兖州区2016—2017学年八年级上期中考试数学试题(word版含答案)
人教版2016-2017年八年级上期中数学试卷含答案
八年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.因式分解x2﹣9的结果是()A.(x+9)(x﹣9)B.(x+3)(x﹣3)C.(3+x)(3﹣x)D.(x﹣3)22.有一组数据如下:3,5,4,6,7,那么这组数据的方差是()A.10 B. C.2 D.3.对与实数,﹣π,,3.1415,0.333…,2.010101…(相邻两个1之间0的个数逐个加1),其中无理数的个数是()A.3个B.4个C.5个D.6个4.对与3+的运算结果的估计正确的是()A.1<3+<2 B.2<3+<3 C.3<3+<4 D.4<3+<55.下列说法正确的是()A.﹣4是16的平方根B.的算术平方根是4C.0没有算术平方根D.2的平方根是6.直角三角形两边长分别是3、4,则这个直角三角形的第三边是()A.5 B.C.5或D.无法确定7.适合下列条件的△ABC的三边a、b、c,不能组成直角三角形的是()A.a=3,b=3,c=3 B.a=7,b=24,c=25C.a=8,b=15,c=17 D.a=,b=,c=8.如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.B.C.D.9.若实数x、y满足+(y+3)2=0,则x+y的值为()A.1 B.﹣1 C.7 D.﹣710.如表是某地区某月份的气温数据表,这组数据的中位数和众数分别是()A.21;21 B.21;21.5 C.21;22 D.22;2211.对于a2﹣2ab+b2﹣c2的分组中,分组正确的是()A.(a2﹣c2)+(﹣2ab+b2)B.(a2﹣2ab+b2)﹣c2C.a2+(﹣2ab+b2﹣c2)D.(a2+b2)+(﹣2ab﹣c2)12.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,且a、b、c满足a4﹣b4=a2c2﹣b2c2,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形二、填空题(共6小题,每小题3分,满分18分)13.某同学在对关于x的二次三项式x2+3x﹣10分解因式时,正确的分解成了(x﹣b)(x﹣2),则b= .14.若二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,则m= .15.如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是4、6、3、4,则最大正方形E的面积是.17.在△ABC中,AB=AC=10,BC=12,则△ABC的面积为.18.若a、b、c为△ABC的三边,且a、b、c满足a2+b2+c2+200=12a+16b+20c,则△ABC的最长边的高的长度等于.三、解答题19.(16分)计算化简(1)﹣(2)﹣(﹣2+)(3)×﹣5(4)()2.20.将下列各多项式因式分解(1)15a2+5a(2)x5﹣x3(3)a3b﹣4a2b2+4ab3(4)1﹣x2﹣y2+x2y2.21.已知:x=,y=,①x+y;②xy;③x2+y2;④(x2+x+2)(y2+y﹣2)22.根据平方根、立方根的定义解下列方程①x2=9;②(x﹣2)2=4;③(2x+1)2=12;④(x+1)3=﹣2.23.如图所示,在四边形ABCD中,AB⊥BC,AC⊥CD,以CD为直径作半圆O,AB=4cm,BC=3cm,AD=13cm.求图中阴影部分的面积:24.已知网格中每个小正方形的边长是1,在网格中作△ABC,使得AB=,BC=,CA=,.并求S△ABC25.探究题:.(1)在正△ABC中(图1),AB=2,AD⊥BC于D,求S△ABC(2)在正△AB1C1中(图2),B1C1=2,AB2⊥B1C1于B2,以AB2为边作正△AB2C2,AC1、B2C2交于B3,以AB3为边作正△AB3C3,依此类推.①写出第n个正三角形的周长;(用含n的代数式表示)②写出第n个正三角形的面积.(用含n的代数式表示)26.在正方形ABCD中,AB=4,E为BC的中点,F在CD上,DF=3CF,连结AF、AE、EF.(1)如图1,求出△AEF的三条边的长度;(2)判断△AEF的形状;并说明理由;(3)探究S△ECF +S△ABE与S△AEF的关系,并说明理由;(4)如图2,作EG⊥AF于G,①试求出FG、AG、EG的长度;②试探究EG2与FG×AG的关系?并说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分) 1.因式分解x 2﹣9的结果是( )A .(x+9)(x ﹣9)B .(x+3)(x ﹣3)C .(3+x )(3﹣x )D .(x ﹣3)2 【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式得出答案. 【解答】解:x 2﹣9=(x+3)(x ﹣3). 故选:B .【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.2.有一组数据如下:3,5,4,6,7,那么这组数据的方差是( )A .10B .C .2D .【考点】方差.【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算. 【解答】解: =(3+5+4+6=7)=5,S 2= [(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(7﹣5)2]=2, 故选:C .【点评】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 3.对与实数,﹣π,,3.1415,0.333…,2.010101…(相邻两个1之间0的个数逐个加1),其中无理数的个数是( )A.3个B.4个C.5个D.6个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣π,,2.010101…(相邻两个1之间0的个数逐个加1)是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.对与3+的运算结果的估计正确的是()A.1<3+<2 B.2<3+<3 C.3<3+<4 D.4<3+<5【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得的范围,根据不等式的性质1,可得答案.【解答】解:由被开方数越大算术平方根越大,得1<2,3+1<3+<2+3,故选:D.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出的范围是解题关键.5.下列说法正确的是()A.﹣4是16的平方根B.的算术平方根是4C.0没有算术平方根D.2的平方根是【考点】算术平方根;平方根.【分析】依据平方根和算术平方根的性质求解即可.【解答】解:A、﹣4是16的平方根,故A正确;B、=4,4的算术平方根是2,故B错误;C、0的算术平方根是0,故C错误;D、2的平方根是±.故选:A.【点评】本题主要考查的是算术平方根和平方根,掌握相关定义和性质是解题的关键.6.直角三角形两边长分别是3、4,则这个直角三角形的第三边是()A.5 B.C.5或D.无法确定【考点】勾股定理.【分析】已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为: =;②长为3、4的边都是直角边时:第三边的长为: =5;综上,第三边的长为:5或.故选C.【点评】此题主要考查的是勾股定理,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.7.适合下列条件的△ABC的三边a、b、c,不能组成直角三角形的是()A.a=3,b=3,c=3 B.a=7,b=24,c=25C.a=8,b=15,c=17 D.a=,b=,c=【考点】勾股定理的逆定理.【分析】根据直角三角形的判定,符合a2+b2=c2即可;反之不符合的不能构成直角三角形.【解答】解:A、因为32+32=(3)2,所以能组成直角三角形;B、因为72+242=252,所以能组成直角三角形;C、因为82+152=172,所以能组成直角三角形;D、因为()2+()2≠()2,所以不能组成直角三角形;故选D.【点评】本题考查了直角三角形的判定,运用勾股定理的逆定理判定是解答此题的关键.8.如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.B.C.D.【考点】实数与数轴.【分析】设点C表示的数是x,然后根据中点公式列式求解即可.【解答】解:设点C表示的数是x,∵A,B两点表示的数分别为﹣1和,C,B两点关于点A对称,∴=﹣1,解得x=﹣2﹣.故选:A.【点评】本题考查了实数与数轴,根据点B、C关于点A对称列出等式是解题的关键.9.若实数x、y满足+(y+3)2=0,则x+y的值为()A.1 B.﹣1 C.7 D.﹣7【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列方程求出x、y的值,然后相加计算即可得解.【解答】解:∵ +(y+3)2=0,∴=0,(y+3)2=0,∴x+y﹣1=0,y+3=0,解得x=4,y=﹣3,故x+y=4+(﹣3)=1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.如表是某地区某月份的气温数据表,这组数据的中位数和众数分别是()A.21;21 B.21;21.5 C.21;22 D.22;22【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列为,最中间的数是第15、16个数的平均数,则中位数是: =22;∵22出现了8次,出现的次数最多,∴众数在22.故选D.【点评】此题考查了中位数和众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.11.对于a2﹣2ab+b2﹣c2的分组中,分组正确的是()A.(a2﹣c2)+(﹣2ab+b2)B.(a2﹣2ab+b2)﹣c2C.a2+(﹣2ab+b2﹣c2)D.(a2+b2)+(﹣2ab﹣c2)【考点】因式分解-分组分解法.【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题a2﹣2ab+b2是完全平方,再可利用平方差公式分解.【解答】解:a2﹣2ab+b2﹣c2=(a2﹣2ab+b2)﹣c2=(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c).故选B.【点评】本题考查了分组分解法分解因式.注意难点是采用两两分组还是三一分组.12.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,且a、b、c满足a4﹣b4=a2c2﹣b2c2,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】因式分解的应用.【分析】将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.【解答】解:∵a4﹣b4=a2c2﹣b2c2,∴a4﹣b4﹣a2c2+b2c2=0,∴(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=0,∴(a2﹣b2)[(a2+b2)﹣c2]=0,则当a2﹣b2=0时,a=b;当a2﹣b2≠0时,a2+b2=c2;所以△ABC是等腰三角形或直角三角形.故选D.【点评】此题考查因式分解和勾股定理逆定理的实际运用,掌握平方差公式和完全平方公式是关键.二、填空题(共6小题,每小题3分,满分18分)13.某同学在对关于x的二次三项式x2+3x﹣10分解因式时,正确的分解成了(x﹣b)(x﹣2),则b= ﹣5 .【考点】因式分解-十字相乘法等.【分析】由题意二次三项式x2+3x﹣10分解因式的结果为(x﹣2)(x﹣b),将整式(x﹣b)(x﹣2)相乘,然后根据系数相等求出b.【解答】解:∵关于x的二次三项式x2+3x﹣10分解因式的结果为(x﹣b)(x﹣2),∴(x﹣b)(x﹣2)=x2﹣(b+2)x+2b=x2+3x﹣10,∴2b=﹣10,∴b=﹣5.故答案为﹣5.【点评】本题考查了因式分解的意义,紧扣因式分解的定义,是一道基础题.14.若二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,则m= 8或﹣4 .【考点】完全平方式.【专题】计算题;整式.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,∴m﹣2=±6,解得:m=8或﹣4.故答案为:8或﹣4.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.15.如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是4.【考点】平面展开-最短路径问题.【分析】先将图形展开,再根据两点之间线段最短,由勾股定理可得出.【解答】解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•=4,CB=4.∴AC==4.故答案为:4.【点评】此题主要考查了平面展开图最短路径问题,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是4、6、3、4,则最大正方形E的面积是17 .【考点】勾股定理.【分析】根据正方形的面积公式,运用勾股定理可以证明:四个小正方形的面积和等于最大正方形的面积,由此即可解决问题.【解答】解:如图记图中两个正方形分别为P、Q.根据勾股定理得到:C与D的面积的和是Q的面积;A与B的面积的和是P的面积;而P,Q的面积的和是E的面积,即A、B、C、D的面积之和为E的面积,∴正方形E的面积=4+6+3+4=17,故答案为:17.【点评】本题考查了勾股定理的应用.能够发现正方形A,B,C,D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.17.在△ABC中,AB=AC=10,BC=12,则△ABC的面积为48 .【考点】勾股定理;等腰三角形的性质.【分析】作底边上的高,构造直角三角形.运用等腰三角形性质及三角形的面积公式求解.【解答】解:如图,作AD⊥BC于点D,则BD=BC=6.在Rt△ABD,∵AD2=AB2﹣BD2,∴AD=8,∴△ABC的面积=BC•AD=×12×8=48.故答案为:48.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.18.若a、b、c为△ABC的三边,且a、b、c满足a2+b2+c2+200=12a+16b+20c,则△ABC的最长边的高的长度等于 4.8 .【考点】因式分解的应用.【分析】根据a2+b2+c2+200=12a+16b+20c,可以求得a、b、c的值,从而可以判断△ABC的形状,从而可以求得最长边上的高.【解答】解:∵a2+b2+c2+200=12a+16b+20c,∴a2+b2+c2+200﹣12a﹣16b﹣20c=0,∴(a﹣6)2+(b﹣8)2+(c﹣10)2=0,∴a﹣6=0,b﹣8=0,c﹣10=0,解得,a=6,b=8,c=10,∵62+82=102,∴△ABC是直角三角形,∴斜边上的高是: =4.8,故答案为:4.8.【点评】本题考查因式分解的应用,解题的关键是明确题意,找出所求问题需要.三、解答题19.计算化简(1)﹣(2)﹣(﹣2+)(3)×﹣5(4)()2.【考点】二次根式的混合运算.【分析】(1)直接利用二次根式的性质化简求出答案;(2)直接利用二次根式的性质化简,进而合并求出答案;(3)直接利用二次根式的乘法运算法则化简,进而求出答案;(4)直接利用二次根式乘法运算法则化简求出答案.【解答】解:(1)﹣=2﹣5=﹣3;(2)﹣(﹣2+)=3﹣(4﹣8+3)=﹣7+11;(3)×﹣5=6﹣5=1;(4)()2==1+.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.20.将下列各多项式因式分解(1)15a2+5a(2)x5﹣x3(3)a3b﹣4a2b2+4ab3(4)1﹣x2﹣y2+x2y2.【考点】因式分解-分组分解法;提公因式法与公式法的综合运用.【分析】(1)此多项式有公因式,应提取公因式5a,然后再整理即可.(2)先提取公因式x3,再利用平方差公式继续进行因式分解.(3)先提取公因式ab,再对余下的多项式利用完全平方公式继续分解.(4)用分组分解法,前两项一组,后两项一组,提取公因式,两组之间提取提取公因式,再用平方差公式分解,即可.【解答】解:(1)原式=5a(3a+1);(2)原式=x3(x2﹣1)=x3(x+1)(x﹣1);(3)原式=ab(a2﹣4ab+4b2)=ab(a﹣2b)2.(4)原式=(1﹣x2)﹣(y2﹣x2y2)=(1﹣x2)﹣y2(1﹣x2)=(1﹣x2)(1﹣y2)=(1+x)(1﹣x)(1+y)(1﹣y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.(4)用分组分解法,分组是解本小题的难点.21.已知:x=,y=,①x+y;②xy;③x2+y2;④(x2+x+2)(y2+y﹣2)【考点】二次根式的化简求值.【分析】①根据二次根式的乘法法则计算;②根据平方差公式计算;③根据完全平方公式把原式变形,代入计算;④把已知数据代入,根据二次根式的混合运算法则计算.【解答】解:①x+y=+=﹣1;②xy=×=﹣2;③x2+y2=(x+y)2﹣2xy=1+4=5;④(x2+x+2)(y2+y﹣2)=(++2)(+﹣2)=3×(﹣1)=﹣3.【点评】本题考查的是二次根式的化简求值,掌握二次根式的混合运算法则是解题的关键.22.根据平方根、立方根的定义解下列方程①x2=9;②(x﹣2)2=4;③(2x+1)2=12;④(x+1)3=﹣2.【考点】立方根;平方根.【分析】根据平方根、立方根,即可解答.【解答】解:①x2=9x=±3,②(x﹣2)2=4x﹣2=±2x=4或0.③(2x+1)2=12(2x+1)2=362x+1=±6x=或﹣.④(x+1)3=﹣2(x+1)3=﹣8x+1=﹣2x=﹣3.【点评】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.23.如图所示,在四边形ABCD中,AB⊥BC,AC⊥CD,以CD为直径作半圆O,AB=4cm,BC=3cm,AD=13cm.求图中阴影部分的面积:【考点】扇形面积的计算.【专题】计算题.【分析】要求阴影部分的面积,只需求CD,由于AD已知,只需求AC即可.【解答】解:∵AB⊥BC,AB=4,BC=3,∴AC=5.∵AC⊥CD,AC=5,AD=13,∴CD=12,=π×()2=18π,∴S阴影∴阴影部分的面积为18πcm2.【点评】本题主要考查了勾股定理、扇形的面积公式等知识,属于基础题.24.已知网格中每个小正方形的边长是1,在网格中作△ABC,使得AB=,BC=,CA=,.并求S△ABC【考点】勾股定理.【专题】作图题.【分析】直接利用勾股定理结合网格得出A,B,C的位置,进而利用△ABC所在矩形减去周围三角形面积求出答案.【解答】解:如图所示:S△ABC=12﹣×1×3﹣×1×4﹣×2×3=5.5.【点评】此题主要考查了勾股定理以及三角形面积求法,正确得出A,B,C的位置是解题关键.25.探究题:(1)在正△ABC中(图1),AB=2,AD⊥BC于D,求S△ABC.(2)在正△AB1C1中(图2),B1C1=2,AB2⊥B1C1于B2,以AB2为边作正△AB2C2,AC1、B2C2交于B3,以AB3为边作正△AB3C3,依此类推.①写出第n个正三角形的周长;(用含n的代数式表示)②写出第n个正三角形的面积.(用含n的代数式表示)【考点】等边三角形的性质.【分析】(1)由AD为边长为2的等边三角形ABC的高,利用三线合一得到D为BC的中点,求出BD的长,利用勾股定理求出AD的长,进而求出S,(2)根据(1)同理求出C2、S2,C3、S3依此类推,得到Cn、Sn.【解答】解:(1)在正△ABC 中,AB=2,AD ⊥BC 于D ,∴BD=1,∴AD==,∴S △ABC =BC •AD=×=; (2)由(1)可知AB 2=,∴C 1=3×2×()0,S 1=×2×2×;∵等边三角形AB 2C 2的边长为,AB 3⊥B 2C 2, ∴AB 3=,∴C 2=2×3×()1,S 2=×2××2××=×22×()3,∵等边三角形AB 3C 3的边长为,AB 4⊥B 3C 3,∴AB 4=,∴C 3=3×2×()2,S 3=×2×××2×××=×22×()5 依此类推,C n =6()n ﹣1S n =2()2n ﹣1.故第n 个正三角形的周长为6()n ﹣1,第n 个正三角形的面积是2()2n ﹣1. 【点评】此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.26.在正方形ABCD 中,AB=4,E 为BC 的中点,F 在CD 上,DF=3CF ,连结AF 、AE 、EF .(1)如图1,求出△AEF 的三条边的长度;(2)判断△AEF 的形状;并说明理由;(3)探究S△ECF +S△ABE与S△AEF的关系,并说明理由;(4)如图2,作EG⊥AF于G,①试求出FG、AG、EG的长度;②试探究EG2与FG×AG的关系?并说明理由.【考点】四边形综合题.【分析】(1)先求得EC、FC、DF、BE、AD的长,然后依据勾股定理可求得EF、EB、AE的长;(2)由勾股定理的逆定理可证明△EFA为直角三角形;(3)依据三角形的面积公式分别求得△AEF、△ECF、△ABE的面积,从而可得出问题的答案;(4)①依据三角形的面积公式可知S△AEF=AF•GE=5,从而可求得EG的长,然后再依据勾股定理可求得FG的长,然后可得到AG的长;②求得EG2、GF•AG的结果,从而可得到它们之间的关系.【解答】解:(1)∵ABCD为正方形,AB=4,∴AB=BC=DC=AD=4.∵E是BC的中点,∴BE=CE=2.∵CD=4,DF=3CF,∴FC=1,DF=3.依据勾股定理可知:EF==,AE==2,AF==5.(2)∵AF2=25,EF2=5,AE2=20,∴AF 2=EF 2+AE 2.∴△AEF 为直角三角形.(3)S △AEF =S △ECF +S △ABE .理由:∵S △ECF =FC •CE=×1×2=1,S △ABE =AB •BE=×4×2=4,S △AEF =EF •AE=××2=5,∴S △AEF =S △ECF +S △ABE .(4)①∵S △AEF =AF •GE=5,∴×5×EG=5.∴EG=2.在△EFG 中,由勾股定理可知:FG===1. AG=AF ﹣GF=5﹣1=4.②∵EG 2=22=4,GF •AG=1×4=4,∴EG 2=GF •AG .【点评】本题主要考查的是正方形的性质、勾股定理的应用、勾股定理的逆定理的应用、三角形的面积公式的应用,依据勾股定理的逆定理判断出△AEF 为直角三角形是解题的关键.。
苏科版2016-2017学年八年级(上)期中数学试卷 有答案
2016-2017学年八年级(上)期中数学试卷一、选择题1.4的平方根是( )A.2 B.C.±2 D.±2.在﹣0.101001,,,﹣,0中,无理数的个数是( )A.1个B.2个C.3个D.4个3.今年我市参加中考的学生人数约为6.01×104人.对于这个近似数,下列说法正确的是( )A.精确到百分位 B.精确到百位C.精确到十位D.精确到个位4.下列四组线段中,可以构成直角三角形的是( )A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,35.如果在实数范围内有意义,那么x的取值范围是( )A.x≠﹣B.x<﹣C.x≥﹣D.x≥﹣6.与点P(a2+1,﹣a2﹣2)在同一个象限内的点是( )A.(3,2)B.(﹣3,2)C.(﹣3,﹣2)D.(3,﹣2)7.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是( )A.①④B.②③C.①②④ D.①③④8.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为( )A.169 B.25 C.19 D.139.若A(x1,y1)、B(x2,y2)是一次函数y=(a﹣2)x+1图象上的不同的两个点,当x1>x2时,y1<y2,则a的取值范围是( )A.a<0 B.a>0 C.a<2 D.a>210.在直角坐标系中,等腰直角三角形A1B1O、A2B2B1、A3B3B2、…、A n B n B n﹣1按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数y=kx+b的图象上,点B1、B2、B3、…、B n均在x轴上.若点B1的坐标为(1,0),点B2的坐标为(3,0),则点A n的坐标为( )A.(2n﹣1,2n﹣1)B.(2n﹣1,2n﹣1﹣1)C.(2n﹣1,2n﹣1+1)D.(2n﹣1﹣1,2n﹣1)二、填空题11.的平方根为__________.12.已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是__________.13.已知点A(x,1)与点B(2,y)关于y轴对称,则(x+y)2013的值为__________.14.下列说法:①无限小数是无理数;②5的平方根是;③8的立方根是±2;④使代数式有意义的x的取值范围是x≥﹣1;⑤与数轴上的点一一对应的数是有理数.其中正确的是__________(填写序号).15.如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b=__________.16.过点(﹣1,﹣3)且与直线y=1﹣x平行的直线是__________.17.如图,函数y=﹣2x和y=kx+b的图象相交于点A(m,3),则关于x的不等式kx+b+2x >0的解集为__________.18.如图所示,在Rt△ABC中,∠C=90°,∠ABC=60°,点D是BC边上的点,BD=2,将△ABC沿直线AD翻折,使点C落在AB边上的点E处.若点P是直线AD上的动点,则△PEB的周长的最小值是__________.三、解答题(共76分)19.计算或化简(1)()2﹣﹣(2)(﹣)﹣1﹣+(1﹣)0﹣|﹣2|20.求下列各式中x的值:(1)(x﹣1)3﹣27=0;(2)(2x+1)2=.21.在△ABC中,AB、BC、AC三边的长分别为、、,(1)请在正方形网格中画出格点△ABC;(2)求出这个三角形ABC的面积.22.已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+b+c的平方根.23.已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数y=x的图象相交于点(2,a).(1)求a的值;(2)求一次函数y=kx+b的表达式;(3)在同一坐标系中,画出这两个函数的图象,并求这两条直线与y轴围成的三角形的面积.24.已知点P(m,n)在第一象限,并且在一次函数y=2x﹣1的图象上,求实数m的取值范围.25.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.26.为发展旅游经济,“黄石国家矿山公园”对门票采用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m 人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票款为y1(元),节假日购票款为y2(元).y1,y2与x之间的函数图象如图所示.(1)观察图象可知:a=__________;b=__________;m=__________;(2)直接写出y1,y2与x之间的函数关系式;(3)某旅行社导游于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A,B两个团队合计50人,求A,B两个团队各有多少人?27.如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以AB 为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点D和点C的坐标;(3)你能否在x轴上找一点M,使△MDB的周长最小?如果能,请求出M点的坐标;如果不能,说明理由.28.如图,在平面直角坐标系中,O是坐标原点,点A坐标为(2,0),点B坐标为(0,b)(b>0),点P是直线AB上位于第二象限内的一个动点,过点P作PC垂直于x轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.(1)当b=3时:①求直线AB相应的函数表达式;②当S△QOA=4时,求点P的坐标;(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.2016-2017学年八年级(上)期中数学试卷一、选择题1.4的平方根是( )A.2 B.C.±2 D.±【考点】平方根.【专题】计算题.【分析】原式利用平方根定义计算即可得到结果.【解答】解:∵(±2)2=4,∴4的平方根是±2,故选C【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.2.在﹣0.101001,,,﹣,0中,无理数的个数是( )A.1个B.2个C.3个D.4个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:,﹣共2个.故选B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.今年我市参加中考的学生人数约为6.01×104人.对于这个近似数,下列说法正确的是( )A.精确到百分位 B.精确到百位C.精确到十位D.精确到个位【考点】近似数和有效数字.【分析】近似数精确到哪一位,应当看末位数字实际在哪一位,即可得出答案.【解答】解:数字6.01×104精确到百位;故选B.【点评】此题考查了近似数,对于用科学记数法表示的数,精确到哪一位是需要识记的内容.4.下列四组线段中,可以构成直角三角形的是( )A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,3【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选A.【点评】本题考查了勾股定理的逆定理的应用,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,难度适中.5.如果在实数范围内有意义,那么x的取值范围是( )A.x≠﹣B.x<﹣C.x≥﹣D.x≥﹣【考点】二次根式有意义的条件.【分析】二次根式有意义被开方数为非负数,即可得出x的取值范围.【解答】解:∵在实数范围内有意义,∴3x+2≥0,解得:x≥﹣.故选C.【点评】本题考查了二次根式有意义的条件,注意掌握二次根式有意义被开方数为非负数.6.与点P(a2+1,﹣a2﹣2)在同一个象限内的点是( )A.(3,2)B.(﹣3,2)C.(﹣3,﹣2)D.(3,﹣2)【考点】点的坐标.【分析】根据平方数非负数的性质求出点P的横坐标与纵坐标的正负情况,再根据各象限内点的坐标特征求出点P所在的象限,然后解答即可.【解答】解:∵a2≥0,∴a2+1≥1,﹣a2﹣2≤﹣2,∴点P在第四象限,(3,2),(﹣3,2)(﹣3,﹣2)(3,﹣2)中只有(3,﹣2)在第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).7.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是( )A.①④B.②③C.①②④ D.①③④【考点】估算无理数的大小;算术平方根;无理数;实数与数轴;正方形的性质.【分析】先利用勾股定理求出a=3,再根据无理数的定义判断①;根据实数与数轴的关系判断②;利用估算无理数大小的方法判断③;利用算术平方根的定义判断④.【解答】解:∵边长为3的正方形的对角线长为a,∴a===3.①a=3是无理数,说法正确;②a可以用数轴上的一个点来表示,说法正确;③∵16<18<25,4<<5,即4<a<5,说法错误;④a是18的算术平方根,说法正确.所以说法正确的有①②④.故选C.【点评】本题主要考查了勾股定理,实数中无理数的概念,算术平方根的概念,实数与数轴的关系,估算无理数大小,有一定的综合性.8.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为( )A.169 B.25 C.19 D.13【考点】勾股定理;完全平方公式.【分析】先求出四个直角三角形的面积,再根据再根据直角三角形的边长求解即可.【解答】解:∵大正方形的面积13,小正方形的面积是1,∴四个直角三角形的面积和是13﹣1=12,即4×ab=12,即2ab=12,a2+b2=13,∴(a+b)2=13+12=25.故选B.【点评】注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.9.若A(x1,y1)、B(x2,y2)是一次函数y=(a﹣2)x+1图象上的不同的两个点,当x1>x2时,y1<y2,则a的取值范围是( )A.a<0 B.a>0 C.a<2 D.a>2【考点】一次函数图象上点的坐标特征.【分析】根据一次函数的图象y=(a﹣2)x+1,当a﹣2<0时,y随着x的增大而减小分析即可.【解答】解:因为A(x1,y1)、B(x2,y2)是一次函数y=(a﹣2)x+1图象上的不同的两个点,当x1>x2时,y1<y2,可得:a﹣2<0,解得:a<2.故选C.【点评】本题考查了一次函数图象上点的坐标特征.函数经过的某点一定在函数图象上.解答该题时,利用了一次函数的图象y=kx+b的性质:当k<0时,y随着x的增大而减小;k >0时,y随着x的增大而增大;k=0时,y的值=b,与x没关系.10.在直角坐标系中,等腰直角三角形A1B1O、A2B2B1、A3B3B2、…、A n B n B n﹣1按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数y=kx+b的图象上,点B1、B2、B3、…、B n均在x轴上.若点B1的坐标为(1,0),点B2的坐标为(3,0),则点A n的坐标为( )A.(2n﹣1,2n﹣1)B.(2n﹣1,2n﹣1﹣1)C.(2n﹣1,2n﹣1+1)D.(2n﹣1﹣1,2n﹣1)【考点】一次函数图象上点的坐标特征.【专题】规律型.【分析】首先,根据等腰直角三角形的性质求得点A1、A2的坐标;然后,将点A1、A2的坐标代入一次函数解析式,利用待定系数法求得该直线方程是y=x+1;最后,利用等腰直角三角形的性质推知点B n﹣1的坐标,然后将其横坐标代入直线方程y=x+1求得相应的y值.【解答】解:如图,∵点B1的坐标为(1,0),点B2的坐标为(3,0),∴OB1=1,OB2=3,则B1B2=2.∵△A1B1O是等腰直角三角形,∠A1OB1=90°,∴OA1=OB1=1.∴点A1的坐标是(0,1).同理,在等腰直角△A2B2B1中,∠A2B1B2=90°,A2B1=B1B2=2,则A2(1,2).∵点A1、A2均在一次函数y=kx+b的图象上,∴,解得,,∴该直线方程是y=x+1.∵点A3,B2的横坐标相同,都是3,∴当x=3时,y=4,即A3(3,4),则A3B2=4,∴B3(7,0).同理,B4(15,0),…B n(2n﹣1,0),∴当x=2n﹣1﹣1时,y=2n﹣1﹣1+1=2n﹣1,即点A n的坐标为(2n﹣1﹣1,2n﹣1).故选D.【点评】本题考查了一次函数图象上点的坐标特点,涉及到的知识点有待定系数法求一次函数解析式,一次函数图象上点的坐标特征以及等腰直角三角形的性质.解答该题的难点是找出点B n的坐标的规律.二、填空题11.的平方根为.【考点】平方根;算术平方根.【分析】先计根据平方根的定义直接求解即可.【解答】解:=3,3多的平方根为.故答案为:.【点评】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是5.【考点】勾股定理;直角三角形斜边上的中线.【专题】计算题.【分析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可.【解答】解:在直角三角形中,两直角边长分别为6和8,则斜边长==10,∴斜边中线长为×10=5,故答案为5.【点评】本题考查了勾股定理在直角三角形中的运用,本题中正确的运用勾股定理根据2直角边求斜边是解题的关键.13.已知点A(x,1)与点B(2,y)关于y轴对称,则(x+y)2013的值为﹣1.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,可得到x、y 的值,进而计算出答案.【解答】解:∵点A(x,1)与点B(2,y)关于y轴对称,∴x=﹣2,y=1,∴(x+y)2013=﹣1,故答案为:﹣1.【点评】此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的变化规律.14.下列说法:①无限小数是无理数;②5的平方根是;③8的立方根是±2;④使代数式有意义的x的取值范围是x≥﹣1;⑤与数轴上的点一一对应的数是有理数.其中正确的是②④(填写序号).【考点】无理数;平方根;立方根;实数与数轴;二次根式有意义的条件.【专题】推理填空题.【分析】根据无理数的定义判断即可;根据平方根、立方根的定义求出,即可判断②③;根据二次根式的定义即可判断④;根据实数与数轴上的点能建立一一对应,即可判断⑤.【解答】解:无限循环小数是有理数,∴①错误;5的平方根是±,∴②正确;8的立方根是2,∴③错误;要使有意义,必须x+1≥0,即x≥﹣1,∴④正确;与数轴上的点一一对应的数是实数,∴⑤错误;故答案为:②④.【点评】本题考查了无理数、平方根、立方根、实数与数轴、二次根式有意义的条件等知识点的应用,能熟练地运用进行说理是解此题的关键.15.如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b=2.【考点】坐标与图形变化-平移.【专题】计算题;压轴题.【分析】根据平移前后的坐标变化,得到平移方向,从而求出a、b的值.【解答】解:∵A(1,0)转化为A1(2,a)横坐标增加了1,B(0,2)转化为B1(b,3)纵坐标增加了1,则a=0+1=1,b=0+1=1,故a+b=1+1=2.故答案为:2.【点评】本题考查了坐标与图形的变化﹣﹣﹣平移,找到坐标的变化规律是解题的关键.16.过点(﹣1,﹣3)且与直线y=1﹣x平行的直线是y=﹣x+2.【考点】两条直线相交或平行问题.【专题】计算题.【分析】设所求直线解析式为y=kx+b,根据两直线平行的问题得到k=﹣1,然后把点(﹣1,3)代入y=﹣x+b中计算出b的值,从而得到所求直线解析式.【解答】解:设所求直线解析式为y=kx+b,∵直线y=kx+b与直线y=1﹣x平行,∴k=﹣1,把点(﹣1,3)代入y=﹣x+b得1+b=3,解得b=2,∴所求直线解析式为y=﹣x+2.故答案为y=﹣x+2.【点评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.17.如图,函数y=﹣2x和y=kx+b的图象相交于点A(m,3),则关于x的不等式kx+b+2x >0的解集为x>﹣.【考点】一次函数与一元一次不等式.【分析】首先将点A的坐标代入正比例函数中求得m的值,然后结合图象直接写出不等式的解集即可.【解答】解:∵函数y=﹣2x经过点A(m,3),∴﹣2m=3,解得:m=﹣,则关于x的不等式kx+b+2x>0可以变形为kx+b>﹣2x,由图象得:kx+b>﹣2x的解集为x>﹣,故答案为:x>﹣.【点评】本题考查了一次函数与一元一次不等式的知识,解题的关键是求得m的值,然后利用数形结合的方法确定不等式的解集.18.如图所示,在Rt△ABC中,∠C=90°,∠ABC=60°,点D是BC边上的点,BD=2,将△ABC沿直线AD翻折,使点C落在AB边上的点E处.若点P是直线AD上的动点,则△PEB的周长的最小值是3+.【考点】翻折变换(折叠问题).【分析】连接CE,交AD于M,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP 的值最小,此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BC 和BE长,代入求出即可.【解答】解:如图,连接CE,交AD于M,∵沿AD折叠C和E重合,∴∠ACD=∠AED=90°,AC=AE,∠CAD=∠EAD,∴AD垂直平分CE,即C和E关于AD对称,BD=2,∴CD=DE=,∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,∵∠DEA=90°,∴∠DEB=90°,∵∠BAC=30°,∴∠B=60°,∵DE=,∴BE=1,即BC=2+,∴△PEB的周长的最小值是BC+BE=2++1=3+.故答案为:3+.【点评】本题考查了折叠性质,等腰三角形性质,轴对称﹣最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P点的位置.三、解答题(共76分)19.计算或化简(1)()2﹣﹣(2)(﹣)﹣1﹣+(1﹣)0﹣|﹣2|【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】(1)原式利用平方根及立方根定义计算即可得到结果;(2)原式第一项利用负指数幂法则计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)原式=4+3﹣10=﹣3;(2)原式=﹣2﹣+1﹣2+=﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.求下列各式中x的值:(1)(x﹣1)3﹣27=0;(2)(2x+1)2=.【考点】立方根;平方根.【分析】(1)先整理成x3=a的形式,再直接开立方解方程即可;(2)直接开平方法解方程即可.【解答】解(1)(x﹣1)3﹣27=0,(x﹣1)3=27,x﹣1=3,x=4;(2)(2x+1)2=,2x+1=4,或2x+1=﹣4,x1=,x2=﹣.【点评】此题主要考查了利用立方根和平方根的性质解方程.要灵活运用使计算简便.21.在△ABC中,AB、BC、AC三边的长分别为、、,(1)请在正方形网格中画出格点△ABC;(2)求出这个三角形ABC的面积.【考点】勾股定理.【专题】作图题.【分析】(1)根据题意画出图形即可;(2)根据三角形的面积=正方形的面积﹣三个角上三角形的面积即可得出结论.【解答】解:(1)如图所示;(2)S△ABC=3×3﹣×1×2﹣×1×3﹣×2×3=9﹣1﹣﹣3=.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.22.已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+b+c的平方根.【考点】平方根;立方根;估算无理数的大小.【分析】首先根据平方根与立方根的概念可得2a﹣1与3a+b﹣9的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a+b+c,根据平方根的求法可得答案.【解答】解:根据题意,可得2a﹣1=9,3a+b﹣9=8;故a=5,b=2;又∵2<<3,∴c=2,∴a+b+c=5+2+2=9,∴9的平方根为±3.【点评】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.23.已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数y=x的图象相交于点(2,a).(1)求a的值;(2)求一次函数y=kx+b的表达式;(3)在同一坐标系中,画出这两个函数的图象,并求这两条直线与y轴围成的三角形的面积.【考点】两条直线相交或平行问题.【专题】计算题.【分析】(1)把(2,a)代入正比例函数解析式即可得到a的值;(2)把(﹣1,﹣5)、(2,1)代入y=kx+b中可得关于k、b的方程组,然后解方程组求出k、b即可;(3)先利用描点法画哈图象,再求出两直线与y轴的交点坐标,然后根据三角形面积公式求解.【解答】解:(1)把(2,a)代入y=x得a=1;(2)把(﹣1,﹣5)、(2,1)代入y=kx+b得,解得,所以一次函数解析式为y=2x﹣3;(3)如图,直线y=2x﹣3与y轴的交点坐标为(0,﹣3),直线y=x与y轴的交点为原点,这两条直线与y轴围成的三角形的面积=×3×2=3.【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.24.已知点P(m,n)在第一象限,并且在一次函数y=2x﹣1的图象上,求实数m的取值范围.【考点】一次函数图象上点的坐标特征.【分析】根据第一象限的特点和一次函数的点的坐标解答即可.【解答】解:把x=m,y=n代入一次函数的解析式可得:n=2m﹣1,因为点P在第一象限,可得:,解得:m>0.5.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.25.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.【考点】全等三角形的判定与性质;勾股定理.【专题】证明题.【分析】(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=2AE,从而得证;(2)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.【解答】(1)证明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,AD⊥BC∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE,在△ADC和△BDF中,,∴△ADC≌△BDF(ASA),∴BF=AC,∵AB=BC,BE⊥AC,∴AC=2AE,∴BF=2AE;(2)解:∵△ADC≌△BDF,∴DF=CD=,在Rt△CDF中,CF===2,∵BE⊥AC,AE=EC,∴AF=CF=2,∴AD=AF+DF=2+.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质,勾股定理的应用,以及线段垂直平分线上的点到线段两端点的距离相的性质,熟记各性质并准确识图是解题的关键.26.为发展旅游经济,“黄石国家矿山公园”对门票采用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m 人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票款为y1(元),节假日购票款为y2(元).y1,y2与x之间的函数图象如图所示.(1)观察图象可知:a=6;b=8;m=10;(2)直接写出y1,y2与x之间的函数关系式;(3)某旅行社导游于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A,B两个团队合计50人,求A,B两个团队各有多少人?【考点】一次函数的应用.【分析】(1)根据函数图象,用购票款数除以定价的款数,计算即可求出a的值;用第11人到20人的购票款数除以定价的款数,计算即可求出b的值,由图可求m的值;(2)利用待定系数法求正比例函数解析式求出y1,分x≤10与x>10,利用待定系数法求一次函数解析式求出y2与x的函数关系式即可;(3)设A团有n人,表示出B团的人数为(50﹣n),然后分0≤n≤10与n>10两种情况,根据(2)的函数关系式列出方程求解解即可.【解答】解:(1)∵=0.6,∴非节假日打6折,a=6,∵=0.8,∴节假日打8折,b=8,由图可知,10人以上开始打折,所以,m=10;(2)设y1=k1x,∵函数图象经过点(0,0)和(10,300),∴10k1=300,∴k1=30,∴y1=30x;0≤x≤10时,设y2=k2x,∵函数图象经过点(0,0)和(10,500),∴10k1=500,∴k1=50,∴y1=50x,x>10时,设y2=kx+b,∵函数图象经过点(10,500)和,∴,∴,∴y2=40x+100;∴y2=;(3)设A团有n人,则B团的人数为(50﹣n),当0≤n≤10时,50n+30(50﹣n)=1900,解得n=20(不符合题意舍去),当n>10时,40n+100+30(50﹣n)=1900,解得n=30,∴50﹣n=50﹣30=20,答:A团有30人,B团有20人.故答案为:a=6;b=8;m=10.【点评】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,准确识图获取必要的信息并理解打折的意义是解题的关键,(3)要注意分情况讨论.27.如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以AB 为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点D和点C的坐标;(3)你能否在x轴上找一点M,使△MDB的周长最小?如果能,请求出M点的坐标;如果不能,说明理由.【考点】一次函数综合题.【专题】综合题.【分析】(1)对于直线解析式,分别令x=0与y=0求出对应y与x的值,确定出A与B的坐标,得到OA与OB的长,利用勾股定理求出AB的长即可;(2)过D作DE垂直于x轴,过C作CF垂直于y轴,根据四边形ABCD的正方形,得到四条边相等,四个角为直角,利用同角的余角相等得到三个角相等,利用AAS得到三角形EDA,三角形AOB以及三角形BFC全等,利用全等三角形的对应边相等得到DE=OA=BF=4,AE=OB=CF=2,进而求出OE与OF的长,即可确定出D与C的坐标;(3)找出B关于y轴的对称点B′,连接DB′,交x轴于点M,此时BM+MD=DM+MB′=DB′最小,即△BDM周长最小,设直线DB′解析式为y=kx+b,把D与B′坐标代入求出k与b 的值,确定出直线DB′解析式,令y=0求出x的值,确定出此时M的坐标即可.【解答】解:(1)对于直线y=x+2,令x=0,得到y=2;令y=0,得到x=﹣4,∴A(﹣4,0),B(0,2),即OA=4,OB=2,则AB==2;(2)过D作DE⊥x轴,过C作CF⊥y轴,∵四边形ABCD为正方形,∴AB=BC=AD,∠ABC=∠BAD=∠BFC=∠DEA=∠AOB=90°,∵∠FBC+∠ABO=90°,∠ABO+∠BAO=90°,∠DAE+∠BAO=90°,∴∠FBC=∠OAB=∠EDA,∴△DEA≌△AOB≌△BFC(AAS),∴AE=OB=CF=2,DE=OA=FB=4,即OE=OA+AE=4+2=6,OF=OB+BF=2+4=6,则D(﹣6,4),C(﹣2,6);(3)如图所示,连接BD,找出B关于y轴的对称点B′,连接DB′,交x轴于点M,此时BM+MD=DM+MB′=DB′最小,即△BDM周长最小,∵B(0,2),∴B′(0,﹣2),设直线DB′解析式为y=kx+b,把D(﹣6,4),B′(0,﹣2)代入得:,解得:k=﹣1,b=﹣2,∴直线DB′解析式为y=﹣x﹣2,令y=0,得到x=﹣2,则M坐标为(﹣2,0).【点评】此题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,勾股定理,全等三角形的判定与性质,正方形的性质,对称性质,以及一次函数与坐标轴的交点,熟练掌握性质及定理是解本题的关键.28.如图,在平面直角坐标系中,O是坐标原点,点A坐标为(2,0),点B坐标为(0,b)(b>0),点P是直线AB上位于第二象限内的一个动点,过点P作PC垂直于x轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.(1)当b=3时:①求直线AB相应的函数表达式;②当S△QOA=4时,求点P的坐标;(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)①利用待定系数法求解即可,②由①知点P坐标为(a,﹣a+3),可求出点Q坐标,再利用S△QOA=×|OA|×|﹣a+3|求出a的值,即可得出点P的坐标.(2)分两种情况①当∠QAC=90°且AQ=AC时,QA∥y轴,②,当∠AQC=90°且QA=QC 时,过点Q作QH⊥x轴于点H,分别求解即可.【解答】解:(1)①设直线AB的函数表达式为:y=kx+b(k≠0),将A(2,0),B(0,3)代入得,解得,所以直线AB的函数表达式为y=﹣x+3,②由①知点P坐标为(a,﹣a+3),∴点Q坐标为(﹣a,﹣a+3),。
2016-2017学年人教版初二上册数学期中考试试卷含答案
初二数学2016-2017学年度第一学期期中质量检测班级 姓名 学号1. 下列各式中,从左到右的变形是因式分解的是( )A. 224)2)(2(y x y x y x -=-+ B. 1)(122--=--y x xy xy y x C. a 2-4ab+4b 2=(a -2b )2 D. ax+ay+a=a (x+y ) 2.计算24-的结果是( )A .8-B .18-C .116-D .1163. 月球的平均亮度只有太阳的0.00000215倍。
0.00000215用科学记数法可表示为( ) A .52.1510-⨯ B . 62.1510-⨯ C .72.1510-⨯ D .621.510-⨯4.下列各式中,正确的是( ).A . 1a b b ab b ++=B .22x y x y -++=- C.23193x x x -=-- D .222()x y x y x y x y --=++ 5. 如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( )A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠D .90B D ==︒∠∠6.下列多项式能分解因式的有( )个2249y x +-; 2244b a ab +--; 296x x --; 1196422-+-y xy x A.0 B.1 C.2 D.37.若分式22xx -+的值是零,则x 的值是( )A .0x =B .2±=xC .2-=xD .2=x 8. 到三角形三条边距离相等的点是( )ABCDA.三条高线的交点B.三条中线的交点C.三个内角平分线的交点D.三边垂直平分线的交点 9.如图,在四边形ABCD 中,对角线AC 平分∠BAD ,AB >AC , 下列结论正确的是( )A .CD CB AD AB ->- B .CD CB AD AB -=-C .CD CB AD AB -<- D .AD AB -与CD CB -的大小关系不确定 10.若把一个正方形纸片按下图所示方法三次对折后再沿虚线剪开,则剩余部分展开后得到的图形是( )A B CD二、填空题(本题共20分,每小题2分) 11.当x __________时,分式11x-有意义. 12. 如果7,0-==+xy y x ,则22xy y x += . 13. 若92++mx x 是一个完全平方式,则m = .14. 计算:a aa -+-111的结果是 . 15. 若b a b a -=+111,则 的值是 .16. 如图,△ABC ≌△ADE ,∠CAD=10°,∠B=25°,∠EAB=120°,则∠DFB=____________. 17. 如图,在△ABC 中,∠C =90°,BD 平分∠CBA 交AC 于点D .若AB =a ,CD =b ,则△ADB 的面积为______________ .18. 如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有 种.C D A B ABDC3,111--+=-ba ab b a b a 则右下折沿虚线剪开剩余部分上折右折A(16) (17) (18)19. 已知b a 、满足等式2022++=b a x ,)2(4a b y -=,则y x 、的大小关系是 . 20.在平面直角坐标系中,已知点A (1,2),B (5,5),C (5,2),存在点E ,使△ACE 和△ACB 全等,写出所有满足条件的E 点的坐标 . 三、计算题(共27分,20-21每小题3分,22-23每小题4分)21.分解因式:(1) y xy y x 442+- (2) ()()2233y x y x ---22.计算: (1) 11(1)1a a a a -++⋅- (2) x y x yyx x ⎛⎫+-÷ ⎪⎝⎭(3)()32227812393x x yy x y --⎡⎤⋅÷⎢⎥⎣⎦23.先化简,再求值:21123369m m m m m ⎛⎫+÷ ⎪-+-+⎝⎭,其中(m+3)(m+2)=0. 24.解方程: (1)512552x x x+=-- (2)四、作图题. (本题3分)25.某地区要在区域..S .内. (即∠COD 内部..) 建一个超市M ,如图,按照要求,超市M 到两个新建的居民小区A ,B 的距离相等, 到两条公路OC ,OD 的距离也相等. 这个超市应该建在何处? (要求:尺规作图, 不写作法, 保留作图痕迹)五、解答题(共20分,每小题4分)26. 已知:如图,点B 在线段AD 上,BC DE ∥,AB ED =,BC DB =.求证:A E ∠=∠.27.列方程解应用题八年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达。
2016—2017学年度第一学期八年级数学期中考试题带答案
2016—2017学年度第一学期八年级数学科期中检测题时刻:100分钟 总分值:100分 得分:一、选择题(每题2分,共28分)在以下各题的四个备选答案中,只有一个是正确的,请把你以为正确的答案的字母代号填写在下表相应题号的方格内.题 号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 答 案1.16的平方根是A . 4B .±14C .±4D .-4 2.以下说法正确的选项是A .4=±2 B. 64的立方根是±4 C. 7平方根是7 D. 0.01的算术平方根是0.1 3.以下实数中,无理数是A .45-B .16C .12D .0 4.以下运算中,正确的选项是A .624a a a ÷=B .532a a a =+C .33a a a ⋅= D .336()a a = 5.假设3,2mna a ==,那么3m na+=A .6B .54C .24D .12 6.比较23,3,11的大小,正确的选项是A .11<3<23B .23<11<3C .11<23<3D .3<11<237.以下因式分解正确的选项是A. 24414(1)1m m m m -+=-+B. 222()x y x y +=+C.222()2a b a ab b +=++ D. 241(12)(12)x x x -+=+- 8.一个多项式除以y x 22-,其商为y x y x 22353+-,那么此多项式为A .5342610x y x y --B .2435106y x y x +-C .2435106y x y x -D .5342610x y x y + 9.计算991000.125(8)⨯-的结果是A. 1B. 8C. -1D. -8 10.假设()()3x a x -+-的积不含x 的一次项,那么a 的值为 A. 3 B. -3 C .13 D. 13- 11.以下命题中,是真命题的为A .相等的角是对顶角B .三角形的一个外角等于两个内角之和C .若是两直线平行,那么内错角相等D .面积相等的两个三角形全等12.如图1,把一个等腰梯形剪成两块上底为b ,下底为a ,高为(a –b )的直角梯形(a >b )(如左图),拼成如右图所示的图形。
山东省济宁市兖州区八年级数学上学期期中质量检测试题(扫描版) 新人教版
山东省济宁市兖州区2017-2018学年八年级数学上学期期中质量检测试题八年级数学期中试题参考答案一、选择题:CBDBC AADBC二、填空题:11.AB=DE或BC=EF或AC=DF或AD=BE(一个即可)12.15°13.20 14.15 15.1三、解答题:16.(6分)证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;……………………2分在△ABF和△DCE中∴△ABF≌△DCE(SAS),……………………5分∴∠A=∠D.……………………6分17.(7分)解:∵AD是BC边上的高,∠EAD=5°,∴∠AED=85°,∵∠B=50°,∴∠BAE=∠AED﹣∠B=85°﹣50°=35°,……………………4分∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=70°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣70°=60°.……………………7分18.(7分)(1)证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).……………………4分(2)解:∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE=∠C=69°.……………………7分19.(8分)(1)证明:如图,连接AP并延长,……………………2分∵PE⊥AB,PF⊥AC∴∠AEP=∠AFP=90°在Rt△AFP和Rt△AEP中∴Rt△AEP≌Rt△AFP(HL),∴PE=PF.……………………5分(2)解:∵Rt△AEP≌Rt△AFP,∴∠EAP=∠FAP,∴AP是∠BAC的角平分线,故点P在∠B AC的角平分线上.……………………8分20.(9分)(1)答:∠ABE=∠ACD;……………………2分理由如下:在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD;……………………5分(2)证明:∵AB=AC,∴∠ABC=∠ACB,点A在线段BC的垂直平分线上,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,点F在线段BC的垂直平分线上,……………………7分∴直线AF垂直平分线段BC.……………………9分21.(9分)解:(1)∵△AC B和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,……………………5分(2)△ACB≌△DCE(SAS);△EMC≌△BNC(ASA),△AON≌△DOM,△AOB≌△DOE.(写出4对即可,写出一对得1分)……………………9分22.(9分)解:(1)△A′B′C′即为所求;……………………2分(2)△D′E′F′即为所求;……………………5分(3)答:∠C+∠E=45°……………………7分理由如下:如图,连接A′F′,∵△ABC≌△A′B′C′、△DEF≌△D′E′F′,∴∠C+∠E=∠A′C′B′+∠D′E′F′=∠A′C′F′,∵A′C′=A′F′(都是两个小正方形组成矩形的对角线),∠F′A′C′=90°,∴△A′C′F′为等腰直角三角形,∴∠C+∠E=∠A′C′F′=45°,……………………9分。
2016-2017学年八年级上学期期中考试数学试题(word版有答案)
CAD BE2016-2017学年第一学期期中教学质量检测卷八年级 数学试卷(时间100分钟,总分100分)得分:一、选择题(本题共10小题,每小题3分,共30分) 1、下列各数中是无理数的是( )ABCD 2、在△ABC 中AB=1、、BC=2则这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 3、设1a =,a 在两个相邻整数之间,则这两个数是( ) A .1和2B .2和3C .3和4D .4和54、函数y kx =的图象经过点P (3,-1)则k 的值为( )A .3B .-3C .13D .13-5)A .12±B .12C .D 6、面积为9㎝2的正方形以对角线为边长的正方形面积为( )A .18㎝2B .20㎝2C .24㎝2D .28㎝27、若点A (2,m )在x 轴上,则点B (m-1,m+1)在( )A .第一象限B.第二象限C .第三象限D .第四象限8、下列计算正确的是( )A=B=C4=D =9、函数已知一次函数y kx b =+,y 随x 的增大而减小,且kb <0则在直角坐标系内大致图象是(A B C D10、“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x 千克,付款金额为y 元,则y 与x 的函数关系的图象大致是( )A B C D 二、填空题(本大题8小题,每小题3分共24分)11、在电影院5排3号用(5,3)表示,那么6排2号可表示为。
12= ;= 。
13、一次函数21y x =-的图象经过点(a ,3),则a = 。
14、已知x 轴上的点P 到y 轴的距离为3,则P 点坐标为 。
152(3)0b +=,则M (,)a b 关于x 轴对称的点的坐标为 。
16、写出一个图象不经过第二象限的一次函数表达式 。
17、已知过点A (52,2)a a -+,B (1,4)a a --的直线与y 轴平行,则a 的值为 。
2016~2017学年第一学期八年级期中考试数学试卷及答案
2017学年第一学期八年级期中考试数学试卷(答题时间:90分钟满分:100分)一、 CAABD DBBCB二、(11) 120,60︒︒ (12) 〈 (13)(3,2) ( 14)4 (15)36三、(16)解:16、①解:原式=24222+-····················2分=25····················4分②解:原式=12+···················2分=3+··················4分 ③解:原式=4)3()7(22--····················2分 =437--····················3分=0····················4分④解:原式=3333632-⨯+····················2分 =333232-+····················3分=3····················4分(17)略(18)过程略(每个1.5分)A (0,BCD ( 19、(答案不唯一)答:是平行四边形···················1分 理由:如图,连接DB ,与AC 交于O 点。
2016-2017学年上学期八年级数学期中考试答案
解:
∵∠B=30°
(2)在 Rt△ODE 和 Rt△OCE 中
O A
C
AB=DE
第 18 题
B =E 图
……6 分
解:证明:∵△ABC 为等边三角形.
∴AB=AC,∠BAC=∠ACB=60°,
OE=OE
DE=CE
∴Rt△ODE≌Rt△OCE(HL) ……8 分
∴OD=OC,即 O 在线段 CD 的垂直平分线上,……10 分
又∵ED=EC,即E在线段CD的垂直平分线上,……11分
∴OE是CD的垂直平分线。 ……12分
(或用等腰三角形的三线合一即证明△OCD或△EDC为等腰三角形(9分),再说明OE是
顶角平分线(10分),最后说明OE是CD的垂直平分线(12分),再或者设OE与CD交于点
F,证明△ODF≌△OCF(10分)再说明OE是CD的垂直平分线(12分))
第Ⅱ卷(本卷满分50分)
D
∴ED=EC ……4分
∴∠ECD=∠Eห้องสมุดไป่ตู้C(等边对等角) ……6分 E
14. 5 ;15. 1.5 ;16. α/22016 。
三、解答题(共 102 分)
17.(10 分)
解:连接 BE,
A F
∵AD 是△ABC 的外角平分线,
第 20 题图
∴∠DAE= EAC=55°.
21.(12分)
证明:(1)∵E是∠AOB的平分线上一点,EC⊥OA ,ED⊥OB, B
∴ AOE =∠BAO+∠ABO
∴ AOE + 1=90° 1
B DH C
(2)答:PQ= BP.
【最新】2016-2017学年苏科版第一学期八年级(上)期中数学试卷及答案
18.如图,正方形 ABCD 的边长为 4,∠ DAC 的平分线交 DC 于点 E,若点 P、 Q 分别是 AD 和 AE 上的动点,则 DQ+PQ 的最小值是 __________ .
三、解答题(ቤተ መጻሕፍቲ ባይዱ 96 分) 19.( 16 分)计算
(1)
a3b2c÷
2
ab
(2)(﹣ x3)2?(﹣ x 2) 3
F). (2)求四边形 ABED 的面积.
24.如图,已知 AE ∥ BC, AE 平分∠ DAC . 求证: AB=AC .
25.已知:如图,∠ BAC= ∠ ABD ,AC=BD ,点 O 是 AD 、BC 的交点,点 E 是 AB 的中点. 证明: OE⊥ AB .
26.如图,已知点 B 、 C、 D 在同一条直线上, △ABC 和△ CDE 都是等边三角形. BE 交 AC 于 F, AD 交 CE 于 H, (1)求证: △ BCE ≌△ ACD ; (2)求证: △ CHF 为等边三角形.
(
)
2
2
2
2
A . x +1 B . x +2x﹣ 1 C. x +x+1 D. x +4x+4
7.如图,边长为( m+3)的正方形纸片剪出一个边长为 m 的正方形之后,剩余部分又剪拼
成一个矩形(不重叠无缝隙) ,若拼成的矩形一边长为 3,则另一边长是 (
)
A . 2m+3 B .2m+6 C. m+3 D. m+6
二、填空题(每题 3 分,共 24 分)
11.计算:(﹣
a2)
3
=__________
.
20
2016-2017学年度第一学期期中考试八年级数学试卷
2016-2017学年度第一学期期中考试八年级数学试卷一、选择题(共10小题,每小题4分,共40分)1.函数中,自变量x的取值范围是……【】A.x>2B.x<2C.x≠2D.x≠-22.直线向下平移4个单位得到的直线解析式是…【】A. B. C. D.3.一个三角形的两边长分别为3和7,第三边的长可能是………【】A.3 B. 8 C. 10 D. 114.关于一次函数y=-2x+3,下列结论正确的是………【】A.图象过点(1,-1) B.图象经过一、二、三象限C.y随x的增大而增大D.当x>时,y<05.已知点(-4,y1),(2,y2)都在直线上,则y1、y2大小关系是【】A. y1 > y2B. y1= y2C. y1< y2D.不能比较6.三角形的一个外角小于与它相邻的内角,则它是…【】A.直角三角形B.锐角三角形C.钝角三角形D.不能确定7.已知方程的解是x=-2,下列可能为直线的图象是【】8.两点在一次函数图像上的位置如图所示,两点的坐标分别,下列结论正确的是【】A. B. C. D.9.如图,在△ABC中,AD是BC边上的中线,点E是AD中点,过点E作垂线交BC于点F,已知BC=10,△ABD的面积为12,则EF的长为…【】A.1.2 B. 2.4 C. 3.6 D. 4.810.如图,在平面直角坐标系中,线段AB的端点坐标为,直线与线段AB有交点,则的值不可能是【】A. B. C. D.二、填空题(共5小题,每题4分,共20分)11.正比例函数图象经过点(2,3),该函数解析式是 . 12.已知直线y=(2m+1)x+m-3平行于直线y=3x,则m 的值为__________.13.将点(﹣4,a )向右平移两个单位,再向下平移3个单位,得点(b,﹣1),则a+b= .14.在△ABC 中,∠C=∠ABC , AE ∥BC , BE 平分∠ABC ,则下列结论中一定成立的是 (填写序号).① AE 平分∠DAC ②∠C=2∠E ③在△ABE 中,AC 平分∠BAE ④若AC ⊥BE ,则∠E=30° 15.在平面直角坐标系中,对于点,我们把点叫作点的伴随点。
八年级数学上学期期中试题 新人教版2
2016—2017学年度八年级数学第一学期期中质量检测试卷一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.①三角形的三条角平分线交于一点,这点到三条边的距离相等;②三角形的三条中线交于一点;③三角形的三条高线所在的直线交于一点;④三角形的三条边的垂直平分线交于一点,这点到三个顶点的距离相等.以上说法中正确的是 . 2.已知 ABC 三边a 、b 、c 满足(a-b )2+|b-c|=0,则△ABC的形状是 .3.一个三角形的三条边长分别为1、2、x ,则x 的取值范围是 .4.等腰三角形的一条边长为6,另一边长为13,则它的周长为 .5.某多边形的内角和是其外角和的3倍,则此多边形是 边形.6.点A (a ,4)、点B (3,b )关于x 轴对称,则(a+b )2010的值为 .7.如图1,将一副三角板按图中方式叠放,则角α等于 .8.如图2所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为 .9.如图3,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM+CN=9,则线段MN 的长为 .10.如图4,在△ABC 中,∠ABC=120°,BD 是AC 边上的高,若AB+AD=DC ,则∠C 等于 . 题号 选择题 填空题 21 22 23 24 25 26 总分 得分 图1 图2 图3 图4二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列说法正确的是( )A .一个直角三角形一定不是等腰三角形B .一个等腰三角形一定不是锐角三角形C .一个钝角三角形一定不是等腰三角形D .一个等边三角形一定不是钝角三角形12.可以把一个三角形分成面积相等的两部分的线段是( )A .三角形的高B .三角形的角平分线C .三角形的中线D .无法确定13.如图5,AD ⊥BC ,垂足为D ,∠BAC=∠CAD ,下列说法正确的是( )A .直线AD 是△ABC 的边BC 上的高B .线段B D 是△ABD 的边AD 上的高C .射线AC 是△ABD 的角平分线D .△ABC 与△ACD 的面积相等14.如图6,在△ABC 中,AB=AC ,D 是B C 中点,下列结论中不正确的是( )A .∠B=∠C B.AD⊥BC C .AD 平分∠BAC D.AB=2BD15.如图7,小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带( )A .第4块B .第3块C .第2块D .第1块16.平面直角坐标系中,点P 的坐标为(-5,3),则点P 关于y 轴的对称点的坐标是( )A .(5,3)B .(-5,-3)C .(3,-5)D .(-3,5)17.下列图中具有稳定性的是( )A .B .C .D .图 5 D CBA图6 图718.下列图形:其中所有轴对称图形的对称轴条数之和为()A .13B .11C .10D .819.一个正方形和两个等边三角形的位置如图8所示,若∠3=50°,则∠1+∠2=( )A .90°B .100°C .130°D .180°20.如图9,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP 并延长交BC于点D ,则下列说法中正确的个数是( )①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的垂直平分线上;④S △DAC :S △ABC =1:3.A .1B .2C .3D .4三、解答题(耐心计算,认真推理,表露你萌动的智慧!每小题10分,共60分)21.(本题满分10分)学校准备进一步美化校园,在校内一块四边形草坪内栽上一棵银杏树,如图,要求银杏树的位置点P 到边AB 、BC 的距离相等,并且P 到点A 、D 的距离也相等.请用尺规作图作出银杏树的位置点P (不写作法,保留作图痕迹).图8 图922.(本题满分10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为A(-3,0),B(-3,-3),C(-1,-3)(1)求Rt△ABC的面积;(2)在图中作出△ABC关于x轴对称的图形△DEF,并写出D,E,F的坐标.23.(本题满分10分)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.24.(本题满分10分).如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.(1)求证:△ABC≌△DCB;(2)△OBC是何种三角形?证明你的结论.25.(本题满分10分)如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于D,DE⊥AB于E,若DE=1cm,∠CBD=30°,求∠A的度数和AC的长.26.(本题满分10分)如图,已知AB=AD,∠BAD=60°,∠BCD=120°,延长BC,使CE=CD,连接DE,求证:BC+DC=AC.思路点拨:(1)由已知条件AB=AD,∠BAD=60°,可知:△ABD是三角形;(2)同理由已知条件∠BCD=120°得到∠DCE= ,且CE=CD,可知;(3)要证BC+DC=AC,可将问题转化为两条线段相等,即 = ;请你先完成思路点拨,再进行证明:八年级数学试题参考答案及评分标准一、填空题(每小题3分,共30分)1.①②③④ 2.等边三角形 3.1<x<3 4.32 5.8 6.1 7.75°8.240° 9.9 10.20°二、选择题(每小题3分,共30分)11.D 12.C 13.B 14.D 15.C 16.A 17.C 18.B 19.B 20.D三、解答题(每小题10分,共60分)21.角平分线线段垂直平分线各占4分标出点P占2分22.解:(1)S△ABC=12AB×BC=12×3×2=3;---------------------------------------------------4分(2)所画图形如下所示,其中△DEF即为所求,--------------------------------------7分D,E,F的坐标分别为:D(-3,0),E(-3,3),F(-1,3).-------------10分23.证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,----5分∵在△DCE和△ACB中:DC=AC,∠DCE=∠ACB ,CE=CB,∴△DCE≌△ACB,∴DE=AB.----------------------------------------------------------------------------------------10分24.证明:(1)在△ABC和△DCB中,∠A=∠D=90°AC=BD,BC为公共边,∴Rt△ABC≌Rt△DCB(HL)-----------------------------------------------------------------5分(2)△OBC是等腰三角形∵Rt△ABC≌Rt△DCB∴∠ACB=∠DCB∴OB=OC∴△OBC是等腰三角形-----------------------------------------------------------------------10分25.解:在Rt△ABC中,∵BD平分∠ABC,∠CBD=30°∴∠ABC=60°,----------------------------------------------------------------------------------2分∴∠A=30°,--------------------------------------------------------------------------------------4分∴AD=2DE=2cm,------------------------------------------------------------------------------6分∵∠C=90°,BD平分∠ABC交AC于D,DE⊥AB于E,∴DC=DE=1.---------------------------------------------------------------------8分∴AC=AD+DC=3cm.------------------------------------------------------------------------10分26.解:(1)等边.(2)60°,△DCE是等边三角形.(3)BE=AC.(每空1分,共4分)证明:连接BD,∵AB=AD,∠BAD=60°,∴△ABD是等边三角形,----------------------------------6分∵∠BCD=120°,∴∠DCE=180°-∠BCD=180°-120°=60°,∵CE=CD,∴△DCE是等边三角形,--------------------------------------------------------------------8分∵等边三角形ABD和DCE,∴AD=BD,CD=DE,∠ADB=∠CDE=60°,∴∠ADB+∠BDC=∠CDE+∠BDC,即∠ADC=∠BDE,在△ADC和△BDE中,AD=BD,∠ADC=∠BDE, DC=DE,∴△ADC≌△BDE,∴AC=BE=BC+CE =BC+DC,∴BC+DC=AC------------------------------------------------------------------------10分。
最新-第一学期期中八年级数学测试试题含详尽答案.doc
绝密★启用前 2016-2017学年度第一学期八年级数学期中检测试卷试卷满分150分 考试时间120分钟1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I卷的文字说明一、选择题(每小题3分,共45分)1.9的算术平方根是( ) A .﹣3 B .±3 C.3 D .2.27的立方根是( )A .3B .﹣3C .9D .﹣93.下列二次根式中,属于最简二次根式的是( ) A B CD4 )A .4和﹣4B .2和﹣2C .4D .2 5.二次根式23-)(的值是( )A. -3B. 3或-3C. 9D. 36.要使式子x -2有意义,则x 的取值范围是( ) A .x >0 B .x ≥-2 C .x ≥2 D .x ≤2 7( )A .0.4与0.5之间B .0.5与0.6之间C . 0.6与0.7之间D .0.7与0.8之间8.在直角坐标中,点P (2,﹣3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.在实数2,722,0.101001,π,0,4中,无理数的个数是( ) A .0个 B .1个 C .2个 D .3个10.以下各组数为边长的三角形中,能组成直角三角形的是( ) A .1,2,3 B .2,3,4 C .3,4,5 D .4,5,611.点P(m-1,m+3)在直角坐标系的y 轴上,则P 点坐标为( )A.(-4,0)B.(0,-4)C.(4,0)D.(0,4)12.点P 在四象限,且点P 到x 轴的距离为3,点P 到y 轴的距离为2,则点P 的坐标为( ) A .(3,2)-- B .(3,2)- C .(2,3) D .(2,3)-13.已知a 、b 、c 是三角形的三边长,如果满足(a ﹣6)2+=0,则三角形的形状是( )A .底与腰不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形14.在平面直角坐标系中,点P(2,-3)关于x 轴对称的点的坐标是( ) A.(-2,-3) B.(2,3) C.(-2,3) D.(2,-3)15.如图,直角三角形两直角边分别为5厘米、12厘米,那么斜边上的高是 ( ) A 、6厘米 B 、 8厘米 C 、1380厘米 D 、1360厘米 第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(每题5分,共25分)16.直角三角形的两直角边的比是3︰4,而斜边的长是20cm ,那么这个三角形的面积是 17.若2<m<8,化简:=___________18.已知点P (2﹣a ,2a ﹣7)(其中a 为整数)位于第三象限,则点P 坐标为 . 19= .20.点(﹣3,7)到x 轴上的距离是 ,到y 轴上的距离是 .三、计算题(每题8分, 共16分)21.计算:011(3)2|()3--+-.22四、解答题(23、24、25每题12分,26、27每题14分 共64分)23.数学课上,对于313--a a ,小红根据被开方数是非负数,得出a 的取值范围是a ≥31.小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出a 的取值范围.24.(1)在平面直角坐标系中,描出下列3个点:A (-1,0),B (3,-1),C (4,3); (2) 顺次连接A ,B ,C ,组成△ABC ,求△ABC 的面积.25.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状。
山东省济宁市兖州区2017-2018学年八年级数学上学期期中质量检测试题(扫描版)新人教版
山东省济宁市兖州区2017-2018学年八年级数学上学期期中质量检测试题2017—2018学年度第一学期期中考试八年级数学试题(叶闻川0分卿满分"00分)卷前工求;仁整张试卓整洁曼现,椿式規范"布谢和谛;2.丰建清崛工聲,标点暮号准Mi橹首语:相営你会静心、尽力世好答卷,动手就有希望,努力就会成功!一、选择羸:本大遞共】0逍小题,每小題皓出的四个选项中,只有-个足正确的•请把正确的选項选出来,填人F农,毎小题选对得3分、不选攻选出的答臬超过一个均记零分,2.如图,点F是ZAOB平分线X 上一点,PD丄0禺垂足为D,若PD=2,则点P到边OA的距离是(石)A. 1B.2QV3 D.43.下面四个图形分别是节能.节水、低碳和绿色食品标忠•是轴对淼图形的是* 〔☆)®©©©A. B. C. D+4.点A(~3t Z)关于y轴对称的点的坐标为A, (3,-2) B. (3»2> C. (-3,-2) D. (2, — 3)5. 一个多边形的内角和是外角和的2倍*这个多边形是A.四边形B・五边形 C.六边形D八边形6.用直尺和IB规作一个角等于已知角,如图准得出ZAQE'=ZAOB的依据是(勺>A. (S,S.S)B. (S.A.S)C. <A.S.A)D.(A、A、5)八年级数学试题第I页共6贞"iff问舔加下面站条件不能判新小D 上EBC=ZJ3AC乃血△(第9題)乩如图准△>!"中,AB=>AGAD F CE是2XABC的两条中线丁是AD上一个动点•则下列线段的长度竽于BP+EPK小值的是W)A. BCB. CEC. AD D・AC10.已知等边AABC的边怪为12,D是AB上的动点*过D作DE丄AC于点E.过卜:作EF±BC于点FfUF^FG丄AB于点G.当Q与D重舍时,AD的长是(☆)A.3 氐4 C8 D9二■堰空題:本大JS共5 31小题丫每小题3分*共15分「要求只写岀最后结果・lk ifl图,BC//EF,AC//DF^加一亍条件,使得△ABC也Z\DEF・(第1LJS)1比将一副三箱板如图叠放,则图中N何的度数为 __________ ___ *13.如图I A/1BC与ADEF全等,请根据图中提供的信息,写岀工= ________________ .1<如图尼知在ZVVBC中Qf:是BC的垂宜平分给垂足为E,交AC于点D ■若AB = 6MC=9・则△ABD的周长是________________________ .15.如图也恥C=1外M为AC 上一点»AM=2t点P是上的一动点,PQ丄八。
初中数学山东省济宁市兖州区八年级上期中数学考试卷含答案解析 .docx
xx学校xx学年xx学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm试题2:甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A. B. C.D.试题3:平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3) B.(2,﹣3) C.(﹣3,﹣2) D.(3,﹣2)试题4:如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC试题5:一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20试题6:两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个试题7:如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60试题8:如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65° B.60° C.55° D.45°试题9:如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米 B.150米 C.160米 D.240米试题10:如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A.(0,0) B.(0,1) C.(0,2) D.(0,3)试题11:如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B= .试题12:将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.试题13:如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是.试题14:如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于.试题15:已知∠AOB=30°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是.试题16:如图,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB,求∠ACD的度数.试题17:如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.试题18:如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.试题19:证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,求证:.请你补全已知和求证,并写出证明过程.试题20:如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.试题21:如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.试题22:如图,已知△ABC中,AB=AC,∠BAC=90°,点D为BC的中点,点E、F分别在直线AB、AC上运动,且始终保持AE=CF.(1)如图①,若点E、F分别在线段AB,AC上,求证:DE=DF且DE⊥DF;(2)如图②,若点E、F分别在线段AB,CA的延长线上,(1)中的结论是否依然成立?说明理由.试题1答案:D【考点】三角形三边关系.【分析】依据三角形任意两边之和大于第三边求解即可.【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<6,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.试题2答案:D【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.试题3答案:A【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案.【解答】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选:A.试题4答案:A【考点】全等三角形的判定.【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.试题5答案:C【考点】等腰三角形的性质;三角形三边关系.【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.试题6答案:D【考点】全等三角形的判定与性质.【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故①②正确;故选D试题7答案:B【考点】角平分线的性质.【分析】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选B.试题8答案:A【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【解答】解:由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠CAD=65°,故选A.试题9答案:B【考点】多边形内角与外角.【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小明一共走了:15×10=150米.故选B.试题10答案:D【考点】轴对称-最短路线问题;坐标与图形性质.【分析】根据轴对称作最短路线得出AE=B′E,进而得出B′O=C′O,即可得出△ABC的周长最小时C点坐标.【解答】解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,此时△ABC的周长最小,∵点A、B的坐标分别为(1,4)和(3,0),∴B′点坐标为:(﹣3,0),AE=4,则B′E=4,即B′E=AE,∵C′O∥AE,∴B′O=C′O=3,∴点C′的坐标是(0,3),此时△ABC的周长最小.故选:D.试题11答案:120°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠C的度数,根据三角形内角和定理计算即可.【解答】解:∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠C=120°,故答案为:120°.试题12答案:75°.【考点】三角形的外角性质;三角形内角和定理.【分析】根据含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,得出平行线,再利用平行线的性质和对顶角相等得出∠2=45°,再利用三角形的外角性质解答即可.【解答】解:如图,∵含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,∴AB∥CD,∴∠3=∠4=45°,∴∠2=∠3=45°,∵∠B=30°,∴∠1=∠2+∠B=30°+45°=75°,故答案为:75°.试题13答案:DC=BC或∠DAC=∠BAC .【考点】全等三角形的判定.【分析】添加DC=BC,利用SSS即可得到两三角形全等;添加∠DAC=∠BAC,利用SAS即可得到两三角形全等.【解答】解:添加条件为DC=BC,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS);若添加条件为∠DAC=∠BAC,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:DC=BC或∠DAC=∠BAC试题14答案:20°.【考点】等边三角形的性质;平行线的性质.【分析】过点A作AD∥l1,如图,根据平行线的性质可得∠BAD=∠β.根据平行线的传递性可得AD∥l2,从而得到∠DAC=∠α=40°.再根据等边△ABC可得到∠BAC=60°,就可求出∠DAC,从而解决问题.【解答】解:过点A作AD∥l1,如图,则∠BAD=∠β.∵l1∥l2,∴AD∥l2,∵∠DAC=∠α=40°.∵△ABC是等边三角形,∴∠BAC=60°,∴∠β=∠BAD=∠BAC﹣∠DAC=60°﹣40°=20°.故答案为20°.试题15答案:2 .【考点】轴对称-最短路线问题;角平分线的性质.【分析】过M作MN′⊥OB于N′,交OC于P,即MN′的长度等于点P到点M与到边OA的距离之和的最小值,解直角三角形即可得到结论.【解答】解:过M作MN′⊥OB于N′,交OC于P,则MN′的长度等于PM+PN的最小值,即MN′的长度等于点P到点M与到边OA的距离之和的最小值,∵∠ON′M=90°,OM=4,∴MN′=OM=2,∴点P到点M与到边OA的距离之和的最小值为2.故答案是:2.试题16答案:【考点】三角形内角和定理.【分析】本题考查的是三角形内角和定理,求出∠ACB的度数后易求解.【解答】解:∵∠A=70°,∠B=50°,∴∠ACB=180°﹣70°﹣50°=60°(三角形内角和定义).∵CD平分∠ACB,∴∠ACD=∠ACB=×60°=30°.试题17答案:【考点】全等三角形的判定与性质.【分析】要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.【解答】证明;∵BD⊥AC于点D,CE⊥AB于点E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.试题18答案:【考点】全等三角形的判定与性质.【分析】(1)首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;(2)根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案.【解答】(1)证明:在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)解:∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB==4,∴CB=4+5=9.试题19答案:【考点】角平分线的性质.【分析】根据图形写出已知条件和求证,利用全等三角形的判定得出△PDO≌△PEO,由全等三角形的性质可得结论.【解答】解:已知:PD⊥OA,PE⊥OB,垂足分别为D、E;求证:PD=PE.故答案为:PD=PE.∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°,在△PDO和△PEO中,,∴△PDO≌△PEO(AAS),∴PD=PE.试题20答案:【考点】作图-轴对称变换;作图-平移变换.【分析】(1)直接利用关于x轴对称点的性质得出各对应点位置进而得出答案;(2)直接利用平移的性质得出各对应点位置进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,点A2(﹣3,﹣1),B2(0,﹣2),C2(﹣2,﹣4).试题21答案:【考点】等腰三角形的性质.【分析】(1)首先根据等腰三角形的性质得到∠ABC=∠ACB,然后利用高线的定义得到∠ECB=∠DBC,从而得证;(2)首先求出∠A的度数,进而求出∠BOC的度数.【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE是△ABC的两条高线,∴∠DBC=∠ECB,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∴∠BOC=180°﹣80°=100°.试题22答案:【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)利用等腰直角三角形的性质得出AD=BD=DC,进而证明△AED≌△CFD,利用全等三角形的性质得出DE=DF,∠ADE=∠CDF进而得出△DEF为等腰直角三角形;(2)若点E、F分别在线段AB,CA的延长线上,(1)中的结论依然成立,首先利用已知得出AD=BD=DC,进而利用全等三角形的判定得出△AED≌△CFD.【解答】解:(1)如图①,连接AD,∵∠BAC=90°,AB=AC,D为BC中点,∴∠BAD=∠DAC=∠B=∠C=45°,∴AD=BD=DC,在△AED和△CFD中,,∴△AED≌△CFD(SAS),∴DE=DF,∠ADE=∠CDF,又∵∠CDF+∠ADF=90°,∴∠ADE+∠ADF=90°,∴∠EDF=90°,∴DE⊥DF.(2)若点E、F分别在线段AB,CA的延长线上,(1)中的结论依然成立,如图②,理由:∵∠BAC=90° AB=AC,D为BC中点∴∠BAD=∠DAC=∠B=∠C=45°,∴AD=BD=DC,在△AED和△CFD中,,∴△AED≌△CFD(SAS);∴DE=DF,∠ADE=∠CDF,又∵∠CDF﹣∠ADF=90°,∴∠ADE﹣∠ADF=90°,∴∠EDF=90°,∴DE⊥DF.。
2016-2017学年八年级上期中教学质量数学试题含答案
A.-6<a<-3
B.-5<a<-2
C.-2<a<5
) D.a<-5 或 a>2
6、下列命题的逆命题是真命题的是( )
A.同位角相等
B.对顶角相等
C.钝角三角形有两个锐角
D.两直线平行,内错角相等
7、关于函数 y 2x 1,下列结论正确的是 (
)
A.图象必经过点(﹣2,1)
B.图象经过第一、二、三象限
2016-2017 学年八年级上期中教学质量数学试题含答案
八年级上数学期中试卷
班级
姓名
成绩
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分,每小题只有一个是正确的)
1、平面直角坐标系中,点 (2, 1) 所在象限为 ( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
2、平面直角坐标系中,线段 C D 是由线段 A B 平移得到的,点 A(-1,4)的对应点
.
x 1
12、直线 y=-3x+5 不经过的象限为
.
13、在△ABC 中, A 800 , B C ,则 B
y 14、函数
2x2 4( x3)
3x(x3) ,则当函数值 x 1 时, y
15、锐角三角形中,最大锐角 a 的取值范围是
. .
.
16、若函数 y=ax+b(a<0)的图象如图所示,则不等式 ax+b≥0 的解集是
2x y 1 0,
C
3x
2
y
5
0
x y 2 0,
D
2x
y
山东省济宁市兖州市2016-2017学年八年级(下)期中数学试卷(解析版)
2016-2017学年山东省济宁市兖州市八年级(下)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.若二次根式有意义,则a的取值范围是()A.a≥2 B.a≤2 C.a>2 D.a≠22.如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()A.150°B.130°C.120° D.100°3.下列计算结果正确的是()A.2+=2B.=2 C.(﹣2a2)3=﹣6a6D.(a+1)2=a2+14.下列根式中,不能与合并的是()A.B.C.D.5.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.126.在下列给出的条件中,能判定四边形ABCD为平行四边形的是()A.AB=BC,CD=DA B.AB∥CD,AD=BC C.AB∥CD,∠A=∠C D.∠A=∠B,∠C=∠D 7.如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M 对应的数是()A.B.C.D.8.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD 的长为()A.2 B.3 C.D.29.2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13 B.19 C.25 D.16910.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.二、填空题(共5小题,每小题3分,满分15分)11.计算:2﹣1+=.12.如图,在△ABC中,∠C=90°,则BC=.13.如图,菱形ABCD中,对角线AC与BD相交于点O,且AC=8,BD=6,则菱形ABCD 的高DH=.14.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为.15.如图,AB=6,O是AB的中点,直线l经过点O,∠1=120°,P是直线l上一点,当△APB为直角三角形时,AP=.三、解答题(共7小题,满分55分)16.计算:(1)2×;(2)﹣(3+);(3)已知a=+,b=﹣,求a2+b2﹣2ab的值.17.如图,□ABCD,AE平分∠BAD,交DC的延长线于点E,求证:DA=DE.18.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.19.如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.20.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.21.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.22.如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.2016-2017学年山东省济宁市兖州市八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.若二次根式有意义,则a的取值范围是()A.a≥2 B.a≤2 C.a>2 D.a≠2【考点】72:二次根式有意义的条件.【专题】11 :计算题;511:实数.【分析】根据负数没有平方根列出关于a的不等式,求出不等式的解集确定出a的范围即可.【解答】解:∵二次根式有意义,∴a﹣2≥0,即a≥2,则a的范围是a≥2,故选A【点评】此题考查了二次根式有意义的条件,二次根式性质为:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()A.150°B.130°C.120° D.100°【考点】L5:平行四边形的性质.【分析】由在平行四边形ABCD中,∠ABC的平分线交AD于E,易证得∠AEB=∠ABE,又由∠BED=150°,即可求得∠A的大小.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∵∠BED=150°,∴∠ABE=∠AEB=30°,∴∠A=180°﹣∠ABE﹣∠AEB=120°.故选C.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.3.下列计算结果正确的是()A.2+=2B.=2 C.(﹣2a2)3=﹣6a6D.(a+1)2=a2+1【考点】75:二次根式的乘除法;47:幂的乘方与积的乘方;4C:完全平方公式.【分析】依次根据合并同类二次根式,二次根式的除法,积的乘方,完全平方公式的运算.【解答】解:A、2+不是同类二次根式,所以不能合并,所以A错误;B、=2,所以B正确;C、(﹣2a2)3=﹣8a6≠﹣6a6,所以C错误;D、(a+1)2=a2+2a+1≠a2+1,所以D错误.故选B【点评】此题是二次根式的乘除法,主要考查了合并同类二次根式,二次根式的除法,积的乘方,完全平方公式的运算.,掌握这些知识点是解本题的关键.4.下列根式中,不能与合并的是()A.B.C.D.【考点】77:同类二次根式.【分析】将各式化为最简二次根式即可得到结果.【解答】解:A、,本选项不合题意;B、,本选项不合题意;C、,本选项合题意;D 、,本选项不合题意;故选C.【点评】此题考查了同类二次根式,熟练掌握同类二次根式的定义是解本题的关键.5.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.12【考点】LB:矩形的性质;LA:菱形的判定与性质.【专题】11 :计算题;556:矩形菱形正方形.【分析】由四边形ABCD为矩形,得到对角线互相平分且相等,得到OD=OC,再利用两对边平行的四边形为平行四边形得到四边形DECO为平行四边形,利用邻边相等的平行四边形为菱形得到四边形DECO为菱形,根据AC的长求出OC的长,即可确定出其周长.【解答】解:∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,∴OA=OB=OC=OD=2,∵CE∥BD,DE∥AC,∴四边形DECO为平行四边形,∵OD=OC,∴四边形DECO为菱形,∴OD=DE=EC=OC=2,则四边形OCED的周长为2+2+2+2=8,故选B【点评】此题考查了矩形的性质,以及菱形的判定与性质,熟练掌握判定与性质是解本题的关键.6.在下列给出的条件中,能判定四边形ABCD为平行四边形的是()A.AB=BC,CD=DA B.AB∥CD,AD=BC C.AB∥CD,∠A=∠C D.∠A=∠B,∠C=∠D 【考点】L6:平行四边形的判定.【分析】根据平行四边形的判定进行判断即可得出结论.【解答】解:如图所示,根据平行四边形的判定,A、B、D条件均不能判定为平行四边形,C选项中,由于AB∥CD,∠A=∠C,所以∠B=∠D,所以只有C能判定.故选C.【点评】平行四边形的判定方法共有五种,在四边形中如果有:1、四边形的两组对边分别平行;2、一组对边平行且相等;3、两组对边分别相等;4、对角线互相平分;5、两组对角分别相等.则四边形是平行四边形.7.如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M 对应的数是()A.B.C.D.【考点】KQ:勾股定理;29:实数与数轴.【分析】直接利用勾股定理得出OC的长,进而得出答案.【解答】解:如图所示:连接OC,由题意可得:OB=2,BC=1,则OC==,故点M对应的数是:.故选:B.【点评】此题主要考查了勾股定理,根据题意得出CO的长是解题关键.8.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD 的长为()A.2 B.3 C.D.2【考点】L8:菱形的性质.【分析】首先根据菱形的性质知AC垂直平分BD,再证出△ABC是正三角形,由三角函数求出BO,即可求出BD的长.【解答】解:∵四边形ABCD菱形,∴AC⊥BD,BD=2BO,∵∠ABC=60°,∴△ABC是正三角形,∴∠BAO=60°,∴BO=sin60°•AB=2×=,∴BD=2.故选:D.【点评】本题主要考查解直角三角形和菱形的性质的知识点,解答本题的关键是熟记菱形的对角线垂直平分,本题难度一般.9.2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【考点】KR:勾股定理的证明.【专题】37:数学建模思想;48:构造法;554:等腰三角形与直角三角形.【分析】根据题意,结合图形求出ab与a2+b2的值,原式利用完全平方公式化简后代入计算即可求出值.【解答】解:根据题意得:c2=a2+b2=13,4×ab=13﹣1=12,即2ab=12,则(a+b)2=a2+2ab+b2=13+12=25,故选C【点评】此题考查了勾股定理的证明,利用了数形结合的思想,熟练掌握勾股定理是解本题的关键.10.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.【考点】LB:矩形的性质;PB:翻折变换(折叠问题).【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【解答】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选:D.【点评】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.二、填空题(共5小题,每小题3分,满分15分)11.计算:2﹣1+=.【考点】73:二次根式的性质与化简;6F:负整数指数幂.【分析】分别根据负整数指数幂的运算法则、算术平方根的定义分别计算出各数,再根据有理数的加法法则进行计算即可.【解答】解:原式=+2=.故答案为:.【点评】本题考查的是二次根式的性质与化简,熟知二次根式具有非负性是解答此题的关键.12.如图,在△ABC中,∠C=90°,则BC=4.【考点】KQ:勾股定理.【分析】根据勾股定理列式计算即可.【解答】解:由勾股定理得,BC==4,故答案为:4.【点评】本题考查的是勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.13.如图,菱形ABCD中,对角线AC与BD相交于点O,且AC=8,BD=6,则菱形ABCD 的高DH= 4.8.【考点】L8:菱形的性质.【分析】根据菱形的对角线互相垂直平分求出OA、OB,再根据勾股定理列式求出AB,然后利用菱形的面积列式计算即可得解.【解答】解:在菱形ABCD中,AC⊥BD,∵AC=8,BD=6,∴OA=AC=×8=4,OB=BD=×6=3,在Rt△AOB中,AB==5,∵DH⊥AB,∴菱形ABCD的面积=AC•BD=AB•DH,即×6×8=5•DH,解得DH=4.8,故答案为:4.8.【点评】本题考查了菱形的对角线互相垂直平分的性质,勾股定理,根据菱形的面积的两种表示方法列出方程是解题的关键.14.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为4n﹣3.【考点】KX:三角形中位线定理;38:规律型:图形的变化类.【分析】结合题意,总结可知,每个图中三角形个数比图形的编号的4倍少3个三角形,即可得出结果.【解答】解:第①是1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.【点评】此题主要考查了图形的变化,解决此题的关键是寻找三角形的个数与图形的编号之间的关系.15.如图,AB=6,O是AB的中点,直线l经过点O,∠1=120°,P是直线l上一点,当△APB为直角三角形时,AP=3或3或3.【考点】KP:直角三角形斜边上的中线.【专题】32 :分类讨论.【分析】利用分类讨论,当∠APB=90°时,分两种情况讨论,情况一:如图1,易得∠PBA=30°,利用直角三角形斜边的中线等于斜边的一半得出结论;情况二:利用锐角三角函数得AP的长;如图2,当∠BAP=90°时,如图3,利用锐角三角函数得AP的长.【解答】解:当∠APB=90°时,分两种情况讨论,情况一:如图1,∵AO=BO,∴PO=BO,∵∠1=120°,∴∠AOP=60°,∴△AOP为等边三角形,∴∠OAP=60°,∴∠PBA=30°,∴AP=AB=3;情况二:如图2,∵AO=BO,∠APB=90°,∴PO=BO,∵∠1=120°,∴∠BOP=60°,∴△BOP为等边三角形,∴∠OBP=60°,∴AP=AB•sin60°=6×=3;当∠BAP=90°时,如图3,∵∠1=120°,∴∠AOP=60°,∴AP=OA•tan∠AOP=3×=3,当∠ABP=90°时,如图4,∵∠1=120°,∴∠BOP=60°∵OB=3,∴PB=3,∴PA==3,故答案为:3或3或3.【点评】本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线,利用分类讨论,数形结合是解答此题的关键.三、解答题(共7小题,满分55分)16.(2017春•济宁期中)计算:(1)2×;(2)﹣(3+);(3)已知a=+,b=﹣,求a2+b2﹣2ab的值.【考点】7A:二次根式的化简求值.【分析】根据二次根式的混合运算的法则进行技术即可.【解答】解:(1)2×=2×2××=;(2)﹣(3+)=﹣()==﹣;(3)∵a=+,b=﹣,∴a﹣b=2,∴a2+b2﹣2ab=(a﹣b)2=8.【点评】本题考查了二次根式的混合运算,二次根式的化简求值,熟练掌握二次根式的混合运算的法则是解题的关键.17.如图,□ABCD,AE平分∠BAD,交DC的延长线于点E,求证:DA=DE.【考点】L5:平行四边形的性质.【专题】11 :计算题;555:多边形与平行四边形.【分析】由四边形ABCD为平行四边形,得到对边AB与CD平行,利用两直线平行内错角相等得到一对角相等,再由AE为角平分线得到一对角相等,等量代换后再利用等角对等边即可得证.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠E=∠BAE,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠E=∠DAE,∴DA=DE.【点评】此题考查了平行四边形的性质,平行线的性质,以及等腰三角形的性质,熟练掌握平行四边形的性质是解本题的关键.18.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.【考点】KS:勾股定理的逆定理;KQ:勾股定理.【专题】121:几何图形问题.【分析】连接BD,根据已知分别求得△ABD的面积与△BDC的面积,即可求四边形ABCD 的面积.【解答】解:连接BD,∵AB=3cm,AD=4cm,∠A=90°=×3×4=6cm2∴BD=5cm,S△ABD又∵BD=5cm,BC=13cm,CD=12cm∴BD2+CD2=BC2∴∠BDC=90°=×5×12=30cm2∴S△BDC=S△ABD+S△BDC=6+30=36cm2.∴S四边形ABCD【点评】此题主要考查勾股定理和逆定理的应用,还涉及了三角形的面积计算.连接BD,是关键的一步.19.如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.【考点】LB:矩形的性质;N2:作图—基本作图.【专题】556:矩形菱形正方形.【分析】(1)分别以B、D为圆心,比BD的一半长为半径画弧,交于两点,确定出垂直平分线即可;(2)连接BE,DF,四边形BEDF为菱形,理由为:由EF垂直平分BD,得到BE=DE,∠DEF=∠BEF,再由AD与BC平行,得到一对内错角相等,等量代换及等角对等边得到BE=BF,再由BF=DF,等量代换得到四条边相等,即可得证.【解答】解:(1)如图所示,EF为所求直线;(2)四边形BEDF为菱形,理由为:证明:∵EF垂直平分BD,∴BE=DE,∠DEF=∠BEF,∵AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,∵BF=DF,∴BE=ED=DF=BF,∴四边形BEDF为菱形.【点评】此题考查了矩形的性质,菱形的判定,以及作图﹣基本作图,熟练掌握性质及判定是解本题的关键.20.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【考点】L8:菱形的性质;L7:平行四边形的判定与性质.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.【点评】此题考查平行四边形的性质和判定问题,关键是根据平行四边形的判定解答即可.21.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.【考点】KQ:勾股定理.【分析】根据题意利用勾股定理表示出AD2的值,进而得出等式求出答案.【解答】解:如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14﹣x,由勾股定理得:AD2=AB2﹣BD2=152﹣x2,AD2=AC2﹣CD2=132﹣(14﹣x)2,故152﹣x2=132﹣(14﹣x)2,解之得:x=9.∴AD=12.=BC•AD=×14×12=84.∴S△ABC【点评】此题主要考查了勾股定理,根据题意正确表示出AD2的值是解题关键.22.如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.【考点】L5:平行四边形的性质;L9:菱形的判定;PA:轴对称﹣最短路线问题;PB:翻折变换(折叠问题).【分析】(1)利用翻折变换的性质以及平行线的性质得出∠DAE=∠EAD′=∠DEA=∠D′EA,进而利用平行四边形的判定方法得出四边形DAD′E是平行四边形,进而求出四边形BCED′是平行四边形,根据折叠的性质得到AD=AD′,然后又菱形的判定定理即可得到结论;(2)由四边形DAD′E是平行四边形,得到▱DAD′E是菱形,推出D与D′关于AE对称,连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G,解直角三角形得到AG=,DG=,根据勾股定理即可得到结论.【解答】证明:(1)∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E,∵DE∥AD′,∴∠DEA=∠EAD′,∴∠DAE=∠EAD′=∠DEA=∠D′EA,∴∠DAD′=∠DED′,∴四边形DAD′E是平行四边形,∴DE=AD′,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∴CE=D′B,CE∥D′B,∴四边形BCED′是平行四边形;∵AD=AD′,∵AB=2,AD=1,∴AD=AD′=BD′=CE=BC=1,∴▱BCED′是菱形,(2)∵四边形DAD′E是菱形,∴D与D′关于AE对称,连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G,∵CD∥AB,∴∠DAG=∠CDA=60°,∵AD=1,∴AG=,DG=,∴BG=,∴BD==,∴PD′+PB的最小值为.【点评】本题考查了平行四边形的性质,最短距离问题,勾股定理,菱形的判定和性质,正确的作出辅助线是解题的关键.。
济宁市兖州区-八年级上期中数学试卷含答案解析.doc
2016-2017学年山东省济宁市兖州区八年级(上)期中数学试卷一、选择题:本大题共10小题,每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,不选或选出的答案超过一个均记零分,本大题共30分.1.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 2.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.3.平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)4.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC5.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或206.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个7.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.608.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°9.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米10.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A.(0,0)B.(0,1)C.(0,2)D.(0,3)二、填空题:本大题共5小题,每小题3分,共15分,要求只写最后结果.11.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=.12.将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.13.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是.14.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于.15.已知∠AOB=30°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是.三、解答题:本大题共7小题,共55分,解答应写出文字说明和推理步骤.16.如图,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB,求∠ACD的度数.17.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.18.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.19.证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,求证:.请你补全已知和求证,并写出证明过程.20.如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.21.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.22.如图,已知△ABC中,AB=AC,∠BAC=90°,点D为BC的中点,点E、F分别在直线AB、AC上运动,且始终保持AE=CF.(1)如图①,若点E、F分别在线段AB,AC上,求证:DE=DF且DE⊥DF;(2)如图②,若点E、F分别在线段AB,CA的延长线上,(1)中的结论是否依然成立?说明理由.2016-2017学年山东省济宁市兖州区八年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,不选或选出的答案超过一个均记零分,本大题共30分.1.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【考点】三角形三边关系.【分析】依据三角形任意两边之和大于第三边求解即可.【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<6,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.2.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.3.平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案.【解答】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选:A.4.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【考点】全等三角形的判定.【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.5.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20【考点】等腰三角形的性质;三角形三边关系.【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.6.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个【考点】全等三角形的判定与性质.【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故①②正确;故选D7.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【考点】角平分线的性质.【分析】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选B.8.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【解答】解:由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠CAD=65°,故选A.9.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【考点】多边形内角与外角.【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小明一共走了:15×10=150米.故选B.10.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A.(0,0)B.(0,1)C.(0,2)D.(0,3)【考点】轴对称-最短路线问题;坐标与图形性质.【分析】根据轴对称作最短路线得出AE=B′E,进而得出B′O=C′O,即可得出△ABC的周长最小时C点坐标.【解答】解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,此时△ABC的周长最小,∵点A、B的坐标分别为(1,4)和(3,0),∴B′点坐标为:(﹣3,0),AE=4,则B′E=4,即B′E=AE,∵C′O∥AE,∴B′O=C′O=3,∴点C′的坐标是(0,3),此时△ABC的周长最小.故选:D.二、填空题:本大题共5小题,每小题3分,共15分,要求只写最后结果.11.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=120°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠C的度数,根据三角形内角和定理计算即可.【解答】解:∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠C=120°,故答案为:120°.12.将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是75°.【考点】三角形的外角性质;三角形内角和定理.【分析】根据含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,得出平行线,再利用平行线的性质和对顶角相等得出∠2=45°,再利用三角形的外角性质解答即可.【解答】解:如图,∵含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,∴AB∥CD,∴∠3=∠4=45°,∴∠2=∠3=45°,∵∠B=30°,∴∠1=∠2+∠B=30°+45°=75°,故答案为:75°.13.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是DC=BC或∠DAC=∠BAC.【考点】全等三角形的判定.【分析】添加DC=BC,利用SSS即可得到两三角形全等;添加∠DAC=∠BAC,利用SAS 即可得到两三角形全等.【解答】解:添加条件为DC=BC,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS);若添加条件为∠DAC=∠BAC,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:DC=BC或∠DAC=∠BAC14.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于20°.【考点】等边三角形的性质;平行线的性质.【分析】过点A作AD∥l1,如图,根据平行线的性质可得∠BAD=∠β.根据平行线的传递性可得AD∥l2,从而得到∠DAC=∠α=40°.再根据等边△ABC可得到∠BAC=60°,就可求出∠DAC,从而解决问题.【解答】解:过点A作AD∥l1,如图,则∠BAD=∠β.∵l1∥l2,∴AD∥l2,∵∠DAC=∠α=40°.∵△ABC是等边三角形,∴∠BAC=60°,∴∠β=∠BAD=∠BAC﹣∠DAC=60°﹣40°=20°.故答案为20°.15.已知∠AOB=30°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是2.【考点】轴对称-最短路线问题;角平分线的性质.【分析】过M作MN′⊥OB于N′,交OC于P,即MN′的长度等于点P到点M与到边OA 的距离之和的最小值,解直角三角形即可得到结论.【解答】解:过M作MN′⊥OB于N′,交OC于P,则MN′的长度等于PM+PN的最小值,即MN′的长度等于点P到点M与到边OA的距离之和的最小值,∵∠ON′M=90°,OM=4,∴MN′=OM=2,∴点P到点M与到边OA的距离之和的最小值为2.故答案是:2.三、解答题:本大题共7小题,共55分,解答应写出文字说明和推理步骤.16.如图,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB,求∠ACD的度数.【考点】三角形内角和定理.【分析】本题考查的是三角形内角和定理,求出∠ACB的度数后易求解.【解答】解:∵∠A=70°,∠B=50°,∴∠ACB=180°﹣70°﹣50°=60°(三角形内角和定义).∵CD平分∠ACB,∴∠ACD=∠ACB=×60°=30°.17.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.【考点】全等三角形的判定与性质.【分析】要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.【解答】证明;∵BD⊥AC于点D,CE⊥AB于点E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.18.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.【考点】全等三角形的判定与性质.【分析】(1)首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;(2)根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案.【解答】(1)证明:在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)解:∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB==4,∴CB=4+5=9.19.证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB求证:PD=PE.请你补全已知和求证,并写出证明过程.【考点】角平分线的性质.【分析】根据图形写出已知条件和求证,利用全等三角形的判定得出△PDO≌△PEO,由全等三角形的性质可得结论.【解答】解:已知:PD⊥OA,PE⊥OB,垂足分别为D、E;求证:PD=PE.故答案为:PD=PE.∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°,在△PDO和△PEO中,,∴△PDO≌△PEO(AAS),∴PD=PE.20.如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)直接利用关于x轴对称点的性质得出各对应点位置进而得出答案;(2)直接利用平移的性质得出各对应点位置进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,点A2(﹣3,﹣1),B2(0,﹣2),C2(﹣2,﹣4).21.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.【考点】等腰三角形的性质.【分析】(1)首先根据等腰三角形的性质得到∠ABC=∠ACB,然后利用高线的定义得到∠ECB=∠DBC,从而得证;(2)首先求出∠A的度数,进而求出∠BOC的度数.【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE是△ABC的两条高线,∴∠DBC=∠ECB,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∴∠BOC=180°﹣80°=100°.22.如图,已知△ABC中,AB=AC,∠BAC=90°,点D为BC的中点,点E、F分别在直线AB、AC上运动,且始终保持AE=CF.(1)如图①,若点E、F分别在线段AB,AC上,求证:DE=DF且DE⊥DF;(2)如图②,若点E、F分别在线段AB,CA的延长线上,(1)中的结论是否依然成立?说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)利用等腰直角三角形的性质得出AD=BD=DC,进而证明△AED≌△CFD,利用全等三角形的性质得出DE=DF,∠ADE=∠CDF进而得出△DEF为等腰直角三角形;(2)若点E、F分别在线段AB,CA的延长线上,(1)中的结论依然成立,首先利用已知得出AD=BD=DC,进而利用全等三角形的判定得出△AED≌△CFD.【解答】解:(1)如图①,连接AD,∵∠BAC=90°,AB=AC,D为BC中点,∴∠BAD=∠DAC=∠B=∠C=45°,∴AD=BD=DC,在△AED和△CFD中,,∴△AED≌△CFD(SAS),∴DE=DF,∠ADE=∠CDF,又∵∠CDF+∠ADF=90°,∴∠ADE+∠ADF=90°,∴∠EDF=90°,∴DE⊥DF.(2)若点E、F分别在线段AB,CA的延长线上,(1)中的结论依然成立,如图②,理由:∵∠BAC=90° AB=AC,D为BC中点∴∠BAD=∠DAC=∠B=∠C=45°,∴AD=BD=DC,在△AED和△CFD中,,∴△AED≌△CFD(SAS);∴DE=DF,∠ADE=∠CDF,又∵∠CDF﹣∠ADF=90°,∴∠ADE﹣∠ADF=90°,∴∠EDF=90°,∴DE⊥DF.2016年11月13日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年度第一学期期中考试
八年级数学试题
一 选择题:本大题共10小题,每小题3分,共30分。
1.下列长度的三根小木棒能构成三角形的是( )
A.2cm,3cm,5cm
B.7cm,4cm,2cm
C.3cm,4cm,8cm
D.3cm,3cm,4cm
2.甲骨文是我国的一种古代文字,是汉子的早期形式,下列甲骨文中,不是轴对称图形的是( )
3.平面直角坐标系中,点P(-2,3)关于x 轴对称的点的坐标为( )
A.(-2,-3)
B.(2,-3)
C.(-3,-2)
D.(3,-2)
4.如图,AE//DF,AE=DF,要使△EAC ≌△FDB,组要添加下列选项中的( )
A.AB=CD
B.EC=BF
C.∠A=∠D
D.AB=BC
5.一个等腰三角形的两边长分别为4,8,则它的周长为( )
A.12
B.16
C.20
D.16或20
6.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC ⊥BD;②AO=CO=AC 2
1;③△ABD ≌△CBD.其中正确的结论有( ) A.0个 B.1个 C.2个 D.3个
7.如图,在Rt △ABC 中,∠C=900
,以顶点A 为圆心,适当长为半径画弧,分别交AC,AB 于点M,N,再分别以M,N 为圆心,大于MN 21的长为半径画弧,两弧交于点P,作射线AP 交边BC 于D,若CD=4,AB=15,则△ABD 面积是( ) A.15 B.30 C.45 D.60
8.如果,在△ABC 中,∠B=550,∠C=300,分别以点A 和点C 为圆心,大于
AC 2
1的长为半径画弧,两弧相交于点M ,N,作直线MN ,交BC 于点D ,连接AD ,则∠BAD 的度数为( )
A.650
B.600
C.550
D.450
9.如图所示,小华从A点出发,沿直线前进10米后左转240,再沿直线前进10米,又向左转240,...,照这样走下去,他第一次回到出发地A点时,一共走的路程是()
A.140米
B.150米
C.160米
D.240米
10.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是( )
A.(0,0)
B.(0,1)
C.(0,3)
D.(0,2)
二填空题:本大题共5小题,每小题3分,共15分。
11.如图,△ABC≌△A/B/C/,其中∠A=360,∠C/=240,则∠B= .
12.将一副三角尺如图所示的方式放置,使含300角的三角尺的短直角边和含450角的三角尺的一条直角边重合,则∠1的度数是 .
13.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是 .
14.如图,已知直线L1//L2,将等边三角形如图放置,若∠ɑ=400,则∠β等于 .
15.已知∠AOB=300,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是 .
三解答题:本大题共7小题,共55分。
16. (6分)如图,在△ABC中,∠A=700,∠B=500,CD平分∠ACB.求∠ACD的度数.
17.(6分)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.
18.(7分)如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.
(1)求证:AC//DE;
(2)若BF=13,CE=5,求BC的长.
19.(8分)证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证。
已知:如图,∠AOC=∠BOC,点P在OC上, .
求证: .
请你补全已知和求证,并写出证明过程.
20.(9分)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.
(1)画出△ABC关于x轴的对称图形△A1B1C1;
(2) 将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.
21.(9分)如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O.
(1)求证:OB=OC; (2)若∠ABC=500,求∠BOC的度数.
22.(9分)如图,已知△ABC中,AB=AC,∠BAC=900,点D为BC的中点,点E、F分别在直线AB、AC上运动,且始终保持AE=CF.
(1)如图1,若点E、F分别在线段AB、AC上,求证:DE=DF且DE⊥DF;
(2)如图2,若点E、F分别在线段AB、CA的延长线上,(1)中的结论是否依然成立?说明理由.
2016-2017学年度第一学期期中考试八年级数学试题答案
1.D
2.D
3.A
4.A
5.C
6.D
7.B
8.A
9.B 10.C
11.1200
12.750
13.BC=CD
14.200
15.2
16.解:因为∠A=700,∠B=500,所以∠ACB=600.因为CD 平分∠ACB ,所以∠ACD=
2
1∠ACB=300. 17.证明:因为CE ⊥AB,BD ⊥AC 所以∠AEC=∠ADB=900
在△ABD 与△ACE 中,⎪⎩
⎪⎨⎧∠=∠=∠=∠AEC ADB AE AD EAC DAB ,所以△ABD ≌△ACE(ASA),所以AC=AB,所以CD=BE.
18.证明:(1)在△ABC 与△DFE 中⎪⎩⎪⎨⎧=∠=∠=DE AC D A DF AB ,所以△ABC ≌△DFE(SAS),所以∠ACB=∠DEF,所以AC//DE.
(2)因为△ABC ≌△DFE ,所以BC=EF,所以BE=CF,所以BE+CF=13-5=8,所以BE=4,所以BC=4+5=9.
19.已知PD ⊥OA,PE ⊥OB.求证:PD=PE.
证明:因为PD ⊥OA,PE ⊥OB ,所以∠ODP=∠OEP=900.因为OC 平分∠AOB ,所以∠DOP=∠EOP
在△OPD 与△OPE 中,⎪⎩
⎪⎨⎧=∠=∠∠=∠OP OP EOP DOP OEP ODP ,所以△OPD ≌△OPE(AAS),所以PD=PE.
20.略.
21.(1)∵AB=AC ,∴∠ABC=∠ACB ,∴BD 、CE 分别为△ABC 的高,∴∠BEC=∠BDC=90°,
∴在△BEC 和△CDB 中,’∴△BEC ≌△CDB ,∴∠OBC=∠OCB ,∴OB=OC .
(2)1000
.
22.(1) 连结AD.
∵AB=AC,∠BAC =90°,为BC 的中点 ∴AD ⊥BC ,BD =AD ∴∠B =∠DAC =45°
又∵BE =AF ∴△BDE ≌△ADF (SAS ) ∴ED =FD ,∠BDE =∠ADF
∴∠EDF =∠EDA +∠ADF =∠EDA +∠BDE =∠BDA =90°∴△DEF 为等腰直角三角形;
(2)若E ,F 分别是AB ,CA 延长线上的点,如图所示,连结AD
∵AB=AC,∠BAC=90°,D为BC的中点∴AD=BD,AD⊥BC ∴∠DAC=∠ABD=45°∴∠DAF=∠DBE=135°
又AF=BE∴△DAF≌△DBE(SAS)∴FD=ED,∠FDA=∠EDB ∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°
∴△DEF仍为等腰直角三角形.。