高二数学矩阵的乘法PPT课件
合集下载
2.2矩阵乘法的性质课件人教新课标
设A是二阶矩阵,n是任意自然数,规定
A0
E
,
2
A1 A,
A2 AA1,
A3 AA 2,
称A n为A的n次方幂.
An AA n1,
二阶矩阵A的方幂的性质
Ak Al Akl , (Ak )l Akl, 其中k , l是任意自然数.
例
设A
1 0
11,求A6.
解法一(根据定义)
A2
AA
1 0
对于矩阵A
1 0
11,B
1 -2
-31,C 10
10,可以得到:
(
AB)C
1 2
32 10
10
2 3
12.
A(BC) 10
11
1 3
12
2 3
12.
于是有(AB)C A(BC).
二阶矩阵的乘法满足结合律
性质(结合律)
设A, B,C是任意的三个二阶矩阵 ,则A(BC) (AB)C. A的n次方幂
2 1
1 0
13,
A6 A3 A3 10
13 10
13
1 0
16.
下面考察矩阵的乘法是否满足交换律
例如:矩阵
1
2 0
0 1
确定的是伸缩变换: xy''
1
2 0
10
x y
,
矩阵
0 1
-01确定的是旋转变换R
900: xy''
0 1
-01
x y
.
变换R900 对单位正方形区域的作用结果如图2.2 1所示.
y
y
y
1
1 0
1
2
0 1
A0
E
,
2
A1 A,
A2 AA1,
A3 AA 2,
称A n为A的n次方幂.
An AA n1,
二阶矩阵A的方幂的性质
Ak Al Akl , (Ak )l Akl, 其中k , l是任意自然数.
例
设A
1 0
11,求A6.
解法一(根据定义)
A2
AA
1 0
对于矩阵A
1 0
11,B
1 -2
-31,C 10
10,可以得到:
(
AB)C
1 2
32 10
10
2 3
12.
A(BC) 10
11
1 3
12
2 3
12.
于是有(AB)C A(BC).
二阶矩阵的乘法满足结合律
性质(结合律)
设A, B,C是任意的三个二阶矩阵 ,则A(BC) (AB)C. A的n次方幂
2 1
1 0
13,
A6 A3 A3 10
13 10
13
1 0
16.
下面考察矩阵的乘法是否满足交换律
例如:矩阵
1
2 0
0 1
确定的是伸缩变换: xy''
1
2 0
10
x y
,
矩阵
0 1
-01确定的是旋转变换R
900: xy''
0 1
-01
x y
.
变换R900 对单位正方形区域的作用结果如图2.2 1所示.
y
y
y
1
1 0
1
2
0 1
矩阵乘法的ppt课件
分步矩阵乘法
总结词
将矩阵乘法拆分成多个步骤,逐步进行计算。
详细描述
分步矩阵乘法是一种将矩阵乘法拆分成多个步骤,逐步进行计算的方法。这种方法可以 降低计算复杂度,提高计算效率。同时,通过逐步计算,可以更好地理解矩阵乘法的运
算过程。
04
矩阵乘法的应用
在线性代数中的应用
线性方程组的求解
矩阵乘法可以用于求解线性方程 组,通过将系数矩阵与增广矩阵 相乘,得到方程的解。
线性最小二乘法
矩阵乘法可以用于求解线性最小二乘问题,通过将系数矩阵与观测 矩阵相乘,得到最小二乘解。
插值和拟合
矩阵乘法可以用于插值和拟合数据,通过将系数矩阵与观测矩阵相 乘,得到插值或拟合函数。
在计算机图形学中的应用
3D模型变换
01
矩阵乘法在计算机图形学中广泛应用于3D模型变换,包括平移、
旋转和缩放等操作。
矩阵乘法的PPT课件
目 录
• 矩阵乘法的基本概念 • 矩阵乘法的性质 • 矩阵乘法的计算方法 • 矩阵乘法的应用 • 矩阵乘法的注意事项
01矩阵乘Βιβλιοθήκη 的基本概念定义矩阵乘法
矩阵乘法是一种数学运算,通过将一个矩阵与另一个 矩阵相乘,得到一个新的矩阵。
矩阵的定义
矩阵是一个由数字组成的矩形阵列,行和列都有一定 的数量。
矩阵的元素
矩阵中的每个元素都有一个行索引和一个列索引,用 于标识其在矩阵中的位置。
矩阵乘法的规则
1 2
矩阵乘法的条件
两个矩阵A和B可以进行乘法运算,当且仅当A的 列数等于B的行数。
矩阵乘法的步骤
将A的列向量与B的行向量对应相乘,然后将得 到的结果相加,得到新的矩阵C的元素。
3
人教A版高中数学选修4-2 第二讲 二 矩阵乘法的性质 课件(共24张PPT)最新课件PPT
过程与方法
➢通过探究、验证、总结,掌握并 理解矩阵乘法的性质
情感态度与价值观
➢培养学生自我探究能力,总结 归纳能力
学习重难点
矩阵的乘法的性 质及理解.
探究1
设矩阵A = 1 -2 31
,B = 2 1 01
-1 3 ,C = 2 1
(AB)C =
=
1 -2 2 1 3 1 01
2 -1 -1 3 64 21
知识回顾
实数的乘法运算满足那些运算律? 结合律 (ab)c=a(bc) 交换律 ab=ba 消去律 设a≠0,若ab=ac,则b=c;若 ba=ca,则b=c.
思考
类比实数乘法的运算律,二阶 矩阵的乘法满足这些运算律吗?
教学目标
知识与能力
➢掌握矩阵乘法的性质 ➢会灵活运用矩阵乘法的性质进 行矩阵乘法的运算
1 0
0 1
2
x y
x′ 1 0 x y′= 0 0 y
则复合变换σ·I 对单位பைடு நூலகம்方形的作用,如 图:
y
y
y
1 j
10 01
1 j
10 00
1 j
O
i1
x
O
i1
x
O
i1
x
则复合变换σ·ρ对单位正方形的作用,如 图:
y
y
y
10
1 j
1 0
2
1 j
10 00
1 j
O
i1
x
O
i1
x
O
i1
x
0 -1 2
10
10
BA = 0 -1 10
1
2 0
0 1
=
0 -1 1
人教A版高中数学选修4-2 第二讲 二 矩阵乘法的性质 课件(共24张PPT)
过程与方法
➢通过探究、验证、总结,掌握并 理解矩阵乘法的性质
情感态度与价值观
➢培养学生自我探究能力,总结 归纳能力
学习重难点
矩阵的乘法的性 质及理解.
探究1
设矩阵A = 1 -2 31
,B = 2 1 01
-1 3 ,C = 2 1
(AB)C =
=
1 -2 2 1 3 1 01
2 -1 -1 3 64 21
0 -1 2
10
10
BA = 0 -1 10
1
2 0
0 1
=
0 -1 1
0 2
∴ AB ≠BA.
1.矩阵的乘法不满足交换律;
2.对某些矩阵A,B,也可能由AB=BA.如:A= 2 0 ,B=Fra bibliotek1 001
02
20 AB=BA=
02
探究3
矩阵A= ρ: σ:
10 0 1 确定伸缩变换
2
x′ y′ =
AB= 2 0 1 0 = 2 0 01 21 21
BA= 1 0 2 0 = 2 0 21 01 41
∴AB≠BA ∴矩阵的乘法不满足交换律
2.从你学过的线性变换中,再举一个例 子,说明矩阵的乘法不满足消去律.
解:A= 2 0 确定的是伸缩变换 01
B= 1 0 确定的是切变变换 21
C= 0 0 确定的是投影变换 10
∵AC= 2 0 0 0 = 0 0 01 10 10
10 00 00
BC=
=
21 10 10
此时,AC=BC 但,A≠B.
用微笑告诉别人,今天的我,比昨天更强。瀑布跨过险峻陡壁时,才显得格外雄伟壮观。勤奋可以弥补聪明的不足,但聪明无法弥补懒惰的缺陷。孤独是 每个强者必须经历的坎。有时候,坚持了你最不想干的事情之后,会得到你最想要的东西。生命太过短暂,今天放弃了明天不一定能得到。只有经历人生 的种种磨难,才能悟出人生的价值。没有比人更高的山,没有比脚更长的路学会坚强,做一只沙漠中永不哭泣的骆驼!一个人没有钱并不一定就穷,但没 有梦想那就穷定了。困难像弹簧,你强它就弱,你弱它就强。炫丽的彩虹,永远都在雨过天晴后。没有人能令你失望,除了你自己人生舞台的大幕随时都 可能拉开,关键是你愿意表演,还是选择躲避。能把在面前行走的机会抓住的人,十有八九都会成功。再长的路,一步步也能走完,再短的路,不迈开双 脚也无法到达。有志者自有千计万计,无志者只感千难万难。我成功因为我志在成功!再冷的石头,坐上三年也会暖。平凡的脚步也可以走完伟大的行程。 有福之人是那些抱有美好的企盼从而灵魂得到真正满足的人。如果我们都去做自己能力做得到的事,我们真会叫自己大吃一惊。只有不断找寻机会的人才 会及时把握机会。人之所以平凡,在于无法超越自己。无论才能知识多么卓著,如果缺乏热情,则无异纸上画饼充饥,无补于事。你可以选择这样的“三 心二意”:信心恒心决心;创意乐意。驾驭命运的舵是奋斗。不抱有一丝幻想,不放弃一点机会,不停止一日努力。如果一个人不知道他要驶向哪个码头, 那么任何风都不会是顺风。行动是理想最高贵的表达。你既然认准一条道路,何必去打听要走多久。勇气是控制恐惧心理,而不是心里毫无恐惧。不举步, 越不过栅栏;不迈腿,登不上高山。不知道明天干什么的人是不幸的!智者的梦再美,也不如愚人实干的脚印不要让安逸盗取我们的生命力。别人只能给 你指路,而不能帮你走路,自己的人生路,还需要自己走。勤奋可以弥补聪明的不足,但聪明无法弥补懒惰的缺陷。后悔是一种耗费精神的情绪,后悔是 比损失更大的损失,比错误更大的错误,所以,不要后悔!复杂的事情要简单做,简单的事情要认真做,认真的事情要重复做,重复的事情要创造性地做。 只有那些能耐心把简单事做得完美的人,才能获得做好困难事的本领。生活就像在飙车,越快越刺激,相反,越慢越枯燥无味。人生的含义是什么,是奋 斗。奋斗的动力是什么,是成功。决不能放弃,世界上没有失败,只有放弃。未跌过未识做人,不会哭未算幸运。人生就像赛跑,不在乎你是否第一个到 达终点,而在乎你有没有跑完全程。累了,就要休息,休息好了之后,把所的都忘掉,重新开始!人生苦短,行走在人生路上,总会有许多得失和起落。 人生离不开选择,少不了抉择,但选是累人的,择是费人的。坦然接受生活给你的馈赠吧,不管是好的还是坏的。现在很痛苦,等过阵子回头看看,会发 现其实那都不算事。要先把手放开,才抓得住精彩旳未来。可以爱,可以恨,不可以漫不经心。我比别人知道得多,不过是我知道自己的无知。你若不想 做,会找一个或无数个借口;你若想做,会想一个或无数个办法。见时间的离开,我在某年某月醒过来,飞过一片时间海,我们也常在爱情里受伤害。1、 只有在开水里,茶叶才能展开生命浓郁的香气。人生就像奔腾的江水,没有岛屿与暗礁,就难以激起美丽的浪花。别人能做到的事,我一定也能做到。不 要浪费你的生命,在你一定会后悔的地方上。逆境中,力挽狂澜使强者更强,随波逐流使弱者更弱。凉风把枫叶吹红,冷言让强者成熟。努力不不一定成 功,不努力一定不成功。永远不抱怨,一切靠自己。人生最大的改变就是去做自己害怕的事情。每一个成功者都有一个开始。勇于开始,才能找到成功的 路。社会上要想分出层次,只有一个办法,那就是竞争,你必须努力,否则结局就是被压在社会的底层。后悔是一种耗费精神的情绪后悔是比损失更大的 损失,比错误更大的错误所以不要后悔。每个人都有潜在的能量,只是很容易:被习惯所掩盖,被时间所迷离,被惰性所消磨。与其临渊羡鱼,不如退而结网。 生命之灯因热情而点燃,生命之舟因拼搏而前行。世界会向那些有目标和远见的人让路。不积跬步,无以至千里;不积小流,无以成江海。骐骥一跃,不 能十步;驽马十驾,功在不舍。锲而舍之,朽木不折;锲而不舍,金石可镂。若不给自己设限,则人生中就没有限制你发挥的藩篱。赚钱之道很多,但是 找不到赚钱的种子,便成不了事业家。最有效的资本是我们的信誉,它小时不停为我们工作。销售世界上第一号的产品——不是汽车,而是自己。在你成
矩阵的乘法ppt课件
乘积的和. 即
c ij a i1 b 1 j a i2 b 2 j a ib n n,j
i 1 ,2 , ,m ;j 1 ,2 , ,p .
运算过程演示
演示
完整版课件
5
由矩阵的定义可以看出:
1. 两个矩阵的乘积AB亦是矩阵, AB的行数等
于矩阵A的行数, AB的列数等于矩阵B的列
数.
2. 前行乘后列: 乘积矩阵AB中第i行第j列的
程组也唯一地确定它的增广矩阵, 我们令
完整版课件
13
b1
B
b2
,
bm
计算矩阵乘积AX
x1
X
x2
x n
a11 AX a21
am1
a12 a22
am2
a a am 1 2n nn xxx1 n 2aa am 2 11x1 x1 x11 1 a a am 1 22 2 2 xxx2 22 a a a1 2m nnxxxnnnn,
这个计算过程可以用如下的矩阵形式来表示:
12 11 6 A 11 11 7
11 10 7
3 B 4
2
AB
123 113
1111 44 76 22
92 91
113 10472 87
完整版课件
4
定义 设A=(aij)是m×n矩阵,B=(bij)是 n×p矩阵,则A与B的乘积AB是一个m×p矩 阵,这个矩阵的第i行第j 列位置上的元素cij等 于A 的第i行的元素与B的第j列的对应元素的
因此, n阶方阵In在矩阵的乘法运算中所起的作
用相当于数1在数的乘法运算中所起的作用, 这就是
为什么把 In称为单位矩阵的原因. 我们以后还会发
现In的更多的类似于数1的性质.
c ij a i1 b 1 j a i2 b 2 j a ib n n,j
i 1 ,2 , ,m ;j 1 ,2 , ,p .
运算过程演示
演示
完整版课件
5
由矩阵的定义可以看出:
1. 两个矩阵的乘积AB亦是矩阵, AB的行数等
于矩阵A的行数, AB的列数等于矩阵B的列
数.
2. 前行乘后列: 乘积矩阵AB中第i行第j列的
程组也唯一地确定它的增广矩阵, 我们令
完整版课件
13
b1
B
b2
,
bm
计算矩阵乘积AX
x1
X
x2
x n
a11 AX a21
am1
a12 a22
am2
a a am 1 2n nn xxx1 n 2aa am 2 11x1 x1 x11 1 a a am 1 22 2 2 xxx2 22 a a a1 2m nnxxxnnnn,
这个计算过程可以用如下的矩阵形式来表示:
12 11 6 A 11 11 7
11 10 7
3 B 4
2
AB
123 113
1111 44 76 22
92 91
113 10472 87
完整版课件
4
定义 设A=(aij)是m×n矩阵,B=(bij)是 n×p矩阵,则A与B的乘积AB是一个m×p矩 阵,这个矩阵的第i行第j 列位置上的元素cij等 于A 的第i行的元素与B的第j列的对应元素的
因此, n阶方阵In在矩阵的乘法运算中所起的作
用相当于数1在数的乘法运算中所起的作用, 这就是
为什么把 In称为单位矩阵的原因. 我们以后还会发
现In的更多的类似于数1的性质.
矩阵乘法的ppt课件
4 1 1 0 3 1 解 AB 2 1 0 2 2 1 1 0 1 3 0 1 3 4
23
第 8页
例
例
题
4 1 B 2 1 1 1 0 3 0 3 1 4
ij ij ij
第15页
作业布置
训练题
思考题 你能找到乘积等于零矩阵的两个非零矩阵吗? 根据你的结果判断矩阵的乘法满足消去律吗? 自主学习与实践 请你在网络资源、图书馆、专业课学习或实际 生活中查找矩阵乘法的经济应用案例。
P177: 4
第16页
C的行数,右矩阵B的列数为乘积C的列数.
第 6页
矩阵乘法的定义
AB乘积一般不可以交换,
1)A21 , B13 , AB 为2 3 矩阵,但 BA 无意义;
A23 , B32 , AB 和 BA 均有意义,但 AB 为 2)
BA 为3阶矩阵,不相等; 2阶矩阵,
3) 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 2 0 1 1 1 0
第 2页
案例1
这四种产品的售价(单位:百元)及重量(单位: 千克)如下 空调 冰箱 29``彩电 25``彩电 售价 30 16 22 18 重量 40 30 30 20
30 16 B 22 18
40 30 30 20
问:该公司向每个商店出售产品的总售价及总重量 分别是多少?
若AB BA,ห้องสมุดไป่ตู้则称矩阵 A、B 乘积可交换.
第 7页
例
例
题
4 1 B 2 1 1 1 0 3 0 3 1 4
23
第 8页
例
例
题
4 1 B 2 1 1 1 0 3 0 3 1 4
ij ij ij
第15页
作业布置
训练题
思考题 你能找到乘积等于零矩阵的两个非零矩阵吗? 根据你的结果判断矩阵的乘法满足消去律吗? 自主学习与实践 请你在网络资源、图书馆、专业课学习或实际 生活中查找矩阵乘法的经济应用案例。
P177: 4
第16页
C的行数,右矩阵B的列数为乘积C的列数.
第 6页
矩阵乘法的定义
AB乘积一般不可以交换,
1)A21 , B13 , AB 为2 3 矩阵,但 BA 无意义;
A23 , B32 , AB 和 BA 均有意义,但 AB 为 2)
BA 为3阶矩阵,不相等; 2阶矩阵,
3) 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 2 0 1 1 1 0
第 2页
案例1
这四种产品的售价(单位:百元)及重量(单位: 千克)如下 空调 冰箱 29``彩电 25``彩电 售价 30 16 22 18 重量 40 30 30 20
30 16 B 22 18
40 30 30 20
问:该公司向每个商店出售产品的总售价及总重量 分别是多少?
若AB BA,ห้องสมุดไป่ตู้则称矩阵 A、B 乘积可交换.
第 7页
例
例
题
4 1 B 2 1 1 1 0 3 0 3 1 4
矩阵乘法的性质PPT课件
1
矩阵乘法的性质
精品ppt
2 我们知道实数乘法运算满足一定的运算律。即对实数 a ,b ,c 有结合律:(ab)c=a(bc); 交换律:ab=ba ;削去律: 设a≠0 ,如果ab =ac ,那么 b =c; 如果ba =ca ,那么 b =c 探究 类比实数乘法的运算律,二阶矩阵的乘法是否 也满足某些运算律?
精品ppt
3
精品ppt
4
精品ppt
5
因此 (AB)C= A(BC) 所以,二阶矩阵的乘法满足结合律即
精品ppt
6
精品ppt
7
精品ppt
8
精品ppt
9
精品ppt
10
1 1
1 1
精品ppt
1
2.2-1 1
1 2.2-2
-1 1
11
精品ppt
12 于是 AB≠ BA
所以,我们有结论:矩阵的乘法不满足交换律。 注意(对于某些矩阵A,B也可能有AB =BA)
精品ppt
13
精品ppt
14
1
1
1
1
1
1
复合变换λ ·β 对单位正方形区域作用结果如图 2.2-4
1
1
1
1
1
精品ppt
15
综上所述,矩阵的乘法运算满足结合律, 但不满足交换源自和削去律精品ppt16
精品ppt
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
精品ppt
17
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
矩阵乘法的性质
精品ppt
2 我们知道实数乘法运算满足一定的运算律。即对实数 a ,b ,c 有结合律:(ab)c=a(bc); 交换律:ab=ba ;削去律: 设a≠0 ,如果ab =ac ,那么 b =c; 如果ba =ca ,那么 b =c 探究 类比实数乘法的运算律,二阶矩阵的乘法是否 也满足某些运算律?
精品ppt
3
精品ppt
4
精品ppt
5
因此 (AB)C= A(BC) 所以,二阶矩阵的乘法满足结合律即
精品ppt
6
精品ppt
7
精品ppt
8
精品ppt
9
精品ppt
10
1 1
1 1
精品ppt
1
2.2-1 1
1 2.2-2
-1 1
11
精品ppt
12 于是 AB≠ BA
所以,我们有结论:矩阵的乘法不满足交换律。 注意(对于某些矩阵A,B也可能有AB =BA)
精品ppt
13
精品ppt
14
1
1
1
1
1
1
复合变换λ ·β 对单位正方形区域作用结果如图 2.2-4
1
1
1
1
1
精品ppt
15
综上所述,矩阵的乘法运算满足结合律, 但不满足交换源自和削去律精品ppt16
精品ppt
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
精品ppt
17
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
人教A版高中数学选修4-2 第二讲 二 矩阵乘法的性质 课件(共24张PPT)
过程与方法
➢通过探究、验证、总结,掌握并 理解矩阵乘法的性质
情感态度与价值观
➢培养学生自我探究能力,总结 归纳能力
学习重难点
矩阵的乘法的性 质及理解.
探究1
设矩阵A = 1 -2 31
,B = 2 1 01
-1 3 ,C = 2 1
(AB)C =
=
1 -2 2 1 3 1 01
2 -1 -1 3 64 21
不难得到:σ • I = σ • ρ. ∴ B E2 = BA 但 E2 ≠A.
矩阵的乘法不满足消去律.
课堂小结
矩阵的乘法满足结合律
(AB)C=A(BC)
矩阵的乘法不满足交换律
一般地,AB≠BA
矩阵的乘法不满足消去律
AB=AC
B=C
BA=CA
B=C
课堂练习
1.从你学过的线性变换中,再举一个例 子,说明矩阵的乘法不满足交换律. 解:A= 2 0 确定的是伸缩变换 01 B= 1 0 确定的是切变变换 21
明朝未及,我只有过好每一个今天,唯一的今天。
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他的脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选
矩阵的乘法-PPT课件
15
4. 一般情况下,矩阵的乘法不满足交换律和消去律。
14
1、必做题:练习册P47/3(2)(3),P48/5(2),P49/2 2、思考题:(A)练习册P50/4
(B)如果AB=BA,矩阵B就称为与A可交换,
设A
1 0
11,求所有与A可交换的矩阵B。
3、选做题:用数学归纳法证明:
1 1n 1 n 0 1 0 1 (n N*)
解:(1)
AB
0 0
0 0
BA
3 3
33
(2)
AC
3 3
00
AD
3 3
0 0
7
(3)
(BA)C
3 3
33
2 1
3 3
9 9
0 0
B(
AC
)
2 2
11
3 3
00
9 9
0 0
(4)
A(C
D)
1 1
11
3 3
2 2
6 6
00
AC
AD
3 3
0 0
3 3
00
6 6
00
8
(1)两矩阵可乘的条件: 矩阵A的列数与矩阵B的行数是相等的。
乙同学的语文总评成绩为 900.3+700.3+800.4=80
丙同学的语文总评成绩为 600.3+800.3+900.4=78
2
75
C 80
78
我们还可以利用矩阵某种运算得到上述 总评成绩,这就是我们今天要学习的主题。
3
1. 矩阵乘法的定义
A
a11 a21
a12 a22
a13 a23
人教A版高中数学选修4-2 第二讲 二 矩阵乘法的性质 课件(共24张PPT)
知识回顾
实数的乘法运算满足那些运算律? 结合律 (ab)c=a(bc) 交换律 ab=ba 消去律 设a≠0,若ab=ac,则b=c;若 ba=ca,则b=c.
思考
类比实数乘法的运算律,二阶 矩阵的乘法满足这些运算律吗?
教学目标
知识与能力
➢掌握矩阵乘法的性质 ➢会灵活运用矩阵乘法的性质进 行矩阵乘法的运算
过程与方法
➢通过探究、验证、总结,掌握并 理解矩阵乘法的性质
情感态度与价值观
➢培养学生自我探究能力,总结 归纳能力
学习重难点
矩阵的乘法的性 质及理解.
探究1
设矩阵A = 1 -2 31
,B = 2 1 01
-1 3 ,C = 2 1
(AB)C =
=
1 -2 2 1 3 1 01
2 -1 -1 3 64 21
∵AC= 2 0 0 0 = 0 0 01 10 10
10 00 00
BC=
=
21 10 10
此时,AC=BC 但,A≠B.
懂得如何避开问题的人,胜过知道怎样解决问题的人。在这个世界上,不知道怎么办的时候,就选择学习,也许是最佳选择。胜出者往往不是能力而是观念!在 永远是家,走出去看到的才是世界。把钱放在眼前,看到的永远是钱,把钱放在有用的地方,看到的是金钱的世界。给人金钱是下策,给人能力是中策,给人观 财富买不来好观念,好观念能换来亿万财富。世界上最大的市场,是在人的脑海里!要用行动控制情绪,不要让情绪控制行动;要让心灵启迪智慧,不能让耳朵 人与人之间的差别,主要差在两耳之间的那块地方!人无远虑,必有近忧。人好的时候要找一条备胎,人不好的时候要找一条退路;人得意的时候要找一条退路 时候要找一条出路!孩子贫穷是与父母的有一定的关系,因为他小的时候,父母没给他足够正确的人生观。家长的观念是孩子人生的起跑线!有什么信念,就选 有什么态度,就会有什么行为;有什么行为,就产生什么结果。要想结果变得好,必须选择好的信念。播下一个行动,收获一种习惯;播下一种习惯,收获一种 一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性格会影响人生!习惯不加以抑制,会变成生活的必需品, 随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你到哪里去。当你在埋头工作 定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失 永远不会失去自己!这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断 是智慧!世上本无移山之术,惟一能移山的方法就是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!学一分退让 宜;增一分享受,减一分福泽。念头端正,福星临,念头不正,善人行善,从乐入乐,从明入明;行恶,从苦入苦,骨宜刚,气宜柔,志宜大,胆宜小,心宜虚 慧宜增,福宜惜,虑不远,忧亦近。人之所以痛苦,在于追求错误的东西。你目前拥有的,都将随着你的而成为他人的。那为何不现在就给真正需要的人呢?如 往,凡做事应有余步。我们最值得自豪的不在于从不跌倒,而在于每次跌倒之后都爬得起来。见己不是,万善之门。见人不是,诸恶之根。为了向别人、向世界 努力拼搏,而一旦你真的取得了成绩,才会明白:人无须向别人证明什么,只要你能超越自己。没有哪种教育能及得上逆境。如果你想成功,那么请记住:遗产 第一、学习第二、礼貌第三、刻苦第四、精明第五。任何的限制,都是从自己的内心开始的。失败只是暂时停止成功,假如我不能,我就一定要;假如我要,我 无论你如何为他人着想,烦你的人眼里,你就是居心叵测;不管你怎样据理力争,不懂你的人心里,你就是胡搅蛮缠。最后你会发现,有些事不是你做错了,而 人;有些人不是不理解你,而是根本不想懂你。不管怎样,生活还是要继续向前走去。有的时候伤害和失败不见得是一件坏事,它会让你变得更好,孤单和失落 每件事到最后一定会变成一件好事,只要你能够走到最后。工资是发给日常工作的人,高薪是发给承担责任的人,奖金是发给做出成绩的人,股权是分给能干忠 誉是颁给有理想抱负的人,辞退信将送给没结果还耍个性的人,这里一定有个你。内心想成为什么样的人,就会努力成为这样的人,做你想做的那种人。与其指 谁,不如指望自己能够吸引那样的人;与其指望每次失落的时候会有正能量出现温暖自己,不如指望自己变成一个正能量满满的人;与其担心未来,不如现在好 虹绚烂多姿,是在与狂风暴雨争斗之后;枫叶似火燃烧,是在与秋叶的寒霜争斗之后;雄鹰的展翅高飞,是在与坠崖的危险争斗之后。他们保持着奋斗的姿态, 们的成功。有能力的人影响别人,没能力的人受人影响;不是某人使自己烦恼不安,而是自己拿某人的言行来烦恼自己;树一个目标,一步步前行,做好自己就 不需鼓掌,也在飞翔;小草,没人心疼,也在成长;野花,没人欣赏,也在芬芳;做事不需人人都理解,只需尽心尽力;做人不需人人都喜欢,只需坦坦荡荡。 为力,拼搏到感动自己;吃过的苦,受过的累,会照亮未来的路;没有年少轻狂,只有胜者为王。真正成功的人生,不在于成就的大小,而在于你是否努力地去 喊出自己的声音,走出属于自己的道路。选一个方向,定一个时间;剩下的只管努力与坚持,时间会给我们最后的答案。许多人企求着生活的完美结局,殊不知 结局,而在于追求的过程。慢慢的才知道:坚持未必就是胜利,放弃未必就是认输,。给自己一个迂回的空间,学会思索,学会等待,学会调整。人生没有假设 全部。背不动的,放下了;伤不起的,看淡了;想不通的,不想了;恨不过的,抚平了。在比夜更深的地方,一定有比夜更黑的眼睛。一切伟大的行动和思想, 不足道的开始。从来不跌倒不算光彩,每次跌倒后能再站起来,才是最大的荣耀。这个世界到处充满着不公平,我们能做的不仅仅是接受,还要试着做一些反抗 苦、最卑贱、最为命运所屈辱的人,只要还抱有希望,便无所怨惧。有些人,因为陪你走的时间长了,你便淡然了,其实是他们给你撑起了生命的天空;有些人 就忘了吧,残缺是一种大美。照自己的意思去理解自己,不要小看自己,被别人的意见引入歧途。没人能让我输,除非我不想赢!花开不是为了花落,而是为了 烂。随随便便浪费的时间,再也不能赢回来。不管从什么时候开始,重要的是开始以后不要停止;不管在什么时候结束,重要的是结束以后不要后悔。当你决定 情,全世界都会为你让路。只有在开水里,茶叶才能展开生命浓郁的香气。别想一下造出大海,必须先由小河川开始。不要让未来的你,讨厌现在的自己,困惑 成功只配得上勇敢的行动派。人生最大的喜悦是每个人都说你做不到,你却完成它了!如果你真的愿意为自己的梦想去努力,最差的结果,不过是大器晚成。不 得始终。每个人都有潜在的能量,只是很容易:被习惯所掩盖,被时间所迷离,被惰性所消磨。不论你在什么时候开始,重要的是开始之�
实数的乘法运算满足那些运算律? 结合律 (ab)c=a(bc) 交换律 ab=ba 消去律 设a≠0,若ab=ac,则b=c;若 ba=ca,则b=c.
思考
类比实数乘法的运算律,二阶 矩阵的乘法满足这些运算律吗?
教学目标
知识与能力
➢掌握矩阵乘法的性质 ➢会灵活运用矩阵乘法的性质进 行矩阵乘法的运算
过程与方法
➢通过探究、验证、总结,掌握并 理解矩阵乘法的性质
情感态度与价值观
➢培养学生自我探究能力,总结 归纳能力
学习重难点
矩阵的乘法的性 质及理解.
探究1
设矩阵A = 1 -2 31
,B = 2 1 01
-1 3 ,C = 2 1
(AB)C =
=
1 -2 2 1 3 1 01
2 -1 -1 3 64 21
∵AC= 2 0 0 0 = 0 0 01 10 10
10 00 00
BC=
=
21 10 10
此时,AC=BC 但,A≠B.
懂得如何避开问题的人,胜过知道怎样解决问题的人。在这个世界上,不知道怎么办的时候,就选择学习,也许是最佳选择。胜出者往往不是能力而是观念!在 永远是家,走出去看到的才是世界。把钱放在眼前,看到的永远是钱,把钱放在有用的地方,看到的是金钱的世界。给人金钱是下策,给人能力是中策,给人观 财富买不来好观念,好观念能换来亿万财富。世界上最大的市场,是在人的脑海里!要用行动控制情绪,不要让情绪控制行动;要让心灵启迪智慧,不能让耳朵 人与人之间的差别,主要差在两耳之间的那块地方!人无远虑,必有近忧。人好的时候要找一条备胎,人不好的时候要找一条退路;人得意的时候要找一条退路 时候要找一条出路!孩子贫穷是与父母的有一定的关系,因为他小的时候,父母没给他足够正确的人生观。家长的观念是孩子人生的起跑线!有什么信念,就选 有什么态度,就会有什么行为;有什么行为,就产生什么结果。要想结果变得好,必须选择好的信念。播下一个行动,收获一种习惯;播下一种习惯,收获一种 一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性格会影响人生!习惯不加以抑制,会变成生活的必需品, 随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你到哪里去。当你在埋头工作 定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失 永远不会失去自己!这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断 是智慧!世上本无移山之术,惟一能移山的方法就是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!学一分退让 宜;增一分享受,减一分福泽。念头端正,福星临,念头不正,善人行善,从乐入乐,从明入明;行恶,从苦入苦,骨宜刚,气宜柔,志宜大,胆宜小,心宜虚 慧宜增,福宜惜,虑不远,忧亦近。人之所以痛苦,在于追求错误的东西。你目前拥有的,都将随着你的而成为他人的。那为何不现在就给真正需要的人呢?如 往,凡做事应有余步。我们最值得自豪的不在于从不跌倒,而在于每次跌倒之后都爬得起来。见己不是,万善之门。见人不是,诸恶之根。为了向别人、向世界 努力拼搏,而一旦你真的取得了成绩,才会明白:人无须向别人证明什么,只要你能超越自己。没有哪种教育能及得上逆境。如果你想成功,那么请记住:遗产 第一、学习第二、礼貌第三、刻苦第四、精明第五。任何的限制,都是从自己的内心开始的。失败只是暂时停止成功,假如我不能,我就一定要;假如我要,我 无论你如何为他人着想,烦你的人眼里,你就是居心叵测;不管你怎样据理力争,不懂你的人心里,你就是胡搅蛮缠。最后你会发现,有些事不是你做错了,而 人;有些人不是不理解你,而是根本不想懂你。不管怎样,生活还是要继续向前走去。有的时候伤害和失败不见得是一件坏事,它会让你变得更好,孤单和失落 每件事到最后一定会变成一件好事,只要你能够走到最后。工资是发给日常工作的人,高薪是发给承担责任的人,奖金是发给做出成绩的人,股权是分给能干忠 誉是颁给有理想抱负的人,辞退信将送给没结果还耍个性的人,这里一定有个你。内心想成为什么样的人,就会努力成为这样的人,做你想做的那种人。与其指 谁,不如指望自己能够吸引那样的人;与其指望每次失落的时候会有正能量出现温暖自己,不如指望自己变成一个正能量满满的人;与其担心未来,不如现在好 虹绚烂多姿,是在与狂风暴雨争斗之后;枫叶似火燃烧,是在与秋叶的寒霜争斗之后;雄鹰的展翅高飞,是在与坠崖的危险争斗之后。他们保持着奋斗的姿态, 们的成功。有能力的人影响别人,没能力的人受人影响;不是某人使自己烦恼不安,而是自己拿某人的言行来烦恼自己;树一个目标,一步步前行,做好自己就 不需鼓掌,也在飞翔;小草,没人心疼,也在成长;野花,没人欣赏,也在芬芳;做事不需人人都理解,只需尽心尽力;做人不需人人都喜欢,只需坦坦荡荡。 为力,拼搏到感动自己;吃过的苦,受过的累,会照亮未来的路;没有年少轻狂,只有胜者为王。真正成功的人生,不在于成就的大小,而在于你是否努力地去 喊出自己的声音,走出属于自己的道路。选一个方向,定一个时间;剩下的只管努力与坚持,时间会给我们最后的答案。许多人企求着生活的完美结局,殊不知 结局,而在于追求的过程。慢慢的才知道:坚持未必就是胜利,放弃未必就是认输,。给自己一个迂回的空间,学会思索,学会等待,学会调整。人生没有假设 全部。背不动的,放下了;伤不起的,看淡了;想不通的,不想了;恨不过的,抚平了。在比夜更深的地方,一定有比夜更黑的眼睛。一切伟大的行动和思想, 不足道的开始。从来不跌倒不算光彩,每次跌倒后能再站起来,才是最大的荣耀。这个世界到处充满着不公平,我们能做的不仅仅是接受,还要试着做一些反抗 苦、最卑贱、最为命运所屈辱的人,只要还抱有希望,便无所怨惧。有些人,因为陪你走的时间长了,你便淡然了,其实是他们给你撑起了生命的天空;有些人 就忘了吧,残缺是一种大美。照自己的意思去理解自己,不要小看自己,被别人的意见引入歧途。没人能让我输,除非我不想赢!花开不是为了花落,而是为了 烂。随随便便浪费的时间,再也不能赢回来。不管从什么时候开始,重要的是开始以后不要停止;不管在什么时候结束,重要的是结束以后不要后悔。当你决定 情,全世界都会为你让路。只有在开水里,茶叶才能展开生命浓郁的香气。别想一下造出大海,必须先由小河川开始。不要让未来的你,讨厌现在的自己,困惑 成功只配得上勇敢的行动派。人生最大的喜悦是每个人都说你做不到,你却完成它了!如果你真的愿意为自己的梦想去努力,最差的结果,不过是大器晚成。不 得始终。每个人都有潜在的能量,只是很容易:被习惯所掩盖,被时间所迷离,被惰性所消磨。不论你在什么时候开始,重要的是开始之�
矩阵及其运算PPT课件
第9页/共2题 (课后题2题):
设
1 A 1
1 1
1 1 2 3 1, B 1 2 4
1 1 1 0 5 1
求3AB 2A及 AT B
2 13 22
0 5 8
答案:3AB 2A 2 17 20 , AT B 0 5 6.
第22页/共24页
六、方阵的行列式
2010年期末考题(I)
二、选择(每题4分,共16分)
1、设A与B均为n阶方阵,则下列结论中成立的是( B )
A. |AB|=0,则A=0或B=0; B. |AB|=0,则|A|=0或|B|=0; C. AB=0,则A=0或B=0; D. AB≠0,则|A|≠0或|B|≠0;
T ,
则An ____1___12.
1 3
23
3
n
1
2
1
2 3
矩阵拆分相乘
3
3
1
2
第13页/共24页
2012年期末考试题
二项式法
1
4、设A
0
0 0
2012年期末考试题
0
1
,
则A
n
n nn1
_0____n .
0
0
n(n 1) n2
2
nn1
n
五.(10分)(线性代数I,36学时专业学时做 )设
转置矩阵的运算性质 (1) (AT)T = A; (2) (A+B)T = AT + BT;
(3) (A)T = AT;
(4) (AB)T = BTAT;
第2页/共24页
由n 阶方阵A 的元素所构成的行列式叫做方阵A 的行列式, 记作 | A | 或 detA .
设
1 A 1
1 1
1 1 2 3 1, B 1 2 4
1 1 1 0 5 1
求3AB 2A及 AT B
2 13 22
0 5 8
答案:3AB 2A 2 17 20 , AT B 0 5 6.
第22页/共24页
六、方阵的行列式
2010年期末考题(I)
二、选择(每题4分,共16分)
1、设A与B均为n阶方阵,则下列结论中成立的是( B )
A. |AB|=0,则A=0或B=0; B. |AB|=0,则|A|=0或|B|=0; C. AB=0,则A=0或B=0; D. AB≠0,则|A|≠0或|B|≠0;
T ,
则An ____1___12.
1 3
23
3
n
1
2
1
2 3
矩阵拆分相乘
3
3
1
2
第13页/共24页
2012年期末考试题
二项式法
1
4、设A
0
0 0
2012年期末考试题
0
1
,
则A
n
n nn1
_0____n .
0
0
n(n 1) n2
2
nn1
n
五.(10分)(线性代数I,36学时专业学时做 )设
转置矩阵的运算性质 (1) (AT)T = A; (2) (A+B)T = AT + BT;
(3) (A)T = AT;
(4) (AB)T = BTAT;
第2页/共24页
由n 阶方阵A 的元素所构成的行列式叫做方阵A 的行列式, 记作 | A | 或 detA .
矩阵运算法则PPT课件
是 A 的逆矩阵,
利用待定系数法
则
AB 2 1 a b 1 0
1 0 c d 0 1
2a c 2b d 1 0 a b 0 1
第33页/共78页
2a c 1,
2b
d a
0, 0,
b 1,
又因为 AB
a 0,
b 1,
c
1,
d 2.
内容提要
• 矩阵的下列运算的性质与应用 • 乘法 • 转置 • 初等变换 •逆
第1页/共78页
乘法
定义
设矩阵
A
aij
,B
mn
bij
,那么
sn
矩阵A与矩阵B的乘积是一个m n矩阵 C s
cij mn ,其中cij ai1b1 j ai2b2 j aisbsj= aikbkj k1
1设
A=
aaa123,,,
1 1 1
a1, 2 a2, 2 a3, 2
a1, a2, a3,
333
计算并总结规律。
(1)
1 0 0
0 1 0
001 A
(2)
A
1 0 0
0 1 0
001
第13页/共78页
(3)
1 0 0
0 0 1
010
A
(4)
A
1 0 0
0 0 1
010
(5)
1 0 0
0 k 0
a1, a2, a3,
222
第18页/共78页
初等矩阵的概念
定义 由单位 E矩阵经过一次初等变换得到 的方阵称为初等矩阵.
三种初等变换对应着三种初等方阵. 1. 对调两行或两列; 2.以数 k 0 乘某行或某列; 3.以数 k 乘某行(列)加到另一行(列)上去.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
80 90
70 70
75 80
0 . 3 B 0 .3
60
80
90
0
.4
75 C AB 80
78
例1:设 A 1 1 1 1 ,B 2 2 1 1 ,C 1 2 3 3 ,D 1 2 5 5 求:(1)AB和BA;(2)AC和AD;(3)(BA)C和B(AC)
c 1 2 a 1 1 b 1 2 a 1 2 b 2 2 a 1 3 b 32 量列与向矩量阵的B数的量第积1列的
c 2 1 a 2 1 b 1 1 a 2 2 b 2 1 a 2 3 b 3 1
矩阵A的第2行的行向
c 2 2 a 2 1 b 1 2 a 2 2 b 2 2 a 2 3 b 3 2 量列与向矩量阵的数B的量第积1列的
(4)A(C+D)和AC+AD;
解:(1)
AB
0 0
00
BA 33 33
(2)
AC
3 3
00
AD
3 3
00
(3) (B)C A 33 33 1 2 33 990 0
B (A)C 22 11 330 0 990 0
(4) A (CD ) 1 1 1 1 3 3 2 2 6 60 0
(4)在数的乘法中,ab=ac且a0b=c; 在矩阵乘法中,AB=AC且A0 B=C
5. 进一步有
分配律 结合律
AB+AC=A(B+C) (A+B)C=AC+BC (AB)C=A(BC)
1、
将二元一次方程组aa12xx
b1 y b2 y
c1 c2
用矩阵的乘法运算来表示。
解:用矩阵乘法运算来表示:
16
感谢您的观看与聆听
本课件下载后可根据实际情况进行调整
17
那么矩阵C叫做矩阵A和B的乘积,记作C=AB。
2. 定义的推广 一般地,设A是mk阶矩阵,B是kn阶矩阵,
设C为mn矩阵。
CA B a a a m 1 211 1a a a m 1 222 2 a a a m 1 2k kk b b b k 1 211 1b b b k 1 222 2 b b b 1 2 kn nncc c m 1 211 1cc c m 1 222 2 cc c m 1 2n nn
80 70 75 A 90 70 80
0 . 3 B 0 .3
60
80
90
0
.
4
解:甲同学的语文总评成绩为 800.3+700.3+750.4=75
乙同学的语文总评成绩为 900.3+700.3+800.4=80
丙同学的语文总评成绩为 600.3+800.3+900.4=78
75
3. 矩阵的乘法满足结合律和乘法对加法的分配律。
4. 一般情况下,矩阵的乘法不满足交换律和消去律。
提问与解答环节
Questions and answers
15
结束语
感谢参与本课程,也感激大家对我们工作的支持与积极 的参与。课程后会发放课程满意度评估表,如果对我们
课程或者工作有什么建议和意见,也请写在上边
A C A D 3 30 0 3 30 0 6 60 0
(1)两矩阵可乘的条件: 矩阵A的列数与矩阵B的行数是相等的。
(2)在数乘中,ab=0a=0或b=0; 在矩阵中,AB=0 A=0或B=0
(3)在数乘中,ab=ba;
在矩阵中, 一般情况下,AB BA
C 80
78
我们还可以利用矩阵某种运算得到上述 总评成绩,这就是我们今天要学习的主题。
1. 矩阵乘法的定义
Aaa1211
a12 a22
aa1233,Bbbb132111
b12 b22 b32
C
c1 c2
1 1
cc1222
如果 c 1 1 a 1 1 b 1 1 a 1 2 b 2 1 a 1 3 b 31 矩阵A的第1行的行向
如果矩阵C中第i行第j列元素cij是矩阵A第i个行 向量与矩阵B的第j个列向量的数量积,那么C矩 阵叫做A与B的乘积.记作:C=AB
c i ja i 1 b 1 j a i 2 b 2 j a i k b k ( i j 1 , 2 , m ; j 1 , 2 , n )
思考问题的另解
9.2矩阵的乘法运算
上海八中 许颖 龙春朝 2009年12月10日
整体概况
+ 概况1
您的内容打在这里,或者通过复制您的文本后。
概况2
+ 您的内容打在这里,或者通过复制您的文本后。
概况3
+ 您的内容打在这里,或者通过复制您的文本后。
2
思考问题: 记甲、乙、丙三位同学的语文平时、期中、期末 成绩为矩阵A,平时、期中、期末成绩的所占比例为 矩阵B,这三位同学的语文总评成绩用矩阵C表示。
aa12 bb12xycc12
2、
已知矩阵
A
0 1
1 0
,矩阵
B
1 2
,求AB。
解:AB
2 1
向量
1 2
经过矩阵A变换为向量
,
2 1
。
变换后的向量和原向量关于 直线y=x 对称。
1. 当矩阵A 的列数与矩阵B的行数相同时, 两矩阵可以相乘。
2. 若C=AB,则矩阵C中第i行第j列元素cij 是矩阵A第i个行向量与矩阵B的第j个 列向量的数量积。