2017年八年级数学下册全册复习资料(A4)

合集下载

八年级数学下册知识点总结(全)

八年级数学下册知识点总结(全)

八年级数学下知识点总结函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x 与y,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。

2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法:用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果y kx b(k,b 是常数,k 0),那么y 叫做x 的一次函数。

特别地,当一次函数y kx b 中的 b 为0 时,y kx (k 为常数,k 0)这时,y 叫做x 的正比例函数。

2、一次函数的图像所有一次函数的图像都是一条直线。

3、一次函数、正比例函数图像的主要特征:一次函数y kx b 的图像是经过点(0,b)的直线;正比例函数y kx 的图像是经过原点(0,0)的直线。

(如下图)4. 正比例函数的性质一般地,正比例函数y kx 有下列性质:(1)当k>0 时,图像经过第一、三象限,y 随x 的增大而增大;(2)当k<0 时,图像经过第二、四象限,y 随x 的增大而减小。

5、一次函数的性质一般地,一次函数y kx b 有下列性质:(1)当k>0 时,y 随x 的增大而增大(2)当k<0 时,y 随x 的增大而减小6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式y kx (k 0)中的常数k。

17c04(教师讲评版分类专题)八年级数学下册函数及其图像分类训练专题4

17c04(教师讲评版分类专题)八年级数学下册函数及其图像分类训练专题4

一、一次函数反比例函数与线段结合
(3)设 P(m,2m﹣4),∴d1=|2m﹣4|,d2=|m|, ∵P 在线段 AB 上,∴0≤m≤2,∴d1=4﹣2m,d2=m, ∵d1+ad2=4,∴4﹣2m+am=4,即(a﹣2)m=0, ∵有无数个点,∴a=2.
一、一次函数反比例函数与线段结合
练习题 学生训练版:例题1——练习1、2
三、一次函数反比例函数与等边三角形
练习题 学生训练版:例题3——练习1
四、一次函数反比例函数与直角三角形
例题 4.如图,在平面直角坐标系 xOy 中,矩形 OABC 的顶点 A 在 x 轴上, 顶点 C 在 y 轴上,D 是 BC 的中点,过点 D 的反比例函数图象交 AB 于 E 点,连接 DE.若 OD=5,tan∠COD= . (1)求过点 D 的反比例函数的解析式; (2)求△DBE 的面积; (3)x 轴上是否存在点 P 使△OPD 为直角三角形? 若存在,请直接写出 P 点的坐标;若不存在,请说明理由.
四、一次函数反比例函数与直角三角形
(2)∵点 D 是 BC 的中点,∴B(8,3),∴BC=8,AB=3,
∵E 点在过点 D 的反比例函数图象上,∴E(8, ),
∴S△DBE= BDBE=
=3;
四、一次函数反比例函数与直角三角形
(3)存在,∵△OPD 为直角三角形, ∴当∠OPD=90°时,PD⊥x 轴于 P,∴OP=4, ∴P(4,0), 当∠ODP=90°时,如图,过 D 作 DH⊥x 轴于 H, ∴OD2=OHOP,∴OP= = .∴P( ,O), ∴存在点 P 使△OPD 为直角三角形,∴P(4,O),( ,O).
函数分类训练专题四
八年级数学下册

新人教版八年级下册数学期末总复习(经典)

新人教版八年级下册数学期末总复习(经典)
数学·人教版(RJ)
第十六章 过关测试
►考点二 二次根式性质的运用 例2 如图16-1所示是实数a,b在数轴上的位置,
化简: a2- b2- (a-b)2.
图16-1
[解析] 解决此问题需要确定a,b及a-b的正负. 解:根据实数a,b在数轴上的位置可知a<0,b>0,所以 a-b<0,所以 a2- b2- (a-b)2=|a|-b-|a-b|=-a -b-[-(a-b)]=-a-b+a-b=-2b.
数学·人教版(RJ)
第十六章 过关测试
易错方法点拨
1.在二次根式的运算中,一般要把最后结果化为最简二
次根式.
2.在二次根式的运算中,要灵活运用乘法公式.
3.(a+b)÷d=(a+b)·1=a+b,但 ddd
d÷(a+b)≠d·
1+1 ab
.
数学·人教版(RJ)
第十六章 过关测试
针对第5题训练
1. 实数 a,b 在数轴上的位置如图 16-2 所示,那么化 简|a-b|- a2的结果是( B )
(2) 9 是二次根式,虽然 9 =3,但3不是二次根式.因 此二次根式指的是某种式子的“外在形态”.
数学·人教版(RJ)
第十六章 过关测试
2.二次根式的性质
( a)2=__a__(__a≥0__);
a2=a=

aa (a>0),
00 (a=0), -aa (a<0).
3.最简二次根式
数学·人教版(RJ)
第十六章 过关测试
►考点三 二次根式的化简
例 3 设 2=a, 3=b,用含 a,b 的式子表示 0.54,
则下列表示正确的是( C )
A.0.03ab

人教版数学八年级下册第十八章平行四边形性质与判定专题复习辅导讲义

人教版数学八年级下册第十八章平行四边形性质与判定专题复习辅导讲义

辅导讲义学员编号:年级:课时数:学员姓名:辅导科目:学科老师:授课类型T 平行四边形的概念、性质T 平行四边形的断定C中位线定理授课日期时段教学内容一、同步学问梳理学问点1:平行四边形的定义:两组对边分别平行的四边形是平行四边形.表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD,记作ABCD”,读作“平行四边形ABCD”.留意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.学问点2:平行四边形的性质:(1)边:平行四边形的对边平行且相等.(2)角:平行四边形的对角相等.邻角互补(3)对角线:平行四边形的对角线相互平分对称性:平行四边形是中心对称图形,两条对角线的交点是对称中心;二、同步题型分析题型1:平行四边形的边、角例1:已知,如图1,四边形ABCD为平行四边形,∠A+∠C=80°,平行四边形ABCD的周长为46 cm,且AB-BC=3 cm,求平行四边形ABCD的各边长和各内角的度数.分析:由平行四边形的对角相等,邻角互补可求得各内角的度数;由平行四边形的对边相等,得AB+BC=23 cm,解方程组即可求出各边的长.解:由平行四边形的对角相等,∠A+∠C=80°,得∠A=∠C=40°又DC∥AB,∠D及∠A为同旁内角互补,∴∠D=180°-∠A=180°-40°=140°.∴∠B=140°.由平行四边形对边相等,得AB=CD,AD=BC.因周长为46 am,因此AB+BC=23 cm,而AB-BC=3 cm,得AB=13 cm,BC=10 cm,∴CD=13 am.AD=10 cm.题后反思:留意充分利用性质解题.例2:如图2,在平行四边形ABCD中,E、F是直线BD上的两点,且DE=BF,你认为AE=CF吗?试说明理由.分析:本题主要考察平行四边形的性质.要证明AE=CF,可以把两线段分别放在两个三角形里,然后证明两三角形全等.解:AE=CF.理由:在平行四边形ABCD中,∵AB=CD且AB∥CD.∴∠ABE=∠CDF.∵DE=BF,∴ DE+BD=BF+BD,即BE=DF:∴△ABE≌△CDF ∴ AE=CF题后反思:利用平行四边形的性质解题时,一般要用到三角形全等学问,此题还可以证明其他三角形全等来证明两线段相等.题型2:平行四边形的周长例1:如图3,在平行四边形ABCD中,AC、BD相交于点O,作OE⊥BD于O,交CD于E,连接BE,若△BCE的周长为6,则平行四边形ABCD的周长为( B )图3A. 6B. 12C. 18D. 不确定分析:本题主要考察平行四边形的性质:对角线相互平分。

专题4.14 因式分解(全章复习与巩固)(知识讲解)八年级数学下册基础知识专项讲练(北师大版)

专题4.14 因式分解(全章复习与巩固)(知识讲解)八年级数学下册基础知识专项讲练(北师大版)

专题4.14因式分解(全章复习与巩固)(知识讲解)【知识点一】因式分解与整式乘法的识别把一个多项式化成几个整式的积的形式,叫因式分解。

【知识点二】因式分解的方法(1)提取公因式法:)(c b a m mc mb ma ++=++(2)运用公式法:平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+±(3)十字相乘法:))(()(2b x a x ab x b a x ++=+++(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。

(5)运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x ,则有:))((212x x x x a c bx ax --=++【知识点三】因式分解的一般步骤(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。

(4)最后考虑用分组分解法。

【典型例题】类型一、因式分解的概念✭✭求参数1.下列各式从左到右的变形属于因式分解的是()A .()2212x x x x+=+B .()()2111a a a -=+-C .()()2111x x x +-=-D .()222312a a a -+=-+【答案】B【分析】根据因式分解的定义解答即可.解:A .()2212x x x x +=+不是将多项式化成整式乘积的形式,故A 选项不符合题意;B .()()2111a a a -=+-是将多项式化成整式乘积的形式,故B 选项符合题意;C .()()2111x x x +-=-不是将多项式化成整式乘积的形式,故C 选项不符合题意;D .()222312a a a -+=-+不是将多项式化成整式乘积的形式,故D 选项不符合题意;故选:D .【点拨】本题主要考查了分解因式的定义,掌握定义是解题的关键.即把一个多项式化成几个整式乘积的形式,这种变形叫做分解因式.举一反三:【变式】下列各式,从左到右的变形中,属于因式分解的是()A .()a m n am an+=+B .()()2222a b c a b a b c+-=+--C .()2221x x x x -=-D .()()2166446x x x x -+=+-+【答案】C【分析】根据因式分解的定义去判断即可.解:A 、因为()a m n am an +=+是单项式乘以多项式,不是因式分解,故A 不符合题意;B 、因为()()2222a b c a b a b c +-=+--不是因式乘积的形式,不是因式分解,故B 不符合题意;C 、因为()2221x x x x -=-是因式分解,故C 符合题意;D 、因为()()2166446x x x x -+=+-+不是因式乘积的形式,不是因式分解,故D 不符合题意;故选C .【点拨】本题考查了因式分解即把一个多项式写成几个因式积的形式,熟练掌握定义是解题的关键.2.三个多项式:24x y y -,22x y xy -,244x y xy y -+的最大公因式是()A .()2y x +B .()4y x -C .2(2)y x -D .()2y x -【答案】D【分析】先把三个多项式因式分解,再进行解答即可.解:∵()()2422x y y y x x -=+-,()222x y xy xy x -=-,2244(2)x y xy y y x -+=-,∴最大公因式是()2y x -.故选D .【点拨】本题主要考查了最大公因式,熟练掌握最大公因式的定义,将三个多项式分解因式,是解题的关键.举一反三:【变式】下列各组中,没有公因式的一组是()A .ax bx -与by ay -B .ab ac -与ab bc -C .268xy x y -与43x -+D .()3a b -与()2b ya -【答案】B【分析】将每一组因式分解,找公因式即可解:A.()ax bx x a b -=-,()by ay y a b -=--,有公因式a b -,故不符合题意;B.()ab ac a b c -=-,()ab bc b a c -=-,没有公因式,符合题意;C.()268234xy x y xy x -=-,4334x x -+=-,有公因式34x -,故不符合题意;D.()3a b -与()2b y a -有公因式a b -,故不符合题意;故选:B【点拨】本题考查公因式,熟练掌握因式分解是解决问题的关键类型二、公因式✭✭提取公因式进行因式分解3.若关于x 的二次三项式23x x k -+的因式是()2x -和()1x -,则k 的值是____.【答案】2【分析】先利用多项式乘以多项式法则计算,再利用多项式相等的条件求出k 的值即可.解:由题意得:()()2232132x x k x x x x -+=--=-+,2k ∴=.故答案为:2.【点拨】此题考查了多项式乘以多项式法则,因式分解的意义,以及多项式相等的条件,熟练掌握因式分解的意义是解本题的关键.举一反三:【变式】已知多项式4x mx n ++能分解为()()2223x px q x x +++-,则p =______,q =______.【答案】2-;7.【分析】把()()2223x px q x x +++-展开,找到所有3x 和2x 的项的系数,令它们的系数分别为0,列式求解即可.解:∵()()2223x px q x x +++-432322222333x px qx x px qx x px q=+++++---()()()432223233x p x q p x q p x q=++++-+--4x mx n =++.∴展开式乘积中不含3x 、2x 项,∴20230p q p +=⎧⎨+-=⎩,解得:27p q =-⎧⎨=⎩.故答案为:2-,7.【点拨】本题考查了整式乘法的运算、整式乘法和因式分解的关系,将结果式子运用整式乘法展开后,抓住“若某项不存在,即其前面的系数为0”列出式子求解即可.4.因式分解:(1)282abc bc -;(2)()()26x x y x y +-+;【答案】(1)()24bc a c -;(2)()()23x y x +-【分析】(1)用提公因式法解答;(2)用提公因式法解答.(1)解:原式()24bc a c =-(2)解:原式()()23x y x =+-【点拨】此题考查了因式分解——提公因式法,熟练掌握提取公因式的方法是解本题的关键.举一反三:【变式】把下列多项式因式分解:(1)2x xy x -+;(2)22m n mn mn -+;(2)33322292112x y x y x y -+;(4)()()22x x y y x y -+-.【答案】(1)()1x x y -+;(2)()1mn m n -+;(3)()223374x y xy x -+;(4)()()22x y x y-+【分析】(1)直接提取公因式x ,进而分解因式得出答案;(2)直接提取公因式mn ,进而分解因式得出答案;(3)直接提取公因式223x y ,进而分解因式得出答案;(4)直接提取公因式()x y -,进而分解因式得出答案.(1)解:()21x xy x x x y -+=-+(2)解:()221m n mn mn mn m n -+=-+(3)解:()33322222921123374x y x y x y x y xy x +--=+(4)解:()()()()2222xx y y x y x y x y -+-=-+【点拨】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.类型三、公式法进行因式分解➽➼平方差公式✭✭完全平方公式5.因式分解:(1)﹣2a 3+12a 2﹣18a(2)9a 2(x ﹣y )+4b 2(y ﹣x )【答案】(1)﹣2a (a ﹣3)2(2)(x ﹣y )(3a +2b )(3a ﹣2b )【分析】(1)原式提取公因式,再利用完全平方公式分解即可.(2)原式变形后,提取公因式,再利用平方差公式分解即可.解:(1)原式=﹣2a (a 2﹣6a +9)=﹣2a (a ﹣3)2(2)原式=(x ﹣y )(9a 2﹣4b 2)=(x ﹣y )(3a +2b )(3a ﹣2b ).【点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.举一反三:【变式】因式分解:(1)224x y -(2)32296a a b ab -+【答案】(1)()()22x y x y +-;(2)()23a a b -.【分析】(1)利用平方差公式进行因式分解即可;(2)先提公因式,然后利用完全平方公式进因式分解即可.解:(1)22224(2)(2)(2)x y x y x y x y -=-=+-;(2)232222(96)(963)=-+=--+a a ab b a b a a b b a a .【点拨】本题主要考查了多项式的因式分解,解题的关键是熟练掌握各种因式分解的方法,并会根据多项式的特征选取合适的方法,还要注意要分解彻底.6.分解因式:(1)2225()9()m n m n +--(2)22441a b a --+【答案】(1)()()444m n n m ++;(2)()()2121a b a b +---【分析】(1)将m n +和m n -看成两个整体,利用平方差公式分解因式得到()()8228m n m n ++,再提取公因式即可.(2)利用分组法先将原式分成2441a a -+和2b -两组,2441a a -+可利用完全平方公式分解,再和2b -组合,由平方差公式分解即可.(1)解:2225()9()m n m n +--()()()()5353m n m n m n m n =++-+--⎡⎤⎡⎤⎣⎦⎣⎦()()55335533m n m n m n m n =++-+-+()()8228m n m n =++()()444m n m n =++.(2)22441a b a --+()22441a a b =-+-()2221a b =--()()2121a b a b =-+--()()2121a b a b =+---.【点拨】本题考查了因式分解的方法,分组法、公式法和提公因式法本题都涉及了,熟练掌握完全平方公式、平方差公式是解题的关键.举一反三:【变式】分解因式:(1)228168ax axy ay -+-(2)()22222936x y x y +-;【答案】(1)28()a x y --;(2)22(3)(3)x y x y +-【分析】(1)先提公因式,再根据完全平方公式分解因式即可;(2)根据平方差公式和完全平方公式分解因式即可.解:(1)原式228(2)a x xy y =--+28()a x y =--(2)原式2222(9)(6)x y xy =+-2222(96)(96)x y xy x y xy =+++-22(3)(3)x y x y =+-【点拨】本题考查了因式分解,涉及提公因式法和公式法,熟练掌握分解因式的步骤是解题的关键.类型四、因式分解➽➼十字相乘法✭✭分组分解法7.将下列各式分解因式:(1)256x x --;(2)21016x x -+;(3)2103x x --【答案】(1)(7)(8)x x +-;(2)(2)(8)x x --;(3)(5)(2)x x -+-【分析】(1)用十字相乘法,分解因式即可;(2)用十字相乘法,分解因式即可;(3)用十字相乘法,分解因式即可.(1)解:∵78x x ⨯-,即78x x x -=-,∴256(7)(8)x x x x --=+-;(2)解:∵28x x ⨯--,即2810x x x --=-,∴21016(2)(8)x x x x -+=--;(3)解:22103(310)x x x x --=-+-,∵52x x ⨯-,即523x x x -=,∴原式(5)(2)x x =-+-.【点拨】本题主要考查了利用十字相乘法分解因式,解题的关键在于能够熟练掌握十字相乘法:常数项为正,分解的两个数同号;常数项为负,分解的两个数异号.二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.举一反三:【变式】用十字相乘法解方程:(1)2560x x +-=;(2)2230x x --=.【答案】(1)6x =-或1x =;(2)3x =或=1x -【分析】根据十字相乘法可分别求解(1)(2).(1)解:2560x x +-=(6)(1)0x x +-=,60x +=或10x -=,6x =-或1x =;(2)解:2230x x --=,(3)(1)0x x -+=,30x -=或10x +=,3x =或=1x -.【点拨】本题主要考查利用因式分解进行求解方程,熟练掌握因式分解是解题的关键.8.因式分解:323412x x y x y +--.【答案】(3)(2)(2)x y x x ++-【分析】原式第一、三项结合,二、四项结合,提取公因式后再提取公因式,利用平方差公式分解即可.解:原式=324312x x x y y-+-=22(4)3(4)x x y x -+-=2(3)(4)x y x +-=(3)(2)(2)x y x x ++-.【点拨】本题考查了因式分解:分组分解法:对于多于三项以上的多项式的因式分解,先进行适当分组,再把每组因式分解,然后利用提公因式法或公式法进行分解.举一反三:【变式】因式分解:(1)a 2-ab +ac -bc ;(2)x 3+6x 2-x -6.【答案】(1)(a -b)(a +c);(2)(x +1)(x -1)(x +6)试题分析:根据因式分解的方法进行因式分解即可.解:(1)原式()()()()a a b c a b a b a c =-+-=-+.(2)原式()()()()()()()()()322226616116116x x x x x x x x x x x =-+-=-+-=-+=+-+类型五、因式分解综合9.将下列各式分解因式.(1)3416x x -;(2)()2212a x ax +-;(3)()24a b a b --;(4)()()()()2233a b a b a b b a -+++-.【答案】(1)()()41212x x x +-;(2)()221a x x ++;(3)()22a b --;(4)()()28a b a b -+【分析】(1)先提取公因式,然后进一步利用平方差公式进行因式分解即可;(2)利用提公因式法进行因式分解即可;(3)先将括号去掉,然后移项,根据完全平方公式进行因式分解即可;(4)利用提公因式法以及平方差公式综合进行因式分解即可.解:(1)3416x x -=()2414x x -=()()41212x x x +-;(2)()2212a x ax +-=()221a x x ⎡⎤+-⎣⎦=()221a x x ++;(3)()24a b a b --=2244ab a b --=()2244a ab b --+=()22a b --;(4)()()()()2233a b a b a b b a-+++-=()()()()2233a b a b a b a b -+-+-=()()()2233a b a b a b ⎡⎤-+-+⎣⎦=()()()4422a b a b a b -+-=()()28a b a b -+.【点拨】本题主要考查了因式分解,熟练掌握相关方法及公式是解题关键.举一反三:【变式】因式分解:(1)2273xy x-(2)2292a b ab+-+(3)228x x --【答案】(1)3(3+1)(31)-x y y ;(2)(3)(3)+++-a b a b ;(3)(2)(4)x x +-【分析】(1)根据提取公因式,平方差公式,即可分解因式;(2)根据完全平方公式法、平方差公式,即可分解因式;(3)根据十字相乘法分解因式,即可得到答案.解:(1)2273xy x-23(91)x y =-3(31)(31)x y y =+-;(2)2292a b ab+-+2229a ab b =++-22()3a b =+-(3)(3)a b a b =+++-;(3)228x x --(2)(4)x x =+-.【点拨】本题主要考查分解因式,掌握提取公因式法、公式法、十字相乘法分解因式,是解题的关键.类型五、因式分解的应用10.阅读材料,回答下列问题:若22228160m mn n n -+-+=,求m ,n 的值.解:∵22228160m mn n n -+-+=,∴222(2)(816)0m mn n n n -++-+=,即22()(4)0m n n +--=,又2()0m n -≥,2(4)0n -≥,∴2()0m n -=,2(4)0n -=,∴4n =,4m =.(1)若22440a b a +-+=,求a ,b 的值;(2)已知ABC 的三边a ,b ,c 满足2222220a b c ab ac ++--=.判断ABC 的形状,并说明理由.【答案】(1)2,0a b ==;(2)等边三角形,理由见分析.【分析】(1)参照例题,将等式转化为两个完全平方的和等于0的形式,进而求得a ,b 的值;(2)方法同(1).解:(1)∵22440a b a +-+=,∴()22440a a b ++-=,即2220()a b -+=,又22(2)0,0a b -≥≥,22(2)0,0a b ∴-==,2,0a b ∴==.(2)∵2222220a b c ab ac ++--=,2222(2)(2)0a ab b b ac c ∴-++-+=,即22()()0a b b c -+-=,又22()0,()0a b b c -≥-≥,∴22()0,()0a b b c -=-=,,a b b c ∴==,a b c ==∴.ABC ∴ 是等边三角形.【点拨】本题考查了因式分解的应用,完全平方公式,掌握完全平方公式是解题的关键.举一反三:【变式】已知:1a b +=,154ab =-(1)求22ab a b +的值(2)求22a b +的值(3)若22a b k -=-,求非负数k 的值【答案】(1)154-;(2)172;(3)k =【分析】(1)将代数式22ab a b +用提公因式法因式分解为()ab a b +,再将1a b +=,154ab =-代入计算即可;(2)将22a b +变形为()22a b ab +-,再将1a b +=,154ab =-代入计算即可;(3)类似的方法将()2a b -变形为()24a b ab +-,代入计算后求出a b -的值,继而根据22a b k -=-计算出符合条件的k 的值即可.(1)解:∵1a b +=,154ab =-,∴()221515144ab a b ab a b +=+=-⨯=-;(2)解:∵1a b +=,154ab =-,∴()2222a b a b ab+=+-15124⎛⎫=-- ⎪⎝⎭1512=+172=;(3)解:∵()()224a b a b ab-=+-1514164⎛⎫=--= ⎪⎝⎭,∴4a b -=±当4a b -=时,224k -=,k =∵k 为非负数,∴k =当4a b -=-时,224k -=-,22k =-(舍去),∴k =【点拨】本题考查了完全平方公式的应用以及提取公因式分解因式,能够灵活应用完全平方公式是解题的关键.11.阅读材料:()()()2222244454529232322x x x x x x x ⎛⎫⎛⎫+-=++--=+-=+++- ⎪ ⎪⎝⎭⎝⎭()()51x x =+-上面的方法称为多项式的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.根据以上材料,解答下列问题:(1)因式分解:223x x +-;(2)求多项式2610x x +-的最小值;(3)已知a 、b 、c 是△ABC 的三边长,且满足222506810a b c a b c +++=++,求△ABC 的周长.【答案】(1)()()31x x +-;(2)19-;(3)12【分析】(1)先配方后,再利用平方差公式进行因式分解;(2)配方后根据平方的非负性求最小值;(3)配方后根据非负性求出a ,b ,c 的值即可.(1)解:223x x +-222113x x =++--2(1)4x =+-(12)(12)x x =+++-;(3)(1)x x =+-;(2)2226106919(3)19x x x x x +-=++-=+-,∵2(3)0x +≥,∴多项式2610x x +-的最小值为19-;(3)由题意得:2226810500a b c a b c ++---+=,∴2226981610250a a b b c c +++++--=-.∴222(3)4)(0(5)a b c -+-+-=.又∵2(3)0a -≥,2(04)b -≥,2(05)c -≥,∴30a -=,40b -=,50c -=,∴3a =,4b =,5c =,∴ABC 的周长为34512++=.【点拨】本题考查了配方法因式分解以及因式分解的应用,掌握完全平方公式是解题的关键.举一反三:【变式】先阅读下面的内容,再解决问题,例题:若2222690m mn n n ++-+=,求m 和n 的值.解:因为2222690m mn n n ++-+=,所以2222690m mn n n n +++-+=.所以22()(3)0m n n ++-=.所以0,30m n n +=-=.所以3,3m n =-=.问题:(1)若224212120++-+=x y xy y ,求xy 的值;(2)已知a ,b ,c 是等腰ABC 的三边长,且a ,b 满足2210841a b a b +=+-,求ABC 的周长.【答案】(1)-4;(2)13或14【分析】(1)仿照例题的思路,配成两个完全平方式,然后利用偶次方的非负性,进行计算即可解答;(2)仿照例题的思路,配成两个完全平方式,再利用偶次方的非负性,先求出a ,b 的值,然后分两种情况,进行计算即可解答.解:(1)∵22421212x y xy y ++-+222231212x xy y y xy =+++-+2()3x y =++2(2)y -,=∴0x y +=,20y -=,∴2x =-,2y =,∴2(2)4=⨯-=-xy .(2)∵2210841a b a b +=+-,∴2210258160a a b b -+++=-,∴22(5)(4)0a b -+-=,∴50a -=,40b -=,∴5a =,4b =.由于ABC 是等腰三角形,所以5c =或4.①若5c =,则ABC 的周长为55414++=;②若4c =,则ABC 的周长为54413++=.所以ABC 的周长为13或14.【点拨】本题考查了配方法的应用,偶次方的非负性,三角形的三边关系,熟练掌握完全平方式是解题的关键.。

八年级数学重点知识点(全)

八年级数学重点知识点(全)

文档初二数学知识点因式分解1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”. 3.公因式的确定:系数的最大公约数·相同因式的最低次幂.注意公式:a+b=b+a ; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3. 4.因式分解的公式:(1)平方差公式: a 2-b 2=(a+ b )(a- b );(2)完全平方公式: a 2+2ab+b 2=(a+b)2, a 2-2ab+b 2=(a-b)2. 5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字; (2)使用因式分解公式时要特别注意公式中的字母都具有整体性; (3)因式分解的最后结果要求分解到每一个因式都不能分解为止; (4)因式分解的最后结果要求每一个因式的首项符号为正; (5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式.6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7.完全平方式:能化为(m+n )2的多项式叫完全平方式;对于二次三项式x 2+px+q , 有“ x 2+px+q 是完全平方式 ⇔ q 2p 2=⎪⎭⎫⎝⎛”.分式1.分式:一般地,用A 、B 表示两个整式,A ÷B 就可以表示为B A 的形式,如果B 中含有字母,式子BA 叫文档做分式.2.有理式:整式与分式统称有理式;即 ⎩⎨⎧分式整式有理式.3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义. 4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变; (2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;即 分母分子分母分子分母分子分母分子-=-=-=---(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式. 7.分式的乘除法法则:,bdacd c b a =⋅bcadc d b a d c b a =⋅=÷. 8.分式的乘方:为正整数)(n .b a b a n n n=⎪⎭⎫⎝⎛.9.负整指数计算法则: (1)公式: a 0=1(a ≠0), a -n=na 1(a ≠0); (2)正整指数的运算法则都可用于负整指数计算;(3)公式:nna b b a ⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛-,n m m n a b b a =--;(4)公式: (-1)-2=1, (-1)-3=-1.10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.文档11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂. 12.同分母与异分母的分式加减法法则: ;c b a c b c a ±=±bdbcad bd bc bd ad d c b a ±=±=±. 13.含有字母系数的一元一次方程:在方程ax+b=0(a ≠0)中,x 是未知数,a 和b 是用字母表示的已知数,对x 来说,字母a 是x 的系数,叫做字母系数,字母b 是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a 、b 、c 等表示已知数,用x 、y 、z 等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序. 数的开方1.平方根的定义:若x 2=a,那么x 叫a 的平方根,(即a 的平方根是x );注意:(1)a 叫x 的平方数,(2)已知x 求a 叫乘方,已知a 求x 叫开方,乘方与开方互为逆运算. 2.平方根的性质:(1)正数的平方根是一对相反数; (2)0的平方根还是0; (3)负数没有平方根.文档3.平方根的表示方法:a 的平方根表示为a 和a -.注意:a 可以看作是一个数,也可以认为是一个数开二次方的运算.4.算术平方根:正数a 的正的平方根叫a 的算术平方根,表示为a .注意:0的算术平方根还是0. 5.三个重要非负数: a 2≥0 ,|a|≥0 ,a ≥0 .注意:非负数之和为0,说明它们都是0. 6.两个重要公式: (1)()a a 2=; (a ≥0)(2) ⎩⎨⎧<-≥==)0a (a )0a (a a a 2 .7.立方根的定义:若x 3=a,那么x 叫a 的立方根,(即a 的立方根是x ).注意:(1)a 叫x 的立方数;(2)a 的立方根表示为3a ;即把a 开三次方. 8.立方根的性质:(1)正数的立方根是一个正数; (2)0的立方根还是0; (3)负数的立方根是一个负数. 9.立方根的特性:33a a -=-.10.无理数:无限不循环小数叫做无理数.注意:π和开方开不尽的数是无理数. 11.实数:有理数和无理数统称实数.12.实数的分类:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数与无限循环小负有理数正有理数有理数实数0(2)⎪⎩⎪⎨⎧负实数正实数实数0 . 13.数轴的性质:数轴上的点与实数一一对应.14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:414.12= 732.13= 236.25=.三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)文档文档文档文档几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二常识:1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,文档实用标准文案文档而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段. 3.如图,三角形中,有一个重要的面积等式,即:若CD ⊥AB ,BE ⊥CA ,则CD ·AB=BE ·CA. 4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和. 6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.7.如图,双垂图形中,有两个重要的性质,即: (1) AC ·CB=CD ·AB ; (2)∠1=∠B ,∠2=∠A . 8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边. 10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明. 12.符合“AAA ”“SSA ”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15.会用尺规完成“SAS ”、“ASA ”、“AAS ”、“SSS ”、“HL ”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图. ※18.几何重要图形和辅助线: (1)选取和作辅助线的原则:① 构造特殊图形,使可用的定理增加;ABCEDA BCD 12实用标准文案文档② 一举多得;③ 聚合题目中的分散条件,转移线段,转移角; ④ 作辅助线必须符合几何基本作图.(2)已知角平分线.(若BD 是角平分线)(3)已知三角形中线(若AD 是BC 的中线)(4) 已知等腰三角形ABC 中,AB=AC(5)其它文档。

北师大版初中数学八年级下册知识讲解,巩固练习(教学资料,补习资料):第四章 因式分解(提高)

北师大版初中数学八年级下册知识讲解,巩固练习(教学资料,补习资料):第四章 因式分解(提高)

第四章 因式分解(提高)提公因式法(提高)【学习目标】1. 了解因式分解的意义,以及它与整式乘法的关系;2. 能确定多项式各项的公因式,会用提公因式法将多项式分解因式. 【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.要点诠释:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式.(2)要把一个多项式分解到每一个因式不能再分解为止.(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、公因式多项式的各项中都含有相同的因式,那么这个相同的因式就叫做公因式. 要点诠释:(1)公因式必须是每一项中都含有的因式.(2)公因式可以是一个数,也可以是一个字母,还可以是一个多项式. (3)公因式的确定分为数字系数和字母两部分:①公因式的系数是各项系数的最大公约数.②字母是各项中相同的字母,指数取各字母指数最低的.要点三、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式,另一个因式是,即,而正好是除以所得的商,这种因式分解的方法叫提公因式法. 要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律,即.(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误.【典型例题】类型一、因式分解的概念1、下列由左到右的变形,哪些是因式分解?哪些不是?请说明理由.m m(1);(2); (3);(4); (5).【思路点拨】根据因式分解的定义是将多项式形式变成几个整式的积的形式,从对象和结果两方面去判断. 【答案与解析】解:因为(1)(2)的右边都不是积的形式,所以它们都不是因式分解;(4)的左边不是多项式而是一个单项式,(5)中的、都不是整式,所以(4)(5)也不是因式分解, 只有(3)的左边是多项式,右边是整式的积的形式,所以只有(3)是因式分解. 【总结升华】因式分解是将多项式变成积的形式,所以等式的左边必须是多项式,将单项式拆成几个单项式乘积的形式不能称为因式分解.等式的右边必须是整式因式积的形式. 举一反三:【变式】下列变形是因式分解的是 ( )A. B.C. D.【答案】B ;类型二、提公因式法分解因式2、(2019春•山亭区期中)把下列各式分解因式:(1)2m (m ﹣n )2﹣8m 2(n ﹣m )(2)﹣8a 2b +12ab 2﹣4a 3b 3. 【思路点拨】(1)直接提取公因式2m (m ﹣n ),进而分解因式得出答案; (2)直接提取公因式﹣4ab ,进而分解因式得出答案. 【答案与解析】解:(1)2m (m ﹣n )2﹣8m 2(n ﹣m )=2m (m ﹣n )[(m ﹣n )+4m ] =2m (m ﹣n )(5m ﹣n );()a x y ax ay +=+2221(2)(1)(1)x xy y x x y y y ++-=+++-24(2)(2)ax a a x x -=+-221122ab a b =222112a a a a ⎛⎫++=+ ⎪⎝⎭21a 1a243(2)(2)3a a a a a -+=-++2244(2)x x x ++=+11(1)x x x+=+2(1)(1)1x x x +-=-(2)﹣8a 2b +12ab 2﹣4a 3b 3=﹣4ab (2a ﹣3b +a 2b 2).【总结升华】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键. 举一反三:【变式】(2019春•濉溪县期末)下列分解因式结果正确的是( ) A.a b+7ab ﹣b=b (a +7a ) B.3x y ﹣3xy+6y=3y (x ﹣x ﹣2) C.8xyz ﹣6x y =2xyz (4﹣3xy ) D.﹣2a +4ab ﹣6ac=﹣2a (a ﹣2b+3c ) 【答案】D.解:A 、原式=b (a +7a+1),错误;B 、原式=3y (x ﹣x+2),错误;C 、原式=2xy (4z ﹣3xy ),错误;D 、原式=﹣2a (a ﹣2b+3c ),正确. 故选D .类型三、提公因式法分解因式的应用3、若、、为的三边长,且,则按边分类,应是什么三角形? 【答案与解析】解:∵∴当时,等式成立,当时,原式变为,得出, ∴∴是等腰三角形.【总结升华】将原式分解因式,就可以得出三边之间的关系,从而判定三角形的类型. 4、对任意自然数(>0),是30的倍数,请你判定一下这个说法的正确性,并说说理由. 【答案与解析】 解:∵为大于0的自然数,∴为偶数,15×为30的倍数, 即是30的倍数.222222222a b c ABC ∆()()()()a b b a b a a c a b a c -+-=-+-ABC ∆()()()()a b b a b a a c a b a c -+-=-+-()()()()a b b a a b a c a b c a ---=---()()()()a b b a c a a b --=--a b =a b ≠a b a c -=-b c =a b b c ==或ABC ∆n n 422n n +-()44422222221152n n n n n n +-=⨯-=-=⨯n 2n2n422n n +-【总结升华】判断是否为30的倍数,只需要把分解因式,看分解后有没有能够整除30的因式. 举一反三: 【变式】说明能被7整除.【答案】 解:所以能被7整除.5、(2019春•湘潭县期末)已知xy=﹣3,满足x+y=2,求代数式x y+xy 的值. 【思路点拨】将原式提取公因式xy ,进而将已知代入求出结果即可. 【答案与解析】解:∵xy=—3,x+y=2,∴x y+xy =xy (x+y )=﹣3×2=﹣6.【总结升华】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键. 【巩固练习】 一.选择题1. (2019春•北京期末)把多项式2x 3y ﹣x 2y 2﹣6x 2y 分解因式时,应提取的公因式为( )A .x 2yB .xy 2C .2x 3yD .6x 2y2. 观察下列各式:①;②;③;④;⑤;⑥.其中可以用提公因式法分解因式的有()A .①②⑤B .②④⑤C .②④⑥D .①②⑤⑥ 3. 下列各式中,运用提取公因式分解因式正确的是( )A. B.C. D.4. 分解因式的结果是( )A. B.C. D.422n n +-422n n +-200199198343103-⨯+⨯200199198343103-⨯+⨯()198219833431073=-⨯+=⨯200199198343103-⨯+⨯2222abx adx -2226x y xy +328421m m m -++3223a a b ab b ++-()()()22256p q x y x p q p q +-+++()()()24ax y x y b y x +--+()()()()22222a x a a x -+-=-+()32222x x x x x x ++=+()()()2x x y y x y x y ---=-()2313x x x x --=--2322212n n n x x x +++-+()22nx xx -+()2322n x x x -+()2122n xx x +-+()322n x x x -+5. (2019秋•西城区校级期中)把﹣6x y ﹣3x y ﹣8x y 因式分解时,应提取公因式( ) A.﹣3x y B.-2x yC.x yD.﹣x y6. 计算的结果是( )A. B.-1 C. D.-2二.填空题7. 把下列各式因式分解:(1)__________.(2)_________________.8. 在空白处填出适当的式子: (1);(2)9. 因式分解:______________.10. (2019•黔南州)若ab=2,a ﹣b=﹣1,则代数式a 2b ﹣ab 2的值等于___________. 11. .12. (2019春•深圳校级期中)若m ﹣n=3,mn=﹣2,则2m 2n ﹣2mn 2+1的值为_____________.三.解答题 13.已知:,求的值. 14. (2019春•北京校级月考)先阅读第(1)题的解答过程,然后再解第(2)题.(1)已知多项式2x 3﹣x 2+m 有一个因式是2x+1,求m 的值.解法一:设2x 3﹣x 2+m=(2x+1)(x 2+ax+b ),则:2x 3﹣x 2+m=2x 3+(2a+1)x 2+(a+2b )x+b比较系数得,解得,∴解法二:设2x 3﹣x 2+m=A•(2x+1)(A 为整式) 由于上式为恒等式,为方便计算了取,32222322222222()2011201022+-2010220102-2168a b ab --=()()2232xx y x y x ---=()()()()111x y y x --=-+()()238423279ab b c a bc +=+()()()x b c a y b c a a b c +--+----=2011201222_________________-=213x x +=43261510x x x ++2×=0,故 .(2)已知x 4+mx 3+nx ﹣16有因式(x ﹣1)和(x ﹣2),求m 、n 的值.15. 先分解因式(1)、(2)、(3),再解答后面问题; (1)1++(1+); (2)1++(1+)+;(3)1++(1+)++ 问题:.先探索上述分解因式的规律,然后写出:1++(1+)+++…+分解因式的结果是_______________..请按上述方法分解因式:1++(1+)+++…+(为正整数). 【答案与解析】 一.选择题1. 【答案】A ;【解析】2x 3y ﹣x 2y 2﹣6x 2y=x 2y (2x ﹣y ﹣6). 2. 【答案】D【解析】①;②;⑤;⑥.所以可以用提公因式法分解因式的有①②⑤⑥.3. 【答案】C ;【解析】;.4. 【答案】C ;5. 【答案】D .【解析】解:﹣6x 3y 2﹣3x 2y 2﹣8x 2y 3=﹣x 2y 2(6x+3+8y ),因此﹣6x 3y 2﹣3x 2y 2﹣8x 2y 3的公因式是﹣x 2y 2. 故选D .6. 【答案】C ; 【解析】.二.填空题7. 【答案】(1);(2)a a a a a a a ()21a +a a a a ()21a +a ()31a +a a a a a ()21a +a ()31a +()20121a +b a a a a ()21a +a ()31a +()1na +n ()abx adx axb d -=-()222623x y xy xy x y +=+()()()()()222225656p q x y xp q p q p q x y x p q ⎡⎤+-+++=+-++⎣⎦()()()()()2244ax y x y b y x x y a x y b ⎡⎤+--+=+--⎣⎦()()()()22222a x a a x -+-=--()322221x x x x x x ++=++()()()()2011201020102010201020102010222222222+-=+-⨯-=+-⨯=-()821ab a -+()()221xx y x --【解析】.8. 【答案】(1);(2); 【解析】. 9. 【答案】;【解析】 .10.【答案】-2;【解析】∵ab=2,a ﹣b=﹣1,∴a 2b ﹣ab 2=ab (a ﹣b )=2×(﹣1)=﹣2. 11.【答案】;【解析】.12.【答案】-11;【解析】解:∵2m 2n ﹣2mn 2+1=2mn (m ﹣n )+1将m ﹣n=3,mn=﹣2代入得: 原式=2mn (m ﹣n )+1 =2×(﹣2)×3+1 =﹣11.故答案为:﹣11.三.解答题 13.【解析】解:14.【解析】()()()()()()22222323221xx y x y x x x y x x y x x y x ---=---=--1y -2427b ()()()()()()111111y x x y y x y y -+=-+-=---()()1x y bc a -++-()()()x b c a y b c a a b c +--+----()()()x b c a y b c a b c a =+--+-++-()()1x y b c a =-++-20112-()201120122011201120112011222222122-=-⨯=-=-43261510x x x ++()()()43322222222226699691169333331313x x x x x x x x x x x x x x x x x x x =++++=++++=⨯+⨯+=+=+=⨯=解:设x 4+mx 3+nx ﹣16=A (x ﹣1)(x ﹣2)(A 为整式),取x=1,得1+m+n ﹣16=0①, 取x=2,得16+8m+2n ﹣16=0②, 由①、②解得m=﹣5,n=20. 15.【解析】解:(1)原式=;(2)原式=;(3)原式=.结果为:,.原式= = ==……=平方差公式(提高) 知识讲解【学习目标】1. 能运用平方差公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和平方差公式把多项式分解因式; 3.发展综合运用知识的能力和逆向思维的习惯. 【要点梳理】要点一、公式法——平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:要点诠释:(1)逆用乘法公式将特殊的多项式分解因式.(2)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.()()()2111a a a ++=+()()()()()()31111111a a a a a a a a ++++=+++=+⎡⎤⎣⎦()()()21111a a a a a a ⎡⎤++++++⎣⎦()()()1111a a a a a =+++++⎡⎤⎣⎦()()()2111a a a =+++()41a =+a ()20131a +b ()()()1111......1n a a a a a a -⎡⎤+++++++⎣⎦()()()()21111......1n a a a a a a a -⎡⎤++++++++⎣⎦()()()33111......1n a a a a a a -⎡⎤+++++++⎣⎦()()()()111111n n a a a a -++++=+()()22a b a b a b -=+-(3)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项(1)因式分解的对象是多项式; (2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止. 【典型例题】类型一、公式法——平方差公式1、分解因式:(1); (2); (3).【思路点拨】(1)把看做整体,变形为后分解.(2)可写成,可写成,和分别相当于公式里的和.(3)把、看作一个整体进行分解.【答案与解析】解:(1). (2).(3).【总结升华】注意套用公式时要注意字母的广泛意义,可以是字母,也可以是单项式或多项式. 举一反三:【变式】将下列各式分解因式:a b a b 2()4x y +-2216()25()a b a b --+22(2)(21)x x +--x y +22()2x y +-216()a b -2[4()]a b -225()a b +2[5()]a b +4()a b -5()a b +a b (2)x +(21)x -222()4()2(2)(2)x y x y x y x y +-=+-=+++-222216()25()[4()][5()]a b a b a b a b --+=--+[4()5()][4()5()]a b a b a b a b =-++--+(9)(9)a b a b =+--(9)(9)a b a b =-++22(2)(21)[(2)(21)][(2)(21)]x x x x x x +--=++-+--(31)(3)x x =+-(1); (2)(3); (4);【答案】解:(1)原式(2)原式= = (3)原式 (4)原式2、分解因式: (1); (2); (3); (4) 【答案与解析】 解:(1). (2).(3). (4). 【总结升华】(1)如果多项式的各项中含有公因式,那么先提取公因式,再运用平方差公式分解.(2)因式分解必须进行到每一个多项式的因式都不能分解为止. 举一反三:【变式】(2019•杭州模拟)先化简,再求值:(2a+3b )2﹣(2a ﹣3b )2,其中a=.【答案】解:原式=(2a+3b+2a ﹣3b )(2a+3b ﹣2a+3b )=4a×6b=24ab ,当a=,即ab=时,()()22259a b a b +--()22234x y x --33x y xy -+32436x xy -()()()()5353a b a b a b a b =++-+--⎡⎤⎡⎤⎣⎦⎣⎦()()()()8228444a b a b a b a b =++=++()()232232x y x x y x -+--()343y x y --()()()22xy x y xy x y x y =--=-+-()()()2249433x x yx x y x y =-=+-2128x -+33a b ab -516x x -2(1)(1)a b a -+-221112(16)(4)(4)888x x x x -+=--=-+-3322()()()a b ab ab a b ab a b a b -=-=+-5422216(16)(4)(4)(4)(2)(2)x x x x x x x x x x x -=-=+-=++-222(1)(1)(1)(1)(1)(1)(1)(1)(1)a b a a b a a b a b b -+-=---=--=-+-原式=24ab=4.类型二、平方差公式的应用3、(2019春•新化县期末)在日常生活中,如取款、上网需要密码,有一种因式分解法产生密码,例如x4﹣y4=(x﹣y)(x+y)(x2+y2),当x=9,y=9时,x﹣y=0,x+y=18,x2+y2=162,则密码018162.对于多项式4x3﹣xy2,取x=10,y=10,用上述方法产生密码是什么?【思路点拨】首先将多项式4x3﹣xy2进行因式分解,得到4x3﹣xy2=x(2x+y)(2x﹣y),然后把x=10,y=10代入,分别计算出2x+y=及2x﹣y的值,从而得出密码.【答案与解析】解:原式=x(4x2﹣y2)=x(2x+y)(2x﹣y),当x=10,y=10时,x=10,2x+y=30,2x﹣y=10,故密码为103010或101030或301010.【总结升华】本题是中考中的新题型,考查了学生的阅读能力及分析解决问题的能力,读懂密码产生的方法是关键.4、(2019春•成武县期末)阅读下面的计算过程:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1)=(22﹣1)(22+1)(24+1)=(24﹣1)(24+1)=(28﹣1).根据上式的计算方法,请计算:(1)(2)(3+1)(32+1)(34+1)…(332+1)﹣.【思路点拨】(1)原式变形后,利用平方差公式化简,计算即可得到结果;(2)原式变形后,利用平方差公式化简,计算即可得到结果.【答案与解析】解:(1)原式=2(1﹣)(1+)(1+)(1+)…(1+)=2(1﹣)(1+)(1+)…(1+)=2(1﹣)(1+)…(1+)=2(1﹣)=;(2)原式=(3﹣1)(3+1)(32+1)(34+1)…(332+1)﹣=(32﹣1)(32+1)(34+1)…(332+1)﹣=(364﹣1)﹣=﹣. 【总结升华】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.【巩固练习】一.选择题1.(2019•百色)分解因式:16﹣x 2=( )A .(4﹣x )(4+x )B .(x ﹣4)(x +4)C .(8+x )(8﹣x )D .(4﹣x )22. (2019春•东平县校级期末)下列多项式相乘,不能用平方差公式的是( )A.(﹣2y ﹣x )(x+2y )B.(x ﹣2y )(﹣x ﹣2y )C.(x ﹣2y )(2y+x )D.(2y ﹣x )(﹣x ﹣2y )3. 下列因式分解正确的是( ).A. B.C. D. 4. 下列各式,其中因式分解正确的是( )①;② ③④A.1个B.2个C.3个D.4个5. 若能被60或70之间的两个整数所整除,这两个数应当是( )A .61,63B .61,65C .63,65D .63,676. 乘积应等于( ) ()()2292323a b a b a b -+=+-()()5422228199a ab a a b a b -=+-()()2112121222a a a -=+-()()22436223x y x y x y x y ---=-+-22933422x y x y x y ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭()()2933x x x -=-+()()()()2212121m n m n m n +--+=+-()()()()2294252a b a c a b c a b c +-+=+-++4821-22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭A .B .C .D . 二.填空题 7. ; . 8. 若,将分解因式为__________. 9. 分解因式:_________. 10. 若,则是_________.11. (2019春•深圳期末)若A=(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是 .12.(2019•烟台)已知|x ﹣y +2|+=0,则x 2﹣y 2的值为 . 三.解答题13. 用简便方法计算下列各式:(1) -1998×2000 (2) (3)14.(2019秋•蓟县期末)已知(2a+2b+3)(2a+2b ﹣3)=72,求a+b 的值.15.设,,……,(为大于0的自然数) (1)探究是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出,,……,这一列数中从小到大排列的前4个完全平方数,并指出当满足什么条件时,为完全平方数.【答案与解析】一.选择题1. 【答案】A ;【解析】16﹣x 2=(4﹣x )(4+x ).2. 【答案】A ;【解析】解:A 、两项都是互为相反数,不符合平方差公式.B 、C 、D 中的两项都是一项完全相同,另一项互为相反数,符合平方差公式.故选:A .3. 【答案】C ;【解析】; ; 5121211202311_________m m a a +--=()2211x x x --+=)2|4|50m -+=22mx ny -2121()()=m m p q q p +--+-()()()216422n x x x x -=++-n 219992253566465⨯-⨯222222221009998979695......21-+-+-++-22131a =-22253a =-()()222121n a n n =+--n n a 1a 2a n a n n a ()()22933a b b a b a -+=+-()()()()()542222228199933a ab a a ba b a a b a b a b -=+-=++-. 4. 【答案】C ;【解析】①②③正确. .5. 【答案】C ; 【解析】6. 【答案】C ;【解析】 二.填空题7. 【答案】;【解析】.8. 【答案】;【解析】. 9. 【答案】;【解析】原式=. 10.【答案】4;【解析】.11.【答案】6;【解析】解:(2+1)(22+1)(24+1)(28+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1,=(22﹣1)(22+1)(24+1)(28+1)+1,()()()()()224362232223x y x y x y x y x y x y x y ---=+--+=+--()()()()229433223322a b a c a b a c a b a c +-+=++++--()()53232a b c a b c =+++-()()()()()482424241212212121212121-=+-=++-()()()()()()24126624122121212*********=+++-=++⨯⨯22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭111111111111......11112233991010314253108119 (223344991010)1111121020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-+- ⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⨯=()()111m a a a -+-()()211x x -+()()()()()()()22222211111111x x x x x x x x x x --+=---=--=-+()()2525x y x y +-4,25,m n ==()()222525mx ny x y x y -=+-21()(1)(1)m p q p q p q ---+--()22121()1()(1)(1)m m p q p q p q p q p q --⎡⎤---=--+--⎣⎦()()()()()22244224416x x x x x x ++-=+-=-=(24﹣1)(24+1)(28+1)+1,=(28﹣1)(28+1)+1,=216﹣1+1,=216因为216的末位数字是6,所以原式末位数字是6.12. 【答案】-4;【解析】∵|x ﹣y +2|+=0,∴x ﹣y +2=0,x +y ﹣2=0,∴x ﹣y=﹣2,x +y=2, ∴x 2﹣y 2=(x ﹣y )(x +y )=﹣4.三.解答题13.【解析】解:(1)-1998×2000 = (2)(3)14.【解析】解:已知等式变形得:[2(a+b )+3][2(a+b )﹣3]=72,即4(a+b )2﹣9=72,整理得:(a+b )2=,开方得:a+b=±.15.【解析】解:(1)又为非零的自然数,∴是8的倍数.这个结论用文字语言表述为:两个连续奇数的平方差是8的倍数.(2)这一列数中从小到大排列的前4个完全平方数为16,64,144,256. 为一个完全平方数的2倍时,为完全平方数.21999()()222199919991199911999199911--+=-+=()2222535664656535465⨯-⨯=-()()65354655354656100070420000=+-=⨯⨯=222222221009998979695......21-+-+-++-()()()()()()100991009998979897......2121100999897 (215050)=+-++-+++-=++++++=()()222121(2121)(2121)8n a n n n n n n n =+--=++-+-+=n n a n n a完全平方公式(提高)【学习目标】1. 能运用完全平方公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和公式法把多项式分解因式;3.发展综合运用知识的能力和逆向思维的习惯.【要点梳理】要点一、公式法——完全平方公式两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方. 即,. 形如,的式子叫做完全平方式. 要点诠释:(1)逆用乘法公式将特殊的三项式分解因式;(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件.(4)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项(1)因式分解的对象是多项式;(2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、公式法——完全平方公式1、分解因式:(1); (2);(3); (4).【答案与解析】解:(1).(2).(3)()2222a ab b a b ++=+()2222a ab b a b -+=-222a ab b ++222a ab b -+a b a b 22363ax axy ay -+-42242a a b b -+2222216(4)x y x y -+4224816a a b b -+222223633(2)3()ax axy ay a x xy y a x y -+-=--+=--42242222222()[()()]()()a a b b a b a b a b a b a b -+=-=+-=+-2222216(4)x y x y -+.(4).【总结升华】(1)提公因式法是因式分解的首选法.多项式中各项若有公因式,一定要先提公因式,常用思路是:①提公因式法;②运用公式法.(2)因式分解要分解到每一个因式不能再分解为止.举一反三:【变式】分解因式:(1).(2).【答案】解:(1)原式 .(2)原式 .2、(2019•大庆)已知a+b=3,ab=2,求代数式a 3b+2a 2b 2+ab 3.【思路点拨】先提公因式ab ,再根据完全平方公式进行二次分解,然后带入数据进行计算即可得解.【答案与解析】解:a 3b+2a 2b 2+ab 3= ab (a 2+2ab+b 2)= ab (a+b )2将a+b=3,ab=2代入得,ab (a+b )2=2×32=18.故代数式a 3b+2a 2b 2+ab 3的值是18.【总结升华】在因式分解中要注意整体思想的应用,对于式子较复杂的题目不要轻易去括号. 举一反三:【变式】若,是整数,求证:是一个完全平方数.【答案】解:22222222(4)(4)(44)(44)xy x y xy x y xy x y =-+=++--22222(2)[(44)](2)(2)x y x xy y x y x y =+--+=-+-4224222222816(4)[(2)(2)](2)(2)a a b b a b a b a b a b a b -+=-=+-=+-224()12()()9()x a x a x b x b ++++++22224()4()()x y x y x y +--+-22[2()]22()3()[3()]x a x a x b x b =++⋅+⋅+++22[2()3()](523)x a x b x a b =+++=++22[2()]22()()()x y x y x y x y =+-⋅+⋅-+-22[2()()](3)x y x y x y =+--=+x y ()()()()4234x y x y x y x y y +++++()()()()4234x y x y x y x y y +++++()()()()4423x y x y x y x y y =+++++⎡⎤⎡⎤⎣⎦⎣⎦22224(54)(56)x xy y x xy y y =+++++令∴上式即 类型二、配方法分解因式3、用配方法来解决一部分二次三项式因式分解的问题,如:那该添什么项就可以配成完全平方公式呢?我们先考虑二次项系数为1的情况:如添上什么就可以成为完全平方式? 因此添加的项应为一次项系数的一半的平方.那么二次项系数不是1的呢?当然是转化为二次项系数为1了.分解因式:.【思路点拨】提出二次项的系数3,转化为二次项系数为1来解决.【答案与解析】解:如 2254x xy y u ++=2422222(2)()(55)u u y y u y x xy y ++=+=++()()()()4222234(55)x y x y x y x y y x xy y +++++=++()()()()()()222282118191313 24x x x x x x x x x --=-+--=--=-+--=+-2x bx +2222()2222b b b x bx x x x ⎛⎫⎛⎫++=+⋅⋅+=+ ⎪ ⎪⎝⎭⎝⎭2352x x +-2252352333x x x x ⎛⎫+-=+- ⎪⎝⎭222555233663x x ⎡⎤⎛⎫⎛⎫=++--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦25493636x ⎡⎤⎛⎫=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2257366x ⎡⎤⎛⎫⎛⎫=+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦575736666x x ⎛⎫⎛⎫=+++- ⎪⎪⎝⎭⎝⎭()1323x x ⎛⎫=+- ⎪⎝⎭【总结升华】配方法,二次项系数为1的时候,添加的项应为一次项系数的一半的平方. 二次项系数不是1的时候,转化为二次项系数为1来解决.类型三、完全平方公式的应用4、(2019春•娄底期末)先仔细阅读材料,再尝试解决问题:完全平方公式x 2±2xy+y 2=(x±y)2及(x±y)2的值恒为非负数的特点在数学学习中有着广泛的应用,比如探求多项式2x 2+12x ﹣4的最大(小)值时,我们可以这样处理:解:原式=2(x 2+6x ﹣2)=2(x 2+6x+9﹣9﹣2)=2[(x+3)2﹣11]=2(x+3)2﹣22因为无论x 取什么数,都有(x+3)2的值为非负数所以(x+3)2的最小值为0,此时x=﹣3进而2(x+3)2﹣22的最小值是2×0﹣22=﹣22所以当x=﹣3时,原多项式的最小值是﹣22.解决问题:请根据上面的解题思路,探求多项式3x 2﹣6x+12的最小值是多少,并写出对应的x 的取值.【答案与解析】解:原式=3(x 2﹣2x+4)=3(x 2﹣2x+1﹣1+4)=3(x ﹣1)2+9,∵无论x 取什么数,都有(x ﹣1)2的值为非负数,∴(x ﹣1)2的最小值为0,此时x=1,∴3(x ﹣1)2+9的最小值为:3×0+9=9,则当x=1时,原多项式的最小值是9.【总结升华】此题考查了完全平方公式,非负数的性质,以及配方法的应用,熟练掌握完全平方公式是解本题的关键.举一反三:【变式1】若△ABC 的三边长分别为、、,且满足, 求证:.【答案】解:所以a b c 222166100a b c ab bc --++=2a c b +=22216610a b c ab bc --++()()()22222269251035a ab b b bc c a b b c =++--+=+--()()22350a b b c +--=()()2235a b b c +=-所以所以因为△ABC 的三边长分别为、、,,所以,矛盾,舍去.所以.【变式2】(2019春•萧山区期中)若(2019﹣x )(2019﹣x )=2019,则(2019﹣x )2+(2019﹣x )2= .【答案】4032.解:∵(2019﹣x )(2019﹣x )=2019,∴[(2019﹣x )﹣(2019﹣x )]2=(2019﹣x )2+(2019﹣x )2﹣2(2019﹣x )(2019﹣x )=4,则(2019﹣x )2+(2019﹣x )2=4+2×2019=4032. 【巩固练习】一.选择题1. 若是完全平方式,则的值为( )A .-5B .7C .-1D .7或-12.(2019•富顺县校级模拟)下列各式中,不能用完全平方公式分解的个数为( ) ①x 2﹣10x +25;②4a 2+4a ﹣1;③x 2﹣2x ﹣1;④;⑤.A .1个B .2个C .3个D .4个3. 如果是一个完全平方公式,那么是( ) A. B. C. D.4. (2019•永州模拟)已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a 2+b 2+c2﹣ab ﹣bc ﹣ac 的值为( )A . 0B . 1C . 2D . 35. 若,则的值为( )A.12B.6C.3D.06. 若为任意实数时,二次三项式的值都不小于0,则常数满足的条件是( )A. B. C. D.二.填空题7.(2019•赤峰)分解因式:4x 2﹣4xy +y 2= .8. 因式分解:=_____________. 9. 因式分解: =_____________.10. 若,=_____________.3(5)a b b c +=±-28a c b b c a +==-或a b c c a b -<8b c a b =-<2a c b +=22(3)16x m x +-+m 24a ab m --m 2116b 2116b -218b 218b -3a b +=222426a ab b ++-x 26x x c -+c 0c ≥9c ≥0c >9c >()222224m nm n +-2221x x y ++-224250x y x y +-++=x y +11. 当取__________时,多项式有最小值_____________.12.(2019•宁波模拟)如果实数x 、y 满足2x 2﹣6xy+9y 2﹣4x+4=0,那么= .三.解答题13.若,,求的值.14.(2019春•怀集县期末)已知a+=,求下列各式的值: (1)(a+)2;(2)(a ﹣)2;(3)a ﹣.15. 若三角形的三边长是,且满足,试判断三角形的形状.小明是这样做的:解:∵,∴.即∵,∴.∴该三角形是等边三角形.仿照小明的解法解答问题:已知: 为三角形的三条边,且,试判断三角形的形状.【答案与解析】一.选择题1. 【答案】D ;【解析】由题意,=±4,.2. 【答案】C ;【解析】② ③ ⑤ 不能用完全平方公式分解.3. 【答案】B ;【解析】,所以,选B. 4. 【答案】D ;【解析】解:由题意可知a ﹣b=﹣1,b ﹣c=﹣1,a ﹣c=﹣2,所求式=(2a 2+2b 2+2c 2﹣2ab ﹣2bc ﹣2ca ),=[(a 2﹣2ab+b 2)+(b 2﹣2bc+c 2)+(a 2﹣2ac+c 2)],=[(a ﹣b )2+(b ﹣c )2+(a ﹣c )2],x 2610x x ++44225a b a b ++=2ab =22a b +a b c 、、2222220a b c ab bc ++--=2222220a b c ab bc ++--=2222(2)(2)0a ab b c bc b -++-+=()()220a b b c -+-=()()220,0a b b c -≥-≥,a b b c a b c ====即a b c 、、2220a b c ab bc ac ++---=3m -71m =-或222211142222a ab m a a b b a b ⎛⎫⎛⎫--=-⋅⋅+=- ⎪ ⎪⎝⎭⎝⎭2144m b -==[(﹣1)2+(﹣1)2+(﹣2)2],=3.故选D .5. 【答案】A ;【解析】原式=. 6. 【答案】B ;【解析】,由题意得,,所以.二.填空题 7. 【答案】(2x ﹣y )2 【解析】4x 2﹣4xy +y 2=(2x )2﹣2×2x •y +y 2=(2x ﹣y )2.8. 【答案】; 【解析】.9. 【答案】【解析】. 10.【答案】1;【解析】,所以,. 11.【答案】-3,1;【解析】,当时有最小值1. 12.【答案】.【解析】解:可把条件变成(x 2﹣6xy+9y 2)+(x 2﹣4x+4)=0,即(x ﹣3y )2+(x ﹣2)2=0,因为x ,y 均是实数,∴x﹣3y=0,x ﹣2=0,∴x=2,y=,∴==.故答案为. 三.解答题13.【解析】解:将代入 ()222623612a b +-=⨯-=()()22639x x c x c -+=-+-90c -≥9c ≥()()22m n m n +-()()()()()22222222222422m n m n m n mn m n mn m n m n +-=+++-=+-()()11x y x y +++-()()()222221111x x y x y x y x y ++-=+-=+++-()()2222425210x y x y x y +-++=-++=2,1x y ==-1x y +=()2261031x x x ++=++3x =-44224422222a b a b a b a b a b ++=++-()22222a b a b =+-2ab =()222225a b a b +-=∵≥0,∴=3.14.【解析】解:(1)把a+=代入得:(a+)2=()2=10; (2)∵(a+)2=a 2++2=10,∴a 2+=8,∴(a ﹣)2=a 2+﹣2•a•=8﹣2=6;(3)a ﹣=±=±.15.【解析】 解:∵∴∴∴,该三角形是等边三角形.十字相乘法及分组分解法(提高)【学习目标】1. 熟练掌握首项系数为1的形如型的二次三项式的因式分解.()()2222222259a b a b +-=+=22a b +22a b +2222222220a b c ab bc ac ++---=()()()2222222220a ab bb bc c a ac c -++-++-+=()()()2220a b b c a c -+-+-=000a b b c a c -=⎧⎪-=⎨⎪-=⎩a b c ==pq x q p x +++)(22. 基础较好的同学可进一步掌握首项系数非1的简单的整系数二次三项式的因式分解.3. 对于再学有余力的学生可进一步掌握分数系数;实数系数;字母系数的二次三项式的因式分解.(但应控制好难度)4. 掌握好简单的分组分解法.【要点梳理】要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式,若存在 ,则要点诠释:(1)在对分解因式时,要先从常数项的正、负入手,若,则同号(若,则异号),然后依据一次项系数的正负再确定的符号(2)若中的为整数时,要先将分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于,直到凑对为止.要点二、首项系数不为1的十字相乘法在二次三项式(≠0)中,如果二次项系数可以分解成两个因数之积,即,常数项可以分解成两个因数之积,即,把排列如下:按斜线交叉相乘,再相加,得到,若它正好等于二次三项式的一次项系数,即,那么二次三项式就可以分解为两个因式与之积,即.要点诠释:(1)分解思路为“看两端,凑中间”(2)二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.要点三、分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点诠释:分组分解法分解因式常用的思路有:2x bx c ++pq c p q b=⎧⎨+=⎩()()2x bx c x p x q ++=++2x bx c ++c 0c >p q 、0c <p q 、b p q 、2x bx c ++b c 、c b 2ax bx c ++a a 12a a a =c 12c c c =1212a a c c ,,,1221a c a c +2ax bx c ++b 1221a c a c b +=11a x c +22a x c +()()21122ax bx c a x c a x c ++=++a要点四、添、拆项法把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、公式法或分组分解法进行分解.要注意,必须在与原多项式相等的原则下进行变形.添、拆项法分解因式需要一定的技巧性,在仔细观察题目后可先尝试进行添、拆项,在反复尝试中熟练掌握技巧和方法.【典型例题】类型一、十字相乘法1、分解因式:【答案与解析】解:原式=【总结升华】将视作常数,就以为主元十字相乘可解决.举一反三:【变式】分解因式:【答案】解:原式2、分解因式:【思路点拨】该题可以先将看作一个整体进行十字相乘法分解,接着再套用一次十字相乘.【答案与解析】解:因为22(1)(6136)x a x a a++--+()()()212332x a x a a++---()()()()23322332x a x ax a x a=--+-⎡⎤⎡⎤⎣⎦⎣⎦=-++-a x23345xy y x y++--2(34)35(35)(1)y x y x y x y=+-+-=+-+()2a a-所以:原式=[-2][ -12] ==【总结升华】十字相乘法对于二次三项式的分解因式十分方便,大家一定要熟练掌握. 举一反三:【变式】分解因式:;【答案】解:原式3、分解下列因式(1) (2)【答案与解析】解:(1)令, 则原式(2)令, 原式【总结升华】此两道小题结构都非常有特点,欲分解都必须先拆开,再仔细观察每个式子中都存在大量相同的因式→整体性想法.整体性思路又称换元法,这与我们生活中搬家有些类似,要先将一些碎东西找包,会省许多事. 类型二、分组分解法4、分解因式:【思路点拨】对完全平方公式熟悉的同学,一看见该式,首先想到的肯定是式子中前三项恰好构成,第4、5项→.()()()22221214a a a a a a ----=--22(2)(12)a a a a ----()()()()1234a a a a +-+-222(3)2(3)8x x x x ----()()223432x x x x =---+()()()()4112x x x x =-+--22(1)(2)12x x x x ++++-22(33)(34)8x x x x +-++-21x x t ++=222(1)1212(4)(3)(5)(2)t t t t t t x x x x =+-=+-=+-=+++-2(2)(1)(5)x x x x =+-++23x x m +=2(3)(4)820(5)(4)m m m m m m =-+-=+-=+-222(35)(34)(4)(1)(35)x x x x x x x x =+++-=+-++222332x xy y x y -++-+2()x y -3()x y -【答案与解析】解:原式【总结升华】①熟记公式在复杂背景下识别公式架构很重要;②我们前面练习中无论公式、配方、十字相乘一般都只涉及单一字母,其实代数式学习是一个结构的学习,其中任一个字母均可被一个复杂代数式来替代,故有时要有一些整体性认识的想法.举一反三:【变式1】分解因式:(1)(2)(3)【答案】解:(1)原式;(2)原式;(3)原式.【变式2】(2019秋•昌江区校级期末)分解因式:.【答案】解:= ==.类型三、拆项或添项分解因式5、(2019春•吉州区期末)阅读理解:对于二次三项式x 2+2ax+a 2可以直接用公式法分解为(x+a )2的形式,但对于二次三项式x 2+2ax ﹣8a 2,就不能直接用公式法了.我们可以在二次三项式x 2+2ax ﹣8a 2中先加上一项a 2,使其成为完全平方式,再减去a 2这项,使整个式子的值不变,于是又:x 2+2ax ﹣8a 2=x 2+2ax ﹣8a 2+a 2﹣a 2=(x 2+2ax+a 2)﹣8a 2﹣a 2=(x+a )2﹣9a 2=[(x+a )+3a][(x+a )﹣3]2()3()2x y x y =-+-+(1)(2)x y x y =-+-+22a b ac bc -++225533a b a b --+23345xy y x y ++--()()()()()a b a b c a b a b a b c =+-++=+-+()()()()()()()225353553a b a b a b a b a b a b a b =---=+---=-+-233453(1)(1)(5)(1)(35)xy x y y x y y y y x y =++--=+++-=++-2242244241a b c ab ac bc ++--+-2242244241a b c ab ac bc ++--+-()()()2222444241a b ab ac bcc +-+-++-()()()()222222211b a c b a c c -+-++-()()222121b a c b a c -++-+-=(x+4a )(x ﹣2a )像这样把二次三项式分解因式的方法叫做添(拆)项法.(1)请认真阅读以上的添(拆)项法,并用上述方法将二次三项式:x 2+2ax ﹣3a 2分解因式.(2)直接填空:请用上述的添项法将方程的x 2﹣4xy+3y 2=0化为(x ﹣ )•(x ﹣ )=0并直接写出y 与x 的关系式.(满足xy≠0,且x≠y)(3)先化简﹣﹣,再利用(2)中y 与x 的关系式求值.【答案与解析】解:(1)x 2+2ax ﹣3a2 =x 2+2ax+a 2﹣4a2 =(x+a )2﹣4a2 =(x+a+2a )(x+a ﹣2a )=(x+3a )(x ﹣a );(2)x 2﹣4xy+3y2 =x 2﹣4xy+4y 2﹣y2 =(x ﹣2y )2﹣y2 =(x ﹣2y+y )(x ﹣2y ﹣y )=(x ﹣y )(x ﹣3y );x=y 或x=3y ;故答案为:y ;3y(3)原式===﹣, 若x=y ,原式=﹣2;若x=3y ,原式=﹣. 【总结升华】此题考查了因式分解﹣添(拆)项法,正确地添(拆)项是解本题的关键.【巩固练习】一.选择题1. (2019秋·惠民县期末)如果多项式能因式分解为,那么下列结论正确的是 ( ).A.=6B.=1C.=-2D.=32. 若,且,则的值为( ). A.5 B.-6 C.-5 D.63. 将因式分解的结果是( ).2322mx nx --()()32x x p ++m n p mnp ()2230x a b x ab x x +++=--b a <b ()()256x y x y +-+-A. B.C. D.4.(滨湖区校级期中)把多项式1+a+b+ab 分解因式的结果是( )A .(a ﹣1)(b ﹣1)B .(a+1)(b+1)C .(a+1)(b ﹣1)D .(a ﹣1)(b+1)5. 对运用分组分解法分解因式,分组正确的是( )A. B.C. D.6.如果有一个因式为,那么的值是( )A. -9B.9C.-1D.1二.填空题7.(2019•黄冈模拟)分解因式: .8. 分解因式:= .9.分解因式的结果是__________.10. 如果代数式有一因式,则的值为_________. 11.若有因式,则另外的因式是_________.12. 分解因式:(1);(2)三.解答题13. 已知,, 求的值.14. 分解下列因式:(1)(2)(3)(4) 15.(2019•巴南区一模)先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.()()23x y x y +++-()()23x y x y +-++()()61x y x y +-++()()61x y x y +++-224293x x y y +--22(42)(93)x x y y ++--22(49)(23)x y x y -+-22(43)(29)x y x y -+-22(423)9x x y y +--3233x x x m +-+()3x +m 2242y xy x --+=224202536a ab b -+-5321x x x -+-a 3223a a b ab b --+()a b -3)32(2-+-+k x k kx mn m x m n x -+-+22)2(0x y +=31x y +=2231213x xy y ++()()128222+---a a a a 32344xy xy x y x y -++42222459x y x y y --43226a a a +-如:ax+by+bx+ay=(ax+bx )+(ay+by )=x (a+b )+y (a+b )=(a+b )(x+y )2xy+y 2﹣1+x 2=x 2+2xy+y 2﹣1=(x+y )2﹣1=(x+y+1)(x+y ﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如: x 2+2x ﹣3=x 2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x ﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a 2﹣b 2+a ﹣b ;(2)分解因式:x 2﹣6x ﹣7;(3)分解因式:a 2+4ab ﹣5b 2. 【答案与解析】一.选择题1. 【答案】B ;【解析】, ∴,解得.2. 【答案】B ;【解析】,由,所以. 3. 【答案】C ;【解析】把看成一个整体,分解.4. 【答案】B ;【解析】解:1+a+b+ab=(1+a )+b (1+a )=(1+a )(1+b ).故选:B .5. 【答案】B ;【解析】A 各组经过提取公因式后,组与组之间无公因式可提取,所以分组不合理.B 第一组可用平方差公式分解得,与第二组有公因式可提取,所以分组合理,C 与D 各组均无公因式,也不符合公式,所以无法继续进行下去,分组不合理.6. 【答案】A ;【解析】由题意当时,代数式为零,解得.二.填空题()()()223233222x x p x p x p mx nx ++=+++=--22,32p p n =-+=-1n =()()23065x x x x --=-+b a <6b =-()x y +()()()()25661x y x y x y x y +-+-=+-++()()2323x y x y +-23x y-3x =-9m =-7. 【答案】. 【解析】解:===.8. 【答案】; 【解析】原式9. 【答案】;【解析】原式.10.【答案】16;【解析】由题意当时,代数式等于0,解得. 11.【答案】; 【解析】.12.【答案】;; 【解析】;.三.解答题13.【解析】解:由,解得 所以,原式.14.【解析】解:(1)原式;()()22x y x y -+--2242y xy x --+()2224y xy x -+-()24x y --()()22x y x y -+--()()256256a b a b -+--()224202536a ab b=-+-()()()22256256256a b a b a b =--=-+--()()()22111x x x x +--+()()()()()()()23222321111111x xx x x x x x x =-+-=-+=+--+4x =16a =()()a b a b -+()()322322a a b ab b aa b b a b --+=---()()2a b a b =-+()()31kx k x +-+()()x m x m n --+()()2(23)331kx k x k kx k x +-+-=+-+()()()()22(2)x n m x m mn x m x m n x m x m n +-+-=---=--+⎡⎤⎣⎦()()22231213334x xy y x y x y y ++=+++0x y +=31x y +=12y =21301412⎛⎫=⨯⨯+⨯= ⎪⎝⎭()()()()()()22261223a a a a a a a a =----=+-+-。

浙教版数学八年级下册 第二章一元二次方程单元综合复习

浙教版数学八年级下册  第二章一元二次方程单元综合复习

浙教版数学(八下) 第二单元综合复习一、 一元二次方程的求解1.因式分解法:若A ·B=0,则A=0或B=0.2.开平方法:形如x 2=a(a ≥0),(mx +n)2=b(m ≠0,b ≥0),可用开平方法直接求解.3.配方法:口诀——除移配开求答.(系数化为1)┘ 4.公式法:求根公式x=﹣b ±b 2-4ac2a (a ≠0).【习题一】(2)已知(a 2+b 2-1)(a 2+b 2+3)-12=0,求a 2+b 2的值.【习题二】解方程:x 2-b 2=a(3x -2a +b).【习题三】解方程:(1)(3x +1)2=9(2x +3)2; (2)(3x -11)(x -2)=2;(3) x(x +1)3 -1=(x -1)(x +2)4; (4)(3x -2)(3x +2)=x.【习题四】设a ,b 是一个直角三角形两条直角边的长,且(a 2+b 2)(a 2+b 2+1)=12,则这个直角三角形的斜边长为___________.【习题五】如果x-3是多项式2x 2-5x+m 的一个因式,则m 等于( ) A .6 B .-6 C .3 D .-3 【习题六】用配方法解下列方程时,配方有错误..的是( ) A .x 2-2x -99=0化为(x -1)2=100 B .x 2+8x +9=0化为(x +4)2=25 C .4t 2-4t -5=0化为(2t -1)2=6 D .9y 2+6y -2=0化为(3y +1) 2=3二、根系关系1.求根关系:x =﹣b ±b 2-4ac2a (a ≠0)2.判别式:△=b 2-4ac3.韦达定理:x 1+x 2=﹣b a ,x 1·x 2=ca4.常见题型:(1)已知方程的一根,求另一根.(2)已知两数的和与积,构造一元二次方程解题. (3)求待定系数的值或取值范围. (4)求对称式和非对称式的值.【习题一】已知方程x 2-5x+15=k 2的一个根是2,则k 的值是_________,方程的另一个根为___________.【习题二】若m 为实数,方程x 2-3x+m=0的一个根的相反数是方程x 2+3x-3=0的一个根,则x 2-3x+m=0的根是___________.【习题三】现定义运算“☆”,对于任意实数a 、b ,都有a ☆b=a 2-3a+b ,若x ☆2=6,则实数x 的值是_________.【习题四】若正数a 是一元二次方程x 2-5x+m=0的一个根,-a 是一元二次方程x 2+5x-m=0的一个根,则a 的值是___________.【习题五】已知关于x 的一元二次方程ax 2+bx+1=0(a ≠0)有两个相等的实数根,求ab 2(a −2)2+b 2−4的值.【习题六】已知关于x 的方程x 2-(k+2)x+2k=0,若一个等腰三角形的一边长为1,另两边长恰是这个方程的两个根,求这个等腰三角形的周长与面积.【习题七】已知关于x的方程x2-(m+2)x+(2m-1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.【习题八】若k是自然数,且关于x的二次方程(k-1)x2-px+k=0有两个正整数根,求k kp•(p p+k k)+k k-p+2 +kp+1的值.【习题九】已知α,β是方程x2+2x-7=0的两个实数根,求α2+3β2+4β的值.【习题十】设x1、x2是一元二次方程x2+x-3=0的两个根,求x13-4x22+19的值.三、生活类应用1. 增长(降低)率问题若基数为a ,平均增长(降低)率为x ,则连续增长n 次后为a(1±x)n . 2. 数字问题① 有关三个连续整数(或连续奇数、连续偶数)的问题,设中间一个数为x ,再根据题 目中的条件用含x 的代数式表示其余两个数. ② 多位数的表示方法:a. 两位数=(十位数字)×10+(个位数字);b. 三位数=(百位数字)×100+(十位数字)×10+(个位数字);… 3. 利润问题① 毛利润=售出价-进货价 ② 纯利润=售出价-进货价-其他费用 ③ 利润率=利润成本×100%4. 储蓄问题① 利息=本金×年(月)利润×年(月)数 ② 利息税=利息×税率③ 本息和=[1+年(月)利率×年(月)数]×本金(不计利息税)④ 不计利息税后,且到期后又连本带利一起再存相同时间,且年利率不变时,本息和=本金×(1+年利率)年数【习题一】某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x ,那么x 满足的方程是( )A .100(1+x)2=81B .100(1-x)2=81C .100(1-x%)2=81D .100x 2=81【习题二】三个连续自然数的平方和为50,求这三个数.在这个问题中,设中间的自然数为x ,则其余两个自然数为_________、_________,根据题意,可列出方程:________________________________.【习题三】某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是( ) A .(3+x)(4-0.5x)=15 B .(x+3)(4+0.5x)=15 C .(x+4)(3-0.5x )=15 D .(x+1)(4-0.5x)=15【习题四】近年来,某县为发展教育事业,加大了对教育经费的投入,2009年投入6000万元,2011年投入8640万元.(1)求2009年至2011年该县投入教育经费的年平均增长率;(2)该县预计2012年投入教育经费不低于9500万元,若继续保持前两年的平均增长率,该目标能否实现?请通过计算说明理由.【习题五】某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?【习题六】某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?【习题七】明在2013年暑假帮某服装店买卖体恤衫时发现,在一段时间内,体恤衫每件80元销售时,每天销售量是20件,单价每降低4元,每天就可以多售出8件,已知该体恤衫进价是每件40元,请问服装店一天能赢利1200元吗?如果设每件降低x元,那么所列方程正确的是()A.(80-x)(20+x)=1200 B.(80-x)(20+2x)=1200C.(40-x)(20+x)=1200 D.(40-x)(20+2x)=1200【习题八】某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196【习题九】某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出.已知生产x只玩具熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+30x,P=170-2x.(1)当日产量为多少时,每日获得的利润为1750元?(2)当日产量为多少时,可获得最大利润?最大利润是多少?四、几何应用1.常用勾股定理,面积公式,图形特点,平移,数形结合,三边关系等解题.【习题一】要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是()A.5个 B.6个 C.7个 D.8个【习题二】某初三一班学生上军训课,把全班人数的18排成一列,这样排成一个正方形的方队后还有7人站在一旁观看,此班有学生________人.【习题三】如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80-100x-80x=7644 B.(100-x)(80-x)+x2=7644C.(100-x)(80-x)=7644 D.100x+80x=356习题三图习题四图【习题四】如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1cm2,则它移动的距离AA′等于()A.0.5cm B.1cm C.1.5cm D.2cm【习题五】一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°,∠B=90°,BC=6米.当正方形DEFH运动到什么位置,当AE=_____米时,有DC2=AE2+BC2.【习题六】百货大楼服装柜销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十•一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,要使平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?请先填空后再列方程求解:设每件童装降价_________元,那么平均每天就可多售出_________件,现在一天可售出_________件,每件盈利_________元.【习题七】配方法不仅可以用来解一元二次方程,还可以用来解决很多问题.例如:因为3a2≥0,所以3a2-1≥-1,即:3a2-1就有最小值-1.只有当a=0时,才能得到这个式子的最小值-1.同样,因为-3a2≤0.所以-3a2+1≤1,即:-3a2+1就有最大值1,只有当a=0时,才能得到这个式子的最大值1.(1)当x=________时,代数式-2(x+1)2-1有最________值(填“大”或“小”值为______. (2)当x=________时,代数式 2x 2+4x+1有最________值(填“大”或“小”)值为______. (3)矩形自行车场地ABCD 一边靠墙(墙长10m ),在AB 和BC 边各开一个1米宽的小门(不用木板),现有能围成14m 长的木板,当AD 长为多少时,自行车场地的面积最大?最大面积是多少?【习题八】在长方形ABCD 中,AB=16cm ,BC=6cm ,点P 从A 点开始沿AB 边向点B 以3cm/s 的速度移动,点Q 从点C 开始沿CD 边向点D 以2cm/s 的速度移动,点P 、Q 从出发开始,经过几秒时,点P 、Q 、D 组成的三角形是等腰三角形?浙教版数学(八下) 第二单元综合复习参考答案一、一元二次方程的求解习题一.(1)m=﹣1;x 1=﹣1+72 ,x 2=﹣1-72.(2) a 2+b 2=3【解答】设a 2+b 2=n(n ≥0),则原方程变形为(n-1)(n-3)-12=0.整理,得n 2+2n-15=0,即(n+5)(n-3)=0,,∴n 1=﹣5(不合题意,舍去),n 2=3,∴a 2+b 2=3. 习题二.x 1=2a+b ,x 2=a-b 【解答】x 2-b 2=a(3x-2a +b) x 2-b 2=3ax-2a 2+ab x 2-3ax+ 94-a 2=14-a 2+b 2+ab(x-32a)2=(12a+b)2∴x-32a=12a+b 或x-32a=-(12a+b)∴x 1=2a+b ,x 2=a-b.习题三.(1)x 1=﹣83 ,x 2=﹣109;(2)x 1=53 ,x 2=4;(3)x 1=2,x 2=﹣3;(4)x 1=1,x 2=﹣23 .习题四. 3【解答】∵a ,b 是一个直角三角形两条直角边的长, 设斜边为c ,∴(a 2+b 2)(a 2+b 2+1)=12,根据勾股定理得:c 2(c 2+1)-12=0,即(c 2-3)(c 2+4)=0, ∵c 2+4≠0, ∴c 2-3=0,解得c= 3 或c=﹣ 3 (舍去). 则直角三角形的斜边长为 3 . 习题五. D【分析】x-3是多项式2x 2-5x+m 的一个因式,即方程2x 2-5x+m=0的一个解是3,代入方程求出m 的值. 习题六. B二、根系关系习题一. ±3,3【解答】已知方程x 2-5x+15=k 2的一个根为x l =2,设另一根是x 2, 则x 1+x 22,则另一个根x 2=3,k=±3.习题二【解答】解方程x 2+3x-3=0的根是,方程x 2-3x+m=0的一个根的相反数是方程x 2+3x-3=0的一个根,因而方程x 2+3x-3=0的一个根的相反数是方程x 2-3x+m=0的一个根,则x 2-3x+m=0的根是﹣(﹣3±21 2 )即3±212.习题三. 4或-1【解答】x ☆2=6,∴x 2-3x+2=6, ∴x 2-3x-4=0,∴(x-4)(x+1)=0, ∴x-4=0,x+1=0,∴x 1=4,x 2=-1. 习题四. 5 【解答】∵a 是一元二次方程x 2-5x+m=0的一个根,-a 是一元二次方程x 2+5x-m=0的一个根,∴a 2-5a+m=0①,a 2-5a-m=0②, ①+②,得2(a 2-5a)=0, ∵a >0,∴a=5. 习题五.4【解答】∵ax 2+bx+1=0(a ≠0)有两个相等的实数根, ∴△=b 2-4ac=0,即b 2-4a=0,∴b 2=4a ,∵ab 2(a −2)2+b 2−4 =ab 2a 2−4a+4+b 2−4 =ab 2a 2−4a+b 2 =ab 2a 2 , ∵a ≠0,∴ab 2a 2 = b 2a =4aa =4.习题六. 周长=5,面积=154. 【解答】∵x 2-(k+2)x+2k=0,∴(x-k)(x-2)=0,解得:x 1=2,x 2=k , ∵三角形是等腰三角形,当k=1时,不能围成三角形;当k=2时,周长为5. 如图:设AB=AC=2,BC=1, 过点A 作AD ⊥BC 于D , ∴BD=CD=12BC=12 ,∴AD=AB 2−BD 2 =152∴S △ABC =12×1×15 2 =154.习题七. (1)证明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,∴在实数范围内,m 无论取何值,(m-2)2+4>0,即△>0,∴关于x 的方程x 2-(m+2)x+(2m-1)=0恒有两个不相等的实数根. (2) 另一根=3,周长=4+10 或4+2 2 【解答】根据题意,得12-1×(m+2)+(2m-1)=0,解得,m=2, 则方程的另一根为:m+2-1=2+1=3.①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为10 , 该直角三角形的周长为1+3+10 =4+10 ;②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为2 2 ,则该直角三角形的周长为1+3+2 2 = 4+2 2 .k是自然数,∴kk-p+2 +kp+1三、生活类应用习题一 .B习题二 .x-1 x+1 (x-1)2+x2+(x+1) 2=50习题三. A习题四.(1)20% (2)能实现【解答】(1)设每年平均增长的百分率为x.6000(1+x)2=8640,(1+x)2=1.44,∵1+x>0,∴1+x=1.2,x=20%.(2)2012年该县教育经费为8640×(1+20%)=10368(万元)>9500万元.故能实现目标.习题五.0.3或0.2【解答】设应将每千克小型西瓜的售价降低x元.习题六. 定价60元,进货100个 【解答】设每个商品的定价是x 元,由题意,得(x-40)[180-10(x-52)]=2000,整理,得x 2-110x+3000=0,解得x 1=50,x 2=60.当x=50时,进货180-10(50-52)=200个>180个,不符合题意,舍去; 当x=60时,进货180-10(60-52)=100个<180个,符合题意.∴当该商品每个定价为60元时,进货100个.习题七. D习题八. C习题九.(1)25只 (2) 35只,1950元【解答】(1)∵生产x 只玩具熊猫的成本为R (元),售价每只为P (元),且R ,P 与x 的关系式分别为R=500+30x ,P=170-2x ,∴(170-2x )x-(500+30x )=1750,解得 x 1=25,x 2=45(大于每日最高产量为40只,舍去). ∴当日产量为25只时,每日获得利润为1750元.(2)设每天所获利润为W ,由题意得,W=(170-2x )x-(500+30x )=﹣2x 2+140x-500=﹣2(x 2-70x )-500=﹣2(x 2-70x+352-352)-500=﹣2(x 2-70x+352)+2×352-500=﹣2(x-35)2+1950.当x=35时,W 有最大值1950元.四、 几何应用习题一. C【解答】设有x 个队,每个队都要赛(x-1)场,但两队之间只有一场比赛, x (x-1)÷2=21,解得x=7或-6(舍去),∴应邀请7个球队参加比赛. 习题二. 56【解答】设班级学生x 人,依题意,得(18)2+7=x , 整理,得x 2-64x+448=0,解得x 1=56,x 2=8,当x=8时,18x=1,1人不能成为方阵,舍去. ∴此班有学生56人.习题三. C【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.习题四. B【解答】设AC 交A ′B ′于H ,∵∠A=45°,∠D=90°,∴△A ′HA 是等腰直角三角形,设AA ′=x ,则阴影部分的底长为x ,高A ′D=2-x ,∴x •(2-x )=1,∴x=1,即AA ′=1cm .习题五. 143 【解答】如图,连接CD ,设AE=x 米, ∵坡角∠A=30°,∠B=90°,BC=6米,∴AC=12米,∴EC=(12-x )米,∵正方形DEFH 的边长为2米,即DE=2米,∴DC 2=DE 2+EC 2=4+(12-x)2,AE 2+BC 2=x 2+36,∵DC 2=AE 2+BC 2,∴4+(12-x)2=x 2+36,解得:x=143米. 习题六. x 2x 20+2x 40-x每件应降20元【解答】设每件童装降价x 元,则(40-x)(20+2x)=1200即:x 2-30x+200=0,解得:x 1=10,x 2=20,∵要扩大销售量,减少库存,∴舍去x 1=10∴每件童装应降价20元.习题七.(1)-1,大,-1 (2) -1,小,-1(3)设AD=x ,S=x(16-2x)=-2(x-4)2+32,当AD=4m 时,面积最大值为32m 2.习题八. 2秒 或 16−243 7 秒 或 16+247 7 秒 或 ﹣32+659 5秒. 【解答】如图1,设时间为ts ,过P 作PM ⊥CD 于M ,过Q 作QN ⊥AB 于N ,∵四边形ABCD 是矩形,∴DC=AB=16cm ,AD=BC=PM=QN=6cm ,∠A=∠C=∠B=∠ADC=90°, 则DM=AP=3t cm ,CQ=BN=2t cm ,分为三种情况:①当DP=PQ 时,则DM=MQ=3t cm ,∵3t+3t+2t=16,解得:t=2.②当∠PQD 为锐角时,DQ=PQ 时,在Rt △PNQ 中,由勾股定理得:(16-2t)2=62+(16-3t-2t)2,7t 2-32t+12=0,解得:t=32±443 14 =16±243 7, ∵t=16+243 7 >163 (舍去),∴t=16-243 7.当∠PQD 为钝角时,如图2,QD=PQ ,则AP-DQ ≥0,即3t-(16-2t )≥0,∴165 ≤t ≤163. ∵DQ=16-2t ,PH=6,QH=AP-DQ=5t-16,∴(16-2t)2=36+(5t-16)2,解得t=16±247 7 , ∵t ≥165 ,∴t=16+247 7. ③当DP=DQ 时,在Rt △DAP 中,由勾股定理得:(16-2t)2=62+(3t)2,即5t 2+64t-220=0,解得t=−64±1259 10 =﹣32±659 5, ∵﹣32-659 5 <0,∴t=﹣32+659 5. 综上,经过2秒、16−243 7 、16+247 7 、﹣32+659 5秒时,点P 、Q 、D 组成的三角形是等腰三角形.。

八年级下册数学知识点背诵

八年级下册数学知识点背诵

八年级下册数学知识点背诵
数学知识点的背诵是学习数学的重要环节。

在八年级下册数学
学习中,有多个重要的知识点需要掌握。

以下是这些知识点及其
重点内容:
一、平面几何
1.图形类别:凸、凹、正、反、全等、相似、等腰、等边、直角、锐角、钝角、变形、对称、轴对称、中心对称、平移、旋转、翻折、缩放、相交
2.图形的性质:面积、周长、对角线、夹角、垂线、高线、中线、角平分线、对边平行、内角和、外角和、三角形面积公式、
余弦定理、正弦定理、勾股定理
二、数学运算
1.分数的加减乘除:分数的相加、分数的相减、分数的相乘、
分数的相除、分数转化为小数、小数转化为分数、分数化简
2.百分数:百分数转化为小数、小数转化为百分数、百分数的加减乘除、百分数与分数的互化、百分数计算
三、代数
1.代数式的基本概念:代数式的组成、代数式的计算
2.一元一次方程:基本概念、解一元一次方程的方法
3.多项式与因式分解:多项式的概念、多项式的加减乘法、因式分解的方法
四、统计与概率
1.数据的分析:各种类型的数据、中位数、平均数、众数、极差、四分位数、百分位数、数据的描绘
2.概率的计算:事件、随机事件、概率的基本概念、概率的计算方法
以上是八年级下册数学知识点的主要内容和重点,每个知识点都需要经常理解和掌握,特别是图形类别和平面几何还需要多画图来帮助记忆和理解。

相信只要学生认真背诵并不断提高自己的数学水平,学习数学并不会很难。

八年级数学下册复习题(人教版)

八年级数学下册复习题(人教版)

第十六章 分式一、分式的概念:1、下列式子是分式的有(1)21+x 、(2)12-x x 、(3)112+-x x 、(4)2-πx、(5)23+x、(6)21-x 、 (7)x 322、下列式子是分式的有(1)21--x x 、(2)、x 21(3)32-x 、(4)121-x 、(6)、242--x x (7)12-x二、分式有无意义的条件:1、当x 时,分式12-+x x 有意义;当x 时,分式12-+x x 无意义。

2、当a 为任何实数时,下列分式中一定有意义的是( )A 、21aa +B 、11+aC 、112-+a aD 、112++a a3、如果代数式1-x x有意义,那么x 的取值范围是( ) A 、x ≥0 B 、x ≠0 C 、x>0 D 、x ≥0且x ≠14、当x 时,分式12+-x x 有意义;当x 时,分式12-+x x 无意义。

5、当a 为任何实数时,下列分式中一定有意义的是( )A 、1122--a aB 、22aa -C 、112++a aD 、212++a a6、如果代数式22-+x x 有意义,那么x 的取值范围是( ) A 、x ≥-2 B 、x ≠2 C 、x ≥-2且x ≠2 D 、x>-2 7、如果代数式22+-x x 有意义,那么x 的取值范围是( )A 、x ≥-2B 、x ≠2C 、x ≥-2且x ≠2D 、x>-2三、分式的值为0的条件: 1、分式22--x x 的值为0,则x 的值为( )A 、 0B 、2C 、-2D 、2或-22、若分式32122---x x x 的值为0,则x 的值为 。

3、分式33+-x x 的值为0,则x 的值为( )A 、 0B 、-3C 、3D 、3或-34、若分式43422---x x x 的值为0,则x 的值为 。

四、分式的值为正、为负的条件:1、若分式21+a 的值为正,则a ;若分式21+a 的值为负,则a 。

最新湘教版八年级下册数学复习归纳

最新湘教版八年级下册数学复习归纳

cb aCB AP FE D C B21A P E DC B A ED CB A 新湘教版八年级下册数学复习知识点梳理一、直角三角形 1、角平分线: 角平分线上的点到这个角的两边的距离相等如图,∵AD 是∠BAC 的平分线(或∠1=∠2), PE ⊥AC ,PF ⊥AB ∴PE=PF·如图,在ΔABC 中,∠C=90°∠ABC 的平分线BD 交AC 于点D, 若BD=10厘米,BC=8厘米,DC=6厘米,则点D 到直线AB 的距 离是________厘米。

·如图:在△ABC 中,,O 是∠ABC 与∠ACB 的平分线的交点。

求证:点O 在∠A 的平分线上。

2、线段垂直平分线:线段垂直平分线上的点到这条线段两个端点 的距离相等 。

如图,∵CD 是线段AB 的垂直平分线, ∴PA=PB·如图,△ABC 中,DE 是AB 的垂直平分线,AE=4cm ,△ABC 的周长是18 cm ,则△BDC 的周长是__。

·已知:如图,求作点P ,使点P 到A 、B 两点的距离相等, 且P 到∠MON 两边的距离也相等.3、勾股定理及其逆定理①勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方,即222a b c +=。

求斜边,则22c a b =+; 求直角边,则22a c b =-或22b c a =-。

·如图是拉线电线杆的示意图。

已知CD ⊥AB ,,∠CAD=60°,则拉线AC 的长是________m 。

OC B AO N M··A BGFEDC B A·若一个直角三角形的两边长分别为6和10,那么这个三角形的第三条边长是______。

②逆定理 如果三角形的三边长a 、b 、c 有关系222a b c +=,那么这个三角形是直角三角形 。

分别计算“22a b +”和“2c ”,相等就是Rt ∆,不相等就不是Rt ∆。

新人教版八年级数学下册知识点总结归纳(全面-实用)

新人教版八年级数学下册知识点总结归纳(全面-实用)

八年级数学(下册)知识点总结二次根式【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 25.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面. (2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.ab =a ·b (a ≥0,b ≥0); b b a a =(b ≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算. 【典型例题】 1、概念与性质例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1)x x --+315;(2)22)-(x 例3、 在根式1) 222;2);3);4)275xa b x xy abc+-,最简二次根式是( )A .1) 2)B .3) 4)C .1) 3)D .1) 4) 例4、已知:的值。

求代数式22,211881-+-+++-+-=x yy x x yy x x x y例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( )A. a>bB. a<bC. a ≥bD. a ≤b 2、二次根式的化简与计算a (a >0) a -(a <0) 0 (a =0);例1. 将根号外的a 移到根号内,得 ( )A.; B. -; C. -; D.例2. 把(a -b )-1a -b化成最简二次根式 例3、计算: 例4、先化简,再求值:11()b a b b a a b ++++,其中a=512+,b=512-.例5、如图,实数a 、b 在数轴上的位置,化简 :222()a b a b ---4、比较数值 (1)、根式变形法当0,0a b >>时,①如果a b >,则a b >;②如果a b <,则a b <。

北师大版八年级下册数学期末知识点复习

北师大版八年级下册数学期末知识点复习

北师大版八年级下册数学期末知识点复习八年级下册数学考试知识点复第一章证明(二)一、全等三角形的判定及性质全等三角形的性质是对应相等,即对应的角相等,对应的边相等。

判定全等三角形有五种方法:SSS(分别相等的三边)、SAS(分别相等的两边和它们夹角的正弦值相等)、ASA(分别相等的两角和夹角中间的边)、AAS(分别相等的两角和它们夹角的正弦值相等)、HL(分别相等的斜边和一个直角边的长度)。

等腰三角形的性质是两个底角相等,即等边对等角。

判定等腰三角形有一个角等于另一个角,即等角对等边。

等腰三角形还有一个推论是互相重合,即两个等腰三角形的两个底边相等,两个等腰角也相等。

等边三角形的性质是三个角都相等,每个角都等于60度,是轴对称图形,有一条对称轴。

判定等边三角形有两个方法:有一个角是60度的等腰三角形是等边三角形,三个角都相等的三角形是等边三角形。

直角三角形的勾股定理是直角边的平方和等于斜边的平方,逆定理是如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

含30度的直角三角形的边的性质是如果一个锐角等于30度,那么它所对的斜边等于另一条直角边的一半。

直角三角形斜边上的中线等于斜边的一半。

线段的垂直平分线的性质是线段垂直平分线上的点到线段两端点的距离相等。

判定线段垂直平分线的方法是到一条线段两个端点距离相等的点在这条线段的中垂线上。

三角形三边的垂直平分线相交于一点,这一点到三个顶点的距离相等。

角平分线的性质是角平分线上的点到角的两边距离相等。

判定角平分线的方法是到一个角的内部,且到角的两边距离相等的点在这个角的平分线上。

三角形的三条角平分线相交于一点,这一点到三条边的距离相等,叫做内心。

二、一元一次不等式和一元一次不等式组不等关系是数学中的一种关系,包括大于、小于、大于等于、小于等于四种形式。

一元一次不等式是形如ax+b>c的不等式,其中a、b、c都是实数,且a不等于0.解一元一次不等式可以用图像法或代数法,将不等式变形为x>或x<的形式。

八年级下册数学知识点大纲

八年级下册数学知识点大纲

八年级下册数学知识点大纲一、分数
1. 什么是分数
2. 分数的分类
3. 分数的加减乘除
4. 分数化简
5. 分数的大小比较
6. 分数的应用
二、代数式
1. 什么是代数式
2. 代数式的分类
3. 代数式的加减乘除
4. 代数式的同类项合并
5. 代数式的化简
6. 代数式的应用
三、线性方程组
1. 什么是线性方程组
2. 线性方程组的解法
3. 线性方程组的应用
四、平面几何
1. 基本概念与性质
2. 垂线、角平分线、中线、高线与中垂线
3. 三角形的相似
4. 三角形的等角关系和全等关系
5. 三角形面积与勾股定理
五、正比例函数
1. 什么是正比例函数
2. 正比例函数的图像特征
3. 正比例函数的性质和应用
六、平方根与立方根
1. 平方根的计算及其性质
2. 立方根的计算及其性质
3. 平方根、立方根的化简与应用
七、统计与概率
1. 数据的收集、整理和表达
2. 统计量的计算及其意义
3. 概率的基本概念与性质
4. 事件的概率和互斥事件
八、三角函数
1. 什么是三角函数
2. 正弦函数、余弦函数、正切函数的性质
3. 三角函数的应用
以上为八年级下册数学知识点大纲。

在学习这些知识点时,需
要掌握概念、性质和公式等基础知识,加强练习、提高思维能力,将知识点应用于实际问题中,达到对数学知识的全面掌握和灵活
应用。

16.2.1二次根式的乘法(同步课件)-八年级数学下册(人教版)

16.2.1二次根式的乘法(同步课件)-八年级数学下册(人教版)
m a n b =mn ab(a 0,b 0)
性质
1.计算 8 2 的结果是
( B)
A. 10
B.4
C. 6 D.2
2.下面计算结果正确的是
(D)
A. 4 5 2 5 8 5
B. 5 3 4 2 20 5
C. 4 3 3 2 7 5
D. 5 3 4 2 20 6
3.计算: 6 15 10 __3_0_.
3
解:(1) 14 7= 14 7= 72 2=7 2;
(2)3 5 2 10=6 5 10=30 2;
(3) 3x 1 xy = 3x 1 xy =x y.
3
3
01
步骤01
1.把被开方数 分解因式(或 因数) ;
化简二次根式的步骤
03
步骤03
02
步骤02
2. 把 各 因 式 ( 或 因数)积的算术 平方根化为每 个因式(或因数) 的算术平方根 的积;
比较大小:3 5 与 4 3
解:方法一: 3 5= 32×5= 45,4 3= 42×3= 48.
∵ 45< 48, ∴3 5<4 3;
方法二:∵(3 5)2=45,(4 3)2=48,45<48,
∴3 5<4 3.
两种方法有何异同?
(1)被开方数比较法,即先将根号外的非负因数移到根号内,当两个 二次根式都是正数时,被开方数大的二次根式大. (2)平方法,即把两个二次根式分别平方,当两个二次根式都是正数 时,平方大的二次根式大.
算术平方根的积等于各个被开方数积的算术平方根. 注意:a,b都必须是非负数.
计算: (1) 5 6; (2) 1 18 ; (3) 2 5 7. 6
解: (1) 5 6 30;

八年级数学下册知识点复习专题讲练解惑函数中的方案问题(含解析)

八年级数学下册知识点复习专题讲练解惑函数中的方案问题(含解析)

解惑函数中的方案问题方案设计根本类型1. 利用题目中的不等式,根据取值范围直接设计方案并利用函数性质求最大值:如:某医药器械厂接受了生产一批高质量医用口罩的任务。

要求在8天之内〔含8天〕生产A型和B型两种型号的口罩共5万只,其中A型口罩不得少于1.8万只,该厂的生产能力是:假设生产A型口罩每天能生产0.6万只,假设生产B型口罩每天能生产0.8万只,生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元。

在完成任务的前提下,你如何安排生产A型和B型口罩的只数,使获得的总利润最大?最大利润是多少?答案:安排生产A型和B型口罩的只数分别为4.2万只和0.8万只,最大利润为2.34万元。

2. 题目中没有明显的不等式,利用所隐含条件求方案:如:某小型企业获得授权生产甲、乙两种奥运桔祥物,生产每种桔祥物所需材料及所获利润如下表:A种材料〔m2〕B种材料〔m2〕所获利润〔元〕每个甲种桔祥物10每个乙种桔祥物20 该企业现有A种材料900m2,B种材料850m2,用这两种材料生产甲、乙两种桔祥物共2000个。

设生产甲种桔祥物x个,生产这两种桔祥物所获总利润为y元。

该企业如何安排甲、乙两种桔祥物的生产数量,才能获得最大利润,最大利润是多少?生产甲种桔祥物1000个,乙种桔祥物1000个,所获利润最大,最大利润为30000元.总结:〔1〕利用不等式组求出取值范围,从中寻找整数值,从而设计出方案;〔2〕利用函数增减性求出函数最值,在方案再设计中,是利用二元一次方程重新找出符合条件的整数解。

例题为庆祝“六•一〞国际儿童节,鸡冠区某小学组织师生共360人参加公园游园活动,有A、B两种型号客车可供租用,两种客车载客量分别为45人、30人,要求每辆车必须满载,那么师生一次性全部到达公园的租车方案有〔〕A. 3种B. 4种C. 5种D. 6种解析:可设租用A型号客车x辆,B型号客车y辆,根据共360人参加公园游园活动可列方程,再根据车辆数为非负整数求解即可。

人教版八年级数学下册复习提纲

人教版八年级数学下册复习提纲

人教版八年级数学下册复习提纲
一、整数和有理数
1. 整数概念及性质
2. 整数的加减法运算
3. 整数的乘法和除法运算
4. 整数的混合运算和运算规律
5. 有理数概念及性质
6. 有理数的加减法运算
7. 有理数的乘法和除法运算
8. 有理数的混合运算和运算规律
二、平方根和实数
1. 平方根的概念及性质
2. 平方根的运算法则
3. 二次根式的概念及性质
4. 二次根式的加减法运算
5. 二次根式的乘法和除法运算
6. 实数的概念及性质
7. 实数的加减法运算
8. 实数的乘法和除法运算
三、图形的性质
1. 平面直角坐标系
2. 点、线、面的基本概念
3. 图形的相似性质
4. 图形的对称性质
5. 图形的投影性质
6. 图形的旋转性质
四、一元一次方程与一元一次不等式
1. 一元一次方程的基本概念
2. 一元一次方程的解集及解的性质
3. 一元一次方程的加减消元和倍增消元
4. 一元一次方程的应用问题
5. 一元一次不等式的基本概念
6. 一元一次不等式的解集及解的性质
7. 一元一次不等式的加减消元和倍增消元
8. 一元一次不等式的应用问题
以上为人教版八年级数学下册复习提纲,以帮助复习重要知识点和概念。

请根据提纲进行系统性的复习和练习,以加深对数学知识的理解和掌握。

八年级数学培优资料word版(上下册)

八年级数学培优资料word版(上下册)

B AC D EF 第01讲 全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同; 2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS ,ASA ,AAS ,SSS ,对于两个直角三角形全等的判定方法,除上述方法外,还有HL 法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( ) A .5对 B .4对 C .3对 D .2对【解法指导】从题设题设条件出发,首先找到比较明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.解:⑴∵AB ∥EF ∥DC ,∠ABC =90. ∴∠DCB =90. 在△ABC 和△DCB 中AB DC ABC DCB BC CB =⎧⎪=⎨⎪=⎩∠∠ ∴△ABC ≌∴△DCB (SAS ) ∴∠A =∠D ⑵在△ABE 和△DCE 中A DAED DEC AB DC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ABE ≌∴△DCE ∴BE =CE ⑶在Rt △EFB 和Rt △EFC 中BE CEEF EF=⎧⎨=⎩ ∴Rt △EFB ≌Rt △EFC (HL )故选C . 【变式题组】 01.(天津)下列判断中错误的是( )A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等A F C E DB 02.(丽水)已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.03.(上海)已知线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF (如图所示).⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ; ⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题(选择“真”或“假”填入空格).【例2】已知AB =DC ,AE =DF ,CF =FB . 求证:AF =DE .【解法指导】想证AF =DE ,首先要找出AF 和DE 所在的三角形.AF 在△AFB 和△AEF 中,而DE 在△CDE 和△DEF 中,因而只需证明△ABF ≌△DCE 或△AEF ≌△DFE 即可.然后再根据已知条件找出证明它们全等的条件.证明:∵FB =CE ∴FB +EF =CE +EF ,即BE =CF 在△ABE 和△DCF 中, AB DCAE DF BE CF =⎧⎪=⎨⎪=⎩∴△ABE ≌△DCF (SSS ) ∴∠B =∠C在△ABF 和△DCE 中, AB DC B C BF CE =⎧⎪=⎨⎪=⎩∠∠ ∴△ABF ≌△DCE ∴AF =DE【变式题组】01.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO 的长为( ) A .2 B .3 C .4 D .5A B C D O FE A CEFBD02.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD⊥AE 于D ,DE =4cm ,CE =2cm ,则BD =__________. \ 03.(北京)已知:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .【例3】如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B 和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【解法指导】⑴∠AFD =∠DCA⑵∠AFD =∠DCA 理由如下:由△ABC ≌△DEF ,∴AB =DE ,BC =EF , ∠ABC =∠DEF , ∠BAC =∠EDF ∴∠ABC -∠FBC =∠DEF -∠CBF , ∴∠ABF =∠DEC在△ABF 和△DEC 中, AB DE ABF DEC BF EC =⎧⎪=⎨⎪=⎩∠∠∴△ABF ≌△DEC ∠BAF =∠DEC ∴∠BAC -∠BAF =∠EDF -∠EDC , ∴∠FAC =∠CDF∵∠AOD =∠FAC +∠AFD =∠CDF +∠DCA∴∠AFD =∠DCAB (E )OC F 图③DAAE第1题图A BCDEBCDO第2题图AFECB D【变式题组】 01.(绍兴)如图,D 、E 分别为△ABC 的AC 、BC 边的中点,将此三角形沿DE 折叠,使点C落在AB 边上的点P 处.若∠CDE =48°,则∠APD 等于( ) A .42° B .48° C .52° D .58° 02.如图,Rt △ABC 沿直角边BC 所在的直线向右平移得到△DEF ,下列结论中错误的是( )A .△ABC ≌△DEFB .∠DEF =90°C . AC =DFD .EC =CF03.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B 、F 、C 、D 在同一条直线上. ⑴求证:AB ⊥ED ;⑵若PB =BC ,找出图中与此条件有关的一对全等三角形,并证明.【例4】(第21届江苏竞赛试题)已知,如图,BD 、CE 分别是△ABC 的边A C 和AB 边上的高,点P 在BD 的延长线,BP =AC ,点Q 在CE 上,CQ =AB. 求证:⑴ AP =AQ ;⑵AP ⊥AQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证AP =AQ ,也就是证△APD 和△AQE ,或△APB 和△QAC 全等,由已知条件BP =AC ,CQ =AB ,应该证△APB ≌△QAC ,已具备两组边对应相等,于是再证夹角∠1=∠2即可. 证AP ⊥AQ ,即证∠PAQ =90°,∠PAD +∠QAC =90°就可以.证明:⑴∵BD 、CE 分别是△ABC 的两边上的高,∴∠BDA =∠CEA =90°, ∴∠1+∠BAD =90°,∠2+∠BAD =90°,∴∠1=∠2. 在△APB 和△QAC 中, 2AB QC BP CA =⎧⎪=⎨⎪=⎩∠1∠ ∴△APB ≌△QAC ,∴AP =AQEFB ACDG第2题图21ABCPQE F D⑵∵△APB ≌△QAC ,∴∠P =∠CAQ , ∴∠P +∠PAD =90° ∵∠CAQ +∠PAD =90°,∴AP ⊥AQ 【变式题组】01.如图,已知AB =AE ,∠B =∠E ,BA =ED ,点F 是CD 的中点,求证:02.直距离MA 为am ,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB 为bm ,梯子倾斜角为45°,这间房子的宽度是( )A .2a bm + B .2a bm - C .bm D .am03.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE 的面积为__________演练巩固·反馈提高01.(海南)已知图中的两个三角形全等,则∠α度数是( )A .72°B .60°C .58°D .50°02.如图,△ACB ≌△A /C /B /,∠ BCB /=30°,则∠ACA /的度数是( )A .20°B .30°C .35°D .40° 03.(牡丹江)尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是( )第1题图a αcca50° b72° 58°AECBA 75° C45° BNM第2题图第3题图DA .SASB .ASAC .AASD .SSS 04.(江西)如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A . CB =CD B .∠BAC =∠DAC C . ∠BCA =∠DCAD .∠B =∠D =90°05.有两块不同大小的等腰直角三角板△ABC 和△BDE ,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A 、B 、D 不在一条直线上时,下面的结论不正确的是( )A . △ABE ≌△CBDB . ∠ABE =∠CBDC . ∠ABC =∠EBD =45° D . AC ∥BE06.如图,△ABC 和共顶点A ,AB=AE ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,小华说:“一定有△ABC ≌△AED .”小明说:“△ABM ≌△AEN .”那么( ) A . 小华、小明都对 B . 小华、小明都不对 C . 小华对、小明不对 D .小华不对、小明对07.如图,已知AC =EC , BC =CD , AB =ED ,如果∠BCA =119°,∠ACD =98°,那么∠ECA 的度数是___________.08.如图,△ABC ≌△ADE ,BC 延长线交DE 于F ,∠B =25°,∠ACB =105°,∠DAC =10°,则∠DFB 的度数为_______.09.如图,在Rt △ABC 中,∠C =90°, DE ⊥AB 于D , BC =BD . AC =3,那么AE +DE =______10.如图,BA ⊥AC , CD ∥AB . BC =DE ,且BC ⊥DE ,若AB =2, CD =6,则AE =_____. 11.如图, AB =CD , AB ∥CD . BC =12cm ,同时有P 、Q 两只蚂蚁从点C 出发,沿CB 方向爬行,P 的速度是0.1cm /s , Q 的速度是0.2cm /s . 求爬行时间t 为多少时,△APB ≌△QDC .DA C .Q P.BA E FB DC 12.如图, △ABC 中,∠BCA =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D . ⑴求证:AE =CD ;⑵若AC =12cm , 求BD 的长.13.(吉林)如图,AB =AC ,AD ⊥BC 于点D ,AD 等于AE ,AB 平分∠DAE 交DE 于点F , 请你写出图中三对全等三角形,并选取其中一对加以证明.14.如图,将等腰直角三角板ABC的直角顶点C 放在直线l 上,从另两个顶点A 、B 分别作l 的垂线,垂足分别为D 、E .⑴找出图中的全等三角形,并加以证明; ⑵若DE =a ,求梯形DABE 的面积.(温馨提示:补形法)15.如图,AC ⊥BC , AD ⊥BD , AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F .求证:CE =DF .16.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等,那么在什么情况下,它们会全等? ⑴阅读与证明:对于这两个三角形均为直角三角形,显然它们全等;对于这两个三角形均为钝角三角形,可证明它们全等(证明略); 对于这两个三角形均为锐角三角形,它们也全等,可证明如下;已知△ABC 、△A 1B 1C 1均为锐角三角形,AB =A 1B 1,BC =B 1C 1,∠C =∠C 1.求证:△ABC ≌△A 1B 1C 1.(请你将下列证明过程补充完整)⑵归纳与叙述:由⑴可得一个正确结论,请你写出这个结论.ABCDA 1B 1C 1D 1D B A C EF A E B F D CAEF C DB 培优升级·奥赛检测01.如图,在△ABC 中,AB =AC ,E 、F 分别是AB 、AC 上的点,且AE =AF ,BF 、CE 相交于点O ,连接AO 并延长交BC 于点D ,则图中全等三角形有( ) A .4对 B .5对 C .6对 D .7对02.如图,在△ABC 中,AB =AC ,OC =OD ,下列结论中:①∠A =∠B ②DE =CE ,③连接DE , 则OE 平分∠AOB ,正确的是( ) A .①② B .②③ C .①③ D .①②③03.如图,A 在DE 上,F 在AB 上,且AC =CE , ∠1=∠2=∠3, 则DE 的长等于()A .DCB . BC C . ABD .AE +AC04.下面有四个命题,其中真命题是( )A .两个三角形有两边及一角对应相等,这两个三角形全等B .两边和第三边上的高对应相等的两个三角形全等C . 有一角和一边对应相等的两个直角三角形全等D . 两边和第三边上的中线对应相等的两个三角形全等05.在△ABC 中,高AD 和BE 所在直线相交于H 点,且BH =AC ,则∠ABC =_______.06.如图,EB 交AC 于点M , 交FC 于点D , AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C , AE=AF . 给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ; ④CD =DB ,其中正确的结论有___________.(填序号)07.如图,AD 为在△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且有BF =AC ,FD =CD .⑴求证:BE ⊥AC ;⑵若把条件“BF =AC ”和结论“BE ⊥AC ”互换,这个命题成立吗?证明你的判定.08.如图,D 为在△ABC 的边BC 上一点,且CD =AB ,∠BDA =∠BAD ,AE 是△ABD 的中线.求证:AC =2AE .09.如图,在凸四边形ABCD 中,E 为△ACD 内一点,满足AC =AD ,AB =AE , ∠BAE +∠BCEF第6题图2 1AB CE N M3 21ADEBC FADECOA E O BFCD 第1题图B第2题图第3题图ABE D CAB C DEAEBDC=90°, ∠BAC =∠EAD .求证:∠CED =90°.10.(沈阳)将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .⑴求证:AF +EF =DE ;⑵若将图①中△DBE 绕点B 顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中结论是否仍然成立;⑶若将图①中△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③你认为(1)中结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF 、EF 与DE 之间的关系,并说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册数学期末复习学案(01)班级:________ 姓名:________ 得分:_______一、知识点梳理: 1、二次根式的定义.一般地,式子 a (a ≥0)叫做二次根式,a 叫做被开方数。

两个非负数:(1)a ≥0 ;(2) a ≥02、二次根式的性质:(1).()0≥a a 是一个________ 数 ; (2)()=2a __________(a ≥0)(3)()()()⎪⎩⎪⎨⎧〈=〉==0_______0_______0_______2a a a a a3、二次根式的乘除:积的算术平方根的性质:)0,0(≥≥⋅=b a b a ab ,二次根式乘法法则:__________=⋅b a (a ≥0,b ≥0)商的算术平方根的性质:ba ba=).0,0(>≥b a 二次根式除法法则:)0,0(>≥=b a baba 1.被开方数不含分母; 4、最简二次根式 2.分母中不含根号;3. 被开方数中不含能开得尽方的因数或因式. 分母有理化:是指把分母中的根号化去,达到化去分母中的根号的目的. 二、典型例题:例1:当x 是怎样实数时,下列各式在实数范围内有意义? ⑴ 2-x ⑵xx -+2)1(0⑶13-+-x x ⑷12+x (5)12-+x x小结:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。

(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0例2:化简:(1)|21|)22(2-+- (2)|3254|)3253(2-+-例3: (1)已知y=x -3+62-x +5,求xy的值. (2) 已知01442=-+++-y x y y ,求xy 的值.小结:(1)常见的非负数有:a a a ,,2(2)几个非负数之和等于 0,则这几个非负数都为0. 例4:化简:(1)32; (2)2ba 33; (3)48.0 (4)y x x2(5)2925xy例5:计算:(1) 351223⨯ (2) 21335÷ (3) ()0,02123〉〉⎪⎪⎭⎫ ⎝⎛-÷b a b a b a例6:化去下列各式分母中的二次根式: (1)323+ (2)813 (3)251+ (4)()0,03〉〉y x x y三、强化训练:1、使式子2x+有意义的x 的取值范围是( ) A 、x ≤1; B 、x ≤1且2x ≠-; C 、2x ≠-; D 、x <1且2x ≠-. 2、已知0<x<1时,化简()21--x x 的结果是( )A 2X-1B 1-2XC -1D 1 3、已知直角三角形的一条直角边为9,斜边长为10,则别一条直角边长为( )A 、1;B 、C 、19;D .4n 的最小值是( )A 、4;B 、5;C 、6;D 、7. 5、下列二次根式中,是最简二次根式的是( ) A 、a 16 B 、b 3 C 、abD 、45 6、下列计算正确的是( ) A()()69494-=-⨯-=-⨯- B 188142712=⨯=⨯C 624416416=+=+=+D 1212414414=⨯=⨯= 7、等式33-=-x x x x成立的条件是( )A x ≠3B x ≥0C x ≥0且x ≠3D x>3 8、已知053232=--+--y x y x 则y x 8-的值为 9、23231+-与的关系是 。

10、若588+-+-=x x y ,则xy= _______ 11、当a<0时,||2a a -=________12、实数范围内分解因式:422-x =_____________。

13、在Rt △ABC 中,斜边AB=5,直角边BC=5,则△ABC 的面积是________14、已知01442=-+++-y x y y ,求xy 的值。

15、在△ABC 中,a,b,c 是三角形的三边长,试化简()b a c c b a ---+-22。

16、计算:(1).144262⨯⨯ (2).xy y x 2162÷(3)yxx y xy x 155102÷÷ (4) )4831()15(2023-•-•17、已知:11a a +=+221a a+的值。

八年级下册数学期末复习学案(02)班级:_______ 姓名:________ 得分:_____一、知识点梳理:1、同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,•这些二次根式就称为同类二次根式。

二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.例1.(1 )(2 )例2:计算(1; (2; (3)0)13(27132--+-【课堂练习1】1、下面说法正确的是( )A. 被开方数相同的二次根式一定是同类二次根式;D. 同类二次根式是根指数为2的根式 2、下列式子中正确的是( )=a b =-C. (a b =-2==3、计算:(1)(2)3118122++-2、二次根式的计算:先乘方,然后乘除,最后是加减; 例2:计算: (1)3133⨯÷ (2)20142013)23()23(+⋅-(3))1(932x x x x +- (4)222333---例3:先阅读下列的解答过程,然后作答:形如m±2n 的化简,只要我们找到两个数a ,b 使a+b=m ,ab=n ,这样( a )2+( b )2=m ,a ·b =n ,:那么便有m±2n =( a ±b )2 = a ±b (a>b )。

例如:化简7+4 3 解:首先把7+4 3 化为7+212 , 这里m=7,n=12;由于4+3=7,4×3=12,即( 4 )2+( 3 )2=7, 4 ·3 =12 ,∴7+4 3 =7+212 =( 4 + 3 )2 =2+ 3 由上述例题的方法化简:(1)42213- (2)407- (3)32-二、巩固练习:1、下列计算中,正确的是( )A 、2+3=32B 、3936==+C 、235)23(3253=--=- D 、72572173=- 2、计算221-631+8的结果是( ) A .32-23 B .5-2 C .5-3 D .223 ). A .①和② B .②和③ C .①和④ D .③和④4、下列各式:①17,其中错误的有( ).A .3个B .2个C .1个D .0个 5、下列计算正确的是( )A .=B =C 4=D 3=-6是同类二次根式的是 。

7、若35-=x ,则562++x x 的值为 。

8、 是同类二次根式,则______a =。

9、已知x y ==.__________22=+y x x y10、计算:(1)8 +18 +12; (2(3)x x x x 1246932-+ (4)2a11、已知:|a -4|+09=-b ,计算22222b a aba b ab a --•+的值。

12、若223+=a ,223-=b ,求22ab b a -的值。

13、阅读下面问题:12)12)(12()12(1211-=-+-⨯=+;;23)23)(23(23231-=-+-=+25)25)(25(25251-=-+-=+。

试求:(1)671+_______;(2)17231+=________; (3)nn ++11=__________(n为正整数)。

(4) 计算:(+……+201320141-)(2014+1)的值.八年级下册数学期末复习学案(03)班级:_______ 姓名:________ 得分:_____一、知识点梳理:1、勾股定理:如果直角三角形的两直角边分别是a 、b ,斜边为c ,那么a 2+b 2=c 2.即直角三角形中两直角边的平方和等于斜边的平方。

(1)在直角三角形中,若已知任意两边,就可以运用勾股定理求出第三边.无直角时,可作垂线构造直角三角形. 变式:a cb cb ab ac 222222;;-=-=+=(2)勾股定理的作用:(1)计算;(2)证明带有平方的问题;(3)实际应用.(3)利用勾股定理可以画出长度是无理数的线段,也就可以在数轴上画出表示无理数的点. 2、勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形. 即如果三角形三边a, b, c 长满足c b a 222=+那么这个三角形是直角三角形.(1)满足a 2 +b 2=c 2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用的勾股数有3、4、5、;6、8、10;5、12、13等.(2)应用勾股定理的逆定理时,先计算较小两边的平方和再把它和最大边的平方比较. (3) 判定一个直角三角形,除了可根据定义去证明它有一个直角外,还可以采用勾股定理的逆定理,即去证明三角形两条较短边的平方和等于较长边的平方,这是代数方法在几何中的应用.3、定理:经过人们的证明是正确的命题叫做定理。

逆定理及互逆命题、互逆定理。

二、典型例题:例1、(1)如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草。

(2)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为_______cm 2.(3)蚂蚁沿图中的折线从A 点爬到D 点,一共爬了______厘米.(小方格的边长为1厘米)“路”4m3mCBAD课堂练习1:(1)要登上12 m 高的建筑物,为了安全需使梯子底端离建筑物5 m ,则梯子的长度至少为( ) 12 m B .13 m C .14 m D .15 m (2)下列几组数中,不能作为直角三角形三边长度的是( ) A .1.5,2,2.5 B .3,4,5 C .5,12,13 D .20,30,40 (3)下列条件能够得到直角三角形的有( )①.三个内角度数之比为1:2:3 ②.三个内角度数之比为3:4:5 ③.三边长之比为3:4:5 ④.三边长之比为5:12:13 A .4个 B .3个 C .2个 D .1个(4)如图,1====DE CD BC AB ,且AB BC ⊥,AC CD ⊥,AD DE ⊥,则线段AE 的长为( ) A .23 B .2 C .25D .3 例2、如图,为修通铁路凿通隧道AC ,量出∠A=40°∠B =50°,AB =5公里,BC =4公里,若每天凿隧道0.3公里,问几天才能把隧道AC 凿通?例3、如图,AB 为一棵大树,在树上距地面10m 的D 处有两只猴子,它们同时发现地面上的C 处有一筐水果,一只猴子从D 处上爬到树顶A 处,利用拉在A 处的滑绳AC ,滑到C 处,另一只猴子从D 处滑到地面B ,再由B 跑到C ,已知两猴子所经路程都是15m ,求树高AB.A DA CD .三、强化训练:1、如图1,一根旗杆在离地面5米处断裂旗杆顶部落在旗杆底部 12米处,原旗杆的长为 。

相关文档
最新文档