高二数学第一次月考试卷
高二数学上学期第一次月考试题含解析
智才艺州攀枝花市创界学校第二二零二零—二零二壹高二数学上学期第一次月考试题〔含解析〕一、选择题〔本大题一一共13小题,每一小题4分,一共52分.题1—10为单项选择题,题11-13为多项选择题,多项选择题错选得0分,漏选得2分.〕 1.椭圆229225x ky +=的一个焦点是()4,0,那么k =〔〕A.5B.25C.-5D.-25【答案】B 【解析】 【分析】将椭圆方程化为HY 方程,根据焦点坐标求得c ,由此列方程求得k 的值.【详解】椭圆的HY方程为22122525x y k+=,由于椭圆焦点为()4,0,故焦点在x 轴上,且4c =.所以2225254k=+,解得25k =. 应选:B【点睛】本小题主要考察根据椭圆的焦点坐标求参数的值,属于根底题. 2.双曲线22412mx y -=的一条渐近线的方程为20y -=,那么m =〔〕A.3C.4D.16【答案】A 【解析】 【分析】写出双曲线的HY 方程,根据渐近线方程即可得解. 【详解】双曲线22412mx y -=20y -=,即双曲线221213m x y -=的一条渐近线的方程为y x =, 所以124,3m m==. 应选:A【点睛】此题考察根据双曲线的渐近线方程求双曲线HY 方程,关键在于准确掌握双曲线的概念,找准其中的a ,b .3.“x R ∃∈,2440x x -+≤〞的否认是〔〕A.x R ∀∈,2440x x -+>B.x R ∀∈,2440x x -+≥C.x R ∃∈,2440x x -+>D.x R ∃∈,2440x x -+≥【答案】A 【解析】 【分析】 .【详解】A 选项正确. 应选:A 【点睛】. 4.〕 A.2230x x -->,B.π不是无限不循环小数C.直线与平面相交D.在线段AB 上任取一点【答案】B 【解析】【分析】 ACDB.【详解】ACD 均不能判断真假,B. 应选:B 【点睛】.5.平面内,一个动点P ,两个定点1F ,2F ,假设12PF PF -为大于零的常数,那么动点P 的轨迹为〔〕A.双曲线B.射线C.线段D.双曲线的一支或者射线 【答案】D 【解析】【分析】根据双曲线的定义,对动点P 的轨迹进展判断,由此确定正确选项. 【详解】两个定点的间隔为12F F ,当1212PF PF F F -<时,P 点的轨迹为双曲线的一支; 当1212PF PF F F -=时,P 点的轨迹为射线;不存在1212PF PF F F ->的情况.综上所述,P 的轨迹为双曲线的一支或者射线. 应选:D【点睛】本小题主要考察双曲线定义的辨析,属于根底题. 6.〕A.x R ∀∈,2210x x -+>B.0,4x π⎡⎤∀∈⎢⎥⎣⎦,tan 1x <C.a ∀∈R ,in s (s in )a a π-=D.x R ∀∈,12x x+≥ 【答案】C 【解析】 【分析】 .【详解】A.x R ∀∈,2210x x -+>,当21,210x x x =-+=B.0,4x π⎡⎤∀∈⎢⎥⎣⎦,tan 1x <,当,tan 14x x π== C.a ∀∈R ,in s (s in )a a π-=,满足题意; D.x R ∀∈,12x x +≥,当10,2x x x<+≤-. 应选:C 【点睛】.7.假设方程22216x y a a +=-表示双曲线,那么实数a 的取值范围是〔〕A.6a <B.6a <且0a≠ C.2a > D.2a >或者3a <-【答案】B 【解析】 【分析】根据双曲线方程形式得2060a a ⎧≠⎨-<⎩,即可得解.【详解】方程22216x y a a +=-表示双曲线,那么2060a a ⎧≠⎨-<⎩,解得:6a <且0a ≠.应选:B【点睛】此题考察双曲线概念辨析,根据方程表示双曲线求解参数的取值范围,关键在于纯熟掌握双曲线方程的形式.8.1F ,2F 是椭圆(222:13x y C a a+=>的两个焦点,P 是C 上一点.假设1260F PF ∠=︒,那么12F PF △的面积为〔〕B. D.与a 有关【答案】A 【解析】 【分析】根据椭圆的几何性质结合余弦定理求得124F P PF ⋅=,利用三角形面积公式即可得解.【详解】根据椭圆几何性质可得:122F P PF a +=,12F PF △中,由余弦定理:222121212F F F P PF F P PF =+-⋅,即()221212123F F F P PF F P PF =+-⋅()22124343a a F P PF -=-⋅,解得:124F P PF ⋅=12F PF △的面积为121sin 602F P PF ⋅⋅︒=. 应选:A【点睛】此题考察椭圆的几何性质的应用,结合余弦定理和面积公式求三角形面积,关键在于纯熟掌握椭圆根本性质和三角形相关定理公式.9.1F ,2F 是椭圆()222210x y a b a b+=>>的左,右焦点,直线23b y =与该椭圆交于B ,C ,假设2BF C △是直角三角形,那么该椭圆的离心率为〔〕B.【答案】D 【解析】 【分析】联立直线和椭圆求出交点坐标22,,,3333b b B C ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,分别讨论直角情况即可得解.【详解】联立直线和椭圆方程:2222123x y a b b y ⎧=⎪⎪⎨+=⎪⎪⎩ 所以直线23b y =与椭圆()222210x y a b a b+=>>的交点坐标22,33b b B C ⎛⎫⎫⎪⎪ ⎪⎪⎝⎭⎝⎭, 因为椭圆焦点在x 轴,所以角B 不可能为直角,当角Cc =,即e =;当角2F 为直角时,220F B F C ⋅=,即22,,03333b b c c ⎛⎫⎛⎫--⋅-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22254099a b c -+=,2222544099a a c c --+=225c a =,5e =.应选:D【点睛】此题考察根据直线与椭圆位置关系,结合三角形形状求解离心率,关键在于准确求出直线与椭圆的交点坐标,根据垂直关系建立等量关系求椭圆离心率.10.双曲线221916x y -=的左,右焦点分别为1F ,2F ,P 为右支上一点,且1245cos F PF ∠=,那么12F PF △内切圆的面积为〔〕A.211πB.83π C.649π D.176121π【答案】C 【解析】 【分析】 根据1245cos F PF ∠=求出三角形的边长和面积,利用等面积法求出内切圆的半径,即可得到面积. 【详解】由题:1245cos F PF ∠=,那么123sin 5F PF ∠=,P 为右支上一点, 12F PF △中由余弦定理:()()22212111146265F F F P F P F P F P =++-⋅+⨯解得110F P =,12F PF △的面积121310164825F PF S =⨯⨯⨯=△,设其内切圆半径为r ,()101016482r ++=,解得:83r = 那么12F PF △内切圆的面积为286439ππ⎛⎫⨯=⎪⎝⎭【点睛】此题考察根据双曲线的几何性质求解焦点三角形的面积和内切圆的半径,根据等面积法求解半径得到圆的面积. 11.〕A.假设a ba c ⋅=⋅,那么bc =B.正数,a b ,假设2a b+≠a bC.0x N +∃∈,使200x x ≤D.正数,x y ,那么1xy =是lg lg 0x y +=的充要条件【答案】BCD 【解析】 【分析】 考虑0a=可断定A.【详解】A 选项:假设0a =,任意向量,b c ,0a b a c ⋅=⋅=,不能推出b c =B ,a b ,假设ab =,那么2a b+= C 选项:当01x =D 选项:正数,x y ,lg lg 0x y +=等价于lg 0xy =,等价于1xy =,那么1xy =是lg lg 0x y +=的充要条件应选:BCD 【点睛】.12.〔多项选择题〕双曲线()22122:10,0x y C a b a b-=>>与双曲线()222222222:10,0y x C a b a b -=>>的渐近线将第三象限三等分,那么双曲线1C 的离心率可能为〔〕C.2D.3【答案】CD 【解析】 【分析】根据渐近线的平分关系求出斜率,根据斜率为b a =b a =.【详解】双曲线()22122:10,0x y C a b a b-=>>与双曲线()222222222:10,0y x C a b a b -=>>的渐近线将第三象限三等分,根据双曲线对称性可得:双曲线()22122:10,0x y C a b a b-=>>与双曲线()222222222:10,0y x C a b a b -=>>的渐近线将第一象限三等分,所以第一象限的两条渐近线的倾斜角为30°和60°,其斜率为b a =b a =,所以其离心率为2或者3. 应选:CD【点睛】此题考察根据双曲线的渐近线关系求离心率,关键在于对题目所给条件进展等价转化,利用双曲线根本量之间的关系求解.13.〔多项选择题〕以下说法正确的选项是〔〕 A.方程2xxy x +=表示两条直线B.椭圆221102x y m m +=--的焦距为4,那么4m =C.曲线22259x y xy +=关于坐标原点对称D.双曲线2222x y a b λ-=的渐近线方程为b y x a=±【答案】ACD 【解析】 【分析】B 选项漏掉考虑焦点在y 轴的情况,ACD 说法正确. 【详解】方程2xxy x +=即()10x x y +-=,表示0x =,10x y +-=两条直线,所以A 正确;椭圆221102x ym m+=--的焦距为4,那么()1024m m---=或者()2104m m---=,解得4m=或者8m=,所以B选项错误;曲线22259x yxy+=上任意点(),P x y,满足22259x yxy+=,(),P x y关于坐标原点对称点(),P x y'--也满足()()()()22259x yx y--+=--,即(),P x y'--在22259x yxy+=上,所以曲线22259x yxy+=关于坐标原点对称,所以C选项正确;双曲线2222x ya bλ-=即0λ≠,其渐近线方程为by xa=±正确,所以D选项正确.应选:ACD【点睛】此题考察曲线方程及简单性质辨析,涉及认识曲线方程,研究对称性,根据椭圆性质求参数的取值,求双曲线的渐近线.二、填空题〔本大题一一共4小题,每一小题4分,一共16分.〕14.方程22157x ya a+=--表示椭圆,那么实数a的取值范围是_______.【答案】()()5,66,7【解析】【分析】根据方程表示椭圆,列不等式组可得507057aaa a->⎧⎪->⎨⎪-≠-⎩,即可求解.【详解】由题方程22157x ya a+=--表示椭圆,那么507057aaa a->⎧⎪->⎨⎪-≠-⎩,解得()()5,66,7a ∈故答案为:()()5,66,7【点睛】此题考察根据曲线方程表示椭圆求参数的取值范围,关键在于纯熟掌握椭圆的HY方程特征,此题容易漏掉考虑a =6的情况不合题意.15.假设“0,4x π⎡⎤∃∈⎢⎥⎣⎦,tan x m <〞m 的取值范围是________. 【答案】0m >【解析】【分析】 根据0,4x π⎡⎤∃∈⎢⎥⎣⎦,tan x m <,实数m 的取值范围,即()min tan x m <. 【详解】0,4x π⎡⎤∃∈⎢⎥⎣⎦,tan x m <,即()min tan x m <, tan y x =在0,4x π⎡⎤∈⎢⎥⎣⎦单调递增,()min tan 0x = 即0m >.故答案为:0m >【点睛】.16.2F 是椭圆2211612x y +=的右焦点,P 是椭圆上的动点,(A 为定点,那么1PA PF +的最小值为_______.【答案】6【解析】【分析】 将问题进展转化12288PA PF PA PF PA PF +=+-=+-,根据动点到两个定点间隔之差的最值求解. 【详解】()22,0F 是椭圆2211612x y +=的右焦点,()12,0F -是椭圆2211612x y +=的左焦点,128PF PF +=(A 在椭圆内部,1222888826PA PF PA PF PA PF AF +=+-=+-≥-=-=,当P 为2F A 的延长线与椭圆交点时获得最小值.故答案为:6【点睛】此题考察椭圆上的点到椭圆内一点和焦点的间隔之和最值问题,关键在于利用椭圆的几何性质进展等价转化,结合平面几何知识求解.17.点A ,B 分别是射线()1:0l y x x =≥,2(:0)l y x x =-≤上的动点,O 为坐标原点,且AOB 的面积为定值4.那么线段AB 中点M 的轨迹方程为_________. 【答案】22144-=y x ,0y > 【解析】【分析】设出中点坐标,根据面积关系建立等量关系化简即可得到轨迹方程.【详解】由题:()1:0l y x x =≥,2(:0)l y x x =-≤互相垂直,()()112212,,,,0,0A x x B x x x x -><,设线段AB 中点(),M x y , AOB 的面积为定值4,即)12142x -=,即124x x =- 121222x x x x x y +⎧=⎪⎪⎨-⎪=⎪⎩,两式平方得:222121222212122424x x x x x x x x x y ⎧++=⎪⎪⎨+-⎪=⎪⎩, 两式相减得:22124x y x x -==- 即22144-=y x ,0y >故答案为:22144-=y x ,0y > 【点睛】此题考察求轨迹方程,关键在于根据给定的条件建立等量关系,此类题目容易漏掉考虑取值范围的限制.三、解答题〔本大题一一共6小题,总分值是82分.解容许写出文字说明,证明过程或者演算步骤〕18.集合{}2(3)0A x x a x a =+-+=,{}0B x x =>.假设A B =∅.务实数a 的取值范围.【答案】(](),19,a ∈-∞+∞【解析】【分析】 将问题转化考虑A B =∅a 的取值范围,即可得到假设A B =∅a 的取值范围. 【详解】考虑A B =∅2(3)0x a x a +-+=没有正根, ①()2340a a ∆=--<得()1,9a ∈; ②()2340a a ∆=--=得1a =,或者9a =, 当9a =时{}{}26903A x x x =++==-符合题意,当1a =时{}{}22101A x x x =-+==,不合题意,所以9a =; ③()23403020a a a a ⎧∆=-->⎪-⎪<⎨⎪>⎪⎩无解; 综受骗A B =∅(]1,9a ∈,所以假设A B =∅(](),19,a ∈-∞+∞【点睛】.19.对称中心在坐标原点的椭圆关于坐标轴对称,该椭圆过1212,55⎛⎫ ⎪⎝⎭,且长轴长与短轴长之比为4:3.求该椭圆的HY 方程. 【答案】221169x y +=或者221169y x += 【解析】【分析】根据椭圆的长轴短轴长度之比设椭圆的HY 方程,根据椭圆经过的点求解参数即可得解.【详解】由题:对称中心在坐标原点的椭圆关于坐标轴对称,长轴长与短轴长之比为4:3,当焦点在x 轴上,设椭圆的HY 方程为221169x y m m+=,m >0,椭圆过1212,55⎛⎫ ⎪⎝⎭, 14414412516259m m+=⨯⨯,解得:m =1, 所以椭圆的HY 方程为221169x y += 同理可得当焦点在y 轴上,椭圆的HY 方程为221169y x +=, 所以椭圆的HY 方程为221169x y +=或者221169y x += 【点睛】此题考察求椭圆的HY 方程,关键在于根据长轴短轴长度关系设方程,根据椭圆上的点的坐标求解,易错点在于漏掉考虑焦点所在位置.20.“[]0,2x ∃∈,使方程251020x x m -+-=有解〞.〔1〕务实数m 的取值集合A ;〔2〕设不等式()()1120x a x a -+-<+的解集为集合B ,假设x B ∈是x A ∈的必要不充分条件,务实数a 的取值范围.【答案】〔1〕{}32A m m =-≤≤;〔2〕()(),23,a ∈-∞-+∞【解析】【分析】〔1〕将问题转化为()225102513m x x x =-+=--在[]0,2x ∈有解,即可求解;〔2〕分类讨论求解A B ⊆即可得到参数的取值范围.【详解】〔1“[]0,2x ∃∈,使方程251020x x m -+-=有解〞是.即()225102513m x x x =-+=--在[]0,2x ∈有解,所以[]3,2m ∈- 即{}32A m m =-≤≤;〔2〕不等式()()1120x a x a -+-<+的解集为集合B ,假设x B ∈是x A ∈的必要不充分条件, 当23a =不合题意; 当23<a 时,112a a -<-,()1,12B a a =--,13122a a -<-⎧⎨->⎩,得2a <-; 当23a >时,112a a ->-,()12,1B a a =--,12123a a ->⎧⎨-<-⎩,得3a >; 所以()(),23,a ∈-∞-+∞【点睛】此题考察根据方程有解求参数的取值范围,根据充分条件和必要条件关系求解参数的取值范围,关键在于弄清充分条件和必要条件关系,利用分类讨论求解.21.设1F ,2F 分别是椭圆222:14x y E b+=的左,右焦点,假设P 是该椭圆上的一个动点,12PF PF ⋅的最大值为1.求椭圆E 的方程. 【答案】2214x y += 【解析】【分析】设出焦点坐标,表示出12PF PF ⋅利用函数关系求出最大值,即可得到21b =.【详解】由题:()1F ,)2F 分别是椭圆222:14x y E b +=的左,右焦点,设(),P x y 施椭圆上的动点,即[]222221,0,4,44x y x b b+=∈<, ()22222221124444x b x b x b b ⎛⎫⎛⎫=-+-=-+- ⎪ ⎪⎝⎭⎝⎭-,当2x =4时,获得最大值, 即21b =, 所以椭圆的方程为2214x y +=. 【点睛】此题考察求椭圆的HY 方程,关键在于根据椭圆上的点的坐HY 确计算,结合取值范围求解最值.22.平面直角坐标系中两个不同的定点()1,0F a -,()2,0,0F a a >,过点1F 的直线1l 与过点2F 的直线2l 相交于点P ,假设直线1l 与直线2l 的斜率之积为(0)m m ≠,求动点P 的轨迹方程,并说明此轨迹是何种曲线.【答案】见解析.【解析】【分析】 根据斜率关系化简得22221x y a ma-=,分类讨论得解. 【详解】设(),P x y ,过点1F 的直线1l 与过点2F 的直线2l 相交于点P ,假设直线1l 与直线2l 的斜率之积为(0)m m ≠, 即y y m x a x a ,222y mx ma =-,22221x y a ma-=, 当1m =-轨迹是圆,不含点()1,0F a -,()2,0,0F a a >;当0m >,轨迹是以()1,0F a -,()2,0F a 为顶点的双曲线,不含顶点()1,0F a -,()2,0F a ; 当10m -<<,轨迹是以()1,0F a -,()2,0F a 为长轴顶点的椭圆,不含()1,0F a -,()2,0F a ; 当1m <-,轨迹是以()1,0F a -,()2,0F a 为短轴顶点的椭圆,不含()1,0F a -,()2,0F a .【点睛】此题考察曲线轨迹的辨析,关键在于根据题意建立等量关系,根据曲线轨迹方程分类讨论得解.23.椭圆221:1169x y C +=和双曲线222:1169x y C -=,点A ,B 为椭圆的左,右顶点,点P 在双曲线2C 上,直线OP 与椭圆1C 交于点Q 〔不与点A ,B 重合〕,设直线AP ,BP ,AQ ,BQ 的斜率分别为1k ,2k ,3k ,4k .〔1〕求证:12916k k ⋅=; 〔2〕求证:1234k k k k +++的值是定值.【答案】〔1〕证明见解析;〔2〕证明见解析.【解析】【分析】〔1〕设(),P x y ,表示出斜率即可求得斜率之积;〔2〕设直线:OP y kx =,0k≠,依次求解P ,Q 坐标,表示出斜率之和化简即可得解. 【详解】〔1〕由题:()()()4,0,4,0,,A B P x y -满足221169x y -=,229116x y ⎛⎫=- ⎪⎝⎭ 21229441616y y y k k x x x ⋅=⋅==+--; 〔2〕根据曲线的对称性不妨设直线:OP y kx =,0k ≠, 联立221169y kx x y =⎧⎪⎨+=⎪⎩得2221169x k x +=,22144916x k =+,不妨取Q ⎛⎫,同理可得:P ⎛⎫ 所以1234k k k k +++的值是定值.【点睛】此题考察椭圆与双曲线对称性辨析,求解直线与曲线交点坐标,根据坐标表示斜率求解斜率之积和斜率之和证明结论.。
高二数学月考卷1
高二数学月考卷1一、选择题(每题1分,共5分)1. 函数f(x) = (x² 1)/(x 1)的定义域是()A. RB. {x | x ≠ 1}C. {x | x ≠ 0}D. {x | x ≠ 1}2. 若向量a = (2, 3),向量b = (1, 2),则2a 3b = ()A. (8, 1)B. (8, 1)C. (8, 1)D. (8, 1)3. 二项式展开式(x + y)⁵中x²y³的系数是()A. 5B. 10C. 20D. 304. 已知等差数列{an}中,a1 = 3,a3 = 9,则公差d为()A. 2B. 3C. 4D. 65. 若复数z满足|z 1| = |z + 1|,则z在复平面上的对应点位于()A. 实轴上B. 虚轴上C. y = x上D. y = x上二、判断题(每题1分,共5分)1. 任何两个实数的和都是实数。
()2. 若矩阵A的行列式为0,则A不可逆。
()3. 两条平行线上的任意一对对应线段比例相等。
()4. 双曲线的渐近线一定经过原点。
()5. 若函数f(x)在区间[a, b]上单调递增,则f'(x) > 0。
()三、填空题(每题1分,共5分)1. 若log₂x = 3,则x = ______。
2. 若等差数列{an}中,a4 = 8,a7 = 19,则a10 = ______。
3. 圆的标准方程(x h)² + (y k)² = r²中,(h, k)表示圆的______。
4. 若sinθ = 1/2,且θ是第二象限的角,则cosθ = ______。
5. 矩阵A = [[1, 2], [3, 4]]的行列式|A| = ______。
四、简答题(每题2分,共10分)1. 简述矩阵乘法的定义。
2. 请解释什么是反函数。
3. 简述等差数列的通项公式。
4. 请说明直线的斜率的意义。
5. 简述三角函数的周期性。
四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案
高二上数学月考(一)(答案在最后)一、单项选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某高校对中文系新生进行体测,利用随机数表对650名学生进行抽样,先将650名学生进行编号,001,002,…,649,650.从中抽取50个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()32211834297864540732524206443812234356773578905642 84421253313457860736253007328623457889072368960804 32567808436789535577348994837522535578324577892345A.623B.328C.072D.457【答案】A【解析】【分析】按照随机数表提供的数据,三位一组的读数,并取001到650内的数,重复的只取一次即可【详解】从第5行第6列开始向右读取数据,第一个数为253,第二个数是313,第三个数是457,下一个数是860,不符合要求,下一个数是736,不符合要求,下一个是253,重复,第四个是007,第五个是328,第六个数是623,,故A正确.故选:A.2.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第二次被抽到的可能性为b,则()A.19b= B.29b= C.310b= D.110b=【答案】D【解析】【分析】根据题意,在抽样过程中每个个体被抽到的概率相等即可求解.【详解】因为总体中共有10个个体,所以五班第一次没被抽到,第二次被抽到的可能性为91110910b=⨯=.故选:D.3.已知向量1,22AB ⎛⎫=- ⎪ ⎪⎝⎭,122BC ⎛⎫=- ⎪ ⎪⎝⎭,则ABC ∠=()A.30°B.150°C.60°D.120°【答案】B 【解析】【分析】根据向量夹角的坐标表示求出向量夹角,进而求解几何角.【详解】因为向量13,22AB ⎛⎫=- ⎪ ⎪⎝⎭ ,31,22BC ⎛⎫=- ⎪ ⎪⎝⎭,所以13312222cos ,2AB BC AB BC AB BC⎛⎫⎛⎫⨯+-⨯- ⎪ ⎪⋅==⋅,又0,180AB BC ≤≤,所以,30AB BC =,所以,18030150BA BC =-= ,所以150ABC ∠=o .故选:B.4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则下列说法错误的是()A.若//a b ,,b a αα⊂⊄,则//a αB.若,a b αα⊥⊥,则//a bC.若,,b a b αβαβ⊥⋂=⊥,则a β⊥D.若,a b 为异面直线,,a b αβ⊂⊂,//a β,//b α,则//αβ【答案】C 【解析】【分析】根据线面平行的判定定理判断A ,根据线面垂直的性质判断B ,当a α⊄时即可判断C ,根据异面直线的定义及线面平行的性质定理判断D.【详解】对于A :若//a b ,,b a αα⊂⊄,根据线面平行的判定定理可知//a α,故A 正确;对于B :若,a b αα⊥⊥,则//a b ,故B 正确;对于C :当a α⊂时,,,b a b αβαβ⊥⋂=⊥,由面面垂直的性质定理可得a β⊥,当a α⊄时,,,b a b αβαβ⊥⋂=⊥,则//a β或a β⊂或a 与β相交,故C 错误;对于D :因为a α⊂,//b α,所以存在b α'⊂使得//b b ',又b β⊂,b β'⊄,所以//b β',又//a β且,a b 为异面直线,所以平面α内的两直线b '、a 必相交,所以//αβ,故D 正确.故选:C5.下列说法正确的是()A.互斥的事件一定是对立事件,对立事件不一定是互斥事件B.若()()1P A P B +=,则事件A 与事件B 是对立事件C.从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为25D.事件A 与事件B 中至少有一个发生的概率不一定比A 与B 中恰有一个发生的概率大【答案】D 【解析】【分析】根据互斥事件、对立事件和古典概型及其计算逐一判定即可.【详解】对于A ,由互斥事件和对立事件的关系可判断,对立事件一定是互斥事件,互斥事件不一定是对立事件,故A 错误;对于B ,由()()1P A P B +=,并不能得出A 与B 是对立事件,举例说明:现从a ,b ,c ,d 四个小球中选取一个小球,已知选中每个小球的概率是相同的,设事件A 表示选中a 球或b 球,则1()2P A =,事件B 表示选中b 球或c 球,则1()2P B =,所以()()1P A P B +=,但A ,B 不是对立事件,故B 错误;对于C ,该试验的样本空间可表示为:{(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9)(5,7,9)}Ω=,共有10个样本点,其中能构成三角形的样本点有(3,5,7),(3,7,9),(5,7,9),共3个,故所求概率310P =,故C 错误;对于D ,若A ,B 是互斥事件,事件A ,B 中至少有一个发生的概率等于A ,B 中恰有一个发生的概率,故D 正确.故选:D.6.一组数据:53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =().A.58或64B.58C.59或64D.59【答案】A 【解析】【分析】先对数据从小到大排序,分57x ≤,79x ≥,5779x <<三种情况,舍去不合要求的情况,列出方程,求出答案,【详解】将已知的6个数从小到大排序为45,49,53,57,61,79.若57x ≤,则这组数据的第80百分位数与第60百分位数分别为61和57,他们的差为4,不符合条件;若79x ≥,则这组数据的第80百分位数与第60百分位数分别为79和61,它们的差为18,不符合条件;若5779x <<,则这组数据的第80百分位数与第60百分位数分别为x 和61(或61和x ),则613x -=,解得58x =或64x =故选:A7.如图,四边形ABCD 为正方形,ED ⊥平面,,2ABCD FB ED AB ED FB ==∥,记三棱锥,,E ACD F ABC F ACE ---的体积分别为123,,V V V ,则()A.322V V =B.31V V =C.3123V V V =-D.3123V V =【答案】D 【解析】【分析】结合线面垂直的性质,确定相应三棱锥的高,求出123,,V V V 的值,结合选项,即可判断出答案.【详解】连接BD 交AC 于O ,连接,OE OF ,设22AB ED FB ===,由于ED ⊥平面,ABCD FB ED ∥,则FB ⊥平面ABCD ,则1211141112222,22133233323ACD ABC V S ED V S FB =⨯⨯=⨯⨯⨯⨯==⨯⨯=⨯⨯⨯⨯= ;ED ⊥平面,ABCD AC Ì平面ABCD ,故ED AC ⊥,又四边形ABCD 为正方形,则AC BD ⊥,而,,ED BD D ED BD =⊂ 平面BDEF ,故AC ⊥平面BDEF ,OF ⊂平面BDEF ,故AC OF ⊥,又ED ⊥平面ABCD ,FB ⊥平面ABCD ,BD ⊂平面ABCD ,故,ED BD FB BD ⊥⊥,222222,26,3,BD OD OB OE OD ED OF OB BF =∴===+==+=而()223EF BD ED FB =+-=,所以222EF OF OE +=,即得OE OF ⊥,而,,OE AC O OE AC =⊂ 平面ACE ,故OF ⊥平面ACE ,又22222AC AE CE ===+=,故(2231131323233434F ACE V V ACE S OF AC OF =-=⋅=⨯⋅=⨯= ,故323131231,2,,233V V V V V V V V V ≠≠≠-=,故ABC 错误,D 正确,故选:D8.已知平面向量a ,b ,e ,且1e = ,2a = .已知向量b 与e所成的角为60°,且b te b e -≥- 对任意实数t 恒成立,则12a e ab ++-的最小值为()A.31+ B.23C.35 D.25【答案】B【解析】【分析】b te b e -≥-对任意实数t 恒成立,两边平方,转化为二次函数的恒成立问题,用判别式来解,算出||2b =r ,借助2a =,得到122a e a e +=+ ,12a e a b ++- 的最小值转化为11222a e a b++- 的最小值,最后用绝对值的三角不等式来解即可【详解】根据题意,1cos 602b e b e b ⋅=⋅︒=,b te b e -≥- ,两边平方22222||2||2b t e tb e b e b e +-⋅≥+-⋅ ,整理得到210t b t b --+≥ ,对任意实数t 恒成立,则()2Δ||410b b =--+≤ ,解得2(2)0b -≤ ,则||2b =r .由于2a =,如上图,122a e a e +=+ ,则111112(2)()22222a e a b a e a b a e a b ++-=++-≥+--222843e b e b b e =+=++⋅12a e ab ++- 的最小值为23当且仅当12,,2e b a -终点在同一直线上时取等号.故选:B .二、多项选择题.本题共3个小题,每小题6分,共18分.在每个小题给出的选项中,有多项符合题目要求,部分选对的得部分,有选错的得0分.9.某保险公司为客户定制了5个险种:甲,一年期短期;乙,两全保险;丙,理财类保险;丁,定期寿险;戊,重大疾病保险.各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得到如图所示的统计图表.则()A.丁险种参保人数超过五成B.41岁以上参保人数超过总参保人数的五成C.18-29周岁人群参保的总费用最少D.人均参保费用不超过5000元【答案】ACD 【解析】【分析】根据统计图表逐个选项进行验证即可.【详解】由参保险种比例图可知,丁险种参保人数比例10.020.040.10.30.54----=,故A 正确;由参保人数比例图可知,41岁以上参保人数超过总参保人数的45%不到五成,B 错误;由不同年龄段人均参保费用图可知,1829~周岁人群人均参保费用最少()3000,4000,但是这类人所占比例为15%,54周岁以上参保人数最少比例为10%,54周岁以上人群人均参保费用6000,所以18-29周岁人群参保的总费用最少,故C 正确.由不同年龄段人均参保费用图可知,人均参保费用不超过5000元,故D 正确;故选:ACD .10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的有()A.甲地B.乙地C.丙地D.丁地【答案】AD 【解析】【分析】假设最多一天疑似病例超过7人,根据极差可判断AD ;根据平均数可算出10天疑似病例总人数,可判断BC .【详解】解:假设甲地最多一天疑似病例超过7人,甲地中位数为2,说明有一天疑似病例小于2,极差会超过5,∴甲地每天疑似病例不会超过7,∴选A .根据乙、丙两地疑似病例平均数可算出10天疑似病例总人数,可推断最多一天疑似病例可能超过7人,由此不能断定一定没有发生大规模群体感染,∴不选BC ;假设丁地最多一天疑似病例超过7人,丁地总体平均数为2,说明极差会超过3,∴丁地每天疑似病例不会超过7,∴选D .故选:AD .11.勒洛四面体是一个非常神奇的“四面体”,它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体.如图所示,设正四面体ABCD 的棱长为2,则下列说法正确的是()A.勒洛四面体能够容纳的最大球的半径为22-B.勒洛四面体被平面ABC 截得的截面面积是(2π-C.勒洛四面体表面上交线AC 的长度为2π3D.勒洛四面体表面上任意两点间的距离可能大于2【答案】ABD 【解析】【分析】A 选项:求出正四面体ABCD 的外接球半径,进而得到勒洛四面体的内切球半径,得到答案;B 选项,作出截面图形,求出截面面积;C 选项,根据对称性得到交线AC 所在圆的圆心和半径,求出长度;D 选项,作出正四面体对棱中点连线,在C 选项的基础上求出长度.【详解】A 选项,先求解出正四面体ABCD 的外接球,如图所示:取CD 的中点G ,连接,BG AG ,过点A 作AF BG ⊥于点F ,则F 为等边ABC V 的中心,外接球球心为O ,连接OB ,则,OA OB 为外接球半径,设OA OB R ==,由正四面体的棱长为2,则1CG DG ==,BG AG ==133FG BG ==,233BF BG ==3AF ===,3OF AF R R =-=-,由勾股定理得:222OF BF OB +=,即22233R R ⎛⎫⎛-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:2R =,此时我们再次完整的抽取部分勒洛四面体,如图所示:图中取正四面体ABCD 中心为O ,连接BO 交平面ACD 于点E ,交 AD 于点F ,其中 AD 与ABD △共面,其中BO 即为正四面体外接球半径2R =,设勒洛四面体内切球半径为r ,则22r OF BF BO ==-=-,故A 正确;B 选项,勒洛四面体截面面积的最大值为经过正四面体某三个顶点的截面,如图所示:面积为(2221π333322222344⎛⎫⨯⨯⨯-⨯+⨯= ⎪ ⎪⎭⎝,B 正确;C 选项,由对称性可知:勒洛四面体表面上交线AC 所在圆的圆心为BD 的中点M ,故3MA MC ==2AC =,由余弦定理得:2221cos 23233AM MC AC AMC AM MC +-∠===⋅⨯⨯,故1arccos3AMC ∠=3AC 133,C 错误;D 选项,将正四面体对棱所在的弧中点连接,此时连线长度最大,如图所示:连接GH ,交AB 于中点S ,交CD 于中点T ,连接AT ,则22312ST AT AS =-=-=则由C 选项的分析知:3TG SH ==,所以323322GH =+=,故勒洛四面体表面上两点间的距离可能大于2,D 正确.故选:ABD.【点睛】结论点睛:勒洛四面体考试中经常考查,下面是一些它的性质:①勒洛四面体上两点间的最大距离比四面体的棱长大,是对棱弧中点连线,最大长度为232a a ⎫->⎪⎪⎭,②表面6个弧长之和不是6个圆心角为60︒的扇形弧长之和,其圆心角为1arccos 3,半径为32a .三、填空题:本题共3个小题,每小题5分,共15分.12.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为3:4:7,现在用分层抽样的方法抽出容量为n 的样本,样本中的A 型号产品有15件,那么样本容量n 为________.【答案】70【解析】【分析】利用分层抽样的定义得到方程,求出70n =.【详解】由题意得315347n=++,解得70n =.故答案为:7013.平面四边形ABCD 中,AB =AD =CD =1,BD =BD ⊥CD ,将其沿对角线BD 折成四面体A ′﹣BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′﹣BCD 顶点在同一个球面上,则该球的表面积_____.【答案】3π【解析】【分析】根据BD ⊥CD ,BA ⊥AC ,BC 的中点就是球心,求出球的半径,即可得到球的表面积.【详解】因为平面A′BD ⊥平面BCD ,BD ⊥CD ,所以CD ⊥平面ABD ,∴CD ⊥BA ,又BA ⊥AD ,∴BA ⊥面ADC ,所以BA ⊥AC ,所以△BCD 和△ABC 都是直角三角形,由题意,四面体A ﹣BCD 顶点在同一个球面上,所以BC 的中点就是球心,所以BC =2所以球的表面积为:242π⋅=3π.故答案为:3π.【点睛】本题主要考查面面垂直的性质定理和球的外接问题,还考查空间想象和运算求解的能力,属于中档题.14.若一组样本数据12,,n x x x 的平均数为10,另一组样本数据1224,24,,24n x x x +++ 的方差为8,则两组样本数据合并为一组样本数据后的方差是__________.【答案】54【解析】【分析】计算出1n ii x =∑、21nii x=∑的值,再利用平均数和方差公式可求得合并后的新数据的方差.【详解】由题意可知,数据12,n x x x 的平均数为10,所以12)101(n x x x x n =+++= ,则110ni i x n ==∑,所以数据1224,24,,24n x x x +++ 的平均数为121(242424)210424n x x x x n'=++++++=⨯+= ,方差为()(()222221111444[24241010n n n i i i i i i s x x x x n n n n n ===⎤⎡⎤=+-+=-=-⨯⨯⎦⎣⎦∑∑∑2144008n i i x n ==-=∑,所以21102nii xn ==∑,将两组数据合并后,得到新数据1212,24,24,,24,n n x x x x x x +++ ,,则其平均数为11114)4)11113]4)[(2(3(222n i nn n i i i i i i i x x x x x n n n ====''=+=⨯+=⨯++∑∑∑∑()13104172=⨯⨯+=,方差为()()2222111111172417(586458)22n n n ni i i i i i i i s x x x x n n n ====⎡⎤=-++-=-+⎢⎥⎣⎦'∑∑∑∑1(51028610458)542n n n n=⨯-⨯+=.故答案为:54.四、解答题:本题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.袋中有形状、大小都相同的4个小球,标号分别为1,2,3,4.(1)从袋中一次随机摸出2个球,求标号和为奇数的概率;(2)从袋中每次摸出一球,有放回地摸两次.甲、乙约定:若摸出的两个球标号和为奇数,则甲胜,反之,则乙胜.你认为此游戏是否公平?说明你的理由.【答案】(1)23(2)是公平的,理由见解析【解析】【分析】(1)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式即可求解;(2)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式及概率进行比较即可求解.【小问1详解】试验的样本空间{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}Ω=,共6个样本点,设标号和为奇数为事件B ,则B 包含的样本点为(1,2),(1,4),(2,3),(3,4),共4个,所以42().63P B ==【小问2详解】试验的样本空间Ω{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}=,共有16个,设标号和为奇数为事件C ,事件C 包含的样本点为(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3),共8个,故所求概率为81()162P C ==,即甲胜的概率为12,则乙胜的概率为12,所以甲、乙获胜的概率是公平的.16.(1)请利用已经学过的方差公式:()2211ni i s x xn ==-∑来证明方差第二公式22211n i i s x x n ==-∑;(2)如果事件A 与B 相互独立,那么A 与B 相互独立吗?请给予证明.【答案】(1)证明见解析;(2)独立,证明见解析【解析】【分析】(1)根据题意,对方差公式恒等变形,分析可得结论;(2)根据相互独立事件的定义,只需证明()()()P AB P A P B =即可.【详解】(1)()()()()2222212111n i n i s x xx x x x x x n n =⎡⎤=-=-+-++-⎢⎥⎣⎦∑ ()()2222121212n n x x x x x x x nx n ⎡⎤=+++-+++⎢⎥⎣⎦ ()22221212n x x x x nx nx n ⎡⎤=+++-⨯+⎢⎥⎣⎦ ()222121n x x x nx n ⎡⎤=+++-⎢⎥⎣⎦ 2211n i i x x n ==-∑;(2)因为事件A 与B 相互独立,所以()()()P AB P A P B =,因为()()()P AB P AB P A +=,所以()()()()()()P AB P A P AB P A P A P B =-=-()()()()()1P A P B P A P B =-=,所以事件A 与B 相互独立.17.如图,四棱锥P ABCD -的侧面PAD 是边长为2的正三角形,底面ABCD 为矩形,且平面PAD ⊥平面ABCD ,M ,N 分别为AB ,AD 的中点,二面角D PN C --的正切值为2.(1)求四棱锥P ABCD -的体积;(2)证明:DM PC⊥(3)求直线PM 与平面PNC 所成角的正弦值.【答案】(1)3(2)证明见解析(3)35【解析】【分析】(1)先证明DNC ∠为二面角D PN C --的平面角,可得底面ABCD 为正方形,利用锥体的体积公式计算即可;(2)利用线面垂直的判定定理证明DM ⊥平面PNC ,即可证明DM PC ⊥;(3)由DM⊥平面PNC 可得MPO ∠为直线PM 与平面PNC 所成的角,计算其正弦值即可.【小问1详解】解:∵PAD △是边长为2的正三角形,N 为AD 中点,∴PN AD ^,PN =又∵平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =∴PN ^平面ABCD又NC ⊂平面ABCD ,∴PN NC ⊥∴DNC ∠为二面角D PN C --的平面角,∴tan 2DC DNC DN∠==又1DN =,∴2DC =∴底面ABCD 为正方形.∴四棱P ABCD -的体积12233V =⨯⨯=.【小问2详解】证明:由(1)知,PN ^平面ABCD ,DM ⊂平面ABCD ,∴PN DM⊥在正方形ABCD 中,易知DAM CDN ≌△△∴ADM DCN ∠=∠而90ADM MDC ∠+∠=︒,∴90DCN MDC ∠+∠=︒∴DM CN ⊥∵PN CN N = ,∴DM ⊥平面PNC∵PC ⊂平面PNC ,∴DM PC ⊥.【小问3详解】设DM CN O ⋂=,连接PO ,MN .∵DM⊥平面PNC .∴MPO ∠为直线PM 与平面PNC 所成的角∵2,1AD AM ==,∴DM =5DO ==∴55MO ==又MN =PM ==∴35sin 5MO MPO PM ∠===∴直线PM 与平面PNC 所成角的正弦值为35.18.某市根据居民的月用电量实行三档阶梯电价,为了深入了解该市第二档居民用户的用电情况,该市统计局用比例分配的分层随机抽样方法,从该市所辖A ,B ,C 三个区域的第二档居民用户中按2:2:1的比例分配抽取了100户后,统计其去年一年的月均用电量(单位:kW h ⋅),进行适当分组后(每组为左闭右开的区间),频率分布直方图如下图所示.(1)求m 的值;(2)若去年小明家的月均用电量为234kW h ⋅,小明估计自己家的月均用电量超出了该市第二档用户中85%的用户,请判断小明的估计是否正确?(3)通过进一步计算抽样的样本数据,得到A 区样本数据的均值为213,方差为24.2;B 区样本数据的均值为223,方差为12.3;C 区样本数据的均值为233,方差为38.5,试估计该市去年第二档居民用户月均用电量的方差.(需先推导总样本方差计算公式,再利用数据计算)【答案】(1)0.016m =(2)不正确(3)78.26【解析】【分析】(1)利用频率和为1列式即可得解;(2)求出85%分位数后判断即可;(3)利用方差公式推导总样本方差计算公式,从而得解.【小问1详解】根据频率和为1,可知()0.0090.0220.0250.028101m ++++⨯=,可得0.016m =.【小问2详解】由题意,需要确定月均用电量的85%分位数,因为()0.0280.0220.025100.75++⨯=,()0.0280.0220.0250.016100.91+++⨯=,所以85%分位数位于[)230,240内,从而85%分位数为0.850.7523010236.252340.910.75-+⨯=>-.所以小明的估计不正确.【小问3详解】由题意,A 区的样本数为1000.440⨯=,样本记为1x ,2x ,L ,40x ,平均数记为x ;B 区的样本数1000.440⨯=,样本记为1y ,2y ,L ,40y ,平均数记为y ;C 区样本数为1000.220⨯=,样本记为1z ,2z ,L ,20z ,平均数记为z .记抽取的样本均值为ω,0.42130.42230.2233221ω=⨯+⨯+⨯=.设该市第二档用户的月均用电量方差为2s ,则根据方差定义,总体样本方差为()()()40402022221111100i j k i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑()()()4040202221111100i j k i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑因为()4010ii x x =-=∑,所以()()()()404011220iii i x x x x x x ωω==--=--=∑∑,同理()()()()404011220jji i yyy y yy ωω==--=--=∑∑,()()()()202011220kki i zz z z zz ωω==--=--=∑∑,因此()()()()4040404022222111111100100i j i i i i s x x x y y y ωω====⎡⎤⎡⎤=-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑()()202022111100k i i z z z ω==⎡⎤+-+-⎢⎥⎣⎦∑∑,代入数据得()()222114024.2402132214012.340223221100100s ⎡⎤⎡⎤⎣⎦⎦=⨯+⨯-+⨯-⎣+⨯()212038.32023322178.26100⎡⎤+⨯+⨯-=⎣⎦.19.在世界杯小组赛阶段,每个小组内的四支球队进行循环比赛,共打6场,每场比赛中,胜、平、负分别积3,1,0分.每个小组积分的前两名球队出线,进入淘汰赛.若出现积分相同的情况,则需要通过净胜球数等规则决出前两名,每个小组前两名球队出线,进入淘汰赛.假定积分相同的球队,通过净胜球数等规则出线的概率相同(例如:若B ,C ,D 三支积分相同的球队同时争夺第二名,则每个球队夺得第二名的概率相同).已知某小组内的A ,B ,C ,D 四支球队实力相当,且每支球队在每场比赛中胜、平、负的概率都是13,每场比赛的结果相互独立.(1)求A 球队在小组赛的3场比赛中只积3分的概率;(2)已知在已结束的小组赛的3场比赛中,A 球队胜2场,负1场,求A 球队最终小组出线的概率.【答案】(1)427(2)7981【解析】【分析】(1)分类讨论只积3分的可能情况,结合独立事件概率乘法公式运算求解;(2)由题意,若A 球队参与的3场比赛中胜2场,负1场,根据获胜的三队通过净胜球数等规则决出前两名,分情况讨论结合独立事件概率乘法公式运算求解.【小问1详解】A 球队在小组赛的3场比赛中只积3分,有两种情况.第一种情况:A 球队在3场比赛中都是平局,其概率为111133327⨯⨯=.第二种情况:A球队在3场比赛中胜1场,负2场,其概率为11113 3339⨯⨯⨯=.故所求概率为114 27927+=.【小问2详解】不妨假设A球队参与的3场比赛的结果为A与B比赛,B胜;A与C比赛,A胜;A与D比赛,A胜.此情况下,A积6分,B积3分,C,D各积0分.在剩下的3场比赛中:若C与D比赛平局,则C,D每队最多只能加4分,此时C,D的积分都低于A的积分,A可以出线;若B与C比赛平局,后面2场比赛的结果无论如何,都有两队的积分低于A,A可以出线;若B与D比赛平局,同理可得A可以出线.故当剩下的3场比赛中有平局时,A一定可以出线.若剩下的3场比赛中没有平局,则当B,C,D各赢1场比赛时,A可以出线.当B,C,D中有一支队伍胜2场时,若C胜2场,B胜1场,A,B,C争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=;若D胜2场,B胜1场,A,B,D争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=.其他情况A均可以出线.综上,A球队最终小组出线的概率为1179 1818181⎛⎫-+=⎪⎝⎭.【点睛】关键点点睛:解题的关键在于分类讨论获胜的三队通过净胜球数等规则决出前两名,讨论要恰当划分,做到不重不漏,从而即可顺利得解.。
2024-2025学年江西省抚州市临川二中高二(上)第一次月考数学试卷(含答案)
2024-2025学年江西省抚州市临川二中高二(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若直线3x +2y−3=0和直线6x +my +1=0互相平行,则m 的值为( )A. −9B. 32C. −4D. 42.若两个非零向量a ,b 的夹角为θ,且满足|a |=2|b |,(a +3b )⊥a ,则cosθ=( )A. −23B. −13C. 13D. 233.已知直线3x−(a−2)y−2=0与直线x +ay +8=0互相垂直,则a =( )A. 1B. −3C. −1或3D. −3或14.为了得到函数y =sin (5x +π3)的图象,只要将函数y =sin5x 的图象( )A. 向左平移π15个单位长度 B. 向右平移π15个单位长度C. 向左平移π3个单位长度D. 向右平移π3个单位长度5.过点(3,−2)且与椭圆4x 2+9y 2−36=0有相同焦点的椭圆方程是( )A. x 215+y 210=1 B. x 25+y 210=1 C. x 210+y 215=1 D. x 225+y 210=16.已知圆的方程为x 2+y 2−2x =0,M(x,y)为圆上任意一点,则y−2x−1的取值范围是( )A. [− 3,3]B. [−1,1]C. (−∞,− 3]∪[3,+∞)D. [1,+∞)∪(−∞,−1]7.已知圆C :(x−3)2+(y−4)2=1和两点A(−m ,0),B(m ,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为 ( )A. 7B. 6C. 5D. 48.已知向量a ,b 满足|a |=1,|2a +b |+|b |=4,则|a +b |的取值范围是( )A. [2−3,2]B. [1,3]C. [2− 3,2+3]D. [3,2]二、多选题:本题共3小题,共18分。
天津市2023-2024学年高二上学期10月第一次月考数学试题含解析
2023-2024天津市高二年级第一学期第一次阶段性检测数学试卷(答案在最后)一、选择题:(在每小题给出的四个选项中,只有一项是符合题目要求的.本大题共9个小题,每题5分,共45分.)1.直线0x +-=的倾斜角为()A.6πB.4π C.23π D.56π【答案】D 【解析】【分析】根据直线方程求出直线斜率,再根据斜率和倾斜角间的关系即可求出倾斜角.【详解】0x +-=可化为:83y x =-+,∴直线的斜率为3-,设直线的倾斜角α,则tan 3α=-,∵[)0,πα∈,∴5π6α=.故选:D .2.3a =-是直线()1:130l ax a y +--=与直线()()2:12320l a x a y -++-=互相垂直的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据两直线互相垂直求出a 的值,从而判断结论.【详解】因为直线()1:130l ax a y +--=与直线()()2:12320l a x a y -++-=互相垂直,所以()()()11230a a a a -+-+=,解得1a =或3a =-,所以3a =-是直线()1:130l ax a y +--=与直线()()2:12320l a x a y -++-=互相垂直的充分不必要条件.故选:A .3.设x ,y ∈R ,向量(,1,1),(1,,1),(2,4,2)a x b y c ===- ,且,a c b c ⊥ ∥,则|2|a b +=()A.B. C.3D.【答案】B 【解析】【分析】由向量的关系列等式求解x ,y 的值,再运用向量的数乘及加法的坐标表示公式,结合向量的模计算得出结果.【详解】解:向量(,1,1),(1,,1),(2,4,2)a x b y c ===-,且,a c b c ⊥ ∥,∴2420124a c x y⋅=-+=⎧⎪⎨=⎪-⎩,解得12x y =⎧⎨=-⎩∴2(21,2,3)(3,0,3)a b x y +=++=,∴|2|a b +==B 正确.故选:B .4.圆2240x x y -+=与圆22430x y x +++=的公切线共有A.1条 B.2条C.3条D.4条【答案】D 【解析】【分析】把两个圆方程化成标准方程,分别求出两圆的圆心坐标及两圆的半径,比较圆心距与两圆半径和与差的关系,判断出两圆的位置关系,进而可以判断出有几条公切线.【详解】2240x x y -+=⇒222(2)2x y -+=圆心坐标为(2,0)半径为2;22430x y x +++=⇒222(2)1x y ++=圆心坐标为(2,0)-,半径为1,圆心距为4,两圆半径和为3,因为4>3,所以两圆的位置关系是外离,故两圆的公切线共有4条.故本题选D.【点睛】本题重点考查了圆与圆的位置关系的判定、公切线的条数.解决的方法就是利用圆的标准方程求出圆心坐标以及半径,比较圆心距与两圆半径和差的关系.5.已知点M 是圆22:1C x y +=上的动点,点()2,0N ,则MN 的中点P 的轨迹方程是()A.()22114x y -+=B.()22112x y -+=C.()22112x y ++=D.()22114x y ++=【答案】A 【解析】【分析】设出线段MN 中点的坐标,利用中点坐标公式求出M 的坐标,根据M 在圆上,得到轨迹方程.【详解】设线段MN 中点(,)P x y ,则(22,2)M x y -.M 在圆22:1C x y +=上运动,22(22)(2)1x y ∴-+=,即221(1)4x y -+=.故选:A .【点睛】本题考查中点的坐标公式、求轨迹方程的方法,考查学生的计算能力,属于基础题.6.如图,已知正三棱柱111ABC A B C -的棱长均为2,则异面直线1A B 与1B C所成角的余弦值是A.32B.12C.14D.0【答案】C 【解析】【分析】建立空间直角坐标系,结合空间向量的结论求解异面直线所成角的余弦值即可.【详解】以AC 的中点O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,则:()10,1,2A -,)B,)12B ,()0,1,0C ,向量)12A B =-,()12B C =-,11cos ,A B B C <> 1111A B B C A B B C ⋅=⨯=14=.本题选择C 选项.【点睛】本题主要考查异面直线所成的角的求解,空间向量的应用等知识,意在考查学生的转化能力和计算求解能力.7.圆223x y +=与圆223330x y x y m +-+-=的公共弦所在的直线与两坐标轴所围成的三角形面积为2,则m 的值为()A.3-B.1- C.3D.3或1-【答案】D 【解析】【分析】根据题意,联立两个圆的方程,可得两圆的公共弦所在的直线的方程,由直线的方程可得该直线与x ,y 轴交点的坐标,进而可得1|1||1|22m m ⨯-⨯-=,解可得m 的值,即可得答案.【详解】根据题意,圆223x y +=与圆223330x y x y m +-+-=,即2222303330x y x y x y m ⎧+-=⎨+-+-=⎩,两式相减可得:10x y m -+-=,即两圆的公共弦所在的直线的方程为10x y m -+-=,该直线与x 轴的交点为(1,0)m -,与y 轴的交点为(0,1)m -,若公共弦所在的直线和两坐标轴所围成图形的面积为2,则有1|1||1|22m m ⨯-⨯-=,变形可得:2(1)4m -=,解可得:3m =或1-;故选:D8.已知直线l :10()x ay a R +-=∈是圆22:4210C x y x y +--+=的对称轴.过点(4,)A a -作圆C 的一条切线,切点为B ,则||AB =A.2B. C.6D.【答案】C 【解析】【详解】试题分析:直线l 过圆心,所以1a =-,所以切线长6AB ==,选C.考点:切线长9.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB +的取值范围是A. B. C. D.【答案】B 【解析】【详解】试题分析:易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以222||||10PA PB AB +==,令,PA PB θθ==,则)4PA PB πθθθ+==+.因为0,0PA PB ≥≥,所以02πθ≤≤.所以sin()124πθ≤+≤PA PB ≤+≤.选B.法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.【考点定位】1、直线与圆;2、三角代换.二、填空题:(本大题共6小题,每题5分,共30分)10.在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于,A B 两点,则弦AB 的长等于______________.【答案】【解析】【分析】利用圆的弦长公式,结合点线距离公式即可得解.【详解】因为圆224x y +=的圆心为()0,0O ,半径2r =,它到直线3450x y +-=的距离1d ==,所以弦AB的长AB ==故答案为:11.已知实数x ,y 满足方程22410x y x +-+=.则yx的最大值为_____________.【解析】【分析】当直线y kx =与圆相切时,k 取得最值,利用切线的性质求出k ;【详解】解:设圆22:410C x y x +-+=,即22(2)3x y -+=.设yk x=,则当直线y kx =与圆C 相切时,直线斜率最大或最小,即k 最大或最小.如图所示:设直线y kx =与圆C 切于第一象限内的点A,则AC =2OC =,1OA ∴=,tan ACk AOC OA∴=∠==,由图象的对称性可知当y kx =与圆C相切于第四象限内时,k =∴yx.【点睛】本题主要考查直线的斜率公式,点到直线的距离公式的应用,直线和圆相切的性质,属于中档题.12.直线12:310,:2(1)10l ax y l x a y ++=+++=,若12//l l ,则a 的值为______;此时1l 与2l 的距离是______.【答案】①.3-②.12【解析】【分析】由直线平行的判定列方程求参数a ,注意验证排除重合的情况,再根据平行线距离公式求距离.【详解】由12//l l ,则(+1)=6a a ,即2+6=(+3)(2)=0a a a a --,可得3a =-或=2a ,当3a =-时,12:3+3+1=0,:22+1=0l x y l x y --,符合题设;当=2a 时,12:2+3+1=0,:2+3+1=0l x y l x y 为同一条直线,不合题设;综上,3a =-,此时1211:=0,:+=032l x y l x y ---,所以1l 与2l 的距离11|+|2312d .故答案为:3-,1213.如图,在平行六面体中,2AB =,1AD =,14AA =,90DAB ∠=︒,1160DAA BAA ∠=∠=︒,点M 为棱1CC 的中点,则线段AM 的长为______.【答案】【分析】利用向量数量积求得向量AM的模,即可求得线段AM 的长【详解】112AM AB BC CM AB AD AA =++=++则AM ==即线段AM14.已知()0,3A ,点P 在直线30x y ++=,圆C :22420x y x y +--=,则PA PC +最小值是______.【答案】【解析】【分析】求出点A 关于直线30x y ++=的对称点B 的坐标,可得PA PC +的最小值BC .【详解】因为22:420C x y x y +--=可转化为:22(2)(1)5x y -+-=,则圆心为()2,1C ,半径为r =.设A 关于直线30x y ++=的对称点B 的坐标为(),a b ,则:3302231a b b a +⎧++=⎪⎪⎨-⎪=⎪-⎩,解得63a b =-⎧⎨=-⎩,即()6,3B --,所以+=+PA PC PB PC 的最小值是==BC故答案为:15.若直线220kx y k ++-=与曲线1x =有两个不同的交点,则实数k 的取值范围是【答案】[),15,3⎛⎫-∞--⋃+∞ ⎪ ⎪⎝⎭【解析】【分析】1x +=,表示圆心为()1,1C ,半径2r =,在直线1x =及右侧的半圆,作出直线220kx y k ++-=与半圆,利用数形结合即得.【详解】方程220kx y k ++-=是恒过定点(2,2)P -,斜率为k -的直线,1x +=,即22(1)(1)4(1)x y x -+-=≥,表示圆心为()1,1C ,半径2r =,在直线1x =及右侧的半圆,半圆弧端点(1,1),(1,3),A B -在同一坐标系内作出直线220kx y k ++-=与半圆22:(1)(1)4(1C x u x -+-=≥),如图,当直线220kx y k ++-=与半圆C2=,且0k ->,解得2613k -=+,又5PB k =-,所以13k ->+或5k -≤-,所以13k <--或5k ≥.故答案为:[),15,3⎛⎫-∞--⋃+∞ ⎪ ⎪⎝⎭.三、解答题.(本大题共5小题,共75分)解答应写出文字说明,证明过程或演算步骤.16.已知a ,b ,c 分别为锐角三角形ABC 三个内角,,A B C 2sin a C =.(1)求A ;(2)若a =2b =,求c ;(3)若2cos 3B =,求()cos 2B A +的值.【答案】(1)π3(2)3(3)141518+-【解析】【分析】(1)根据题意由正弦定理以及锐角三角形可得π3A =;(2)利用余弦定理解方程可得3c =;(3)根据二倍角以及两角和的余弦公式即可计算出()1cos 218B A ++=-.【小问1详解】由于π02C <<,所以sin 0C ≠,2sin a C =2sin sin C A C =,所以sin 2A =,且三角形ABC 为锐角三角形,即π0,2A ⎛⎫∈ ⎪⎝⎭所以π3A =.【小问2详解】在ABC 中,由余弦定理知2222471cos 242b c a c A bc c +-+-===,即2230c c --=,解得3c =或1c =-(舍),故3c =.【小问3详解】由2cos 3B =,可得sin 3B =,所以22451cos 2cos sin 999B B B =-=-=-,2sin 22sin cos 2339B B B ==⨯⨯=()114531415cos 2cos 2cos sin 2sin 929218B A B A B A ++=-=-⨯-⨯=-,即()1cos 218B A ++=-17.如图,在三棱台111ABC A B C -中,90BAC ∠=︒,4AB AC ==,111112A A A B AC ===,侧棱1A A ⊥平面ABC ,点D 是棱1CC 的中点.(1)证明:1BB ⊥平面1AB C ;(2)求点1B 到平面ABD 的距离;(3)求点C 到直线1B D 的距离.【答案】(1)见解析(2)5(3)7【解析】【分析】(1)建立空间直角坐标系,利用向量法证明线线垂直;(2)利用向量法求由点到面的距离公式求解;(3)利用向量中点到直线的距离公式求解.【小问1详解】以点A 为原点,分别以AB ,AC ,1AA 所在的直线为x ,y ,z 轴,建立如图所示空间直角坐标系,则()0,0,0A ,()4,0,0B ,()0,4,0C ,()10,0,2A ,()12,0,2B ,()10,2,2C ,()0,3,1D ,()12,0,2BB =- ,()12,0,2AB =u u u u r ,11440BB AB ⋅=-+= ,10BB AC ⋅= ,∴11BB AB ⊥,1BB AC ⊥,又∴1AB AC A = ,1AB ,AC ⊂平面1AB C ,∴1BB ⊥平面1AB C【小问2详解】设平面ABD 的法向量(),,m x y z = ,取()4,0,0AB = ,()0,3,1AD = 则00m AB m AD ⎧⋅=⎪⎨⋅=⎪⎩ ,即4030x y z =⎧⎨+=⎩,故03x z y =⎧⎨=-⎩令1y =,解得0x =,3z =-故平面ABD 的一个法向量()0,1,3m =- ,点1B 到平面ABD的距离15m d AB m⋅=== .【小问3详解】()12,3,1B D =-- ,()0,1,1CD =- ,∴11CD B D B D⋅== ∴点C 到直线1B D距离7d ===.18.求满足下列条件的直线方程.(1)过点()2,4M ,且在两坐标轴上的截距相等的直线l 的方程;(2)已知()3,3A -,()1,1B ,两直线1:240l x y -+=,2:4350l x y ++=交点为P ,求过点P 且与,A B 距离相等的直线方程;(3)经过点()2,1M ,并且与圆2268240x y x y +--+=相切的直线方程.【答案】(1)20x y -=或60x y +-=;(2)20x y +=或30x y -+=;(3)4350x y --=或2x =..【解析】【分析】(1)根据题意,分直线l 过原点和直线l 不过原点时,两种情况讨论,结合直线的截距式方程,即可求解;(2)联立方程组求得()2,1P -,分直线l 过点P 且与AB 平行和直线l 过点P 和AB 中点N ,求得直线l 的斜率,结合点斜式方程,即可求解;(3)根据题意,求得圆心()3,4O ,半径1r =,分切线斜率存在和切线斜率不存在,两种情况讨论,求得切线的方程,即可得到答案.【详解】解:(1)当直线l 过原点时,可得所求直线为2y x =,即20x y -=,满足题意;当直线l 不过原点时,设直线l 的方程为1x y a a +=,其中0a ≠,代入()2,4M ,可得241a a+=,解得6a =,所以所求直线l 的方程为166x y +=,即60x y +-=,综上可得,直线l 的方程为20x y -=或60x y +-=.(2)由题意,联立方程组2404350x y x y -+=⎧⎨++=⎩,解得21x y =-⎧⎨=⎩,所以()2,1P -,当直线l 过点P 且与AB 平行,可得2142AB k ==--,即直线l 的斜率12l k =-,所以直线l 的方程()1122y x -=-+,即20x y +=;当直线l 过点P 和AB 中点N ,因为()3,3A -,()1,1B ,可得()1,2N -,则111PN k ==,所以直线l 的方程12y x -=+,即30x y -+=,综上,满足条件直线方程为20x y +=或30x y -+=.(3)将圆的方程,化为()()22341x y -+-=,可得圆心()3,4O ,半径1r =,将点()2,1M 代入,可得()()2223141-+->,所以点M 在圆外,①当切线斜率存在时,设切线方程为()12y k x -=-,即210kx y k --+=,1==,解得43k =,所以所求直线的方程为481033x y --+=,即4350x y --=;②当切线斜率不存在时,此时过点()2,1M 的直线方程为2x =,此时满足圆心到直线2x =的距离等于圆的半径,即直线2x =与圆相切,符合题意,综上可得,所求切线为4350x y --=或2x =.19.如图所示,直角梯形ABCD 中,AD BC ∕∕,AD AB ⊥,22AB BC AD ===,四边形EDCF 为矩形,CF =EDCF ⊥平面ABCD .(1)求证:DF ∕∕平面ABE ;(2)求平面ABE 与平面EFB 夹角的余弦值;(3)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 所成角的正弦值为4,若存在,求出线段BP 的长,若不存在,请说明理由.【答案】(1)见解析(2)53131(3)存在,2BP =【解析】【分析】(1)取BC 中点G ,连接DG ,证明DA 、DG 、DE 两两垂直,建立空间直角坐标系,先证明直线向量与平面法向量数量积为零,进而证明直线与平面平行;(2)利用向量法即可求出二面角的余弦值;(3)假设存在,设(),01DP DF λλ=≤≤,利用向量法根据线面角求出λ,从而可得出答案.【小问1详解】证明:取BC 中点G ,连接DG ,因为112BG BC AD ===,又因为//AD BC ,所以四边形ABGD 为平行四边形,所以DG AB ∕∕,又因为AB AD ⊥,所以DA DG ⊥,因为四边形EDCF 为矩形,所以ED CD ⊥,又因为平面EDCF ⊥平面ABCD ,平面EDCF ⋂平面ABCD CD =,所以ED ⊥平面ABCD ,又,DA DG ∈平面ABCD ,所以ED DA ⊥,ED DG ⊥,于是DA 、DG 、DE 两两垂直,建立如图所示的空间直角坐标系,则()()((1,0,0,1,2,0,,1,2,A B E F -,则(0AB = ,2,0),(1AE =- ,0,(1DF =- ,2,设平面ABE 的法向量为(m x =,y ,)z,200AB m y AE m x ⎧⋅==⎪⎨⋅=-+=⎪⎩ ,令1z =,m = ,0,1),因为0DF m ⋅== ,所以DF m ⊥ ,又因为DF ⊂平面ABE ,所以DF ∕∕平面ABE ;【小问2详解】解:(1BE =- ,2-,(2BF =- ,0,设平面BEF 的法向量为(n a =,b ,)c,2020BE n a b BF n a ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩,可取n =,4),cos ,31m n m n m n ⋅===⋅ ,所以平面ABE 与平面EFB 所成锐二面角的余弦值为53131;【小问3详解】假设存在,设(),01DP DF λλ=≤≤,则(),2DP DF λλλ==- ,()1,2,0BD =--所以()1,2BP BD DF λλ=+=--- ,因为直线BP 与平面ABE所成角的正弦值为4,所以cos ,4BP m BP m BP m ⋅=== ,解得12λ=或14,当12λ=时,33,1,22BP ⎛=-- ⎝⎭,2BP =,当14λ=时,533,,424BP ⎛=-- ⎝⎭,2BP =,所以存在点P ,使得直线BP 与平面ABE所成角的正弦值为4,2BP =.20.已知圆M与直线340x -+=相切于点(,圆心M 在x 轴上.(1)求圆M 的标准方程;(2)若直线()()():21174l m x m y m m +++=+∈R 与圆M 交于P ,Q 两点,求弦PQ 的最短长度;(3)过点M 且不与x 轴重合的直线与圆M 相交于A ,B 两点,O 为坐标原点,直线OA ,OB 分别与直线=8x 相交于C ,D 两点,记OAB △,OCD 的面积为1S ,2S ,求12S S 的最大值.【答案】(1)22(4)16x y -+=(2)(3)12S S 的最大值为14【解析】【分析】(1)设圆的方程为222()x a y r -+=,再由直线340x +=与圆相切于点,可得关于a 与r 的方程组,求得a 与r 的值,则圆M 的方程可求;(2)直线(21)(1)74()m x m y m m R +++=+∈恒过定点(3,1),且该点在圆内,当直线截圆的弦以定点(3,1)为中点时,弦长最短;(3)由题意知,π2AOB ∠=,设直线OA 的方程为=y kx ,与圆的方程联立求得A 的坐标,同理求得B 的坐标,进一步求出C 与D 的坐标,写出12S S ,利用基本不等式求最值.【小问1详解】解:由题可知,设圆的方程为222()x a y r -+=,由直线340x +=与圆相切于点,得22(1)+7=11a r a⎧-⎪⎨-⎪-⎩,解得=4a ,4r =,∴圆的方程为22(4)16x y -+=;【小问2详解】解:由直线:(21)(1)74(R)l m x m y m m +++=+∈有:(27)(4)0m x y x y +-++-=;得2+7=0+4=0x y x y -⎧⎨-⎩,即=3=1x y ⎧⎨⎩即直线l 恒过定点(3,1);又22(34)1216-+=<,即点(3,1)在圆C 内部;圆C 的圆心为(4,0)C ;设直线l 恒过定点(3,1)P ;当直线l 与直线CP 垂直时,圆心到直线的距离最长,此时弦长最短;此时||CP ===【小问3详解】解:由题意知,π2AOB ∠=,设直线OA 的斜率为(0)k k ≠,则直线OA 的方程为=y kx ,由22=+8=0y kx x y x ⎧⎨-⎩,得22(1)80k x x +-=,解得=0=0x y ⎧⎨⎩或228=1+8=1+x k k y k ⎧⎪⎪⎨⎪⎪⎩,则点A 的坐标为2288(,)11k k k ++,又直线OB 的斜率为1k-,同理可得:点B 的坐标为22288(,)11k k k k-++由题可知:8(8,8),(8,C k D k-,∴12||||||||.||||||||S OA OB OA OB S OD OC OC OD ==,又 228||11||81A C x OA k OC x k+===+,同理22||||1OB k OD k =+,∴2142222221112141222S k S k k k k k k==++++⋅+ .当且仅当||1k =时等号成立.∴12S S 的最大值为14.【点睛】本题考查圆的方程的求法,考查含参直线过定点问题及直线与圆位置关系的应用,训练了利用基本不等式求最值,考查运算求解能力,是中档题.。
高二数学第一次月考模拟(基础卷)(学生版)
2024-2025学年高二上学期第一次月考模拟(基础卷)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.(23-24高二上·重庆·月考)已知A 1,2,-3 ,则点A 关于xOy 平面的对称点的坐标是()A.-1,2,-3B.-1,-2,3C.-1,2,3D.1,2,32.(23-24高二上·河南·月考)若直线经过A 1,0 ,B 2,3 两点,则直线AB 的倾斜角为()A.30°B.45°C.60°D.135°3.(23-24高二上·广东湛江·月考)已知a =1,2,-y ,b =x ,1,2 ,且a +2b ∥2a -b ,则()A.x =13,y =1 B.x =2,y =14C.x =12,y =-4 D.x =1,y =-14.(23-24高二上·福建福州·期中)两条平行直线2x -y +3=0和ax -3y +6=0间的距离为d ,则a ,d 的值分别为()A.a =6,d =63B.a =-6,d =63C.a =-6,d =55D.a =6,d =555.(23-24高二上·黑龙江哈尔滨·期中)如图,空间四边形OABC 中,OA =a ,OB =b ,OC =c,点M在OA 上,且OM =23OA ,点N 为BC 中点,则MN等于()A.12a +12b -12c B.-23a +12b +12cC.-23a +23b -12cD.23a +23b -12c6.(23-24高二上·山东·月考)过点P 0,-1 作直线l ,若直线l 与连接A -2,1 ,B 23,1 两点的线段总有公共点,则直线l 的倾斜角范围为()A.π4,π6B.π6,3π4C.0,π6 ∪3π4,π D.π6,π2 ∪3π4,π 7.(23-24高二上·天津河西·月考)以下各组向量中的三个向量,不能构成空间基底的是()A.a =1,0,0 ,b =0,2,0 ,c =12,-2,0B.a =1,0,0 ,b =0,1,0 ,c=0,0,2C.a =1,0,1 ,b =0,1,1 ,c=2,1,2D.a =1,1,1 ,b =0,1,0 ,c=1,0,28.(23-24高二上·江苏南京·月考)点P (-2,-1)到直线l :(1+3λ)x +(1+λ)y -2-4λ=0(λ∈R )的距离最大时,其最大值以及此时的直线方程分别为()A.13;3x +2y -5=0B.11;3x +2y -5=0C.13;2x -3y +1=0D.11;2x -3y +1=0二、多选选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.(23-24高二上·浙江嘉兴·月考)已知AB =(-2,1,4),AC =(4,2,0),AP =(1,-2,1),AQ=(0,4,4),则下列说法正确的是()A.AP是平面ABC 的一个法向量B.A ,B ,C ,Q 四点共面C.PQ ∥BCD.BC =5310.(23-24高二上·河北保定·月考)已知直线l 1:x +a -1 y +1=0,直线l 2:ax +2y +2=0,则下列结论正确的是()A.l 1在x 轴上的截距为-1B.l 2过定点0,-1C.若l 1⎳l 2,则a =-1或a =2D.若l 1⊥l 2,则a =2311.(24-25高二上·湖南邵阳·开学考试)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点P 是正方体的上底面A 1B 1C 1D 1内(不含边界)的动点,点Q 是棱BC 的中点,则以下命题正确的是()A.三棱锥Q -PCD 的体积是定值B.存在点P ,使得PQ 与AA 1所成的角为60°C.直线PQ 与平面A 1ADD 1所成角的正弦值的取值范围为0,22D.若PD 1=PQ ,则P 的轨迹的长度为354三、填空题:本题共3小题,每小题5分,共15分.12.(23-24高二上·山东德州·月考)已知a =-2,1,3 ,b =-1,2,1 ,则a与b 夹角的余弦值为.13.(23-24高二下·江苏扬州·月考)在空间直角坐标系中,点M 0,0,1 为平面ABC 外一点,其中A 1,0,0 、B 0,2,1 ,若平面ABC 的一个法向量为1,y 0,-1 ,则点M 到平面ABC 的距离为.14.(23-24高二上·四川达州·月考)直线l 1:x +m +1 y -2m -2=0与直线l 2:m +1 x -y -2m -2=0相交于点P ,对任意实数m ,直线l 1,l 2分别恒过定点A ,B ,则P A +PB 的最大值为四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(23-24高二上·广东湛江·月考)已知点P -2,0,2 ,Q -1,1,2 ,R -3,0,4 ,设a =PQ ,b =PR ,c=QR .(1)若实数k 使ka +b 与c垂直,求k 值.(2)求a 在b上的投影向量.16.(23-24高二上·江苏南京·月考)已知△ABC 的三个顶点为A 4,0 ,B 0,2 ,C 2,6 .(1)求AC 边上的高BD 所在直线的方程;(2)求BC 边上的中线AE 所在直线的方程.17.(23-24高二上·安徽安庆·月考)已知平行六面体ABCD -A 1B 1C 1D 1,底面是正方形,AD =AB =2,AA 1=1,∠A 1AB =∠DAA 1=60°,A 1C 1 =3NC 1 ,D 1B =2MB ,设AB =a ,AD =b ,AA 1 =c.(1)试用a ,b ,c表示AN ;(2)求MN 的长度.18.(23-24高二上·湖北武汉·月考)已知直线l 过点P 4,1 且与x 轴、y 轴的正半轴分别交于A 、B 两点,O 为坐标原点,(1)求三角形OAB 面积取最小值时直线l 的方程;(2)求OA +OB 取最小值时直线l 的方程.19.(24-25高二上·安徽阜阳·开学考试)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,∠ADC=∠BCD=90°,BC=1,CD=3,PD=2,∠PDA=60°,∠P AD=30°,且平面P AD⊥平面ABCD,在平面ABCD内过B作BO⊥AD,交AD于O,连PO.(1)求证:PO⊥平面ABCD;(2)求二面角A-PB-C的正弦值;(3)在线段P A上存在一点M,使直线BM与平面P AD所成的角的正弦值为277,求PM的长.。
重庆市2024_2025学年高二数学上学期第一次月考试题
重庆市2024-2025学年高二数学上学期第一次月考试题留意事项:1.答题前,考生务必将自己的姓名、准考证号、班级、学校在答题卡上填写清晰.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试卷上作答无效.3.考试结束后,请将答题卡交回,试卷自行保存.满分150分,考试用时120分钟.一、单选题:本题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.点P 是椭圆22125x y +=上的动点,则P 到椭圆两个焦点的距离之和为( )A.22325272.一条直线过((1,23,3两点,则该直线的倾斜角为( )A.6π B.3πC.23πD.56π3.圆22(1)(1)8x y -++=与圆22(1)(1)2x y ++-=的公切线共有( ) A.1条 B.2条 C.3条 D.4条4.点F 是椭圆221169x y +=的一个焦点,点P 在椭圆上,线段PF 的中点为N ,且1ON =(O 为坐标原点),则线段PF 的长为( ) A.2 B.4 C.5 D.65.阿基米德在他的著作《关于圆锥体和球体》中计算了一个椭圆的面积.当我们垂直地缩小一个圆时,我们得到一个椭圆,椭圆的面积等于圆周率π与椭圆的长半轴长与短半轴长的乘积,已知椭圆2222:1(0)x y C a b a b+=>>的面积为8π,两个焦点分别为12,F F ,点P 为椭圆C 的上顶点,12120F PF ∠=,则椭圆C 的短轴长为( ) A.2 B.4 C.22426.圆C 与直线1x y -=相切于点()2,1B ,且圆心的横坐标为1,则圆C 被y 轴截得的弦长为( ) 2 B.2 C.1 D.27.已知12,F F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,,P Q 是椭圆上两点,线段PQ 经过点1F ,且223,4PQ PF PQ PF ⊥=,则椭圆C 的离心率为( ) 2125538.平行四边形ABCD 内接于椭圆22221(0)x y a b a b +=>>,椭圆的离心率为32,直线AB 的斜率为1,则直线AD 的斜率为( ) A.14-B.12- C.31- 二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.过点()0,1且与圆22(1)(2)1x y -++=相切的直线的方程是( )A.0x =B.0y =C.4330x y +-=D.3440x y +-=10.下列关于曲线22:1(0,0)C mx ny m n +=>>的说法正确的是( ) A.当m n =时,曲线C 表示圆;B.当m n >时,曲线C 表示焦点在x 轴的椭圆;C.点()0,0是曲线C 的对称中心;D.曲线C 表示椭圆时,其焦距为2m n mn-11.下列结论正确的是( )A.若()()()2,3,3,2,1,A B C m --三点共线,则m 的值为0;B.已知两点()()3,4,3,2A B -,过点()1,0P 的直线l 与线段AB 有公共点,则直线l 的斜率k 的取值范围为11k -≤≤;C.圆224x y +=上有且仅有3个点到直线:20l x y -+=的距离都等于1; D.与圆22(2)2x y -+=相切,且在x 轴、y 轴上的截距相等的直线有三条.12.过椭圆22:184x y C +=外一点()00,P x y 作椭圆C 的两条切线,切点分别为,A B ,假如(0)PA PB k k m m ⋅=<,那么点P 的轨迹可能是( )A.直线B.圆C.椭圆D.线段三、填空题:本题共4小题,每小题5分,共20分.13.已知直线l 过圆22(2)(3)4x y -++=的圆心,且与直线240x y +-=平行,则l 的方程是__________.14.过点()2,1M 的直线l 与椭圆221168x y +=相交于,A B 两点,且M 恰为,A B 中点,则直线l 的方程为__________. 15.实数,x y 满意22y x =-2yx +的最大值为__________. 16.现有两点()(),0,,0(0)A m B m m ->,若圆22:68240C x y x y +--+=上存在点P ,使得0AP BP ⋅=,则m 的取值范围为__________.四、解答题:本题共6小题,第17小题10分,其余小题每题12分,共70分.解答题应写出文字说明、证明过程或演算步骤.17.(本题10分)已知直线()123:10,:20(0,0),:l a x y a l ax by a b l y x -+-=+-=>>=,直线1l 与3l 相交于点P ;(1)求点P 的坐标;(2)若2l 经过点P 且与两坐标轴围成的三角形的面积为2,求实数,a b 的值. 18.(本题12分)已知圆C 的方程为:()()22221220x a x y a a R --+-+=∈(1)求实数a 的取值范围.(2)当圆C 半径最大时,点Q 在圆C 上,点P 在直线40x y --=上,求PQ 的最大值. 19.(本题12分)在正方体1111ABCD A B C D -中,直线1AC 与平面1A BD 交于点E .(1)求证:直线1AC ⊥平面1A BD(2)若1AE AC λ=,求λ的值.20.(本题12分)已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为()1,0F c -和()2,0F c ,3直线x c =被椭圆截得的弦长等于2. (1)求椭圆C 的标准方程;(2)若直线:220l x y +-=与椭圆相交于,A B 两点,O 为坐标原点,求OAB 的面积.21.(本题12分)已知椭圆22221(0)x y a b a b+=>>的一个焦点为)6,0,点()2,1Q 在椭圆上.(1)求椭圆的方程;(2)若,A B 是椭圆上异于点Q 的两动点,当AQB ∠的角平分线垂直于椭圆长轴时,试问直线AB 的斜率是否为定值?若是,恳求出该定值;若不是,请说明理由.22.(本题12分)已知点()()1122,,,M x y N x y 在椭圆222:1(1)x C y a a+=>上,直线,OM ON 的斜率之积是13-,且22212x x a +=. (1)求椭圆C 的方程;(2)若过点()0,2Q 的直线与椭圆C 交于点,A B ,且(1)QB t QA t =>,求t 的取值范围.高2024届高二(上)数学月考参考答案一、单项选择题1 2 3 45 6 78 CCBD BDCA1、解析:由椭圆的定义知522=a2、解析:32321332πα=⇒-=--=k3、解析:圆心距212122r r d r r +<=<-,故两圆相交,公切线2条4、解析:连接1PF ,则622211=-=⇒==PF a PF ON PF5、解析:由题知⎪⎩⎪⎨⎧+===22238c b a b c ab ππ解得2=b ,故短轴长为42=b6、解析:圆心所在直线方程为03=-+y x ,故圆心为2),2,1(=r ,所以弦长为27、解析:不妨设k PF 4||2=,那么k QF k PQ 5||,3||2==,则由a PQ QF PF 4||||||22=++得3ak =,即a a a PF a PF 32342||,34||12=-==,由勾股定理222)2(3432c a a =⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛,解得35=e8、解析:由于B,D 关于原点对称,由22ab k k AD AB -=⋅可得二、多项选择题910 1112AC ACDACD BC9、解析:当直线斜率不存在时,0=x 满意条件;当直线斜率存在时,设直线方程1+=kx y ,由0334:3411|3|2=-+⇒-=⇒=++⇒=y x l k k k r d10、解析:B :nm n m 11<⇒>,故焦点在y 轴上 11、解析:对于A:由0=⇒=m k k AC AB 故正确;对于B :),1[]1,(+∞--∞∈ k ,所以B 错误;对于C :圆心到直线的距离1=d ,故正确;对于D :直线过原点有两条,斜率为1-有两条,但有两条直线重合,故正确12、解析:设切线方程为n kx y +=带入椭圆方程有:04800824)12(22222=--⇒=∆⇒=-+++k n n knx x k 由于00kx y n -=,带入上式得:m x y k k y k y x k x =--=⇒=-+--84042)8(2020212000220,整理有(*)84)(2020m y x m -=+-,故当1-=m 时,方程表示圆,故选项B 正确;当10-≠<m m 且时,(*)式化为1848422=-+--m y mm x ,m m m --≠-84)84(且均大于0,故选项C 正确。
高二上学期数学第一次月考试题
高二上学期数学第一次月考试题高二上学期数学第一次月考试题一、选择题(共30题,每题2分,共60分)1. 设函数f(x) = 2x^2 + 3x - 1,那么f(-1)的值为()A. -2B. 0C. 2D. 42. 若函数y = x^2 - 4ax + 4a^2 - 1的图象与x轴相切,则a的值为()A. 0B. 1C. 2D. 43. 已知函数y = ax^2 + bx + c的图象经过点(1, 1)和(2, 4),则a, b, c 的值分别为()A. 1, 1, -1B. 1, 2, -1C. 1, -1, 1D. 1, 1, 14. 已知函数y = ax^2 + bx + c的图象与x轴相切,且切点的横坐标为2,纵坐标为0,那么a, b, c的值分别为()A. 1, 2, -2B. 2, -4, 4C. -1, 4, -4D. -2, 4, -45. 在△ABC中,已知∠C = 90°,AC = 5,AB = 12,那么BC的值为()A. 5B. 13C. 17D. 256. 已知∠A = 60°,BC = 3,AC = 4,那么AB的值为()A. 3B. 4C. 5D. 67. 已知∠A = 30°,∠B = 60°,那么∠C的值为()A. 30°B. 60°C. 90°D. 120°8. 在△ABC中,∠A = 40°,∠B = 70°,那么∠C的值为()A. 50°B. 70°C. 80°D. 90°9. 在△ABC中,∠A = 45°,∠B = 60°,那么∠C的值为()A. 45°B. 60°C. 75°D. 90°10. 在△ABC中,∠A = 30°,∠B = 60°,AD ⊥ BC,那么∠ADC的值为()A. 45°B. 60°C. 75°D. 90°11. 已知△ABC中,∠A = 30°,∠B = 60°,AD ⊥ BC,那么AD与BC的比值为()A. 1:√3B. 1:2C. √3:2D. 2:√312. 线段AB的中点为M,线段AC的中点为N,若AM = 4,AN = 3,那么BC 的值为()A. 2B. 3C. 4D. 613. 在△ABC中,∠A = 30°,∠B = 60°,D为BC上的点,且AD ⊥ BC,那么BD:DC的值为()A. 1:2B. 1:√3C. 2:1D. √3:114. 已知△ABC中,∠A = 30°,∠B = 60°,AD ⊥ BC,那么AD:DB:DC的值为()A. 1:√3:2B. 1:2:√3C. 1:√3:1D. 1:1:115. 若点A(x, y)到点B(3, 2)的距离为√10,且点A在直线x - y = 1上,则点A的坐标为()A. (2, 1)B. (1, 2)C. (1, 3)D. (2, 2)二、填空题(共5小题,每题4分,共20分)16. 若a + b = 3,ab = 2,那么a^2 + b^2的值为________。
贵州省高二上学期第一次月考数学试题(解析版)
高二上学期第一次月考数学试题一、单选题1.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则( ) ()U A B ⋃=ðA .{−2,3} B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得:,则. {}1,0,1,2A B ⋃=-(){}U 2,3A B =- ð故选:A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.2.复数等于31(i )i -A .8 B .-8C .8iD .-8i【答案】D【分析】利用复数的除法及乘方运算即得.【详解】因为.331(i )(i i)8i i -=+=-故选:D.3.在中,已知,则角为( ) ABC A 1,6AC BC B π===C A .B .C .或D .或2π4π2π6π6π56π【答案】C【分析】直接利用正弦定理即可得出答案.【详解】解:在中,已知,ABC A 1,6AC BC B π===因为, sin sin AC BCB A=所以sin sin BC BA AC⋅=所以或, 3A π=23π所以或.2C π=6π故选:C.4.若,,,则 0.52a =πlog 3b =22πlog sin 5c =A . B .C .D .a b c >>b a c >>c a b >>b c a >>【答案】A【详解】因为,,,因此选A 0.521a =>π0log 31b <=<22πlog sin 05c =<5.在平行六面体中,若,则( )1111ABCD A B C D -11BD xAB y AD z AA =++(),,x y z =A . B . ()1,1,1()1,1,1-C . D .()1,1,1-()1.1.1-【答案】D【分析】利用向量的加法公式,对向量进行分解,进而求出,,的值.1BDx y z 【详解】解:,又因,, 1111BD BB B D =+ 11BB AA = 11B D BD AD AB ==- ,∴111BD AA AD AB xAB y AD z AA =+-=++,,,1x ∴=-1y =1z =故选:.D6.设有直线m 、n 和平面、.下列四个命题中,正确的是 αβA .若m ∥,n ∥,则m ∥nααB .若m ,n ,m ∥,n ∥,则∥ ⊂α⊂αββαβC .若,m ,则m α⊥β⊂α⊥βD .若,m ,m ,则m ∥ α⊥β⊥β⊄αα【答案】D【详解】当两条直线同时与一个平面平行时,两条直线之间的关系不能确定,故A 不正确, B 选项再加上两条直线相交的条件,可以判断面与面平行,故B 不正确, C 选项再加上m 垂直于两个平面的交线,得到线面垂直,故C 不正确, D 选项中由α⊥β,m ⊥β,m ,可得m ∥α,故是正确命题, ⊄α故选D7.某校共有学生2000名,各年级男、女生人数表1,已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. 现用分层抽样的方法在全校抽取64名学生,则应在初三年级抽取的学生人数为初一年级 初二年级 初三年级女生 373 x y 男生 377 370zA .24B .18C .16D .12【答案】C【详解】试题分析:由题意可知,因此三年级的总人数为,所以应0.19,3802000xx =∴=500y z +=在三年级抽取的学生人数为人,故选C. 50064162000⨯=【解析】分层抽样.8.定义域为的奇函数的图象关于直线对称,当时,,则R ()f x 1x =[]0,1x ∈()31x f x =-( )(2000)(2001)(2002)(2021)f f f f ++++= A .-2 B .0 C .2 D .4【答案】C【分析】根据函数的奇偶性和对称性可以确定函数的周期,利用周期性进行求解即可. 【详解】因为函数的图象关于直线对称,所以, ()f x 1x =(1)(1)f x f x -=+因此有,可得,因为函数是奇函数, ()(2)f x f x =-()(2)f x f x -=+()f x 所以可得,即有,从而, ()(2)f x f x -=+(2)(4)f x f x -+=+()(4)f x f x =+因此该函数的周期为,当时,,所以,4[]0,1x ∈()31x f x =-(0)0,(1)2f f ==的图象关于直线对称,,,()f x 1x =(2)(0)0f f ==(3)(1)(1)2f f f =-=-=- (2000)(2001)(2002)(2021)(0)(1)(2)(1)5[(0)(1)(2)(3)](0)(1)50022,f f f f f f f f f f f f f f ++++=++++=+++++=⨯++= 故选:C二、多选题9.下列函数中,既为奇函数又在定义域内单调递增的是( ) A . B .1010x x y -=-()22log 1y x =+C . D .3y x =|sin |y x =【答案】AC【解析】分别利用奇偶性的定义判断每个选项中函数的奇偶性,对于符合奇函数的选项再接着判断其单调性即可.【详解】四个函数的定义域为,定义域关于原点对称x R ∈A :记,所以,所以函数是奇函数,又因()1010-=-x x f x ()1010()x x f x f x --=-=-()1010-=-x x f x 为是增函数,是减函数,所以是增函数,符合题意;B :记10x y =10x y -=1010x x y -=-,则,所以函数是偶函数,不符合题()22()log 1=+g x x ()22()log 1()⎡⎤-=-+=⎣⎦g x x g x ()22()log 1=+g x x 意;C :记,则,所以函数是奇函数,根据幂函数的性3()h x x =33)()()(=-=--=-h x h x x x 3()h x x =质,函数是增函数,符合题意;D :记,则,所以3()h x x =()|sin |=t x x ()|sin()||sin |()-=-==t x x x t x 函数为偶函数. ()|sin |=t x x 故选:AC10.分别抛掷两枚质地均匀的硬币,设事件“第一枚正面朝上”,事件“第二枚正面朝上”,A =B =下列结论中正确的是( ) A .该试验样本空间共有个样本点 B . 4()14P AB =C .与为互斥事件D .与为相互独立事件A B A B 【答案】ABD【分析】由题可得样本空间及事件样本点,结合互斥事件,独立事件的概念及古典概型概率公,A B 式逐项分析即得.【详解】对于A :试验的样本空间为:正,正,正,反,反,正,反,反,共{(Ω=)()()()}4个样本点,故A 正确;对于B :由题可知正,正,正,反,正,反,反,反, {(A =)()}{(B =)()}显然事件,事件都含有“正,反这一结果,故,故B 正确; A B ()()14P AB =对于C :事件,事件能同时发生,因此事件不互斥,故C 不正确; A B ,A B 对于D :,,,所以,故D 正确.()2142P A ==()2142P B ==()14P AB =()()()P AB P A P B =故选:ABD.11.函数(其中)的图象如图所示,则下列说法正确的是()()sin f x A x ωϕ=+π0,0,2A ωϕ>><( )A .是函数的周期 2π()f xB . π3ϕ=C .为了得到的图象,只需将的图象向左平移个单位长度()cos2g x x =()f x 6πD .为了得到的图象,只需将的图象向左平移个单位长度 ()cos2g x x =()f x π12【答案】ABD 【分析】根据可得最小正周期,再求得,代入分析可得,可判断7ππ4123T =-2ω=7π12x =π3ϕ=AB ,再结合三角函数图象变化的性质判断CD 即可. 【详解】对A ,由图可知,,最小正周期T 满足,所以, 1,A =7πππ41234T =-=T π=所以是函数的周期,故正确; 2π()f x A 对B ,,即,将代入可得,得2π2πω==()()sin 2f x x ϕ=+7π12x =7π3π22π,122k k ϕ⨯+=+∈Z ,又,所以,故B 正确; π2π3k ϕ=+π2ϕ<π3ϕ=对C ,由上述结论可知,为了得到,应将函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭()cos2sin 22g x x x π⎛⎫==+ ⎪⎝⎭()f x向左平移个单位长度.故C 错误,D 正确.12π故选:ABD.12.如图,已知正方体的棱长为2,,,分别为,,的中点,1111ABCD A B C D -E F G AB AD 11B C 以下说法正确的是( )A .三棱锥的体积为2 C EFG -B .平面1A C ⊥EFGC .异面直线EF 与AGD .过点,,作正方体的截面,所得截面的面积是EFG 【答案】BD【分析】对A ,直接由锥体体积公式求解判断;对BC ,结合建系法直接判断;对D ,补全截面直接判断.【详解】对A ,,故A 错误;111321332C EFG ECF V S CC -=⋅⋅=⋅⋅=△对B ,以为轴,为轴,为轴,建立空间直角坐标系,DA x DC y 1DD z ,,则,,()()()()()10,2,0,2,0,2,1,0,0,2,1,0,1,2,2C A E F G ()2,0,0A ()12,2,2A C =-- ()1,1,0EF =,,,则平面,B 正确;()0,2,2EG = 10A C EF ⋅= 10A C EG ⋅=1A C ⊥EFG对C ,,,,故C 错误; ()1,1,0EF = ()1,2,2AG =-cos ,EF 对D ,作中点,的中点,的中点,连接,则正六边形11C D N 1BB M 1DD T ,,,,GN GM FM TN ET,故D 正确.EFMGNT 26S ==故选:BD三、填空题13.已知向量,,,若与垂直,则_________.)a =()0,1b =(c k = 2a b + ck =【答案】3-【分析】利用向量坐标垂直数量积为0求参数. k 【详解】解:由题意得:因为与垂直,所以,即2a b + c()20a b c +⋅= 20a c b c ⋅+⋅=,解得. 0+=3k =-故答案为:3-14.已知函数,则____________. ()22,0,0x x f x x x ⎧<=⎨≥⎩142log f f ⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭【答案】/ 120.5【分析】根据分段函数解析式计算可得.【详解】解:因为,212241122222log log log -==-=-又,所以,()22,0,0x x f x x x ⎧<=⎨≥⎩12141222log f f -⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭所以. 1411222log f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭故答案为:1215.如图,已知球O 的面上四点,DA ⊥平面ABC .AB ⊥BC ,DA =AB =BCA B C D 、、、O 的体积等于________.【答案】92π【详解】由题意,三角形DAC ,三角形DBC 都是直角三角形,且有公共斜边, 所以DC 边的中点就是球心(到D 、A 、C 、B 四点距离相等), 所以球的半径就是线段DC 长度的一半,即, 1322R DC ===所以球的体积.34932V R ππ==故答案为:.92π16.如图,直三棱柱中,,点分别是棱111ABC A B C -12,1,120AA AB AC BAC ∠====E F 、1AB CC 、的中点,一只蚂蚁从点出发,绕过三棱柱的一条棱爬到点处,则这只蚂蚁爬行的E 111ABC A B C -F 最短路程是__________.【分析】要使爬行的最短路程,只要将底面和侧面展在同一个平面,连接,求出ABC 11BCC B EF 的长度即可.EF 【详解】若将底面沿展开使其与侧面在同一个平面,连接,因为ABC AC 11ACC A EF 120BAC ∠= ,所以与棱不相交,所以不合题意,EF若将底面沿展开和侧面展在同一个平面,连接,则与棱相交,符合题ABC BC 11BCC B EF EF BC 意,此时为这只蚂蚁爬行的最短路线,如图所示,EF过作的平行线,过作的平行线,交于点,交于,E 1BBF 11B CG EG BCH 因为,点分别是棱的中点,12,1,120AA AB AC BAC ∠====E F 、1AB CC 、所以,,1,12BE CF HG ===30ABC ∠=︒BC =所以1,4EH BH ==所以, 15144FG EG ===+=所以, EF ===四、解答题17.如图,在棱长为2的正方体中,为线段的中点,为线段的中1111ABCD A B C D -E 1DD F 1BB 点.(1)求直线与平面所成角的余弦值.CE 1AB E(2)求直线到平面的距离. 1FC 1AB E 【答案】(2) 23【分析】(1)建立空间直角坐标系,利用向量法求得直线与平面所成角的正弦值,再由CE 1AB E 平方关系求余弦值.(2)利用向量法证明平面,求得点到平面的距离即可. 1//FC 1AB E F1AB E 【详解】(1)建立如图所示空间直角坐标系,则,,,,,,,,(0,0,0)D ()2,0,0A (0,2,0)C ()12,2,2B 1(0,0,2)D ()0,0,1E (2,2,0)B ()10,2,2C ,(2,2,1)F 所以,,()2,0,1AE =- ()10,2,2AB = (0,2,1)CE =-设平面的法向量为,1AB E (),,n x y z =,令,可得, 120220n AE x z n AB y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩ 1x =2,2y z =-=故可取.()1,2,2n =-设直线与平面所成角,CE 1AB E θ所以,可得sin θcos θ===直线与平面CE 1AB E (2)由(1)知,,平面的法向量为,()12,0,1FC =- 1(0,0,1)B F =-1AB E ()1,2,2n =-因为,所以,1210(2)120n FC ⋅=-⨯+⨯-+⨯= 1n FC ⊥ 又平面,所以平面,1FC ⊄1AB E 1//FC 1AB E 设到平面的距离为,F 1AB E d 则, 23d =由直线与平面平行的性质知,直线到平面的距离为.1FC 1AB E 2318.在中,内角的对边分别为,且.ABC A , , AB C , , a b c sin cos b A B =(1)求角的大小;B (2)①,②,③,角.3b =sin 2sin C A =c =a C 【答案】(1);(2)答案见解析.3π【分析】(1)由正弦定理化边为角,可求得;B (2)选①②,由正弦定理化角为边,再由余弦定理可得,由勾股定理逆定理得角;选①③,aC 由正弦定理求得,得角,在直角三角形中求得;选②③,由正弦定理直接求得,再由sin C C a a 勾股定理逆定理得角.C 【详解】解:(1)因为在中,内角,,的对边分别为,,,ABC A A B C a b c 所以,()0AB C π∈,,,由正弦定理,可将化为,,sin cos b A B =sin sin cos B A AB =sin 0A ≠则,即;sin B B =tan B =3B π=(2)若选①②,由可得,sin 2sin C A =2c a =因为,由余弦定理可得,3b =2222cos b a cac B =+-则,解得22952a a =-a =由得. 222c a b =+2C π=若选①③,由正弦定理可得,,则,所以,则; sin sin C B cb =sin 1C =2C π=6A π=因此 sin ac A ==若选②③,由可得,因为得.sin 2sin C A =2c a =c =a =222c a b =+2C π=19.近年来,我国居民体重“超标”成规模增长趋势,其对人群的心血管安全构成威胁,国际上常用身体质量指数衡量人体胖瘦程度是否健康,中国成人的数值标准是:()()22kg BMI m =体重身高BMI 为偏瘦;为正常;为偏胖;为肥胖.下面是BMI 18.5<18.5BMI 23.9≤<24BMI 27.9≤<BMI 28≥社区医院为了解居民体重现状,随机抽取了100个居民体检数据,将其值分成以下五组:BMI ,,,,,得到相应的频率分布直方图.[)12,16[)16,20[)20,24[)24,28[]28,32(1)根据频率分布直方图,求的值,并估计该社区居民身体质量指数的样本数据中位数;a BMI (2)现从样本中利用分层抽样的方法从,的两组中抽取6个人,再从这6个人中随机[)16,20[)24,28抽取两人,求抽取到两人的值不在同一组的概率.BMI 【答案】(1); 0.04a =23(2)815【分析】(1)根据频率分步直方图中所有矩形面积和为1计算的值,根据中位数左边的频率和a 为求解中位数即可;0.5(2)根据分层抽样的定义可求得在,分别抽取人和人,再利用列举法即可求得[)16,20[)24,2824概率.【详解】(1)根据频率分步直方图可知组距为,所有矩形面积和为,41所以,解得;()0.010.10.080.0241a ++++⨯=0.04a =因为,两组频率之和为,而的频率为, [)12,16[)16,20()0.010.0440.2+⨯=[)20,240.140.4⨯=故中位数在之间,设为,[)20,24x 则,解得,()0.2200.10.5x +-⨯=23x =即该社区居民身体质量指数的样本数据中位数为.BMI 23(2)由频率分步直方图可知的频数为,的频数为[)16,201000.04416⨯⨯=[)24,281000.08432⨯⨯=,所以两组人数比值为,1:2按照分层抽样抽取人,则在,分别抽取人和人,6[)16,20[)24,2824记这组两个样本编号为,这组编号为,[)16,201,2[)24,283,4,5,6故从人随机抽取人所有可能样本的构成样本空间:62()()()()()()()()(){1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,Ω=()()()()()()3,4,3,5,3,6,4,5,4,6,5,6}设事件“从6个人中随机抽取两人,抽取到两人的值不在同一组”A =BMI 则,()()()()()()()(){}1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6A =故,即从这6个人中随机抽取两人,抽取到两人的值不在同一组的概率为. ()815P A =BMI 81520.已知函数.()2cos cos f x x x x =(1)求函数的最大值;()f x (2)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平()y f x =移个单位,得到函数的图象,求函数的单调递减区间. π6()y g x =()g x 【答案】(1)32(2), ππ2π,2π22k k ⎛⎫-+ ⎪⎝⎭Z k ∈【分析】(1)根据降幂公式,结合余弦函数的最值进行求解即可;(2)根据三角函数图象的变换性质,结合正弦函数的单调性进行求解即可.【详解】(1) ()21cos 211cos cos 2cos 22222x f x x x x x x x +===+, π1cos(2)32x =++∴当时,取得最大值; πcos 213x ⎛⎫+= ⎪⎝⎭()f x 32(2)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),()y f x =得到,再把得到的图象向左平移个单位, π1cos()32y x =++π6得到的图象, ππ11cos(sin 6322y x x =+++=-+所以,当单调递增时,单调递减, ()1sin 2g x x =-+sin y x =()g x 故函数的单调递减区间为,. ()g x ππ2π,2π22k k ⎛⎫-+ ⎪⎝⎭Z k ∈21.如图,在四面体中,平面,,,.M 是的A BCD -AD ⊥BCD BC CD ⊥2AD =BD =AD 中点,P 是的中点,点Q 在线段上,且.BM AC 3AQ QC =(1)证明:平面;//PQ BCD (2)若二面角的大小为,求的大小.C BMD --60︒BDC ∠【答案】(1)证明见解析;(2).60︒【分析】(1)取中点,连接,先证明面面平行再证明线面平行;MD G ,PG QG (2)根据三垂直线作法先找到二面角的平面角,然后根据线段长度关系求解出C BM D --BDC ∠的大小.【详解】(1)取中点,连接,如下图所示:MD G ,PG QG因为为中点,为中点,所以,M AD G MD 3AG GD =又因为,所以,所以, 3AQ QC =AQ AG QC GD=//QG CD 又因为为中点,为中点,所以,P BM G MD //PG BD 又,所以平面平面,,PG QG G BD CD D == //GPQ BCD 又平面,所以平面;PQ ⊂GPQ //PQ BCD(2)设,过作交于点,过作交于点,连接,如BDC θ∠=C CH BD ⊥BD H H HI BM ⊥BM I IC 下图所示:因为平面,所以,又,所以平面,AD ⊥BCD AD CH ⊥AD BD D = CH ⊥ABD 因为平面,所以,又因为,,BM ⊂ABD CH BM ⊥HI BM ⊥HI CH H = 所以平面,所以,所以二面角的平面角为, BM ⊥HIC BM IC ⊥C BM D --60HIC ∠=︒因为,所以,BC CD BD CH ⨯=⨯cos CH θθ=又因为,所以,所以, 90BCH CBD θ∠=︒-∠=sin sin BH BCH BCθ∠==2BH θ=又因为,所以, 1sin 3HI MD MBD BH BM ∠====2HI θ=又因为为直角三角形且,HIC A 60HIC ∠=︒所以,所以, 3cos tan 60sin HC HI θθ︒====tan θ=60θ=︒所以的大小为.BDC ∠60︒【点睛】本题考查空间中线面平行的证明和几何法求解二面角有关的问题,对学生的空间位置关系的理解能力与证明能力要求较高,难度一般.证明线面平行除了可以使用判定定理之外,还可以通过面面平行来证明.22.已知函数,的对称轴为且.()2f x x bx c =-+()f x 1x =()01f =-(1)求、的值;b c (2)当时,求的取值范围;[]0,3x ∈()f x (3)若不等式成立,求实数的取值范围.()()2log 2f k f >k 【答案】(1),2b =1c =-(2)[]22-,(3)或01k <<4k >【分析】(1)利用二次函数的对称性可求得的值,由可求得的值; b ()01f =-c (2)利用二次函数的基本性质可求得的取值范围;()f x (3)由可得出关于的不等式,解之即可.()()2log 2f k f >k 【详解】(1)解:二次函数的对称轴方程为,可得,且. ()f x 12b x ==2b =()01f c ==-因此,,.2b =1c =-(2)解:由(1)可知,当时,. ()221f x x x =--[]0,3x ∈()()[]2122,2f x x =--∈-(3)解:由,可得, ()()2log 21f k f >=-()222log 2log 0k k ->可得或,解得或. 2log 0k <2log 2k >01k <<4k >。
高二第一次月考数学试卷
1、一个数的三分之一加上5等于16,这个数是多少?A. 36B. 33C. 45D. 30(答案:A)2、如果一个矩形的长度是8厘米,宽度是3厘米,则它的周长是多少?A. 30厘米B. 22厘米C. 24厘米D. 20厘米(答案:B)3、在一个等边三角形中,每个角的度数是多少?A. 45度B. 60度C. 75度D. 90度(答案:B)4、某班有40名学生,男生占三分之二,男生有多少人?A. 20人B. 25人C. 30人D. 28人(答案:C)5、一辆车以每小时60公里的速度行驶,3小时能行驶多远?A. 180公里B. 150公里C. 200公里D. 180米(答案:A)6、一个立方体的边长是4厘米,则它的体积是多少立方厘米?A. 16B. 32C. 48D. 64(答案:D)7、在一个排列中,数字1到5的排列组合中,有多少种不同的排列方式?A. 60B. 120C. 100D. 80(答案:B)8、如果一个圆的半径是7厘米,那么它的面积大约是多少平方厘米?(取π为3.14)A. 150.86B. 140.00C. 120.56D. 120.88(答案:A)9、一个角的补角是30度,这个角是多少度?A. 60度B. 90度C. 120度D. 150度(答案:A)10、在一次班级测验中,平均分数为75分,如果全部学生人数是20人,那么总分数是多少?A. 1500B. 1600C. 1700D. 1800(答案:A)。
广东省部分学校2024—2025学年高二上学期第一次月考联考数学试卷
2024—2025学年高二上学期第一次月考联考高二数学试卷本试卷共5页 满分150分,考试用时120分钟注意事项:1. 答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置.2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3. 非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4. 考试结束后,请将本试卷和答题卡一并上交.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.已知()()2,1,3,1,1,1a b =−=− ,若()a a b λ⊥− ,则实数λ的值为( )A .2−B .143−C .73D .22.P 是被长为1的正方体1111ABCD A B C D −的底面1111D C B A 上一点,则1PA PC ⋅ 的取值范围是( )A .11,4 −−B .1,02 −C .1,04 −D .11,42 −−3.已知向量()4,3,2a =− ,()2,1,1b = ,则a 在向量b 上的投影向量为( ) A .333,,22 B .333,,244 C .333,,422 D .()4,2,24.在棱长为2的正方体1111ABCD A B C D −中,E ,F 分别为棱1AA ,1BB 的中点,G 为棱11A B 上的一点,且()102A G λλ=<<,则点G 到平面1D EF 的距离为( )AB C D 5.已知四棱锥P ABCD −,底面ABCD 为平行四边形,,M N 分别为棱,BC PD 上的点,13CM CB =,PN ND =,设AB a =,AD b =,AP c = ,则向量MN 用{},,a b c 为基底表示为( )A .1132a b c ++B .1162a b c −++ C .1132a b c −+ D .1162a b c −−+ 6.在四面体OABC 中,空间的一点M 满足1146OM OA OB OC λ=++ .若,,MA MB MC 共面,则λ=( ) A .12 B .13 C .512 D .7127.已知向量()()1,21,0,2,,a t t b t t =−−= ,则b a − 的最小值为( ) AB C D 8.“长太息掩涕兮,哀民生之多艰”,端阳初夏,粽叶飘香,端午是一大中华传统节日.小玮同学在当天包了一个具有艺术感的肉粽作纪念,将粽子整体视为一个三棱锥,肉馅可近似看作它的内切球(与其四个面均相切的球,图中作为球O ).如图:已知粽子三棱锥P ABC −中,PAPB AB AC BC ====,H 、I 、J 分别为所在棱中点,D 、E 分别为所在棱靠近P 端的三等分点,小玮同学切开后发现,沿平面CDE 或平面HIJ 切开后,截面中均恰好看不见肉馅.则肉馅与整个粽子体积的比为( ).A B C D 二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分)9.如图,在棱长为2的正方体1111ABCD A B C D −中,E 为1BB 的中点,F 为11A D 的中点,如图所示建立空间直角坐标系,则下列说法正确的是( )A .13DB =B .向量AE 与1AC C .平面AEF 的一个法向量是()4,1,2−D .点D 到平面AEF 10.在正三棱柱111ABC A B C −中,1AB AA =,点P 满足][1([0,1,0,])1BP BC BB λµλµ=+∈∈ ,则下列说法正确的是( )A .当1λ=时,点P 在棱1BB 上B .当1µ=时,点P 到平面ABC 的距离为定值C .当12λ=时,点P 在以11,BC B C 的中点为端点的线段上 D .当11,2λµ==时,1A B ⊥平面1AB P 11.布达佩斯的伊帕姆维泽蒂博物馆收藏的达・芬奇方砖在正六边形上画了具有视觉效果的正方体图案,如图1,把三片这样的达・芬奇方砖拼成图2的组合,这个组合再转换成图3所示的几何体.若图3中每个正方体的棱长为1,则( )A .122CG AB AA =+B .直线CQ 与平面1111DC B A 所成角的正弦值为23C .点1C 到直线CQD .异面直线CQ 与BD 三、填空题(本大题共3小题,每小题5分,共15分)12.正三棱柱111ABC A B C −的侧棱长为2,底面边长为1,M 是BC 的中点.在直线1CC 上求一点N ,当CN 的长为 时,使1⊥MN AB .13.四棱锥P ABCD −中,PD ⊥底面ABCD ,底面ABCD 是正方形,且1PD =,3AB =,G 是ABC 的重心,则PG 与平面PAD 所成角θ的正弦值为 .14.坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮那,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若25m AB =,10m BC =,且等腰梯形所在平面、等腰三角形所在平面与平面ABCD 的夹角的正切值均为,则该五面体的所有棱长之和为 .四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题13分)如图,在长方体1111ABCD A B C D −中,11,2AD AA AB ===,点E 在棱AB 上移动.(1)当点E 在棱AB 的中点时,求平面1D EC 与平面1DCD 所成的夹角的余弦值;(2)当AE 为何值时,直线1A D 与平面1D EC 所成角的正弦值最小,并求出最小值.16.(本小题15分)如图所示,直三棱柱11ABC A B C −中,11,92,0,,CA CB BCA AA M N °==∠==分别是111,A B A A 的中点.(1)求BN 的长;(2)求11cos ,BA CB 的值.(3)求证:BN ⊥平面1C MN .17.(本小题15分)如图,在四棱维P ABCD −中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求直线PB 与平面PCD 所成角的正切值;(2)在PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AM AP的值;若不存在,说明理由. 18.(本小题17分) 如图1,在边长为4的菱形ABCD 中,60DAB ∠=°,点M ,N 分别是边BC ,CD 的中点,1AC BD O ∩=,AC MN G ∩=.沿MN 将CMN 翻折到PMN 的位置,连接PA ,PB ,PD ,得到如图2 所示的五棱锥P ABMND −.(1)在翻折过程中是否总有平面PBD ⊥平面PAG ?证明你的结论;(2)若平面PMN ⊥平面MNDB ,线段PA 上是否存在一点Q ,使得平面QDN 与平面PMN 所成角的余弦值为Q 的位置;若不存在,请说明理由. 19.(本小题17分)如图,四棱锥P ABCD −中,四边形ABCD 是菱形,PA ⊥平面,60ABCD ABC ∠= ,11,,2PA AB E F ==分别是线段BD 和PC 上的动点,且()01BE PF BD PC λλ==<≤.(1)求证://EF 平面PAB ;(2)求直线DF 与平面PBC 所成角的正弦值的最大值;(3)若直线AE 与线段BC 交于M 点,AH PM ⊥于点H ,求线段CH 长的最小值.。
高二数学第一次月考试卷
高二数学第一次月考试卷一、选择题(每题5分,共60分)1.设α,β为两个不同的平面,l,m为两条不同的直线,且l⊂α,m⊂β,有如下的两个命题:①若 α∥β,则l∥m;②若l⊥m,则 α⊥β.那么().A.①是真命题,②是假命题B.①是假命题,②是真命题C.①②都是真命题D.①②都是假命题2.如图,ABCD-A1B1C1D1为正方体,下面结论错误..的是().A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1D1D.异面直线AD与CB1角为60°3.关于直线m,n与平面 α,β,有下列四个命题:①m∥α,n∥β 且 α∥β,则m∥n;②m⊥α,n⊥β 且 α⊥β,则m⊥n;③m⊥α,n∥β 且 α∥β,则m⊥n;④m∥α,n⊥β 且 α⊥β,则m∥n.其中真命题的序号是().A.①②B.③④C.①④D.②③4.给出下列四个命题:①垂直于同一直线的两条直线互相平行②垂直于同一平面的两个平面互相平行③若直线l1,l2与同一平面所成的角相等,则l1,l2互相平行④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线其中假.命题的个数是().A.1 B.2 C.3 D.45.下列命题中正确的个数是().①若直线l上有无数个点不在平面 α 内,则l∥α②若直线l与平面 α 平行,则l与平面 α 内的任意一条直线都平行③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行④若直线l与平面 α 平行,则l与平面 α 内的任意一条直线都没有公共点A.0个B.1个C.2个D.3个6.两直线l1与l2异面,过l1作平面与l2平行,这样的平面().A.不存在B.有唯一的一个C.有无数个D.只有两个7.下列说法正确的是()A.若直线21,ll的斜率相等,则直线21,ll一定平行;B.若直线21,ll平行,则直线21,ll斜率一定相等;C.若直线21,ll中,一个斜率不存在,另一斜率存在,则直线21,ll一定相交;D.若直线21,ll斜率都不存在,则直线21,ll一定平行。
2023-2024学年福建省宁德市福安一中高二(上)第一次月考数学试卷+答案解析(附后)
2023-2024一、单选题:本题共9小题,每小题5分,共45分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.数列,,,...的一个通项公式为()A. B. C. D.2.已知等差数列的前n项和为,若,则()A.36B.72C.91D.1823.数列满足,则等于()A. B. C.2 D.4.已知等差数列,,公差,则数列的前100项和()A. B. C. D.5.《张丘建算经》是我国古代的一部数学著作,现传本有92问,比较突出的成就有最大公约数与最小公倍数的计算、各种等差数列问题的解决、某些不定方程问题求解等.书中记载如下问题:今有女子善织,日增等尺,初日织五尺,三十日共织390尺,问日增几何?那么此女子每日织布增长()A.尺B.尺C.尺D.尺6.等比数列的各项均为实数,其前n项和为,已知,则的值是()A.28B.32C.35D.417.设数列满足,,数列的前n项和为,则()A. B. C. D.8.已知数列满足,则数列的最大项为()A.第4项B.第5项C.第6项D.第7项9.在等比数列中,,若对正整数n都有,那么公比q的取值范围是()A. B. C. D.g<1二、多选题:本题共3小题,共15分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
10.已知数列,…,则下列说法正确的是()A.此数列的通项公式是B.是它的第23项C.此数列的通项公式是D.是它的第25项11.已知等差数列中,,公差,则使其前n项和取得最大值的自然数n是()A.4B.5C.6D.712.已知数列的前n项和为,下列说法正确的是()A.若点在函数为常数的图象上,则为等差数列B.若为等差数列,则为等比数列C.若为等差数列,,,则当时,最大D.若,则为等比数列三、填空题:本题共4小题,每小题5分,共20分。
13.1和3的等比中项为.14.已知数列的前n项和,则数列的通项公式是.15.在数列中,若,,,则该数列的通项.16.已知数列满足,在任意相邻两项与之间插入个2,使它们和原数列的项构成一个新的数列记为数列的前n项和,则的值为.四、解答题:本题共6小题,共70分。
高二上学期数学第一次月考试卷与答案解析
高二上学期数学第一次月考卷(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版2019选择性必修第一册第1.1~2.1章(直线与圆+椭圆)。
5.难度系数:0.68。
第一部分(选择题 共58分)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.点()1,1到直线3420x y +−=的距离是( ) A .1 B .2 CD .32.已知方程2212x y m m +=−表示椭圆,则实数m 的取值范围是( )A .(0,2)B .(0,1)C .(2,)+∞D .(0,1)(1,2)3.圆()2249x y −+=和圆()2234x y +−=的公切线有( ) A .1条 B .2条 C .3条 D .4条4.已知实数x ,y 满足方程y yx的最大值为( ) A .0B .1CD .25.某同学数星星的时候,突然想到了哈雷彗星:信息技术老师给他找了一幅哈雷彗星图片和轨道图片,地理老师告诉他哈雷彗星近日点距离太阳约0.6A.U.,将于2023年12月9日出现的远日点距离太阳约35A.U.(A.U.是天文单位,天文学中计量天体之间距离的一种单位,其数值取地球和太阳之间的平均距离,1A.U.149597870=千米).物理老师告诉他该彗星的周期约76年,质量约1510kg.化学老师说:彗核的成分以水冰为主,占70%,它只是个很松散的大雪堆而已,数学老师问:哈雷彗星的轨迹可以近似看成椭圆,那么该椭圆的离心率约是( )试卷第2页,共4页A .0.03B .0.97C .0.83D .0.776.已知直线l :10x my m −+−=,则下列说法不正确的是( ) A .直线l 恒过点()1,1B .若直线l 与y 轴的夹角为30°,则m =或m =C .直线l 的斜率可以等于0D .若直线l 在两坐标轴上的截距相等,则1m =或1m =−7.若圆222610x y x y +−−+=上恰有三点到直线y kx =的距离为2,则k 的值为( )A .12B .34C .43D .28.已知椭圆2214x y +=的左、右焦点分别为1F ,2F ,点P 在椭圆上,当12F PF 的面积为1时,12PF PF ⋅ 等于( ) A .0B .1C .2D .12二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知两条直线1l ,2l 的方程分别为34120x y ++=与8110ax y +−=,下列结论正确的是( ) A .若12//l l ,则6a = B .若12//l l ,则两条平行直线之间的距离为74C .若12l l ⊥,则323a =D .若6a ≠,则直线1l ,2l 一定相交10.过点()2,1P 作圆O :221x y +=的切线l ,则切线l 的方程为( )A .1y =B .2x =C .3450x y −−=D .4350x y −−=11.已知椭圆2221(03)9x y b b +=<<的左、右焦点分别为12,F F ,过点1F 的直线l 交椭圆于,A B 两点,若AB 的最小值为4,则( ) AB .22AF BF +的最大值为8C D .椭圆上不存在点P ,使得1290F PF ∠=第二部分(非选择题 共92分)三、填空题:本题共3小题,每小题5分,共15分。
吉林省2024-2025学年高二上学期第一次月考数学试卷含答案
2024—2025学年上学期高二年级数学学科阶段验收考试试卷(答案在最后)考试时间:90分钟满分:120分命题人:一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若随机试验的样本空间为{}Ω0,1,2=,则下列说法不正确的是()A.事件{}1,2P =是随机事件B.事件{}0,1,2Q =是必然事件C.事件{}1,2M =--是不可能事件D.事件{}1,0-是随机事件【答案】D 【解析】【分析】根据随机事件,必然事件,不可能事件的概念判断即可.【详解】随机试验的样本空间为{}Ω0,1,2=,则事件{}1,2P =是随机事件,故A 正确;事件{}0,1,2Q =是必然事件,故B 正确;事件{}1,2M =--是不可能事件,故C 正确;事件{}1,0-是不可能事件,故D 错误.故选:D2.已知点()1,0A ,(1,B -,则直线AB 的倾斜角为()A.5π6B.2π3C.π3 D.π6【答案】B 【解析】【分析】由两点坐标求出斜率,由倾斜角与斜率的关系即可求【详解】0tan 11AB k α-===--,()0,πα∈,故直线AB 的倾斜角2π3α=.故选:B3.投壶是从先秦延续至清末的汉民族传统礼仪和宴饮游戏,在春秋战国时期较为盛行.如图为一幅唐朝的投壶图,甲、乙、丙是唐朝的三位投壶游戏参与者,假设甲、乙、丙每次投壶时,投中的概率均为0.6且投壶结果互不影响.若甲、乙、丙各投壶1次,则这3人中至少有2人投中的概率为()A.0.648B.0.432C.0.36D.0.312【答案】A 【解析】【分析】由独立事件概率乘法公式可得.【详解】记甲、乙、丙投中分别即为事件123,,A A A ,由题知()()()()()()1231230.6,0.4P A P A P A P A P A P A ======,则3人中至少有2人投中的概率为:()()()()123123123123P P A A A P A A A P A A A P A A A =+++320.630.60.40.648=+⨯⨯=.故选:A.4.设,A B 是一个随机试验中的两个事件,且()()()131,,+252P A P B P A B ===,则()P AB =()A.13B.15C.25D.110【答案】D 【解析】【分析】先利用和事件的概率公式求出()P AB ,然后利用()()()P AB P A P AB =-求解即可.【详解】因为1()2P A =,3()5P B =,所以()251,()2P A P B ==,又()()()()()122512P A B P A P B P AB P AB +=+-=+-=,所以()25P AB =,所以()()()1102512P P P A AB A B ==-=-.故选:D.5.若()2,2,1A ,()0,0,1B ,()2,0,0C ,则点A 到直线BC 的距离为()A.5B.5C.5D.5【答案】A 【解析】【分析】由题意得()2,2,0BA = ,()2,0,1BC =-,再根据点线距离的向量公式即可求解.【详解】()2,2,0BA = ,()2,0,1BC =- ,则BA 在BC上的投影向量的模为BA BC BC⋅= 则点A 到直线BC5=.故选:A.6.某乒乓球队在长春训练基地进行封闭式集训,甲、乙两位队员进行对抗赛,每局依次轮流....发球,连续赢2个球者获胜,通过分析甲、乙过去对抗赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为14,不同球的结果互不影响,已知某局甲先发球.则该局打4个球甲赢的概率为()A.13B.16C.112 D.524【答案】C 【解析】【分析】由于连胜两局者赢,则可写出四局的结果,计算即可.【详解】由于连胜两局者赢,甲先发球可分为:该局:第一个球甲赢、第二个球乙赢、第三个球甲赢、第四个球甲赢,则概率为22133231441⨯⨯⨯=;故选:C.7.据史书记载,古代的算筹是由一根根同样长短和粗细的小棍制成,如图所示,据《孙子算经》记载,算筹记数法则是:凡算之法,先识其位,一纵十横,百立千僵,千十相望,万百相当.即在算筹计数法中,表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推.例如⊥‖表示62,=T 表示26,现有6根算筹,据此表示方式任意表示两位数(算筹不剩余且个位不为0),则这个两位数不小于50的概率为()A.13B.12C.23D.35【答案】B 【解析】【分析】根据6根算筹,分为五类情况:51,42,33,24,15+++++,逐一分类求解满足要求的两位数,即可求解概率.【详解】根据题意可知:一共6根算筹,十位和个位上可用的算筹可以分为51,42,33,24,15+++++一共五类情况;第一类:51+,即十位用5根算筹,个位用1根算筹,那十位可能是5或者9,个位为1,则两位数为51或者91;第二类:42+,即十位用4根算筹,个位用2根算筹,那十位可能是4或者8,个位可能为2或者6,故两位数可能42,46,82,86;第三类:33+,即十位用3根算筹,个位用3根算筹,那么十位可能是3或者7,个位可能为3或者7,故两位数可能是33,37,73,77;第四类:24+,即十位用2根算筹,个位用4根算筹,那么十位为2或6,个位可能为4或者8,则该两位数为24或者28或者64或者68,第五类:15+,即十位用1根算筹,个位用5根算筹,那十位是1,个位为5或者9,则两位数为15或者19;综上可知:用6根算筹组成的满足题意的所有的两位数有:15,19,24,28,33,37,42,46,51,64,68,73,77,82,86,91共计16个,则不小于50的有:51,64,68,73,77,82,86,91共计8个,故概率为81=162,故选:B.8.正三棱柱111ABC A B C -中,12,3,AB AA O ==为BC 的中点,M 为棱11B C 上的动点,N 为棱AM上的动点,且MN MOMO MA=,则线段MN 长度的取值范围为()A.4⎡⎫⎢⎣⎭B.,27⎢⎣⎦C.34747⎢⎣⎦D.【答案】B 【解析】【分析】根据正三棱柱建立空间直角坐标系,设动点坐标,结合线线关系求线段MN 的表达式,利用函数求最值即可.【详解】因为正三棱柱11ABC A B C -中,O 为BC 的中点,取11B C 中点Q ,连接OQ ,如图,以O 为原点,,,OC OA OQ 为,,x y z轴建立空间直角坐标系,则()()((110,0,0,,1,0,,1,0,O A B C -,因为M 是棱11B C上一动点,设(M a ,且[1,1]a ∈-,所以(()0OM OA a ⋅=⋅=,则OA OM ⊥,因为ON AM ⊥,且MN MOMO MA=所以在直角三角形OMA 中可得:~OMN AMO 即222MO MN MA===,于是令tt =∈,2233tt t t-==-,t ∈,又符合函数3=-y t t 为增增符合,所以在t ∈上为增函数,所以当t =min 32t t ⎛⎫-== ⎪⎝⎭,即线段MN 长度的最小值为62,当t =时,max 37t t ⎛⎫-== ⎪⎝⎭,即线段MN长度的最大值为7,故选:B.【点睛】关键点睛:1.找到~OMN AMO ,再利用函数单调性求出最值.2.建系,设出动点(M a ,利用空间向量法求出ON AM ⊥,再结合线线关系求线段MN 的表达式,利用函数求最值即可.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列命题中正确的是()A.若表示两个空间向量的有向线段的终点不同,则这两个向量可能相等;B.在所有棱长都相等的直平行六面体1111ABCD A B C D -中,BD ⊥平面11ACC A ;C.对于空间三个非零向量,,a b c,一定有()()a b c a b c ⋅⋅=⋅⋅r r r r r r 成立;D.在棱长为2的正方体1111ABCD A B C D -中,点,M N 分别是棱11A D ,AB 的中点,则异面直线MD 与NC 所成角的余弦值为25.【答案】ABD 【解析】【分析】由相等向量的概念即可判断选项A ,利用线面垂直的判定定理证明即可判断选项B ,由数量积的性质即可判断选项C ,建立空间直角坐标系利用向量的坐标即可计算异面直线MD 与NC 所成角的余弦值判断选项D.【详解】若表示两个空间向量的有向线段的终点不同,而当两向量方向和长度相等时,这两个向量相等;故A 正确;在所有棱长都相等的直平行六面体1111ABCD A B C D -中,即直棱柱1111ABCD A B C D -中底面为菱形,因为BD AC ⊥,1AA ⊥平面ABCD ,BD ⊂平面ABCD ,所以1AA BD ⊥,又1AA AC A = ,所以BD ⊥平面11ACC A ;故B 正确;对于空间三个非零向量,,a b c ,有()a b c c λ⋅⋅= ,()a b c a μ⋅⋅=,所以不一定有()()a b c a b c ⋅⋅=⋅⋅成立,故C错误;建立如图所示的空间直角坐标系,则()0,0,0D ,()1,0,2M ,()2,1,0N ,()0,2,0C ,所以()1,0,2DM = ,()2,1,0NC =-,所以2cos ,5DM NC ==-,所以异面直线MD 与NC 所成角的余弦值为25,故D 正确.故选:ABD.10.连续抛掷一枚质地均匀的骰子两次,用数字x 表示第一次抛掷骰子的点数,数字y 表示第二次抛掷骰子的点数,用(),x y 表示一次试验的结果.记事件A =“7x y +=”,事件B =“3x ≤”,事件C =“()21N xy k k *=-∈”,则()A.()14P C =B.A 与B 相互独立C.A 与C 为对立事件D.B 与C 相互独立【答案】AB 【解析】【分析】用列举法列出所有可能结果,再结合互斥事件、对立事件、相互独立事件及古典概型的概率公式计算可得.【详解】依题意依次抛掷两枚质地均匀的骰子,基本事件总数为6636⨯=个;其中事件A =“7x y +=”包含的样本点有:()1,6,()2,5,()3,4,()4,3,()5,2,()6,1共6个;事件C =“()*21Nxy k k =-∈”,包含的样本点有:()1,1,()3,3,()5,5,()1,3,()1,5,()3,1,()3,5,()5,1,()5,3共9个,事件B =“3x ≤”,包含的样本点有:()1,1,()1,2,()1,3,()1,4,()1,5,()1,6,()2,1,()2,2,()2,3,()2,4,()2,5,()2,6,()3,1,()3,2,()3,3,()3,4,()3,5,()3,6共18个,对于A ,()91364P C ==,故A 正确;对于B ,事件AB 包含的样本点有()1,6,()2,5,()3,4共3个,所以()()()6118131,,3663623612P A P B P AB ======,所以()()()P A P B P AB =,所以A 与B 相互独立,故B 正确;对于C ,A C U 包含的样本点个数满足691536+=<,所以A 与C 不为对立事件,故C 错误;对于D ,事件BC 包含的样本点有:()1,1,()1,3,()1,5,()3,1,()3,3,()3,5,共6个,而()14P C =,()12P B =,()61366P BC ==,从而()()()1816P P P BC B C ≠==,所以B 与C 不相互独立,故D 错误.故选:AB.11.在棱长为1的正方体1111ABCD A B C D -中,P 为棱1BB 上一点,且12B P PB =,Q 为正方形11BB C C 内一动点(含边界),则下列说法中正确的是()A.若1D Q ∥平面1A PD ,则动点Q 的轨迹是一条长为3的线段B.存在点Q ,使得1D Q ⊥平面1A PD C.三棱锥1Q A PD -的最大体积为518D.若12D Q =,且1D Q 与平面1A PD 所成的角为θ,则sin θ【答案】ACD 【解析】【分析】在111,BC CC 取点,E F ,使得1112,2C E B E C F CF ==,证得平面//DEF 平面1A PD ,进而得到1//D Q 平面1A PD ,可判定A 正确;以1D 为原点,建立空间直角坐标系,求得平面1A PD 的一个法向量(3,2,3)m =-,根据1D Q m λ= ,得出矛盾,可判定B 不正确;利用向量的数量积的运算及三角形的面积公式,求得16A PD S =,在求得点Q 到平面1A PD的最大距离max d =,结合体积公式,可判定C 正确;根据题意,求得点点Q 的轨迹,结合线面角的公式,求得11(,1,)22Q 时,取得最大值,进而可判定D 正确.【详解】对于A 中,如图所示,分别在111,BC CC 取点,E F ,使得1112,2C E B E C F CF ==,可得1//EF B C ,因为11//A D B C ,所以1//EF A D ,因为1A D ⊂平面1A PD ,EF ⊄平面1A PD ,所以//EF 平面1A PD ,又由11//D F A P ,且1A P ⊂平面1A PD ,1D F ⊄平面1A PD ,所以1//D F 平面1A PD ,又因为1EF D F F ⋂=,且1,EF D F ⊂平面DEF ,所以平面//DEF 平面1A PD ,且平面DEF ⋂平面11BCC B EF =,若1//D Q 平面1A PD ,则动点Q 的轨迹为线段EF ,且223EF =,所以A 正确;对于B 中,以1D 为原点,以11111,,D A D C D D 所在的直线分别为,,x y z 轴,建立空间直角坐标系,如图所示,可得12(1,0,0),(0,0,1),(1,1,)3A D P ,则112(1,0,1),(0,1,)3A D A P =-= ,设(,1,)(01,01)Q x z x z ≤≤≤≤,可得1(,1,)D Q x z =,设(,,)m a b c = 是平面1A PD 的一个法向量,则110203m A D a c m A P b c ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取3c =,可得3,2z b ==-,所以(3,2,3)m =-,若1D Q ⊥平面1A PD ,则1//D Q m,所以存在R λ∈,使得1D Q m λ= ,则3[0,1]2x z ==-∉,所以不存在点Q ,使得1D Q ⊥平面1A PD ,所以B 错误;对于C 中,由112(1,0,1),(0,1,3A D A P =-=,可得1111132,33A D A P A D A P ==⋅=,则11cos ,A D A P =11sin ,A D A P = ,所以111111sin 2236A PD S A D A P DA P =⋅∠=⨯ ,要使得三棱锥1Q A PD -的体积最大,只需点Q 到平面1A PD 的距离最大,由1(1,1,)AQ x z =- ,可得点Q 到平面1A PD的距离1)5A Q m d x z m ⋅==+-,因为01,01x z ≤≤≤≤,所以当0x z +=时,即点Q 与点1C重合时,可得max d =,所以三棱锥1Q A PD -的最大体积为111533618A PD S =⋅=,所以C 正确;对于D 中,在正方体中,可得11D C ⊥平面11BCC B ,且1C Q ⊂平面11BCC B ,所以111D C C Q ⊥,则12C Q ==,所以点Q 的轨迹是以1C为圆心,以2为半径的圆弧,其圆心角为π2,则1(,0,)C Q x z =,所以12C Q == ,即2212x z +=,又由1(,1,)D Q x z =,设1D Q 与平面1A PD 所成的角θ,所以111sin cos ,m D Q m D Q m D Qθ⋅===,因为2212x z +=,可得222()2()x z x z +≤+,当且仅当x z =时,等号成立,所以1x z +≤,即12x z ==时,1D Q 与平面1A PD 所成的角最大值,sin θ=D 正确.故选:ACD.【点睛】方法点睛:求解立体几何中的动态问题与存在性问题的策略:1、解答方法:一般时根据线面平行,线面垂直的判定定理和性质定理,结合圆或圆锥曲线的定义推断出动点的轨迹,有时也可以利用空间向量的坐标运算求出动点的轨迹方程;2、对于线面位置关系的存在性问题,首先假设存在,然后再该假设条件下,利用线面位置关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论,则否定假设;3、对于探索性问题用向量法比较容易入手,一般先假设存在,设出空间点的坐标,转化为代数方程是否有解的问题,若由解且满足题意则存在,若有解但不满足题意或无解则不存在,同时,用已知向量来表示未知向量,一定要结合图形,以图形为指导思想是解答此类问题的关键.三、填空题:本大题共3小题,每小题5分,第14题第一个空2分,第二个空3分,共15分.12.已知()3,2,1a =- ,()2,1,2b =r,当()()2ka b a b +⊥- 时,实数k 的值为____________.【答案】6【解析】【分析】由题意依次算得22,,a b a b ⋅ 的值,然后根据()()2ka b a b +⊥-列方程即可求解.【详解】因为()3,2,1a =-,()2,1,2b = ,所以()2294114,4149,3221126a ba b =++==++=⋅=⋅+⋅+-⋅=,因为()()2ka b a b +⊥-,所以()()()()22221214186122120ka b a b ka b k a b k k k +⋅-=-+-⋅=-+-=-=,解得6k =.故答案为:6.13.柜子里有3双不同的鞋子,分别用121212,,,,,a a b b c c 表示6只鞋,从中有放回地....取出2只,记事件M =“取出的鞋是一只左脚一只右脚的,但不是一双鞋”,则事件M 的概率是____________.【答案】13【解析】【分析】列举法写出试验的样本空间,根据古典概型的概率公式直接可得解.【详解】设111,,a b c 表示三只左鞋,222,,a b c 表示三只右鞋,则从中有放回取出2只的所有可能为:()()()()()()111211121112,,,,,,,,,,,a a a a a b a b a c a c ()()()()()()212221222122,,,,,,,,,,,a a a a a b a b a c a c ()()()()()()111211121112,,,,,,,,,,,b a b a b b b b b c b c ()()()()()()212221222122,,,,,,,,,,,b a b a b b b b b c b c ()()()()()()111211121112,,,,,,,,,,,c a c a c b c b c c c c ()()()()()()212221222122,,,,,,,,,,,c a c a c b c b c c c c ,共计36种,其中满足取出的鞋一只左脚一只右脚,但不是一双鞋的有12种,()121363P M ∴==.故答案为:13.14.已知正四面体ABCD 的棱切球1T (正四面体的中心与球心重合,六条棱与球面相切)的半径为1,则该正四面体的内切球2T 的半径为______;若动点,M N 分别在1T 与2T 的球面上运动,且满足MN x AB y AC z AD =++,则2x y z ++的最大值为______.【答案】①.3②.26+【解析】【分析】第一空:将正四面体ABCD 放入正方体中,由等体积法可知,只需求出正四面体的表面积以及体积即可列式求解该正四面体的内切球2T 的半径;第二空:由不等式可知,()maxmin222MN x y z AT MN x y z x y z AT AT AT++++≤++==≤,只需求出max MN 、minAT 即可.【详解】第一空:连接,AD EF ,设交点为M ,则M 是AD 中点,如图所示,将正四面体ABCD 放入正方体中,由对称性可知正方体中心就是正四面体ABCD 的中心,设正方体棱长为2a ,则棱切球球心到正四面体ABCD 的六条棱的距离都等于a ,设正四面体ABCD 的棱切球1T 的半径为1r ,所以11r a ==,正方体棱长为2,AD =,而正四面体ABCD 的体积为1182224222323A BCD V -⎛⎫=⨯⨯-⨯⨯⨯⨯⨯=⎪⎝⎭,正四面体ABCD的表面积为(21422A BCD S -=⨯⨯⨯=设该正四面体的内切球2T 的半径为r,则由等体积法可知,1833⨯=,解得33r =;第二空:取任意一点T ,使得()22x y z AT MN xAB y AC z AD xAO y AC z AD ++==++=++,所以点T 在面OCD 内(其中O 是AB 中点),所以()13213x y z AT MN r r ++=≤+=+,而点A 到平面OCD 的距离为d AO ==所以()1232226x y z AT x y z x y z AT+++++≤++=≤+,等号成立当且仅当2x y z ++是正数且,T O重合且13MN =+ ,综上所述,2x y z ++的最大值为26+.故答案为:33,2626+.【点睛】关键点点睛:第二空的关键是得出()maxmin222MN x y z AT MN x y z x y z AT AT AT++++≤++==≤,由此即可顺利得解.四、解答题:本大题共4小题,共47分.解答应写出文字说明,证明过程或演算步骤.15.如图,在三棱柱111ABC A B C -中,,M N 分别是111,A B B C 上的点,且1112,2A M MB B N NC ==.设1,,AB a AC b AA c ===.(1)试用,,a b c 表示向量MN;(2)若11190,60,1BAC BAA CAA AB AC AA ∠=∠=∠====,求异面直线MN 与AC 的夹角的余弦值.【答案】(1)122333a b c-++(2)11【解析】【分析】(1)由空间向量的基本定理求解即可;(2)先用基向量,,a b c 表示AC 与MN ,然后求解MN 与AC 以及数量积MN AC ⋅,然后计算夹角的余弦值即可.【小问1详解】由图可得:()()1111111112123333MN MB BB B N A B AA B C AB AA AA AC AB=++=++=-++- 1122122333333AB AC AA a b c =-++=-++.【小问2详解】由(1)可知122333MN a b c =-++ ,因为11190,60,1BAC BAA CAA AB AC AA ∠=∠=∠====,所以0a b ⋅=,12a c ⋅= ,12b c ⋅= ,2222212214444814424110333999999999999MN a b c a b c a b a c b c ⎛⎫=-++=++-⋅-⋅+⋅=++--+= ⎪⎝⎭ ,所以113MN = ,AC b = ,1AC =,212212221·133333333MN AC a b c b a b b c b ⎛⎫⋅=-++=-⋅++⋅=+= ⎪⎝⎭所以cos ,11MN AC MN AC MN AC⋅==,所以异面直线MN 与AC的夹角的余弦值为11.16.如图,在正四棱柱1111ABCD A B C D -中,122AA AB ==,,E F 分别为1BB ,1CC的中点.(1)证明:1A F ∥平面CDE ;(2)求三棱锥1A CDE -的体积;(3)求直线1A E 与平面CDE 所成的角.【答案】(1)证明过程见解析(2)16(3)π6【解析】【分析】(1)借助正四棱柱的性质可建立空间直角坐标系,求出空间向量1A F与平面CDE 的法向量后,借助空间向量计算即可得;(2)求出空间向量1A E与平面CDE 的法向量后,借助空间向量夹角公式计算即可得直线1A E 与平面CDE 所成的角的正弦值,进一步求得三棱锥的高以及底面积即可得解.(3)由(2)可知直线1A E 与平面CDE 所成的角的正弦值,从而即可得解.【小问1详解】在正四棱柱1111ABCD A B C D -中,AB ,AD ,1AA 两两垂直,且122AA AB ==,以A 为坐标原点,AB ,AD ,1AA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则()1,1,0C ,()0,1,0D ,()10,0,2A.因为E ,F 分别为11,BB CC 的中点,所以()1,0,1E ,()1,1,1F ,则()1,0,0CD =- ,()0,1,1CE =- ,()11,1,1A F =-,设平面CDE 的法向量为(),,m x y z = ,则00CD m CE m ⎧⋅=⎪⎨⋅=⎪⎩,即00x y z -=⎧⎨-+=⎩,令1y =,则有0x =,1z =,即()0,1,1m =,因为()11011110A F m ⋅=⨯+⨯+-⨯= ,所以1A F m ⊥ ,又1⊄A F 平面CDE ,所以1//A F 平面CDE ;【小问2详解】由(1)可知,()11,0,1A E =-,1111cos ,2A E m A E m A E m⋅==-,所以1A E 与平面CDE 所成角的正弦值为12.注意到1A E =所以点1A 到平面CDE122=,而()1,0,0CD =- ,()0,1,1CE =-,从而0CD CE =⋅,1,CD CE == 所以CD CE ⊥,三角形CDE的面积为1122⨯=,所以三棱锥1A CDE -的体积为113226⨯⨯=;【小问3详解】由(2)可知,1A E 与平面CDE 所成角的正弦值为12,所以直线1A E 与平面CDE 所成的角为π6.17.2023年10月31日,东北师大附中以“邂逅数学之美,闪耀科技之光”为主题的第17届科技节在自由、青华两校区开幕.在科技节中数学教研室组织开展了“送书券”活动.该活动由三个游戏组成,每个游戏各玩一次且结果互不影响.连胜两个游戏可以获得一张书券,连胜三个游戏可以获得两张书券.游戏规则如下表:游戏一游戏二游戏三箱子中球的颜色和数量大小质地完全相同的红球4个,白球2个(红球编号为“1,2,3,4”,白球编号为“5,6”)取球规则取出一个球有放回地依次取出两个球不放回地依次取出两个球获胜规则取到白球获胜取到两个红球获胜编号之和不超过m 获胜(1)分别求出游戏一,游戏二的获胜概率;(2)甲同学先玩了游戏一,当m 为何值时,接下来先玩游戏三比先玩游戏二获得书券的概率更大.【答案】(1)13,49(2)m 可能取值为7,8,9,10,11【解析】【分析】(1)利用列举法,结合古典概型的概率公式即可得解;(2)利用互斥事件与独立事件的概率公式求得先玩游戏二与先玩游戏三获得书券的概率,从而得到游戏三获胜的概率,由此得解.【小问1详解】设事件A 表示“游戏一获胜”,B 表示“游戏二获胜”,C 表示“游戏三获胜”,游戏一中取出一个球的样本空间为{}1Ω1,2,3,4,5,6=,则()1Ω6n =,()2n A =,()2163P A ∴==,所以游戏一获胜的概率为13.游戏二中有放回地依次取出两个球的样本空间(){}21Ω,,Ωx y x y =∈,则()2Ω36n =,而(){}{},,1,2,3,4B x y x y =∈,所以()16n B =,()164369P B ∴==,所以游戏二获胜的概率为49.【小问2详解】设M 表示“先玩游戏二,获得书券”,N 表示“先玩游戏三,获得书券”,则M ABC ABC ABC =⋃⋃,且ABC ,ABC ,ABC 互斥,,,A B C 相互独立,()()()()()P M P ABC ABC ABC P ABC P ABC P ABC ∴=⋃⋃=++()()()()()()()()()11P A P B P C P A P B P C P A P B P C ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦()()()1424141393939P C P C P C ⎡⎤=⨯-+⨯+⨯⎣⎦()482727P C =+,则N AC B ACB ACB =⋃⋃,且,AC B ACB ACB 互斥,,,A B C 相互独立,()P N =()()()()P ACB ACB ACB P ACB P ACB P ACB ⋃⋃=++()()()()()()()()()11P A P C P B P A P C P B P A P C P B ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦()()()152414393939P C P C P C =⨯⨯+⨯⨯+⨯⨯()1727P C =,若要接下来先玩游戏三比先玩游戏二获得书券的概率更大,则()()P N P M >,即()()1748272727P C P C >+,解得()49P C >,设游戏三中两次取球的编号和为X ,则()26113C 15P X ===,()26114C 15P X ===,()26225C 15P X ===,()26226C 15P X ===,()26337C 15P X ===,()26228C 15P X ===,()26229C 15P X ===,()261110C 15P X ===,()261111C 15P X ===,所以当3m =时,()()143159P C P X ===<,不合题意;当4m =时,()()()2434159P C P X P X ==+==<,不合题意;当5m =时,()()()()44345159P C P X P X P X ==+=+==<,不合题意;当6m =时,()()()()()643456159P C P X P X P X P X ==+=+=+==<,不合题意;当7m =时,()()()()()()9434567159P C P X P X P X P X P X ==+=+=+=+==>,符合题意;所以当7m ≥时,都有()49P C >,所以符合题意的m 的取值有7,8,9,10,11.18.球面三角学是研究球面三角形的边、角关系的一门学科.如图,球O 的半径为R ,A 、B 、C 为球面上的三点,设a O 表示以O 为圆心,且过B 、C 的圆,劣弧BC 的长度记为a ,同理,圆b O ,c O 的劣弧AC 、AB 的长度分别记为b ,c ,曲面ABC (阴影部分)叫做球面三角形.如果二面角,,C OA B A OB C B OC A ------的大小分别为,,αβγ,那么球面三角形的面积为()2++πABC S R αβγ=- 球面.(1)若平面OAB 、平面OAC 、平面OBC 两两垂直,求球面三角形ABC 的面积;(2)若平面三角形ABC 为直角三角形,AC BC ⊥,设1AOC θ∠=,2BOC θ∠=,3AOB θ∠=.①求证:123cos cos cos 1θθθ+-=;②延长AO 与球O 交于点D ,若直线DA ,DC 与平面ABC 所成的角分别为ππ,43,,(0,1]BE BD λλ=∈,S 为AC 的中点,T 为BC 的中点.设平面OBC 与平面EST 的夹角为θ,求cos θ的最大值及此时平面AEC 截球O 的面积.【答案】(1)2π2R (2)①证明见解析;②cos 5θ=,253π78R 【解析】【分析】(1)根据题意结合相应公式分析求解即可;(2)①根据题意结合余弦定理分析证明;②建系,利用空间向量求线面夹角,利用基本不等式分析可知点E ,再利用空间向量求球心O 到平面AEC 距离,结合球的性质分析求解.【小问1详解】若平面,,OAB OAC OBC 两两垂直,有π2αβγ===,所以球面三角形ABC 面积为()22ππ2ABC S R R αβγ=++-= 球面.【小问2详解】①证明:由余弦定理有:2222122222222232cos 2cos 2cos AC R R R BC R R R AB R R R θθθ⎧=+-⎪=+-⎨⎪=+-⎩,且222AC BC AB +=,消掉2R ,可得123cos cos cos 1θθθ+-=;②由AD 是球的直径,则,AB BD AC CD ⊥⊥,且AC BC ⊥,CD BC C ⋂=,,CD BC ⊂平面BCD ,所以AC ⊥平面BCD ,且BD ⊂平面BCD ,则AC BD ⊥,且AB AC A ⋂=,,AB AC ⊂平面ABC ,可得BD ⊥平面ABC ,由直线DA ,DC 与平面ABC 所成的角分别为ππ,43,所以ππ,43DAB DCB ∠=∠=,不妨先令R =,则2AD AB BD BC AC =====,由AC BC ⊥,AC BD ⊥,BC BD ⊥,以C 为坐标原点,以CB ,CA 所在直线为x ,y 轴,过点C 作BD 的平行线为z 轴,建立如图空间直角坐标系,设(,BE t t =∈,则())()0,2,0,,0,0,0,A B C D ,可得()20,1,0,,0,02S T ⎛⎫ ⎪ ⎪⎝⎭,)26,,1,22E t O ⎛⎫ ⎪ ⎪⎝⎭,则),22CB CO ⎛⎫== ⎪ ⎪⎝⎭,,1,0,22ST TE t ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设平面OBC 法向量()111,,m x y z =,则11110022m CB m CO x y z ⎧⋅==⎪⎨⋅=++=⎪⎩,取12z =-,则110y x ==,可得()2m =- ,设平面EST 法向量()222,,n x y z =,则222202202n ST x y n TE x tz ⎧⋅=-=⎪⎪⎨⎪⋅=+=⎪⎩,取2x =,则22,1y t z ==-,可得),,1n t =- ,因为cos cos ,m n m n m n θ⋅======,令(]1,1,13m m=+∈,则()2218mt t-==,可得()2221888293129621218m mt m mm mm+===≤=+-+--+-+,当且仅当3,m t==取等.则cosθ5=,此时点E,可得CE=,()0,2,0CA=,设平面AEC中的法向量(),,k x yz=,则20k CE zk CA y⎧⋅==⎪⎨⎪⋅==⎩,取1x=,则0,y z==-,可得(1,0,k=-,可得球心O到平面AEC距离为AO kdk⋅==设平面AEC截球O圆半径为r,则2225326r R d=-=,所以截面圆面积为225353πππ2678r R==.【点睛】方法点睛:1.利用空间向量求线面角的思路:直线与平面所成的角θ主要通过直线的方向向量与平面的法向量的夹角ϕ求得,即sin cosθϕ=.2.利用空间向量求点到平面距离的方法:设A为平面α内的一点,B为平面α外的一点,n为平面α的法向量,则B到平面α的距离AB ndn⋅=.。
2024-2025学年北京市海淀区首都师大附中高二(上)第一次月考数学试卷(含答案)
2024-2025学年北京市海淀区首都师大附中高二(上)第一次月考数学试卷一、单选题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知z i =i−1,则|z|=( )A. 0B. 1C. 2D. 22.如图,在平行六面体ABCD−A 1B 1C 1D 1中,AB −AD −AA 1=( )A. −AC 1B. A 1CC. D 1BD. −DB 13.已知A(2,−3,−1),B(−6,5,3),则AB 的坐标为( )A. (−8,8,−4)B. (−8,8,4)C. (8,−8,4)D. (8,−8,−4)4.如图,已知正方体ABCD−A′B′C′D′的棱长为1,AA′⋅DB′=( )A. 1B. 2C. 3D. −15.设n 1,n 2分别是平面α,β的法向量,其中n 1=(1,y,−2),n 2=(x,−2,1),若α//β,则x +y =( )A. −92B. −72C. 3D. 726.已知直线l 1的方向向量为u =(0,0,1),直线l 2的方向向量为v =(0, 3,−1),则直线l 1与l 2所成角的度数为( )A. 30°B. 60°C. 120°D. 150°7.已知n 为平面α的一个法向量,a 为直线l 的方向向量,则“a ⊥n ”是“l//α”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.已知点O 、A 、B 、C 为空间不共面的四点,且向量a =OA +OB +OC ,向量b =OA +OB−OC ,则与a 、b 不能构成空间基底的向量是( )A. OA B. OB C. OC D. OA 或OB9.在空间直角坐标系Oxyz 中,点A(2,1,1)在坐标平面Oxz 内的射影为点B ,且关于y 轴的对称点为点C ,则B ,C 两点间的距离为( )A. 17 B. 3 2 C. 2 5 D. 2110.如图,在棱长为1的正四面体(四个面都是正三角形)ABCD 中,M ,N 分别为BC ,AD 的中点,则直线AM和CN 夹角的余弦值为( )A. 23B. 34C. 12D. 23二、填空题:本题共5小题,每小题4分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学第一次月考试卷
命题人:数学组
一、选择题(50分)
1.直线0102005sin 2005cos =-︒+︒y x 的倾斜角为
A 、0
2005 B 、0
25 C 、0
65
D 、0
115
2.椭圆2225161x y +=的焦点坐标为
A 、(3,0) ±
B 、1(0,)3 ±
C 、3
(0,)20
±
D 、3
(,0)20
±
3.直线1y =与3y =-的夹角为
A 、0
30 B 、0
60
C 、0120
D 、0150
4.若双曲线
22
11312
x y -=上一点P P 到右准线的距离是 A 、
513 B 、
135
C 、265
D 、395
5.已知点A (3,1-)和B (1-,2)在直线210ax y +-=的两侧,则实数a 取值范围是
A 、13a <<
B 、3a >
C 、1a <
D 、1a <或3a >
6.“0abc >”是“曲线22
ax by c +=为椭圆”的
A 、充分非必要条件
B 、必要非充分条件
C 、充要条件
D 、既非充分又非必要条件
7.和直线3450x y -+=关于y 轴对称的直线的方程为
A 、3450x y --=
B 、3450x y +-=
C 、3450y x -+=
D 、4350x y -+=
8.已知()00,y x M 是圆222005x y +=内异于圆心的一点,则直线002005xx yy +=与圆的交点个数是 A 、0个 B 、1个
C 、2个
D 、多于2个
9.如果直线l 沿x 轴负方向平移2个单位,再沿y 轴正方向平移3个单位后,又回到原来的位置,那么直线l 的斜率是
A 、32
- B 、23
- C 、
32
D 、
23
10.已知椭圆
22
1169
x y +=的左、右焦点分别为12F F 、,点P 在椭圆上,且∆PF 1F 2是一个直角三角形,则满足条件的点P 的个数为 A 、0个 B 、2个 C 、4个 D 、8个
二、填空题(20分)
11.若过A (2-,0)和B (5-,3)两点的直线与直线1y kx =+平行,则k =
12.如果双曲线22
221x y a b
-=的实轴长、虚轴长、焦距成等差数列,那么该双曲线的离心
率是
13.圆22
4x y +=上的点到直线3425x y +=的距离的最小值为
14.已知点A (4,0)和B (2,2),M 是椭圆
22
1259
x y +=上的动点,则||||MA MB +的最大值是
15.将一张画有直角坐标系的图纸折叠一次,使得点A (0,1)与点B (2,0)重合,若此时点C (0,3)与点D (m ,n )重合,则m n +=
高二月考数学答卷
二、填空题(20分)
三、解答题
16.(12分)求过点P(2,3),并且在两坐标轴上的截距互为相反数的直线方程。
17.(12分)椭圆的离心率等于e满足:
15
2
e
e
+=,并且该椭圆与双曲线
22
1
45
x y
-=有
公共的焦点。
试求该椭圆的方程。
18.(14分)有一种大型商品,O、P两地均有出售,且价格相同,某地居民从两地之一购得商品后回运的运费是:每单位距离P地的运费是O地运费的2倍,已知O、P两地相距30km,居民选择O或P地购买这种商品的标准是:包括运费和价格的总费用较低。
试求O、P两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民应如何选择购货地点。
19.(14分)一动圆与圆22650x y x +++=相切,同时也与圆22650x y x +-+=相切,求动圆圆心的轨迹方程。
20.(14分)已知点A (1,2)和B (4,3) --,圆222:C x y m +=。
若圆C 与线段AB 没有公共点,试求m 的取值范围。
21.(14分)设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是 线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点。
(Ⅰ)确定λ的取值范围,并求直线AB 的方程; (Ⅱ)求证:A 、B 、C 、D 四点在同一个圆上。
[参考答案]
一、选择题(50分) 1.D 2.C 3.B 4.D
5.D
6.D
7.B
8.A
9.A
10.C
二、填空题(20分)
11.1- 12.
53
13.3
14.10
15.
245
三、解答题 16. 10x y -+= ┅┅┅┅┅┅┅┅┅┅┅┅ 6分
320x y -=
┅┅┅┅┅┅┅┅┅┅┅┅
12分 17.
1
2
c e a == ┅┅┅┅┅┅┅┅┅┅┅┅ 4分 3c =,6a = ┅┅┅┅┅┅┅┅┅┅┅┅
8分 22
13627
x y += ┅┅┅┅┅┅┅┅┅┅┅┅
12分
18. 以O 为原点,直线OP 为x 轴,建立直角坐标系 ┅┅┅┅┅┅┅┅┅ 2分
设P(30,0),则
圆 (x -40)2+y 2
=400就是两地居民购货的分界线 ┅┅┅┅┅┅ 8分
圆内的居民从P 地购货费用较低,圆外的居民从O 地购货费用较低,圆上的居民从O 、P 两地购货的总费用相等,因此可以随意从O 、P 两地之一购货 ┅┅┅┅ 14分 19. 设动圆圆心为P(x,y),则分四种情形讨论得到:
12||||O P O P =,或12||||||4O P O P -= ┅┅┅┅┅┅┅┅┅ 8分
所以,动圆圆心的轨迹方程为0x =,或
22
145
x y -= ┅┅┅┅┅┅┅ 14分 20. 5m <- ,或5m >
┅┅┅┅┅┅┅┅┅┅┅┅ 6分
m -
<<
┅┅┅┅┅┅┅┅┅┅┅┅
12分
0m ¹
┅┅┅┅┅┅┅┅┅┅┅┅ 14分
21. (Ⅰ)(12,+∞)
┅┅┅┅┅┅┅┅┅┅┅┅ 4分
40x y +-=
┅┅┅┅┅┅┅┅┅┅┅┅ 8分 (Ⅱ)略
┅┅┅┅┅┅┅┅┅┅┅┅
14分。