《圆》的全章教案圆

合集下载

湘教版最新九年级数学圆全章精品教案

湘教版最新九年级数学圆全章精品教案

第三章圆单元要点分析教学内容1.本单元数学的主要内容.(1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角.(2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系,•圆和圆的位置关系.(3)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积.2.本单元在教材中的地位与作用.学生在学习本章之前,已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程.教学目标1.知识与技能(1)了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、•弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理.(2)探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,•探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.(3)熟练掌握弧长和扇形面积公式及其它们的应用;•理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.2.过程与方法(1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动.•了解概念,理解等量关系,掌握定理及公式.(2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流.(3)在探索圆周角和圆心角之间的关系的过程中,•让学生形成分类讨论的数学思想和归纳的数学思想.(4)通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,•使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.(5)探索弧长、扇形的面积、•圆锥的侧面积和全面积的计算公式并理解公式的意义、理解算法的意义.3.情感、态度与价值观经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望.教学重点1.平分弦(不是直径)的直径垂直于弦,•并且平分弦所对的两条弧及其运用.2.在同圆或等圆中,相等的圆心角所对的弧相等,•所对的弦也相等及其运用.3.在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半及其运用.4.半圆(或直径)所对的圆周角是直角,90•°的圆周角所对的弦是直径及其运用.5.不在同一直线上的三个点确定一个圆.6.直线L和⊙O相交⇔d<r;直线L和圆相切⇔d=r;直线L和⊙O相离⇔d>r及其运用.7.圆的切线垂直于过切点的半径及其运用.8.•经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题.9.两圆的位置关系:d 与r 1和r 2之间的关系:外离⇔d>r 1+r 2;外切⇔d=r 1+r 2;相交⇔│r 2-r 1│<d<r 1+r 2;内切⇔d=│r 1-r 2│;内含⇔d<│r 2-r 1│. 10、n °的圆心角所对的弧长为L=180n R π,n °的圆心角的扇形面积是S扇形=2360n R π及其运用这两个公式进行计算.12.圆锥的侧面积和全面积的计算. 教学难点1.垂径定理的探索与推导及利用它解决一些实际问题.2.弧、弦、圆心有的之间互推的有关定理的探索与推导,•并运用它解决一些实际问题. 3.有关圆周角的定理的探索及推导及其它的运用. 4.点与圆的位置关系的应用.5.三点确定一个圆的探索及应用. 6.直线和圆的位置关系的判定及其应用. 7.切线的判定定理与性质定理的运用. 8.圆和圆的位置关系的判定及其运用. 9. n 的圆心角所对的弧长L=180n R π及S扇形=2360n R π的公式的应用.10.圆锥侧面展开图的理解.教学关键1.积极引导学生通过观察、测量、折叠、平移、旋转等数学活动探索定理、•性质、“三个”位置关系并推理证明等活动.2.关注学生思考方式的多样化,注重学生计算能力的培养与提高.3.在观察、操作和推导活动中,使学生有意识地反思其中的数学思想方法,•发展学生有条理的思考能力及语言表达能力.单元课时划分本单元教学时间约需13课时,具体分配如下:3.1 圆 4课时 3.2 点、直线与圆的位置关系,圆的切线 4课时 3.3 圆与圆的位置关系 2课时3.4 弧长和扇形面积,圆锥的侧面展开图 4课时 3.5 平行投影和中心投影 1课时 3.6 三视图 3课时 教学活动、习题课、小结 3课时3.1 圆3.1.1 圆的对称性(第一课时)教学目标了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念.利用操作几何的方法,理解圆是旋转对称图形和中心对称图形及圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.通过对圆的图形的认识,使学生认识新的几何图形的对称美,体会所体现出的完美性,培养学生美的感受,激发学习兴趣.重难点、关键1.重点:垂径定理及其运用.2.难点与关键:探索并证明垂径定理及利用垂径定理解决一些实际问题.教学过程Ⅰ.创设现实情境,引入新课[师]前面我们已经学习过两种常见的几何图形,三角形、四边形.大家回忆一下我们是通过一些什么方法研究了它们的性质?[师]好!大家总结得很详细,今天我们继续运用这些方法来学习和研究小学已接触过的另一种常见的几何图形——圆.和三角形、四边形一样,圆的性质与应用同样需要通过轴反射、平移、旋转、推理证明等方法去学习和探究.Ⅱ.讲授新课[师]日常生活中同学们经常见到的汽车、摩托车、自行车等一些交通运输工具的车轮是什么形状的?[师]请同学们思考一个问题,为什么车轮要做成圆形呢?能否做成长方形或正方形?老师这里有两个车轮模具,一个是圆形,一个是正方形.我们一起观察一下这两个车轮在行进中有些什么特点?大家讨论.讨论如下图:[师]通过我们平常乘坐汽车,或骑自行车感受到,圆形的车轮只要路面平整,车子就不会上下颠簸,人坐在车上就感到平稳、舒服.假如车轮是方形的,那么车子在行进中,就会对人产生一种上下颠簸,坐着不舒服的感觉.下面我们一起来探讨一下,是什么原因导致车轮要做成圆形,不能做成方形.看P图,A、B表示车83轮边缘上的两点,点O表示车轮的轴心,A、O之间的距离与B、O之间的距离有什么关系?用什么方法可以判断,大家动手做一做.[师]同学们做得很好.大家通过不同的方法,得到的结果是什么?[生]OA=OB.[师]刚才是两个特殊点,现在我们在车轮边缘上任意取一点C,要使车轮能够平稳地滚动,C、O之间的距离与A、O之间的距离应有什么关系?[生]CO=AO.这样才能保证车轮平稳地滚动.[师]同学们以前画过圆,画一个圆很简单.将圆规的一个脚固定,另一个带有铅笔头的脚转一圈,一个圆就画出来了.固定的那一点称为圆心.所画得的圆圈叫圆周.从画圆的过程中可以看到,圆规两个脚之间的长度始终保持不变,也就是说圆心到圆周上任意一点的距离都相等.这是圆的一个重要而又最基本的性质.人们就是用圆的这种性质来制造车轮的,车轴总是安装在车轮的圆心位置上,这样,车轴到车轮边缘的距离处处相等.也就是说,车子在行进中,车轴离路面的距离总是一样的.车子在平路上行走较平稳,假如是方形的,车轴到路面的距离时大时小,车子就会产生颠簸.2、圆的定义:平面内到一定点的距离等于定长的所有点组成的图形叫做圆(circle).其中,定点称为圆心(Centre of a circle),定长称为半径(radius).以点O为圆心的圆记作⊙O,读作“圆O”.注意:确定一个圆需要两个要素,一是位置,二是大小.圆心确定其位置,半径确定其大小.只有圆心没有半径,虽圆的位置固定,但大小不定,因而圆不确定;只有半径而没有圆心,虽圆的大小固定,但圆心的位置不定,因而圆也不确定.只有圆心和半径都固定,圆才被唯一确定.问: 1.体育教师想利用一根3m长的绳子在操场上画一个半径为3m的圆,你能帮他想想办法吗?答:将绳子的一端A固定,然后拉紧绳子的另一端B,并绕A在地上转一圈,B所经过的路径就是所希望的圆.小结:圆也可以看成平面内一动点绕一个定点旋转一周所形成的图形。

圆的认识的教学设计【5篇】-最新

圆的认识的教学设计【5篇】-最新

圆的认识的教学设计【5篇】学生通过观察、操作和交流认识圆的各部分名称和感受圆的基本特征,会用圆规画指定大小的圆,能应用圆的知识解释生活中的现象。

下面是为大伙儿带来的5篇《圆的认识的教学设计》,我们不妨阅读一下,看看是否能有一点抛砖引玉的作用。

圆的认识数学教案篇一【教学内容】义务教育课程标准北师大版试验教材六年级上册第一单元第2、3页圆的认识一。

【教学目标】1、结合生活实际,通过观察、操作等活动认识圆,认识到同一个圆中半径都相等、直径都相等,体会圆的特征及圆心和半径的作用,会用圆规画圆。

2、结合具体的情境,体验数学与日常生活密切相关,能用圆的知识来解释生活中的简单现象。

3、通过观察、操作、想象等活动,发展空间观念。

【教学重、难点】1、圆的特征。

2、画圆的方法。

【教具、学具准备】1、三角尺、直尺、圆规。

2、教学课件。

【教学设计】教学过程教学过程说明一、观察思考。

1、欣赏生活中的圆:棋子、桌面、钟面、车轮、中国结。

2、观察这些图形与我们以前学过的图形有什么不同?3、生活中还有哪些物体的面是圆形?4、做套圈游戏,哪种方式更公平?二、画一画。

1、你能想办法画一个圆吗?(1)用手比划着画圆。

(2)用一根线和一支笔画圆。

(3)用圆规画圆。

2、教学用圆规画圆的方法。

三、认一认。

学生用圆规画一个圆。

讨论:圆规的尖、圆规张开的两脚之间的长度所起的作用。

告诉学生半径和圆心。

四、画一画、想一想。

1、要求学生画一个任意大小的圆,并画出它的半径和直径。

观察比较得知:圆有无数条直径,无数条半径。

在同一个圆内直径都相等,半径都相等。

2、以点A为圆心,要求学生以A为圆心画两个大小不同的圆。

3、画两个半径都是2厘米的圆。

五、讨论。

圆的位置与什么有关系?圆的大小与什么有关?圆的认识教学设计开展教案篇二11月11日早上听了《圆的认识》这一堂课使我感受良多。

学生在低年级虽然也认识了圆,但只是直观的,对于掌握圆的特征还是有难度的。

由认识直线图形到认识曲线图形,是认识发展的一次飞跃。

人教版数学六年级上册圆的认识教案与反思(精选3篇)

人教版数学六年级上册圆的认识教案与反思(精选3篇)

人教版数学六年级上册圆的认识教案与反思(精选3篇)〖人教版数学六年级上册圆的认识教案与反思第【1】篇〗教学目标:1、使学生认识圆,掌握圆的特征,理解直径与半径的关系。

2、会使使用工具画圆。

3、培养学生观察、分析、综合、概括及动手操作能力。

教学重点:圆的认识,通过动手操作,理解直径与半径的关系,认识圆的特征。

教学难点:画圆的方法,认识圆的特征。

教学过程:一、复习。

1、我们以前学过的平面图行有哪些?这些图形都是用什么线围成的?简单说说这些图形的特征?长方形正方形平行四边形三角形梯形3、示圆片图形:(1)圆是用什么线围成的?(圆是一种曲线图形)i.举例:生活中有哪些圆形的物体?二、认识圆的特征。

1、学生自己在准备好的纸上画一个圆,并动手剪下。

2、动手折一折。

(1)折过2次后,你发现了什么?(两折痕的交点叫做圆心,圆心一般用字母O表示)(2)再折出另外两条折痕,看看圆心是否相同。

3、认识直径和半径。

(1)将折痕用铅笔画出来,比一比是否相等?(2)观察这些线段的特征。

(圆心和圆上任意一点的距离都相等)(3)板书:通过圆心并且两端都在圆上的线段,叫做直径。

连接圆心到圆上任意一点的线段,叫做半径。

4、讨论:(1)什么叫半径?圆上是什么意思?画一画两条半径,量一量它们的长短,发现了什么?(2)什么叫直径?过圆心是什么意思?量一量手上的圆的直径的长短,你发现了什么?(3)小结:在同一个圆里,有无数条直径,且所有的直径都相等。

在同一个圆里,有无数条半径,且所有的半径都相等。

5、直径与半径的关系。

(1)学生独立量出自己手中圆的直径与半径的长度,看它们之间有什么关系?然后讨论测量结果,找出直径与半径的关系。

得出结论:在同一个圆里,6、巩固练习:课本58做一做的第1-4题。

三、学习画圆。

1、介绍圆规的各部分名称及使用方法。

2、引导学生自学用圆规画圆,并小结出画圆的步骤和方法。

四、巩固练习。

1、画一个半径是2厘米的圆。

再画一个直径是5厘米的圆。

圆单元教学设计教案

圆单元教学设计教案

单元教学设计一、单元教学目标本章的主要内容是圆及其有关概念,圆的性质,与圆有关的位置关系以及圆中的计算问题,通过对圆的各种性质的探索,加强推理能力。

1、理解圆及弦、弧、圆周角的概念,了解弧、弦、圆周角的关系。

2、探索并了解圆的对称性以及垂径定理。

3、探索并了解圆周角与圆心角之间的关系、直径所对的圆心角的特征。

4、探索并了解点与圆、直线与圆以及圆与圆的位置关系。

5、了解三角形的内心和外心及内切圆、外接圆、内接三角形、外切三角形的概念。

6、了解切线的概念,探索切线与过切点的半径之间的关系,掌握切线的识别方法。

7、了解切线长及切线长定理。

8、会过圆上一点画圆的切线。

9、会计算弧长及扇形的面积以及圆锥的侧面积和全面积。

二、知识结构图三、各课时目标:第1课时:了解圆及弦、弧、圆心角的概念,了解弧、弦、圆心角的关系。

第2课时:掌握圆的对称性及垂径定理。

第3课时:了解圆周角的定义,掌握圆周角的有关性质。

第4课时:能熟练地运用圆周角定理和推论进行有关的计算和证明。

第5课时:1、探索并了解点与圆的位置关系;2、理解不在同一条直线上的三个点确定一个圆;3、会画三角形的外接圆,熟识相关概念第6课时:探索并了解直线与圆的位置关系;第7课时:探索并了解圆与圆的几种位置关系;第8课时:能熟练应用圆与圆的位置与d 、1r 、2r 三者的对应关系解决相关的总 第9课时:第10课时:第11课时:第12课时:第13课时:四、教学重点剖析(一)第一课时:1、教学重点:2、重点包含的知识要素分析:3、突出重点的教学策略:(这是设计的重点)五、教学难点剖析1、教学难点:2、原因分析:学生为什么会觉得难3、解决策略:(这是设计的重点)六、错题的估计和采集:(1)错例(2)原因分析:(3)策略分析七、课时教案或学案一、知识结构二、概述本章利用圆的对称性,探索得出了圆的一些基本性质:在同圆或等圆的弧、弦与圆心角中,只要有一组量相等,那么另外两组量也分别相等;同弧所对的圆周角与圆心角之间的度量关系;垂直于弦的直径一定平分弦以及弦所对的弧.通过图形的运动,研究了点与圆、直线与圆、圆与圆之间的位置关系,并得出这些位置关系与圆的半径以及点与圆心、直线与圆心、圆心与圆心之间的距离有关.在了解了直线与圆的位置关系的基础上,进一步认识了圆的切线垂直于经过切点的半径;经过半径的外端且垂直于这条半径的直线是圆的切线;从圆外一点引圆的两条切线,它们的切线长相等.复习题。

人教版六上数学第五单元《圆》教案圆的认识(含单元计划)

人教版六上数学第五单元《圆》教案圆的认识(含单元计划)
具体教学内容包括:
1.圆的定义:学生通过观察生活中的圆形物体,初步理解圆的概念。
2.圆的特征:学生学习圆的轴对称性质,了解圆的直径、半径等基本概念。
3.圆的画法:学生学会使用圆规画圆,掌握画圆的基本技巧。
4.圆的度量:学生学习用圆规测量圆的直径和半径,了解周长和面积的计算方法。
核心素养目标
本节课旨在培养学生的数学核心素养,具体包括:
-合作学习法:通过小组讨论,培养学生的团队合作意识和沟通能力。
作用与目的:
-帮助学生深入理解圆的知识点,掌解决问题的能力。
-通过合作学习,培养学生的团队合作意识和沟通能力。
3.课后拓展应用
教师活动:
-布置作业:根据圆的认识课题,布置适量的课后作业,巩固学习效果。
5.数学运算:学生学习圆的周长和面积的计算方法,提高数学运算能力。
学习者分析
1.知识基础:学生在之前的数学学习过程中,已经掌握了线段、射线等相关知识,对图形的认识有了基本的了解。他们也曾接触过圆形图形,对圆有初步的认识。
2.学习兴趣与能力:六年级的学生求知欲较强,对新鲜事物充满好奇。他们具有一定的观察能力和动手操作能力,能够通过观察、实践来理解新知识。同时,他们具备一定的逻辑思维能力,能够进行简单的推理和分析。
-解答疑问:针对学生在学习中产生的疑问,进行及时解答和指导。
学生活动:
-听讲并思考:认真听讲,积极思考老师提出的问题。
-参与课堂活动:积极参与小组讨论,体验圆的画法。
-提问与讨论:针对不懂的问题或新的想法,勇敢提问并参与讨论。
教学方法/手段/资源:
-讲授法:通过详细讲解,帮助学生理解圆的知识点。
-实践活动法:设计实践活动,让学生在实践中掌握圆的画法。

人教版九年级第二十四章《圆》整章教案

人教版九年级第二十四章《圆》整章教案

人教版九年级第二十四章《圆》整章教案五、课后记:24.1.2 垂直于弦的直径教学目标知识技能探索圆的对称性,进而得到垂直于弦的直径所具有的性质;能够利用垂直于弦的直径的性质解决相关实际问题.数学思考在探索问题的过程中培养学生的动手操作能力,使学生感受圆的对称性,体会圆的一些性质,经历探索圆的对称性及相关性质的过程.解决问题进一步体会和理解研究几何图形的各种方法;培养学生独立探索,相互合作交流的精神.情感态度使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神.重点垂直于弦的直径所具有的性质以及证明.难点利用垂直于弦的直径的性质解决实际问题.教学过程一、创设问题情境,激发学生兴趣,引出本节内容活动1:用纸剪一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?(课件:探究圆的性质)学生活动设计:学生动手操作,观察操作结果,可以发现沿着圆的任意一条直径对折,直径两旁的部分能够完全重合,由此可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.教师活动设计:在学生归纳的过程中注意学生语言的准确性和简洁性.二、问题引申,探究垂直于弦的直径的性质,培养学生的探究精神活动2:按下面的步骤做一做:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;第二步,得到一条折痕CD;第三步,在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中点M是两条折痕的交点,即垂足;第四步,将纸打开,新的折痕与圆交于另一点B,如图1.图1 图2在上述的操作过程中,你发现了哪些相等的线段和相等的弧?为什么?学生活动设计:如图2所示,连接OA 、OB ,得到等腰△OAB ,即OA =OB .因CD ⊥AB ,故△OA M 与△OB M 都是直角三角形,又O M 为公共边,所以两个直角三角形全等,则A M =B M .又⊙O 关于直径CD 对称,所以A 点和B 点关于CD 对称,当圆沿着直径CD 对折时,点A 与点B 重合,AC 与BC 重合.因此AM =B M ,AC =BC ,同理得到AD BD =.在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质:(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.活动3:如图3,AB 所在圆的圆心是点O ,过O 作OC⊥AB 于点D ,若CD =4 m ,弦AB =16 m ,求此圆的半径.学生活动设计:学生观察图形,利用垂直于弦的直径的性质分析图形条件,发现若OC ⊥AB ,则有AD =BD ,且△ADO 是直角三角形,在直角三角形中可以利用勾股定理构造方程.教师活动设计:在学生解决问题的基础上引导学生进行归纳:弦长、半径、拱形高、弦心距(圆心到弦的距离)四个量中,只需要知道两个量,其余两个量就可以求出来.〔解答〕设圆的半径为R ,由条件得到OD =R -4,AD =8,在R t △ADO 中222AO OD AD =+,即222(4)8R R =-+. 解得 R =10(m ).答:此圆的半径是10 m . 图4活动4:如图4,已知AB ,请你利用尺规作图的方法作出AB 的中点,说出你的作法.师生活动设计:根据基本尺规作图可以发现不能直接作出弧的中点,但是利用垂径定理只需要作出弧所对的弦的垂直平分线,垂直平分线与弧的交点就是弧的中点.〔解答〕1.连接AB ;2.作AB 的中垂线,交 于点C ,点C 就是所求的点.三、拓展创新,培养学生思维的灵活性以及创新意识.活动5 解决下列问题1.如图5,某条河上有一座圆弧形拱桥ACB ,桥下面水面宽度AB 为7.2米,桥的最高处点C 离水面的高度2.4米.现在有一艘宽3米,船舱顶部为方形并高出水面2米的货船要经过这里,问:这艘船是否能够通过这座拱桥?说明理由.图3BA AB A M E A B G H F图5 图6学生活动:学生根据实际问题,首先分析题意,然后采取一定的策略来说明能否通过这座拱桥,这时要采取一定的比较量,才能说明能否通过,比如,计算一下在上述条件下,在宽度为3米的情况下的高度与2米作比较,若大于2米说明不能经过,否则就可以经过这座拱桥.〔解答〕如图6,连接AO 、GO 、CO ,由于弧的最高点C 是弧AB 的中点,所以得到 OC ⊥AB ,OC ⊥G F ,根据勾股定理容易计算OE =1.5米,OM =3.6米.所以ME =2.1米,因此可以通过这座拱桥.2.银川市某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图7所示,污水水面宽度为60 cm ,水面至管道顶部距离为10 cm ,问修理人员应准备内径多大的管道?图7 图8师生活动设计:让学生在探究过程中,进一步把实际问题转化为数学问题,掌握通过作辅助线构造垂径定理的基本结构图,进而发展学生的思维.〔解答〕如图8所示,连接OA ,过O 作OE ⊥AB ,垂足为E ,交圆于F ,则AE =21AB = 30 cm .令⊙O 的半径为R , 则OA =R ,OE =OF -EF =R -10.在R t △AEO 中,OA 2=AE 2+OE 2,即R 2=302+(R -10)2.解得R =50 cm .修理人员应准备内径为100 cm 的管道.四、归纳小结、布置作业1、小结:垂直于弦的直径的性质,圆对称性.2、作业:第88页练习,习题24.1 第1题,第8题,第9题.五、课后记:24.1.3 弧、弦、圆心角教学过程设计二、创设问题情境,激发学生兴趣,引出本节内容活动11.按下面的步骤做一做:(1)在两张透明纸上,作两个半径相等的⊙O和⊙O′,沿圆周分别将两圆剪下;(2)在⊙O和⊙O′上分别作相等的圆心角∠AOB和∠A′O′B′,如图1所示,圆心固定.注意:在画∠AOB与∠A′O′B′时,要使OB相对于OA的方向与O′B′相对于O′A′的方向一致,否则当OA与OA′重合时,OB与O′B′不能重合.图1(3)将其中的一个圆旋转一个角度.使得OA 与O ′A ′重合.通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由. (课件:探究三量关系)师生活动设计:教师叙述步骤,同学们一起动手操作. 由已知条件可知∠AOB =∠A ′O ′B ′;由两圆的半径相等,可以得到∠OAB =∠OBA =∠O ′A ′B ′=∠O ′B ′A ′;由△AOB ≌△A ′O ′B ′,可得到AB =A ′B ′;由旋转法可知''AB A B =.在学生分析完毕后,教师指出在上述做一做的过程中发现,固定圆心,将其中一个圆旋转一个角度,使半径OA 与O ′A ′重合时,由于∠AOB =∠A ′O ′B ′.这样便得到半径OB 与O ′B ′重合.因为点A 和点A ′重合,点B 和点B ′重合,所以AB 和''A B 重合,弦AB 与弦A ′B ′重合,即''AB A B =,AB =A ′B ′.进一步引导学生语言归纳圆心角、弧、弦之间相等关系定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.2.根据对上述定理的理解,你能证明下列命题是正确的吗?(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等.师生活动设计: 本问题由学生在思考的基础上讨论解决,可以证明上述命题是真命题. 二、主体活动,巩固新知,进一步理解三量关系定理.活动2: 1. 如图2,在⊙O 中,AB AC =,∠ACB =60°, 求证:∠AOB =∠AOC =∠BOC .图2学生活动设计:学生独立思考,根据对三量定理的理解加以分析.由AB AC =,得到AB AC =,△ABC 是等腰三角形,由∠ACB =60°,得到△ABC 是等边三角形,AB =AC =BC ,所以得到∠AOB =∠AOC =∠BOC .教师活动设计:这个问题是对三量关系定理的简单应用,因此应当让学生独立解决,在必要时教师可以进行适当的启发和提醒,最后学生交流自己的做法.OB C〔证明〕∵AB AC∴AB=AC,△ABC是等腰三角形.又∠ACB=60°,∴△ABC是等边三角形,AB=BC=CA.∴∠AOB=∠AOC=∠BOC.图 3 图42.如图3,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=DA,求∠BOD的度数.三、拓展创新、应用提高,培养学生的应用意识和创新能力活动3:定理“在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等”中,可否把条件“在同圆或等圆中”去掉?为什么?如图4所示,虽然∠AOB=∠A′O′B′,但AB≠A′B′,弧AB≠弧A′B′.教师进一步引导学生用同样的思路考虑命题:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等中的条件“在同圆和等圆中”是否能够去掉.四、归纳小结、布置作业活动4:小结:弦、圆心角、弧三量关系.作业:课本第90页练习2.习题24.1 第2、3题,第10题.五、课后记:24.1.4 圆周角教学任务分析教学目标知识技能1.了解圆周角与圆心角的关系.2.探索圆周角的性质和直径所对圆周角的特征.3.能运用圆周角的性质解决问题.数学思考1.通过观察、比较,分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.2.通过观察图形,提高学生的识图能力.3.通过引导学生添加合理的辅助线,培养学生的创造力.解决问题学生在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想、转化的数学思想解决问题.情感态度引导学生对图形的观察发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.重点探索圆周角与圆心角的关系,发现圆周角的性质和直径所对圆周角的特征.难点发现并论证圆周角定理.教学教程:一、创设情境:[活动1 ] 演示课件或图片:问题1如图:同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(AOB∠和ACB∠)有什么关系?问题2如果同学丙、丁分别站在其他靠墙的位置D和E,他们的视角(ADB∠和AEB∠)和同学乙的视角相同吗?教师演示课件或图片:展示一个圆柱形的海洋馆.教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗AB观看窗内的海洋动物.教师出示海洋馆的横截面示意图,提出问题.教师结合示意图,给出圆周角的定义.利用几何画板演示,让学生辨析圆周角,并引导学生将问题1、问题2中的实际问题转化成数学问题:即研究同弧(AB)所对的圆心角(AOB∠)与圆周角(ACB∠)、同弧所对的圆周角(ACB∠、ADB∠、AEB∠等)之间的大小关系.教师引导学生进行探究.二、自主探索:[活动2]:问题1同弧(弧AB)所对的圆心角∠AOB与圆周角∠ACB的大小关系是怎样的?问题2,同弧(弧AB)所对的圆周角∠ACB与圆周角∠ADB的大小关系是怎样的?B O A CDE O B A C教师提出问题,引导学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论.由学生总结发现的规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.教师利用几何画板课件“圆周角定理”,从动态的角度进行演示,验证学生的发现.教师可从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的关系有无变化.1.拖动圆周角的顶点使其在圆周上运动;2.改变圆心角的度数;3.改变圆的半径大小.三、合作探究:[活动3]问题1,在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况? (课件:折痕与圆周角的关系)教师引导学生,采取小组合作的学习方式,前后四人一组,分组讨论.问题2,当圆心在圆周角的一边上时,如何证明活动2中所发现的结论?教师巡视,请学生回答问题.回答不全面时,请其他同学给予补充.教师演示圆心与圆周角的三种位置关系.问题3,另外两种情况如何证明,可否转化成第一种情况呢?学生采取小组合作的学习方式进行探索发现,教师观察指导小组活动.启发并引导学生,通过添加辅助线,将问题进行转化.四、自主探索:[活动4]问题1:如图1.半圆(或直径)所对的圆周角是多少度?(课件:圆周角定理推论) A O BC 1C 2C 3图1 图2 图3问题2:90°的圆周角所对的弦是什么?问题3: 在半径不等的圆中,相等的两个圆周角所对的弧相等吗?问题4:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么? DO A C问题5:如图2,点A、B、C、D在同一个圆上,四边形ABCD的对角线把4个内角分成8个角,这些角中哪些是相等的角?问题6:如图3,⊙O的直径AB 为10 cm,弦AC 为6 cm,∠ACB的平分线交⊙O 于D,求BC、AD、BD的长.五、小结与作业:小结:问题通过本节课的学习你有哪些收获?作业:教科书94页习题24.1第2、3、4、5题.六、课后记:24.2.1点与圆的位置关系图1 A D C B A D C B A D C B 一、问题情境爱好运动的小华、小强、小兵三人相邀搞一次掷飞镖比赛。

六年级数学上册人教版第5单元第五单元《圆》教案教学计划

六年级数学上册人教版第5单元第五单元《圆》教案教学计划

六年级数学上册人教版第5单元第五单元《圆》教案教学计

一、教学目标
1.了解圆的定义,圆心、直径、半径的概念。

2.掌握圆的常见性质,如周长、面积的计算方法。

3.能够应用圆的性质解决实际问题。

二、教学重点
1.圆的定义和性质。

2.圆的周长和面积的计算方法。

三、教学准备
1.教师准备:课件、教案、板书等。

2.学生准备:课本、练习册、作业本等。

四、教学过程
第一课时
1. 导入:通过展示一个圆形物体,引入圆的概念。

2. 讲解:介绍圆的定义、圆心、直径、半径的概念,并绘制相关示意图。

3. 活动:让学生自己绘制一个圆,并找出其中的圆心、直径、半径。

第二课时
1. 复习:回顾上节课所学的内容,进行小测验。

2. 讲解:教授圆的常见性质,如周长和面积的计算方法。

3. 练习:让学生进行相关练习,巩固所学知识。

第三课时
1. 梳理:总结圆的相关概念和性质,强化学生的记忆。

2. 应用:通过实际问题让学生应用所学知识,解决问题。

3. 作业:布置相关练习,作为课后作业。

五、教学反思
本单元教学主要是围绕圆的基本概念和性质展开,通过生动的教学方式和丰富
的教学内容,提高学生对圆的理解和掌握。

在教学过程中,要注意引导学生多观察、多实践,帮助他们更好地理解并应用圆的知识。

同时也要注重培养学生的动手能力和解决问题的能力,使他们在实际生活中能够灵活运用所学知识。

以上为本单元教案教学计划,希望能够帮助学生更好地学习掌握圆的相关知识。

《圆》教案

《圆》教案

《圆》教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如工作计划、工作总结、演讲稿、合同范本、心得体会、条据文书、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical sample essays for everyone, such as work plans, work summaries, speech drafts, contract templates, personal experiences, policy documents, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!《圆》教案《圆》教案(精选17篇)《圆》教案篇1【指导思想】根据《语文课程标准》的要求,全面提高学生的语文素养,正确把握语文教育的特点,积极倡导自主、合作、探究的学习方法,努力建设开放而又有活力的语文课程。

《圆》数学教案设计

《圆》数学教案设计

《圆》數學教案設計
一、教学目标:
1. 知识与技能:使学生理解圆的基本概念,掌握圆的定义和性质。

2. 过程与方法:通过观察、思考、操作等活动,引导学生发现并归纳出圆的性质,提高学生的空间观念和推理能力。

3. 情感态度价值观:培养学生对数学的兴趣,体验数学的美。

二、教学重点:
圆的定义和基本性质。

三、教学难点:
理解和掌握圆心、半径和直径的概念。

四、教学过程:
1. 导入新课:
教师展示一些生活中常见的圆形物品,如硬币、碗、钟表等,让学生观察这些物品有什么共同点。

然后引入圆的定义。

2. 新课讲解:
(1)定义:在一个平面上,所有到定点的距离都等于定长的点的集合,就形成了一个圆。

这个定点叫做圆心,定长叫做半径。

通过圆心并且两端都在圆上的线段叫做直径。

(2)性质:所有的直径都相等;直径是半径的两倍;过圆心可以画无数条直径和半径。

3. 实践活动:
让学生用直尺和圆规在纸上画出一个圆,然后量取圆的直径和半径,验证上述性质。

4. 巩固练习:
设计一些关于圆的问题,让学生解答,以检验他们是否真正理解了圆的定义和性质。

5. 小结:
回顾本节课学习的内容,强调圆的定义和性质。

6. 布置作业:
让学生找一些生活中的圆形物品,测量它们的直径和半径,记录下来。

五、教学反思:
通过对本节课的教学,我发现学生对于圆的理解程度参差不齐,有些学生能够很快理解并掌握,但有些学生则需要更多的时间和指导。

因此,在以后的教学中,我会更加注重因材施教,针对不同的学生提供个性化的帮助。

圆的认识的教学设计【7篇】

圆的认识的教学设计【7篇】

圆的认识的教学设计【7篇】作为一名老师,就不得不需要编写教案,教案是备课向课堂教学转化的关节点。

写教案需要注意哪些格式呢?下面是小编精心为大家整理的7篇圆的认识的教学设计,我们不妨阅读一下,看看是否能有一点抛砖引玉的作用。

《圆的认识》教学设计篇一教学内容义务教育课程标准实验教科书青岛版小学数学六年级上册52———54页,《圆的初步认识》教学设计。

课时:3课时(预习指导课、展示课、反馈课)教学目标知识目标:1、结合具体情境,学习圆的认识能力目标:2、培养学生的动手能力和通过多种方法解决问题的能力。

情感目标:3、激发学生探求知识的兴趣,提高合作探索知识的能力。

教材简介这个信息窗呈现的是各种各样的轮子。

拟通过引导学生观察让学生发现各种各样的轮子都是圆的,引发学生提出轮子为什么设计成圆形的疑问,自然而然的引出对画圆以及圆的特点的#39;研究,明确怎样画圆、直径与半径的关系,从而明白轮子为什么设计成圆形的。

教学重、难点:重点:圆的特征及各部分名称难点:同圆或等圆中半径和直径的关系教学过程(预习指导课)第一课时一、创设情境谈话:同学们,你认识这些交通工具吗?仔细观察他们有什么共同点?出示情境图,学生观察。

谈话:这些轮子都是圆形的。

根据这些信息,能提出什么数学问题?学生可能提出:轮子为什么设计成圆形的呢?…二、探索新知1、谈话:轮子为什么设计成圆形的呢?今天,我们就来解决这个问题。

下面,请大家画一个圆,研究一下。

学生独立画圆。

谈话:同学们得到圆了吗?谁能说说你是怎样画出圆的呢?小组内进行交流。

学生可能会出现不同的方法;找有代表性的到黑板上来画一下。

可能会出现以下几种情况:①用图钉、细线和铅笔画图,画时图钉要固定好,细线要拉紧,就可以画出一个圆。

②用圆形的瓶子盖可以画出一个圆。

谈话:我们来看这几个同学画的,有什么问题吗?(不圆)为什么会不圆呢?你们画的时候有问题吗?学生阐述自己的想法,师生予以评价。

谈话:怎样才能画出一个规范的圆呢?给大家介绍一种画圆的仪器——圆规。

《圆》数学教案设计

《圆》数学教案设计

《圆》數學教案設計标题:《圆》数学教案设计一、教学目标:1. 知识与技能:学生能够掌握圆的定义、基本性质,如半径、直径、周长和面积的计算方法。

2. 过程与方法:通过观察、思考、讨论和实践,提高学生的观察能力和逻辑思维能力。

3. 情感态度价值观:培养学生的探索精神和解决问题的能力,激发他们对数学的兴趣。

二、教学内容:1. 圆的基本概念:定义、元素(半径、直径)。

2. 圆的性质:等圆、同圆中的半径与直径的关系、垂直于弦的直径等。

3. 圆的周长和面积的计算公式。

三、教学过程:1. 导入新课:以生活中的圆形物体引入,引导学生观察并提出问题,激发他们的学习兴趣。

2. 新知讲解:通过实例和图形,解释圆的定义和基本性质,让学生理解并记住这些知识。

3. 实践操作:让学生动手画圆,测量半径和直径,然后计算周长和面积,巩固所学知识。

4. 课堂练习:设计一些题目,让学生进行独立或小组合作完成,检查他们的理解和应用能力。

5. 小结回顾:总结本节课的主要内容,强调重要的知识点,帮助学生梳理思路。

6. 布置作业:设计一些相关的习题,让学生在课后继续复习和巩固。

四、教学策略:1. 创设情境:以生活中的实例引出圆的概念,使学生感到数学就在身边。

2. 引导探究:鼓励学生自己发现和总结规律,提高他们的自主学习能力。

3. 合作学习:通过小组活动,培养学生的团队协作能力和交流表达能力。

五、教学评估:1. 过程评价:观察学生在课堂上的表现,了解他们的学习进度和理解程度。

2. 成果评价:通过课堂练习和作业,检查学生的学习效果。

六、教学反思:在教学过程中,教师要时刻关注学生的学习反应,及时调整教学策略,确保每一个学生都能从这节课中有所收获。

第三章圆的基本性质全章教案

第三章圆的基本性质全章教案

课题 3.1圆(1) 教学目的知识点1.理解圆、弧、弦等有关概念.2.学会圆、弧、弦等的表示方法.3.掌握点和圆的位置关系及其判定方法.能力点进一步培养学生分析问题和解决问题的能力.德育点用生活和生产中的实例激发学生学习兴趣从而唤起学生尊重知识尊重科学,更加热爱生活重点弦和弧的概念、弧的表示方法和点与圆的位置关系.难点点和圆的位置关系及判定.教法操作、讨论、归纳、巩固学法通过日常生活在生产中的实例引导学生对学习圆的兴趣教具画圆工具教学设计进程教师活动学生活动设计意图达到效果一复习引入二新课讲述1.展示幻灯片,教师指出,日常生活和生产中的许多问题都与圆有关.如(1)一个破残的轮片(课本P62图),怎样测出它的直径?如何补全?(2)圆弧形拱桥(课本P63图),设计时桥拱圈(AB)的半径该怎样计算?(3)如何躲避圆弧形暗礁区(课本P60、P74图),不使船触礁?(4)自行车轮胎为什么做成圆的而不做成方的?2.上述这些问题都与圆的问题有关,在小学我们已经认识过圆,回会用圆规画圆,问:圆上的点有什么特性吗?圆、圆心、圆的半径、圆的直径各是怎样定义的?这节课我们用另一种方法来定义圆的有关概念。

(板书)3.1 圆1.师生一起用圆规画圆:取一根绳子,把一端固定在画板上,另一端缚在粉笔上,然后拉紧绳子,并使它绕固定的一端旋转一周,即得一个圆(课本图3—1、3-2).归纳:在同一平面内,一条线段OP绕它固定的一个端点O旋转一周,另一个端点P所经过的封闭曲线叫做圆.定点O就是圆心,线段OP就是圆的半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.如图所示.2圆的有关概念(如图3-3)(1)连结圆上任意两点的线段叫做弦,如图BC.经过圆心的弦是直径,图中的AB。

直径等于半径的2倍.(2)圆上任意两点间的部分叫做圆弧,简称弧.弧用符号“⌒”表示.小于半圆的弧叫做劣弧,如图中以B、C为端点的劣弧记做“BC”;大于半圆的弧叫做优弧,学生观察讨论回答定圆心半径三点确定一个圆垂径定理利用圆周角半径定长重心稳定学生口答学生观察并比较熟记圆的有关概念通过设问,目的是唤起对学习圆的兴趣通过比较回答,引起对圆的有关概念的认识。

圆章节教案-圆周角定理及圆周角与直径

圆章节教案-圆周角定理及圆周角与直径

数学学科辅导讲义教学内容1.圆周角2.直线与圆的位置关系教学目标1.理解圆周角的概念及相关性质,并会结合分类、转化等数学思想解决实际问题2.理解直线与圆的三种位置关系、会作三角形的内切圆3.会运用切线长的性质教学重点1.圆内接四边形及其性质2.直线与圆的位置关系的性质与判定3.切线的性质教学难点1.圆周角定理及圆周角与直径的关系2.切线的判定及切线长定理教学过程知识详解一、圆周角定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.如图∠ADB.1.判断下图哪些是圆周角?1. 圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

推论1:同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等推论2:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径精讲例题:1.在⊙O中,如果弦AB所对的圆周角为70°,那么劣弧AB所对的圆心角是___________2.如图,AC是⊙O的直径,AB、CD是⊙O的两条弦,且AB∥CD.如果∠BAC=32°,则∠AOD等于_____________3.已知:如图,△ABC内接于⊙O,AB=AC,∠BOC=120°.求:∠ABO的度数.二、圆内接四边形定义:如果一个四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆定理:圆的内接四边形的对角互补,并且任意一个外角等于它的内对角.精讲例题:1.如图,已知四边形ABCD内接于圆,延长AB和DC相交于E,EG平分∠E ,且与AD、BC 分别相交于F、G,求证:∠CFG=∠DGF2.在等边三角形ABC外取一点P,若PA=PB+PC ,求证:P、A、B、C四点共圆.三、直线与圆的位置关系:圆心到直线的距离d与半径r比较(1)当r<d 时,直线l与圆C相离;(2)当r=d 时,直线l与圆C相切;(3)当r>d 时,直线l与圆C相交;精讲例题:1.已知圆的半径是7.5cm,圆心到直线的距离为d,当d=10 cm时,直线与圆有________个公共点,当d=5cm时,直线与圆有______个公共点,当d=7.5cm时直线与圆有__________个公共点。

第三章圆(教案)

第三章圆(教案)
在导入新课环节,我通过提问的方式引导学生回顾日常生活中遇到的圆形物体,这一做法效果不错,学生们表现出浓厚的兴趣。但在新课讲授中,我发现部分学生在理解圆的位置关系,尤其是直线与圆的位置关系时,存在一定的困难。为此,我调整了教学方法,通过动态演示和实物操作,帮助学生更好地理解这一难点。
在新课讲授中,我着重强调了圆的周长和面积的计算公式,以及圆的方程。在实际教学中,我发现学生们对公式的推导和应用掌握得还不够熟练,需要加强练习。在接下来的教学活动中,我将增加一些针对性的练习题,让学生们在实际操作中巩固所学知识。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆相关的实际问题,如圆的周长和面积的计算。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量硬币的直径和周长,从而推导出圆的周长公式。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《圆》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过圆形物体?”(例如:车轮、硬币、圆桌等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索圆的奥秘。
(二)新课讲授(用时10分钟)
三、教学难点与重点
1.教学重点
-圆的基本概念:圆的定义、性质、直径与半径的关系以及圆周率π的认识。
-重点举例:通过实例让学生理解圆是由所有与定点等距离的点构成的几何图形,强调直径与半径的关系,以及圆周率π在计算中的应用。
-圆的周长与面积的计算公式。
-重点举例:详细讲解圆的周长C=2πr和面积S=πr²的推导过程,使学生深刻理解并掌握这两个核心公式。

第二十四章圆教案

第二十四章圆教案

第二十四章圆教案教学目标:1. 了解圆的基本概念和特征。

2. 掌握圆的运算方法。

3. 能够应用圆的性质解决实际问题。

教学重点:1. 圆的基本概念和特征。

2. 圆的运算方法。

教学难点:1. 掌握圆的运算方法。

2. 能够应用圆的性质解决实际问题。

教学准备:1. 教师准备的教学课件和教学辅助工具。

2. 学生需要准备的纸和铅笔。

教学过程:步骤一:导入1. 让学生回顾上一章所学的内容,如平行线与相交线的性质。

2. 引导学生思考,如果把这些线段的两端连接起来,可以得到的是什么?步骤二:新知输入1. 在黑板或教学课件上展示圆的图形,并简单描述其特征和定义。

圆的定义:圆是由平面内任意点到一个固定点的距离等于定值的点的集合。

2. 结合图片和实例,解释圆的要素包括圆心、半径、直径和弧长的概念。

- 圆心:圆的中心点,用O表示。

- 半径:从圆心到圆上任意一点的距离,用r表示。

- 直径:通过圆心的一条线段,且两端点在圆上,长度为2r。

- 弧长:圆上两点之间的弧长。

步骤三:知识拓展1. 讲解圆的运算方法:- 计算圆的面积:S = πr^2- 计算圆的周长:C = 2πr2. 演示如何使用这些公式计算圆的面积和周长,并提供练习让学生自己尝试计算。

步骤四:知识梳理1. 引导学生回顾圆的定义、要素和运算方法,并提醒他们需要注意的关键点。

步骤五:拓展应用1. 引导学生发现和探究圆在生活中的应用,如钟表、车轮等。

2. 挑战学生应用所学的知识解决一些实际问题,比如给定半径,求面积或周长。

步骤六:作业布置1. 布置练习题,针对圆的面积和周长进行练习。

教学反思:本节课通过引导学生了解圆的基本概念和特征,掌握圆的运算方法,以及应用圆的性质解决实际问题,提高了学生对圆的认识和运用能力。

在教学过程中,教师还积极与学生互动,引导他们思考和发现,激发学生的学习兴趣。

通过让学生进行实际练习,并在课后布置相关练习,进一步巩固了所学知识。

第二十四章 圆全章教案

第二十四章  圆全章教案

第二十四章圆24.1 圆第一课时教学内容1.圆的有关概念.2.垂径定理:平分弦(不是直径)的直径垂直于弦,•并且平分弦所对的两条弧及其它们的应用.教学目标了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.重难点、关键1.重点:垂径定理及其运用.2.难点与关键:探索并证明垂径定理及利用垂径定理解决一些实际问题.教学过程一、复习引入(学生活动)请同学口答下面两个问题(提问一、两个同学) 1.举出生活中的圆三、四个.2.你能讲出形成圆的方法有多少种?老师点评(口答):(1)如车轮、杯口、时针等.(2)圆规:固定一个定点,固定一个长度,绕定点拉紧运动就形成一个圆.二、探索新知从以上圆的形成过程,我们可以得出:在一个平面内,线段OA绕它固定的一个端点O旋转一周,•另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.学生四人一组讨论下面的两个问题:问题1:图上各点到定点(圆心O)的距离有什么规律?问题2:到定点的距离等于定长的点又有什么特点?老师提问几名学生并点评总结.(1)图上各点到定点(圆心O)的距离都等于定长(半径r);(2)到定点的距离等于定长的点都在同一个圆上.因此,我们可以得到圆的新定义:圆心为O ,半径为r 的圆可以看成是所有到定点O 的距离等于定长r 的点组成的图形. 同时,我们又把①连接圆上任意两点的线段叫做弦,如图线段AC ,AB ; ②经过圆心的弦叫做直径,如图24-1线段AB ;③圆上任意两点间的部分叫做圆弧,简称弧,“以A 、C 为端点的弧记作”,读作“圆弧”或“弧AC ”.大于半圆的弧(如图所示叫做优弧,•小于半圆的弧(如图所示)或叫做劣弧.④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.(学生活动)请同学们回答下面两个问题.1.圆是轴对称图形吗?如果是,它的对称轴是什么?•你能找到多少条对称轴?2.你是用什么方法解决上述问题的?与同伴进行交流.(老师点评)1.圆是轴对称图形,它的对称轴是直径,•我能找到无数多条直径.3.我是利用沿着圆的任意一条直径折叠的方法解决圆的对称轴问题的.如图,AB 是⊙O 的一条弦,作直径CD ,使CD ⊥AB ,垂足为M .(1)如图是轴对称图形吗?如果是,其对称轴是什么?(2)你能发现图中有哪些等量关系?说一说你理由. (老师点评)(1)是轴对称图形,其对称轴是CD .(2)AM=BM ,,,即直径CD 平分弦AB ,并且平分及.AC AC ABC AC BC AC BC =AD BD =AB ADB已知:直径CD 、弦AB 且CD ⊥AB 垂足为M求证:AM=BM ,,.分析:要证AM=BM ,只要证AM 、BM 构成的两个三角形全等.因此,只要连结OA 、•OB 或AC 、BC 即可.证明:如图,连结OA 、OB ,则OA=OB在Rt △OAM 和Rt △OBM 中∴Rt △OAM ≌Rt △OBM∴AM=BM∴点A 和点B 关于CD 对称∵⊙O 关于直径CD 对称∴当圆沿着直线CD 对折时,点A 与点B 重合,与重合,与重合.∴,例1. 如例2. O 是的圆心,•其中CD=600m ,E 为例3. 且OE ⊥CD ,垂足为F ,EF=90m 分析:例1是垂径定理的应用,要掌握.解:如图,连接OC设弯路的半径为R ,则OF=(R-90)m∵OE ⊥CD∴CF=CD=×600=300(m )根据勾股定理,得:OC 2=CF 2+OF 2即R 2=3002+(R-90)2 解得R=545∴这段弯路的半径为545m .三、巩固练习教材 练习四、应用拓展例2.有一石拱桥的桥拱是圆弧形,如图24-5所示,正常水位下水面宽AB=•60m ,水面到拱顶距离CD=18m ,当洪水泛滥时,水面宽MN=32m 时是否需要采取紧急措施?请说明理由. AC BC =AD BD =OA OB OM OM =⎧⎨=⎩AC BC AD BD AC BC =AD BD =CDCD 1212B分析:要求当洪水到来时,水面宽MN=32m •是否需要采取紧急措施,•只要求出DE 的长,因此只要求半径R ,然后运用几何代数解求R .解:不需要采取紧急措施设OA=R ,在Rt △AOC 中,AC=30, R 2=302+(R-18)2 R 2=900+R 2-36R+324解得R=34(m ) 连接OM ,设DE=x ,在Rt △MOE 中, 342=162+(34-x )2162+342-68x+x 2=342 x 2-68x+256=0解得x 1=4,x 2=64(不合设)∴DE=4∴不需采取紧急措施.五、归纳小结(学生归纳,老师点评)本节课应掌握:1.圆的有关概念;2.圆是轴对称图形,任何一条直径所在直线都是它的对称轴.3.垂径定理及其推论以及它们的应用.六、布置作业1.教材 复习巩固1、2、3.24.1 圆(第2课时)教学内容1.圆心角的概念.2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,•相等的圆心角所对的弧相等,所对的弦也相等.3.定理的推论:在同圆或等圆中,如果两条弧相等,•那么它们所对的圆心角相等,所对的弦相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.教学目标了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.重难点、关键1.重点:定理:在同圆或等圆中,相等的圆心角所对的弧相等,•所对弦也相等及其两个推论和它们的应用.2.难点与关键:探索定理和推导及其应用.教学过程一、复习引入(学生活动)请同学们完成下题.已知△OAB ,如图所示,作出绕O 点旋转30°、45°、60°的图形.老师点评:绕O 点旋转,O 点就是固定点,旋转30°,就是旋转角∠BOB ′=30°. 二、探索新知如图所示,∠AOB 的顶点在圆心,像这样顶点在圆心的角叫做圆心角.(学生活动)请同学们按下列要求作图并回答问题: 如图所示的⊙O 中,分别作相等的圆心角∠AOB •和∠A •′OB •′将圆心角∠AOB 绕圆心O 旋转到∠A ′OB ′的位置,你能发现哪些等量关系?为什么?=,AB=A ′B ′理由:∵半径OA 与O ′A ′重合,且∠AOB=∠A ′OB ′ ∴半径OB 与OB ′重合 ∵点A 与点A ′重合,点B 与点B ′重合∴与重合,弦AB 与弦A ′B ′重合 ∴=,AB=A ′B ′ 因此,在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等.在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等呢?•请同学们现在动手作一作.(学生活动)老师点评:如图1,在⊙O 和⊙O ′中,•分别作相等的圆心角∠AOB 和∠A ′O ′B ′得到如图2,滚动一个圆,使O 与O ′重合,固定圆心,将其中的一个圆旋转一个角度,使得OA 与O ′A ′重合.AB ''A B AB ''A B AB ''A B B A OB '(1) (2) 你能发现哪些等量关系?说一说你的理由?我能发现:=,AB=A /B /.现在它的证明方法就转化为前面的说明了,•这就是又回到了我们的数学思想上去呢──化归思想,化未知为已知,因此,我们可以在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,•所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,•所对的弧也相等.(学生活动)请同学们现在给予说明一下. 请三位同学到黑板板书,老师点评.例1.如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF . (1)如果∠AOB=∠COD ,那么OE 与OF 的大小有什么关系?为什么?(2)如果OE=OF ,那么与的大小有什么关系?AB 与CD 的大小有什么关系?•为什么?∠AOB 与∠COD 呢?分析:(1)要说明OE=OF ,只要在直角三角形AOE 和直角三角形COF 中说明AE=CF ,即说明AB=CD ,因此,只要运用前面所讲的定理即可.(2)∵OE=OF ,∴在Rt △AOE 和Rt △COF 中,又有AO=CO 是半径,∴Rt △AOE ≌Rt •△COF ,∴AE=CF ,∴AB=CD ,又可运用上面的定理得到=解:(1)如果∠AOB=∠COD ,那么OE=OF理由是:∵∠AOB=∠COD∴AB=CD∵OE ⊥AB ,OF ⊥CD ∴AE=AB ,CF=CD ∴AE=CF 又∵OA=OC∴Rt △OAE ≌Rt △OCF∴OE=OF B'A A 'AB ''A B AB CD ABCD 1212D(2)如果OE=OF ,那么AB=CD ,=,∠AOB=∠COD 理由是:∵OA=OC ,OE=OF∴Rt △OAE ≌Rt △OCF∴AE=CF又∵OE ⊥AB ,OF ⊥CD∴AE=AB ,CF=CD∴AB=2AE ,CD=2CF∴AB=CD∴=,∠AOB=∠COD三、巩固练习教材 练习1四、应用拓展例2.如图3和图4,MN 是⊙O 的直径,弦AB 、CD •相交于MN •上的一点P ,•∠APM=∠CPM .(1)由以上条件,你认为AB 和CD 大小关系是什么,请说明理由.(2)若交点P 在⊙O 的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.(3)(4)分析:(1)要说明AB=CD ,只要证明AB 、CD 所对的圆心角相等,•只要说明它们的一半相等.上述结论仍然成立,它的证明思路与上面的题目是一模一样的. 解:(1)AB=CD理由:过O 作OE 、OF 分别垂直于AB 、CD ,垂足分别为E 、F ∵∠APM=∠CPM∴∠1=∠2OE=OFAB CD 1212AB CDP连结OD、OB且OB=OD∴Rt△OFD≌Rt△OEB∴DF=BE根据垂径定理可得:AB=CD(2)作OE⊥AB,OF⊥CD,垂足为E、F∵∠APM=∠CPN且OP=OP,∠PEO=∠PFO=90°∴Rt△OPE≌Rt△OPF∴OE=OF连接OA、OB、OC、OD易证Rt△OBE≌Rt△ODF,Rt△OAE≌Rt△OCF∴∠1+∠2=∠3+∠4∴AB=CD五、归纳总结(学生归纳,老师点评)本节课应掌握:1.圆心角概念.2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对应的其余各组量都部分相等,及其它们的应用.六、布置作业1.教材P94-95 复习巩固4、5、24.1 圆(第3课时)教学内容1.圆周角的概念.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弦所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用.教学目标1.了解圆周角的概念.2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半.3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90•°的圆周角所对的弦是直径.4.熟练掌握圆周角的定理及其推理的灵活运用.设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题. 重难点、关键1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题.2.难点:运用数学分类思想证明圆周角的定理.3.关键:探究圆周角的定理的存在.教学过程一、复习引入(学生活动)请同学们口答下面两个问题.1.什么叫圆心角?2.圆心角、弦、弧之间有什么内在联系呢?老师点评:(1)我们把顶点在圆心的角叫圆心角.(2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对的其余各组量都分别相等.刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题.二、探索新知问题:如图所示的⊙O ,我们在射门游戏中,设E 、F是球门,•设球员们只能在所在的⊙O 其它位置射门,如图所示的A 、B 、C 点.通过观察,我们可以发现像∠EAF 、∠EBF 、∠ECF 这样的角,它们的顶点在圆上,•并且两边都与圆相交的角叫做圆周角.现在通过圆周角的概念和度量的方法回答下面的问题.1.一个弧上所对的圆周角的个数有多少个?2.同弧所对的圆周角的度数是否发生变化?3.同弧上的圆周角与圆心角有什么关系?(学生分组讨论)提问二、三位同学代表发言.老师点评:1.一个弧上所对的圆周角的个数有无数多个. 2.通过度量,我们可以发现, 3.通过度量,我们可以得出,变化,•并且它的度数恰好等于这条弧所对的圆心角的度数的一半.”(1)设圆周角∠ABC 的一边BC 是⊙O 的直径,如图所示∵∠AOC 是△ABO 的外角EF∴∠AOC=∠ABO+∠BAO∵OA=OB∴∠ABO=∠BAO∴∠AOC=∠ABO∴∠ABC=∠AOC(2)如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD的两侧,那么∠ABC=∠AOC 吗?请同学们独立完成这道题的说明过程.老师点评:连结BO 交⊙O 于D 同理∠AOD 是△ABO 的外角,∠COD 是△BOC 的外角,•那么就有∠AOD=2∠ABO ,∠DOC=2∠CBO ,因此∠AOC=2∠ABC .(3)如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的同侧,那么∠ABC=∠AOC 吗?请同学们独立完成证明.老师点评:连结OA 、OC ,连结BO 并延长交⊙O 于D ,那么∠AOD=2∠ABD ,∠COD=2∠CBO ,而∠ABC=∠ABD-∠CBO=∠AOD-∠COD=∠AOC现在,我如果在画一个任意的圆周角∠AB ′C ,•同样可证得它等于同弧上圆心角一半,因此,同弧上的圆周角是相等的. 从(1)、(2)、(3),我们可以总结归纳出圆周角定理:在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.进一步,我们还可以得到下面的推导:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.下面,我们通过这个定理和推论来解一些题目.例1.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到C ,使AC=AB ,BD 与CD 的大小有什么关系?为什么? 分析:BD=CD ,因为AB=AC ,所以这个△ABC 是等腰,要证明D 是BC 的中点,•只要连结AD 证明AD 是高或是∠BAC 的平分线即可.解:BD=CD理由是:如图24-30,连接AD∵AB 是⊙O 的直径∴∠ADB=90°即AD ⊥BC又∵AC=AB 121212121212∴BD=CD三、巩固练习1.教材P92 思考题.2.教材P93 练习.四、应用拓展例2.如图,已知△ABC 内接于⊙O ,∠A 、∠B 、∠C 的对边分别设为a ,b ,c ,⊙O 半径为R ,求证:===2R . 分析:要证明===2R ,只要证明=2R ,=2R ,=2R ,即sinA=,sinB=,sinC=,因此,十分明显要在直角三角形中进行.证明:连接CO 并延长交⊙O 于D ,连接DB∵CD 是直径∴∠DBC=90°又∵∠A=∠D在Rt △DBC 中,sinD=,即2R= 同理可证:=2R ,=2R ∴===2R 五、归纳小结(学生归纳,老师点评)本节课应掌握:1.圆周角的概念;2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都相等这条弧所对的圆心角的一半;3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.4.应用圆周角的定理及其推导解决一些具体问题.六、布置作业1.教材P95 综合运用9、10、24.2.1点和圆的位置关系教学目标(一)教学知识点了解不在同一条直线上的三个点确定一个圆,以及过不在同一条直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心等概念.sin a A sin b B sin c Csin a A sin b B sin c C sin a Asin b B sin c C 2a R 2b R 2c R BC DC sin a Asin b B sin c Csin a A sin b B sin cC(二)能力训练要求1.经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力.2.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略.(三)情感与价值观要求1.形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.2.学会与人合作,并能与他人交流思维的过程和结果.教学重点1.经历不在同一条直线上的三个点确定一个圆的探索过程,并能掌握这个结论.2.掌握过不在同一条直线上的三个点作圆的方法.3.了解三角形的外接圆、三角形的外心等概念.教学难点经历不在同一条直线上的三个点确定一个圆的探索过程,并能过不在同一条直线上的三个点作圆.教学方法教师指导学生自主探索交流法.教具准备投影片三张教学过程Ⅰ.创设问题情境,引入新课[师]我们知道经过一点可以作无数条直线,经过两点只能作一条直线.那么,经过一点能作几个圆?经过两点、三点……呢?本节课我们将进行有关探索.Ⅱ.新课讲解1.回忆及思考投影片(§3.4A)1.线段垂直平分线的性质及作法.2.作圆的关键是什么?[生]1.线段垂直平分线的性质是:线段垂直平分线上的点到线段两端点的距离相等.AB长为半径画弧,作法:如下图,分别以A、B为圆心,以大于12在AB的两侧找出两交点C、D,作直线CD,则直线CD就是线段AB的垂直平分线,直线CD上的任一点到A与B的距离相等.[师]我们知道圆的定义是:平面上到定点的距离等于定长的所有点组成的图形叫做圆.定点即为圆心,定长即为半径.根据定义大家觉得作圆的关键是什么?[生]由定义可知,作圆的问题实质上就是圆心和半径的问题.因此作圆的关键是确定圆心和半径的大小.确定了圆心和半径,圆就随之确定.2.做一做(投影片§3.4B)(1)作圆,使它经过已知点A,你能作出几个这样的圆?(2)作圆,使它经过已知点A、B.你是如何作的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?(3)作圆,使它经过已知点A、B、C(A、B、C三点不在同一条直线上).你是如何作的?你能作出几个这样的圆?[师]根据刚才我们的分析已知,作圆的关键是确定圆心和半径,下面请大家互相交换意见并作出解答.[生](1)因为作圆实质上是确定圆心和半径,要经过已知点A作圆,只要圆心确定下来,半径就随之确定了下来.所以以点A以外的任意一点为圆心,以这一点与点A所连的线段为半径就可以作一个圆.由于圆心是任意的.因此这样的圆有无数个.如图(1).(2)已知点A、B都在圆上,它们到圆心的距离都等于半径.因此圆心到A、B的距离相等.根据前面提到过的线段的垂直平分线的性质可知,线段的垂直平分线上的点到线段两端点的距离相等,则圆心应在线段AB的垂直平分线上.在AB的垂直平分线上任意取一点,都能满足到A、B两点的距离相等,所以在AB的垂直平分线上任取一点都可以作为圆心,这点到A的距离即为半径.圆就确定下来了.由于线段AB的垂直平分线上有无数点,因此有无数个圆心,作出的圆有无数个.如图(2).(3)要作一个圆经过A、B、C三点,就是要确定一个点作为圆心,使它到三点的距离相等.因为到A、B两点距离相等的点的集合是线段AB的垂直平分线,到B、C两点距离相等的点的集合是线段BC的垂直平分线,这两条垂直平分线的交点满足到A、B、C三点的距离相等,就是所作圆的圆心.因为两条直线的交点只有一个,所以只有一个圆心,即只能作出一个满足条件的圆.[师]大家的分析很有道理,究竟应该怎样找圆心呢?3.过不在同一条直线上的三点作圆.投影片(§3.4C)图示的垂和为[生]符合要求.因为连结AB,作AB的垂直平分线ED,则ED上任意一点到A、B 的距离相等;连结BC,作BC的垂直平分线FG,则FG上的任一点到B、C的距离相等.ED与FG的满足条件.[师]由上可知,过已知一点可作无数个圆.过已知两点也可作无数个圆,过不在同一条直线上的三点可以作一个圆,并且只能作一个圆.不在同一直线上的三个点确定一个圆.4.有关定义由上可知,经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆(circumcircle of triangle),这个三角形叫这个圆的内接三角形.外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心(circumcenter).Ⅲ.课堂练习已知锐角三角形、直角三角形、钝角三角形,分别作出它们的外接圆,它们外心的位置有怎样的特点?解:如下图.O为外接圆的圆心,即外心.锐角三角形的外心在三角形的内部,直角三角形的外心在斜边上,钝角三角形的外心在三角形的外部.Ⅳ.课时小结本节课所学内容如下:1.经历不在同一条直线上的三个点确定一个圆的探索过程.方法.3.了解三角形的外接圆,三角形的外心等概念.Ⅴ.课后作业习题3.6Ⅵ.活动与探究如下图,CD所在的直线垂直平分线段AB.怎样使用这样的工具找到圆形工件的圆心?解:因为A、B两点在圆上,所以圆心必与A、B两点的距离相等,又因为和一条线段的两个端点距离相等的点在这条线段的垂直平分线上,所以圆心在CD所在的直线上.因此使用这样的工具可以作出圆形工件的任意两条直径.它们的交点就是圆心.24.2.2直线和圆的位置关系教学目标(一)教学知识点1.理解直线与圆有相交、相切、相离三种位置关系.2.了解切线的概念,探索切线与过切点的直径之间的关系.(二)能力训练要求1.经历探索直线与圆位置关系的过程,培养学生的探索能力.2.通过观察得出“圆心到直线的距离d和半径r的数量关系”与“直线和圆的位置关系”的对应与等价,从而实现位置关系与数量关系的相互转化.(三)情感与价值观要求通过探索直线与圆的位置关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点经历探索直线与圆位置关系的过程.理解直线与圆的三种位置关系.了解切线的概念以及切线的性质.教学难点经历探索直线与圆的位置关系的过程,归纳总结出直线与圆的三种位置关系.探索圆的切线的性质.教学方法教师指导学生探索法.教具准备投影片三张教学过程Ⅰ.创设问题情境,引入新课[师]我们在前面学过点和圆的位置关系,请大家回忆它们的位置关系有哪些?[生]圆是平面上到定点的距离等于定长的所有点组成的图形.即圆上的点到圆心的距离等于半径;圆的内部到圆心的距离小于半径;圆的外部到圆心的距离大于半径.因此点和圆的位置关系有三种,即点在圆上、点在圆内和点在圆外.也可以把点与圆心的距离和半径作比较,若距离大于半径在圆外,等于半径在圆上,小于半径在圆内.[师]本节课我们将类比地学习直线和圆的位置关系.Ⅱ.新课讲解1.复习点到直线的距离的定义[生]从已知点向已知直线作垂线,已知点与垂足之间的线段的长度叫做这个点到这条直线的距离.如下图,C为直线AB外一点,从C向AB引垂线,D为垂足,则线段CD即为点C到直线AB的距离.2.探索直线与圆的三种位置关系[师]直线和圆的位置关系,我们在现实生活中随处可见,只要大家注意观察,这样的例子是很多的.如大家请看课本113页,观察图中的三幅照片,地平线和太阳的位置关系怎样?作一个圆,把直尺的边缘看成一条直线,固定圆,平移直尺,直线和圆有几种位置关系?[生]把太阳看作圆,地平线看作直线,则直线和圆有三种位置关系;把直尺的边缘看成一条直线,则直线和圆有三种位置关系.[师]从上面的举例中,大家能否得出结论,直线和圆的位置关系有几种呢?[生]有三种位置关系:[师]直线和圆有三种位置关系,如下图:它们分别是相交、相切、相离.当直线与圆相切时(即直线和圆有唯一公共点),这条直线叫做圆的切线(tan gent line).当直线与圆有两个公共点时,叫做直线和圆相交.当直线与圆没有公共点时,叫做直线和圆相离.因此,从直线与圆有公共点的个数可以断定是哪一种位置关系,你能总结吗?[生]当直线与圆有唯一公共点时,这时直线与圆相切;当直线与圆有两个公共点时,这时直线与圆相交;当直线与圆没有公共点时,这时直线与圆相离.[师]能否根据点和圆的位置关系,点到圆心的距离d 和半径r 作比较,类似地推导出如何用点到直线的距离d 和半径r 之间的关系来确定三种位置关系呢?[生]如上图中,圆心O 到直线l 的距离为d ,圆的半径为r ,当直线与圆相交时,d <r ;当直线与圆相切时,d =r ;当直线与圆相离时,d >r ,因此可以用d 与r 间的大小关系断定直线与圆的位置关系.[师]由此可知:判断直线与圆的位置关系有两种方法.一种是从直线与圆的公共点的个数来断定;一种是用d 与r 的大小关系来断定.投影片(§3.5.1A)(1)从公共点的个数来判断: 直线与圆有两个公共点时,直线与圆相交;直线与圆有唯一公共点时,直线与圆相切;直线与圆没有公共点时,直线与圆相离.(2)从点到直线的距离d 与半径r 的大小关系来判断:d <r 时,直线与圆相交;d =r 时,直线与圆相切;d >r 时,直线与圆相离.投影片(§3.5.1B)[例1]已知Rt △ABC 的斜边AB =8cm ,AC =4cm .(1)以点C 为圆心作圆,当半径为多长时,AB 与⊙C 相切?(2)以点C 为圆心,分别以2cm 和4cm 的长为半径作两个圆,这两个圆与AB 分别有怎样的位置关系?分析:根据d 与r 间的数量关系可知:d =r 时,相切;d <r 时,相交;d >r 时,相离.解:(1)如上图,过点C 作AB 的垂线段CD .∵AC =4cm ,AB =8cm ;∴cos A =12AC AB ,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图23.1.1
我们是用圆规画出一个圆,再将圆划分成一个个扇形,上图23.1.1就是反映学校学生上学方式的扇子形统计
、说出上右图中的圆心解、优弧、劣弧。

1、将图形23.1.3中的扇形AOB 绕点O 逆时针旋转某个角度,得到图23.1.4中的图形,同学们可以通过比较前后两个图形,发现AOB =∠,AB AB =。

实质上,AOB ∠确定了扇形AOB 的大小,所以,在同一个圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等。

图23.1.3
图23.1.4
3)如图,在⊙AB ︵=AC ︵
,∠B =70
(第4题)
=CD ︵=DE ︵
,∠本节课我们通过实验得到了圆不仅是中心对称图形,而由圆的对称性又得出许多圆的许多性)同一个圆中,相等的圆心角所对弧相等,所)在同一个圆中,如果弧相等,那么所对的圆心角,所对的弦相等。

(3)在同一个圆中,如果弦相等,那么所对的圆心角,所对的弧相等。

圆心角、弧、弦关系
图 23.1.5
图 23.1.6
试一试
如图23.1.7,如果在图形纸片上任意画一条垂直于直径CD 垂足为P ,再将纸片沿着直径CD 对折,比较AP 与PB 、AC ︵与你能发现什么结论?
你的结论是:_________________________________________ ________________________________________________ 这就是我们这节课要研究的问题。


截面如图示,如果油面宽

谈一下本节课的收获?还有何困惑?
究竟什么样的角是圆周角呢?像图(3)中的解就叫做圆周角,而图(2)、(4)、(5)中的角都不是圆周角。

同学们可以通过讨论归纳如何判断一个角是不是圆周角。

(顶
(第1题)
图23.1.9
图23.1.10
圆心角的度数的一半。

由上述操作可以猜想:在一个圆中,一条弧所对的任意一个圆周角的大小都等于该弧所对的圆心角的一半。

为了验证这个猜想,如图
使折痕经过圆心
况:(1)折痕是圆周角的一条边,
内部,(3)折痕在圆周角的外部。

图23.1.11
的直径,
图23.1.12
本节课我们一同探究了同圆或等圆中,一条弧所对的圆周角等于这条弧所对的圆心角的一半;由这个结论进一步得
图23.2.1 cm,4
>,
QD cm
图23.2.2
图23.2.4
图23.2.3
从以上的图形可以看到,
数个,这些圆的圆心分布在整个平面;
圆也有无数个,这些圆的圆心是在线段
上。

经过A、B、C三点能否画圆呢?同学们想一想,画圆的要素是什么?(圆心确定圆的位置,半径决定圆的大小),所以关键的问题是定其加以和半径。

如图23.2.4,如果
那么经过A、B两点所画的圆的圆心在线段
线上,而经过B、C两点所画的圆的圆心在线段
平分线上,此时,这两条垂直平分线一定相交,设交点为O,则OA=OB=OC,于是以
可画出经过A、B、C三点的圆.
思考:如果A、B、C
三点的圆吗?为什么?
即有:不在同一条直线上的三个点确定一个圆
也就是说,经过三角形三个顶点可以画一个圆,
只能画一个.经过三角形三个顶点的圆叫做三角形的圆.三角形外接圆的圆心叫做这个
图23.2.1
2、三点圆
不在同一条直线上的三个点确定一个圆
如上图,设⊙O 的半径为r ,圆心O 到直线l
如何用数量来体现圆与直线的位置关系呢?
如上图,设⊙O 的半径为r ,圆心O 到直线l 的距离为从图中可以看出:
若d r > 直线l 与⊙O 相离;
图23.2.6。

相关文档
最新文档