运动的合成与分解及平抛运动(10)

合集下载

第二讲:平抛运动

第二讲:平抛运动

第二讲:平抛运动一、平抛运动1.定义:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下的运动.2.性质:平抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解 (1)水平方向:匀速直线运动; (2)竖直方向:自由落体运动. 4.基本规律如图,以抛出点O 为坐标原点,以初速度v 0方向(水平方向)为x 轴正方向,竖直向下为y 轴正方向.(1)位移关系(2)速度关系(3)轨迹方程:h =g2v 02x 25.基本应用例题、如图所示,x 轴在水平地面上,y 轴在竖直方向.图中画出了从y 轴上沿x 轴正方向水平抛出的三个小球a 、b 和c 的运动轨迹.不计空气阻力,下列说法正确的是( )A .a 和b 的初速度大小之比为2∶1B .a 和b 在空中运动的时间之比为(1)飞行时间由t =2hg知,时间取决于下落高度h ,与初速度v 0无关.(2)水平射程x =v 0t =v 02hg,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. (3)落地速度v =v x 2+v y 2=v 02+2gh ,以θ表示落地速度与水平正方向的夹角,有tan θ=v y v x=2ghv 0,落地速度与初速度v 0和下落高度h 有关. (4)速度改变量因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 是相同的,方向恒为竖直向下,如图所示.(5)两个重要推论①做平抛运动的物体在任意时刻的瞬时速度的反向延长线一例题、如图甲所示是网球发球机,某次室内训练时将发球机放在距地面一定的高度,然后向竖直墙面发射网球.假定网球均水平射出,某两次射出的网球碰到墙面时速度与水平方向夹角分别为30°和60°,若不考虑空气阻力,则( )A.两次发射的初速度大小之比为3∶1定通过此时水平位移的中点,如图所示,即x B =x A2.推导:⎭⎪⎬⎪⎫tan θ=y Ax A -x Btan θ=v yv 0=2y Ax A→x B=x A2①做平抛运动的物体在任意时刻任意位置处,有tan θ=2tan α. 推导:⎭⎪⎬⎪⎫tan θ=v y v 0=gtv 0tan α=y x =gt 2v 0→tan θ=2tan α二、与斜面结合的平抛运动1.顺着斜面平抛(如图)方法:分解位移.x =v 0t ,y =12gt 2,tan θ=y x,可求得t =2v 0tan θg.2.对着斜面平抛(垂直打到斜面,如图) 方法:分解速度.v x =v 0, v y =gt ,tan θ=v x v y =v 0gt,可求得t =v 0g tan θ.三、斜抛运动1.定义:将物体以初速度v 0斜向上方或斜向下方抛出,物体只在重力作用下的运动.2.性质:斜抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解(1)水平方向:匀速直线运动;(2)竖直方向:匀变速直线运动.例题、某同学在练习投篮时将篮球从同一位置斜向上抛出,其中有两次篮球垂直撞在竖直放置的篮板上,运动轨迹如图所示,不计空气阻力,关于这两次篮球从抛出到撞击篮板的过程( )4.基本规律(以斜上抛运动为例,如图所示)(1)水平方向:v 0x =v 0cos θ,F 合x =0;做匀速直线运动,v 0x =v 0cos θ,x =v 0tcos θ. (2)竖直方向:v 0y =v 0sin θ,F 合y =mg .做竖直上抛运动,v 0y =v 0sin θ,y =v 0tsin θ-12gt2四、类平抛运动1.类平抛运动物体受到与初速度垂直的恒定的合外力作用时,其轨迹与平抛运动相似,称为类平抛运动.类平抛运动的受力特点是物体所受合力为恒力,且与初速度的方向垂直.2.类平抛运动问题的求解技巧(1)常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合力方向)的匀加速直线运动,两分运动彼此独立,互不影响,且与合运动具有等时性.(2)特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度a 分解为a x 、a y ,初速度v 0分解为v x 、v y ,然后分别在x 、y 方向上列方程求解.针对训练题型1:平抛运动性质例题、如图所示的光滑斜面ABCD 是边长为l 的正方形,倾角为30°,一物块(视为质点)沿斜面左上方顶点A 以平行于AB 边的初速度v 0水平射入,到达底边CD 中点E ,则( )A .初速度2glB .初速度4glC .物块由A 点运动到E 点所用的时间2lt g= D .物块由A 点运动到E 点所用的时间lt g=1.关于平抛运动的性质,以下说法中正确的是()A.变加速运动B.匀变速运动C.匀速率曲线运动D.不可能是两个直线运动的合运动2.人站在平台上平抛一小球,球离手时的速度为v1,落地时速度为v2,不计空气阻力,下列图中能表示出速度矢量的演变过程的是()A.B.C.D.题型2:平抛运动规律3.如图所示,从A、B、C三个不同的位置向右分别以v A、v B、v C的水平初速度抛出三个小球A、B、C,其中A、B在同一竖直线上,B、C在同一水平线上,三个小球均同时落在地面上的D点,不计空气阻力。

高中物理:平抛运动知识点总结与解题技巧

高中物理:平抛运动知识点总结与解题技巧

一. 主要知识点:知识点1 平抛运动的特点1. 平抛运动的概念水平抛出的物体只在重力(不考虑空气阻力)作用下所做的运动。

2. 平抛运动的特点由于做平抛运动的物体只受重力的作用,由牛顿第二定律可知,其加速度恒为g,所以平抛运动是匀变速运动;又因为重力与速度不在一条直线上,故物体做曲线运动。

所以,平抛运动是匀变速曲线运动,其轨迹是抛物线。

3. 平抛运动的研究方法(1)运动的独立性原理:物体的各个分运动都是相互独立、互不干扰的。

(2)研究的方法:利用运动的合成与分解。

做平抛运动的物体在水平方向上不受力的作用,做匀速直线运动,在竖直方向上初速为零,只受重力,做自由落体运动。

所以平抛运动是水平方向上的匀速直线运动和竖直方向上的自由落体运动的合运动。

知识点2 平抛运动的规律以抛出点为坐标原点,水平抛出的方向为x轴的正方向,竖直向下的方向为y轴正方向,建立一个直角坐标系xOy。

1. 平抛运动物体的运动轨迹如图所示。

①水平方向上:物体不受力,所以水平方向上做匀速直线运动,有;②竖直方向上:物体只受重力作用,加速度恒为g,而初速度为零,所以做自由落体运动,有;③运动轨迹:。

所以平抛运动的轨迹为抛物线(一半)2. 平抛运动物体的位移如图所示。

①位移的大小:l=;②位移的方向:。

思考:能否用l求P点的位移?3. 平抛运动物体的速度如图所示速度的方向和大小:思考:①能否用求P点的速度?②由以上分析得:,是否有?二. 重难点分析:1、平抛运动的速度变化水平方向分速度保持,竖直方向,加速度恒为g,速度,从抛出点起,每隔△t时间的速度的矢量关系如图所示,这一矢量关系有两个特点:(1)任意时刻的速度水平分量均等于初速度;(2)任意相等时间间隔△t内的速度改变量均竖直向下,且△v=△=。

做平抛运动的物体,在任一时刻的速度都可以分解为一个大小和方向不变的水平速度分量和一个竖直方向随时间正比例变化的分量和构成速度直角三角形如图所示,通过几何知识容易建立起以及之间的关系,许多问题可以从这里入手解决。

高中物理【抛体运动】知识点规律总结

高中物理【抛体运动】知识点规律总结

19
(2)如图乙所示,小球恰好沿 B 点的切线方向进入圆轨道,此时半径 OB 垂直于速度 方向,圆心角 α 与速度的偏向角相等.
(3)如图丙所示,小球恰好从圆柱体 Q 点沿切线飞过,此时半径 OQ 垂直于速度方向, 圆心角 θ 与速度的偏向角相等.
20
考点三 平抛运动中的临界问题
师生互动
1.临界点的确定
(2)做平抛(或类平抛)运动的物体在任意时刻任意位置处,设其末速度方向与水平方 向的夹角为 α,位移与水平方向的夹角为 θ,则 tan α=2tan θ.

12
第 2 维度:多个物体的平抛运动 对多体平抛问题的四点提醒 (1)两条平抛运动轨迹的交点是两物体的必经之处,两物体要在此处相遇,必须同时 到达此处.即轨迹相交是物体相遇的必要条件. (2)若两物体同时从同一高度抛出,则两物体始终处在同一高度. (3)若两物体同时从不同高度抛出,则两物体高度差始终与抛出点高度差相同. (4)若两物体从同一高度先后抛出,则两物体高度差随时间均匀增大.
vt= vx2+v2y= v20+2gh
与初速度 v0、下落高度 h 和重力加速度 g 有关
Δv=gΔt,方向恒为竖直向下
速度改变量
由重力加速度 g 和时间间隔 Δt 共同决 定
11
2.关于平抛(类平抛)运动的两个重要推论 (1)做平抛(或类平抛)运动的物体任意时刻的瞬时速度的反向延长线一定通过此时水 平位移的中点,如图中 A 点和 B 点所示,即 xB=x2A.
1
第 2 讲 抛体运动
一、平抛运动 1.定义:将物体以一定的初速度沿水平方向抛出,物体只在_重__力___作用下的运动. 2.性质:平抛运动是加速度为 g 的__匀__变__速__曲线运动,运动轨迹是抛物线. 3.研究方法:运动的合成与分解 (1)水平方向:_匀__速___直线运动. (2)竖直方向:_自__由__落__体___运动.

高中物理平抛运动知识点考点整理

高中物理平抛运动知识点考点整理

P蜡块的位置vv xv y涉及的公式:22yx v v v +=xy v v =θtan θvv 水v 船θ 船v d t =min,θsin d x =水船v v =θtan d高中物理必修2知识点第五章 平抛运动§5-1 曲线运动 & 运动的合成与分解一、曲线运动1.定义:物体运动轨迹是曲线的运动。

2.条件:运动物体所受合力的方向跟它的速度方向不在同一直线上。

3.特点:①方向:某点瞬时速度方向就是通过这一点的曲线的切线方向。

②运动类型:变速运动(速度方向不断变化)。

③F 合≠0,一定有加速度a 。

④F 合方向一定指向曲线凹侧。

⑤F 合可以分解成水平和竖直的两个力。

4.运动描述——蜡块运动二、运动的合成与分解1.合运动与分运动的关系:等时性、独立性、等效性、矢量性。

2.互成角度的两个分运动的合运动的判断:①两个匀速直线运动的合运动仍然是匀速直线运动。

②速度方向不在同一直线上的两个分运动,一个是匀速直线运动,一个是匀变速直线运动,其合运动是匀变速曲线运动,a 合为分运动的加速度。

③两初速度为0的匀加速直线运动的合运动仍然是匀加速直线运动。

④两个初速度不为0的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。

当两个分运动的初速度的和速度方向与这两个分运动的和加速度在同一直线上时,合运动是匀变速直线运动,否则即为曲线运动。

三、有关“曲线运动”的两大题型(一)小船过河问题模型一:过河时间t 最短: 模型二:直接位移x 最短:模型三:间接位移x 最短:dvv 水v 船θ当v 水<v 船时,x min =d ,θsin 船v d t =, 船水v v =θcos Av 水v 船 θ 当v 水>v 船时,L v v dx 船水==θcos min , θsin 船v d t =,水船v v =θcos θθsin )cos -(min船船水v Lv v s =θv 船 d(二)绳杆问题(连带运动问题)1、实质:合运动的识别与合运动的分解。

高中物理平抛运动类平抛运动课件

高中物理平抛运动类平抛运动课件
详细描述
斜面上的平抛运动通常包括两种情况,一是平抛运动与斜面 垂直,二是平抛运动与斜面平行。对于第一种情况,需要分 别对平抛运动和斜面上的运动进行分析,对于第二种情况, 则可以将两者运动结合起来分析。
平抛运动与电场结合问题
总结词
平抛运动与电场的结合问题通常考察学生的力学和电场知识,需要学生对物体受力情况和电场性质有深入的理解 。
知识点
平抛运动的规律、重力加速度对运动的影响、空气阻力对运动的影响。
球类运动中的平抛运动
总结词
通过球类运动中的平抛运动实例,掌握平抛运动的规律和计算方法。
详细描述
在球类运动中,经常涉及到平抛运动的问题。例如,篮球投篮、足球射门等。这些运动中 的平抛运动涉及到抛物线轨迹、时间和速度的计算等知识点。通过对这些实例的分析,可 以更好地掌握平抛运动的规律和计算方法。
高中物理平抛运动类平抛运 动课件
汇报人:
汇报时间:日期:
目录
• 平抛运动的基本概念 • 平抛运动的规律 • 平抛运动的实例分析 • 平抛运动的实验研究 • 平抛运动的规律应用及解题方法 • 平抛运动的拓展学习
01
平抛运动的基本概念
平抛运动的定义
平抛运动是指物体以一定的初 速度沿水平方向抛出,仅在重
2. 将小球放置在斜面的起点处;
利用斜面和滑轮进行实验
3. 打开电源开关,使 小球从斜面释放,经 过滑轮后抛出;
5. 重复实验,改变小 球释放的高度和角度 ,观察并记录运动轨 迹的变化。
4. 观察并记录小球的 运动轨迹;
利用喷泉进行实验
实验目的
通过喷泉装置的演示,使学生了解平 抛运动的规律和特点,掌握平抛运动 的基本规律。
要点二
详细描述

速度选择器和回旋加速器压轴题试卷含答案解析

速度选择器和回旋加速器压轴题试卷含答案解析

速度选择器和回旋加速器压轴题试卷含答案解析一、高中物理解题方法:速度选择器和回旋加速器1.如图,正方形ABCD 区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为L 。

一个带电粒子(不计重力)从AD 中点以速度v 水平飞入,恰能匀速通过该场区;若仅撤去该区域内的磁场,使该粒子以同样的速度v 从AD 中点飞入场区,最后恰能从C 点飞出;若仅撤去该区域内的电场,该带电粒子仍从AD 中点以相同的速度v 进入场区,求: (1)该粒子最后飞出场区的位置;(2)仅存电场与仅存磁场的两种情况下,带电粒子飞出场区时速度偏向角之比是多少?【答案】(1)AB 连线上距离A 点32L 处,(2)34。

【解析】 【详解】(1)电场、磁场共存时,粒子匀速通过可得:qvB qE =仅有电场时,粒子水平方向匀速运动:L vt =竖直方向匀加速直线运动:2122L qE t m= 联立方程得:2qELv m=仅有磁场时:2mv qvB R= 根据几何关系可得:R L =设粒子从M点飞出磁场,由几何关系:AM=2 22L R⎛⎫-⎪⎝⎭=3L所以粒子离开的位置在AB连线上距离A点3L处;(2)仅有电场时,设飞出时速度偏角为α,末速度反向延长线过水平位移中点:2tan12LLα==解得:45α︒=仅有磁场时,设飞出时速度偏角为β:tan3AMOAβ==解得:60β︒=所以偏转角之比:34αβ=。

2.如图所示,相距为d的平行金属板M、N间存在匀强电场和垂直纸面向里、磁感应强度为B0的匀强磁场;在xOy直角坐标平面内,第一象限有沿y轴负方向场强为E的匀强电场,第四象限有垂直坐标平面向里、磁感应强度为B的匀强磁场.一质量为m、电荷量为q 的正离子(不计重力)以初速度v0沿平行于金属板方向射入两板间并做匀速直线运动,从P 点垂直y轴进入第一象限,经过x轴上的A点射出电场进入磁场.已知离子过A点时的速度方向与x轴成45°角.求:(1)金属板M 、N 间的电压U ;(2)离子运动到A 点时速度v 的大小和由P 点运动到A 点所需时间t ;(3)离子第一次离开第四象限磁场区域的位置C (图中未画出)与坐标原点的距离OC .【答案】(1)00B v d ;(2) t =0mv qE;(3) 2002mv mv qE qB + 【解析】 【分析】 【详解】离子的运动轨迹如下图所示(1)设平行金属板M 、N 间匀强电场的场强为0E ,则有:0U E d =因离子所受重力不计,所以在平行金属板间只受有电场力和洛伦兹力,又因离子沿平行于金属板方向射入两板间并做匀速直线运动,则由平衡条件得:000qE qv B = 解得:金属板M 、N 间的电压00U B v d =(2)在第一象限的电场中离子做类平抛运动,则由运动的合成与分解得:0cos 45v v= 故离子运动到A 点时的速度:02v v =根据牛顿第二定律:qE ma =设离子电场中运动时间t ,出电场时在y 方向上的速度为y v ,则在y 方向上根据运动学公式得y v at =且0tan 45y v v =联立以上各式解得,离子在电场E 中运动到A 点所需时间:0mv t qE=(3)在磁场中离子做匀速圆周运动,洛伦兹力提供向心力,则由牛顿第二定律有:2v qvB m R=解得:02mv mv R qB qB== 由几何知识可得022cos 452mv AC R R qB===在电场中,x方向上离子做匀速直线运动,则2mv OAv tqE==因此离子第一次离开第四象限磁场区域的位置C与坐标原点的距离为:2002mv mvOC OA ACqE qB=+=+【点睛】本题考查电场力与洛伦兹力平衡时的匀速直线运动、带电粒子在匀强磁场中的运动的半径与速率关系、带电粒子在匀强电场中的运动、运动的合成与分解、牛顿第二定律、向心力、左手定则等知识,意在考查考生处理类平抛运动及匀速圆周运动问题的能力.3.如图中左边有一对平行金属板,两板相距为d,电压为U,两板之间有匀强磁场,磁感应强度大小为B0,方向与金属板面平行并垂直于纸面朝里。

运动的合成与分解问题归纳

运动的合成与分解问题归纳

抛体运动;运动的合成与分解问题归纳一. 教学内容:抛体运动;运动的合成与分解问题归纳二. 学习目标:1、理解曲线运动的条件,能够根据条件判断运动的性质及轨迹。

2、掌握运动的合成与分解的方法,理解合运动是物体的实际运动,合运动与分运动的关系。

3、重点理解牵连速度的分解问题及小船渡河类问题的分析方法。

三. 考点地位:曲线运动的条件及运动的合成与分解问题是高中物理问题的难点所在,特别是绳子的牵连速度问题,小般渡河问题是学生们学习曲线运动问题的难点,同时这部分内容也是学习和理解好平抛运动问题的基础,对于本部分内容的考查,在出题的形式上既可以通过选择题的形式单独考查,也可以融合在大型的计算题当中,如2007年广东卷理科基础卷的第5题,第6题,2005年上海卷的第10题是通过选择题目的形式出现的。

四. 重难点解析:(一)抛体运动:1、曲线运动的概念及性质:所有物体的运动从轨迹的不同可以分为两大类,即直线运动和曲线运动。

运动轨迹是直线的运动称为直线运动;运动轨迹是曲线的运动称为曲线运动。

2、曲线运动的速度:曲线运动中质点在某一时刻的(或在某一点的瞬时速度方向,就是质点从该时刻(或该点)脱离曲线后自由运动的方向,也就是曲线上这一点的切线方向。

3、曲线运动的性质速度是矢量,速度的变化,不仅指速度大小的变化,也包括速度方向的变化。

物体曲线运动的速度(即轨迹上各点的切线方向)时刻在发生变化,所以曲线运动是一种变速运动,一定具有加速度。

4、物体做曲线运动的条件曲线运动既然是一种变速运动,就一定有加速度,由牛顿第二定律可知,也一定受到合外力的作用。

当运动物体所受合外力的方向跟物体的速度方向在一条直线上(同向或反向)时,物体做直线运动。

这时合外力只改变速度大小,不改变速度的方向,当合外力的方向跟速度方向不在同一直线上时,可将合外力分解到沿着速度方向和垂直于速度方向上,沿着速度方向的分力改变速度大小,垂直于速度方向的分力改变速度的方向,这时物体做曲线运动。

运动的合成与分解

运动的合成与分解

运动的合成与分解一、合运动与分运动1.合运动与分运动定义:如果物体同时参与了两种运动,那么物体实际发生的运动叫做那两种运动的合运动,那两种运动叫做这个实际运动的分运动。

2.在一个具体问题中判断哪个是合运动,哪个是分运动的关键是弄清物体实际发生的运动是哪个,则这个运动就是合运动。

物体实际发生的运动就是物体相对地面发生的运动,或者说是相对于地面上的观察者所发生的运动。

3.相互关系①运动的独立性:分运动之间是互不相干的,即各个分运动均按各自规律运动,彼此互不影响。

因此在研究某个分运动的时候,就可以不考虑其他的分运动,就像其他分运动不存在一样。

②运动的等时性:各个分运动及其合运动总是同时发生,同时结束,经历的时间相等;因此,若知道了某一分运动的时间,也就知道了其他分运动及合运动经历的时间;反之亦然。

③运动的等效性:各分运动叠加起来的效果与合运动相同。

④运动的相关性:分运动的性质决定合运动的性质和轨迹。

二、运动的合成和分解这是处理复杂运动的一种重要方法。

1.定义:已知分运动的情况求合运动的情况,叫做运动的合成。

已知合运动的情况求分运动的情况,叫做运动的分解。

2.实质(研究内容):运动是位置随时问的变化,通常用位移、速度、加速度等物理量描述。

所以,运动的合成与分解实质就是对描述运动的上述物理量的合成与分解。

3.定则:由于描述运动的位移、速度、加速度等物理量均是矢量,而矢量的合成与分解遵从“平行四边形定则”,所以运动的合成与分解也遵从“平行四边形定则”。

4.具体方法①作图法:选好标度,用一定长度的有向线段表示分运动或合运动的有关物理量,严格按照平行四边形定则画出平行四边形求解。

②计算法:先画出运动合成或分解的示意图,然后应用直角三角形等数学知识求解。

三、两个直线运动的合运动的性质和轨迹的判断方法1.根据平行四边形定则,求出合运动的初速度v0和加速度a后进行判断:①若a=0(分运动的加速度都为零),物体沿合初速度v0的方向做匀速直线运动。

抛体运动的规律

抛体运动的规律

第五章抛体运动课时5.4抛体运动的规律1.知道抛体运动的运动性质和受力特点。

2.通过运动的合成与分解,分析平抛运动的规律,掌握分析方法。

3.能用平抛运动的规律解决相关问题。

4.知道斜抛运动,会用运动的合成和分解的方法分析一般的抛体运动。

一、平抛运动的规律1.平抛运动的特点物体做平抛运动时,在水平方向上不受力,有初速度,做匀速直线运动;在竖直方向上只受重力,无初速度,做自由落体运动。

2.平抛运动的速度(1)水平分速度:v x =v 0。

(2)竖直分速度:v y =gt 。

(3)合速度:v=22y x v v +,方向:tan θ=x y v v =0v gt(θ是合速度v 与水平方向的夹角)。

(4)速度变化量由Δv=g Δt 可知,任意两个相等的时间间隔内速度的变化量相同,方向竖直向下,如图所示。

3.平抛运动的位移(1)水平分位移:x=v 0t 。

(2)竖直分位移:y=21gt 2。

(3)合位移:s=22y x +,方向:tan α=x y =2v gt (α是合位移s 与水平方向的夹角)。

4.平抛运动的轨迹(1)运动位置:t 时刻的坐标为(v 0t ,21gt 2)。

(2)运动轨迹:轨迹表达式为y=02v gt x 2,平抛运动的轨迹为抛物线。

二、一般的抛体运动1.斜抛运动:物体被抛出时的速度v 0不沿水平方向,而是斜向上方或斜向下方。

2.受力分析:做斜抛运动的物体,在水平方向不受力,加速度是0;在竖直方向只受重力,加速度是g 。

3.运动特点(以初速度v 0斜向上方为例)(1)水平方向:以速度v 0x =v 0cos θ做匀速直线运动。

(2)竖直方向:以初速度v 0y =v 0sin θ做竖直上抛运动。

4.运动的性质由于斜抛运动的加速度是重力加速度,且与速度方向有夹角,因此,斜抛运动是匀变速曲线运动。

【题型1平抛中的对比问题】【例1】如图,质量相同的两小球a 、b 分别从斜面顶端A 和斜面中点B 沿水平方向被抛出,恰好均落在斜面底端,不计空气阻力,则以下说法正确的是()A .小球a 、b 离开斜面的最大距离之比为2∶1B .小球a 、b 沿水平方向抛出的初速度之比为2∶1C .小球a 、b 在空中飞行的时间之比为2∶1D .小球a 、b 到达斜面底端时速度与水平方向的夹角之比为2∶1【题型2落点在斜面上的平抛】【例2】如图所示,A 点为倾角为30°的斜面底部,在A 点的正上方某高度P 点以初速度v 0平抛一小球,小球打在斜面上B 点,C 为AB 的中点。

1、运动的合成与分解、竖直方向上的抛体运动解析

1、运动的合成与分解、竖直方向上的抛体运动解析

课 题运动的合成与分解、竖直方向上的抛体运动教学目标 1、理解合运动与分运动 2、理解竖直方向上的抛体运动的分解 重 点 运动的合成与分解 难 点 竖直方向上的抛体运动 作 业 附 后基础知识梳理一、运动的合成与分解1、合运动与分运动合运动就是物体的实际运动,一个运动可以看作物体同时参与了几个分运动,这几个分运动就是物体实际运动的分运动。

2、运动的合成与分解(1)定义:物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做运动的合成;由已知的合运动求跟它等效的分运动叫做运动的分解。

(2)合运动与分运动的关系:①等时性:合运动和分运动经历的时间相等.即同时开始,同时进行,同时停止 ②独立性:一个物体同时参与几个分运动,各分运动独立进行,不受其他分运动的影响 ③等效性:各分运动的规律叠加起来与合运动的规律有完全相同的效果 (3)运动的合成与分解的运算原则运动的合成与分解是指描述运动的物理量,包括位移、速度、加速度的合成和分解。

它们与力的合成和分解一样都遵守平行四边形定则,基本方法如下:A .两个分运动在同一直线上时,矢量运算转化为代数运算。

先选定一正方向,凡与正方向相同的取正,相反取负,合运动为各分运动的代数和。

B .不在同一直线上,按照平行四边形法则合成,如下图所示:C .两分运动垂直或正交分解后的合成:22y x a a a +=合,22y x s s s +=合D .两个分运动必须是同一质点在同一时间内相对于同一参考系的运动。

3、合运动轨迹的几种可能情况:两直线运动的合运动的性质和轨迹由各分运动的性质即合初速度与合加速度的方向关系决定:①两个匀速直线运动的合运动仍是匀速直线运动.②一个匀速直线运动和一个匀变速直线运动的合运动仍是匀变速运动。

二者共线时为匀变速直线运动,如竖直上抛运动或竖直下抛运动;二者不共线时匀变速曲线运动,如平抛运动。

③两个匀变速直线运动的合运动仍为匀变速运动,当合初速度与合加速度共线时为匀变速直线运动;当合初速度与合加速度不共线时为匀变速曲线运动.4、运动分解的基本方法根据运动的实际效果将描述合运动规律的各物理量(位移、速度、加速度)按平行四边形定则分别分解,或进行正交分解。

人教版高一物理【抛体运动的规律】教学知识点+题型

人教版高一物理【抛体运动的规律】教学知识点+题型

人教版高一物理【抛体运动的规律】教学知识点+题型核心素养点击物理观念(1)知道抛体运动的受力特点。

(2)理解平抛运动的规律,知道平抛运动的轨迹是抛物线。

科学思维(1)会用运动的合成与分解的方法对平抛运动进行理论分析。

(2)会计算平抛运动的速度及位移,会解决与平抛运动相关的实际问题。

(3)认识平抛运动研究中等效替代的思想和“化繁为简”的思想,并能够用来研究一般的抛体运动。

科学态度与责任通过用平抛运动的知识解决和解释自然、生活和生产中的例子,认识到平抛运动的普遍性,有学习物理的内在动力,体会物理学的应用价值。

一、平抛运动的速度1.填一填(1)水平速度:做平抛运动的物体,由于只受到竖直向下的重力作用,在x方向的分力是0,根据牛顿运动定律,物体加速度为0,故物体在x方向的分速度将保持v0不变,即v x=v0。

(2)竖直速度:物体在y方向上受重力mg作用,由mg=ma可知,物体在竖直方向的加速度等于自由落体加速度,物体在y方向的分速度v y与时间t的关系是v y=gt。

(3)合速度:由图 5.4-1可知,物体在时刻t的速度v=v x2+v y2=v02+(gt)2,tan θ=v yv x=gtv0。

图5.4-1(4)结论:物体在下落过程中速度v 越来越大,速度方向与水平方向间夹角θ越来越大。

2.判断(1)水平抛出的物体所做的运动就是平抛运动。

(×)(2)平抛运动的物体初速度越大,下落得越快。

(×)(3)做平抛运动的物体下落时,速度方向与水平方向的夹角θ越来越大。

(√)(4)相等时间内,做平抛运动的物体的速度变化相同。

(√)3.想一想如果下落时间足够长,做平抛运动的物体的速度方向最终将变为竖直方向吗?提示:不会变为竖直方向,无论物体下落时间多长,物体的水平速度不变,根据速度的合成,合速度的方向不会沿竖直方向。

二、平抛运动的位移与轨迹1.填一填(1)水平位移:做平抛运动的物体在沿x 方向的分运动是匀速直线运动,所以物体的水平位移与时间的关系是x =v 0t 。

(10) 抛体运动

(10) 抛体运动
AB BC
考点演练
达标提升 1.(2009 年江南十校模拟)如图 4-2-14 所示,某 同学为了找出平抛运动的物体初速度之间的关系,用一个 小球在 O 点对准前方的一块竖直放置的挡板,O 与 A 在同 一高度,小球的水平初速度分别是 v1、v2、v3,打在挡板 上的位置分别是 B、C、D,且 AB∶BC∶CD=1∶3∶5.则 v1、 v2、v3 之间的正确关系是( C )
y x 0
1 ④任意时刻的总位移 s= x y (v t ) ( gt ) . 2 2y ⑤运动时间 t= ,仅取决于竖直下落高度. g
2 2 2 2 2 0
⑥射程 L= v0t= v 度.
0
2y , 取决于竖直下落的高度和初速 g
2.用实验探究平抛运动的规律 (1)竖直方向的运动规律 如图 4-2-1 所示,用小锤打击弹性金属片,金属片 把 A 球沿水平方向抛出,同时 B 球松开,自由下落,A、B 两球同时开始运动.观察到两球同时落地,多次改变小球 距地面的高度和打击力度,重复实验,均观察到两球同时 落地, 这说明了小球 A 在竖直方向上的运动都为自由落体 运动.
解析:小球在 B 点和墙壁碰撞时竖直速度不变,水平 速度等大反向,由于水平位移相同,则 AB 段和 BC 段对应 的时间相同.由对称性可知, 段可以和 BD 段等效, BC 则从 A→B→C 的运动可以等效为从 A→B→D 的运动.由自由落 体运动的特点可知,AB 段和 BC 段竖直位移之比为 1∶3, 因此 BC 段的竖直位移为 3H/4. 3H 答案: 4
解析: (1)由于 A、B 两球相隔 Δ t=0.8 s,先后从同 一点以相同初速度 v0 水平抛出,则 A、B 两球在运动过程 中水平位移之差为 Δ x=v0Δ t=4.5×0.8 m=3.6 m ① 设 A 球抛出 t 时间后两球间连线拉直, 此时两球间竖 直位移之差为 1 1 1 Δ y= gt2- g(t-Δ t)2=gtΔ t- gΔ t2 ② 2 2 2

2024高考物理复习重难点解析—运动的合成与分解、抛体运动

2024高考物理复习重难点解析—运动的合成与分解、抛体运动

2024高考物理复习重难点解析—运动的合成与分解、抛体运动这部分知识单独考查一个知识点的试题非常少,大多数情况都是同时涉及到几个知识点,而且都是运动的合成与分解、动量、动能定理的内容结合起来考查,考查时注重物理思维与物理能力的考核.命题趋势有平抛运动和斜抛运动,而且三维坐标系考查三维立体空间的分解能力增多。

例题1.(2022·山东·高考真题)如图所示,某同学将离地1.25m 的网球以13m/s 的速度斜向上击出,击球点到竖直墙壁的距离4.8m 。

当网球竖直分速度为零时,击中墙壁上离地高度为8.45m 的P 点。

网球与墙壁碰撞后,垂直墙面速度分量大小变为碰前的0.75倍。

平行墙面的速度分量不变。

重力加速度g 取210m/s ,网球碰墙后的速度大小v 和着地点到墙壁的距离d 分别为()A .5m/s v =B .v =C . 3.6m =dD . 3.9m=d【答案】BD【解析】设网球飞出时的速度为0v ,竖直方向20=2()v g H h -竖直代入数据得012m/sv =竖直则05m/sv =水平排球水平方向到P 点的距离0006m v x v t v g==⋅=竖直水平水平水平根据几何关系可得打在墙面上时,垂直墙面的速度分量0044m/s5v v =⋅=水平⊥水平平行墙面的速度分量0033m/s5v v =⋅=水平∥水平反弹后,垂直墙面的速度分量'00.753m/sv v =⋅=水平⊥水平⊥则反弹后的网球速度大小为v 水平网球落到地面的时间' 1.3s t ===着地点到墙壁的距离'' 3.9md v t ⊥==水平故BD 正确,AC 错误。

故选BD 。

例题2.(2022·全国·高考真题)将一小球水平抛出,使用频闪仪和照相机对运动的小球进行拍摄,频闪仪每隔0.05s 发出一次闪光。

某次拍摄时,小球在抛出瞬间频闪仪恰好闪光,拍摄的照片编辑后如图所示。

高一物理教案-运动的合成和分解-

高一物理教案-运动的合成和分解-

运动的合成和分解-运动的合成和分解一、教材分析:“运动的合成和分解”是人教版高中《物理》第一册(必修)第五章“曲线运动”的第二节内容。

在这一章中,教材的安排是第一节先讲述曲线运动的概念及物体做曲线运动的条件,本节讲述曲线运动的合成与分解。

运动的合成与分解是研究较复杂运动的一种方法,即复杂的运动可以看作是几个较简单运动的合运动。

这既是方法介绍又是研究平抛运动的预备知识。

从整个高中物理教材的编排看,第一章中介绍了力的合成与分解的平行四边形定则,这一节是平行四边形定则在第二个矢量运算中的应用。

学好这一节能使学生真正体会到平行四边形定则这一矢量运算法则,并且能很容易的推广到其它的矢量运算。

矢量运算始终贯穿在高中物理知识内容的全过程中,因此无论从这一章看还是从整个教材看这一节是承上启下的重要知识。

学好这节内容,一方面可以深化前面所学的知识,另一方面又为后续学习打好必要的基础。

本节内容可分为四部分:演示实验、例题、对运动合成和分解轨迹的分析、思考与讨论,但都是围绕演示实验而展开的,层层深入,由提出问题到找出解决问题的方法,以至最后对运动合成和分解问题的进一步讨论。

二、知识准备:学生已知道了什么是曲线运动;学生对平行四边形定则在力的运算中的应用已有深刻的认识;学生已具备了一定的分析能力。

三、教学目标:知识目标:1、通过对多个具体运动的演示及分析,使学生明确什么是合运动,什么是分运动;合、分运动是同时发生的,并且不互相影响。

2、知道什么是运动的合成,什么是运动的分解。

理解运动的合成和分解遵循平行四边形定则。

3、利用矢量合成的原理,解决运动合成和分解的具体情况,会用作图法、直角三角形的知识解决有关位移、速度合成和分解的问题。

能力目标:培养学生应用数学知识解决物理问题的能力。

情感目标:通过对运动合成与分解的练习和理解,发挥学生空间想象能力,提高对相关知识的综合应用能力。

四、教学重点:对一个运动能正确地进行合成和分解。

运动的合成与分解

运动的合成与分解
v sin
v
运动的合成与分解专题
例:一条河宽500m,水流速度是3m/s,小船在静 水中的速度是5m/s,求
(1)最短渡河的时间是多小? 小船的实际位移,沿 下流的位移是多少?
(2)最短位移渡河的时间是多少? 最短渡河的位移 是多少?
【例题】一船准备渡河,已知水流速度为v2=1m/s,船在静水 中的航速为v1=2m/s,则: ①要使船能够垂直地渡过河去,那么应向何方划船? ②要使船能在最短时间内渡河,应向何方划船?
解析: 合速度与分速度之间的关系满足平行四边形定则,它的大小可
以比分速度大或小或相等,A不正确;两个分运动的时间一定与它们合
山 东
运动的时间相等,B正确;平抛运动是曲线运动,而它的两个分运动分
金 太
别是匀速直线运动和自由落体运动,C不正确;当两个匀变速直线运动 阳 书
的合速度方向与合加速度方向不在同一直线上时,合运动是曲线运动, 业
v
a1
a
a2
v2
加速曲线运动
点评: 运动的合成
1.两互成角度的匀速直线运动的合成
(一定是匀速直线运动)
2.两互成角度的初速为零的匀加速直线 运动的合成 (一定是匀加速直线运动)
3.两互成角度的初速不为零的匀加速直 线运动的合成
(匀变速直线运动或匀变速曲线运动)
4.一个匀速直线运动和一个匀加速直线运 动的合成
d
v水
结论: 欲使船渡河时间最短,船头的方向
应该垂直于河岸。
t最短=
d v船
解1:当船头垂直河岸时, 所用时间最短
最短时间 tmin
d v2
100 4
s
25 s
此时合速度
v
v12 v22

运动的合成与分解的概念

运动的合成与分解的概念

运动的合成与分解的概念
运动的合成与分解的概念如下:
1. 运动的合成:从已知的分运动来求合运动,叫做运动的合成。

包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。

重点在于判断合运动和分运动,一般地,物体的实际运动就是合运动。

2. 运动的分解:求一个已知运动的分运动,叫运动的分解。

解题时应按实际效果分解,或正交分解。

合运动与分运动之间具有以下关系:
1. 等效性:合运动与分运动在效果上等同,也就是说,一个物体在实际运动中受到的合外力与其分力相同。

2. 等时性:合运动与分运动所用的时间相同。

这意味着,无论我们将物体的运动分解为多少个分运动,它们所花费的时间总和与物体实际运动所花费的时间相同。

3.独立性:合运动与分运动之间相互独立,互不干扰。

这意味着,物体在合运动过程中,各个分运动可以分别进行,而不会受到其他分运动的影响。

4.矢量性:合运动与分运动都是矢量,因此在合成和分解过程中需要遵循平行四边形定则。

物体的运动性质由加速度决定,而运动轨迹(直线还是曲线)则由物体的速度和加速度的方向关系决定。

例如,当物体的速度和加速度方向相同时,物体将沿直线运动;而当它们的方向不同时,物体将沿曲线运动。

掌握运动的合成与分解对于理解物体的运动规律至关重要。

通过学习这些概念,我们可以更好地分析物体的运动状态,并运用数学方法求解相关问题。

然而,要全面了解运动的合成与分解,还需查阅相关资料或咨询专业人士以获取更准确、更详细的信息。

希望本文能为大家提供一定的帮助。

运动的合成与分解的基本原理

运动的合成与分解的基本原理

运动的合成与分解的根本原理1、运动的独立性原理任何一个分运动不会因其它运动而受到影响.如:蜡烛在竖直方向上的速度不会因其水平速度的改变而改变,即只要竖直方向分速度v y不变,蜡块从底端到顶端的时间只由竖直速度决定.如:小船渡河小船驶向对岸所用时间与水流速度大小无关,只由小船垂直流水方向驶向对岸的速度和河宽决定.2、等时性原理:合运动与分运动同时发生,同时消失,合运动与分运动具有效时性.3、等效性原理:分运动与合运动具有等效性.四、两个直线运动的合成①两个匀速直线运动的合运动仍是匀速直线运动.②一个匀速直线运动与一个匀变速直线运动.③两个初速为0的匀变速直线运动:.④两个初速不为0的匀变速直线运动运动的合成分解的应用一、绳拉物体模型例1、在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?命题意图:考查分析综合及推理能力,B级要求.错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图所示分解,从而得出错解v物=v1=vcosθ.解法一:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v物是合速度,将v物按如下图进行分解.其中:v=v物cosθ,使绳子收缩.v⊥=v物sinθ,使绳子绕定滑轮上的A点转动.所以v物=解法二:应用微元法设经过时间Δt,物体前进的位移Δs1=BC,如下图.过C点作CD⊥AB,当Δt→0时,∠BAC极小,在△ACD中,可以认为AC=AD,在Δt时间内,人拉绳子的长度为Δs2=BD,即为在Δt时间内绳子收缩的长度.由图可知:BC=①由速度的定义:物体移动的速度为v物=②人拉绳子的速度v=③由①②③解之:v物=例2、A、B质量均为m,且分别用轻绳连接跨过定滑轮,不计一切摩擦力.当用水平力F拉物体B沿水平方向向右做匀速直线运动过程中〔〕A.物体A也做匀速直线运动B.绳子拉力始终大于物体A所受重力C.物体A的速度小于物体B的速度D.地面对物体B的支持力逐渐增大分析:设物体B匀速速度为v,物体B的运动使绳子参与两种分运动:绳子沿定滑轮为圆心垂直于绳子转动,另一分运动是沿绳伸长的分运动,合运动就是物体以速度v向右匀速直线运动.v1=vsinθθ↓sinθ↓v1↓v A=v2=vcosθθ↓cosθ↑v2↑物体A作变加速运动对B:T y+N=mg开始时N<mg,当B运动至无穷远处时T y∝0,N=mg∴地面对物体B的支持力逐渐增大.例3、两光滑环AB用不可伸长的轻绳相连,当线与竖直方向夹角为时,此时v A=4m/s, 求B沿杆方向的速度.v B cos37°=v A cos53°二、小船渡河模型一条宽为d的河流,河水流速为v1,船在静水中速度为v2.〔1〕要使船划到对岸时间最短,船头应指向什么方向?最短时间为多少?〔2〕要使船划对对岸的航程最短,船头指向什么方向?最短航程是多少?解:①设船头斜向上游与河岸成θ角,这时船速v船在y方向的分量为v2′=v船sinθ=v2sinθ,渡河时间为.可见,在河宽d和船速v2一定情况下,渡河驶向对岸的时间t随sinθ的增大而减小.当θ=90°时,sinθ=1〔最大〕,即船头与河岸垂直时,渡河时间最短,且t min=.②求航程最短问题应根据v1和v2的大小关系分成以下三种情况讨论:〔i〕当v2>v1时,即船头斜向上游与岸夹角为θ,船的合速度可垂直于河岸,航程最短为d,此时沿水流方向合速度为零.v2cosθ=v1即船头斜指向上游,与河岸夹角,船航线就是位移d.渡河时间〔ii〕当v2<v1时,由于船在静水中的速度v2小于水流速度v1,那么无论船头驶向何方,总被水流冲向下游,怎样使船所走航线的位移最短呢?虽然位移不可能垂直河岸,但当位移越靠近垂直河岸的方向,位移越短,,船头与水平方向上游夹角,最短航程,所花时间.例1、如下图,排球场地长为18m,设球网高度为2m,运发动站在离网3m的线上〔图中用虚线表示〕正对网前跳起将球水平击出〔空气阻力不计〕.〔1〕设击球点在3m线正上方2.5m处,试问击球的速度在什么范围内才能使球既不能触网也不越界?〔2〕假设击球点在3m线正上方小于某一个值,那么无论以多大速度击球,球不是触网就是越界.试求这个高度.解:假设击球水平速度过小,球可能触网;假设击球水平速度过大,球可能越界.〔1〕假设刚好不触网,设击球速度为v1,那么水平位移为3m的过程中,水平方向:x=v1t v1t=3①竖直方向:②由①②得:同理刚好不越界,设击球速度为v2,那么那么球既不能触网也不越界的速度满足〔2〕设击球高度为H时,击出的球刚好触网或落在边界线上.刚好不触网时:v0t1=3③④此时也刚好到达边界:v0t2=12⑤⑥由③④⑤⑥得:H=2.13m即当击球高度小于2.13时,无论水平速度多大,球不是触网就是越界.例2、从高为H的A点平抛一物体,其水平射程为2s,在A点正上方距地面高为2H的B点,向同一方向平抛另一物体,其水平射程为s.两物体轨迹在同一竖直平面内且都恰好从同一屏的顶端擦过,求屏的高度.例3、如图示,AB为斜面,倾角为30°,小球从A点以初速度v0水平抛出,恰好落到B 点.求:〔1〕AB间的距离;〔2〕物体在空中飞行的时间;〔3〕从抛出开始经多少时间小球与斜面间距离最大?解:〔1〕水平位移:〔2〕物体在空中飞行时间〔3〕当小球作平抛运动轨迹上某一点速度与斜面平行时,该点离斜面距离最远.方法①:方法②:由分运动的独立性,把平抛运动分解成垂直斜面方向的分运动和平行于斜面方向的分运动的合运动.v⊥=v0sin30°=a⊥=gcos30°=垂直斜面作初速为,加速度为的匀减速直线运动平行于斜面作v11=v0cos30°=,a11=gcos60°=的匀加速直线运动当在垂直斜面方向速度减为0时距斜面最远:例5、如下图,一根轻弹簧下端固定,竖立在水平面上。

专题一 10 平抛运动(知识点完整归纳)

专题一 10 平抛运动(知识点完整归纳)

10 平抛运动1.基本方法:运动的合成与分解水平方向上:匀速直线运动;竖直方向上:自由落体运动. 2.基本规律(1)位移关系:⎩⎪⎨⎪⎧x =v 0t y =12gt 2 合位移的大小s =x 2+y 2位移方向偏转角tan θ=y x =gt2v 0.(2)速度关系:⎩⎪⎨⎪⎧v x =v 0v y =gt 合速度的大小v =v x 2+v y 2速度方向偏转角tan α=v y v x =gtv 0=2tan θ.3.三个重要推论(1)若速度方向与水平方向的夹角为α和位移方向与水平方向的夹角为θ,则 tan α=2tan θ. (2)平抛运动到任一位置A ,过A 点作其速度方向的反向延长线交Ox 轴于C 点,有OC =x A2(如图1所示).图1(3)任何一段时间内,速度变化量为Δv =g Δt ,方向恒为竖直向下;连续相等的时间间隔Δt 内,竖直方向的位移差不变为Δy =g (Δt )2,在平抛运动轨迹上找几个点,使x 1=x 2=…,利用y 2-y 1=g (Δt )2可求重力加速度.1.和斜面相关的平抛运动解题技巧 (1)在斜面上平抛又落到斜面上(如图2):图2①合位移与水平位移的夹角等于斜面倾角,常用位移关系tan θ=y x =12gt 2v 0t =gt2v 0.②不同落点的速度方向与斜面的夹角相等.③离斜面最远时速度方向与斜面平行(如图3中P 点),若求离斜面最远距离,常沿斜面、垂直斜面将速度和加速度分解.图3(2)平抛运动的物体垂直打在斜面上(如图4):图4合速度与竖直速度的夹角等于斜面倾角θ,常用速度关系tan θ=v x v y =v 0gt .(3)从斜面外恰好与斜面平行的方向落到斜面(如图5):图5合速度与水平速度的夹角等于斜面倾角,常用速度关系tan θ=v y v x =gtv 0.2.类比法处理类平抛运动(1)沿斜面类平抛(如图6):重力沿斜面的分力产生的加速度g sin θ类比重力加速度g .图6(2)电场中类平抛:电场力产生的加速度a =qEm类比重力加速度g .(3)某星球表面平抛:星球表面的重力加速度g ′类比地球表面重力加速度g .示例1 (平抛运动的规律)(2020·全国卷Ⅱ·16)如图7,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平宽度为3h ,其左边缘a 点比右边缘b 点高0.5h .若摩托车经过a 点时的动能为E 1,它会落到坑内c 点.c 与a 的水平距离和高度差均为h ;若经过a 点时的动能为E 2,该摩托车恰能越过坑到达b 点.E 2E 1等于( )图7A .20B .18C .9.0D .3.0 答案 B解析 摩托车从a 点做平抛运动到c 点,水平方向:h =v 1t 1,竖直方向:h =12gt 12,可解得v 1=gh 2,动能E 1=12m v 12=mgh 4;摩托车从a 点做平抛运动到b 点,水平方向:3h =v 2t 2,竖直方向:0.5h =12gt 22,解得v 2=3gh ,动能E 2=12m v 22=92mgh ,故E 2E 1=18,B 正确.示例2 (和斜面有关的平抛运动)(2018·全国卷Ⅲ·17)在一斜面顶端,将甲、乙两个小球分别以v 和v2的速度沿同一方向水平抛出,两球都落在该斜面上.甲球落至斜面时的速率是乙球落至斜面时速率的( )A .2倍B .4倍C .6倍D .8倍 答案 A解析 如图所示,可知:x =v t ,x ·tan θ=12gt 2,则v y =gt =2tan θ·v ,则落至斜面的速率v 落=v 2+v y 2=v1+4tan 2θ,即v 落∝v ,甲、乙两球抛出速度为v 和v2,则可得落至斜面时速率之比为2∶1,故A 正确.示例3 (与斜面有关的平抛运动)(2016·上海卷·23改编)如图8,圆弧形凹槽固定在水平地面上,其中ABC 是位于竖直平面内以O 为圆心的一段圆弧,OA 与竖直方向的夹角为α.一小球以速度v 0从桌面边缘P 水平抛出,恰好从A 点沿圆弧的切线方向进入凹槽.小球从P 到A 的运动时间为______________;直线P A 与竖直方向的夹角正切值tan β=______________.(重力加速度为g )图8答案v 0tan αg 2tan α解析 据题意,小球从P 点抛出后做平抛运动,小球运动到A 点时将速度分解,有tan α=v yv x =gt v 0, 则小球运动到A 点的时间为:t =v 0tan αg ;从P 点到A 点的位移关系有: tan β=v 0t 12gt 2=2v 0gt =2tan α.示例4 (平抛运动的临界问题)(2015·全国卷Ⅰ·18)一带有乒乓球发射机的乒乓球台如图9所示.水平台面的长和宽分别为L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )图9A.L 12g6h <v <L 1g6hB.L 14gh <v <(4L 12+L 22)g6hC.L 12g 6h <v <12(4L 12+L 22)g6hD.L 14g h <v <12(4L 12+L 22)g6h答案 D解析 发射机无论向哪个方向水平发射,乒乓球都做平抛运动.当速度v 最小时,球沿中线恰好过网,有: 3h -h =gt 122①L 12=v 1t 1② 联立①②得v 1=L 14g h当速度最大时,球斜向右侧台面两个角发射,有 (L 22)2+L 12=v 2t 2③ 3h =12gt 22④联立③④得v 2=12(4L 12+L 22)g6h所以使乒乓球落到球网右侧台面上,v 的最大取值范围为L 14g h <v <12(4L 12+L 22)g6h,选项D 正确.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运动的合成与分解及平抛运动
【知识点归纳】
y t x
v v x tg v θ=
与轴正方的夹角
1.关于曲线运动,以下说法中正确的是:
A.曲线运动一定是变速运动B.物体只有受变力的作用才可能做曲线运动C.曲线运动一定是变加速运动D.曲线运动的分运动可能都是直线运动
2.关于互成角度的两个初速度不为零的匀变速直线运动的合运动,下列说法中正确的是:A.一定是直线运动 B.一定是曲线运动
C.可能是直线运动,也可能是曲线运动 D.以上说法都不正确
3
A
C
4
为V1
5.以
A
6
A
7
在A
A
C.
8
A.A
C.C
9.从某一高处平抛出一个物体,物体在落地前1s内,速度方向与水平方向的夹角由450变为600,(空气阻力不计,取g=10m/s2)求:
(1)物体水平抛出的速度v 0
(2)物体抛出点距地面的竖直高度h (3)物体落地点的水平射程。

物体水平抛出的初速13.7(/)
o v m s =
≈。

相关文档
最新文档