别大的数或特别小的数时,一般用中位数一组数据比较多(20个以上),范围比较集中,一般用众数其余情况一般还是平均数比较精确一、联系与区别:1、平均数是通过计算得到的,因此它会因每一个数据的变化而变化。
2、中位数是通过排序得到的,它不受最大、最小两个极端数值的影响.中位数在一定程度上综合了平均数和中位数的优点,具有比较好的代表性。
部分数据的变动对中位数没有影响,当一组数据中的个别数据变动较大时,常用它来描述这组数据的集中趋势。
另外,因中位数在一组数据的数值排序中处中间的位置,3、众数也是数据的一种代表数,反映了一组数据的集中程度.日常生活中诸如“最佳”、“最受欢迎”、“最满意”等,都与众数有关系,它反映了一种最普遍的倾向.二、平均数、中位数和众数它们都有各自的的优缺点.平均数:(1)需要全组所有数据来计算;(2)易受数据中极端数值的影响.中位数:(1)仅需把数据按顺序排列后即可确定;(2)不易受数据中极端数值的影响.众数:(1)通过计数得到;(2)不易受数据中极端数值的影响关于“中位数、众数、平均数”这三个知识点的理解,我简单谈谈自己的认识和理解。
⒈众数。
一组数据中出现次数最多的那个数据,叫做这组数据的众数。
⒉众数的特点。
①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。
众数,中位数,平均数的特点和应用场合
众数,中位数,平均数的特点和应用场合
问题:众数,中位数,平均数的特点和应用场合
回答:众数、中位数和平均数具有以下特点和应用场合:
1.众数:
(1)特点:是一组数据中出现次数最多的那个数值。
(2)应用场合:常用于需要了解数据中最普遍、最常见的情况,例如在市场
调查中了解哪种产品最受消费者欢迎,在统计某种现象最典型的表现等。
2.中位数:
(1)特点:按顺序排列的一组数据中居于中间位置的数,如果数据有奇数个,
则正中间的数字为中位数;如果数据有偶数个,则中间两个数的平均数为中位数。
它不受极端值的影响较大。
(2)应用场合:在一些数据分布偏态较大,存在极端值时,中位数能更好地
反映数据的集中趋势,如收入分配的研究等。
3.平均数:
(1)特点:反映一组数据的平均水平,容易受极端值影响。
(2)应用场合:应用广泛,比如计算平均成绩、平均产量、平均工资等,能
总体上反映数据的一般水平,但对极端值较敏感。
中位数众数平均数三者关系
中位数众数平均数三者关系算术平均数、中位数、众数三者之间的关系:1、众数、中位数和平均数是集中趋势的三个主要测度值,只是它们具有不同的特点和应用场合。
2、对于具有单峰分布的大多数数据而言,众数、中位数和平均数之间具有以下数量关系:1)如果数据的分布时对称的,中位数、算术平均数、众数三者完全相等。
2)如果数据是左偏分布,说明数据存在极小值,必然拉动平均数向极小值一方偏移,而众数和中位数由于是位置代表值,不受极值的影响,因此三者之间的关系表现为:平均数3)如果数据是右偏分布,说明数据存在极大值,必然拉动平均数向极大值一方偏移,则众数算术平均数( arithmetic mean):又称均值,是统计学中最基本、最常用的一种平均指标,分为简单算术平均数、加权算术平均数。
它主要适用于数值型数据,不适用于品质数据。
根据表现形式的不同,算术平均数有不同的计算形式和计算公式。
算术平均数是加权平均数的一种特殊形式(特殊在各项的权重相等)。
在实际问题中,当各项权重不相等时,计算平均数时就要采用加权平均数;当各项权相等时,计算平均数就要采用算术平均数。
众数(Mode):是统计学名词,在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个)。
修正定义:是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个。
用M表示。
理性理解:简单的说,就是一组数据中占比例最多的那个数。
中位数(又称中值,英语:Median):统计学中的专有名词,代表一个样本、种群或概率分布中的一个数值,其可将数值集合划分为相等的上下两部分。
对于有限的数集,可以通过把所有观察值高低排序后找出正中间的一个作为中位数。
如果观察值有偶数个,通常取最中间的两个数值的平均数作为中位数。
中位数、平均数与众数的区别
中位数、平均数与众数的区别2023年,中位数、平均数与众数的概念在人们的日常生活中越来越常见。
这些概念在统计学中相互关联,但它们所代表的意义可能大不相同。
在本文中,我们将探讨这三个概念的区别,以及它们的具体应用。
首先,让我们来了解一下中位数的含义。
中位数是一组数据中排在中间的那个数,它可以用来表示这组数据的典型值。
中位数通常用于描述数据的中心趋势,尤其在数据的极端值对平均数有显著影响的情况下,中位数更能够反映数据的真实情况。
与中位数相对的是平均数。
平均数是所有数据总和除以数据个数的结果,它是一组数据的代表性指标,可以用来表示这组数据的平均水平。
平均数在数据没有极端值或极端值对平均数影响不大的情况下比较常用。
最后,我们来了解一下众数的概念。
众数是一组数据中出现次数最多的数值,它用于描述数据中最常见的值。
众数通常用于描述分类变量中的典型取值,如衣服大小、颜色等。
这三个概念在统计学中有许多应用。
例如,在股票市场中,股票的平均数可以用来计算股票市场的整体涨跌程度。
但是,如果市场上有很少的几只股票涨了很多,那么平均数就不再能够很好地反映市场的真实情况。
这时候,中位数更适合作为市场的中心趋势的指标。
在人口统计学中,中位数可以用于描述城市居民的收入水平或家庭的人数。
在财务分析中,众数通常用于描述开支类别中的典型数值,如家庭吃饭预算中最常见的支出项。
总的来说,中位数、平均数和众数在数据分析中都具有重要意义,但它们的应用场景不同。
在选择何种量度指标时,应根据所研究的数据特征和分析目的进行决策。
只有在了解和掌握这些概念的含义和应用场景后,我们才能更好的理解数据分析,并做出更为准确合理的决策。
中位数、众数、平均数的区别和用法
中位数、众数、平均数的区别和用法一、相同点平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。
二、不同点它们之间的区别,主要表现在以下方面。
1、定义不同平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
2、求法不同平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。
中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。
它的求出不需或只需简单的计算。
众数:一组数据中出现次数最多的那个数,不必计算就可求出。
3、个数不同在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。
在一组数据中,可能不止一个众数,也可能没有众数。
4、呈现不同平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。
中位数:是一个不完全“虚拟”的数。
当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。
众数:是一组数据中的原数据,它是真实存在的。
5、代表不同平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”。
中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。
众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。
这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。
6、特点不同平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。
与平均数,众数,中位数有关的所有概念
与平均数,众数,中位数有关的所有概念平均数,也被称为算术平均数或简单平均数,是一组数字的总和除以该组数字的个数。
它是衡量一组数据集中趋势的常用指标。
Median(中位数)指的是一组数据按照顺序排列后,位于中间位置的值。
如果数据点的数量为奇数,则中位数就是排序后的第(n+1)/2 个值;如果数据点数量为偶数,则中位数是排序后第 n/2和第 (n/2)+1 个值的平均值。
Mode(众数)是一组数据集中出现次数最多的值。
一个数据集可以有一个或多个众数,也可以没有众数。
此外还有其他概念与这些相关:比如范围 (range) 是最大值和最小值之间的差异;方差(variance)和标准差(standard deviation)衡量了数据分布在距离平均值上下波动的程度。
方差是每个观察到的值与平均值之间差异的平方和除以观察次数,而标准差则是方差开根号。
In summary, the mean is calculated by summing up all the values in a dataset and dividing it by the number of values. The median is the middle value when the dataset is arrangedin ascending or descending order. The mode represents the most frequently occurring value(s) in a dataset. It is important to understand these concepts in order to analyze and interpret data effectively.在总结一下,平均数是将数据集中所有数值相加,然后除以数值的个数得到的。
中位数是当数据集按升序或降序排列时,处于中间位置的值。
平均数、中位数、众数的联系和区别
一、相同点之袁州冬雪创作平均数、中位数和众数这三个统计量的相同之处主要表示在:都是来描绘数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表.二、分歧点它们之间的区别,主要表示在以下方面.1、定义分歧平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数.中位数:将一组数据按大小顺序摆列,处在最中间位置的一个数叫做这组数据的中位数 .众数:在一组数据中出现次数最多的数叫做这组数据的众数.2、求法分歧平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出.中位数:将数据依照从小到大或从大到小的顺序摆列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数.它的求出不需或只需简单的计算.众数:一组数据中出现次数最多的阿谁数,不必计算便可求出.在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性.在一组数据中,能够不止一个众数,也能够没有众数.4、呈现分歧平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据.中位数:是一个不完全“虚拟”的数.当一组数占有奇数个时,它就是该组数据排序后最中间的阿谁数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它纷歧定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数.众数:是一组数据中的原数据,它是真实存在的.5、代表分歧平均数:反映了一组数据的平均大小,常常使用来一代表数据的总体“平均水平”.中位数:像一条分界限,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”.众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”.这三个统计量虽反映有所分歧,但都可暗示数据的集中趋势,都可作为数据一般水平的代表.平均数:与每个数据都有关,其中任何数据的变动都会相应引起平均数的变动.主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低.中位数:与数据的排各位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响.众数:与数据出现的次数有关,着眼于对各数据出现的频率的考查,其大小只与这组数据中的部分数占有关,不受极端值的影响,其缺点是具有不唯一性,一组数据中能够会有一个众数,也能够会有多个或没有 .7、作用分歧平均数:是统计中最常常使用的数据代表值,比较靠得住和稳定,因为它与每个数据都有关,反映出来的信息最充分.平均数既可以描绘一组数据自己的整体平均情况,也可以用来作为分歧组数据比较的一个尺度.因此,它在生活中应用最广泛,比方我们常常所说的平均成绩、平均身高、平均体重等.中位数:作为一组数据的代表,靠得住性比较差,因为它只操纵了部分数据.但当一组数据的个别数据偏大或偏小时,用中位数来描绘该组数据的集中趋势就比较合适.众数:作为一组数据的代表,靠得住性也比较差,因为它也只操纵了部分数据..在一组数据中,如果个别数占有很大的变动,且某个数据出现的次数最多,此时用该数据(即众数)暗示这组数据的“集中趋势”就比较适合.。
平均数中位数众数之间的关系
平均数中位数众数之间的关系
在统计学中,平均数、中位数和众数都是用来描述一组数据集中的中心趋势的指标。
这三个指标可以相互影响,同时它们也能够提供不同的信息,帮助我们更好地理解数据。
平均数是一组数据集中所有数值的总和除以数据个数的结果。
它是最常用的描述中心趋势的指标。
平均数的计算公式为:平均数 = 总和 / 数据个数。
中位数是一组数据的中间值,将数据按大小顺序排序后,如果数据的个数为奇数,那么中位数就是排序后位于中间位置的数值;如果数据的个数为偶数,那么中位数就是排序后中间两个数的平均值。
众数是一组数据中出现次数最多的数值。
在一个数据集中可能存在多个众数。
这三个指标之间的关系可以通过以下几种情况来说明:
1. 如果数据集呈现正态分布,那么平均数、中位数和众数将会完全一致。
2. 如果数据集中存在一些比较极端的值,比如离群值,那么平均数会受到这些值的影响,而中位数和众数则不会受到太大的影响。
在这种情况下,中位数是比平均数更可靠的中心趋势指标。
3. 如果数据集中存在多个众数,那么平均数和中位数可能会在这些众数之间分布。
在这种情况下,中位数是比平均数更有代表性的指标。
总而言之,平均数、中位数和众数都是统计学中常用的描述中心
趋势的指标。
它们之间的关系可以通过数据集的分布情况来决定选用哪一种指标。
平均数中位数和众数的意义分别是什么
平均数中位数和众数的意义分别是什么概况来说,这些都是样本的统计量,那么其用途自然也是来描述样本的性质,所以这些统计量的区别也自然在于描述一组样本不同的性质,下面分别来说。
1.平均数首先平均数是一组【常规】样本【大概率上】最有代表性的统计量,比如你上学时想知道哪个班级的学生成绩更好些,工作时想知道哪个行业薪水更高点,你会问分数、工资的平均数是多少,以此来反映样本的整体情况。
这种直观的感觉也同样可以在数学上证明,平均数是MSE最小的统计量,换言之在用一维统计值(一个数字)描述一组样本时,平均数就是最能够反应整体情况的了。
但注意,前边用到【常规】【大概率上】这些字眼,原因在于根据样本的特殊情况,有时候平均数并不能反映出样本的真实特征来。
以平均工资举例,经常有很多人吐槽自己的工资被“平均”了,其实这就是偏态分布导致平均数无法描述整体样本的情况,那么在平均数有点失灵时,我们就需要其他统计量登场了。
2.中位数中位数是一个很常见的,用来弥补平均数在偏态分布中不足之处的,有很好用的统计量。
根据平均数的计算方法我们知道,样本中任何一个数值的改变都会影响最终计算结果,那如有一个数值出现了极大的离群变化,则平均值就可能失效。
以班级平均分举例,正常情况下5名同学的分数分别为100、99、98、97、96(学霸班啊。
),则平均数为98;但这次考试有一名太过自信睡着了,分数为100、99、98、97、20,平均数瞬间变成82.8、但这能够反映该班级的实际情况吗?其实多数同学还是考了相当不错的分数的。
反观中位数的,前后均是98,相对而言能更好的反映样本情况。
因此中位数通常会在样本出现少数离群值的时候,用于提供相对尊重样本主要情况统计量。
其算法也反映了该特点,其中一个数值的变动,尤其是边界上的变动,不一定会改变该统计量的数值,所以在偏态分布时,用中位数更加具有实际意义。
例子:国家统计局发布数据,2023年城镇居民家庭人均可支配收入31790.30元,而人均可支配收入的中位数是29129.00元,说明收入就是一定程度的偏态分布,类似二八定律,因此作为普通人还是老老实实看中位数吧。
中位数平均数众数之间的关系
中位数平均数众数之间的关系中位数、平均数、众数是描述数据集的重要统计量,它们在数据分析、数据挖掘、机器学习等领域中都具有重要的作用。
那么,中位数、平均数、众数之间究竟有什么联系与区别呢?本文将从三种统计量的概念、求法、使用场景等方面探讨它们之间的关系,并指出它们的优劣与互补性。
一、中位数:把一组数据从小到大排列,位置处于中间的数即为该组数据的中位数,如果数据总个数为奇数,则中位数就是该组数据中间的那个数,反之,如果数据总个数为偶数,则中位数就是中间两个数的平均数。
中位数适用于数据分布不均匀或存在极端值的情况,它可以有效地减少异常值的影响,具有很强的稳定性和代表性。
二、平均数:一组数据的平均数就是所有数据之和除以数据的个数。
如果样本是随机且均匀的,那么样本平均值应该能够代表该组数据的中心点。
平均数在数据分布比较均匀的情况下能够体现数据的大小关系,并且在某些场景中能够更好地评估相关变量的趋势和大小。
三、众数:一组数据中出现最频繁的数即为该组数据的众数,一个数据集可以有一个或多个众数,也有可能不存在众数。
众数在数据分布比较集中和单峰的情况下具有最好的代表性,能够体现数据分布的最高峰位置和分布密度的峰度,通常用于分类型变量的数据分析,如性别、年级、工作岗位等。
通过以上对中位数、平均数、众数的概念描述,我们可以发现它们有一些相同的特点,特别是在一些基础统计分析场景中它们也是在数据描述和分析中最容易想到的统计量;还有一些存在明显的差异,它们有各自的适用范围、含义和统计意义。
同时它们之间也存在着某些联系与互补性。
在数据集的分布比较对称或数据相对均匀的情况下,中位数和平均数比较接近;在数据分布比较集中和单峰的情况下,众数和中位数比较接近。
所以,只有综合分析这三种统计量,才能更加全面地了解数据分布的情况,避免由某一种统计量的缺陷导致的误解和错误分析。
总之,中位数、平均数、众数三者之间既有相似性又有差异性,在实际应用时需要根据具体情况综合选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)定义法;(2)加权平均法;(3)新数据法: = 1+a, 是x1,x2,…,xn的平均数, 1是x11=x1-a,x21=x2-a,…,xn1=xn-a的平均数.
3.平均数、众数和中位数的意义
平均数反映了一组数据的集中趋势,是度量一组数据波动大小的基准,是描述一组数据的集中趋势的量.平均数大小与每一个数据都有关;众数只与部分数据有关,中位数与数据的排列位置有关,某些数据的变动与对中位数没有影响.平均数与中位数均唯一,但众数不一定唯一.在实际问题中求得的平均数、众数和中位数都应有相应单位.
◆例题解析
例1某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:
员工
管理人员
普通工作人员
人员结构
总经理
部门经理
科研人员
销售人员
高级技工
中级技工
勤杂工
员工数/名
1
3
2
3
▃
24
1
每人月工资/元
21000
8400
2025
2200
1800
1600
950
请你根据上述内容,解答下列问题:
(1)该公司“高级技工”有_______名;
34
请你用统计初步的知识,解答下列问题:
(1)小谢家小轿车每月(按30天计算)要行驶多少千米?
(2)若每行驶100km需汽油8L,汽油每升3.45元,请你求出小谢家一年(按12个月计算)的汽油费用是多少元?
18.(2008,烟台)为了减轻学生的作业负担,烟台市教育局规定:初中学段学生每晚的作业总量不超过1.5h.一个月后,九(1)班学生委员亮亮对本班每位同学晚上完成作业的时间进行了一次统计,并根据收集的数据绘制了两幅不完整的统计图,如图所示,请你根据图中提供的信息,解答下面的问题:
(3)用平均数还是用中位数描述该餐厅员工工资的一般水平比较恰当?
答:_______.
(4)去掉经理的工资后,其他员工的平均工资是______元,是否也能反应该餐厅员工工资的一般水平?
9.(2008,青岛)某广播电视局欲招聘播音员一名,对A,B两名候选人进行两项素质测试,两人的两次测试成绩如表所示,根据实际需要广播电视局将面试,综合知识测试的得分按3:2的比例计算两人的总成绩,那么______(填“A”或“B”)被录用.
(2)给出一种参考答案)选定:
行为规律:学习成绩:校运动会:艺术获奖:劳动卫生=3:2:3:1:1,设K,K,K顺次为3个班的考评分,
则K1=0.3×10+0.2×10+0.3×6+0.1×10+0.1×7=8.5,
K4=0.3×10+0.2×8+0.3×8+0.1×9+0.1×8=8.7,
K8=0.3×9+0.2×10+0.3×9+0.1×6+0.1×9=8.9
P4= (8+8+8+9+10)=8.6(分).
P8= (9+10+9+6+9)=8.6(分).
W1=10(分)W4=8(分)W8=9(分).
[Z1=10(分)Z4=8(分)Z8=9(分)].
∴平均数不能反映这3个班的考评结果的差异,而用中位数(或众数)能反映差异,且W1>W8>W4(Z1>Z8>Z4)
【分析】由于工资表中,管理人员的工资与普通工作人员的工资差距较大,因而平均数受极端值的影响较大,不能代表全体员工工资的“平均水平”,因此,依题意,有
(1)该公司“高级技工”有50-(1+3+2+3+24+1)=16(名).
(2)中位数为 =1700(元),众数为1600元.
(3)这个经理的介绍不能反映该公司员工的月工资实际水平,用1700元或1600元来介绍更合理些.
甲队:乙队:
年龄
13
14
15
16
17
人数
2
1
4
1
2
年龄
3
4
5
6
54
57
人数
1
2Hale Waihona Puke 2311
(1)根据上述数据完成下表:
平均数
中位数
众数
方差
甲队游客年龄
15
15
乙队游客年龄
15
411.4
(2)根据前面的统计分析,回答下列问题:
①能代表甲队游客一般年龄的统计量是_______;
②平均数能较好地反映乙队游客的年龄特征吗?为什么?
20.(2006,黄冈)某中学开展“八荣八耻”演讲比赛活动,九(1),九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.
5.如图是连续十周测试甲,乙两名运动员体能训练情况的折线统计图.教练组规定:体能测试成绩70分以上(包括70分)为合格.
(1)请根据图中所提供的信息填写下表:
平均数
中位数
体能测试成绩合格次数
甲
65
乙
60
(2)请从下面两个不同的角度对运动员体能测试结果进行判断:
①依据平均数与成绩合格的次数比较甲和乙,_______的体能测试成绩较好;
(3)田径比赛将在国家体育场“鸟巢”进行,“鸟巢”内共有观众座位9.1万个.从安全角度考虑,正式比赛时将留出0.6万个座位.某场田径赛,组委会决定向各奥运赞助商和相关部门赠送1.5万张门票,其余门票全部售出.若售出的门票中最高价门票占10%~15%,其他门票的平均价格是300元,你估计这场比赛售出的门票收入约是多少万元?请说明理由.
班级
行为规范
学习成绩
校运动会
艺术获奖
劳动卫生
初三(1)班
10
10
6
10
7
初三(4)班
10
8
8
9
8
初三(8)班
9
10
9
6
9
(1)请问各班五项考评分的平均数、中位数和众数中哪个统计量不能反映三个班的考评结果的差异?并从中选择一个能反映差异的统计量将这三个班的得分进行排序;
(2)根据你对表中五个项目的重要程度的认识,设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同).按这个比例对各班的得分重新计算,比较出大小关系,并从中推荐一个得分最高的班级作为市级先进班集体的候选班.
②依据平均数与中位数比较甲和乙,_____的体能测试成绩较好.
(3)依据折线统计图和成绩合格的次数,_______运动员体能训练的效果较好.
6.为了了解业余射击队队员的射击成绩,对某次射击比赛中每一名队员的平均成绩(单位:环,环数为整数)进行了统计,分别绘制了如下表和频率分布直方图,请你根据统计表和频数分布直方图回答下列问题:
(2)所有员工月工资的平均数 为2500元,中位数为______元,众数为_______元.
(3)小张到这家公司应聘普通工作人员,请你回答图6-15中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;
(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资 (结果保留整数),并判断 能否反映该公司员工的月工资实际水平.
2009年中考数学复习教材回归知识讲解+例题解析+强化训练
平均数、众数和中位数
◆知识讲解
1.定义
平均数:有n个数x1,x2,…,xn,则 = (x1+x2+…+xn)叫这n个数的平均数.众数:是指一组数据中,出现次数最多的数据.中位数:将一组数据按大小依次排列,把处在最中间的一个数据(或最中间两个数据的平均数)叫这组数据的中位数.
16.小明家去年的旅游、体育、饮食支出分别为3600元,1200元,7200元,今年这三项支出依次比去年增长10%,20%,30%,则小明家今年的总支出比去年增长的百分数是多少?
17.小谢家买了一辆小轿车,小谢连续记录了七天中每天行驶的路程,见下表:
天
一
二
三
四
五
六
七
路程/km
46
39
36
50
54
91
11.(2005,黄冈市)设 是x1,x2,x3,x4,…,xn的平均数, 是 x1+ , x2+ , x3+ ,… xn+ 的平均数,则 与 的关系是()
A. = B. = + C. = D. = ( + )
12.在青年业余歌手卡拉OK奖赛中,8位评委给某选手所评分数如下表:
评委
1
2
3
4
5
6
7
8
评分
3.(2005,常州市)请你根据条形图提供的信息,回答下列问题:
有100名学生参加两次科技知识测试,条形图显示两次测试的分数分布情况.
(1)两次测试最低分在第_____次测试中;
(2)第____次测试较容易;
(3)第一次测试中,中位数在____分数段,第二次测试中,中位数在_____分数段.
4.某公司销售部有五名销售员,2004年平均每人每月的销售额分别是6,8,11,9,8(万元).现公司需增加一名销售员,三人应聘试用三个月,平均每人每月的销售额分别为:甲是上述数据的平均数,乙是中位数,丙是众数.最后正式录用人中平均月销售额最高的人是_____.
∴K8>K4>K1,∴推荐初三(8)班为市级先进班集体的候选班.
◆强化训练
一、填空题
1.(2005,江西省)下表是一文具店6~12月份某种铅笔销售情况统计表:
月份
6
7
8
9
10
11
12
铅笔/支