重庆九龙坡西彭三中2016届九年级上学期期末考试数学试卷

合集下载

(2021年整理)最新2016-2017学年人教版九年级上册数学期末测试卷及答案

(2021年整理)最新2016-2017学年人教版九年级上册数学期末测试卷及答案

(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案的全部内容。

第1 页共6 页2016—-—2017学年度九年级上册数学期末试卷(时间120分钟,满分120分)一、选择题(每小题3分,共30分)1.下列图形中,既是中心对称图形又是轴对称图形的是( )2.将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是( )A.y=2(x-1)2-3 B.y=2(x-1)2+3C.y=2(x+1)2-3 D.y=2(x+1)2+33.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于 ( )A.55° B。

70° C。

125° D。

145°4.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )A。

4 5.一个半径为2cm的圆内接正六边形A.24cm2 B.63 cm2 C .6.如图,若AB是⊙O的直径,CD是A.35° B.45° C.55°7.函数mxxy+--=822的图象上有两点B。

重庆市九龙坡区西彭镇第三中学2016届九年级语文上学期期末试题 新人教版汇总

重庆市九龙坡区西彭镇第三中学2016届九年级语文上学期期末试题 新人教版汇总

2015—2016学年度上期期末考试九年级语文试题(全卷共四个大题,满分150分,考试时间120分钟)注:请考生务必将学校、考号、姓名、答案写在答题卡上,考试结束后只交答题卡。

一、基础知识与运用(共30分)1.下列加点字的读音全部正确的一项是(3分)A.剔.透(tī)阔绰.(chuò) 褴褛.(lǚ)茅塞.顿开(sè)B.怪癖.(pǐ)倔.强(juè)解剖.(pōu)谆.谆教诲(dūn)C.峥.嵘(zhēng) 戳.破(chuō) 棱.角(líng) 袖.手旁观(xiù)D.阐.证(chán)要诀.(jué) 狡黠.(xié) 载.歌载舞(zài)2.下列书写完全正确的一项是(3分)A.天网恢恢味同嚼蜡狂妄自大豁然惯通B.不知所措一帆风顺吹毛求疵不求甚解C.开卷有益前仆后继为民请命持才放旷D.对答如流狗血喷头不醒人事尖嘴猴腮3.下列加点词语运用不正确的一项是(3分)A.200年来,唐人街一直保持着中华传统文化和华人社区典型的习俗特点,鳞次栉比....的商铺、住屋前都供奉着福、禄、寿三位官人像。

B.昨夜一场大雪,早上出门一看,天晴了,好一派红妆素裹....的绚丽景象。

C.概括文意要简练,要学会寻章摘句,断章取义....。

D.“以党治国”的余毒在一些人的思想中根深蒂固....,真正意义的依法治国任重道远。

4. 对下列两个句子的理解,不正确的一项是(3分)(1)没有比脚更长的路,没有比人更高的山。

——汪国真《山高路远》(2)山高人为峰。

——红塔集团宣传语A. 第(1)句中诗人告诉我们:人生之路再长,追求者的脚步都能将它丈量;困难之山再高,奋进者的双脚都能将它攀登。

B.第(2)句言简意赅,意蕴丰富,启迪人们:一个人只要肯攀登,就能达到“登泰山而小天下”的境界。

C.这两句话都运用了拟人的修辞手法,激励我们不要畏惧困难,要勇敢去攀登世上的山峰。

人教版八年级数学上册重庆市九龙坡区西彭镇第三中学学期期末考试试题.docx

人教版八年级数学上册重庆市九龙坡区西彭镇第三中学学期期末考试试题.docx

第7题图DFCE BA初中数学试卷鼎尚图文**整理制作2015—2016学年度上期期末考试八年级数学试题(全卷共三个大题,26个小题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答; 2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色签字笔完成; 4.考试结束,由监考人员将答题卡收回. 一、选择题:(本大题共12个小题,每小题4分,共48分),在每个小题的下面都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填涂在对应题号的答题卡上. 1.以下为正方体的展开图,在这些展开图中,为轴对称图形的是2. ()23a -的计算结果是A . 5aB .6aC .5a - D .6a -3. 下列等式从左到右的变形是因式分解的是A .()()4222-=-+x x x B .()14218222+-=+-x x x xC .b a b a 32633⋅= D .()b a b b ab -=-22224.正八边形的每个外角的度数是A . 18°B . 36°C . 45°D . 60° 5.分式11+x 有意义的条件是 A. 1-≠x B. 0≠x C. 1≠x D. x 为任意实数6.到三角形三个顶点的距离都相等的点是这个三角形的A .三条中线的交点B .三条高的交点C .三条边的垂直平分线的交点D .三条角平分线的交点7. 如图,B ,C ,E ,F 四点在一条直线上,,,//DE AB DE AB =下列条件不能判定△ABC 与△DEF 全等的是A .CF BE =B .DF AC = C .DF AC //D .D A ∠=∠8. 若92+-kx x 是完全平方式,则k 的值是第8题图BDCAEFDB CA第12题图第18题图DE ACBA. 3±B.6±C. 3D. 6 9.若整式()()12-+x m x 不含x 的一次项,则m 的值为A . ﹣3B . ﹣2C . ﹣1D .210.如图,△ABC 中,∠C =90°,∠BAC =60°,AD 平分 ∠BAC ,若BC =6,则点D 到线段AB 的距离等于 A. 5 B. 4 C. 3 D. 2 第10题图 11.按照如图所示的方法排列黑色小正方形地砖,则第13个图案中黑色小正方形地砖的块数是A.273B. 293C. 313D. 333 12.如图,在△ABC 和△DBC 中,∠ACB =∠DBC =90°,E 是BC 的中点,DE ⊥AB ,垂足为点F ,且AB =DE . 若BD =8cm ,则AC 的长为 A .2 cm B .3 cm C .4 cmD .6 cm 二、填空题:(本大题6个小题,每小题4分,共24分),请将答案直接填在答题卡中对应的横线上. 13. 因式分解324x y x +的结果是_____________.14. 氧原子的直径约为0.000 000 0016米,数据0.000 000 0016用科学记数法表示为______.15. 计算()2312015-⎪⎭⎫ ⎝⎛+-的结果是_____________.16. 若分式142+-x x 的值为零,则x 的值是_____________.17. 已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为__________.18. 如图,△ABC 和△CDE 都是等边三角形,连接BE,AE,BD,若∠EBD =14°,则∠AEB 的度数是 ______________.第18题图 三、解答题:(本大题8个小题,共78分),解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.DECBAxyBAO19.(本小题满分7分)解方程:1326-+=-x xx 20.(本小题满分7分)已知2,5==+ab b a ,求代数式22b ab a +-的值21.(本小题满分10分)如图,在平面直角坐标系中,已知两点A (1,2),B (﹣1,﹣1),(1)画出以点B 为顶角顶点,对称轴平行于 y 轴的等腰△ABC ,并写出满足条件的C 点 坐标_____________(2)A 点关于y 轴的对称点为M ,平移 △ABC ,使A 点平移至M 点位置,B 点的对 应点为N 点,C 点的对应点为点P ,画出平移 后的△MNP ,并求出△MNP 的面积.22. (本小题满分10分)计算下列各式:(1)()()()a b b a b b ab b a +--÷--222322(2)21)113(4422+++-+÷++-a a a aa a a 23. (本小题满分10分)计算下列各式:如图,在△ABC 中,D 是BC 上一点,AD AB =,E 是△ABC 外一点,CAE BAD ADE B ∠=∠∠=∠,.(1)求证:AE AC =(2)若∠BAD =30°,AB =6,BD =4,DE =9,求△ADC 的面积. 第23题图24.(本小题满分10分)随着人们节能意识的增强,节能产品进入千家万户,今年10月萌萌家将天然气热水器换成了太阳能热水器.9月份萌萌家的燃气费是96元,已知 10月份起天然气价格每立方米上涨25%,萌萌家11月份的用气量比9月份少10立方米,11月份的燃气费是90元.问萌萌家11月份用气多少立方米.25.(本小题满分12分)阅读材料:如果一个花坛的长,宽分别是m 、n ,且m 、n 满足m 2﹣2mn +2n 2﹣4n +4=0,求 花坛的面积.解:∵m 2﹣2mn +2n 2﹣4n +4=0,∴(m 2﹣2mn +n 2)+(n 2﹣4n +4)=0∴(m ﹣n )2+(n ﹣2)2=0,∴(m ﹣n )2=0,(n ﹣2)2=0,∴m = n ,n =2. ∴mn=4根据你的观察和思考,探究下面的问题: (1)若x 2﹣2xy +5y 2+4y +1=0,求xy 的值; (2)若0245222=-+++xz xy z y x ,求代数式z y x 3--的值;(3)若△ABC 的三边长a 、b 、c 都是正整数,且满足a 2+b 2﹣10a ﹣12b +61=0,求△ABC 的周长的最大值.26.(本小题满分12分)如图,∠MAN =45°,点C 在射线AM 上,AC =10,过C 点作CB ⊥AN 交AN 于点B ,P 为线段AC 上一个动点,Q 点为线段AB 上的动点,且始终保持PQ =PB . (1)如图1,若∠BPQ =45°,求证:△ABP 是等腰三角形;(2)如图2, DQ ⊥AP 于点D ,试问:此时PD 的长度是否变化?若变化,请说明理由;若不变,请计算其长度; (3)当点P 运动到AC 的中点时,将△PBQ 以每秒1个单位的速度向右匀速平移,设运动时间为t 秒,B点平移后的对应点为E ,求△ABC 和△PQE 的重叠部分的面积.26题图(1)AMB CPQ N26题图(2)D Q PCB NMA2015—2016学年度上学期期末考试 八年级数学参考答案及评分意见一、选择题:1—5:BBDCA 6—10:CBBDD 11—12:CC二、填空题:13.()x y x +4214. 9106.1-⨯ 15.10 16.2±=x17.120°或20° 18. 46°三、解答题:19.解:()()()()32236+---=+x x x x x ………………………2分 623218622++---=+x x x x x x ………………………4分 129-=x34-=x ………………………6分经检验,34-=x 是原方程的解………………………7分20.解:()ab b a b ab a 3222-+=+- ………………………3分=52– 3×2………………………5分 =19………………………7分 21.解:(1)C (-3,2),………………………3分 (2)图形略,………………………7分△MNP 的面积=21×4×3=6………………………10分 22.解:(1)原式=)4(22222b a b ab a ----………………………2分 =222242b a b ab a +---………………………3分 =232b ab +-………………………5分(2)原式=()211113)1(222++⎪⎪⎭⎫ ⎝⎛+--+÷+-a a a a a a a ………………………6分 =2114)1()2(22+++-÷+-a a a a a a=21)2)(2(1)1()2(2++-++⋅+-a a a a a a a ………………………8分G F=21)2(2+++-a a a a=aa 222+………………………10分23.(1)证明:∵∠BAD=∠CAE,∴∠BAD +∠DAC =∠CAE +∠DAC即∠BAC =∠DAE ………………………3分 ∵AB =AD, ∠B =∠ADE∴△ABC ≌△ADE(ASA) ………………………4分 ∴AC =AE ………………………5分(2) 解1(面积法):由(1)可知,△ABC ≌△ADE ∴AB =AD =6,BC =DE =9 ∵BD =4,∴DC =BC -BD =5过点D ,F 分别作DF ⊥AB ,AG ⊥BC ,垂足分别为F,G ,. ∵∠BAD =30°, ∴DF =21AD =3 ∵BD =4, AG ·BD =AB ·DF ∴AG =29………………………8分 ∴S △ADC =21DC ·AG =21×5×29=445………………………10分 解2(勾股定理):过点A 作AG 垂直于BD 于G ………..6分 由已知知AB =AD ,∴BG=DG=2,AG=24………8分∴S △ADC =21DC ·AG =21×5×24=210………………………10分 24.解:设萌萌家11月份用气x 立方米.由题意得xx 90%)251(1096=+⨯+………………………5分 解得,30=x ………………………8分经检验,30=x 是原方程的解. ………………………9分答:萌萌家11月份用气30立方米………………………10分25.解:(1)012,0,0)12()(22=+=-∴=++-y y x y y x∴21-==y x ,∴41=xy ………………………4分 (2) 06,05,0)6()5(22=-=-∴=-+-b a b a∴6,5==b a .∴111<<c ∵c 为整数,∴c 的最大值为10,∴△ABC 的周长的最大值为FEQPCB A图1图2FEQ P CBA21. ………………………8分(3)0,02,0)()2(22=-=+∴=-++z x y x z x y x∴x z x y ==-,2∴0323=-+=--x x x z y x ………………………12分26.(1)证明:∵∠BPQ=45°,PQ=PB, ∴∠PBQ=∠PQB=67.5°. ∵∠MAN=45°,∴ ∠APB=180°-45°-67.5°=67.5° ∴∠APB= ∠PBQ∴AP=AB 即三角形ABP 为等腰三角形。

九年级上册重庆数学期末试卷检测题(Word版 含答案)

九年级上册重庆数学期末试卷检测题(Word版 含答案)

九年级上册重庆数学期末试卷检测题(Word 版 含答案) 一、选择题1.如图,矩形ABCD 的对角线交于点O ,已知CD a =,DCA β∠=∠,下列结论错误的是( )A .BDC β∠=∠B .2sin a AO β=C .tan BC a β=D .cos a BD β= 2.二次函数y =3(x -2)2-1的图像顶点坐标是( )A .(-2,1)B .(-2,-1)C .(2,1)D .(2,-1)3.如图,AB 是⊙O 的弦,半径OC ⊥AB ,D 为圆周上一点,若BC 的度数为50°,则∠ADC 的度数为 ( )A .20°B .25°C .30°D .50°4.在Rt ABC ∆中,90C ∠=︒,3AC =,=1BC ,则sin A 的值为( )A .1010B .310C .13D .1035.如图,以AB 为直径的⊙O 上有一点C ,且∠BOC =50°,则∠A 的度数为( )A .65°B .50°C .30°D .25° 6.函数y=(x+1)2-2的最小值是( ) A .1B .-1C .2D .-2 7.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--8.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC相似的是A.B.C.D.9.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位10.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为()A.43B.23C.33D.32211.在△ABC中,∠C=90°,AC=8,BC=6,则sin B的值是()A.45B.35C.43D.3412.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则()A.摸出黑球的可能性最小B.不可能摸出白球C.一定能摸出红球D.摸出红球的可能性最大二、填空题13.已知tan(α+15°)= 3,则锐角α的度数为______°.14.已知扇形半径为5cm,圆心角为60°,则该扇形的弧长为________cm.15.若圆锥的底面半径为3cm,高为4cm,则它的侧面展开图的面积为_____cm2.16.若x1,x2是一元二次方程2x2+x-3=0的两个实数根,则x1+x2=____.17.如图,二次函数y=ax2+bx+c的图像过点A(3,0),对称轴为直线x=1,则方程ax2+bx+c=0的根为____.18.如图,AB、CD、EF所在的圆的半径分别为r1、r2、r3,则r1、r2、r3的大小关系是____.(用“<”连接)19.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.20.已知扇形的圆心角为90°,弧长等于一个半径为5cm 的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm .21.如图,ABC ∆是O 的内接三角形,45BAC ∠=︒,BC 的长是54π,则O 的半径是__________.22.如图,直线y=12x ﹣2与x 轴、y 轴分别交于点A 和点B ,点C 在直线AB 上,且点C 的纵坐标为﹣1,点D 在反比例函数y=k x 的图象上,CD 平行于y 轴,S △OCD =52,则k 的值为________.23.将抛物线 y =(x+2)2-5向右平移2个单位所得抛物线解析式为_____.24.如图,在△ABC 中,P 是AB 边上的点,请补充一个条件,使△ACP ∽△ABC ,这个条件可以是:___(写出一个即可),三、解答题25.如图,平行四边形ABCD 中,30B ∠=︒,过点A 作AE BC ⊥于点E ,现将ABE ∆沿直线AE 翻折至AFE ∆的位置,AF 与CD 交于点G .(1)求证:CG BF CD CF ⋅=⋅;(2)若43AB =,8AD =,求DG 的长.26.如图,BD 是⊙O 的直径.弦AC 垂直平分OD ,垂足为E .(1)求∠DAC 的度数;(2)若AC =6,求BE 的长.27.“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?28.如图,在矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取一点O,以点O 为圆心,OF 为半径作⊙O 与AD 相切于点P .AB=6,BC=33(1)求证:F 是DC 的中点.(2)求证:AE=4CE.(3)求图中阴影部分的面积.29.如图1,已知抛物线y =﹣x 2+bx +c 交y 轴于点A (0,4),交x 轴于点B (4,0),点P 是抛物线上一动点,试过点P 作x 轴的垂线1,再过点A 作1的垂线,垂足为Q ,连接AP .(1)求抛物线的函数表达式和点C 的坐标;(2)若△AQP ∽△AOC ,求点P 的横坐标;(3)如图2,当点P 位于抛物线的对称轴的右侧时,若将△APQ 沿AP 对折,点Q 的对应点为点Q ′,请直接写出当点Q ′落在坐标轴上时点P 的坐标.30.如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF=3m ,沿BD 方向到达点F 处再测得自己得影长FG=4m ,如果小明的身高为1.6m ,求路灯杆AB 的高度.31.如图,已知ABC ∆中,3045ABC ACB ∠=︒∠=︒,,8AB =.求ABC ∆的面积.32.2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断.【详解】解:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO, ∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、BDC DCAβ∠=∠=∠,故A选项正确;B、在Rt△ADC中,cos∠ACD=DCAC, ∴cosβ=2aAO,∴AO=2cosa,故B选项错误;C、在Rt△BCD中,tan∠BDC=BCDC, ∴ tanβ=BCa∴BC=atanβ,故C选项正确;D、在Rt△BCD中,cos∠BDC=DCDB, ∴ cosβ=aBD∴cosaBDβ=,故D选项正确.故选:B.【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键.2.D解析:D【解析】【分析】由二次函数的顶点式,即可得出顶点坐标.【详解】解:∵二次函数为y=a(x-h)2+k顶点坐标是(h,k),∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1).故选:D.【点睛】此题考查了二次函数的性质,二次函数为y=a(x-h)2+k顶点坐标是(h,k).3.B解析:B【解析】【分析】利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到=AC BC,然后根据圆周角定理计算∠ADC的度数.∵BC 的度数为50°,∴∠BOC=50°,∵半径OC ⊥AB ,∴=AC BC ,∴∠ADC=12∠BOC=25°. 故选B .【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理. 4.A解析:A【解析】【分析】先根据勾股定理求出斜边的长,再根据正弦的定义解答即可.【详解】解:在Rt ABC ∆中,∵90C ∠=︒,3AC =,=1BC ,∴AB =∴sin10BC A AB ===. 故选:A.【点睛】本题考查了勾股定理和正弦的定义,属于基本题型,熟练掌握基本知识是解题关键. 5.D解析:D【解析】【分析】根据圆周角定理计算即可.【详解】 解:由圆周角定理得,1252A BOC ∠=∠=︒, 故选:D .【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.D【解析】【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值.【详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.故选D.【点睛】本题考查了二次函数的最值.7.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 8.B解析:B【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB 、CB 、AC 、2只有选项B 的各边为1B .【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.9.D解析:D【解析】A.平移后,得y=(x+1)2,图象经过A 点,故A 不符合题意;B.平移后,得y=(x−3)2,图象经过A 点,故B 不符合题意;C.平移后,得y=x 2+3,图象经过A 点,故C 不符合题意;D.平移后,得y=x 2−1图象不经过A 点,故D 符合题意;故选D.10.C解析:C【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积.【详解】解:由题意可得出圆的半径为1,∵△ABC为正三角形,AO=1,AD BC⊥,BD=CD,AO=BO,∴1DO2=,32AD=,∴223BD OB OD=-=,∴BC3=,∴1333322ABCS=⨯⨯=.故选:C.【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.11.A解析:A【解析】【分析】先根据勾股定理计算出斜边AB的长,然后根据正弦的定义求解.【详解】如图,∵∠C=90°,AC=8,BC=6,∴AB=10,∴sin B=84105 ACAB==.故选:A.【点睛】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.12.D解析:D【解析】【分析】根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案.【详解】解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球,∴摸出黑球的概率是2 23,摸出白球的概率是1 23,摸出红球的概率是20 23,∵123<223<2023,∴从中任意摸出1个球,摸出红球的可能性最大;故选:D.【点睛】本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.二、填空题13.15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,解析:15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan (α+15°)∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键. 14.【解析】【分析】直接利用弧长公式进行计算.【详解】解:由题意得:=,故答案是:【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 解析:53π 【解析】【分析】 直接利用弧长公式180n R l π=进行计算. 【详解】 解:由题意得:605180l π==53π, 故答案是:53π 【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 15.15【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长∴圆锥的侧面展开图的面积故填:.【点睛】解析:15π【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长5()cm ==∴圆锥的侧面展开图的面积()23515cmππ=⨯⨯=故填:15π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 16.【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═故答案为.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1 解析:12- 【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x 1+x 2═12b a -=- 故答案为12-. 【点睛】 本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=b a -,x 1•x 2=c a. 17.【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得:解析:123;1x x ==-【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得: 抛物线与x 轴交于(3,0)和(-1,0)即当y=0时,x=3或-1∴ax 2+bx +c =0的根为123;1x x ==-故答案为:123;1x x ==-【点睛】本题考查抛物线的对称性及二次函数与一元二次方程,利用对称性求出抛物线与x 轴的交点坐标是本题的解题关键.18.r3 <r2 <r1【解析】【分析】利用尺规作图分别做出、、所在的圆心及半径,从而进行比较即可.【详解】解:利用尺规作图分别做出、、所在的圆心及半径∴r3 <r2 <r1故答案为:r解析:r3<r2<r1【解析】【分析】利用尺规作图分别做出AB、CD、EF所在的圆心及半径,从而进行比较即可.【详解】解:利用尺规作图分别做出AB、CD、EF所在的圆心及半径∴r3<r2<r1故答案为:r3<r2<r1【点睛】本题考查利用圆弧确定圆心及半径,掌握尺规作图的基本方法,准确确定圆心及半径是本题的解题关键.19.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△AB解析:2【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为:2点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,∴R解析:515【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,R90=25180∴R=20,22205515 .故答案为:515【点睛】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.21.【解析】【分析】 连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵,∴∠BOC=90°,∵的长是,∴,解得:解析:52【解析】【分析】连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵45BAC ∠=︒,∴∠BOC =90°,∵BC 的长是54π, ∴9051804OB ππ⋅=, 解得:52OB =. 故答案为:52.【点睛】本题考查了圆周角定理和弧长公式,属于基本题型,熟练掌握上述基本知识是解答的关键.22.【解析】【分析】【详解】试题分析:把x=2代入y=x ﹣2求出C 的纵坐标,得出OM=2,CM=1,根据CD ∥y 轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D解析:【解析】【分析】【详解】试题分析:把x=2代入y=12x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D的坐标代入反比例函数的解析式求出k即可.解:∵点C在直线AB上,即在直线y=12x﹣2上,C的横坐标是2,∴代入得:y=12×2﹣2=﹣1,即C(2,﹣1),∴OM=2,∵CD∥y轴,S△OCD=52,∴12CD×OM=52,∴CD=52,∴MD=52﹣1=32,即D的坐标是(2,32),∵D在双曲线y=kx上,∴代入得:k=2×32=3.故答案为3.考点:反比例函数与一次函数的交点问题.点评:本题考查了反比例函数与一次函数的交点问题、一次函数、反比例函数的图象上点的坐标特征、三角形的面积等知识点,通过做此题培养了学生的计算能力和理解能力,题目具有一定的代表性,是一道比较好的题目.23.y=x2−5【解析】【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y=(x+2)2−5向右平移2个单位,得:y=(x+2−2)2−5,即y=x2−5解析:y=x2−5【解析】【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y=(x+2)2−5向右平移2个单位,得:y=(x+2−2)2−5,即y=x2−5.故答案是:y=x2−5.【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.24.∠ACP=∠B(或).【解析】【分析】由于△ACP与△ABC有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件.【详解】解析:∠ACP=∠B(或AP ACAC AB=).【解析】【分析】由于△ACP与△ABC有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件.【详解】解:∵∠PAC=∠CAB,∴当∠ACP=∠B时,△ACP∽△ABC;当AP ACAC AB=时,△ACP∽△ABC.故答案为:∠ACP=∠B(或AP ACAC AB=).本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似:有两组角对应相等的两个三角形相似.三、解答题25.(1)见解析;(2【解析】【分析】(1)根据平行四边形的性质得AB∥CD,AB=CD,通过两角对应相等证明△FCG∽△FBA,利用对应边成比例列比例式,进行等量代换后化等积式即可;(2)根据直角三角形30°角所对的直角边等于斜边的一半及勾股定理,求出BE的长,再由折叠性质求出BF长,结合(1)的结论代入数据求解.【详解】解(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,AD=BC∴∠GCF=∠B, ∠CGF=∠BAF,∴△FCG∽△FBA,∴CG CF AB BF= ,∴CG CF CD BF∴CG BF CD CF⋅=⋅.(2)∵AE BC⊥,∴∠AEB=90°,∵∠B=30°, AB=∴AE=123 2AB ,由勾股定理得,BE=6,由折叠可得,BF=2BE=12,∵AD=BC=8,∴CF=4∵CG BF CD CF⋅=⋅,∴124CG=,∴CG=3,∴.本题考查平行四边形的性质和相似三角形的判定与性质,平行四边形的性质即为相似三角形判定的条件,利用相似三角形的对应边成比例是解答问题的关键.26.(1)30°;(2)33【解析】【分析】(1)由题意证明△CDE ≌△COE ,从而得到△OCD 是等边三角形,然后利用同弧所对的圆周角等于圆心角的一半求解;(2)由垂径定理求得AE=12AC=3,然后利用30°角的正切值求得DE=3,然后根据题意求得OD=2DE=23,直径BD=2OD=43,从而使问题得解.【详解】解:连接OA,OC∵弦AC 垂直平分OD∴DE=OE ,∠DEC=∠OEC=90°又∵CE=CE∴△CDE ≌△COE∴CD=OC又∵OC=OD∴CD=OC=OD∴△OCD 是等边三角形∴∠DOC=60°∴∠DAC =30°(2)∵弦AC 垂直平分OD∴AE=12AC=3 又∵由(1)可知,在Rt △DAE 中,∠DAC =30°∴tan 30DE AE =,即33DE =∴3∵弦AC 垂直平分OD∴∴直径∴-【点睛】本题考查垂径定理,全等三角形的判定和性质及锐角三角函数,掌握相关定理正确进行推理判断是本题的解题关键.27.(1)该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)售价应降低3元【解析】【分析】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x ,根据题意列出关于x 的一元二次方程,求解方程即可;(2)设售价应降低y 元,则每天售出(200+50y )千克,根据题意列出关于y 的一元二次方程,求解方程即可.【详解】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x ,根据题意得2100(1)196x +=解得10.440%x ==,2 2.4x =-(不合题意,舍去)答:该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)设售价应降低y 元,则每天可售出(20050)y +千克根据题意,得(2012)(20050)1750y y --+=整理得,2430y y -+=,解得11y =,23y =∵要减少库存∴11y =不合题意,舍去,∴3y =答:售价应降低3元.【点睛】本题考查一元二次方程与销售的实际应用,明确售价、成本、销量和利润之间的关系,正确用一个量表示另外的量然后找到等量关系是列出方程的关键.28.(1)见解析;(2)见解析;(3)2 【解析】【分析】(1)易求DF 长度即可判断;(2)通过30°角所对的直角边等于斜边一半证得AE=2EF ,EF=2CE 即可得;(3)先证明△OFG 为等边三角形,△OPG 为等边三角形,即可确定扇形圆心角∠POG 和∠GOF 的大小均为60°,所以两扇形面积相等, 通过割补法得出最后阴影面积只与矩形OPDH 和△OGF 有关,根据面积公式求出两图形面积即可.【详解】(1)∵AF=AB=6,AD=BC=∴DF=3,∴CF=DF=3,∴F是CD的中点(2)∵AF=6, DF=3,∴∠DAF=30°,∴∠EAF=30◦ ,∴AE=2EF;∴∠EFC=30◦ ,EF=2CE,∴AE=4CE(3)如图,连接OP,OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG为等边三角形,同理△OPG为等边三角形,∴∠POG=∠FOG=60°,OH=33 2OG ,∴S扇形OPG=S扇形OGF,∴S阴影=(S矩形OPDH-S扇形OPG-S△OGH)+(S扇形OGF-S△OFG)=S矩形OPDH-32S△OFG=313 2323222,即图中阴影部分的面积3 2.【点睛】本题考查了正方形的性质,等边三角形的性质及解直角三角形,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.29.(1)y=﹣x2+3x+4;(﹣1,0);(2)P的横坐标为134或114.(3)点P的坐标为(4,0)或(5,﹣6)或(2,6).【解析】【分析】(1)利用待定系数法求抛物线解析式,然后利用抛物线解析式得到一元二次方程,通过解一元二次方程得到C点坐标;(2)利用△AQP∽△AOC得到AQ=4PQ,设P(m,﹣m2+3m+4),所以m=4|4﹣(﹣m 2+3m +4|,然后解方程4(m 2﹣3m )=m 和方程4(m 2﹣3m )=﹣m 得P 点坐标;(3)设P (m ,﹣m 2+3m +4)(m >32),当点Q ′落在x 轴上,延长QP 交x 轴于H ,如图2,则PQ =m 2﹣3m ,证明Rt △AOQ ′∽Rt △Q ′HP ,利用相似比得到Q ′B =4m ﹣12,则OQ ′=12﹣3m ,在Rt △AOQ ′中,利用勾股定理得到方程42+(12﹣3m )2=m 2,然后解方程求出m 得到此时P 点坐标;当点Q ′落在y 轴上,易得点A 、Q ′、P 、Q 所组成的四边形为正方形,利用PQ =PQ ′得到|m 2﹣3m |=m ,然后解方程m 2﹣3m =m 和方程m 2﹣3m =﹣m 得此时P 点坐标.【详解】解:(1)把A (0,4),B (4,0)分别代入y =﹣x 2+bx +c 得41640c b c =⎧⎨-++=⎩,解得34b c =⎧⎨=⎩, ∴抛物线解析式为y =﹣x 2+3x +4,当y =0时,﹣x 2+3x +4=0,解得x 1=﹣1,x 2=4,∴C (﹣1,0);故答案为y =﹣x 2+3x +4;(﹣1,0);(2)∵△AQP ∽△AOC , ∴AQ PQ AO CO ∴=, ∴441AQ AO PQ CO ===,即AQ =4PQ , 设P (m ,﹣m 2+3m +4),∴m =4|4﹣(﹣m 2+3m +4|,即4|m 2﹣3m |=m ,解方程4(m 2﹣3m )=m 得m 1=0(舍去),m 2=134,此时P 点横坐标为134; 解方程4(m 2﹣3m )=﹣m 得m 1=0(舍去),m 2=114,此时P 点坐标为1175,416⎛⎫ ⎪⎝⎭; 综上所述,点P 的坐标为(134,5116)或(114,7516); (3)设()23,342P m m m m ⎛⎫-++> ⎪⎝⎭, 当点Q ′落在x 轴上,延长QP 交x 轴于H ,如图2,则PQ =4﹣(﹣m 2+3m +4)=m 2﹣3m ,∵△APQ 沿AP 对折,点Q 的对应点为点Q ',∴∠AQ ′P =∠AQP =90°,AQ ′=AQ =m ,PQ ′=PQ =m 2﹣3m ,∵∠AQ ′O =∠Q ′PH ,∴Rt △AOQ ′∽Rt △Q ′HP , ∴AO AQ Q H PQ '''=,即243m Q H m m '=-,解得Q ′H =4m ﹣12,∴OQ ′=m ﹣(4m ﹣12)=12﹣3m ,在Rt △AOQ ′中,42+(12﹣3m )2=m 2,整理得m 2﹣9m +20=0,解得m 1=4,m 2=5,此时P 点坐标为(4,0)或(5,﹣6); 当点Q ′落在y 轴上,则点A 、Q ′、P 、Q 所组成的四边形为正方形,∴PQ =AQ ′,即|m 2﹣3m |=m ,解方程m 2﹣3m =m 得m 1=0(舍去),m 2=4,此时P 点坐标为(4,0);解方程m 2﹣3m =﹣m 得m 1=0(舍去),m 2=2,此时P 点坐标为(2,6),综上所述,点P 的坐标为(4,0)或(5,﹣6)或(2,6)【点睛】本题考查了待定系数法,相似三角形的性质,解一元二次方程,三角形折叠,题目综合性较强,解决本题的关键是:①熟练掌握待定系数法求函数解析式;②能够熟练掌握相似三角形的判定和性质;③能够熟练掌握一元二次方程的解法;④理解折叠的性质.30.4m【解析】【分析】由CD ∥EF ∥AB 得可以得到△CDF ∽△ABF ,△ABG ∽△EFG ,故CD DF AB BF =,EF FG AB BG =,证DF FG BF BG =,进一步得3437BD BD =++,求出BD ,再得1.6312AB =; 【详解】解:∵CD ∥EF ∥AB ,∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG ,∴CD DF AB BF =,EF FG AB BG=, 又∵CD=EF , ∴DF FG BF BG =, ∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,∴3437BD BD =++ ∴BD=9,BF=9+3=12∴ 1.6312AB = 解得,AB=6.4m因此,路灯杆AB 的高度6.4m .【点睛】考核知识点:相似三角形的判定和性质.理解相似三角形判定是关键.31.8+83【解析】【分析】过点A 作AD ⊥BC ,垂足为点D ,构造直角三角形,利用三角函数值分别求出AD 、BD 、CD 的值即可求三角形面积. 【详解】解:过点A 作AD ⊥BC ,垂足为点D ,在Rt △ADB 中,∵sin AD ABC AB ∠=, ∴sin AD AB ABC =⋅∠= 1842⨯= ∵cos BD ABC AB∠=, ∴3cos 843BD AB ABC =⋅∠=⨯= 在Rt △ADC 中,∵45ACB ︒∠=,∴45CAD ︒∠=,∴AD =DC =4∴ 111()(443)4883222ABC S BC AD BD CD AD ∆=⋅=+⋅=⨯+⨯=+【点睛】本题考查的知识点是利用勾股定理求三角形面积,通过作辅助线构造直角三角形结合三角函数值是解此题的关键.32.(1)该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20%. (2)2019年该贫困户的家庭年人均纯收入能达到4200元.【解析】【分析】(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x ,根据该该贫困户2016年及2018年家庭年人均纯收入,即可得出关于的一元二次方程,解之取其中正值即可得出结论;(2)根据2019年该贫困户的家庭年人均纯收入=2018年该贫困户的家庭年人均纯收入×(1+增长率),可求出2019年该贫困户的家庭年人均纯收入,再与4200比较后即可得出结论.【详解】解:(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x ,依题意,得:2250013600x +()=,解得120.220% 2.2x x :==,=﹣(舍去). 答:该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20% .(2)3600120%4320⨯+()=(元), 43204200>.答:2019年该贫困户的家庭年人均纯收入能达到4200元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.。

人教版2016-2017学年第一学期九年级数学(上册 )期末测试卷及答案

人教版2016-2017学年第一学期九年级数学(上册 )期末测试卷及答案

2016-2017学年九年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题3分,满分24分.每小题只有一个正确选项,答案写在答题卷上)1.﹣的倒数是()A.B.C.﹣D.﹣2.如图,由四个正方体组成的图形,观察这个图形,不能得到的平面图形是()A.B.C.D.3.函数中,自变量x的取值范围是()A.x>1 B.x≥1 C.x>﹣2 D.x≥﹣24.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.B.C.D.5.如图,为估算某河的宽度,在河岸边选定一个目标点A,在对岸取点B、C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A、E、D在同一条直线上,若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m6.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°7.二次函数y=ax2+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是()A.1个B.2个C.3个D.4个8.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A.12 B. C.D.二、填空题(本大题共6个小题,每小题3分,满分18分.答案写在答题卷上)9.一元二次方程2x2﹣3x+1=0的解为.10.点(2,y1),(3,y2)在函数y=﹣的图象上,则y1y2(填“>”或“<”或“=”).11.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的倍.12.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则tanB的值是.13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.14.观察下列各数,它们是按一定规律排列的,则第n个数是.,,,,,…三、解答题(本大题共9个小题,满分58分.答案写在答题卷上)15.计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.16.如图,在△ABC中,点D、E分别是AB和AC上的点,DE∥BC,AD=3BD,S△ABC=48,求S四边形BCED.17.如图,已知△ABC,以点O为位似中心画一个△DEF,使它与△ABC位似,且相似比为2.18.如图,小明在教学楼上的窗口A看地面上的B、C两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D与点C、B在同一条直线上,且B、C两花坛之间的距离为6m.求窗口A到地面的高度AD.(结果保留根号)19.在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?20.如图,长100m、宽90m的长方形绿地上修建宽度相同的道路,6块绿地的面积共8448m2,求道路的宽.21.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB 上,点G在边BC上.(1)求证:△ADE≌△BGF;(2)若正方形DEFG的面积为16cm2,求AC的长.22.如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.(1)求点C的坐标及反比例函数的解析式.(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.23.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.直线AB交y轴于点D,抛物线交y轴于点C.(1)求直线AB的解析式;(2)求抛物线的解析式;(3)在y轴上是否存在点Q,使△ABQ为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,满分24分.每小题只有一个正确选项,答案写在答题卷上)1.﹣的倒数是()A.B.C.﹣D.﹣【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵(﹣)×(﹣)=1,∴﹣的倒数是﹣.故选D.【点评】本题主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.如图,由四个正方体组成的图形,观察这个图形,不能得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】分别找出这个图形的主视图、俯视图、左视图,然后结合选项选出正确答案即可.【解答】解:该图形的主视图为:,俯视图为:,左视图为:,A、该图形为原图形的主视图,本选项正确;B、该图形为原图形的俯视图,本选项正确;C、该图形为原图形的左视图,本选项正确;D、观察原图形,不能得到此平面图形,故本选项错误;故选D.【点评】本题考查了简单组合体的三视图,要求同学们掌握主视图是从物体的正面看得到的视图,俯视图是从物体的上面看得到的视图,左视图是从物体的左面看得到的视图.3.函数中,自变量x的取值范围是()A.x>1 B.x≥1 C.x>﹣2 D.x≥﹣2【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣1>0,解得:x>1.故选A.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】根据概率的求法,先画出树状图,求出所有出现的情况,即可求出答案.【解答】解:用A表示没蛋黄,B表示有蛋黄的,画树状图如下:∵一共有12种情况,两个粽子都没有蛋黄的有6种情况,∴则这两个粽子都没有蛋黄的概率是=故选B.【点评】此题主要考查了画树状图求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.如图,为估算某河的宽度,在河岸边选定一个目标点A,在对岸取点B、C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A、E、D在同一条直线上,若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m【考点】相似三角形的应用.【分析】由两角对应相等可得△BAE∽△CDE,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴=,∵BE=20m,CE=10m,CD=20m,∴,解得:AB=40,故选B.【点评】考查相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.6.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【考点】菱形的判定;平移的性质.【分析】首先根据平移的性质得出AB平行且等于CD,得出四边形ABCD为平行四边形,根据邻边相等的平行四边形是菱形可得添加条件AB=BC即可.【解答】解:∵将△ABC沿BC方向平移得到△DCE,∴AB平行且等于CD,∴四边形ABCD为平行四边形,当AB=BC时,平行四边形ACED是菱形.故选:A.【点评】此题主要考查了平移的性质和平行四边形的判定和菱形的判定,得出AB平行且等于CD是解题关键.7.二次函数y=ax2+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:如图,①抛物线开口方向向下,则a<0.故①正确;②∵对称轴x=﹣=1,∴b=﹣2a>0,即b>0.故②错误;③∵抛物线与y轴交于正半轴,∴c>0.故③正确;④∵对称轴x=﹣=1,∴b+2a=0.故④正确;⑤根据图示知,当x=1时,y>0,即a+b+c>0.故⑤错误.综上所述,正确的说法是①③④,共有3个.故选C.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.8.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A.12 B. C.D.【考点】反比例函数系数k的几何意义;含30度角的直角三角形;勾股定理.【分析】先由∠ACB=90°,BC=4,得出B点纵坐标为4,根据点B在反比例函数的图象上,求出B点坐标为(3,4),则OC=3,再解Rt△ABC,得出AC=4,则OA=4﹣3.设AB与y 轴交于点D,由OD∥BC,根据平行线分线段成比例定理得出=,求得OD=4﹣,最后根据梯形的面积公式即可求出阴影部分的面积.【解答】解:∵∠ACB=90°,BC=4,∴B点纵坐标为4,∵点B在反比例函数的图象上,∴当y=4时,x=3,即B点坐标为(3,4),∴OC=3.在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,AC=BC=4,OA=AC﹣OC=4﹣3.设AB与y轴交于点D.∵OD∥BC,∴=,即=,解得OD=4﹣,∴阴影部分的面积是:(OD+BC)•OC=(4﹣+4)×3=12﹣.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,含30度角的直角三角形的性质,平行线分线段成比例定理,梯形的面积公式,难度适中,求出B点坐标及OD的长度是解题的关键.二、填空题(本大题共6个小题,每小题3分,满分18分.答案写在答题卷上)9.一元二次方程2x2﹣3x+1=0的解为x1=,x2=1.【考点】解一元二次方程-因式分解法.【分析】分解因式后即可得出两个一元一次方程,求出方程的解即可.【解答】解:2x2﹣3x+1=0,(2x﹣1)(x﹣1)=0,2x﹣1=0,x﹣1=0,x1=,x2=1,故答案为:x1=,x2=1【点评】本题考查了解一元一次方程和解一元二次方程的应用,关键是能把一元二次方程转化成解一元一次方程.10.点(2,y1),(3,y2)在函数y=﹣的图象上,则y1<y2(填“>”或“<”或“=”).【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象所经过的象限与函数图象的增减性进行填空.【解答】解:∵函数y=﹣中的﹣2<0,∴函数y=﹣的图象经过第二、四象限,且在每一象限内,y随x的增大而增大,∴点(2,y1),(3,y2)同属于第四象限,∵2<3,∴y1<y2.故填:<.【点评】本题主要考查反比例函数图象上点的坐标特征.解答该题时,利用了反比例函数图象的增减性.当然了,解题时也可以把已知两点的坐标分别代入函数解析式,求得相应的y值后,再来比较它们的大小.11.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的5倍.【考点】相似图形.【分析】由题意一个三角形的各边长扩大为原来的5倍,根据相似三角形的性质及对应边长成比例来求解.【解答】解:∵一个三角形的各边长扩大为原来的5倍,∴扩大后的三角形与原三角形相似,∵相似三角形的周长的比等于相似比,∴这个三角形的周长扩大为原来的5倍,故答案为:5.【点评】本题考查了相似三角形的性质:相似三角形的周长的比等于相似比.12.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则tanB的值是.【考点】解直角三角形.【分析】根据直角三角形斜边上的中线等于斜边的一半求出AB的长度,再利用勾股定理求出BC 的长度,然后根据锐角的正切等于对边比邻边解答.【解答】解:∵CD是斜边AB上的中线,CD=2,∴AB=2CD=4,根据勾股定理,BC==,tanB===.故答案为:.【点评】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边应熟练掌握.13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为20.【考点】矩形的性质;三角形中位线定理.【专题】几何图形问题.【分析】根据题意可知OM是△ADC的中位线,所以OM的长可求;根据勾股定理可求出AC的长,利用直角三角形斜边上的中线等于斜边的一半可求出BO的长,进而求出四边形ABOM的周长.【解答】解:∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴OM=CD=AB=2.5,∵AB=5,AD=12,∴AC==13,∵O是矩形ABCD的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故答案为:20.【点评】本题考查了矩形的性质、三角形的中位线的性质以及直角三角形斜边上的中线等于斜边的一半这一性质,题目的综合性很好,难度不大.14.观察下列各数,它们是按一定规律排列的,则第n个数是.,,,,,…【考点】规律型:数字的变化类.【专题】规律型.【分析】观察不难发现,分母为2的指数次幂,分子比分母小1,根据此规律解答即可.【解答】解:∵2=21,4=22,8=23,16=24,32=25,…∴第n个数的分母是2n,又∵分子都比相应的分母小1,∴第n个数的分子为2n﹣1,∴第n个数是.故答案为:.【点评】本题是对数字变化规律的考查,熟练掌握2的指数次幂是解题的关键.三、解答题(本大题共9个小题,满分58分.答案写在答题卷上)15.计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】分别进行零指数幂、绝对值、特殊角的三角函数值、负整数指数幂等运算,然后按照实数的运算法则计算即可.【解答】解:原式=1+﹣2×+4=5.【点评】本题考查了实数的运算,涉及了零指数幂、绝对值、负整数指数幂及特殊角的三角函数值,属于基础题,注意各部分的运算法则.16.如图,在△ABC中,点D、E分别是AB和AC上的点,DE∥BC,AD=3BD,S△ABC=48,求S四边形BCED.【考点】相似三角形的判定与性质.【分析】根据DE∥BC,于是得到△ADE∽△ABC,根据相似三角形的性质得到=()2,于是求得S△ADE=27,即可得到结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=()2,∵AD=3BD,∴=,∴=,∵S△ABC=48,∴S△ADE=27,∴S四边形BCED=S△ABC﹣S△ADE=48﹣27=21.【点评】此题考查了相似三角形的判定与性质.此题难度不大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.17.如图,已知△ABC,以点O为位似中心画一个△DEF,使它与△ABC位似,且相似比为2.【考点】作图-位似变换.【专题】作图题.【分析】延长OA到A′,使AA′=OA,则点A′为点A的对应点,用同样方法作出B、C的对应点B′、C′,则△A′B′C′与△ABC位似,且相似比为2.【解答】解:如图,△A′B′C′为所作.【点评】本题考查了作图﹣位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形.18.如图,小明在教学楼上的窗口A看地面上的B、C两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D与点C、B在同一条直线上,且B、C两花坛之间的距离为6m.求窗口A到地面的高度AD.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】设窗口A到地面的高度AD为xm,根据题意在直角三角形ABD和直角三角形ACD中,利用锐角三角函数用含x的代数式分别表示线段BD和线段CD的长,再根据BD﹣CD=BC=6列出方程,解方程即可.【解答】解:设窗口A到地面的高度AD为xm.由题意得:∠ABC=30°,∠ACD=45°,BC=6m.∵在Rt△ABD中,BD==xm,在Rt△ADC中,CD==xm,∵BD﹣CD=BC=6,∴x﹣x=6,∴x=3+3.答:窗口A到地面的高度AD为(3+3)米.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系求解.19.在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后不放回(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为(3,2);(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?【考点】列表法与树状图法.【分析】(1)根据小明画出的树形图知数字1在第一次中出现,但没有在第二次中出现可以判断;(2)根据横坐标表示第一次,纵坐标表示第二次可以得到答案;(3)根据树状图和统计表分别求得其获胜的概率,比较后即可得到答案.【解答】解:(1)观察树状图知:第一次摸出的数字没有在第二次中出现,∴小明的实验是一个不放回实验,(2)观察表格发现其横坐标表示第一次,纵坐标表示第二次,(3)理由如下:∵根据小明的游戏规则,共有12种等可能的结果,数字之和为奇数的有8种,∴概率为:=;∵根据小华的游戏规则,共有16种等可能的结果,数字之和为奇数的有8种,∴概率为:=,∵>∴小明获胜的可能性大.故答案为:不放回;(3,2).【点评】本题考查了列表法和树状图法,利用列表法或树状图法展示某一随机事件中所有等可能出现的结果数n,再找出其中某一事件所出现的可能数m,然后根据概率的定义可计算出这个事件的概率=.20.如图,长100m、宽90m的长方形绿地上修建宽度相同的道路,6块绿地的面积共8448m2,求道路的宽.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设道路的宽为x米,则绿地的面积就为(100﹣2x)(90﹣x),就有(100﹣2x)(90﹣x)=8448建立方程求出其解即可.【解答】解:设道路的宽为x米,由题意,得(100﹣2x)(90﹣x)=8448,解得:x1=2,x2=138(不符合题意,舍去)∴道路的宽为2米.【点评】本题考查了列一元二次方程解实际问题的运用,矩形面积公式的运用,一元二次方程的解法的运用,解答时根据绿地的面积为8448建立方程是关键.21.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB 上,点G在边BC上.(1)求证:△ADE≌△BGF;(2)若正方形DEFG的面积为16cm2,求AC的长.【考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形.【分析】(1)先根据等腰直角三角形的性质得出∠B=∠A=45°,再根据四边形DEFG是正方形可得出∠BFG=∠AED,故可得出∠BGF=∠ADE=45°,GF=ED,由全等三角形的判定定理即可得出结论;(2)过点C作CG⊥AB于点G,由正方形DEFG的面积为16cm2可求出其边长,故可得出AB的长,在Rt△ADE中,根据勾股定理可求出AD的长,再由相似三角形的判定定理得出△ADE∽△ACG,由相似三角形的对应边成比例即可求出AC的长.【解答】(1)证明:∵△ABC是等腰直角三角形,∠C=90°,∴∠B=∠A=45°,∵四边形DEFG是正方形,∴∠BFG=∠AED=90°,故可得出∠BGF=∠ADE=45°,GF=ED,∵在△ADE与△BGF中,,∴△ADE≌△BGF(ASA);(2)解:过点C作CG⊥AB于点H,∵正方形DEFG的面积为16cm2,∴DE=AE=4cm,∴AB=3DE=12cm,∵△ABC是等腰直角三角形,CH⊥AB,∴AH=AB=×12=6cm,在Rt△ADE中,∵DE=AE=4cm,∴AD===4cm,∵CH⊥AB,DE⊥AB,∴CH∥DE,∴△ADE∽△ACH,∴=,=,解得AC=6cm.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.22.如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.(1)求点C的坐标及反比例函数的解析式.(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.【考点】反比例函数综合题.【分析】(1)过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,根据等边三角形的知识求出AC和CD的长度,即可求出C点的坐标,把C点坐标代入反比例函数解析式求出k的值.(2)若等边△ABC向上平移n个单位,使点B恰好落在双曲线上,则此时B点的横坐标即为6,求出纵坐标,即可求出n的值.【解答】解:(1)过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,∵△ABC是等边三角形,∴AC=AB=6,∠CAB=60°,∴AD=3,CD=sin60°×AC=×6=3,∴点C坐标为(3,3),∵反比例函数的图象经过点C,∴k=9,∴反比例函数的解析式y=;(2)若等边△ABC向上平移n个单位,使点B恰好落在双曲线上,则此时B点的横坐标为6,即纵坐标y==,也是向上平移n=.【点评】本题主要考查反比例函数的综合题,解答本题的关键是熟练掌握反比例函数的性质以及平移的相关知识,此题难度不大,是中考的常考点.23.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.直线AB交y轴于点D,抛物线交y轴于点C.(1)求直线AB的解析式;(2)求抛物线的解析式;(3)在y轴上是否存在点Q,使△ABQ为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点A坐标代入y=kx﹣6,根据待定系数法即可求得直线AB的解析式;(2)根据直线AB的解析式求出点B的坐标,点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法即可求解;(3)分别以A、B、Q为直角顶点,分类进行讨论.找出相关的相似三角形,依据对应线段成比例进行求解即可.【解答】解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴直线AB的解析式为y=2x﹣6,(2)∵抛物线的顶点为A(1,﹣4),∴设此抛物线的解析式为y=a(x﹣1)2﹣4,∵点B在直线y=2x﹣6上,且横坐标为0,∴点B的坐标为(3,0),又∵点B在抛物线y=a(x﹣1)2﹣4上,∴a(3﹣1)2﹣4=0,解之得a=1,∴此抛物线的解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;(3)在y轴上存在点Q,使△ABQ为直角三角形.理由如下:作AE⊥y轴,垂足为点E.又∵点D是直线y=2x﹣6与y轴的交点,点C是抛物线y=x2﹣2x﹣3与y轴的交点∴E(0,﹣4),D(0,﹣6),C(0,﹣3)∴OD=6,OE=4,AE=1,ED=2,OC=3,OB=3,BD=,AD=①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴=,即=,∴DQ1=,∴OQ1=6﹣=,即Q1(0,﹣);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴=,即=,∴OQ2=,即Q2(0,);③如图,当∠AQ3B=90°时,则△BOQ3∽△Q3EA,∴=,即=,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,﹣)或(0,)或(0,﹣1)或(0,﹣3).【点评】本题主要考查了利用待定系数法求函数解析式的方法、直角三角形的判定、相似三角形应用等重点知识.(3)题较为复杂,需要考虑的情况也较多,因此要分类进行讨论.。

重庆市九龙坡区2016届九年级上学期期末考试数学试卷

重庆市九龙坡区2016届九年级上学期期末考试数学试卷

2015—2016学年度上学期期末考试九年级数学试题(全卷共五个大题,满分:150分,考试时间:120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为(2b a-,244ac b a -),对称轴公式为2bx a=-. 一、选择题: 本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的. 请将正确答案的代号填涂在答题卡上.1.抛物线2(3)1y x =-+的顶点坐标是A .(3,1)-B .(3,1)-C .(3,1)D .(3,1)-- 2. 下列图形中,既是轴对称图形又是中心对称图形的是A .B .C .D . 3. 一元二次方程220x x -=的解为A .10x =,22x =B .0x =C . 2x =D .12x =-,20x =4. 一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球。

从布袋里任意摸出1个球,则摸出的球是白球的概率为A . 21B .51C . 31D . 32 5.在Rt ABC 中,∠C=90°,AC=6,BC=8,则以点C 为圆心,半径为4.8的圆C 与AB的位置关系是 A .相切B .相交C .相离D .不确定6.如图,∠AOB=90°,∠B=30°,△A′OB′ 可以看作是由△AOB 绕点O 顺时针旋转α角度得到的.若点A′ 在AB 上,则旋转角α的度数是 A .30° B .45° C .60° D .90°7.如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 且相交于点E ,则下列结论中不成立的是第7题图A .CEED = B .CBBD = C .∠ACB =90° D .∠COB =3∠D 8.如图所示,二次函数22y x x k =-++的图像与x 轴的一个交点坐标为(3,0),则关于x 的一元二次方程220x x k -++=的解为A .123,2x x ==-B .123,1x x ==-C .121,1x x ==-D .123,3x x ==-第6题图第8题图9.设A 1(2,)y -,B 2(1,)y ,C 3(2,)y 是抛物线2(1)y x a =-++上的三点,则123,,y y y 的大小关系为A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >> 10.如图,点P 、Q 是反比例函数(0,0)ky k x x=>>图象上的两点,PA ⊥y 轴于点A ,QN ⊥x 轴于点N ,作PM ⊥x 轴于点M ,QB ⊥y 轴于点B ,连接PB 、QM ,△ABP 的面积记为S 1,△QMN 的面积记为S 2,则S 1与S 2的大小关系是 A .12S S <B .12S S >C .12S S =D .1S 与2S 的大小关系不确定第10题图 第12题图11.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第7个图形需要黑色棋子的个数是A .48B .64C .63D .8012.如图,已知二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于点A (﹣1,0),对称轴为直线x =1,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论: ①当x >3时,y <0;②0a b c -+=;③213a -≤≤-;④422abc ++<; 其中正确的结论是A .①③④B .①②③C .①②④D .①②③④二、填空题:本大题6个小题,每小题4分,共24分,把答案填写在答题卡相应的位置上. 13.二次函数()252y x =--+的最大值是 .14.若一元二次方程260x mx ++=的一个根为2x =,则m = .15.如图,A 、B 、C 为⊙O 上三点,且∠ACB=35°,则∠OAB 的度数是_______度.16.如图,在边长为的等边三角形ABC 中,以点A 为圆心的圆与边BC 相切,与边AB 、AC 相交于点D 、E ,则图中阴影部分的面积为 .17.有五张正面分别标有数字3的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使关于x 的分式方程11222ax x x-+=--有整数解的概率是 .18.如图,菱形OABC 在直角坐标系中,点A 的坐标为(52,0),对角线OB =反比例函数xky =(0k ≠,0x >)经过点C .则k 的值为 . 三、解答题:本大题2个小题,共14分,解答时应写出必要的文字说明、演算步骤或推理过程,并答在答题卡相应的位置上.19.解方程:23520x x --=20.如图,AB 是⊙O 的直径,D 是⊙O 上一点,过点D 作⊙O 的切线交AB 的延长线于点C ,若∠C=20°,求∠A 的度数。

九年级数学上学期期末试卷(含解析) 新人教版7 (2)

九年级数学上学期期末试卷(含解析) 新人教版7 (2)

重庆市大成中学2015-2016学年九年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题4分,共48分)1.反比例函数的图象经过点A(﹣1,3),则k的值为()A.k=3 B.k=﹣3 C.k=6 D.k=﹣62.如图图形既是轴对称图形又是中心对称图形的是()A. B. C. D.3.一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=24.二次函数y=(x+2)2﹣1的图象的对称轴为()A.x=2 B.x=﹣2 C.x=1 D.x=﹣15.如图,在△ABC中,DE∥BC,AE=2,CE=3,DE=4,则BC=()A.6 B.10 C.5 D.86.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=30°,则∠OCB的度数为()A.30° B.60° C.50° D.40°7.正六边形的边心距为,这个正六边形的面积为()A. B. C. D.128.用一个圆心角为90°,半径为4的扇形作一个圆锥的侧面,则圆锥的高为()A. B. C. D.9.如图,△ABC的三个顶点都在方格纸的格点上,其中点A的坐标是(﹣1,0).现将△ABC绕点A顺时针旋转90°,则旋转后点C的坐标是()A.(2,1) B.(1,2) C.(﹣2,﹣1) D.(﹣1,﹣2)10.已知关于x的一元二次方程(m﹣1)x2﹣2mx+m+1=0的两个根都是正整数,则整数m的值是()A.2 B.3 C.2或3 D.1或2或311.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A. B. C. D.12.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.﹣4 B.4 C.﹣2 D.2二、填空题(本大题6个小题,每小题4分,共24分)13.两个相似三角形的周长的比为,它们的面积的比为______.14.如图,△ABC的顶点A,B,C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是______.15.已知点A在反比例函数的图象上,AB⊥y轴,点C在x轴上,S△ABC=2,则反比例函数的解析式为______.16.从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是______.17.如图,已知A(,2)、B(,1),将△AOB绕着点O逆时针旋转,使点A旋转到点A′(﹣2,2)的位置,则图中阴影部分的面积为______.18.如图,若四边形ABCD、四边形GFED都是正方形,AD=4,,当正方形GFED绕D旋转到如图的位置,点F在边AD上,延长CE交AG于H,交AD于M.则CM的长为______.三、解答题:(本大题2个小题,每小题7分,共14分)19.已知关于x的一元二次方程x2+4x﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)请你在﹣5,﹣4,﹣3,1,2,3中选择一个数作为k的值,使方程有两个整数根,并求出方程的两个整数根.20.如图,从一个建筑物的A处测得对面楼BC的顶部B的仰角为32°,底部C的俯角为45°,观测点与楼的水平距离AD为31m,楼BC的高度大约为多少?(结果取整数).(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)四、解答题:(本大题4个小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.(10分)(2015秋•重庆校级期末)化简并求值:,其中x是方程x2+2x﹣4=0的解.22.(10分)(2015秋•重庆校级期末)定义新运算:对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4.(1)填空:Max{﹣2,﹣4}=______;(2)按照这个规定,解方程.23.(10分)(2015秋•重庆校级期末)寒假期间,一些同学将要到A,B,C,D四个地方参加冬令营活动,现从这些同学中随机调查了一部分同学.根据调查结果,绘制成了如下两幅统计图:(1)扇形A的圆心角的度数为______,若此次冬令营一共有320名学生参加,则前往C地的学生约有______人,并将条形统计图补充完整;(2)若某姐弟两人中只能有一人参加,姐弟俩决定用一个游戏来确定参加者:在4张形状、大小完全相同的卡片上分别写上﹣1,1,2,3四个整数,先让姐姐随机地抽取一张,再由弟弟从余下的三张卡片中随机地抽取一张.若抽取的两张卡片上的数字之和小于3则姐姐参加,否则弟弟参加.用列表法或树状图分析这种方法对姐弟俩是否公平?24.(10分)(2015•舟山)如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=.(1)求k的值.(2)求点B的坐标.(3)设点P(m,0),使△PAB的面积为2,求m的值.五、解答题:(本大题2个小题,每小题12分,共24分)25.(12分)(2015秋•重庆校级期末)如图,△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,连AD,BE,F为线段AD的中点,连接CF(1)如图1,当D点在BC上时,求证:①BE=2CF,②BE⊥CF.(2)如图2,把△DEC绕C点顺时针旋转一个锐角,其他条件不变,问(1)中的关系是否仍然成立?如果成立请证明.如果不成立,请写出相应的正确的结论并加以证明.26.(12分)(2015秋•重庆校级期末)如图,抛物线y=ax2+c(a≠0)与y轴交于点A,与x轴交于点B,C两点(点C在x轴正半轴上),△ABC为等腰直角三角形,且面积为4.现将抛物线沿BA方向平移,平移后的抛物线经过点C时,与x轴的另一交点为E,其顶点为F,对称轴与x轴的交点为H.(1)求a,c的值;(2)连结OF,试判断△OEF是否为等腰三角形,并说明理由;(3)现将一足够大的三角板的直角顶点Q放在射线AF或射线HF上,一直角边始终过点E,另一直角边与轴相交于点P,是否存在这样的点Q,使以点P,Q,E为顶点的三角形与△POE 全等?若存在,直接写出点Q的坐标;若不存在,请说明理由.2015-2016学年重庆市大成中学九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分)1.反比例函数的图象经过点A(﹣1,3),则k的值为()A.k=3 B.k=﹣3 C.k=6 D.k=﹣6【考点】反比例函数图象上点的坐标特征.【分析】直接把点A(﹣1,3)代入反比例函数,求出k的值即可.【解答】解:∵反比例函数y=的图象经过点A(﹣1,3),∴k=(﹣1)×3=﹣3.故选B.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2.如图图形既是轴对称图形又是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】结合选项根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A、是轴对称图形,也是中心对称图形;B、不轴对称图形,也不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选A.【点评】本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.3.一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=2【考点】解一元二次方程-因式分解法.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选D.【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.4.二次函数y=(x+2)2﹣1的图象的对称轴为()A.x=2 B.x=﹣2 C.x=1 D.x=﹣1【考点】二次函数的性质.【分析】根据顶点式直接写出其对称轴即可.【解答】解:∵二次函数y=(x+2)2﹣1,是顶点式,∴对称轴为:x=﹣2.故选B.【点评】本题考查了二次函数的性质,比较简单,牢记顶点式是解题的关键.5.如图,在△ABC中,DE∥BC,AE=2,CE=3,DE=4,则BC=()A.6 B.10 C.5 D.8【考点】平行线分线段成比例.【分析】由在△ABC中,DE∥BC,可得△ADE∽△ABC,然后由相似三角形的对应边成比例,求得答案.【解答】解:∵在△ABC中,DE∥BC,∴△ADE∽△ABC,∴=,∵AE=2,CE=3,DE=4,∴AC=AE+CE=5,∴=,解得:BC=10.故选B.【点评】此题考查了相似三角形的判定与性质.注意证得△ADE∽△ABC是解此题的关键.6.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=30°,则∠OCB的度数为()A.30° B.60° C.50° D.40°【考点】切线的性质.【分析】根据切线性质得出∠OBA=90°,求出∠O=60°,证出△OBC是等边三角形,即可得出结果.【解答】解:∵AB是⊙O的切线,B为切点,∴∠OBA=90°,∵∠BAO=30°,∴∠O=60°,∵OB=OC,∴△OBC是等边三角形,∴∠OCB=60°,故选:B.【点评】本题考查了切线的性质、等边三角形的判定与性质;熟练掌握切线的性质,证明三角形是等边三角形是解决问题的关键.7.正六边形的边心距为,这个正六边形的面积为()A. B. C. D.12【考点】正多边形和圆.【分析】根据正六边形的特点,通过中心作边的垂线,连接半径,结合解直角三角形的有关知识解决.【解答】解:如图,连接OA、OB;过点O作OG⊥AB于点G.在Rt△AOG中,OG=,∠AOG=30°,∵OG=OA•cos 30°,∴OA===2,∴这个正六边形的面积=6S△OAB=6××2×=6.故选C.【点评】此题主要考查正多边形和圆,根据题意画出图形,再根据正多边形的性质及锐角三角函数的定义解答即可.8.用一个圆心角为90°,半径为4的扇形作一个圆锥的侧面,则圆锥的高为()A. B. C. D.【考点】圆锥的计算.【分析】设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后求出r后利用勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,所以圆锥的高==.故选B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9.如图,△ABC的三个顶点都在方格纸的格点上,其中点A的坐标是(﹣1,0).现将△ABC绕点A顺时针旋转90°,则旋转后点C的坐标是()A.(2,1) B.(1,2) C.(﹣2,﹣1) D.(﹣1,﹣2)【考点】坐标与图形变化-旋转.【分析】利用网格特点和旋转的性质画出△ABC绕点A顺时针旋转90°后的图形,然后写出旋转后点C的坐标.【解答】解:如图,△ABC绕点A顺时针旋转90°得到△AB′C′,旋转后点C的坐标为(2,1).【点评】本题考查了坐标与图形变换﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.10.已知关于x的一元二次方程(m﹣1)x2﹣2mx+m+1=0的两个根都是正整数,则整数m的值是()A.2 B.3 C.2或3 D.1或2或3【考点】根的判别式.【分析】利用公式法求出方程的两个根,再根据方程的两个实数根都为正整数,即可求出m 的值.【解答】解:∵△=(﹣2m)2﹣4(m+1)(m﹣1)=4>0,m﹣1≠0,∴x1===1+,x2==1,∵方程的两个实数根都为正整数,且m>1,∴是正整数,∴m=2或m=3,故选:C.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A. B. C. D.【考点】相似三角形的判定与性质.【分析】证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC,得到=,借助相似三角形的性质即可解决问题.【解答】解:∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴=,∴S△DOE:S△AOC==,故选D.【点评】本题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用形似三角形的判定及其性质来分析、判断、推理或解答.12.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.﹣4 B.4 C.﹣2 D.2【考点】反比例函数图象上点的坐标特征;相似三角形的判定与性质.【分析】要求函数的解析式只要求出B点的坐标就可以,过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,得到: ===2,然后用待定系数法即可.【解答】解:过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.设点A的坐标是(m,n),则AC=n,OC=m,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC,∵∠BDO=∠ACO=90°,∴△BDO∽△OCA,∴==,∵OB=2OA,∴BD=2m,OD=2n,因为点A在反比例函数y=的图象上,则mn=1,∵点B在反比例函数y=的图象上,B点的坐标是(﹣2n,2m),∴k=﹣2n•2m=﹣4mn=﹣4.故选A.【点评】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.二、填空题(本大题6个小题,每小题4分,共24分)13.两个相似三角形的周长的比为,它们的面积的比为4:9 .【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比求出相似比,再根据相似三角形面积的比等于相似比的平方求解即可.【解答】解:∵两个相似三角形的周长比为,∴这两个相似三角形的相似比为2:3,∴它们的面积比是4:9.故答案为:4:9.【点评】本题考查了相似三角形的性质,是基础题,熟记性质是解题的关键.14.如图,△ABC的顶点A,B,C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是60°.【考点】圆周角定理.【分析】先根据圆周角定理得到∠ABC=∠AOC,由于∠ABC+∠AOC=90°,所以∠AOC+∠AOC=90°,然后解方程即可.【解答】解:∵∠ABC=∠AOC,而∠ABC+∠AOC=90°,∴∠AOC+∠AOC=90°,∴∠AOC=60°.故答案为:60°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.15.已知点A在反比例函数的图象上,AB⊥y轴,点C在x轴上,S△ABC=2,则反比例函数的解析式为y=﹣.【考点】待定系数法求反比例函数解析式;反比例函数系数k的几何意义.【分析】先根据反比例函数的图象在第二象限判断出k的符号,再由S△ABC=2得出AB•OB的值,进而可得出结论.【解答】解:∵反比例函数的图象在第二象限,∴k<0.∵S△ABC=2,∴AB•OB=2,∴AB•OB=4,∴k=﹣4,即反比例函数的解析式为y=﹣.故答案为:y=﹣.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16.从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是.【考点】列表法与树状图法.【分析】根据题意可以写出所有的可能性,然后将所有的可能性代入方程组和双曲线,找出符号要求的可能性,从而可以解答本题.【解答】解:从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,则(a,b)的所有可能性是:(﹣3,﹣1)、(﹣3,0)、(﹣3,1)、(﹣3,3)、(﹣1,﹣3)、(﹣1,0)、(﹣1,1)、(﹣1,3)、(0,﹣3)、(0,﹣1)、(0,1)、(0,3)、(1,﹣3)、(1,﹣1)、(1,0)、(1,3)、(3,﹣3)、(3,﹣1)、(3,0)、(3,1),将上面所有的可能性分别代入关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的是:(﹣3,1),(﹣1,3),(3,﹣1),故恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是:,故答案为:.【点评】本题考查列表法与树状图法,解题的关键是明确题意,写出所有的可能性.17.如图,已知A(,2)、B(,1),将△AOB绕着点O逆时针旋转,使点A旋转到点A′(﹣2,2)的位置,则图中阴影部分的面积为.【考点】旋转的性质;扇形面积的计算.【分析】由A(2,2)旋转到点A′(﹣2,2),易得旋转角为105°,求出OA和OB,根据旋转的性质可得,阴影部分的面积等于S扇形A'OA﹣S扇形C'OC,从而求出答案.【解答】解:(1)∵A(,2)、A′(﹣2,2),∴∠A′OA=45°+60°=105°,∵将△AOB绕着点O逆时针旋转,使点A(2,2)旋转到点A′(﹣2,2)的位置,B旋转到点B′位置,∴∠A′OA=∠B′OB=105°,∵B(2,1),A′(﹣2,2),∴B′点坐标为(﹣2+1,2);(2)如图,设交OA′于C′,∵A(2,2)、B(2,1),∴OA=4,OC=OB=.根据旋转的性质可得,S△OB′C′=S△OBC,∴阴影部分的面积=S扇形A'OA﹣S扇形C'OC=﹣=π,故答案为:π.【点评】此题主要考查了扇形的面积计算及旋转的性质,解答本题的关键是根据旋转的性质得出S OB′C′=S OBC,从而得到阴影部分的表达式.18.如图,若四边形ABCD、四边形GFED都是正方形,AD=4,,当正方形GFED绕D旋转到如图的位置,点F在边AD上,延长CE交AG于H,交AD于M.则CM的长为.【考点】旋转的性质;勾股定理的应用;正方形的性质;平行线分线段成比例.【分析】先过点E作EQ⊥CD于Q,构造等腰直角三角形DEG,并求得其直角边长,再根据EQ∥MD,运用平行线分线段成比例定理,求得MD的长,最后在直角三角形CDM中根据勾股定理求得斜边CM的长.【解答】解:过点E作EQ⊥CD于Q,则∠EQD=90°,∵正方形DEFG中∠EDF=45°,正方形ABCD中∠ADC=90°,∴∠EDQ=90°﹣45°=45°,∴△DEQ是等腰直角三角形,∵DE=,∴EQ=DQ=1,又∵AD=4=CD,∴CQ=4﹣1=3,∵EQ∥MD,∴=,即=,∴DM=,∴直角三角形CDM中,CM==.故答案为:【点评】本题以图形旋转为背景,考查了正方形的性质以及勾股定理,解决问题的关键是作辅助线,运用平行线分线段成比例定理进行求解.三、解答题:(本大题2个小题,每小题7分,共14分)19.已知关于x的一元二次方程x2+4x﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)请你在﹣5,﹣4,﹣3,1,2,3中选择一个数作为k的值,使方程有两个整数根,并求出方程的两个整数根.【考点】根的判别式.【分析】(1)根据方程有两个不等实根结合根的判别式,可得出关于k的一元一次不等式,解不等式即可得出k的取值范围;(2)结合(1)的结论,找出k的值,并验证k为这些数时,何时方程的两根为整数,由此即可得出结论.【解答】解:(1)∵方程x2+4x﹣k=0有两个不相等的实数根,∴△=42﹣4×1×(﹣k)=16+4k>0,解得:k>﹣4,∴k的取值范围为k>﹣4;(2)当k=﹣3时,△=16+4k=4,原方程为x2+4x+3=(x+1)(x+3)=0,解得:x=﹣1或x=﹣3;当k=1时,△=16+4k=20,不是整数;当k=2时,△=16+4k=24,不是整数;当k=3时,△=16+4k=28,不是整数.∴当取k=﹣3时,方程的两个整数根为﹣1或﹣3.【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是:(1)找出△=16+4k >0;(2)验证k为何值时,方程有两个整数根.本题属于中档题,难度不大,解决该题型题目时,根据方程根的个数结合根的判别式得出不等式是关键.20.如图,从一个建筑物的A处测得对面楼BC的顶部B的仰角为32°,底部C的俯角为45°,观测点与楼的水平距离AD为31m,楼BC的高度大约为多少?(结果取整数).(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)【考点】解直角三角形的应用-仰角俯角问题.【分析】在Rt△ABD中,根据正切函数求得BD=AD•tan32°=31×0.6=18.6,在Rt△ACD中,求得CD=AD=31,再根据BC=BD+CD,代入数据计算即可.【解答】解:在Rt△ABD中,∵AD=31,∠BAD=32°,∴BD=AD•tan32°≈31×0.6=18.6,在Rt△ACD中,∵∠DAC=45°,∴CD=AD=31,∴BC=BD+CD=18.6+31≈50.故楼BC的高度大约为50m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题.此题难度适中,注意能借助仰角或俯角构造直角三角形并解直角三角形是解此题的关键.四、解答题:(本大题4个小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.(10分)(2015秋•重庆校级期末)化简并求值:,其中x是方程x2+2x﹣4=0的解.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再根据x是方程x2+2x﹣4=0的解得出x2+2x=4,再代入原式进行计算即可.【解答】解:原式=﹣÷=﹣•=﹣==,∵x2+2x﹣4=0,∴x2+2x=4,∴原式=.【点评】本题考查的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.22.(10分)(2015秋•重庆校级期末)定义新运算:对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4.(1)填空:Max{﹣2,﹣4}= ﹣2 ;(2)按照这个规定,解方程.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)根据新定义直接作出判断;(2)分x>0和x<0两种情况分析,利用公式法解一元二次方程即可.【解答】解:(1)根据定义可知:Max{﹣2,﹣4}=﹣2;故答案为﹣2;(2)当x>0时,有=x,解得x=,x=(舍去),x<0时,有=﹣x,解得,x=﹣1,x=2(舍去).【点评】此题主要考查了一元二次方程的解法,解题的关键是掌握新定义以及掌握因式分解法以及公式法解方程的方法步骤,掌握降次的方法,把二次化为一次,再解一元一次方程.23.(10分)(2015秋•重庆校级期末)寒假期间,一些同学将要到A,B,C,D四个地方参加冬令营活动,现从这些同学中随机调查了一部分同学.根据调查结果,绘制成了如下两幅统计图:(1)扇形A的圆心角的度数为108°,若此次冬令营一共有320名学生参加,则前往C 地的学生约有64 人,并将条形统计图补充完整;(2)若某姐弟两人中只能有一人参加,姐弟俩决定用一个游戏来确定参加者:在4张形状、大小完全相同的卡片上分别写上﹣1,1,2,3四个整数,先让姐姐随机地抽取一张,再由弟弟从余下的三张卡片中随机地抽取一张.若抽取的两张卡片上的数字之和小于3则姐姐参加,否则弟弟参加.用列表法或树状图分析这种方法对姐弟俩是否公平?【考点】游戏公平性;用样本估计总体;扇形统计图;条形统计图;列表法与树状图法.【分析】(1)根据两个统计图中的数据求出调查的总人数,进而确定出A的圆心角度数,利用样本与总体之间的关系求出C的学生数,补全条形统计图即可;(2)列表得出所有等可能的情况数,找出数字之和小于3与数字之和大于等于3的情况数,求出姐弟两人参加的概率,比较即可得到结果.【解答】解:(1)由题意得:(30+20+10)÷(1﹣40%)=100(人),则扇形A的圆心角的度数为×360°=108°;此次冬令营一共有320名学生参加,则前往C地的学生约有:×320=64(人);B营地的人数是:100×40%=40(人),补全条形统计图,如图所示;故答案为:108;64;(2)根据题意列表如下:﹣1123﹣1﹣﹣﹣(1,﹣1)(2,﹣1)(3,﹣1)1(﹣1,1)﹣﹣﹣(2,1)(3,1)2(﹣1,2)(1,2)﹣﹣﹣(3,2)3(﹣1,3)(1,3)(2,3)﹣﹣﹣所有等可能的情况有12种,其中抽取的两张卡片上的数字之和小于3的情况有6种,∴P(数字之和小于3)=P(数字之和大于等于3)==,则此游戏公平.【点评】此题考查了游戏得公平性,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.24.(10分)(2015•舟山)如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=.(1)求k的值.(2)求点B的坐标.(3)设点P(m,0),使△PAB的面积为2,求m的值.【考点】反比例函数与一次函数的交点问题.【分析】(1)把点A(1,a)代入y=2x,求出a=2,再把A(1,2)代入y=,即可求出k 的值;(2)过B作BC⊥x轴于点C.在Rt△BOC中,由tanα=,可设B(2h,h).将B(2h,h)代入y=,求出h的值,即可得到点B的坐标;(3)由A(1,2),B(2,1),利用待定系数法求出直线AB的解析式为y=﹣x+3,那么直线AB与x轴交点D的坐标为(3,0).根据△PAB的面积为2列出方程|3﹣m|×(2﹣1)=2,解方程即可求出m的值.【解答】解:(1)把点A(1,a)代入y=2x,得a=2,则A(1,2).把A(1,2)代入y=,得k=1×2=2;(2)过B作BC⊥x轴于点C.∵在Rt△BOC中,tanα=,∴可设B(2h,h).∵B(2h,h)在反比例函数y=的图象上,∴2h2=2,解得h=±1,∵h>0,∴h=1,∴B(2,1);(3)∵A(1,2),B(2,1),∴直线AB的解析式为y=﹣x+3,设直线AB与x轴交于点D,则D(3,0).∵S△PAB=S△PAD﹣S△PBD=2,点P(m,0),∴|3﹣m|×(2﹣1)=2,解得m1=﹣1,m2=7.【点评】本题考查了反比例函数与一次函数的交点问题,一次函数、反比例函数图象上点的坐标特征,利用待定系数法求反比例函数与一次函数的解析式,正切函数的定义,三角形的面积,难度适中,利用数形结合是解题的关键.五、解答题:(本大题2个小题,每小题12分,共24分)25.(12分)(2015秋•重庆校级期末)如图,△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,连AD,BE,F为线段AD的中点,连接CF(1)如图1,当D点在BC上时,求证:①BE=2CF,②BE⊥CF.(2)如图2,把△DEC绕C点顺时针旋转一个锐角,其他条件不变,问(1)中的关系是否仍然成立?如果成立请证明.如果不成立,请写出相应的正确的结论并加以证明.【考点】三角形综合题.【分析】(1)①由条件可证明Rt△ADC≌Rt△BEC,可证得BE=AD,再利用直角三角形的性质可证明BE=2CF;②由直角三角形的性质可得CF=DF,可证明∠FCD=∠ADC,可证得∠EBC+∠FCD=90°,可证明结论;(2)延长CF到M,使FM=FC,连接AM,DM,可证明四边形ACDM为平行四边形,进一步可证明△MAC≌△ECB,则可得MC=BE,可证得BE=2CF,再结合∠ACB=90°,可证明BE⊥CF.【解答】(1)证明:①∵△ABC和△DEC都是等腰直角三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=90°,在△BCE和△ACD中∴△BCE≌△ACD(SAS),∴BE=AD,∠EBC=∠DAC,∵F为线段AD的中点,∴CF=AF=DF=AD∴BE=2CF;②∵AF=CF,∴∠DAC=∠FCA,∵∠BCF+∠ACF=90°,∴∠BCF+∠EBC=90°,即BE⊥CF;(2)旋转一个锐角后,(1)中的关系依然成立.证明:如图2,延长CF到M,使FM=FC,连接AM,DM,又AF=DF,∴四边形AMDC为平行四边形∴AM=CD=CE,∠MAC=180°﹣∠ACD,∠BCE=∠BCA+∠DCE﹣∠ACD=180°﹣∠ACD,即∠MAC=∠BCE,在△MAC和△ECB中∴△MAC≌△ECB(SAS),∴CM=BE;∠ACM=∠CBE,∴BE=CM=2CF;∴∠CBE+∠BCM=∠ACM+∠BCM=90°,即BE⊥CF.【点评】本题主要考查三角形的综合应用,涉及知识点有等腰三角形、直角三角形的性质、全等三角形的判定和性质、平行四边形的判定和性质等.在(1)中注意直角三角形斜边上的中线等于斜边的一半,在(2)中构造三角形全等是解题的关键.本题知识点较多,但是思路清晰,难度不大,属于基础题.26.(12分)(2015秋•重庆校级期末)如图,抛物线y=ax2+c(a≠0)与y轴交于点A,与x轴交于点B,C两点(点C在x轴正半轴上),△ABC为等腰直角三角形,且面积为4.现将抛物线沿BA方向平移,平移后的抛物线经过点C时,与x轴的另一交点为E,其顶点为F,对称轴与x轴的交点为H.(1)求a,c的值;(2)连结OF,试判断△OEF是否为等腰三角形,并说明理由;(3)现将一足够大的三角板的直角顶点Q放在射线AF或射线HF上,一直角边始终过点E,另一直角边与轴相交于点P,是否存在这样的点Q,使以点P,Q,E为顶点的三角形与△POE 全等?若存在,直接写出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由△ABC为等腰直角三角形,且面积为4,易求得OA的长,即可求得点A,B,C的坐标,然后由待定系数法求得答案;(2)首先求得直线AB的函数表达式,设顶点F的坐标为(m,m+2),由抛物线过点C (2,0),可求得平移后的抛物线函数表达式,继而求得点E的坐标,即可判定△OEF是等腰三角形;(3)分别情形一:从点Q在射线HF上,当点P在x轴上方时或当点P在x轴下方时,以及情形二:点Q在射线AF上,去分析求解即可求得答案.【解答】解:(1)∵△ABC为等腰直角三角形,∴OA=BC.又∵△ABC的面积=BC×OA=4,即OA2=4,∴OA=2.∴A(0,2),B(﹣2,0),C(2,0).∴,解得:.(2)△OEF是等腰三角形.理由如下:如答图1,∵A (0,2)),B (﹣2,0),∴直线AB的函数表达式为:y=x+2,又∵平移后的抛物线顶点F在射线BA上,∴设顶点F的坐标为(m,m+2).∴平移后的抛物线函数表达式为:y=﹣(x﹣m)2+m+2.∵抛物线过点C (2,0),∴﹣(x﹣m)2+m+2=0,解得m1=0,m2=6.∴平移后的抛物线函数表达式为:y=﹣(x﹣6)2+8,即y=﹣x2+6x﹣10.当y=0时,﹣ x2+6x﹣10=0,解得x1=2,x2=10.∴E(10,0),OE=10.又∵F(6,8),OH=6,FH=8.∴OF===10,∴OE=OF,即△OEF为等腰三角形.。

人教版2015-2016年度九年级数学上学期期末考试试卷及答案

人教版2015-2016年度九年级数学上学期期末考试试卷及答案

人教版2015-2016年度九年级数学上学期期末考试试卷及答案时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题3分,共30分) 1.(2013?内江)若抛物线y=x 2﹣2x+c 与y 轴的交点为(0,﹣3),则下列说法2.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等 于( ) A .1B .2C .1或2D .03.三角形的两边长分别为3和6,第三边的长是方程2680x x -+=的一个根,则这个三角形的周长是( )A.9 B.11 C.13 D 、144.(2015?兰州)下列函数解析式中,一定为二次函数的是( )A . y =3x ﹣1B . y =ax 2+bx +cC . s =2t 2﹣2t +1D . y =x 2+5.(2010 内蒙古包头)关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( )A .1B .12C .13D .256.(2013?荆门)在平面直角坐标系中,线段OP 的两个端点坐标分别是O (0,0),P (4,3),将线段OP 绕点O 逆时针旋转90°到OP ′位置,则点P ′的坐标为( )它完全相同。

小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( )A .6B .16C .18D .248.如图,四边形ABCD 内接于⊙O ,BC 是直径,AD =DC ,∠ADB =20o ,则∠ACB ,∠DBC 分别 为( )A .15o 与30oB .20o 与35oC .20o 与40oD .30o 与35o9.如图所示,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向行走,走到场地边缘B 后,再沿着与半径OB 夹角为α的方向行走。

重庆市一中九年级数学上学期期末考试试题(含解析) 新人教版

重庆市一中九年级数学上学期期末考试试题(含解析) 新人教版

重庆市一中2016届九年级数学上学期期末考试试题一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.﹣3的倒数是()A.3 B.﹣3 C.D.2.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.3.下列因式分解中,正确的是()A.ax2﹣ax=x(ax﹣a)B.a2b2+ab2c+b2=b2(a2+ac+1)C.x2﹣y2=(x﹣y)2D.x2﹣5x﹣6=(x﹣2)(x﹣3)4.如图,直线AB∥CD,直线EF分别交直线AB、CD于点E、F,EG平分∠AEF交CD于点G.若∠1=36°,则∠2的大小是()A.72° B.67° C.70° D.68°5.分式方程的解为()A.1 B.2 C.3 D.46.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A. B. C.D.7.如图,在△ABC中,AB=AC=13,AD为BC边上的中线,BC=10,DE⊥AC于点E,则tan∠CDE 的值等于()A.B.C.D.8.重庆一中初三年级某班10名同学的一次体考成绩如下表,则下列说法错误的是()成绩(分)39 42 44 45 48 50人数 1 2 1 2 1 3A.这10名同学的平均成绩为45.5B.这10名同学成绩的中位数是45C.这10名同学成绩的众数为50D.这10名同学成绩的极差为29.如图,在直角三角形△ABC中,∠BAC=90°,点E是斜边BC的中点,⊙O经过A、C、E 三点,F是弧EC上的一个点,且∠AFC=36°,则∠B=()A.20° B.32° C.54° D.18°10.清明节假期的某天,小米骑车从家出发前往革命烈士陵园扫墓,行驶一段时间后,因车子出现问题,途中耽搁了一段时间,车子修好后,加速前行,到达烈士陵园扫完墓后匀速骑车回家.其中x表示小米从家出发后的时间,y表示小米离家的距离,下面能反映y与x的函数关系的大致图象是()A.B.C.D.11.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成,每个围成的正方形面积为1cm2:第1个图案面积为2cm2,第2个图案面积为4cm2,第3个图案面积为7cm2…,依此规律,第8个图案面积为()cm2.A.35 B.36 C.37 D.3812.如图,在△AOB中,∠BOA=90°,∠BOA的两边分别与函数、的图象交于B、A两点,若,则AO的值为()A. B.2 C.D.二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为440000万人,数440000用科学记数法表示为.14.若一个代数式a2﹣2a﹣2的值为3,则3a2﹣6a的值为.15.如图,点P是平行四边形ABCD中边AB上的一点,射线CP交DA的延长线于点E,若,则= .16.如图,AB是⊙O的直径,弦CD交AB于点E,且E为OB的中点,∠CDB=30°,CD=6,则阴影部分的面积为.17.从﹣3,﹣2,﹣1,0,1,2,3这七个数中,随机取出一个数,记为a,那么a使关于x的方程有整数解,且使关于x的不等式组有解的概率为.18.如图,在△ABE中∠AEB=90°,AB=,以AB为边在△ABE的同侧作正方形ABCD,点O为AC与BD的交点,连接OE,OE=2,点P为AB上一点,将△APE沿直线PE翻折得到△GPE,若PG⊥BE于点F,则BF= .三、解答题:(本大题2个小题,每小题7分,共14分)解答题时每小题必须给出必要的演算过程,请将解答过程书写在答题卡中对应的位置上.19.计算(π﹣3)0﹣|﹣5|++4sin60°.20.化简:.四、解答题:(本大题4个小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.我市准备举办大型全民运动会,运动会开幕前某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用72000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了20元.(1)该商场两次购进这种运动服共多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套运动服的售价至少是多少元?(利润率=)22.将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A 组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.23.2016年1月6日,我国南沙永暑礁新建港口、机场完成试航试飞,将为岛礁物资运输、人员往来、通信导航、救援补给提供便捷支持,使航行和飞行更为安全可靠.如图所示,永暑礁新建港口在A处,位于港口A的正西方的有一小岛B,小岛C在小岛B的北偏东60°方向,小岛C在A的北偏西45°方向;小岛D在小岛B的北偏东38°方向且满足∠BCD=37°,港口A和小岛C的距离是23km.(参考数据:sin38°≈,tan22°≈,tan37°≈)(1)求BC的距离.(2)求CD的距离.24.我们知道平方运算和开方运算是互逆运算,如:a2±2ab+b2=(a±b)2,那么,那么如何将双重二次根式化简呢?如能找到两个数m,n(m>0,n>0),使得即m+n=a,且使即m•n=b,那么∴,双重二次根式得以化简;例如化简:;∵3=1+2且2=1×2,∴∴由此对于任意一个二次根式只要可以将其化成的形式,且能找到m,n(m>0,n >0)使得m+n=a,且m•n=b,那么这个双重二次根式一定可以化简为一个二次根式.请同学们通过阅读上述材料,完成下列问题:(1)填空: = ;= ;(2)化简:①②(3)计算:.五、解答题:(本大题2个小题,每小题12分,共24分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上25.如图1,在等腰Rt△ACB中,∠ACB=90°,AC=BC;在等腰Rt△DCE中,∠DCE=90°,CD=CE;点D、E分别在边BC、AC上,连接AD、BE,点N是线段BE的中点,连接CN与AD 交于点G.(1)若CN=6.5,CE=5,求BD的值.(2)求证:CN⊥AD.(3)把等腰Rt△DCE绕点C转至如图2位置,点N是线段BE的中点,延长NC交AD于点H,请问(2)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由.26.已知如图:抛物线与x轴交于A,B两点(点A在点B的左侧)与y轴交于点C,点D为抛物线的顶点,过点D的对称轴交x轴于点E.(1)如图1,连接BD,试求出直线BD的解析式;(2)如图2,点P为抛物线第一象限上一动点,连接BP,CP,AC,当四边形PBAC的面积最大时,线段CP交BD于点F,求此时DF:BF的值;(3)如图3,已知点K(0,﹣2),连接BK,将△BOK沿着y轴上下平移(包括△BOK)在平移的过程中直线BK交x轴于点M,交y轴于点N,则在抛物线的对称轴上是否存在点G,使得△GMN是以MN为直角边的等腰直角三角形?若存在,请直接写出点G的坐标;若不存在,请说明理由.2015-2016学年重庆一中九年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.﹣3的倒数是()A.3 B.﹣3 C.D.【考点】倒数.【专题】常规题型.【分析】直接根据倒数的定义进行解答即可.【解答】解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选:D.【点评】本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选;B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.下列因式分解中,正确的是()A.ax2﹣ax=x(ax﹣a)B.a2b2+ab2c+b2=b2(a2+ac+1)C.x2﹣y2=(x﹣y)2D.x2﹣5x﹣6=(x﹣2)(x﹣3)【考点】因式分解-运用公式法;因式分解-提公因式法;因式分解-十字相乘法等.【专题】计算题;因式分解.【分析】原式各项分解得到结果,即可做出判断.【解答】解:A、原式=ax(x﹣1),错误;B、原式=b2(a2+ac+1),正确;C、原式=(x+y)(x﹣y),错误;D、原式=(x﹣6)(x+1),错误,故选B【点评】此题考查了因式分解﹣运用公式法,提公因式法,以及十字相乘法,熟练掌握因式分解的方法是解本题的关键.4.如图,直线AB∥CD,直线EF分别交直线AB、CD于点E、F,EG平分∠AEF交CD于点G.若∠1=36°,则∠2的大小是()A.72° B.67° C.70° D.68°【考点】平行线的性质.【分析】根据角平分线的性质可以求得∠3的度数,然后根据平行线的性质来求∠2的大小.【解答】解:如图,∵∠1=36°,∠1+∠AEF=180°,∴∠AEF=144°.又∵EG平分∠AEF,∴∠3=∠AEF=72°.∵AB∥CD,∴∠2=∠3=72°.故选:A.【点评】本题考查了平行线的性质.根据邻补角和角平分线的定义求得∠3的度数是解题的关键.5.分式方程的解为()A.1 B.2 C.3 D.4【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣4=x,解得:x=4,经检验x=4是分式方程的解.故选D【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.6.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A. B. C.D.【考点】二次函数的图象;一次函数的图象.【专题】数形结合.【分析】根据二次函数的性质首先排除B选项,再根据a、b的值的正负,结合二次函数和一次函数的性质逐个检验即可得出答案.【解答】解:根据题意可知二次函数y=ax2+bx的图象经过原点O(0,0),故B选项错误;当a<0时,二次函数y=ax2+bx的图象开口向下,一次函数y=ax+b的斜率a为负值,故D 选项错误;当a<0、b>0时,二次函数y=ax2+bx的对称轴x=﹣>0,一次函数y=ax+b与y轴的交点(0,b)应该在y轴正半轴,故C选项错误;当a>0、b<0时,二次函数y=ax2+bx的对称轴x=﹣>0,一次函数y=ax+b与y轴的交点(0,b)应该在y轴负半轴,故A选项正确.故选A.【点评】本题主要考查了二次函数的性质和一次函数的性质,做题时要注意数形结合思想的运用,同学们加强训练即可掌握,属于基础题.7.如图,在△ABC中,AB=AC=13,AD为BC边上的中线,BC=10,DE⊥AC于点E,则tan∠CDE 的值等于()A.B.C.D.【考点】解直角三角形;等腰三角形的性质.【分析】由△ABC中,AB=AC=13,AD为BC边上的中线,BC=10,利用等腰三角形三线合一的性质,可证得AD⊥BC,再利用勾股定理,求得AD的长,那么在直角△ACD中根据三角函数的定义求出tan∠CAD,然后根据同角的余角相等得出∠CDE=∠CAD,于是tan∠CDE=tan∠CAD.【解答】解:∵△ABC中,AB=AC=13,AD为BC边上的中线,BC=10,∴AD⊥BC,CD=BC=5,∴AD==12,∴tan∠CAD==.∵AD⊥BC,DE⊥AC,∴∠CDE+∠ADE=90°,∠CAD+∠ADE=90°,∴∠CDE=∠CAD,∴tan∠CDE=tan∠CAD=.故选A.【点评】此题考查了解直角三角形、等腰三角形的性质、勾股定理、锐角三角函数的定义以及余角的性质.此题难度适中,解题的关键是准确作出辅助线,注意数形结合思想的应用.8.重庆一中初三年级某班10名同学的一次体考成绩如下表,则下列说法错误的是()成绩(分)39 42 44 45 48 50人数 1 2 1 2 1 3A.这10名同学的平均成绩为45.5B.这10名同学成绩的中位数是45C.这10名同学成绩的众数为50D.这10名同学成绩的极差为2【考点】众数;加权平均数;中位数;极差.【分析】根据平均数、极差、中位数和众数的定义分别进行解答,即可求出答案.【解答】解:平均数=(39×1+42×2+44×1+45×2+48×1+50×3)÷10=45.5;∵共有10个数,∴中位数是第5个和6个数的平均数,∴中位数是(45+45)÷2=45;∵50出现了三次,出现的次数最多,∴众数是50;极差是:50﹣39=11;∴说法错误的是D.故选:D.【点评】此题考查了平均数、极差、中位数和众数,掌握平均数、极差、中位数和众数的定义是解题的关键.9.如图,在直角三角形△ABC中,∠BAC=90°,点E是斜边BC的中点,⊙O经过A、C、E 三点,F是弧EC上的一个点,且∠AFC=36°,则∠B=()A.20° B.32° C.54° D.18°【考点】圆周角定理.【分析】连接AE,根据圆周角定理可得出∠AEC的度数,再由直角三角形的性质得出AE=BE,根据三角形外角的性质即可得出结论.【解答】解:连接AE,∵∠AFC=36°,∴∠AEC=36°.∵点E是斜边BC的中点,∴AE=BE,∴∠B=∠BAE.∵∠AEC是△ABE的外角,∴∠AEC=∠B+∠BAE=2∠B=36°,∴∠B=18°.故选D.【点评】本题考查的是圆周角定理,根据题意作出辅助线,构造出圆周角是解答此题的关键.10.清明节假期的某天,小米骑车从家出发前往革命烈士陵园扫墓,行驶一段时间后,因车子出现问题,途中耽搁了一段时间,车子修好后,加速前行,到达烈士陵园扫完墓后匀速骑车回家.其中x表示小米从家出发后的时间,y表示小米离家的距离,下面能反映y与x的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】一开始是匀速行进,随着时间的增多,离家的距离也将由0匀速增加,停下来修车,距离不发生变化,后来加快了车速,距离又匀速增加,扫墓时,时间增加,路程不变,扫完墓后匀速骑车回家,离家的距离逐渐减少,由此即可求出答案.【解答】解:因为开始以正常速度匀速行驶﹣﹣﹣停下修车﹣﹣﹣加快速度匀驶﹣﹣﹣扫墓﹣﹣匀速骑车回家,故离家的距离先增加,再不变,后增加,再不变,最后减少.故选D.【点评】此题考查了学生从图象中读取信息的能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.11.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成,每个围成的正方形面积为1cm2:第1个图案面积为2cm2,第2个图案面积为4cm2,第3个图案面积为7cm2…,依此规律,第8个图案面积为()cm2.A.35 B.36 C.37 D.38【考点】规律型:图形的变化类.【分析】求出前4个图形中的所有正方形的面积,从而得到图案中面积的规律,再根据规律写出第n个图案中的面积即可.【解答】解:第1个图案面积为1+1=2cm2,第2个图案面积为1+2+1=4cm2,第3个图案面积为1+2+3+1=7cm2,第4个图案面积为1+2+3+4+1=11cm2,…∴第n个图案面积为1+2+3+4+…+n+1=n(n+1)+1cm2.∴第8个图案面积为1+2+3+4+5+6+7+8+1=37cm2.故选:C.【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.12.如图,在△AOB中,∠BOA=90°,∠BOA的两边分别与函数、的图象交于B、A两点,若,则AO的值为()A. B.2 C.D.【考点】反比例函数图象上点的坐标特征;相似三角形的判定与性质.【分析】过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,得到=()2=2,根据勾股定理得出OA2+OA2=6,即可求得OA.【解答】解:∵∠AOB=90°,∴∠AOC+∠BOD=∠AOC+∠CAO=90°,∠CAO=∠BOD,∴△ACO∽△BDO,∴=()2,∵S△AOC=×2=1,S△BOD=×1=,∴()2==2,∴OA2=2OB2,∵OA2+OB2=AB2,∴OA2+OA2=6,∴OA=2,故选B.【点评】本题考查了反比例函数y=,系数k的几何意义,相似三角形的判定和性质,勾股定理的应用,能够通过三角形系数找出OA和OB的关系是解题的关键.二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为440000万人,数440000用科学记数法表示为 4.4×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将440000用科学记数法表示为:4.4×105.故答案为:4.4×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.若一个代数式a2﹣2a﹣2的值为3,则3a2﹣6a的值为15 .【考点】代数式求值.【专题】计算题;实数.【分析】根据题意列出等式,求出a2﹣2a的值,原式变形后代入计算即可求出值.【解答】解:由a2﹣2a﹣2=3,得到a2﹣2a=5,则原式=3(a2﹣2a)=15,故答案为:15【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.如图,点P是平行四边形ABCD中边AB上的一点,射线CP交DA的延长线于点E,若,则= .【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由四边形ABCD是平行四边形,可证得△AEP∽△CBP,由,推得=,根据相似三角形的面积之比等于相似比的平方即可证得结论.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴△AEP∽△CBP,∵,∴,∴=,=()2=()2=.故答案为:.【点评】本题主要考查了平行四边形的性质,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解决问题的关键.16.如图,AB是⊙O的直径,弦CD交AB于点E,且E为OB的中点,∠CDB=30°,CD=6,则阴影部分的面积为12π.【考点】扇形面积的计算.【分析】根据题意得出△COB是等边三角形,进而得出CD⊥AB,再利用垂径定理以及锐角三角函数关系得出CO的长,进而结合扇形面积求出答案.【解答】解:连接BC,∵∠CDB=30°,∴∠COB=60°,∴∠AOC=120°,又∵CO=BO,∴△COB是等边三角形,∵E为OB的中点,∴CD⊥AB,∵CD=6,∴EC=3,∴sin60°×CO=3,解得:CO=6,故阴影部分的面积为:=12π.故答案为:12π.【点评】此题主要考查了垂径定理以及锐角三角函数和扇形面积求法等知识,正确得出CO 的长是解题关键.17.从﹣3,﹣2,﹣1,0,1,2,3这七个数中,随机取出一个数,记为a,那么a使关于x的方程有整数解,且使关于x的不等式组有解的概率为.【考点】概率公式;分式方程的解;解一元一次不等式组.【专题】计算题.【分析】先把分式方程化为整式方程得到(a﹣1)x=4,由于方程有整数解且x≠2,则a=﹣3,﹣1,0,2,3,再分别解两个不等式得到x>a﹣1和x≤2,由于不等式组有解,则a﹣1<2,解得a<3,于是使关于x的方程有整数解,且使关于x 的不等式组有解的a的值为﹣3,﹣1,0,2,然后根据概率公式求解.【解答】解:方程两边乘以x﹣2得ax﹣2(x﹣2)=﹣x,整理得(a﹣1)x=4,由于方程有整数解且x≠2,所以a=﹣3,﹣1,0,2,3,解x+1>a得x>a﹣1,解≥1得x≤2,由于不等式组有解,所以a﹣1<2,解得a<3,所以使关于x的方程有整数解,且使关于x的不等式组有解的a的值为﹣3,﹣1,0,2,所以使关于x的方程有整数解,且使关于x的不等式组有解的概率=.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了解分式方程和不等式组.18.如图,在△ABE中∠AEB=90°,AB=,以AB为边在△ABE的同侧作正方形ABCD,点O为AC与BD的交点,连接OE,OE=2,点P为AB上一点,将△APE沿直线PE翻折得到△GPE,若PG⊥BE于点F,则BF= 5﹣.【考点】翻折变换(折叠问题);全等三角形的判定与性质;正方形的性质.【分析】在BE上截取BM=AE,连接OM,OE,AC与BE交于点K,由△OAE≌△OBM得EO=OM,∠AOE=∠BOM,所以∠EOM=∠AOB=90°,得EM=OE,设AE=BM=a,在RT△ABE中,由AB2=AE2+BE2求出a,再证明AP=AE,利用即可求出BF.【解答】解:如图,在BE上截取BM=AE,连接OM,OE,AC与BE交于点K,∵四边形ABCD是正方形,∴AC⊥BD,AO=OB,∴∠AEB=∠AOB=90°,∴∠EAK+∠AKE=90°,∠BKO+∠OBM=90°,∵∠BKO=∠AKE,∴∠EAO=∠OBM,在△OAE和△OBM中,,∴△OAE≌△OBM,∴OE=OM,∠AOE=∠BOM,∴∠EOM=∠AOB=90°,∴EM=OE=4,设AE=BM=a,在RT△ABE中,∵AB2=AE2+BE2,∴26=a2+(a+4)2,∵a>0,∴a=1,∵△PEG是由△PEA翻折,∴PA=PG,∠APE=∠GPE,∵PG⊥EB,AE⊥EB,∴AE∥PG,∴∠AEP=∠GPE=∠APE,∴AP=AE=1,PB=,∴,∴,∴BF=5﹣.故答案为5﹣.【点评】本题考查正方形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质、翻折变换等知识,解题的关键是利用旋转的思想添加辅助线,构造全等三角形,属于中考填空题的压轴题.三、解答题:(本大题2个小题,每小题7分,共14分)解答题时每小题必须给出必要的演算过程,请将解答过程书写在答题卡中对应的位置上.19.计算(π﹣3)0﹣|﹣5|++4sin60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用零指数幂法则计算,第二项利用绝对值的代数意义化简,第三项利用立方根定义及负整数指数幂法则计算,第四项利用乘方的意义计算,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=1﹣5+3×9+1+2=29﹣5+2=24+2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.化简:.【考点】分式的混合运算.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=﹣x(x+1)=﹣x2﹣x.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.四、解答题:(本大题4个小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.我市准备举办大型全民运动会,运动会开幕前某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用72000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了20元.(1)该商场两次购进这种运动服共多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套运动服的售价至少是多少元?(利润率=)【考点】分式方程的应用.【分析】(1)求的是数量,总价明显,一定是根据单价来列等量关系,本题的关键描述语是:每套进价多了20元.等量关系为:第二批的每件进价﹣第一批的每件进价=20;(2)等量关系为:(总售价﹣总进价)÷总进价≥20%.【解答】解:(1)设商场第一次购进x套运动服,由题意得:﹣=20解这个方程,得x=200,经检验,x=200是所列方程的根,2x+x=2×200+200=600,所以商场两次共购进这种运动服600套;(2)设每套运动服的售价为y元,由题意得:≥20%,解这个不等式,得y≥208,所以每套运动服的售价至少是208元.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.注意利润率=×100%的应用.22.将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A 组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.【考点】列表法与树状图法;频数(率)分布直方图;扇形统计图;中位数.【分析】(1)根据题意可得:这部分男生共有:5÷10%=50(人);又由只有A组男人成绩不合格,可得:合格人数为:50﹣5=45(人);(2)由这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D 组有15人,E组有5人,可得:成绩的中位数落在C组;又由D组有15人,占15÷50=30%,即可求得:对应的圆心角为:360°×30%=108°;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他俩至少有1人被选中的情况,再利用概率公式即可求得答案.【解答】解:(1)∵A组占10%,有5人,∴这部分男生共有:5÷10%=50(人);∵只有A组男人成绩不合格,∴合格人数为:50﹣5=45(人);(2)∵C组占30%,共有人数:50×30%=15(人),B组有10人,D组有15人,∴这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,∴成绩的中位数落在C组;∵D组有15人,占15÷50=30%,∴对应的圆心角为:360°×30%=108°;(3)成绩优秀的男生在E组,含甲、乙两名男生,记其他三名男生为a,b,c,画树状图得:∵共有20种等可能的结果,他俩至少有1人被选中的有14种情况,∴他俩至少有1人被选中的概率为: =.【点评】此题考查了树状图法与列表法求概率以及直方图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.23.2016年1月6日,我国南沙永暑礁新建港口、机场完成试航试飞,将为岛礁物资运输、人员往来、通信导航、救援补给提供便捷支持,使航行和飞行更为安全可靠.如图所示,永暑礁新建港口在A处,位于港口A的正西方的有一小岛B,小岛C在小岛B的北偏东60°方向,小岛C在A的北偏西45°方向;小岛D在小岛B的北偏东38°方向且满足∠BCD=37°,港口A和小岛C的距离是23km.(参考数据:sin38°≈,tan22°≈,tan37°≈)(1)求BC的距离.(2)求CD的距离.【考点】解直角三角形的应用-方向角问题.【分析】(1)作CE⊥AB于E,根据正弦的定义求出CE的长,根据直角三角形的性质求出BC 的长;(2)作DF⊥BC于F,设DF=xkm,根据正切的定义用x表示出CF、BF,结合图形计算即可求出x的值,根据勾股定理计算即可.【解答】解:(1)作CE⊥AB于E,由题意得,∠CAE=45°,∠CBE=30°,∴AE=CE=AC•sin∠CAE=23×=23km,∴BC=2CE=46km,答:BC的距离为46km;(2)作DF⊥BC于F,设DF=xkm,∴CF==x,BF==x,则x+x=46,解得,x=12,∴DF=12,CF=16,由勾股定理得,CD==20km.答:CD的距离为20km.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确作出辅助线、熟记锐角三角函数的定义是解题的关键.24.我们知道平方运算和开方运算是互逆运算,如:a2±2ab+b2=(a±b)2,那么,那么如何将双重二次根式化简呢?如能找到两个数m,n(m>0,n>0),使得即m+n=a,且使即m•n=b,那么∴,双重二次根式得以化简;例如化简:;∵3=1+2且2=1×2,∴∴由此对于任意一个二次根式只要可以将其化成的形式,且能找到m,n(m>0,n >0)使得m+n=a,且m•n=b,那么这个双重二次根式一定可以化简为一个二次根式.请同学们通过阅读上述材料,完成下列问题:(1)填空: = ﹣;= +;(2)化简:①②(3)计算:.【考点】二次根式的性质与化简.【专题】阅读型.【分析】(1)直接利用已知例题进行配方化简即可;(2)①首先提取公因式,再进行配方化简即可;②首先提取公因式,再进行配方化简即可;(3)利用根号下部分乘2进而配方化简即可.【解答】解:(1)==﹣;==+;故答案为:﹣; +;。

重庆市九龙坡区六校2016届九年级上学期联考数学试卷【解析版】(10月份)

重庆市九龙坡区六校2016届九年级上学期联考数学试卷【解析版】(10月份)

2015-2016学年重庆市九龙坡区六校九年级(上)联考数学试卷(10月份)一、选择题:(本大题共12个小题,每小题4分,共48分)每小题只有一个答案是正确的,请将正确答案的代号填入下列对应题号内.1.下列方程一定是一元二次方程的是( )A.2x2﹣1=3x B.2x2﹣y=1 C.ax2+bx+c=0 D.2x2+=12.抛物线y=﹣x2+x+2与y轴的交点坐标是( )A.(1,2)B.(0,﹣1)C.(0,1)D.(0,2)3.今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是( ) A.2500x2=3500 B.2500(1+x)2=3500C.2500(1+x%)2=3500 D.2500(1+x)+2500(1+x)2=35004.把抛物线y=x2+4先向左平移1个单位,再向下平移3个单位,得到的抛物线的解析式为( )A.y=(x+1)2+1 B.y=(x﹣1)2+1 C.y=(x﹣1)2+7 D.y=(x+1)2+75.若关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,则2015﹣a﹣b的值是( ) A.2017 B.2018 C.2019 D.20206.已知﹣1是关于x的方程x2+4x﹣m=0的一个根,则这个方程的另一个根是( ) A.﹣3 B.﹣2 C.﹣1 D.37.已知抛物线y=ax2+bx+c与x轴交点为A(﹣2,0),B(6,0),则该二次函数的对称轴为( )A.x=﹣1 B.x=1 C.x=2 D.y轴8.已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣t2+20t+1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为( )A.3s B.4s C.5s D.6s9.已知二次函数y=3(x﹣1)2+k的图象上有三点A(0.5,y1),B(2,y2),C(﹣2,y3),则y1、y2、y3的大小关系为( )A.y1>y2>y3B.y3>y2>y1C.y3>y1>y2D.y2>y3>y110.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是( )A.m≤3 B.m<3 C.m<3且m≠2 D.m≤3且m≠211.如图为二次函数y=ax2+bx+c(a≠0)的图象,对称轴是x=1,则下列说法:①b>0;②2a+b=0;③4a﹣2b+c>0;④3a+c>0;⑤m(ma+b)<a+b(常数m≠1).其中正确的个数为( )A.2 B.3 C.4 D.512.对于每个非零自然数n,抛物线y=x2﹣x+与x轴交于A n、B n两点,以A n B n表示这两点间的距离,则A1B1+A2B2+…+A2015B2015的值是( )A.1 B.C.D.二、填空题:(本大题共6个小题,每题4分,共24分)将正确答案填写在前面对应题号的横线上.13.方程(x+2)(x﹣3)=x+2的解是__________.14.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1640张相片.如果全班有x名学生,根据题意,列出方程为__________.15.波音公司生产某种型号飞机,7月份的月产量为50台,由于改进了生产技术,计划9月份生产飞机98台,那么8、9月飞机生产量平均每月的增长率是__________.16.已知抛物线y=ax2+bx+c的部分图象如图所示,则不等式ax2+bx+c>0的解集为__________.17.如图,坐标系中正方形网格的单位长度为1,抛物线y1=﹣+3向下平移2个单位后得抛物线y2,则阴影部分的面积S=__________.18.如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个命题:①当x>0时,y>0;②若a=﹣1,则b=3;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;④点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为6.其中真命题的序号是__________.三、解答下列各题:(第19题8分,20题6分,共14分)19.解方程①x2﹣3x+2=0②4x2﹣12x+7=0.20.已知抛物线的对称轴是x=﹣1,且经过点A(0,3)和B(﹣3,6),求抛物线的解析式.四、解答下列各题:(每小题10分,共40分)21.无锡春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用28000元,请问该单位这次共有多少员工去天水湾风景区旅游?22.李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.23.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?24.对x,y定义一种新运算T,规定:(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:.(1)已知T(1,﹣1)=﹣2,T(4,2)=1.①求a、b的值;②若关于m的方程T(1﹣m,﹣m2)=﹣2有实数解,求实数m的值;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a、b应满足怎样的关系式?五、解答下列各题:(每小题12分,共24分)25.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?26.如图1,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;(3)如图2,点P为第一象限抛物线上一点,是否存在使△PBC面积最大的点P?若存在,求出点P的坐标;若不存在,请说明理由;(4)如图3,若抛物线的对称轴EF(E为抛物线顶点)与直线BC相交于点F,M为直线BC上的任意一点,过点M作MN∥EF交抛物线于点N,以E,F,M,N为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.2015-2016学年重庆市九龙坡区六校九年级(上)联考数学试卷(10月份)一、选择题:(本大题共12个小题,每小题4分,共48分)每小题只有一个答案是正确的,请将正确答案的代号填入下列对应题号内.1.下列方程一定是一元二次方程的是( )A.2x2﹣1=3x B.2x2﹣y=1 C.ax2+bx+c=0 D.2x2+=1【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、符合一元二次方程的定义,正确;B、方程含有两个未知数,故错误;C、方程二次项系数可能为0,故错误;D、不是整式方程,故错误.故选A.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.抛物线y=﹣x2+x+2与y轴的交点坐标是( )A.(1,2)B.(0,﹣1)C.(0,1)D.(0,2)【考点】二次函数图象上点的坐标特征.【分析】把x=0代入解析式求出y的值,根据y轴上点的特征和二次函数图象上点的坐标特征解答即可.【解答】解:当x=0时,y=2,故抛物线y=﹣x2+x+2与y轴的交点坐标是(0,2).故选:D.【点评】本题考查的是二次函数图象上点的坐标特征,掌握抛物线与y轴交点的纵坐标是函数解析中的c值是解题的关键.3.今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是( ) A.2500x2=3500 B.2500(1+x)2=3500C.2500(1+x%)2=3500 D.2500(1+x)+2500(1+x)2=3500【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】根据2013年教育经费额×(1+平均年增长率)2=2015年教育经费支出额,列出方程即可.【解答】解:设增长率为x,根据题意得2500×(1+x)2=3500,故选B.【点评】本题考查一元二次方程的应用﹣﹣求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“﹣”).4.把抛物线y=x2+4先向左平移1个单位,再向下平移3个单位,得到的抛物线的解析式为( )A.y=(x+1)2+1 B.y=(x﹣1)2+1 C.y=(x﹣1)2+7 D.y=(x+1)2+7【考点】二次函数图象与几何变换.【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物线y=x2+4向左平移1个单位所得直线解析式为:y=(x+1)2+4;再向下平移3个单位为:y=(x+1)2+4﹣3,即y=(x+1)2+1.故选:A.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.5.若关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,则2015﹣a﹣b的值是( ) A.2017 B.2018 C.2019 D.2020【考点】一元二次方程的解.【分析】把x=1代入已知方程求得(a+b)的值,然后将其整体代入所求的代数式并求值即可.【解答】解:∵关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,∴a+b+5=0,∴a+b=﹣5,∴2015﹣a﹣b=2015﹣(a+b)=2015﹣(﹣5)=2020;故选D.【点评】本题考查了一元二次方程的解定义.解题时,利用了“整体代入”的数学思想.6.已知﹣1是关于x的方程x2+4x﹣m=0的一个根,则这个方程的另一个根是( ) A.﹣3 B.﹣2 C.﹣1 D.3【考点】根与系数的关系.【分析】设x2+4x﹣m=0的另一个根为x1,根据根与系数的关系得出﹣1+x1=﹣4,求出x1的值即可.【解答】解:设方程x2+4x﹣m=0的另一个根为:x1,由根与系数的关系得:﹣1+x1=﹣4,解得:x1=﹣3,故选:A.【点评】此题是一元二次方程根与系数之间关系的综合应用,关键是能关键根与系数的关系得出﹣1+x1=﹣4.7.已知抛物线y=ax2+bx+c与x轴交点为A(﹣2,0),B(6,0),则该二次函数的对称轴为( )A.x=﹣1 B.x=1 C.x=2 D.y轴【考点】抛物线与x轴的交点.【专题】数形结合.【分析】根据抛物线的对称性得到点A和点B是抛物线上的对称点,所以点A和点B的对称轴即为抛物线的对称轴.【解答】解:∵抛物线y=ax2+bx+c与x轴交点为A(﹣2,0),B(6,0),∴该二次函数的对称轴为直线x=2.故选C.【点评】本题考查了抛物线与x轴的交点:从二次函数的交点式y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0)中可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).解决本题的关键是掌握抛物线的对称性.8.已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣t2+20t+1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为( )A.3s B.4s C.5s D.6s【考点】二次函数的应用.【分析】将关系式是h=﹣t2+20t+1转化为顶点式就可以直接求出结论.【解答】解:∵h=﹣t2+20t+1,∴h=﹣(t﹣4)2+41,∴顶点坐标为(﹣4,41),∴到达最高处的时间为4s.故选B.【点评】本题考查了二次函数的性质顶点式的运用,解答时将一般式化为顶点式是关键.9.已知二次函数y=3(x﹣1)2+k的图象上有三点A(0.5,y1),B(2,y2),C(﹣2,y3),则y1、y2、y3的大小关系为( )A.y1>y2>y3B.y3>y2>y1C.y3>y1>y2D.y2>y3>y1【考点】二次函数图象上点的坐标特征.【分析】根据函数解析式的特点为顶点式,其对称轴为x=1,图象开口向上;利用y随x的增大而增大,可判断y1<y3,根据二次函数图象的对称性可判断y3>y2>y1.【解答】解:A(0.5,y1),C(﹣2,y3),在对称轴的左侧,y随x的增大而减小,∵0.5>﹣2,∴y1<y3,根据二次函数图象的对称性可知,B的对称点为(0,0),故有y3>y2>y1;故选B.【点评】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.10.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是( ) A.m≤3 B.m<3 C.m<3且m≠2 D.m≤3且m≠2【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义得到m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,然后解不等式组即可得到m的取值范围.【解答】解:∵关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,∴m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,解得m≤3,∴m的取值范围是m≤3且m≠2.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.11.如图为二次函数y=ax2+bx+c(a≠0)的图象,对称轴是x=1,则下列说法:①b>0;②2a+b=0;③4a﹣2b+c>0;④3a+c>0;⑤m(ma+b)<a+b(常数m≠1).其中正确的个数为( )A.2 B.3 C.4 D.5【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴x=1计算2a+b与偶的关系;再由根的判别式与根的关系,进而对所得结论进行判断.【解答】解:①由抛物线的开口向下知a<0,对称轴为x=﹣>0,则b>0,故本选项正确;②由对称轴为x=1,∴﹣=1,∴b=﹣2a,则2a+b=0,故本选项正确;③由图象可知,当x=﹣2时,y<0,则4a﹣2b+c<0,故本选项错误;④从图象知,当x=﹣1时,y=0,则a﹣b+c=0,∵b=﹣2a,∴a+2a+c=0,即3a+c=0,故本选项错误;⑤∵对称轴为x=1,∴当x=1时,抛物线有最大值,∴a+b+c>m2a+mb+c,∴m(ma+b)<a+b(常数m≠1),故本选项正确;故选B.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.12.对于每个非零自然数n,抛物线y=x2﹣x+与x轴交于A n、B n两点,以A n B n表示这两点间的距离,则A1B1+A2B2+…+A2015B2015的值是( )A.1 B.C.D.【考点】抛物线与x轴的交点.【分析】首先求出抛物线与x轴两个交点坐标,然后由题意得到A n B n=﹣,进而求出A1B1+A2B2+…+A2015B2015的值.【解答】解:令y=x2﹣x+=0,即x2﹣x+=0,解得x=或x=,故抛物线y=x2﹣x+与x轴的交点为(,0),(,0),由题意得A n B n=﹣,则A1B1+A2B2+…+A2015B2015=1﹣+﹣+…+﹣=1﹣=,故选D.【点评】本题主要考查了抛物线与x轴交点的知识,解答本题的关键是用n表示出抛物线与x轴的两个交点坐标,此题难度不大.二、填空题:(本大题共6个小题,每题4分,共24分)将正确答案填写在前面对应题号的横线上.13.方程(x+2)(x﹣3)=x+2的解是x1=﹣2,x2=4.【考点】解一元二次方程-因式分解法.【分析】先移项,再提取公因式,求出x的值即可.【解答】解:原式可化为(x+2)(x﹣3)﹣(x+2)=0,提取公因式得,(x+2)(x﹣4)=0,故x+2=0或x﹣4=0,解得x1=﹣2,x2=4.故答案为:x1=﹣2,x2=4.【点评】本题考查的是解一元二次方程,熟知因式分解法解一元二次方程的一般步骤是解答此题的关键.14.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1640张相片.如果全班有x名学生,根据题意,列出方程为x(x﹣1)=1640.【考点】由实际问题抽象出一元二次方程.【分析】根据题意得:每人要赠送(x﹣1)张相片,有x个人,然后根据题意可列出方程.【解答】解:根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=1640,故答案为:(x﹣1)x=1640.【点评】此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送x ﹣1张相片,有x个人是解决问题的关键.15.波音公司生产某种型号飞机,7月份的月产量为50台,由于改进了生产技术,计划9月份生产飞机98台,那么8、9月飞机生产量平均每月的增长率是40%.【考点】一元二次方程的应用.【专题】增长率问题.【分析】设8、9月飞机生产量平均每月的增长率是x,根据7月份的月产量为50台,计划9月份生产飞机98台,列方程求解.【解答】解:设8、9月飞机生产量平均每月的增长率是x,由题意得,50×(1+x)2=98,解得:x=0.4或x=﹣2.4(不合题意舍去),即8、9月飞机生产量平均每月的增长率是40%.故答案为:40%.【点评】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.16.已知抛物线y=ax2+bx+c的部分图象如图所示,则不等式ax2+bx+c>0的解集为﹣1<x <3.【考点】二次函数与不等式(组).【分析】由图可知,该函数的对称轴是x=1,则x轴上与﹣1对应的点是3.观察图象可知y>0时x的取值范围【解答】解:已知抛物线与x轴的一个交点是(﹣1,0)对称轴为x=1,根据对称性,抛物线与x轴的另一交点为(3,0),观察图象,当y>0时,﹣1<x<3,∴不等式ax2+bx+c>0的解集为:﹣1<x<3,故答案为:﹣1<x<3.【点评】本题考查了二次函数与不等式,解答此题的关键是根据二次函数的对称轴与对称性,找出抛物线y=ax2+bx+c的完整图象.17.如图,坐标系中正方形网格的单位长度为1,抛物线y1=﹣+3向下平移2个单位后得抛物线y2,则阴影部分的面积S=4.【考点】二次函数图象与几何变换.【分析】根据已知得出阴影部分即为平行四边形的面积.【解答】解:根据题意知,图中阴影部分的面积即为平行四边形的面积:2×2=4.故答案是:4.【点评】本题考查了二次函数图象与几何变换.解题关键是把阴影部分的面积整理为规则图形的面积.18.如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个命题:①当x>0时,y>0;②若a=﹣1,则b=3;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;④点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为6.其中真命题的序号是②③.【考点】抛物线与x轴的交点.【专题】计算题.【分析】观察函数图象,利用抛物线在x轴上所对应的自变量的取值范围可对①进行判断;抛物线的对称轴为直线x=1,则利用对称性可对②进行判断;确定点Q比点P离对称轴的距离要大,则根据二次函数的性质可对③进行判断;当m=2时,先确定D(1,4),C(0,3),E(2,3),利用勾股计算出DE=,作D点关于y轴的对称点为D′,E点关于y轴的对称点为E′,利用关于坐标轴对称的点的坐标特征得到D′(﹣1,4),E′(2,﹣3),根据对称的性质得FD=FD′,GE=GE′,于是FD+FG+GE=D′E′,根据两点之间线段最短可判断此时四边形EDFG周长的最小,然后利用勾股定理计算出D′E′=,于是可对④进行判断.【解答】解:当a<x<b时,y>0,所以①错误;抛物线的对称轴为直线x=﹣=1,当a=﹣1,即A(﹣1,0),而点A与点B为对称点,则B(3,0),所以②正确;因为x1<1<x2,所以点P和Q在对称轴两侧,而x1+x2>2,则点Q比点P离对称轴的距离要大,所以y1>y2,所以③正确;当m=2时,y=﹣x2+2x+3=﹣(x﹣1)2+4,则D(1,4),C(0,3),∵点C关于抛物线对称轴的对称点为E,∴E(2,3),∴DE==,作D点关于y轴的对称点为D′,E点关于y轴的对称点为E′,则D′(﹣1,4),E′(2,﹣3),∴FD=FD′,GE=GE′,∴FD+FG+GE=FD′+FG+GE′=D′E′,∴此时四边形EDFG周长的最小,而D′E′==,∴四边形EDFG周长的最小值为+,所以④错误.故答案为②③.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和求最短路径的解决方法.三、解答下列各题:(第19题8分,20题6分,共14分)19.解方程①x2﹣3x+2=0②4x2﹣12x+7=0.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】①先分解因式,即可得出两个一元一次方程,求出方程的解即可;②先求出b2﹣4ac的值,再代入公式求出即可.【解答】解:①x2﹣3x+2=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1;②4x2﹣12x+7=0,b2﹣4ac=(﹣12)2﹣4×4×7=32,x=,x1=,x2=.【点评】本题考查了解一元二次方程的应用,能选择适当的方法解一元二次方程是解此题的关键.20.已知抛物线的对称轴是x=﹣1,且经过点A(0,3)和B(﹣3,6),求抛物线的解析式.【考点】待定系数法求二次函数解析式.【专题】计算题.【分析】设一般式y=ax2+bx+c,把A点和B点坐标代入得到两个方程,再利用抛物线的对称轴方程得到关于a、b的方程,这样可得到关于a、b、c的三元方程组,然后解方程组即可.【解答】解:设抛物线解析式为y=ax2+bx+c,根据题意得,解得a=1,b=2,c=3.所以抛物线解析式为y=x2+2x+3.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.四、解答下列各题:(每小题10分,共40分)21.无锡春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用28000元,请问该单位这次共有多少员工去天水湾风景区旅游?【考点】一元二次方程的应用.【分析】首先分析得出这次旅游员工大体人数,因为支付给春秋旅行社旅游费用为28000元,当旅游人数是30时,30×800=24000元,低于28000元,可得出实际人数超过了30人,再表示出每人应交钱数800﹣(x﹣30)×10,结合实际问题列出方程求出即可.【解答】解:∵支付给春秋旅行社旅游费用为28000元,当旅游人数是30时,30×800=24000元,低于28000元.∴这次旅游超过了30人.∴假设这次旅游员工人数为x人,根据题意列出方程得:∵[800﹣(x﹣30)×10]x=28000,∴x2﹣110x+2800=0,解得:x1=40,x2=70,当x1=40时,800﹣10(x﹣30)=700>700(符合题意)当x2=70时,800﹣10(x﹣30)=400<500(不合题意,舍去)答:该单位这次共有40员工去天水湾风景区旅游.【点评】此题主要考查了一元二次方程的解法及应用,关键是表示出参加旅游每人所付费用是解决问题的关键.22.李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】(1)设剪成的较短的这段为xcm,较长的这段就为(40﹣x)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于58cm2建立方程求出其解即可;(2)设剪成的较短的这段为mcm,较长的这段就为(40﹣m)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于48cm2建立方程,如果方程有解就说明李明的说法错误,否则正确.【解答】解:(1)设剪成的较短的这段为xcm,较长的这段就为(40﹣x)cm,由题意,得()2+()2=58,解得:x1=12,x2=28,当x=12时,较长的为40﹣12=28cm,当x=28时,较长的为40﹣28=12<28(舍去).答:李明应该把铁丝剪成12cm和28cm的两段;(2)李明的说法正确.理由如下:设剪成的较短的这段为mcm,较长的这段就为(40﹣m)cm,由题意,得()2+()2=48,变形为:m2﹣40m+416=0,∵△=(﹣40)2﹣4×416=﹣64<0,∴原方程无实数根,∴李明的说法正确,这两个正方形的面积之和不可能等于48cm2.【点评】本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,根的判别式的运用,解答本题时找到等量关系建立方程和运用根的判别式是关键.23.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【考点】二次函数的应用.【专题】压轴题.【分析】(1)先确定B点和C点坐标,然后利用待定系数法求出抛物线解析式,再利用配方法确定顶点D的坐标,从而得到点D到地面OA的距离;(2)由于抛物线的对称轴为直线x=6,而隧道内设双向行车道,车宽为4m,则货运汽车最外侧与地面OA的交点为(2,0)或(10,0),然后计算自变量为2或10的函数值,再把函数值与6进行大小比较即可判断;(3)抛物线开口向下,函数值越大,对称点之间的距离越小,于是计算函数值为8所对应的自变量的值即可得到两排灯的水平距离最小值.【解答】解:(1)根据题意得B(0,4),C(3,),把B(0,4),C(3,)代入y=﹣x2+bx+c得,解得.所以抛物线解析式为y=﹣x2+2x+4,则y=﹣(x﹣6)2+10,所以D(6,10),所以拱顶D到地面OA的距离为10m;(2)由题意得货运汽车最外侧与地面OA的交点为(2,0)或(10,0),当x=2或x=10时,y=>6,所以这辆货车能安全通过;(3)令y=8,则﹣(x﹣6)2+10=8,解得x1=6+2,x2=6﹣2,则x1﹣x2=4,所以两排灯的水平距离最小是4m.【点评】本题考查了二次函数的应用:构建二次函数模型解决实际问题,利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.24.对x,y定义一种新运算T,规定:(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:.(1)已知T(1,﹣1)=﹣2,T(4,2)=1.①求a、b的值;②若关于m的方程T(1﹣m,﹣m2)=﹣2有实数解,求实数m的值;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a、b应满足怎样的关系式?【考点】一元二次方程的应用;分式的混合运算;解二元一次方程组.【专题】新定义.【分析】(1)①利用题意得出关于a,b的方程组进而求出答案;②利用已知得出关于m的等式求出答案;(2)根据题意得出:,进而得出a,b的关系.【解答】解:(1)①由题意得:,解得:;②由题意得:=﹣2,化简得:m2+m﹣1=0,解得:;(2)由题意得:,化简得:(a﹣2b)(x2﹣y2)=0,∵该式对任意实数x、y都成立,∴a﹣2b=0,∴a=2b.【点评】此题主要考查了一元二次方程的应用以及新定义,根据题意得出正确等式是解题关键.五、解答下列各题:(每小题12分,共24分)25.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【考点】二次函数的应用.【分析】(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.【解答】解:(1)由题意得,y=700﹣20(x﹣45)=﹣20x+1600;(2)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,∵x≥45,a=﹣20<0,=8000元,∴当x=60时,P最大值即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得﹣20(x﹣60)2+8000=6000,解得x1=50,x2=70.∵抛物线P=﹣20(x﹣60)2+8000的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润.又∵x≤58,∴50≤x≤58.∵在y=﹣20x+1600中,k=﹣20<0,∴y随x的增大而减小,=﹣20×58+1600=440,∴当x=58时,y最小值即超市每天至少销售粽子440盒.【点评】本题考查的是二次函数与一次函数在实际生活中的应用,主要利用了利润=1盒粽子所获得的利润×销售量,求函数的最值时,注意自变量的取值范围.26.如图1,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;(3)如图2,点P为第一象限抛物线上一点,是否存在使△PBC面积最大的点P?若存在,求出点P的坐标;若不存在,请说明理由;。

重庆市九龙坡区九年级(上)期末数学试卷

重庆市九龙坡区九年级(上)期末数学试卷

重庆市九龙坡区九年级(上)期末数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑)1.(4分)在0,2.1,﹣4,﹣3.2这四个数中,是负分数的是()A.0B.2.1C.﹣4D.﹣3.22.(4分)下列图案中,不是中心对称图形的是()A.B.C.D.3.(4分)下列计算正确的是()A.a3+a2=2a5B.(2ab2)3=6a3b6C.2a2b•3ab2=6a2b3D.x3y2÷(﹣2x2y)=﹣xy4.(4分)下列事件中,是随机事件的是()A.度量四边形的内角和为180°B.抛掷一次硬币两次,第一次正面朝上,第二次反面朝上C.袋中有2个黄球,3个绿球,共5个球,随机摸出一个球是红球D.通常加热到100摄氏度,水沸腾5.(4分)如图,把△ABC绕点C顺时针旋转得封△A´B´C,且∠ACA′=30°,则∠BCB′=()A.15°B.30°C.45°D.60°6.(4分)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.80°或100°C.100°D.160°或20°7.(4分)已知点(﹣3,y1)(﹣1,y2),(2,y3)在函数y=﹣2x2+3图象上,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y1<y3<y2D.y3<y2<y1 8.(4分)如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=8,则CD 的长为()A.4B.8C.8D.169.(4分)函数y=自变量的取值范围是()A.x≥﹣3B.x<3C.x≤﹣3D.x≤310.(4分)二次函数y=2x2﹣4x+5的图象可由y=2x2的图象()得到A.先向右平移2个单位长度,再向上平移3个单位长度B.先向右平移1个单位长度,再向上平移3个单位长度C.先向左平移2个单位长度,再向下平移3个单位长度D.先向左平移1个单位长度,再向下平移3个单位长度11.(4分)如图所示,第(1)个多边形由正三角形“扩展”而来,边数为12,第(2)个多边形由正方形“扩展”而来,边数为20,…•,第(3)个多边形由正五边形“扩展”而来,边数为30,……依此类推,由正7边形“扩展”而来的多边形的边数为()A.40B.50C.56D.6412.(4分)如果关于x的方程ax2+4x﹣2=0有两个不相等的实数根,且关于x的分式方程﹣=2有正数解,则符合条件的整数a的值是()A.﹣1B.0C.1D.2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.(4分)今年“十一”黄金周期间,吉首市共接待游客38.88万人次,388800用科学记数法表示为.14.(4分)已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=.15.(4分)在反比例函数y=图象的每一支上,y都随x的增大而减小,则k的取值范围是.16.(4分)在一个不透明的盒子里装有5个分别写有数字﹣2,﹣1,1,2,3的小球,它们除数字不同外其余全部相同,现从盒子里随机取出一个小球,将该小球上的数字作为点P 的横坐标,将该数的绝对值作为点P的纵坐标,则点P落在抛物线y=﹣x2+2x+4与x轴所围成的区域内(不含边界)的概率是.17.(4分)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆,半圆恰好经过△ABC的直角顶点C,以点D为顶点,作∠EDF=90°,与半圆交于点E,F,则图中阴影部分的面积是.18.(4分)一条笔直的公路上顺次有A、B、C三地,甲车从B地出发往A地匀速行驶,到达A地后停止,在甲车出发的同时,乙车从B地出发往A地匀速行驶,到达A地停留1小时后,调头按原遠向C地行驶,若AB两地相距200千米,在两车行驶的过程中,甲、乙两车之间的距离(千米)与乙车行驶时间x(小时)之间的函数图象如图所示,则在他们出发后经过小时相遇.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上19.(8分)如图,点B,E,C,F在同一条直线上,AB=DE,AC=DF,BF=CE,求证:△ABC≌△DEF;20.(8分)某校为了解非毕业年级学生课余生活,从七、八年级学生中随机抽取了部分学生进行调查,每人只能从以下六个项目中选一项:A.课外阅读;B.家务劳动;C.体育锻炼;D.学科学习;E.社会实践:F.其他项目根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题.(1)此次抽查的样本容量为,请补全条形统计图;(2)全校约有800名在校初中学生,试估计全校学生中选择体育锻炼的人数约有多少人?(3)若七年级(1)班将从选择社会实践活动的2名女生和1名男生中选派2名同学去参加校级社会实践活动请你用树状图或列表法求出恰好选到1男1女的概率是多少?四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.(10分)化简:(1)(a+b)(a﹣b)﹣(a﹣b)2﹣2b(a+b)(2)22.(10分)如图,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于第二象限的点A(m,1),且与y轴交于点C.过点A作AD⊥x轴于点D,连接CD,已知△ADC的面积为,且∠ACO=45°(1)求:一次函数和反比例函数的解析式;(2)若点E是点C关于x轴的对称点,点B的纵坐标为﹣3,求△ABE的面积23.(10分)九龙坡区某社区开展全民读书活动,以丰富人们业余文化生活现计划筹资30000元用于购买科普书籍和文艺刊物(1)计划购买文艺刊物的资金不少于购买科普书籍资金的2倍,那么最少用多少资金购买文艺刊物?(2)经初步了解,有200户居民自愿参与集资,那么平均每户需集资150元.经筹委会进步宣传,自愿参加的户数在200户的基础上增加了a%(其中a>50),如果每户平均集资在150元的基础上减少a%,那么实际筹资将比计划筹资多6000元,求a的值.24.(10分)如图1,△ABC中,CA=CB,∠ACB=90°,直线l经过点C,AF⊥l于点F,BE⊥l于点E.(1)求证:△ACF≌△CBE;(2)将直线旋转到如图2所示位置,点D是AB的中点,连接DE.若AB=4,∠CBE =30°,求DE的长.五、解答题:(本大题2个小题,25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.(10分)一个各位数字都不为0的三位正整数N,现从它的百位、十位、个位上的数字中任意选择两个数字组成两位数若所有这些两位数的和等于这个三位数本身,则称这个三位数为本原数”例如:132,选择百位数字1和十位数字3所组成的两位数为:13和31;选择百位数字1和个位数字2所组成的两位数为:12和21;选择十位数字3和个位数字2所组成的两位数为:32和23,因为13+31+12+21+32+23=132,所以132是“本原数”(1)判断123是不是“本原数”?请说明理由;(2)一个三位正整数,若它的十位数字等于百位数字与个位数学的和,则称这样的三位数为“和中数”.若一个各位数字都不为0的“和中数”是“本原数”,求z与x的函数关系.26.(12分)已知,如图1,抛物线y=x2﹣2x﹣3与x轴交于点A,在抛物线第一象限的图象上存在一点B,x轴上存在一点C,使∠ACB=90°,AC=BC,抛物线的顶点为D.(1)求直线AB的解析式;(2)如图2,若点E是AB上一动点(点A、B除外),连接CE,OE,当EC+OE的值最小时,求△BDE的面积;(3)如图3,若点E是AB上一动点(点A、B除外),当△OEC是等腰三角形时,请直接写出满足条件的点E的坐标.重庆市九龙坡区九年级(上)期末数学试卷参考答案一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑)1.D;2.C;3.D;4.B;5.B;6.B;7.C;8.B;9.B;10.B;11.C;12.A;二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.3.888×105;14.6;15.k>;16.;17.;18.3;三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上19.;20.1000;四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.;22.;23.;24.;五、解答题:(本大题2个小题,25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.;26.;。

(完整)重庆市九年级上学期期末考试数学试题及答案,推荐文档

(完整)重庆市九年级上学期期末考试数学试题及答案,推荐文档

上学期期末考试九 年 级 数 学 试 卷(本卷共五个大题,满分150分,考试时间 120分钟)案,其中只有一个是正确的,请将正确答案的代号填在题后对应的表格中. 1.下列四个数中的无理数是( )A.3.14B.3-C.4-D.722 2.下列计算正确的是( ) A.4624=÷ B.623=⨯ C.4334=- D.532=+3.方程032=-x x 解是 ( )A. 0或3B. 3C.0D.0或3- 4. 抛物线22(3)4y x =-+-的顶点坐标是( )A.(-3, -4)B.(-3, 4)C.(3, -4)D.(-4, 3)5.下列图形中,是轴对称图形但不是中心对称图形的是( )6.如图,AB 是圆O 的直径,点D 在AB 的延长线上,射线DC 切圆O 于点C ,若25A =o∠.则D ∠等于 ( )A .60°B .50°C .40°D .45° 7.用配方法解方程01422=+-x x ,则方程可变为( ) A.()2122=-x B.31)1(22=-x C.()1122=-x D.()2112=-x 8.已知两圆的半径1r ,2r 分别是方程01072=+-x x 的两根,两圆的圆心距为7,则两圆的位置关系是( )题号 一 二 三 四 五 总分 总分人 得分学校_________________ 班级_________________ 姓名________________ 考号____________________________ ..................................装............................订.........................线.................. ×××××××××××××××××××××××密封线内不能答题××××××××××××××××××××××××__________________________________________________________________________________________________________________A. 相交B.内切C.外切D.外离9.彩虹暖手器原价每个100元,随着天气变冷,买的人增多,商场经过连续两次加价a %后售价是每个121元,以下列方程正确的是 ( )A. ()121%11002=-a B. ()121%11002=+aC. ()121%211002=-a D.()121110022=-a10.为提倡低碳生活,小凯坚持骑车上学,有一天,小凯开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下列行驶路程s 关于时间t 的函数图象中,符合小凯行驶情况的大致图象是( )11.如图是由正三角形、正方形及正六边形组成的图案. 按此规律,第16个图案中,正三角形的个数为( )A .82B .72C .83D .7312. 已知函数c bx ax y ++=2的图象如图所示,给出以下结论:①2b >ac 4;②abc >0;③02=-b a ;④3ca ->;⑤cb a ++39<0,其中结论正确有( )A. 2个B. 3个C. 4个D.5个题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(每小题4分,共24分)请将答案填在题后的横线上. 13.要使2x -在实数范围内有意义,x 应满足的条件是 . 14.已知圆锥的底面半径为3,母线长为5 ,则圆锥的高是 . 15.若1x =是方程220x ax ++=的一个根,则其另一个根为 .16.如图,一个圆心角为90°的扇形,半径OA=3,那么图中阴影部分的面积为 .(结果保留π)17.现有5张正面分别标有数字2-,1-,0,l ,2的同种卡片,将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的方程22(1)(3)0x a x a a --+-=有实根,且以x 为自变量的函数a ax x y 422+-=的顶点落在第一象限的概率是________. 18.如图,矩形ABCO 的边OC OA ,分别落在x 、y 轴上,点B 的坐标为B (320,5),D 是BC 边上一点.将COD ∆沿直线OD 翻折,使C 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图象上,则该函数的解析式是 . 19.计算:()().16323121020142⨯-+---+⎪⎭⎫ ⎝⎛--π20.如图,方格中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC ∆的顶点均在格点上,点C 的坐标为(41)-,.①把ABC ∆向左平移6个单位得到对应的111A B C ∆,画出111A B C ∆,并写出1C 的坐标;②将111C B A ∆绕点O 顺时针旋转90°得到对应的222C B A ∆.写出点2C 的坐标.四、解答题(每小题10分,共40分)每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:1211222+-+÷⎪⎪⎭⎫ ⎝⎛---+x x x x x x x x ,其中x 为方程0822=--x x 的根.22.某商场将进货价为150元的中学生冬季运动服以200元售出时,平均每周能售出80件,调查表明:这种中学生冬季运动服的售价每上涨1元,其销售量就减少1件.(1)为了使平均每周有4200元的销售利润,这种运动服的售价应定为多少元?(2)4200元是否为最大利润?若是,请说出理由;若不是,求出最大利润,并指出此时运动服的售价为多少元?23.有传言说“明年中考体育将增加男生1000米女生800米为考查选项”,但市教委明确说,明年我市暂不实行.某中学初三数学兴趣小组随机抽查了若干名学生对“中考体育增加男生1000米女生800米”的态度:A. 反对;B.基本赞成;C.赞成;D. 无所谓,并将调查结果绘制成频数折线统计图1和不完整的扇形统计图2.请根据图中信息,解答下列问题:(1) 此次抽样调查中,共调查了多少名学生;(2) 求出图2中扇形C所对的圆心角的度数,并将图1补充完整;(3) 根据抽样调查结果,请你估计该校3000名学生中有多少名学生持反对态度;(4) 此次调查活动中,初三(1)班和(2)班各有2名学生对“中考体育增加男生1000米女生800米”持赞成态度,现从中选2名学生参加区冬运会,试用列表法或画树状图法求所选出的2人来自不同班级的概率.图1 图2DC=,24.如图,H是边长为4的正方形ABCD边AB上一点,N在DH上,且DN DHAG=.MN⊥交BC于点M,G点在BA延长线上,CM(1)求证:CDH ADH HDG ∠+∠=∠21; (2)若2=MN ,求DH 的长.五、解答题(每小题12分,共24分)每小题必须给出必要的演算过程或推理步骤. 25.如图,抛物线c bx x y ++-=22过A (2,0)、C (0,4)两点. (1)分别求该抛物线和直线AC 的解析式;(2)横坐标为m 的点P 是直线AC 上方的抛物线上一动点,△APC 的面积为S . ①求S 与m 的函数关系式;②S 是否有最大值?若存在,求出最大值,若不存在,请说明理由.(3)点M 是直线AC 上一动点,ME 垂直x 轴于E ,在y 轴(原点除外)上是否存在点F ,使MEF ∆为等腰直角三角形? 若存在,求出对应的点M F ,的坐标;若不存在,说明理由.26.如图1,菱形OABC 的边OA 在x 轴正半轴上,已知10=OA ,点)8,6(C ,动点P 从O点出发,以1个单位/秒的速度沿线段OA 运动,OA PQ ⊥交折线段CB OC -于Q ,以PQ 为边向右作正方形PQMN ,当P 到达A 点时,运动结束.设点P 的运动时间为t 秒(t >0). (1)点B 的坐标为 ,t = 时,点N 与A 重合;(2)整个运动过程中,设正方形PQMN 与菱形OABC 重合部分面积为S ,试写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)如图2,在运动过程中,直线OB 将PQMN 分成两部分,问:是否存在t ,使得被分成的两部分中有一部分的面积是菱形面积的51.若存在,求对应的t 值;若不存在,说明理由.九年级数学答案一.选择题:1-5BBAAB,6-10CDCBC11-12AB 二.填空题:13.x ≥2 14. 4 15.2 16.2949-π 17.5218.x y 12=三.解答题19.解:原式=4+1-(2-3)+1×4…………………5分 =7+3…………………7分 20.C 1(-2,-1)C 2(-1,2)……………………2分画对三角形111C B A ……………………2分 画对三角形222C B A ……………………3分21.解:原式=[]121)1)(1(1222+-+÷--+--+x x xx x x x x x x =121)1(2222+-+÷---+x x xx x x x x=()1)1(112+-⨯-+x x x x x ……………………5分 =xx 1-……………………6分 0822=--x x解得:x 1=-2, x 2=4……………………8分当x=-2时,原式=x x 1-=23212=--- 当x=4时,原式=x x 1-=43414=-所以原式的值是23或43……………………8分 22.解(1)设这种中学生运动服的售价定为x 元,根据题意得: (x-150)[])200(80--x =4200……………………5分 解得:x 1=220,x 2=210答:这种中学生冬季运动服的售价定为220元或210元,平均每周有4200元的销售利润。

重庆市2016届九年级上学期开学考试数学试卷(附答案)

重庆市2016届九年级上学期开学考试数学试卷(附答案)

重庆市2016届九年级上学期开学考试数学试卷(全卷共五个大题,满分150分,考试时间120分钟)一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、的四个答案,其中只有一个是正确的。

请将正确答案的代号填入下表A .224(24)x x x x -=-B .21(1)(1)x x x -=+-C .22(1)2x x x x -+=-+D .2221(1)x x x +-=-2.要使分式337xx -有意义,则x 的取值范围是( ) A .73x = B .73x > C .73x < D .73x ≠3.下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.五边形的内角和是( ) A .180° B .360° C .540° D .600° 5.已知一次函数y kx b =+的图象经过第一、二、四象限,则函数kby x=的图象在( ) A .第一、三象限 B .第二、四象限 C .第三、四象限 D .第一、二象限6.炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队开工且恰好同时完工,甲队比乙队每天多安装2台。

设乙队每天安装x 台,根据题意,下面所列方程中正确的是()A .66602x x =- B .66602x x =- C .66602xx =+ D .66602x x=+ 7.反比例函数3k y x-=的图象,当0x >时,y 随x 的增大而增大,则k 的取值范围是( )A .3k >B .3k ≥C .3k <D .3k ≤8.如图,菱形ABCD 的两条对角线相交于O ,若菱形的面积为24,AC=8,则菱形的周长为( ) A .20 B .15 C .10 D .249.如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则折痕CE 的长( )A .B C .3 D .6第8题 第9题10.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依此规律,第10个图形圆的个数为( )第1个图形 第2个图形 第3个图形 第4个图形 A .114 B .104 C .85 D .7611.定义:如果一元二次方程20(0)ax bx c a ++=≠满足0a b c ++=,那么我们称这个方程为“凤凰”方程,已知20(0)ax bx c a ++=≠是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( ) A .a c =B .a b =C .b c =D .a b c ==12.如图,△OAB 和△ACD 是等边三角形,O 、A 、C 在x 轴上,B 、D 在0)y x x=>的图象上,则点C 的坐标是( )A .(1-B .(1C .D .(213.关于x 的方程22x x =的解为_______14.若分式||2(2)(3)a a a --+的值为0,则a =_______15.如图,平行四边形ABCD 中,∠B=110°,延长CD 至F ,延长AD 至E ,连接EF ,则∠E+∠F=_______第15题 第16题16.如图所示,点A 、B 在反比例函数(0,0)ky k x x=>>的图象上,过点A 、B 作x 轴的垂线。

重庆市一中2016届九年级数学上学期期末考试试题(含解析)-新人教版

重庆市一中2016届九年级数学上学期期末考试试题(含解析)-新人教版

重庆市一中2016届九年级数学上学期期末考试试题一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.﹣3的倒数是()A.3 B.﹣3 C.D.2.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.3.下列因式分解中,正确的是()A.ax2﹣ax=x(ax﹣a)B.a2b2+ab2c+b2=b2(a2+ac+1)C.x2﹣y2=(x﹣y)2D.x2﹣5x﹣6=(x﹣2)(x﹣3)4.如图,直线AB∥CD,直线EF分别交直线AB、CD于点E、F,EG平分∠AEF交CD于点G.若∠1=36°,则∠2的大小是()A.72° B.67° C.70° D.68°5.分式方程的解为()A.1 B.2 C.3 D.46.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A.B.C.D.7.如图,在△ABC中,AB=AC=13,AD为BC边上的中线,BC=10,DE⊥AC于点E,则tan∠CDE的值等于()A.B.C.D.8.重庆一中初三年级某班10名同学的一次体考成绩如下表,则下列说法错误的是()成绩(分)39 42 44 45 48 50人数 1 2 1 2 1 3B.这10名同学成绩的中位数是45C.这10名同学成绩的众数为50D.这10名同学成绩的极差为29.如图,在直角三角形△ABC中,∠BAC=90°,点E是斜边BC的中点,⊙O经过A、C、E三点,F是弧EC上的一个点,且∠AFC=36°,则∠B=()A.20° B.32° C.54° D.18°10.清明节假期的某天,小米骑车从家出发前往革命烈士陵园扫墓,行驶一段时间后,因车子出现问题,途中耽搁了一段时间,车子修好后,加速前行,到达烈士陵园扫完墓后匀速骑车回家.其中x表示小米从家出发后的时间,y表示小米离家的距离,下面能反映y与x的函数关系的大致图象是()A.B.C.D.11.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成,每个围成的正方形面积为1cm2:第1个图案面积为2cm2,第2个图案面积为4cm2,第3个图案面积为7cm2…,依此规律,第8个图案面积为()cm2.A.35 B.36 C.37 D.3812.如图,在△AOB中,∠BOA=90°,∠BOA的两边分别与函数、的图象交于B、A两点,若,则AO的值为()A.B.2 C.D.二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为440000万人,数440000用科学记数法表示为.14.若一个代数式a2﹣2a﹣2的值为3,则3a2﹣6a的值为.15.如图,点P是平行四边形ABCD中边AB上的一点,射线CP交DA的延长线于点E,若,则= .16.如图,AB是⊙O的直径,弦CD交AB于点E,且E为OB的中点,∠CDB=30°,CD=6,则阴影部分的面积为.17.从﹣3,﹣2,﹣1,0,1,2,3这七个数中,随机取出一个数,记为a,那么a使关于x的方程有整数解,且使关于x的不等式组有解的概率为.18.如图,在△ABE中∠AEB=90°,AB=,以AB为边在△ABE的同侧作正方形ABCD,点O为AC 与BD的交点,连接OE,OE=2,点P为AB上一点,将△APE沿直线PE翻折得到△GPE,若PG⊥BE 于点F,则BF= .三、解答题:(本大题2个小题,每小题7分,共14分)解答题时每小题必须给出必要的演算过程,请将解答过程书写在答题卡中对应的位置上.19.计算(π﹣3)0﹣|﹣5|++4sin60°.20.化简:.四、解答题:(本大题4个小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.我市准备举办大型全民运动会,运动会开幕前某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用72000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了20元.(1)该商场两次购进这种运动服共多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套运动服的售价至少是多少元?(利润率=)22.将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x <6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.23.2016年1月6日,我国南沙永暑礁新建港口、机场完成试航试飞,将为岛礁物资运输、人员往来、通信导航、救援补给提供便捷支持,使航行和飞行更为安全可靠.如图所示,永暑礁新建港口在A处,位于港口A的正西方的有一小岛B,小岛C在小岛B的北偏东60°方向,小岛C在A的北偏西45°方向;小岛D在小岛B的北偏东38°方向且满足∠BCD=37°,港口A和小岛C的距离是23km.(参考数据:sin38°≈,tan22°≈,tan37°≈)(1)求BC的距离.(2)求CD的距离.24.我们知道平方运算和开方运算是互逆运算,如:a2±2ab+b2=(a±b)2,那么,那么如何将双重二次根式化简呢?如能找到两个数m,n(m>0,n>0),使得即m+n=a,且使即m•n=b,那么∴,双重二次根式得以化简;例如化简:;∵3=1+2且2=1×2,∴∴由此对于任意一个二次根式只要可以将其化成的形式,且能找到m,n(m>0,n>0)使得m+n=a,且m•n=b,那么这个双重二次根式一定可以化简为一个二次根式.请同学们通过阅读上述材料,完成下列问题:(1)填空: = ;= ;(2)化简:①②(3)计算:.五、解答题:(本大题2个小题,每小题12分,共24分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上25.如图1,在等腰Rt△ACB中,∠ACB=90°,AC=BC;在等腰Rt△DCE中,∠DCE=90°,CD=CE;点D、E分别在边BC、AC上,连接AD、BE,点N是线段BE的中点,连接CN与AD交于点G.(1)若CN=6.5,CE=5,求BD的值.(2)求证:CN⊥AD.(3)把等腰Rt△DCE绕点C转至如图2位置,点N是线段BE的中点,延长NC交AD于点H,请问(2)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由.26.已知如图:抛物线与x轴交于A,B两点(点A在点B的左侧)与y轴交于点C,点D为抛物线的顶点,过点D的对称轴交x轴于点E.(1)如图1,连接BD,试求出直线BD的解析式;(2)如图2,点P为抛物线第一象限上一动点,连接BP,CP,AC,当四边形PBAC的面积最大时,线段CP交BD于点F,求此时DF:BF的值;(3)如图3,已知点K(0,﹣2),连接BK,将△BOK沿着y轴上下平移(包括△BOK)在平移的过程中直线BK交x轴于点M,交y轴于点N,则在抛物线的对称轴上是否存在点G,使得△GMN是以MN为直角边的等腰直角三角形?若存在,请直接写出点G的坐标;若不存在,请说明理由.2015-2016学年重庆一中九年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.﹣3的倒数是()A.3 B.﹣3 C.D.【考点】倒数.【专题】常规题型.【分析】直接根据倒数的定义进行解答即可.【解答】解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选:D.【点评】本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选;B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.下列因式分解中,正确的是()A.ax2﹣ax=x(ax﹣a)B.a2b2+ab2c+b2=b2(a2+ac+1)C.x2﹣y2=(x﹣y)2D.x2﹣5x﹣6=(x﹣2)(x﹣3)【考点】因式分解-运用公式法;因式分解-提公因式法;因式分解-十字相乘法等.【专题】计算题;因式分解.【分析】原式各项分解得到结果,即可做出判断.【解答】解:A、原式=ax(x﹣1),错误;B、原式=b2(a2+ac+1),正确;C、原式=(x+y)(x﹣y),错误;D、原式=(x﹣6)(x+1),错误,故选B【点评】此题考查了因式分解﹣运用公式法,提公因式法,以及十字相乘法,熟练掌握因式分解的方法是解本题的关键.4.如图,直线AB∥CD,直线EF分别交直线AB、CD于点E、F,EG平分∠AEF交CD于点G.若∠1=36°,则∠2的大小是()A.72° B.67° C.70° D.68°【考点】平行线的性质.【分析】根据角平分线的性质可以求得∠3的度数,然后根据平行线的性质来求∠2的大小.【解答】解:如图,∵∠1=36°,∠1+∠AEF=180°,∴∠AEF=144°.又∵EG平分∠AEF,∴∠3=∠AEF=72°.∵AB∥CD,∴∠2=∠3=72°.故选:A.【点评】本题考查了平行线的性质.根据邻补角和角平分线的定义求得∠3的度数是解题的关键.5.分式方程的解为()A.1 B.2 C.3 D.4【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣4=x,解得:x=4,经检验x=4是分式方程的解.故选D【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.6.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【专题】数形结合.【分析】根据二次函数的性质首先排除B选项,再根据a、b的值的正负,结合二次函数和一次函数的性质逐个检验即可得出答案.【解答】解:根据题意可知二次函数y=ax2+bx的图象经过原点O(0,0),故B选项错误;当a<0时,二次函数y=ax2+bx的图象开口向下,一次函数y=ax+b的斜率a为负值,故D选项错误;当a<0、b>0时,二次函数y=ax2+bx的对称轴x=﹣>0,一次函数y=ax+b与y轴的交点(0,b)应该在y轴正半轴,故C选项错误;当a>0、b<0时,二次函数y=ax2+bx的对称轴x=﹣>0,一次函数y=ax+b与y轴的交点(0,b)应该在y轴负半轴,故A选项正确.故选A.【点评】本题主要考查了二次函数的性质和一次函数的性质,做题时要注意数形结合思想的运用,同学们加强训练即可掌握,属于基础题.7.如图,在△ABC中,AB=AC=13,AD为BC边上的中线,BC=10,DE⊥AC于点E,则tan∠CDE的值等于()A.B.C.D.【考点】解直角三角形;等腰三角形的性质.【分析】由△ABC中,AB=AC=13,AD为BC边上的中线,BC=10,利用等腰三角形三线合一的性质,可证得AD⊥BC,再利用勾股定理,求得AD的长,那么在直角△ACD中根据三角函数的定义求出tan∠CAD,然后根据同角的余角相等得出∠CDE=∠CAD,于是tan∠CDE=tan∠CAD.【解答】解:∵△ABC中,AB=AC=13,AD为BC边上的中线,BC=10,∴AD⊥BC,CD=BC=5,∴AD==12,∴tan∠CAD==.∵AD⊥BC,DE⊥AC,∴∠CDE+∠ADE=90°,∠CAD+∠ADE=90°,∴∠CDE=∠CAD,∴tan∠CDE=tan∠CAD=.故选A.【点评】此题考查了解直角三角形、等腰三角形的性质、勾股定理、锐角三角函数的定义以及余角的性质.此题难度适中,解题的关键是准确作出辅助线,注意数形结合思想的应用.8.重庆一中初三年级某班10名同学的一次体考成绩如下表,则下列说法错误的是()成绩(分)39 42 44 45 48 50人数 1 2 1 2 1 3B.这10名同学成绩的中位数是45C.这10名同学成绩的众数为50D.这10名同学成绩的极差为2【考点】众数;加权平均数;中位数;极差.【分析】根据平均数、极差、中位数和众数的定义分别进行解答,即可求出答案.【解答】解:平均数=(39×1+42×2+44×1+45×2+48×1+50×3)÷10=45.5;∵共有10个数,∴中位数是第5个和6个数的平均数,∴中位数是(45+45)÷2=45;∵50出现了三次,出现的次数最多,∴众数是50;极差是:50﹣39=11;∴说法错误的是D.故选:D.【点评】此题考查了平均数、极差、中位数和众数,掌握平均数、极差、中位数和众数的定义是解题的关键.9.如图,在直角三角形△ABC中,∠BAC=90°,点E是斜边BC的中点,⊙O经过A、C、E三点,F是弧EC上的一个点,且∠AFC=36°,则∠B=()A.20° B.32° C.54° D.18°【考点】圆周角定理.【分析】连接AE,根据圆周角定理可得出∠AEC的度数,再由直角三角形的性质得出AE=BE,根据三角形外角的性质即可得出结论.【解答】解:连接AE,∵∠AFC=36°,∴∠AEC=36°.∵点E是斜边BC的中点,∴AE=BE,∴∠B=∠BAE.∵∠AEC是△AB E的外角,∴∠AEC=∠B+∠BAE=2∠B=36°,∴∠B=18°.故选D.【点评】本题考查的是圆周角定理,根据题意作出辅助线,构造出圆周角是解答此题的关键.10.清明节假期的某天,小米骑车从家出发前往革命烈士陵园扫墓,行驶一段时间后,因车子出现问题,途中耽搁了一段时间,车子修好后,加速前行,到达烈士陵园扫完墓后匀速骑车回家.其中x表示小米从家出发后的时间,y表示小米离家的距离,下面能反映y与x的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】一开始是匀速行进,随着时间的增多,离家的距离也将由0匀速增加,停下来修车,距离不发生变化,后来加快了车速,距离又匀速增加,扫墓时,时间增加,路程不变,扫完墓后匀速骑车回家,离家的距离逐渐减少,由此即可求出答案.【解答】解:因为开始以正常速度匀速行驶﹣﹣﹣停下修车﹣﹣﹣加快速度匀驶﹣﹣﹣扫墓﹣﹣匀速骑车回家,故离家的距离先增加,再不变,后增加,再不变,最后减少.故选D.【点评】此题考查了学生从图象中读取信息的能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.11.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成,每个围成的正方形面积为1cm2:第1个图案面积为2cm2,第2个图案面积为4cm2,第3个图案面积为7cm2…,依此规律,第8个图案面积为()cm2.A.35 B.36 C.37 D.38【考点】规律型:图形的变化类.【分析】求出前4个图形中的所有正方形的面积,从而得到图案中面积的规律,再根据规律写出第n个图案中的面积即可.【解答】解:第1个图案面积为1+1=2cm2,第2个图案面积为1+2+1=4cm2,第3个图案面积为1+2+3+1=7cm2,第4个图案面积为1+2+3+4+1=11cm2,…∴第n个图案面积为1+2+3+4+…+n+1=n(n+1)+1cm2.∴第8个图案面积为1+2+3+4+5+6+7+8+1=37cm2.故选:C.【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.12.如图,在△AOB中,∠BOA=90°,∠BOA的两边分别与函数、的图象交于B、A两点,若,则AO的值为()A.B.2 C.D.【考点】反比例函数图象上点的坐标特征;相似三角形的判定与性质.【分析】过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,得到=()2=2,根据勾股定理得出OA2+OA2=6,即可求得OA.【解答】解:∵∠AOB=90°,∴∠AOC+∠BOD=∠AOC+∠CAO=90°,∠CAO=∠BOD,∴△ACO∽△BDO,∴=()2,∵S△AOC=×2=1,S△BOD=×1=,∴()2==2,∴OA2=2OB2,∵OA2+OB2=AB2,∴OA2+OA2=6,∴OA=2,故选B.【点评】本题考查了反比例函数y=,系数k的几何意义,相似三角形的判定和性质,勾股定理的应用,能够通过三角形系数找出OA和OB的关系是解题的关键.二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为440000万人,数440000用科学记数法表示为 4.4×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将440000用科学记数法表示为:4.4×105.故答案为:4.4×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.若一个代数式a2﹣2a﹣2的值为3,则3a2﹣6a的值为15 .【考点】代数式求值.【专题】计算题;实数.【分析】根据题意列出等式,求出a2﹣2a的值,原式变形后代入计算即可求出值.【解答】解:由a2﹣2a﹣2=3,得到a2﹣2a=5,则原式=3(a2﹣2a)=15,故答案为:15【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.如图,点P是平行四边形ABCD中边AB上的一点,射线CP交DA的延长线于点E,若,则= .【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由四边形ABCD是平行四边形,可证得△AEP∽△CBP,由,推得=,根据相似三角形的面积之比等于相似比的平方即可证得结论.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴△AEP∽△CBP,∵,∴,∴=,=()2=()2=.故答案为:.【点评】本题主要考查了平行四边形的性质,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解决问题的关键.16.如图,AB是⊙O的直径,弦CD交AB于点E,且E为OB的中点,∠CDB=30°,CD=6,则阴影部分的面积为12π.【考点】扇形面积的计算.【分析】根据题意得出△COB是等边三角形,进而得出CD⊥AB,再利用垂径定理以及锐角三角函数关系得出CO的长,进而结合扇形面积求出答案.【解答】解:连接BC,∵∠CDB=30°,∴∠COB=60°,∴∠AOC=120°,又∵CO=BO,∴△COB是等边三角形,∵E为OB的中点,∴CD⊥AB,∵CD=6,∴EC=3,∴sin60°×CO=3,解得:CO=6,故阴影部分的面积为:=12π.故答案为:12π.【点评】此题主要考查了垂径定理以及锐角三角函数和扇形面积求法等知识,正确得出CO的长是解题关键.17.从﹣3,﹣2,﹣1,0,1,2,3这七个数中,随机取出一个数,记为a,那么a使关于x的方程有整数解,且使关于x的不等式组有解的概率为.【考点】概率公式;分式方程的解;解一元一次不等式组.【专题】计算题.【分析】先把分式方程化为整式方程得到(a﹣1)x=4,由于方程有整数解且x≠2,则a=﹣3,﹣1,0,2,3,再分别解两个不等式得到x>a﹣1和x≤2,由于不等式组有解,则a﹣1<2,解得a<3,于是使关于x的方程有整数解,且使关于x的不等式组有解的a的值为﹣3,﹣1,0,2,然后根据概率公式求解.【解答】解:方程两边乘以x﹣2得ax﹣2(x﹣2)=﹣x,整理得(a﹣1)x=4,由于方程有整数解且x≠2,所以a=﹣3,﹣1,0,2,3,解x+1>a得x>a﹣1,解≥1得x≤2,由于不等式组有解,所以a﹣1<2,解得a<3,所以使关于x的方程有整数解,且使关于x的不等式组有解的a的值为﹣3,﹣1,0,2,所以使关于x的方程有整数解,且使关于x的不等式组有解的概率=.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了解分式方程和不等式组.18.如图,在△ABE中∠AEB=90°,AB=,以AB为边在△ABE的同侧作正方形ABCD,点O为AC 与BD的交点,连接OE,OE=2,点P为AB上一点,将△APE沿直线PE翻折得到△GPE,若PG⊥BE于点F,则BF= 5﹣.【考点】翻折变换(折叠问题);全等三角形的判定与性质;正方形的性质.【分析】在BE上截取BM=AE,连接OM,OE,AC与BE交于点K,由△OAE≌△OBM得EO=OM,∠AOE=∠BOM,所以∠EOM=∠AOB=90°,得EM=OE,设AE=BM=a,在RT△ABE中,由AB2=AE2+BE2求出a,再证明AP=AE,利用即可求出BF.【解答】解:如图,在BE上截取BM=AE,连接OM,OE,AC与BE交于点K,∵四边形ABCD是正方形,∴AC⊥BD,AO=OB,∴∠AEB=∠AOB=90°,∴∠EAK+∠AKE=90°,∠BKO+∠OBM=90°,∵∠BKO=∠AKE,∴∠EAO=∠OBM,在△OAE和△OBM中,,∴△OAE≌△OBM,∴OE=OM,∠AOE=∠BOM,∴∠EOM=∠AOB=90°,∴EM=OE=4,设AE=BM=a,在RT△ABE中,∵AB2=AE2+BE2,∴26=a2+(a+4)2,∵a>0,∴a=1,∵△PEG是由△PEA翻折,∴PA=PG,∠APE=∠GPE,∵PG⊥EB,AE⊥EB,∴AE∥PG,∴∠AEP=∠GPE=∠APE,∴AP=AE=1,PB=,∴,∴,∴BF=5﹣.故答案为5﹣.【点评】本题考查正方形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质、翻折变换等知识,解题的关键是利用旋转的思想添加辅助线,构造全等三角形,属于中考填空题的压轴题.三、解答题:(本大题2个小题,每小题7分,共14分)解答题时每小题必须给出必要的演算过程,请将解答过程书写在答题卡中对应的位置上.19.计算(π﹣3)0﹣|﹣5|++4sin60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用零指数幂法则计算,第二项利用绝对值的代数意义化简,第三项利用立方根定义及负整数指数幂法则计算,第四项利用乘方的意义计算,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=1﹣5+3×9+1+2=29﹣5+2=24+2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.化简:.【考点】分式的混合运算.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=﹣x(x+1)=﹣x2﹣x.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.四、解答题:(本大题4个小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.我市准备举办大型全民运动会,运动会开幕前某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用72000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了20元.(1)该商场两次购进这种运动服共多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套运动服的售价至少是多少元?(利润率=)【考点】分式方程的应用.【分析】(1)求的是数量,总价明显,一定是根据单价来列等量关系,本题的关键描述语是:每套进价多了20元.等量关系为:第二批的每件进价﹣第一批的每件进价=20;(2)等量关系为:(总售价﹣总进价)÷总进价≥20%.【解答】解:(1)设商场第一次购进x套运动服,由题意得:﹣=20解这个方程,得x=200,经检验,x=200是所列方程的根,2x+x=2×200+200=600,所以商场两次共购进这种运动服600套;(2)设每套运动服的售价为y元,由题意得:≥20%,解这个不等式,得y≥208,所以每套运动服的售价至少是208元.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.注意利润率=×100%的应用.22.将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x <6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.【考点】列表法与树状图法;频数(率)分布直方图;扇形统计图;中位数.【分析】(1)根据题意可得:这部分男生共有:5÷10%=50(人);又由只有A组男人成绩不合格,可得:合格人数为:50﹣5=45(人);(2)由这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,可得:成绩的中位数落在C组;又由D组有15人,占15÷50=30%,即可求得:对应的圆心角为:360°×30%=108°;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他俩至少有1人被选中的情况,再利用概率公式即可求得答案.【解答】解:(1)∵A组占10%,有5人,∴这部分男生共有:5÷10%=50(人);∵只有A组男人成绩不合格,∴合格人数为:50﹣5=45(人);(2)∵C组占30%,共有人数:50×30%=15(人),B组有10人,D组有15人,∴这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,∴成绩的中位数落在C组;∵D组有15人,占15÷50=30%,∴对应的圆心角为:360°×30%=108°;(3)成绩优秀的男生在E组,含甲、乙两名男生,记其他三名男生为a,b,c,画树状图得:∵共有20种等可能的结果,他俩至少有1人被选中的有14种情况,∴他俩至少有1人被选中的概率为: =.【点评】此题考查了树状图法与列表法求概率以及直方图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.23.2016年1月6日,我国南沙永暑礁新建港口、机场完成试航试飞,将为岛礁物资运输、人员往来、通信导航、救援补给提供便捷支持,使航行和飞行更为安全可靠.如图所示,永暑礁新建港口在A处,位于港口A的正西方的有一小岛B,小岛C在小岛B的北偏东60°方向,小岛C在A的北偏西45°方向;小岛D在小岛B的北偏东38°方向且满足∠BCD=37°,港口A和小岛C的距离是23km.(参考数据:sin38°≈,tan22°≈,tan37°≈)(1)求BC的距离.(2)求CD的距离.【考点】解直角三角形的应用-方向角问题.【分析】(1)作CE⊥AB于E,根据正弦的定义求出CE的长,根据直角三角形的性质求出BC的长;(2)作DF⊥BC于F,设DF=xkm,根据正切的定义用x表示出CF、BF,结合图形计算即可求出x的值,根据勾股定理计算即可.【解答】解:(1)作CE⊥AB于E,由题意得,∠CAE=45°,∠CBE=30°,∴AE=CE=AC•sin∠CAE=23×=23km,∴BC=2CE=46km,答:BC的距离为46km;(2)作DF⊥BC于F,设DF=xkm,∴CF==x,BF==x,则x+x=46,解得,x=12,∴DF=12,CF=16,由勾股定理得,CD==20km.答:CD的距离为20km.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确作出辅助线、熟记锐角三角函数的定义是解题的关键.24.我们知道平方运算和开方运算是互逆运算,如:a2±2ab+b2=(a±b)2,那么,那么如何将双重二次根式化简呢?如能找到两个数m,n(m>0,n>0),使得即m+n=a,且使即m•n=b,那么∴,双重二次根式得以化简;例如化简:;∵3=1+2且2=1×2,∴∴由此对于任意一个二次根式只要可以将其化成的形式,且能找到m,n(m>0,n>0)使得m+n=a,且m•n=b,那么这个双重二次根式一定可以化简为一个二次根式.请同学们通过阅读上述材料,完成下列问题:(1)填空: = ﹣;= +;(2)化简:①②(3)计算:.。

九年级上数学期末测试题(包含上册全册_下册部分内容)

九年级上数学期末测试题(包含上册全册_下册部分内容)

精品文档下载【本页是封面,下载后可以删除!】数学试卷xx x考试时间:上午8:00——10:001.如图1,Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于D ,若CD =3cm ,则点D 到AB 的距离DE 是A .5cmB .4cmC .3cmD .2cm 2.一元二次方程有两个不相等...的实数根,则满足的条件是 A.=0 B.>0 C.<0 D.≥03.如图2,在□ABCD 中,E 是BC 的中点,且∠AEC=∠DCE ,则下列结论不正确...的是 A .S △ADF=2S △EBF B .BF=DF C .四边形AECD 是等腰梯形 D . ∠AEC=∠ADC4.已知:如图3,在正方形外取一点,连接 ,,.过点作的垂线交于点. 若, .下列结论:①△≌△;②点到直线的距离为; ③;④; ⑤.其中正确结论的序号是A .①③④B .①②⑤C .③④⑤D .①③⑤5.有一正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的结果如图4所示。

如果记6的对面的数字为,2的对面的数字为,那么的值为A .3B .7C .8D .116.向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的关系为y=ax 2bx+c (a ≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高 度最高的是A .第8秒B .第10秒C .第12秒D .第15秒 7.如图5,在等腰Rt △ABC 中,∠C =90o ,AC =6,D 是AC 上一点, 若tan ∠DBA =,则AD 的长为A. 2B.C.D.18.二次函数的图象如图69.已知粉笔盒里只有2支黄色粉笔和3支红色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,则取出黄色粉笔的概率是A .B .C .D .10.如图所示,四边形OABC 为正方形,边长为6,点A 、C 分别在x 轴,y 轴的正半轴上, 点D在OA 上,且D点的坐标为(2,0),P 是OB 上的一个动点,试求PD +PA 和的最小值是 A . B . C .4 D .6二、填空题(每小题3分,满分24分) 将正确答案最简形式填写在横线上。

九年级数学上学期期末考试试题 新人教版

九年级数学上学期期末考试试题  新人教版

重庆市九龙坡区西彭镇第三中学2016届九年级数学上学期期末考试试题(全卷共五个大题,满分:150分,考试时间:120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为(2b a -,244ac ba-),对称轴公式为2b x a =-.一、选择题: 本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的. 请将正确答案的代号填涂在答题卡上.1.抛物线2(3)1y x =-+的顶点坐标是A .(3,1)-B .(3,1)-C .(3,1)D .(3,1)-- 2. 下列图形中,既是轴对称图形又是中心对称图形的是A .B .C .D . 3. 一元二次方程220x x -=的解为A .10x =,22x =B .0x =C .2x =D .12x =-,20x =4. 一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球。

从布袋里任意摸出1个球,则摸出的球是白球的概率为A .21 B .51 C . 31 D . 32 5.在Rt ABC 中,∠C=90°,AC=6,BC=8,则以点C 为圆心,半径为4.8的圆C 与AB 的位置关系是A .相切B .相交C .相离D .不确定6.如图,∠AOB=90°,∠B=30°,△A′OB′ 可以看作是由△AOB 绕点O 顺时针旋转α角度得到的.若点A′ 在AB 上,则旋转角α的度数是A .30°B .45°C .60°D .90°7.如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 且相交于点E ,则下列结论中不成立的是第7题图A .CE ED =B .CB BD =C .∠ACB =90°D .∠COB =3∠D8.如图所示,二次函数22y x x k =-++的图像与x 轴的一个交点坐标为(3,0),则关于x 的一元二次方程220x x k -++=的解为A .123,2x x ==-B .123,1x x ==-C .121,1x x ==-D .123,3x x ==-9.设A 1(2,)y -,B 2(1,)y ,C 3(2,)y 是抛物线2(1)y x a =-++上的三点,则123,,y y y 的大小关系为 A .123y y y >> B .132y y y >> C .321y y y >> D .312y y y >>第6题图 第8题图10.如图,点P 、Q 是反比例函数(0,0)ky k x x=>>图象上的两点,PA ⊥y 轴于点A ,QN ⊥x 轴于点N ,作PM ⊥x 轴于点M ,QB ⊥y 轴于点B ,连接PB 、QM ,△ABP 的面积记为S 1,△QMN 的面积记为S 2,则S 1与S 2的大小关系是A .12S S <B .12S S >C .12S S =D .1S 与2S 的大小关系不确定第10题图 第12题图11.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第7个图形需要黑色棋子的个数是A .48B .64C .63D .8012.如图,已知二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于点A (﹣1,0),对称轴为直线x =1,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论: ①当x >3时,y <0;②0a b c -+=;③213a -≤≤-;④422a b c ++<; 其中正确的结论是A .①③④ B.①②③ C.①②④ D.①②③④二、填空题:本大题6个小题,每小题4分,共24分,把答案填写在答题卡相应的位置上. 13.二次函数()252y x =--+的最大值是 .14.若一元二次方程260x mx ++=的一个根为2x =,则m = . 15.如图,A 、B 、C 为⊙O 上三点,且∠ACB=35°,则∠OAB 的度数是_______度.16.如图,在边长为ABC 中,以点A 为圆心的圆与边BC 相切,与边AB 、AC 相交于点D 、E ,则图中阴影部分的面积为 .第15题图第16题图第18题图17.有五张正面分别标有数字2-,0,12,1,3的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使关于x 的分式方程11222ax x x-+=--有整数解的概率是 .18.如图,菱形OABC 在直角坐标系中,点A 的坐标为(52,0),对角线OB=反比例函数x ky =(0k ≠,0x >)经过点C.则k 的值为 .三、解答题:本大题2个小题,共14分,解答时应写出必要的文字说明、演算步骤或推理过程,并答在答题卡相应的位置上. 19.解方程:23520x x --=20.如图,AB 是⊙O 的直径,D 是⊙O 上一点,过点D 作⊙O 的切线交AB 的延长线于点C ,若∠C=20°,求∠A 的度数。

九年级上册重庆数学期末试卷检测题(Word版 含答案)

九年级上册重庆数学期末试卷检测题(Word版 含答案)

九年级上册重庆数学期末试卷检测题(Word 版 含答案)一、选择题1.下列关于x 的一元二次方程,有两个不相等的实数根的方程的是( )A .x 2+1=0B .x 2+2x +1=0C .x 2+2x +3=0D .x 2+2x -3=0 2.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( ) A .5B .4C .3D .2 3.若将半径为24cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为( )A .3cmB .6cmC .12cmD .24cm4.如图,等腰直角三角形ABC 的腰长为4cm ,动点P 、Q 同时从点A 出发,以1cm/s 的速度分别沿A →B 和A →C 的路径向点B 、C 运动,设运动时间为x (单位:s),四边形PBC Q 的面积为y(单位:cm 2),则y 与x(0≤x≤4)之间的函数关系可用图象表示为( )A .B .C .D . 5.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A .方差B .平均数C .众数D .中位数6.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .7.下列方程是一元二次方程的是( )A .2321x x =+B .3230x x --C .221x y -=D .20x y += 8.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A .22B .1C .2D .29.在△ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值是( )A .45B .35C .43D .3410.如图,点A 、B 、C 都在⊙O 上,若∠ABC =60°,则∠AOC 的度数是( )A .100°B .110°C .120°D .130° 11.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ 的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A .①②③B .②③④C .①③④D .①②③④12.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x ,则下列方程中,正确的是( )A .600(1+x )=950B .600(1+2x )=950C .600(1+x )2=950D .950(1﹣x )2=600二、填空题13.已知tan (α+15°)= 33,则锐角α的度数为______°. 14.如图,四边形的两条对角线AC 、BD 相交所成的锐角为60︒,当8AC BD +=时,四边形ABCD 的面积的最大值是______.15.若圆锥的底面半径为3cm ,高为4cm ,则它的侧面展开图的面积为_____cm 2.16.当a≤x≤a+1时,函数y=x 2﹣2x+1的最小值为1,则a 的值为_____.17.抛物线21(5)33y x =--+的顶点坐标是_______.18.点P 在线段AB 上,且BP AP AP AB=.设4AB cm =,则BP =__________cm . 19.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是____________.20.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .21.如图,E 是▱ABCD 的BC 边的中点,BD 与AE 相交于F ,则△ABF 与四边形ECDF 的面积之比等于_____.22.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.23.如图,在□ABCD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△DEM 的面积为1,则□ABCD 的面积为________.24.如图,二次函数y =x (x ﹣3)(0≤x ≤3)的图象,记为C 1,它与x 轴交于点O ,A 1;将C 1点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……若P (2020,m )在这个图象连续旋转后的所得图象上,则m =_____.三、解答题25.京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A 、B 和点C 、D ,先用卷尺量得AB=160m ,CD=40m ,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).26.如图是输水管的切面,阴影部分是有水部分,其中水面AB 宽10cm ,水最深3cm ,求输水管的半径.27.已知二次函数y =2x 2+bx ﹣6的图象经过点(2,﹣6),若这个二次函数与x 轴交于A .B 两点,与y 轴交于点C ,求出△ABC 的面积.28.A 箱中装有3张相同的卡片,它们分别写有数字1,2,4;B 箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A 箱、B 箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:(1)两张卡片上的数字恰好相同的概率.(2)如果取出A 箱中卡片上的数字作为十位上的数字,取出B 箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.29.计算(102020318(1)2⎛⎫+- ⎪⎝⎭(2)2430x x -+=30.⊙O 为△ABC 的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC 分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC ;(2)如图2,直线l 与⊙O 相切于点P ,且l ∥BC .31.如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标;(3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.32.如图示,AB 是O 的直径,点F 是半圆上的一动点(F 不与A ,B 重合),弦AD 平分BAF ∠,过点D 作DE AF ⊥交射线AF 于点AF .(1)求证:DE 与O 相切:(2)若8AE =,10AB =,求DE 长;(3)若10AB =,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF EF ⋅的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程.【详解】A、△=0-4×1×1=-4<0,没有实数根;B、△=22-4×1×1=0,有两个相等的实数根;C、△=22-4×1×3=-8<0,没有实数根;D、△=22-4×1×(-3)=16>0,有两个不相等的实数根,故选D.【点睛】本题考查了根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.2.D解析:D【解析】【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.【详解】解:根据题意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故选:D.【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.3.C解析:C【解析】【分析】易得圆锥的母线长为24cm,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径.【详解】解:圆锥的侧面展开图的弧长为:2π24224π⨯÷=,∴圆锥的底面半径为:()24π2π12cm ÷=.故答案为:C.【点睛】本题考查的知识点是圆锥的有关计算,熟记各计算公式是解题的关键.4.C解析:C【解析】【分析】先计算出四边形PBCQ 的面积,得到y 与x 的函数关系式,再根据函数解析式确定图象即可.【详解】由题意得: 22111448222y x x =⨯⨯-=-+(0≤x≤4), 可知,抛物线开口向下,关于y 轴对称,顶点为(0,8),故选:C.【点睛】此题考查二次函数的性质,根据题意列出解析式是解题的关键.5.A解析:A【解析】【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差故选A考点:方差6.B解析:B【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB 、CB 、AC 、2只有选项B 的各边为1B .【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.7.A解析:A【解析】【分析】根据一元二次方程的定义逐一判断即可.【详解】解:A . 2321x x =+是一元二次方程,故本选项符合题意;B . 3230x x --是一元三次方程,故本选项不符合题意;C . 221x y -=是二元二次方程,故本选项不符合题意;D . 20x y +=是二元一次方程,故本选项不符合题意;故选A .【点睛】此题考查的是一元二次方程的判断,掌握一元二次方程的定义是解决此题的关键.8.A解析:A【解析】【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案.【详解】令0y =,则21404x -=, 解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,, 设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+,∵20>,∴当5m =时,2PB 有最小值为:2,即PB ,∵A 、B 为抛物线的对称点,对称轴为y 轴,∴O 为线段AB 中点,且Q 为AP 中点,∴12OQ PB ==. 故选:A .本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB的最小值是解题的关键.9.A解析:A【解析】【分析】先根据勾股定理计算出斜边AB的长,然后根据正弦的定义求解.【详解】如图,∵∠C=90°,AC=8,BC=6,∴AB222268BC AC+=+10,∴sin B=84105 ACAB==.故选:A.【点睛】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.10.C解析:C【解析】【分析】直接利用圆周角定理求解.【详解】解:∵∠ABC和∠AOC所对的弧为AC,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.解析:B【解析】【分析】①由于AC 与BD 不一定相等,根据圆周角定理可判断①;②连接OD ,利用切线的性质,可得出∠GPD=∠GDP ,利用等角对等边可得出GP=GD ,可判断②;③先由垂径定理得到A 为CE 的中点,再由C 为AD 的中点,得到CD AE =,根据等弧所对的圆周角相等可得出∠CAP=∠ACP ,利用等角对等边可得出AP=CP ,又AB 为直径得到∠ACQ 为直角,由等角的余角相等可得出∠PCQ=∠PQC ,得出CP=PQ ,即P 为直角三角形ACQ 斜边上的中点,即为直角三角形ACQ 的外心,可判断③;④正确.证明△APF ∽△ABD ,可得AP×AD=AF×AB ,证明△ACF ∽△ABC ,可得AC 2=AF×AB ,证明△CAQ ∽△CBA ,可得AC 2=CQ×CB ,由此即可判断④;【详解】解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误.②正确.连接OD . GD 是切线,DG OD ∴⊥,90GDP ADO ∴∠+∠=︒,OA OD =,ADO OAD ∴∠=∠,90APF OAD ∠+∠=︒,GPD APF ∠=∠,GPD GDP ∴∠=∠,GD GP ∴=,故②正确.③正确.AB CE ⊥,∴AE AC =,AC CD =,∴CD AE =,CAD ACE ∴∠=∠,PC PA ∴=, AB 是直径,90ACQ ∴∠=︒,90ACP QCP ∴∠+∠=︒,90CAP CQP ∠+∠=︒,PCQ PQC ∴∠=∠,PC PQ PA ∴==,90ACQ ∠=︒,∴点P 是ACQ ∆的外心.故③正确.④正确.连接BD .90AFP ADB ∠=∠=︒,PAF BAD ∠=∠,APF ABD ∴∆∆∽,∴AP AF AB AD=, AP AD AF AB ∴⋅=⋅,CAF BAC ∠=∠,90AFC ACB ∠=∠=︒,ACF ABC ∴∆∆∽,可得2AC AF AB =,ACQ ACB ∠=∠,CAQ ABC ∠=∠,CAQ CBA ∴∆∆∽,可得2AC CQ CB =⋅,AP AD CQ CB ∴⋅=⋅.故④正确,故选:B .【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.12.C解析:C【解析】【分析】设快递量平均每年增长率为x ,根据我国2018年及2020年的快递业务量,即可得出关于x 的一元二次方程,此题得解.【详解】设快递量平均每年增长率为x ,依题意,得:600(1+x )2=950.故选:C .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题13.15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,解析:15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.14.【解析】【分析】设AC=x,根据四边形的面积公式,,再根据得出,再利用二次函数最值求出答案.【详解】解:∵AC、BD相交所成的锐角为∴根据四边形的面积公式得出,设AC=x,则BD=8-解析:【解析】【分析】设AC=x,根据四边形的面积公式,1S sin 602AC BD =⨯⨯︒,再根据sin 602︒=得出()1 S 82x x =-. 【详解】解:∵AC 、BD 相交所成的锐角为60︒ ∴根据四边形的面积公式得出,1S sin 602AC BD =⨯⨯︒ 设AC=x ,则BD=8-x所以,())21S 842x x x =-=-+∴当x=4时,四边形ABCD 的面积取最大值故答案为:【点睛】本题考查的知识点主要是四边形的面积公式,熟记公式是解题的关键.15.15【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长∴圆锥的侧面展开图的面积故填:.【点睛】解析:15π【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长5()cm ==∴圆锥的侧面展开图的面积()23515cmππ=⨯⨯= 故填:15π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x 的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a 的一元一次方程,解之即可得出结论.【详解】当y=1时,有x解析:2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x 的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a 的一元一次方程,解之即可得出结论.【详解】当y=1时,有x 2﹣2x+1=1,解得:x 1=0,x 2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故答案为:2或﹣1.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x 的值是解题的关键.17.(5,3)【解析】【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h ,k ),题目比较解析:(5,3)【解析】【分析】根据二次函数顶点式2()y a x h k =-+的性质直接求解.【详解】解:抛物线21(5)33y x =--+的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质2()y a x h k =-+其顶点坐标为(h ,k ),题目比较简单. 18.【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x ,根据题意可得,,整理为:,利用求根公式解方程得:,∴,(舍去).解析:(6-【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x , 根据题意可得,444x x x -=-, 整理为:212160x x -+=,利用求根公式解方程得:x 6===±,∴16x =-264x =+>(舍去).故答案为:6-【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.19.120°.【解析】试题分析:若△ABC 以O 为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC 旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形解析:120°.【解析】试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形.20.4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=解析:4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=0.4.故答案为:0.4.21.【解析】【分析】△ABF和△ABE等高,先判断出,进而算出,△ABF和△ AFD等高,得,由,即可解出.【详解】解:∵四边形ABCD 为平行四边形,∴AD∥BC,AD =BC ,又∵E 是▱ 解析:25【解析】【分析】△ABF 和△ABE 等高,先判断出23ABF ABE S AF S AE ∆∆==,进而算出6ABCD ABF S S ∆=,△ABF 和 △ AFD 等高,得2ADF ABF S DF S BF∆∆==,由5=2ABE ADF ABF ECDF S S S S S ∆∆∆=--四边形平行四边形ABCD ,即可解出. 【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC ,又∵E 是▱ABCD 的BC 边的中点, ∴12BE EF BF BE AD AF DF BC ====, ∵△ABE 和△ABF 同高, ∴23ABF ABE S AF S AE ∆==, ∴S △ABE =32S △ABF , 设▱ABCD 中,BC 边上的高为h , ∵S △ABE =12×BE ×h ,S ▱ABCD =BC ×h =2×BE ×h , ∴S ▱ABCD =4S △ABE =4×32S △ABF =6S △ABF , ∵△ABF 与△ADF 等高, ∴2ADF ABF S DF S BF∆∆==, ∴S △ADF =2S △ABF ,∴S 四边形ECDF =S ▱ABCD ﹣S △ABE ﹣S △ADF =52S △ABF , ∴25ABFECDF S S ∆=四边形,故答案为:25.【点睛】本题考查了相似三角的面积类题型,运用了线段成比例求面积之间的比值,灵活运用线段比是解决本题的关键.22.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.23.16【解析】【分析】【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF, △DEM∽△BHM∴ ,∵F是CD的中点∴DF解析:16【解析】【分析】【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF, △DEM∽△BHM ∴DE DFCH CF= ,2()DEMBMHS DES BH∆∆=∵F是CD的中点∴DF=CF∴DE=CH∵E是AD中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵1DEMS∆=∴211()3BMHS∆=∴9BMHS∆=∴9CFHBCFMS S∆+=四边形∴9DEFBCFMS S∆+=四边形∴9DME DFMBCFMS S S∆∆++=四边形∴19BCDS∆+=∴8BCDS∆=∵四边形ABCD是平行四边形∴2816ABCDS=⨯=四边形故答案为:16.24.【解析】【分析】x (x ﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y =﹣(x ﹣2019)(x ﹣2022),然 解析:【解析】【分析】x (x ﹣3)=0得A 1(3,0),再根据旋转的性质得OA 1=A 1A 2=A 2A 3=…=A 673A 674=3,所以抛物线C 764的解析式为y =﹣(x ﹣2019)(x ﹣2022),然后计算自变量为2020对应的函数值即可.【详解】当y =0时,x (x ﹣3)=0,解得x 1=0,x 2=3,则A 1(3,0),∵将C 1点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……∴OA 1=A 1A 2=A 2A 3=…=A 673A 674=3,∴抛物线C 764的解析式为y =﹣(x ﹣2019)(x ﹣2022),把P (2020,m )代入得m =﹣(2020﹣2019)(2020﹣2022)=2.故答案为2.【点睛】本题考查图形类规律,解题的关键是掌握图形类规律的基本解题方法.三、解答题25.该段运河的河宽为.【解析】【分析】过D 作DE ⊥AB ,可得四边形CHED 为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH 与直角三角形BDE 中,设CH=DE=xm ,利用锐角三角函数定义表示出AH 与BE ,由AH+HE+EB=AB 列出方程,求出方程的解即可得到结果.【详解】解:过D 作DE AB ⊥,可得四边形CHED 为矩形,40HE CD m ∴==,设CH DE xm ==,在Rt BDE ∆中,60DBA ∠=︒,BE xm ∴=, 在Rt ACH ∆中,30BAC ∠=︒,AH ∴=,由160AH HE EB AB m ++==40160++=,解得:x =CH =,则该段运河的河宽为303m.【点睛】考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.26.173cm【解析】【分析】设圆形切面的半径为r,过点O作OD⊥AB于点D,交⊙O于点E,由垂径定理可求出BD 的长,再根据最深地方的高度是3cm得出OD的长,根据勾股定理即可求出OB的长.【详解】解:设圆形切面的半径为r,过点O作OD⊥AB于点D,交⊙O于点E,则AD=BD=12AB=12×10=5cm,∵最深地方的高度是3cm,∴OD=r﹣3,在Rt△OBD中,OB2=BD2+OD2,即2r=52+(r﹣3)2,解得r=173(cm),∴输水管的半径为173cm.【点睛】本题考查了垂径定理,构造圆中的直角三角形,灵活利用垂径定理是解题的关键. 27.【解析】【分析】如图,把(0,6)代入y=2x2+bx﹣6可得b值,根据二次函数解析式可得点C坐标,令y=0,解方程可求出x的值,即可得点A、B的坐标,利用△ABC的面积=12×AB×OC,即可得答案.【详解】如图,∵二次函数y=2x2+bx﹣6的图象经过点(2,﹣6),∴﹣6=2×4+2b﹣6,解得:b=﹣4,∴抛物线的表达式为:y=2x2﹣4x﹣6;∴点C(0,﹣6);令y=0,则2x2﹣4x﹣6=0,解得:x1=﹣1,x2=3,∴点A、B的坐标分别为:(﹣1,0)、(3,0),∴AB=4,OC=6,∴△ABC的面积=12×AB×OC=12×4×6=12.【点睛】本题考查二次函数图象上的点的坐标特征及图象与坐标轴的交点问题,分别令x=0,y=0,即可得出抛物线与坐标轴的交点坐标;也考查了三角形的面积.28.(1)29;(2)59.【解析】【分析】(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于放回实验.列举出符合题意:“两张卡片上的数字恰好相同”的各种情况的个数,再根据概率公式解答即可.(2)列举出符合题意:“两张卡片组成的两位数能被3整除”的各种情况的个数,再根据概率公式解答即可【详解】(1)由题意可列表:∴一共有9种情况,两张卡片上的数字恰好相同的有2种情况,∴两张卡片上的数字恰好相同的概率是29; (2)由题意可列表:∴一共有9种情况,两张卡片组成的两位数能被3整除的有5种情况,∴两张卡片组成的两位数能被3整除的概率是59. 考点:列表法与树状图法.29.(1)2;(2)13x =,21x =【解析】【分析】(1)按照开立方,零指数幂,正整数指数幂的法则计算即可;(2)用因式分解法解一元二次方程即可.【详解】(1)解:原式=2112-+=(2)解:(3)(1)0x x --= 30x -=或10x -=123,1x x ∴==【点睛】本题主要考查实数的混合运算和解一元二次方程,掌握实数混合运算的法则和因式分解法是解题的关键.30.(1)作图见试题解析;(2)作图见试题解析.【解析】试题分析:(1)过点C 作直径CD ,由于AC=BC ,弧AC=弧BC ,根据垂径定理的推理得CD 垂直平分AB ,所以CD 将△ABC 分成面积相等的两部分;(2)连结PO 并延长交BC 于E ,过点A 、E 作弦AD ,由于直线l 与⊙O 相切于点P ,根据切线的性质得OP ⊥l ,而l ∥BC ,则PE ⊥BC ,根据垂径定理得BE=CE ,所以弦AE 将△ABC分成面积相等的两部分. 试题解析:(1)如图1,直径CD 为所求;(2)如图2,弦AD 为所求.考点:1.作图—复杂作图;2.三角形的外接圆与外心;3.切线的性质;4.作图题.31.(1)265y x x =-+-;(2)1258S =,点P 坐标为515,24⎛⎫ ⎪⎝⎭;(3)点M 的坐标为7837,2323⎛⎫- ⎪⎝⎭, 6055,2323⎛⎫- ⎪⎝⎭ 【解析】【分析】(1)利用B (5,0)用待定系数法求抛物线解析式;(2)作PQ ∥y 轴交BC 于Q ,根据12PBC S PQ OB ∆=⋅求解即可; (3)作∠CAN=∠NAM 1=∠ACB ,则∠A M 1B=3∠ACB, 则∆ NAM 1∽∆ A C M 1,通过相似的性质来求点M 1的坐标;作AD ⊥BC 于D,作M 1关于AD 的对称点M 2, 则∠A M 2C=3∠ACB,根据对称点坐标特点可求M 2的坐标.【详解】(1)把()5,0B 代入265y ax x =+-得253050a +-=1a =-.∴265y x x =-+-;(2)作PQ ∥y 轴交BC 于Q ,设点()2,65P x x x -+-,则∵()5,0B∴OB=5, ∵Q 在BC 上,∴Q 的坐标为(x ,x-5),∴PQ=2(65)(5)x x x -+---=25x x -+,∴12PBC S PQ OB ∆=⋅ =21(5)52x x -+⨯ =252522x x -+ ∴当52x =时,S 有最大值,最大值为1258S =, ∴点P 坐标为515,24⎛⎫ ⎪⎝⎭. (3)如图1,作∠CAN=∠NAM 1=∠ACB ,则∠A M 1B=3∠ACB,∵∠CAN=∠NAM 1,∴AN=CN,∵265y x x =-+-=-(x-1)(x-5),∴A 的坐标为(1,0),C 的坐标为(0,-5),设N 的坐标为(a,a-5),则∴2222(1)(5)(55)a a a a -+-=+-+,∴a= 136, ∴N 的坐标为(136,176-), ∴AN 2=221317(1)()66-+-=16918,AC 2=26, ∴22169113182636AN AC =⨯=, ∵∠NAM 1=∠ACB ,∠N M 1A=∠C M 1A ,∴∆ NAM 1∽∆ A C M 1,∴11AMAN AC CM =, ∴21211336AM CM =, 设M 1的坐标为(b,b-5),则∴222236[(1)(5)]13[(55)]b b b b -+-=+-+,∴b 1= 7823,b 2=6(不合题意,舍去), ∴M 1的坐标为7837(,)2323-, 如图2,作AD ⊥BC 于D,作M 1关于AD 的对称点M 2, 则∠A M 2C=3∠ACB,易知∆ADB 是等腰直角三角形,可得点D 的坐标是(3,-2),∴M 2 横坐标= 7860232323⨯-=, M 2 纵坐标= 37552(2)()2323⨯---=-, ∴M 2 的坐标是6055(,)2323-, 综上所述,点M 的坐标是7837(,)2323-或6055(,)2323-. 【点睛】 本题考查了二次函数与几何图形的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质及相似三角形的判定与性质,会运用分类讨论的思想解决数学问题.32.(1)详见解析;(2)4;(3)252【解析】【分析】(1)首先连接OD ,通过半径和角平分线的性质进行等角转换,得出OD AE ∥,进而得出OD DE ⊥,即可得证;(2)首先连接BD ,得出AED ADB ∆∆∽,进而得出2A D A A E B =⋅,再根据勾股定理得出DE ;(3)首先连接DF ,过点D 作DG AB ⊥,得出AED AGD ∆∆≌,再得EDF GDB ∆∆≌,进而得出2AB AF EF =+,然后构建二次函数,即可得出其最大值.【详解】(1)证明:连接OD∵OD OA =∴12∠=∠∵AD 平分BAE ∠∴13∠=∠∴32∠=∠∴OD AE ∥∵DE AF ⊥∴OD DE ⊥又∵OD 是O 的半径∴DE 与O 相切(2)解:连接BD∵AB 为直径∴∠ADB=90°∵13∠=∠∴AED ADB ∆∆∽∴2A D A A E B =⋅∴280AD =∴Rt ADE ∆中2228084DE AD AE =-=-=(3)连接DF ,过点D 作DG AB ⊥于G∵13∠=∠,DE ⊥AE ,AD=AD∴AED AGD ∆∆≌∴AE AG =,DE=DG∴EDF GDB ∆∆≌∴EF BG =∴2AB AF EF =+即:210x y +=∴152y x =-+ ∴2152AF EF x x ⋅=-+ 根据二次函数知识可知:当5x =时,()max 252AF EF ⋅=【点睛】此题主要考查直线与圆的位置关系、相似三角形的判定与性质以及全等三角形的判定与性质与二次函数的综合应用,熟练掌握,即可解题.。

九龙坡初三上学期数学试卷

九龙坡初三上学期数学试卷

一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. √4B. 3.14C. √25D. √22. 下列各数中,绝对值最小的是()A. -3B. 0C. 2D. -53. 已知 a > b,下列不等式中成立的是()A. a - b > 0B. a + b < 0C. a - b < 0D. a + b > 04. 下列函数中,是奇函数的是()A. y = x^2B. y = x^3C. y = |x|D. y = √x5. 下列方程中,无解的是()A. x + 2 = 0B. 2x + 3 = 0C. x^2 + 1 = 0D. 3x - 6 = 06. 已知等差数列 {an} 的前n项和为 Sn,若 a1 = 3,公差 d = 2,则 S10 = ()A. 90B. 100C. 110D. 1207. 在△ABC中,角A、角B、角C的对边分别为a、b、c,若 a = 5,b = 8,c = 10,则△ABC是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形8. 已知函数 y = kx + b(k ≠ 0),若该函数的图像经过点(1,2)和(-1,0),则该函数的图像()A. 经过一、二、三象限B. 经过一、二、四象限C. 经过一、三、四象限D. 经过二、三、四象限9. 下列命题中,正确的是()A. 平行四边形的对角线互相平分B. 等腰三角形的底角相等C. 直角三角形的斜边是最长的D. 等边三角形的三个角都相等10. 已知一元二次方程 x^2 - 4x + 3 = 0 的两个根为 x1 和 x2,则 x1 + x2 = ()A. 4B. -4C. 3D. -3二、填空题(每题5分,共50分)11. 已知 a + b = 5,ab = 6,则 a^2 + b^2 = _______。

12. 若√3x + 4 = 0,则 x = _______。

九龙坡区初三数学上册试卷

九龙坡区初三数学上册试卷

一、选择题(每题4分,共40分)1. 下列选项中,不是有理数的是()A. 0.5B. -3C. √4D. 1/22. 若a、b是相反数,则a+b的值为()A. 0B. aC. -bD. b3. 下列方程中,无解的是()A. 2x+3=7B. 3x-5=2x+1C. 4x+2=4x+6D. 5x-3=2x+74. 已知a=3,b=5,则a²+b²的值为()A. 34B. 38C. 35D. 325. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 圆D. 长方形6. 在直角坐标系中,点P(2,-3)关于x轴的对称点是()A. (2,3)B. (-2,3)C. (2,-3)D. (-2,-3)7. 下列选项中,不是等差数列的是()A. 2,5,8,11B. 3,6,9,12C. 4,8,12,16D. 5,10,15,208. 若x²+4x+3=0,则x的值为()A. -1B. 1C. -3D. 39. 下列函数中,不是一次函数的是()A. y=2x+1B. y=3C. y=-x+4D. y=5x²+210. 已知一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长为()A. 16cmB. 24cmC. 26cmD. 28cm二、填空题(每题4分,共40分)11. 若a、b是方程2x+3=5的两根,则a+b=______。

12. 若m=√9,则m²=______。

13. 在直角坐标系中,点A(-2,3)到原点O的距离为______。

14. 已知数列1,4,7,10,…是等差数列,则第10项为______。

15. 若x²-5x+6=0,则x²-5x=______。

16. 在直角坐标系中,直线y=2x+1与x轴的交点坐标为______。

17. 若a=3,b=5,则a²+b²-ab的值为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015—2016学年度上学期期末考试九年级数学试题(全卷共五个大题,满分:150分,考试时间:120分钟)参考公式:抛物线2(0)y axbx c a =++≠的顶点坐标为(2b a -,244ac b a-),对称轴公式为2b x a =-. 一、选择题: 本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的. 请将正确答案的代号填涂在答题卡上.1.抛物线2(3)1y x =-+的顶点坐标是A .(3,1)-B .(3,1)-C .(3,1)D .(3,1)-- 2. 下列图形中,既是轴对称图形又是中心对称图形的是A .B .C .D . 3. 一元二次方程220x x -=的解为A .10x =,22x =B .0x =C . 2x =D .12x =-,20x =4. 一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球。

从布袋里任意摸出1个球,则摸出的球是白球的概率为A . 21B .51C . 31D . 32 5.在Rt ABC 中,∠C=90°,AC=6,BC=8,则以点C 为圆心,半径为4.8的圆C 与AB 的位置关系是A .相切B .相交C .相离D .不确定6.如图,∠AOB=90°,∠B=30°,△A′OB′ 可以看作是由△AOB 绕点O 顺时针旋转α角度得到的.若点A′ 在AB 上,则旋转角α的度数是 A .30° B .45° C .60° D .90°7.如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 且相交于点E ,则下列结论中不成立的是第7题图A .CEED = B. CBBD = C .∠ACB =90° D .∠COB =3∠D 8.如图所示,二次函数22y x x k =-++的图像与x 轴的一个交点坐标为(3,0),则关于x 的一元二次方程220x x k -++=的解为A .123,2x x ==-B .123,1x x ==-C .121,1x x ==-D .123,3x x ==-9.设A 1(2,)y -,B 2(1,)y ,C 3(2,)y 是抛物线2(1)y x a =-++上的三点,则123,,y y y 的大小关系为 A .123y y y >> B .132y y y >> C .321y y y >> D .312y y y >>第6题图第8题图10.如图,点P 、Q 是反比例函数(0,0)ky k x x=>>图象上的两点,PA ⊥y 轴于点A ,QN ⊥x 轴于点N ,作PM ⊥x 轴于点M ,QB ⊥y 轴于点B ,连接PB 、QM ,△ABP 的面积记为S 1,△QMN 的面积记为S 2,则S 1与S 2的大小关系是 A .12S S <B .12S S >C .12S S =D .1S 与2S 的大小关系不确定第10题图 第12题图11.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第7个图形需要黑色棋子的个数是A .48B .64C .63D .8012.如图,已知二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于点A (﹣1,0),对称轴为直线x =1,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论: ①当x >3时,y <0;②0a b c -+=;③213a -≤≤-;④422abc ++<; 其中正确的结论是A .①③④B .①②③C .①②④D .①②③④二、填空题:本大题6个小题,每小题4分,共24分,把答案填写在答题卡相应的位置上. 13.二次函数()252y x =--+的最大值是 .14.若一元二次方程260x mx ++=的一个根为2x =,则m = .15.如图,A 、B 、C 为⊙O 上三点,且∠ACB=35°,则∠OAB 的度数是_______度.16.如图,在边长为ABC 中,以点A 为圆心的圆与边BC 相切,与边AB 、AC 相交于点D 、E ,则图中阴影部分的面积为 .第15题图 第16题图第18题图17.有五张正面分别标有数字2-,0,12,1,3的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使关于x 的分式方程11222ax x x-+=--有整数解的概率是 .18.如图,菱形OABC 在直角坐标系中,点A 的坐标为(52,0),对角线OB=xky =(0k ≠,0x >)经过点C .则k 的值为 . 三、解答题:本大题2个小题,共14分,解答时应写出必要的文字说明、演算步骤或推理过程,并答在答题卡相应的位置上.19.解方程:23520x x --=20.如图,AB 是⊙O 的直径,D 是⊙O 上一点,过点D 作⊙O 的切线交AB 的延长线于点C ,若∠C=20°,求∠A 的度数。

四、解答题:本大题4个小题,每小题10分,共40分,解答时应写出必要的文字说明、演算步骤或推理过程,并答在答题卡相应的位置上.21.如图,已知A (n ,2-),B (1,4)是一次函数y kx b =+的图象和反比例函数my x= 的图象的两个交点,直线AB 与y 轴交于点C . (1)求反比例函数和一次函数的解析式; (2)求△AOC 的面积。

22.为了调查某校学生对“校园足球”喜爱的情况,随机对该校学生进行了调查,调查的结果分为“非常喜欢”、“比较喜欢”、“基本喜欢”、“不太喜欢”四个等级,分别记作A 、B 、C 、D 。

根据调查结果绘制成了如下两幅不完整的统计图,请解答下列问题: 第20题图第21题图(1)扇形统计图中表示“C ”的扇形的圆心角度数为 度,并请补全男生的条形统计图; (2)选择“C ”的男生中有2人是九年级的,选择“D ”的女生中有1人是九年级的,现在要从选择“C ”的男生和选择“D ”的女生中各选1人来谈谈各自对“校园足球”的感想,请用画树状图或列表法求选中的两人刚好都来自九年级的概率.23.对于三个数a 、b 、c ,M |a ,b ,c |表示这三个数的平均数,min {a ,b ,c}表示a 、b 、c 这三个数中最小的数,如:M |-1,2,3|3321++-=34=,min {-1,2,3}=-1;M |-1,2,a |=31321+=++-a a ,min{-1,2,a}=⎩⎨⎧->--≤),1(1),1(a a a解决下列问题:(1) 填空:M |_______;min {3-,π-}=________ ; (2) 若min { 2,2x +2,4-2x }=2,求x 的取值范围;(3) 若M | 2,x +1,2x |= min { 2,x +1,2x },求 x 的值;(4) 如图,在同一平面直角坐标系中,画出了函数y =x +1,y =(x -1)2,y =2-x 的图像,则min { x+1,(x -1)2,2-x }的最大值为________.24.在2015年圣诞期间,甲卖家的A 商品进价为400元,他首先在进价的基础上增加100元,由于销量太好,他又连续两次涨价,结果标价比进价的2倍还多45元. (1)求甲卖家这两次涨价的平均增长率;第23题图第25题图(2)在这个圣诞期间,乙商家利用节日效应,大量销货、减少库存。

原来乙商家卖的B 商品销售单价为80元,一周的销量仅为40件,圣诞期间他把销售单价下调%a ,并作大量宣传,结果在圣诞节这一天的销量就比原来一周的销量增加(a +10)%,结果圣诞节那一天的总销售额达到3456元.求a 的值.五、解答题:本大题2个小题,每小题12分,共24分,解答时应写出必要的文字说明、演算步骤或推理过程,并答在答题卡相应的位置上.25.如图,在正方形ABCD 和正方形CEFG 中,AD=6,点D 、C 、E 三点在同一条直线上。

将正方形CEFG 时针旋转135°,得到正方形C E ′ F ′ G ′,连接DE ′ 和BG′,并延长交CD 于点M ,交DE′ 于点H . (1)求证:DG ′=BG′;(2)求BH 的长度.26.如图1,抛物线64212-+-=x x y 与x 轴相交于点A 、B ,与y轴相交于点C ,抛物线对称轴与x 轴相交于点M .(1)求△ABC 的面积;(2)若P 是x 轴上方的抛物线上的一个动点,求点P 到直线BC 的距离的最大值; (3)若Q 是x 轴上方抛物线上的一点(Q 、M 、C 不在同一条直线上),分别过点A 、B 作直线CQ 的垂线,垂足分别为D 、E ,当△MDE 为等腰直角三角形时,求Q 点的坐标.第26题图1第26题备用图2015-2016学年度上期期末考试 九年级数学参考答案和评分意见一、选择题(本大题12个小题,每小题4分,共48分)二、填空题(本大题共6个小题,每小题4分,共24分)13.2; 14.5-; 15.55;16.32π; 17.25; 18.3 三、解答题(本大题共2个小题,每小题7分,共14分) 19.解:3,5,2a b c ==-=-………………1分∴()242543249b ac ∆=-=-⨯⨯-=………………3分∴5726b x a -±==………………5分 ∴1212,3x x ==-………………7分 20.解:连接OD ………………1分∵CD 是⊙O 的切线∴OD ⊥CD ………………3分 ∵∠C=20°∴∠DOC=70°………………4分 ∵OA=OD∴∠A=∠ADO ………………5分∵∠A+∠ADO=∠DOC=70°∴∠A=∠ADO=12∠DOC=35°………………7分四、解答题(本大题4个小题,每小题10分,共40分) 21.(1) ∵反比例函数myx=经过点B (1,4) ∴41m=∴4m = ∴反比例函数的解析式为4y x=………………3分 第21题图∵A (n ,2-)在反比例函数4y x =的图像上∴42n-= ∴2n =- ∴点A (2,2--)………………4分又∵是一次函数y kx b =+的图像经过点A 和B∴224k b k b -=-+⎧⎨=+⎩,解之得,22k b =⎧⎨=⎩∴一次函数的解析式为22y x =+………………7分 (2)∵直线AB 与y 轴交于点C ∴点C 的坐标为()0,212222AOC S =⨯⨯= ………………10分22.(1)108;补全图略,其中C 组补4,D 组补1. ………………4分(2)C 组的男生有4人,用3C 表示九年级的,D 组的女生有3人,用3D 表示九年级的,列树状图(或列表)如下:从树形图(或列表)可知一共有12种等可能的结果,其中两人都来自九年级的有2种, …………………………………………………………8分 ∴P (两人都来自九年级)=21126=。

相关文档
最新文档