2020届全国100所名校最新高考模拟示范卷数学模拟测试(四)试题(解析版)

合集下载

2020年全国高考数学(理科)仿真冲刺模拟试卷4(含答案)

2020年全国高考数学(理科)仿真冲刺模拟试卷4(含答案)

注意事项: 2020年全国高考数学(理科)仿真冲刺模拟试卷1、本试卷分第I 卷(选择题)和第n 卷(非选择题)两部分。

答题前,考生务必将自 己的姓名、考生号填写在答题卡上。

巾'2、回答第I 卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑, C. 如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

3、回答第n 卷时,将答案填写在答题卡上,写在试卷上无效。

26.[天津一中]设F I 、F 2分别为双曲线22 a D. 2 y b 2a 0,b 0的左、右焦点.若在双曲线右支上存4、考试结束,将本试卷和答题卡一并交回。

在点P,满足PF 2F 1F 2 ,且F 2到直线 PF i 的距离等于双曲线的实轴长,则该双曲线的渐近线方程A. 3x 4y 0B .3x 5yC. 4x 3y 0D. 5x 4y 0、选择题:本大题共 12小题,每小题 5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 7 .[天一大联考]已知f x AsinB A 0, 0,|的图象如图所示,则函数f[金山中学]已知集合A xlx 23x x 1 ,则集A I对称中心可以为(A. B. 0,4 C .1,4D .4,2. [湘钢一中]已知i 为虚数单位,若复数 1 ai 2 i 是纯虚数,则实数 A.B. C .D. 2C・。

03. [玉溪一中]若向量a, 且a 2, b 1 ,则向量a 2b 与向量a 的夹角为()A. 6,0B .D .A. B. 4. [凯里一中]已知cos 兀614, sinC .8.[首师附中]秦九韶是我国南宋时期的数学家,他在《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图是实现该算法的程序框图,执行该程序框图,若输入值分另1J 为4, 2,则车^出v 的值为()A. B.C .D. 785. [宁乡一中]函数f xx 1|2cos x 1的部分图象可能是(A. v=£B.v =vx+iA. 5B. 12C. 25D. 509.[济宁一模]已知直三棱柱ABC ABC的底面为直角三角形,且两直角边长分别为1和73 ,此三棱柱的高为2褥,则该三棱柱的外接球的体积为(A. 82t3三、解答题:解答应写出文字说明、证明过程或演算步骤.10.[牡丹江一中]牡丹江一中2019年将实行新课程改革,即除语、数、外三科为必考科目外,还要17.(12分)[顺义统考]已知a n 是等差数列, b n 是等比数列,且b2 2 , b5 16 , a1 2b,, a3 b4.在理、化、生、史、地、政六科中选择三科作为选考科目.已知某生的高考志愿为北京大学环境科学专业,按照17年北大高考招生选考科目要求物、化必选,为该生安排课表(上午四节、下午四节, (1)求b n 的通项公式;上午第四节和下午第一节不算相邻),现该生某天最后两节为自习课,且数学不排下午第一节, 语文、(2)设C n a n b n ,求数列c n 的前n项和.外语不相邻,则该生该天课表有()种.A. 444B. 1776C. 1440D. 156011.[蚌埠质检]已知F为抛物线4x的焦点,。

(全国100所名校最新高考模拟示范卷)2020年普通高等学校招生全国统一考试理科数学模拟测试试题(含答案)

(全国100所名校最新高考模拟示范卷)2020年普通高等学校招生全国统一考试理科数学模拟测试试题(含答案)

2020年普通高等学校招生考试数学模拟测试一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={0,1,2,3},B={2,3,4,5},则A ∪B= A.{1,2,3,4,5}B.{0,1,4,5}C.{2,3}D.{0,1,2,3,4,5}2.i 是虚数单位,z=2—i,则|z|=B.23.已知向量a =(1,2),b =(-1,λ),若a ∥b ,则实数λ等于 A.-1B.1C.-2D.24.设命题p:∀x ∈R ,x 2>0,则p ⌝为A.∀x ∈R ,x 2≤0B.∀x ∈R ,x 2>0C.∃x ∈R ,x 2>0D.∃x ∈R ,x 2≤05.51(1)x-展开式中含x -2的系数是 A.15B.-15C.10D.-106.若双曲线22221(0,x y a b a b -=>>)的左、右焦点分别为F 1、F 2,离心率为53,点P(b,0),为则12||||PF PF =A.6B.8C.9D.107.图为祖冲之之子祖暅“开立圆术”中设计的立体模型.祖暅提出“祖氏原理”,他将牟合方盖的体积化成立方体与一个相当于四棱锥的体积之差,从而求出牟合方盖的体积等于32(3d d 为球的直径),并得到球的体积为16V d π=,这种算法比外国人早了一千多年,人们还用过一些类似的公式,根据π=3.1415926…,判断下列公式中最精确的一个是A.d ≈3B .d ≈√2V 3C.d≈√300157V3D .d≈√158V 38.已知23cos cos ,2sin sin 2αβαβ-=+=则cos(a+β)等于 A.12B.12-C.14D.14-二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.第18届国际篮联篮球世界杯(世界男子篮球锦标赛更名为篮球世界杯后的第二届世界杯)于2019年8月31日至9月15日在中国的北京广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.中国队12名球员在第一场和第二场得分的茎叶图如图所示,则下列说法正确的是A.第一场得分的中位数为52 B.第二场得分的平均数为193C.第一场得分的极差大于第二场得分的极差D.第一场与第二场得分的众数相等10.已知正方体的外接球与内切球上各有一个动点M 、N,若线段MN 1,则 A.正方体的外接球的表面积为12π B.正方体的内切球的体积为43πC.正方体的边长为2D.线段MN 的最大值为11.已知圆M 与直线x 十y +2=0相切于点A(0,-2),圆M 被x 轴所截得的弦长为2,则下列 结论正确的是A.圆M 的圆心在定直线x-y-2=0上B.圆M 的面积的最大值为50πC.圆M 的半径的最小值为1D.满足条件的所有圆M 的半径之积为1012.若存在m,使得f(x)≥m 对任意x ∈D 恒成立,则函数f(x)在D 上有下界,其中m 为函数f(x)的一个下界;若存在M,使得f(x)≤M 对任意x ∈D 恒成立,则函数f(x)在D 上有上界,其中M 为函数f(x)的一个上界.如果一个函数既有上界又有下界,那么称该函数有界.下列说法正确的是A.1不是函数1()(0)f x x x x=+>的一个下界 B.函数f(x)=x l nx 有下界,无上界C.函数2()xe f x x=有上界有,上无界下,界无下界D.函数2sin ()1xf x x =+有界 三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.设f(x)是定义在R 上的函数,若g(x)=f(x)+x 是偶函数,且g(-2)=-4,则f(2)=___. 14.已知函数f(x)=sin(ωx+φ)(ω>0),点2(,0)3π和7(,0)6π是函数f(x)图象上相邻的两个对称中心,则ω=___.15.已知F 1,F 2分别为椭圆的221168x y +=左、右焦点,M 是椭圆上的一点,且在y 轴的左侧,过点F 2作∠F 1MF2的角平分线的垂线,垂足为N,若|ON|=2(О为坐标原点),则|MF 2|-|MF 1|=___,|OM|=__.(本题第一空2分,第二空3分)16.在正三棱柱ABC-A 1B 1C 1中,AB =1=2,E,F 分别为AB 1,A 1C 1的中点,平面α过点C 1,且平面α∥平面A 1B 1C ,平面α∩平面A 1B 1C 1=l ,则异面直线EF 与l 所成角的余弦值为__·四、解答题:本题共6小题,共70分。

名师精编2020年全国高考理科数学模拟试卷4+答题卡+解析

名师精编2020年全国高考理科数学模拟试卷4+答题卡+解析

2020年全国高考模拟理科数学卷(4)考试时间120分钟 总分150分第Ⅰ卷一、选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设U =R ,A ={x |x 2-3x -4>0},B ={x |x 2-4<0},则=B A C U I )(A .{x |x ≤-1,或x ≥2}B .{x |-1≤x <2}C .{x |-1≤x ≤4}D .{x |x ≤4}2.若复数2()(1)m i mi ++是实数,则实数m 的值为( ) A. -1 B.-2 C.1 D.23.A .4163π-B .403C .8163π-D .3234. 已知某程序框图如图所示,则执行该程序后输出的结果是A .1-B .21C .1D .25. 在数列{}n a 中,12341,23,456,78910,a a a a ==+=++=+++则10a = ( ) A. 495 B.500 C.505 D.5106. ABC ∆中,“角,,A B C 成等差数列”是“)sin sin cos C A A B =+”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 7.已知实数,x y 满足21010x y x y -+≥⎧⎨--≤⎩,则22x y z x ++=的取值范围为( )4A .100,3⎡⎤⎢⎥⎣⎦B .(]10,2,3⎡⎫-∞+∞⎪⎢⎣⎭UC .102,3⎡⎤⎢⎥⎣⎦D .(]10,0,3⎡⎫-∞+∞⎪⎢⎣⎭U8. 设()()2,cos sin cos cos 2a R f x x a x x x π⎛⎫∈=-+-⎪⎝⎭满足()(0)3f f π-=,求函数()f x 在11,424ππ⎡⎤⎢⎥⎣⎦上的最大值 ( ) A.1 B.2 C.3 D.9. 在R 上定义的函数)(x f 是偶函数,且)2()(x f x f -=,若)(x f 在区间[]2,1是减函数,则函数)(x f ( )A.在区间[]1,2--上是增函数,区间[]4,3上是增函数B.在区间[]1,2--上是增函数,区间[]4,3上是减函数C.在区间[]1,2--上是减函数,区间[]4,3上是增函数D.在区间[]1,2--上是减函数,区间[]4,3上是减函数10. 四面体的顶点和各棱中点共有10个点,取其中4个不共面的点,则不同的取法共有( )A. 150种B. 147种C. 144种D. 141种11. 已知椭圆()2222:10x y C a b a b+=>>,12,F F 为其左、右焦点,P 为椭圆C 上除长轴端点外的任一点,G 为12F PF ∆内一点,满足123PG PF PF =+u u u v u u u v u u u u v,12F PF ∆的内心为I ,且有12IG F F λ=u u v u u u u v(其中λ为实数),则椭圆C 的离心率e =( ) A .13 B .12 C .23D12. 在三棱锥A —BCD 中,AB =AC ,DB =DC ,4AB DB +=,AB ⊥BD ,则三棱锥 A —BCD 的外接球的体积的最小值为( )A. 3B. 43πC. 3D. 323π第Ⅱ卷本卷包括必考题和选考题两部分. 第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答. 二、填空题:本大题共4 小题,每小题5 分.13. 若向量12,2a =,b a b ==且-,则a b =+ 。

2020年普通高等学校招生全国统一考试模拟卷(4)(文科数学含答案详解)

2020年普通高等学校招生全国统一考试模拟卷(4)(文科数学含答案详解)

2019年普通高等学校招生全国统一考试模拟卷(4)文科数学本试题卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题:12p x -<<,2:log 1q x <,则p 是q 成立的( )条件. A .充分不必要 B .必要不充分 C .既不充分有不必要 D .充要【答案】B【解析】2:log 102q x x <⇒<<,因为()()0,21,2⊂-,所以p 是q 成立的必要不充分条件,选B .2.已知复数11i z a =+,232i z =+,a ∈R ,i 是虚数单位,若12z z ⋅是实数,则a =( )A .23-B .13-C .13D .23【答案】A【解析】复数11i z a =+,232i z =+,()()()()121i 32i 32i 3i 23223i z z a a a a a ⋅=++=++-=-++.若12z z ⋅是实数,则230a +=,解得23a =-.故选A .3.下列函数中既是偶函数又在()0,+∞上单调递增的函数是( )A .()22x x f x -=-B .()21f x x =-C .()12log f x x = D .()sin f x x x =【答案】B【解析】A 是奇函数,故不满足条件;B 是偶函数,且在()0,+∞上单调递增,故满足条件;C 是偶函数,在()0,+∞上单调递减,不满足条件;D 是偶函数但是在()0,+∞上不单调.故答案为B .4.已知变量x ,y 之间满足线性相关关系 1.31ˆyx =-,且x ,y 之间的相关数据如下表所示:x1 2 3 4 y0.1m3.14则m =( )A .0。

8B .1.8C .0.6D .1。

6【答案】B【解析】由题意, 2.5x =,代入线性回归方程为 1.31ˆyx =-,可得 2.25y =, 0.1 3.144 2.25m ∴+++=⨯, 1.8m ∴=,故选B .5.若变量x ,y 满足约束条件00340x y x y x y +⎧⎪-⎨⎪+-⎩≥≥≤,则32x y +的最大值是( ) A .0B .2C .5D .6【答案】C【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知:目标函数在点()1,1A 处取得最大值,max 3231215z x y =+=⨯+⨯=.本题选C .6.已知等差数列{}n a 的公差和首项都不为0,且124a a a 、、成等比数列,则1143a a a +=( ) A .2 B .3C .5D .7【答案】C【解析】由124a a a 、、成等比数列得2214a a a =,()()21113a d a a d ∴+=+,21d a d ∴=,0d ≠,1d a ∴=,1141113111315523a a a a d a a a d a +++===+,选C . 7.我国古代数学名著《孙子算经》中有如下问题:“今有三女,长女五日一归,中女四日一归,少女三日一归.问:三女何日相会?”意思是:“一家出嫁的三个女儿中,大女儿每五天回一次娘家,二女儿每四天回一次娘家,小女儿每三天回一次娘家.三个女儿从娘家同一天走后,至少再隔多少天三人再次相会?"假如回娘家当天均回夫家,若当地风俗正月初二都要回娘家,则从正月初三算起的一百天内,有女儿回娘家的天数有( ) A .58 B .59C .60D .61【答案】C【解析】小女儿、二女儿和大女儿回娘家的天数分别是33,25,20,小女儿和二女儿、小女儿和大女儿、二女儿和大女儿回娘家的天数分别是8,6,5,三个女儿同时回娘家的天数是1,所以有女儿在娘家的天数是:33+25+20—(8+6+5)+1=60. 故选C .8.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积为( )A .24223++B .22243++C .263+D .842+【答案】A【解析】由三视图可知,该多面体是如图所示的三棱锥P ABC -,其中三棱锥的高为2,底面为等腰直角三角形,直角边长为2,表面积为222222324223ABC PBC PAC PAB S S S S S =+++=+++=++△△△△,故选A .9.若函数()()()3sin 2cos 2(0π)f x x x θθθ=+++<<的图象经过点π,02⎛⎫⎪⎝⎭,则( )A .()f x 在π0,2⎛⎫⎪⎝⎭上单调递减B .()f x 在π3π,44⎛⎫⎪⎝⎭上单调递减C .()f x 在π0,2⎛⎫⎪⎝⎭上单调递增D .()f x 在π3π,44⎛⎫⎪⎝⎭上单调递增【答案】D【解析】由题意得()()()π3sin 2cos 22sin 26f x x x x θθθ⎛⎫=+++=++ ⎪⎝⎭,∵函数()f x 的图象经过点π,02⎛⎫⎪⎝⎭,∴ππππ2sin 22sin 02266f θθ⎛⎫⎛⎫⎛⎫=⨯++=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又0πθ<<,∴5π6θ=,∴()2sin 2f x x =-.对于选项A ,C ,当π0,2x ⎛⎫∈ ⎪⎝⎭时,()20,πx ∈,故函数不单调,A ,C 不正确;对于选项B ,D ,当π3π,44x ⎛⎫∈ ⎪⎝⎭时,π3π2,22x ⎛⎫∈ ⎪⎝⎭,函数()f x 单调递增,故D 正确.选D .10.已知A ,B 是函数2x y =的图象上的相异两点,若点A ,B 到直线12y =的距离相等,则点A ,B 的横坐标之和的取值范围是( ) A .(),1-∞- B .(),2-∞- C .()1,-+∞ D .()2,-+∞【答案】B【解析】设(),2aA a ,(),2bB b ,则112222ab -=-,因为a b ≠,所以221a b +=,由基本不等式有2222a b a b ++>⨯,故221a b +⨯<,所以2a b +<-,选B .11.已知一个三棱锥的六条棱的长分别为1,1,1,1,2,a ,且长为a 的棱与长为2的棱所在直线是异面直线,则三棱锥的体积的最大值为( )A .212B .312C .26D .36【答案】A【解析】如图所示,三棱锥A BCD -中,AD a =,2BC =,1AB AC BD CD ====,则该三棱锥为满足题意的三棱锥,将BCD △看作底面,则当平面ABC ⊥平面BCD 时,该三棱锥的体积有最大值,此时三棱锥的高22h =,△BCD 是等腰直角三角形,则12BCD S =△,综上可得,三棱锥的体积的最大值为112232212⨯⨯=.本题选择A 选项.12.已知双曲线22221x y a b-=(0,0)a b >>的左、右两个焦点分别为1F ,2F ,A ,B 为其左右顶点,以线段1F ,2F 为直径的圆与双曲线的渐近线在第一象限的交点为M ,且30MAB ∠=︒,则双曲线的离心率为( )A .212B .213C .193D .192【答案】B【解析】双曲线22221x y a b -=的渐近线方程为by x a=±,以1F ,2F 为直径的圆的方程为222x y c +=,将直线by x a=代入圆的方程,可得:22ac x a a b==+(负的舍去),y b =,即有()M a b ,,又()0A a -,,30MAB ∠=︒,则直线AM 的斜率33k =,又2bk a=,则()2222343b a c a ==-,即有2237c a =,则离心率213c e a ==,故选B .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,若2cos 2c B a b =+,则C ∠=_________. 【答案】120︒【解析】∵2cos 2c B a b =+,∴222222a c b c a b ac+-⨯=+,即222a b c ab +-=-, ∴2221cos 22a b c C ab +-==-,∴120C =︒. 14.阅读如图的程序框图,运行相应的程序,输出的结果为__________.【答案】138【解析】由题设中提供的算法流程图中的算法程序可知:当1x =,1y =时,220z x y =+=<,1x =,2y =,运算程序依次继续:320z x y =+=<,2x =,3y =;520z x y =+=<,3x =,5y =;820z x y =+=<,5x =,8y =;1320z x y =+=<,8x =,13y =;2120z x y =+=>,138y x =运算程序结束,输出138,应填答案138. 15.在ABC △中,22CA CB ==,1CA CB ⋅=-,O 是ABC △的外心,若CO xCA yCB =+,则x y +=______________.【答案】136【解析】由题意可得:120CAB ∠=︒,2CA =,1CB =,则:()24CO CA xCA yCB CA xCA yCB CA x y ⋅=+⋅=+⋅=-, ()2CO CB xCA yCB CB xCA CB yCB x y ⋅=+⋅=⋅+=-+,如图所示,作OE BC E ⊥=,OD AC D ⊥=,则2122CO CA CA ⋅==,21122CO CB CB ⋅==,综上有:4212x y x y -=⎧⎪⎨-+=⎪⎩,求解方程组可得:5643x y ⎧=⎪⎪⎨⎪=⎪⎩,故136x y +=. 16.已知函数()f x 满足()()2f x f x =,且当[)1,2x ∈时()ln f x x =.若在区间[)1,4内,函数()()2g x f x ax =-有两个不同零点,则a 的范围为__________.【答案】ln 20,8⎡⎫⎪⎢⎣⎭【解析】()()2f x f x =,()2x f x f ⎛⎫∴= ⎪⎝⎭,当[)2,4x ∈时,[)1,22x ∈;()ln ln ln 222x x f x f x ⎛⎫===- ⎪⎝⎭,故函数()[)[)ln ,12ln ln 2,24x x f x x x ⎧∈⎪=⎨-∈⎪⎩,,,作函数()f x 与2y ax =的图象如下,过点()4,ln 2时,ln 224a =,ln 28a ∴=,ln ln 2y x =-,1y x '=;故ln ln 21x x x-=,故2e >4x =,故实数a 的取值范围是ln 20,8⎡⎫⎪⎢⎣⎭.三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答. (一)必考题:60分,每个试题12分. 17.已知在ABC △中,2B A C =+,且2c a =. (1)求角A ,B ,C 的大小;(2)设数列{}n a 满足2cos n n a nC =,前n 项和为n S ,若20n S =,求n 的值.【答案】(1)π6A =,π3B =,π2C =;(2)4n =或5n =.【解析】(1)由已知2B A C =+,又πA B C ++=,所以π3B =.又由2c a =, 所以2222π42cos 33b a a a a a =+-⋅=,所以222c a b =+,所以ABC △为直角三角形,π2C =,πππ236A =-=. (2)0,π2cos 2cos22,n n n n n n a nC n ⎧⎪===⎨⎪⎩为奇数为偶数. 所以()22224221241224020202143kk k n k k S S S ++--===++++⋅⋅⋅++==-,*k ∈N ,由2224203k n S +-==,得22264k +=,所以226k +=,所以2k =,所以4n =或5n =. 18.某学校为了解高三复习效果,从高三第一学期期中考试成绩中随机抽取50名考生的数学成绩,分成6组制成频率分布直方图如图所示:(1)求m 的值及这50名同学数学成绩的平均数x ;(2)该学校为制定下阶段的复习计划,从成绩在[]130,140的同学中选出3位作为代表进行座谈,若已知成绩在[]130,140的同学中男女比例为2:1,求至少有一名女生参加座谈的概率.【答案】(1)0.008m =,121.8x =;(2)()45P A =. 【解析】(1)由题()0.0040.0120.0240.040.012101m +++++⨯=,解得0.008m =,950.004101050.012101150.024101250.0410x =⨯⨯+⨯⨯+⨯⨯+⨯⨯+ 1350.012101450.00810121.8⨯⨯+⨯⨯=.(2)由频率分布直方图可知,成绩在[]130,140的同学有0.01210506⨯⨯=(人), 由比例可知男生4人,女生2人,记男生分别为A 、B 、C 、D;女生分别为x 、y ,则从6名同学中选出3人的所有可能如下:ABC 、ABD 、AB x 、AB y 、ACD 、AC x 、AC y 、AD x 、AD y 、BCD 、BC x 、BC y 、BD x 、BD y 、CD x 、CD y 、A xy 、B xy 、C xy 、D xy ——共20种,其中不含女生的有4种ABC 、ABD 、ACD 、BCD;设:至少有一名女生参加座谈为事件A ,则()441205P A =-=. 19.如图,四棱锥V ABCD -中,底面ABCD 是边长为2的正方形,其它四个侧面都是侧棱长为5的等腰三角形,E 为AB 的中点.(1)在侧棱VC 上找一点F ,使BF ∥平面VDE ,并证明你的结论;(2)在(1)的条件下求三棱锥E BDF -的体积.【答案】(1)见解析;(2)36E BDF V -=. 【解析】(1)F 为VC 的中点. 取CD 的中点为H ,连BH HF 、,ABCD 为正方形,E 为AB 的中点,BE ∴平行且等于DH ,//BH DE ∴, 又//FH VD ,∴平面//BHF 平面VDE ,//BF ∴平面VDE .(2)F 为VC 的中点,14BDE ABCD S S =△正方形,18E BDF F BDE V ABCD V V V ---∴==, V ABCD -为正四棱锥,V ∴在平面ABCD 的射影为AC 的中点O ,5VA =AO =VO ∴=21233V ABCDV -∴=⋅=,6E BDF V -∴=. 20.已知椭圆1C :22221x y a b += (0)a b >>的离心率为,焦距为,抛物线2C :22x py =(0)p >的焦点F 是椭圆1C 的顶点.(1)求1C 与2C 的标准方程;(2)1C 上不同于F 的两点P ,Q 满足0FP FQ ⋅=,且直线PQ 与2C 相切,求FPQ △的面积.【答案】(1)221124x y +=,28x y =;(2)5.【解析】(1)设椭圆1C 的焦距为2c,依题意有2c =,c a =,解得a =2b =,故椭圆1C 的标准方程为221124x y +=. 又抛物线2C :22(0)x py p =>开口向上,故F 是椭圆1C 的上顶点,()0,2F ∴,4p ∴=,故抛物线2C 的标准方程为28x y =.(2)显然,直线PQ 的斜率存在.设直线PQ 的方程为y kx m =+,设()11,P x y ,()22,Q x y ,则()11,2FP x y =-,()22,2FQ x y =-, ()121212240FP FQ x x y y y y ∴⋅=+-++=,即()()()22121212440k x x km k x x m m ++-++-+=()*,联立221124y kx mx y =+⎧⎪⎨+=⎪⎩,消去y 整理得,()()2223163120**k x kmx m +++-=.依题意1x ,2x ,是方程()**的两根,2214412480k m ∆=-+>,122631kmx x k -∴+=+,212231231m x x k -⋅=+, 将12x x +和12x x ⋅代入()*得220m m --=, 解得1m =-,(2m =不合题意,应舍去)联立218y kx x y=-⎧⎨=⎩,消去y 整理得,2880x kx -+=,令264320k '∆=-=,解得212k =.经检验,212k =,1m =-符合要求. 此时,12x x -===, 121325FPQ S x x ∴=⨯⨯-=△.21.设函数()()221f x x x =∈+R . (1)求证:()21f x x x -++≥;(2)当[]1,0x ∈-时,函数()2f x ax +≥恒成立,求实数a 的取值范围. 【答案】(1)见解析;(2)1a ≥.【解析】(1)原不等式等价于4310x x x --+≥,设()431g x x x x =--+, 所以()()()322431141g x x x x x x '=--=-++,当(),1x ∈-∞时,()0g x '<,()g x 单调递减; 当()1,x ∈+∞时,()0g x '>,()g x 单调递增.又因为()()min 10g x g ==,所以()0g x ≥.所以()21f x x x -++≥. (2)当[]1,0x ∈-时,()2f x ax +≥恒成立,即221xa x -+≥恒成立. 当0x =时,2201xx-=+; 当[)1,0x ∈-时,而()222111x x x x --=++--,所以1a ≥. (二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分)22.在平面直角坐标系xOy 中,直线1l 的参数方程为x t y kt⎧=⎪⎨=⎪⎩t 为参数),直线2l 的参数程为3x mmy k ⎧=⎪⎨=⎪⎩(m 为参数),设直线1l 与2l 的交点为P ,当k 变化时点P 的轨迹为曲线1C .(1)求出曲线1C 的普通方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线2C 的极坐标方程为πsin 4ρθ⎛⎫+= ⎪⎝⎭Q 为曲线1C 的动点,求点Q 到直线2C 的距离的最小值.【答案】(1)1C 的普通方程为()22103x y y +=≠;(2)d 的最小值为【解析】(1)将1l ,2l 的参数方程转化为普通方程;(1:l y k x =+,①)21:3l y x k=,②①×②消k 可得:2213x y +=,因为0k ≠,所以0y ≠,所以1C 的普通方程为()22103x y y +=≠.(2)直线2C 的直角坐标方程为:80x y +-=. 由(1)知曲线1C 与直线2C 无公共点,由于1C 的参数方程为sin x ay a ⎧=⎪⎨=⎪⎩(a 为参数,πa k ≠,k ∈Z ),所以曲线1C 上的点),sin Qa a 到直线80x y +-=的距离为:d ==所以当πsin 13a ⎛⎫+= ⎪⎝⎭时,d 的最小值为23.已知函数()()13f x x a a =-∈R . (1)当2a =时,解不等式()113x f x -+≥; (2)设不等式()13x f x x -+≤的解集为M ,若11,32M ⎡⎤⊆⎢⎥⎣⎦,求实数a 的取值范围. 【答案】(1){|0x x ≤或1}x ≥;(2)14,23⎡⎤-⎢⎥⎣⎦.【解析】(1)当2a =时,原不等式可化为3123x x -+-≥,①当13x ≤时,原不等式可化为3123x x -++-≥,解得0x ≤,所以0x ≤;②当123x <<时,原不等式可化为3123x x -+-≥,解得1x ≥,所以12x <≤.③当2x ≥时,原不等式可化为3123x x --+≥,解得1x ≥,所以2x ≥, 综上所述,当2a =时,不等式的解集为{|0x x ≤或1}x ≥.(2)不等式()13x f x x -+≤可化为313x x a x -+-≤, 依题意不等式313x x a x -+-≤在11,32⎡⎤⎢⎥⎣⎦恒成立,所以313x x a x -+-≤,即1x a -≤,即11a x a -+≤≤,所以113112a a ⎧-⎪⎪⎨⎪+⎪⎩≤≥, 解得1423a -≤≤,故所求实数a 的取值范围是14,23⎡⎤-⎢⎥⎣⎦.。

(全国100所名校最新高考模拟示范卷)2020年普通高等学校招生全国统一考试数学模拟测试(四)ZX-MNJ.SD

(全国100所名校最新高考模拟示范卷)2020年普通高等学校招生全国统一考试数学模拟测试(四)ZX-MNJ.SD

按秘密级事项管理★启用前2020年普通高等学校招生全国统一考试数学模拟测试本试卷共22题,共150分,考试时间120分钟,考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生先将自己的姓名、考生号、考场号和座位号填写清楚,将条形码准确粘贴在条形码区域内.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱.不准使用涂改液、修正带、刮纸刀.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|26M x x =-<<,{}2|3log 35N x x =-<<,则M N =I ( ) A .{}2|2log 35x x -<< B .{}2|3log 35x x -<< C .{}|36x x -<<D .{}2|log 356x x <<2.设复数z 满足12z zz +=+,z 在复平面内对应的点的坐标为(),x y ,则( ) A .221x y =+B .221y x =+C .221x y =-D .221y x =-3.已知()2,1AB =-u u u r ,()1,AC λ=u u u r ,若cos BAC ∠=,则实数λ的值是( )A .-1B .7C .1D .1或74.“2b =”是“函数()()2231f x b b x α=--(α为常数)为幂函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件5.若()()613x a x -+的展开式中3x 的系数为-45,则实数a 的值为( ) A .23B .2C .14D .136.函数()2cos 2cos 221xxf x x =+-的图象大致是( )A .B .C .D .7.如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD P ,若正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,则下列结论正确的是( )A .m n =B .2m n =+C .m n <D .8m n +<8.已知函数()2xf x x a =+,()ln 42xg x x a -=-,若存在实数0x ,使()()005f x g x -=成立,则正数a 的取值范围为( ) A .(]0,1B .(]0,4C .[)1,+∞D .(]0,ln 2二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.刘女士的网店经营坚果类食品,2019年各月份的收入、支出(单位:百元)情况的统计如图所示,下列说法中正确的是( )A .4至5月份的收入的变化率与11至12月份的收入的变化率相同B .支出最高值与支出最低值的比是5:1C .第三季度平均收入为5000元D .利润最高的月份是3月份和10月份10.嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中轨道③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里,已知月球的直径约为3476公里,对该椭圆下述四个结论正确的是( )A .焦距长约为300公里B .长轴长约为3988公里C .两焦点坐标约为()150,0±D .离心率约为7599411.如图,已知正方体1111ABCD A B C D -的棱长为2,E 为棱1CC 的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F 、B 、E 、G 、H 为过三点B 、E 、F 的平面BMN 与正方体1111ABCD A B C D -的棱的交点,则下列说法正确的是( )A .HF BE PB .三棱锥1B BMN -的体积为6C .直线MN 与平面11A B BA 的夹角是45°D .11:1:3D G GC =12.已知函数()sin f x a x x =的一条对称轴为56x π=,函数()f x 在区间()12,x x 上具有单调性,且()()12f x f x =-,则下述四个结论正确的是( ) A .实数a 的值为1B .()()11,x f x 和()()22,x f x 两点关于函数()f x 图象的一条对称轴对称 C .21x x -的最大值为π D .12x x +的最小值为23π 三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.若函数()()()()()2log 2242x x f x f x x ->⎧⎪=⎨+≤⎪⎩,则()5f -=__________;()()5f f -=__________.(本题第一空2分,第二空3分)14.某部门全部员工参加一项社会公益活动,按年龄分为A ,B ,C 三组,其人数之比为5:3:2,现用分层抽样的方法从总体中抽取一个容量为20的样本,若C 组中甲、乙二人均被抽到的概率是111,则该部门员工总人数为__________.15.已知双曲线22219x y b -=的左、右焦点分别为1F 、2F ,P 为双曲线上任一点,且12PF PF ⋅u u u r u u u u r 的最小值为-7,则该双曲线的离心率是__________.16.如图,在矩形ABCD 中,24AD AB ==,E 是AD 的中点,将ABE △,CDE △分别沿BE ,CE 折起,使得平面ABE ⊥平面BCE ,平面CDE ⊥平面BCE ,则所得几何体ABCDE 的外接球的体积为__________.四、解答题:本题共6小题,共70分.解答应写出文字说眀、证明过程或演算步骤.17.在①2316b b a =,②412b a =,③5348S S -=这三个条件中任选一个,补充在下面问题中.若问题中的正整数k 存在,求k 的值;若不存在,请说明理由.设正数等比数列{}n b 的前n 项和为n S ,{}n a 是等差数列,__________,34b a =,12a =,35730a a a ++=,是否存在正整数k ,使得132k k k S S b +=++成立? 注:如果选择多个条件分别解答,按第一个解答计分.18.已知在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,若1a =,6A π=21b -=.(1)求cos C 的值; (2)求ABC △的面积.19.在如图所示的多面体中,四边形ABEG 是矩形,梯形DGEF 为直角梯形,平面DGEF ⊥平面ABEG ,且DG GE ⊥,DF GE P ,2222AB AG DG DF ====. (1)求证:FG ⊥平面BEF . (2)求二面角A BF E --的大小.20.在直角坐标系xOy 中,曲线1C 上的任意一点M 到直线1y =-的距离比M 点到点()0,2F 的距离小1. (1)求动点M 的轨迹1C 的方程;(2)若点P 是圆()()222:221C x y -++=上一动点,过点P 作曲线1C 的两条切线,切点分别为A 、B ,求直线AB 斜率的取值范围.21.某大学开学期间,该大学附近一家快餐店招聘外卖骑手,该快餐店提供了两种日工资结算方案:方案(a )规定每日底薪100元,外卖业务每完成一单提成2元;方案(b )规定每日底薪150元,外卖业务的前54单没有提成,从第55单开始,每完成一单提成5元.该快餐店记录了每天骑手的人均业务量,现随机抽取100天的数据,将样本数据分为[)25,35,[)35,45,[)45,55,[)55,65,[)65,75,[)75,85,[]85,95七组,整理得到如图所示的频率分布直方图.(1)随机选取一天,估计这一天该快餐店的骑手的人均日外卖业务量不少于65单的概率; (2)从以往统计数据看,新聘骑手选择日工资方案(a )概率为13,选择方案()b 的概率为23.若甲、乙、丙、丁四名骑手分别到该快餐店应聘,四人选择日工资方案相互独立,求至少有两名骑手选择方案()a 的概率;(3)若仅从人日均收入的角度考虑,请你为新聘骑手做出日工资方案的选择,并说明理由. (同组中的每个数据用该组区间的中点值代替)22.已知函数()()ln 1f x m x x =+-,()sin g x mx x =-. (1)若函数()f x 在()0,+∞上单调递减,且函数()g x 在0,2π⎛⎫⎪⎝⎭上单调递增,求实数m 的值; (2)求证:()()21111sin11sin1sin 1sin 12231e n n ⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎝⎭L (*n ∈N 且2n ≥). 2020年普通高等学校招生全国统一考试数学模拟测试参考答案1.A 本题考查交集.25log 356<<Q ,{}2|2log 35M N x x ∴=-<<I .2.B 本题考查复数的几何意义.12z zz +=+Q ,1x =+,解得221y x =+.3.C 本题考查向量的数量积.cos 10AB AC BAC AB AC ⋅∠===u u u r u u u r Q u u u r u u u r ,∴解得1λ=. 4.A 本题考查充分必要条件.Q 当函数()()2231f x b b x α=--为幂函数时,22311b b --=,解得2b =或12-,∴“2b =”是“函数()()2231f x b b x α=--为幂函数”的充分不必要条件. 5.D 本题考查二项式定理.()()()()666131313x a x x x a x -+=+-+Q 的展开式中3x 的系数为2233663313554045C aC a -=-=-,∴解得13a =. 6.C 本题考查函数的图象.()2cos 221cos 2cos 22121x xx x f x x x +=+=--Q , ()()()2121cos 2cos 22121x x x x f x x x f x --++∴-=-=-=---,∴函数()f x 为奇函数,∴排除选项A ,B ;又Q 当0,4x π⎛⎫∈ ⎪⎝⎭时,()0f x >,∴选C 项. 7.A 本题考查线面关系.如图,CE ⊂平面ABPQ ,从而CE P 平面1111A B PQ ,易知CE 与正方体的其余四个面所在平面均相交,4m ∴=,EF Q P 平面11BPPB ,EF P 平面11AQQ A ,且EF 与正方体的其余四个面所在平面均相交,4n ∴=,m n ∴=.8.A 本题考查函数与导数.由题意得()()0000002ln 425xx f x g x x a x a --=+-+=,即0000242ln 5xx a a x x -+=+-,令()ln 5h x x x =+-,()111xh x x x-'∴=-=,()h x ∴在()0,1上单调递增,则()1,+∞上单调递减, ()()max 14h x h ∴==,而024224x x a a a -+≥=,当且仅当00242x x -=⋅,即当01x =时,等号成立,44a ∴≤,01a ∴<≤.9.ACD 本题考查图表问题.对于A 选项,4至5月份的收入的变化率为30502054-=--,11至12月份的变化率为5070201211-=--,故相同,A 项正确.对于B 选项,支出最高值是2月份60百元,支出最低值是5月份的10百元,故支出最高值与支出最低值的比是6:1,故B 项错误.对于C 选项,第三季度的7,8,9月每个月的收入分别为40百元,50百元,60百元,故第三季度的平均收入为405060503++=百元,故C 项正确.对于D 选项,利润最高的月份是3月份和10月份都是30百元,故D 项正确.10.AD 本题考查椭圆的实际应用.设该椭圆的半长轴长为a ,半焦距长为c .依题意可得月球半径约为1347617382⨯=,10017381838a c -=+=,40017382138a c +=+=,2183821383976a =+=,1988a =,21381988150c =-=,椭圆的离心率约为150751988994c e a ===,可得结论A 、D 项正确,B 项错误;11.AD 本题考查立体几何问题.对于A 选项,由于平面11ADD A P 平面11BCC B ,而平面BMN 与这两个平面分别交于HF 和BE ,根据面面平行的性质定理可知HF BE P ,故A 选项判断正确;由于1:1:2A F FA =,而E 是1CC 的中点,故11MA =,123HD =,112D G =,132GC =,12C N =. 对于B 选项,111111111342=43232B BMN B MNB V V MB NB BB --==⨯⨯⨯⨯=⨯⨯⨯⨯,故B 选项判断错误; 对于C 选项,由于1B N ⊥平面11A B BA ,所以直线MN 与平面11A B BA 所成的角为1NMB ∠,且1114tan 13B N NMB B M ∠==≠,故C 选项判断错误; 对于D 选项,根据前面计算的结果可知112D G =,132GC =,故D 选项判断正确. 12.ACD 本题考查三角函数性质.56x π=Q 是函数()f x 的一条对称轴, ()53f x f x π⎛⎫∴=- ⎪⎝⎭,∴令0x =,得()503f f π⎛⎫=⎪⎝⎭,解得1a =, ()sin 2sin 3f x x x x π⎛⎫∴==- ⎪⎝⎭,又Q 函数()f x 在区间()12,x x 上具有单调性,21x x ∴-的最大值为2Tπ=,且()()12f x f x =-,()()11,x f x ∴和()()22,x f x 两点关于函数()f x 图象的一个对称中心对称, ()1212233322x x x x k k ππππ-+-+-∴==∈Z ,()12223x x k k ππ∴+=+∈Z ,当0k =时,12x x +取最小值为23π, ∴A ,C ,D 项正确,B 项错误.13.0 1 本题考查求函数值.()()()5130f f f -=-==,()()()()5041ff f f -===.14.60 本题考查分层抽样和概率.设C 组有n 人,()22224121111n n C C C n n -==-Q ,∴解得12n =,∴该部门员工总共有()12532602⨯++=人. 15.43本题考查双曲线的离心率.设点()1,0F c -()0c >,()2,0F c ()0c >,(),P m n , 则22219m n b -=,即22291n m b ⎛⎫=+ ⎪⎝⎭, ()1=,PF c m n ---u u u r Q ,()2,PF c m n =--u u u u r,2222222221222991199n PF PF m c n n c n c c b b ⎛⎫⎛⎫∴⋅=-+=++-=++-≥- ⎪ ⎪⎝⎭⎝⎭u u u r u u u u r ,当0n =时,等号成立,297c ∴-=-,4c ∴=,43e ∴=. 16.323π 本题考查折叠问题.由题可得ABE △,CDE △,BEC △均为等腰直角三角形,如图, 设BE ,EC ,BC 的中点分别为M ,N ,O ,连接AM ,OM ,AO ,DN ,NO ,DO ,OE ,则OM BE ⊥,ON CE ⊥. 因为平面ABE ⊥平面BCE ,平面CDE ⊥平面BCE .所以OM ⊥平面ABE ,ON ⊥平面DEC ,易得2OA OB OC OD OE =====, 则几何体ABCDE 的外接球的球心为O ,半径2R =, 所以几何体ABCDE 的外接球的体积为343233V R ππ==.17.解:本题考查数列的应用.Q 在等差数列{}n a 中,3575330a a a a ++==,510a ∴=, ∴公差51251a a d -==-,()112n a a n d n ∴=+-=,348b a ∴==, 若存在正整数k ,使得132k k k S S b +=++成立,即132k k b b +=+成立,设正数等比数列{}n b 的公比为()0q q >,若选①,2316b b a =Q ,24b ∴=,322b q b ∴==,2n n b ∴=, ∴当5k =时,满足6532b b =+成立.若选②,41224b a ==Q ,433b q b ∴==,383n n b -∴=⋅, 23838332n n --∴⋅=⋅+,332n -∴=方程无正整数解, ∴不存在正整数k ,使得132k k b b +=+成立.若选③,5348S S -=Q ,4548b b ∴+=,28848q q ∴+=,260q q ∴+-=, ∴解得2q =或3q =-(舍去),2nn b ∴=,∴当5k =时,满足6532b b =+成立.18.解:本题考查解三角形.(121b -=2b a -=2sin sin C B A -=,6A π=Q ,56B C π∴=-,512sin 62C C π⎛⎫--= ⎪⎝⎭, ∴解得1cos 2C =-. (2)Q 在ABC △中,1cos 2C =-,23C π∴=,6B AC ππ∴=--=,1b a ∴==,11sin 112224ABC S ab C ∴==⨯⨯⨯=△. 19.解:本题考查线面垂直和二面角.(1)Q 平面DGEF ⊥平面ABEG ,且BE GE ⊥,BE ∴⊥平面DGEF ,BE FG ∴⊥,由题意可得FG FE ==222FG FE GE ∴+=,FE FG ∴⊥,FG ∴⊥平面BEF .(2)如图所示,建立空间直角坐标系,则()1,0,0A ,()1,2,0B ,()0,2,0E ,()0,1,1F ,()1,1,1FA =--u u u r,()1,1,1FB =-u u u r ,()0,1,1FE =-u u u r.设平面AFB 的法向量是()111,,n x y z =r ,则11111111100000x y z x z FA n x y z y FB n ⎧--==⋅=⎧⎧⎪⇒⇒⎨⎨⎨+-==⋅=⎩⎩⎪⎩u u u r ru u u r r,令11x =,()1,0,1n =r ,由(1)可知平面EFB 的法向量是()0,1,1m GF ==u r u u u r,1cos ,2n m n m n m⋅∴===r u r r u r r u r ,∴两法向量所成的角为3π, 由图可知,二面角A BF E --的大小为23π.20.解:本题考查轨迹问题.(1)设点(),M x y ,Q 点M 到直线1y =-的距离等于1y +,11y ∴+=,化简得28x y =,∴动点M 的轨迹1C 的方程为28x y =.(2)由题意可知,PA 、PB 的斜率都存在,分别设为1k 、2k ,切点()11,A x y ,()22,B x y , 设点(),P m n ,过点P 的抛物线的切线方程为()y k x m n =-+, 联立()28y k x m nx y⎧=-+⎪⎨=⎪⎩,得28880x kx km n -+-=,26432320k km n ∆=-+=Q ,即220k km n -+=,122m k k ∴+=,122nk k =, 由28x y =,得4x y '=,114x k ∴=,2211128x y k ==,2222222428x x k yk =⋅==,222121212121224424ABy y k k k k m k x x k k --+∴====--, Q 点(),P m n 满足()()22221x y -++=,13m ∴≤≤,13444m ∴≤≤,即直线AB 斜率的取值范围为13,44⎡⎤⎢⎥⎣⎦. 21.解:本题考查概率问题.(1)设事件A 为“随机选取一天,这一天该快餐店的骑手的人均日外卖业务量不少于65单”. 依题意,快餐店的人均日外卖业务量不少于65单的频率分别为0.2、0.15、0.05,0.20.150.050.4++=Q ,()P A Q 估计为0.4.(2)设事件B 为“甲、乙、丙、丁四名骑手中至少有两名骑手选择方案()a ”, 设事件i C 为“甲、乙、丙、丁四名骑手中恰有()0,1,2,3,4i i =人选择方案()a ”,则()()()41310144212163211111333818127P B P C P C C C ⎛⎫⎛⎫⎛⎫=--=--=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以四名骑手中至少有两名骑手选择方案()a 的概率为1127. (3)设骑手每日完成外卖业务量为X 件, 方案()a 的日工资()*11002Y X X =+∈N ,方案()b 的日工资()*2*150,54,150554,54,X X Y X X X ⎧≤∈⎪=⎨+->∈⎪⎩NN, 所以随机变量1Y 的分布列为()11600.051800.052000.22200.32400.22600.152800.05224E Y =⨯+⨯+⨯+⨯+⨯+⨯+⨯=;同理,随机变量2Y 的分布列为()21500.31800.32300.22800.153300.05203.5E Y =⨯+⨯+⨯+⨯+⨯=.()()12E Y E Y >Q ,∴建议骑手应选择方案()a .22.解:本题考查函数与导数.(1)Q 函数()f x 在()0,+∞上单调递减,()101mf x x'∴=-<+,即1m x <+在()0,+∞上恒成立,1m ∴≤, 又Q 函数()g x 在0,2π⎛⎫⎪⎝⎭上单调递增, ()cos 0g x m x '∴=->,即cos m x >在0,2π⎛⎫⎪⎝⎭上恒成立,1m ≥,∴综上可知,1m =.(2)由(1)知,当1m =时,函数()()ln 1f x x x =+-在()0,+∞上为减函数,()sin g x x x =-在0,2π⎛⎫⎪⎝⎭上为增函数,∴当0x >时,()ln 1x x +<,当02x π<<时,sin x x <.sin1Q ,1sin12⨯,1sin 23⨯,L ,()1sin 01n n>-⨯(*n ∈N 且2n ≥),()()()111ln 1sin11sin 1sin 1sin ln 1sin112231n n ⎡⎤⎛⎫⎛⎫⎛⎫∴++++=+⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦L()11111ln 1sin ln 1sin ln 1sin sin1sin sin 122311223n n ⎛⎫⎛⎫⎛⎫+++++++<+++ ⎪ ⎪ ⎪ ⎪⨯⨯-⨯⨯⨯⎝⎭⎝⎭⎝⎭L L ()()1111111111sin111221122312231n n n n n n n ⎛⎫⎛⎫⎛⎫+<++++=+-+-++-=-< ⎪ ⎪ ⎪-⨯⨯⨯-⨯-⎝⎭⎝⎭⎝⎭L L ,即()()111ln 1sin11sin 1sin 1sin 212231n n ⎡⎤⎛⎫⎛⎫⎛⎫++++<⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦L , ()()21111sin11sin 1sin 1sin 12231e n n ⎛⎫⎛⎫⎛⎫∴++++< ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎝⎭L(*n ∈N 且2n ≥).。

【答案】【金太阳】2020年全国100所名校最新高考模拟示范卷 理科数学(四)

【答案】【金太阳】2020年全国100所名校最新高考模拟示范卷 理科数学(四)

3c 1 c2 3c2
3c 1 ,得 c2 3, c
3,
2
4
2
3c 1
a2 b2 c2 1
b
1,cos C

2
2ab
2
7.答案:C
2 cos 2x 2x 1
2x 1
1 2x
解析: f (x) cos 2x
cos 2x , f (x)
cos(2x) cos 2x f (x) ,
B
5
5
5
解析: x
6
是函数 f (x) 的一条对称轴, f (x)
f
3
x ,令 x 0 ,得 f (0)
f
3

33

3 a ,所以 a 1,①正确; f (x) sin x 22
3
cos
x
2 sin
x
3

T 又因为函数 f (x) 在区间 (x1, x2 ) 上具有单调性, x2 x1 的最大值为 2 ,且 f (x1) f (x2 ) ,
AB AC
2
10
解析: cos BAC
,解得 1 .
AB AC 5 1 2 10
5.答案:B
1 解析:设该椭圆长轴长为 a ,半焦距为 c ,依题意可得月球半径约为 3476 1738 ,
2
a c 100 1738 1838 a 1988
c 150 75
,离心率 e
,
97 13
19 (1) x2 8 y
1 3 (2) 直线 AB 斜率的取值范围是 4 , 4
20 (1) 0.4 21 (1) m 1
11

2020年届全国100所名校最新高考模拟示范卷数学模拟测试(四)试题带答案解析)

2020年届全国100所名校最新高考模拟示范卷数学模拟测试(四)试题带答案解析)
(2)求二面角 的大小.
20.在直角坐标系 中,曲线 上的任意一点 到直线 的距离比 点到点 的距离小1.
(1)求动点 的轨迹 的方程;
(2)若点 是圆 上一动点,过点 作曲线 的两条切线,切点分别为 ,求直线 斜率的取值范围.
21.某大学开学期间,该大学附近一家快餐店招聘外卖骑手,该快餐店提供了两种日工资结算方案:方案 规定每日底薪100元,外卖业务每完成一单提成2元;方案 规定每日底薪150元,外卖业务的前54单没有提成,从第55单开始,每完成一单提成5元.该快餐店记录了每天骑手的人均业务量,现随机抽取100天的数据,将样本数据分为 七组,整理得到如图所示的频率分布直方图.
A.焦距长约为300公里B.长轴长约为3988公里
C.两焦点坐标约为 D.离心率约为
11.如图,已知正方体 的棱长为2, 为棱 的中点, 为棱 上的点,且满足 ,点 为过三点 的平面 与正方体 的棱的交点,则下列说法正确的是( )
A. B.三棱锥 的体积为6
C.直线 与平面 的夹角是45°D.
12.已知函数 的一条对称轴为 ,函数 在区间 上具有单调性,且 ,则下述四个结论正确的是( )
15.已知双曲线 的左、右焦点分别为 为双曲线上任一点,且 的最小值为 ,则该双曲线的离心率是__________.
16.如图,在矩形 中, , 是 的中点,将 , 分别沿 折起,使得平面 平面 ,平面 平面 ,则所得几何体 的外接球的体积为__________.
四、解答题
17.在① ,② ,③ 这三个条件中任选一个,补充在下面问题中.若问题中的正整数 存在,求 的值;若不存在,说明理由.
设正数等比数列 的前 项和为 , 是等差数列,__________, , , ,是否存在正整数 ,使得 成立?

2020届全国100所名校最新高考模拟示范卷数学模拟测试(四)试题

2020届全国100所名校最新高考模拟示范卷数学模拟测试(四)试题
易得 ,
则几何体 的外接球的球心为 ,半径 ,
所以几何体 的外接球的体积为 .
故答案为: .
【点睛】
本题考查了空间几何体的综合应用,折叠后空间几何体的线面位置关系应用,空间几何体外接球的性质及体积求法,属于中档题.
四、解答题
17.在① ,② ,③ 这三个条件中任选一个,补充在下面问题中.若问题中的正整数 存在,求 的值;若不存在,说明理由.
则 ,即 ,
∵ , ,

当 时,等号成立,
∴ ,
∴ ,
∴ .
故答案为: .
【点睛】
本题考查了双曲线与向量的综合应用,由平面向量数量积的最值求离心率,属于中档题.
16.如图,在矩形 中, , 是 的中点,将 , 分别沿 折起,使得平面 平面 ,平面 平面 ,则所得几何体 的外接球的体积为__________.
【详解】
函数 , ,
由题意得 ,
即 ,
令 ,
∴ ,
∴ 在 上单调递增,在 上单调递减,
∴ ,而 ,
当且仅当 ,即当 时,等号成立,
∴ ,
∴ .
故选:A.
【点睛】
本题考查了导数在求函数最值中的应用,由基本不等式求函数的最值,存在性成立问题的解法,属于中档题.
二、多选题
9.刘女士的网店经营坚果类食品,2019年各月份的收入、支出(单位:百元)情况的统计如图所示,下列说法中正确的是( )
【详解】
对于A选项,4至5月份的收入的变化率为 ,11至12月份的变化率为 ,因而两个变化率相同,所以A项正确.
对于B选项,支出最高值是2月份60百元,支出最低值是5月份的10百元,故支出最高值与支出最低值的比是 ,故B项错误.
对于C选项,第三季度的7,8,9月每个月的收入分别为40百元,50百元,60百元,故第三季度的平均收入为 百元,故C选项正确.

2020年江苏高三四模数学试卷(百校联考)答案

2020年江苏高三四模数学试卷(百校联考)答案

此时
https:///#/print?id=20e794d5324d4b7cbd3bc6efeebcfced&type=answer
更多资料在微信搜索小程序“授课神器“获取
在线组卷:https:///#/?channelId=10052
5/12
更多资料在微信搜索小程序“授课神器“获取
在线组卷:https:///#/?channelId=10052
2020/4/27
2020年江苏高三四模数学试卷(百校联考)
设 为 的中点,








,则




“获
所以






二、解答题
“授
15. ( 1 )证明见解析.
时, 的最大值为
有最大值 , .
更多 17. ( 1 )

(2)


【解析】( 1 )∵离心率为 , 设焦距为 ,
的周长为 ,

,解得

∴椭圆方程为

( 2 )设 为
,则
,且

https:///#/print?id=20e794d5324d4b7cbd3bc6efeebcfced&type=answer
3/12
更多资料在微信搜索小程序“授课神器“获取
在线组卷:https:///#/?channelId=10052
2020/4/27

时,有
综上,
,无解20,20年江苏高三四模数学试卷(百校联考)
的解集为

11. 【解析】 设容器底面半径为 ,原水面所在半径为 ,母线长为 ,

2020届全国100所名校最新高考模拟示范卷高三理科数学(四)试题

2020届全国100所名校最新高考模拟示范卷高三理科数学(四)试题
C. D.
3.“ ”是“函数 ( 为常数)为幂函数”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件
4.已知 , ,若 ,则实数 的值是( )
A.-1B.7C.1D.1或7
5.嫦娥四号月球探测器于2021年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里,已知月球的直径约为3476公里,对该椭圆有下述四个结论:
【详解】
在复平面内对应的点的坐标为 ,则 ,

∵ ,
代入可得 ,
解得 .
故选:B.
【点睛】
本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题.
3.A
【分析】
根据幂函数定义,求得 的值,结合充分条件与必要条件的概念即可判断.
【详解】
∵当函数 为幂函数时, ,
解得 或 ,
∴“ ”是“函数 为幂函数”的充分不必要条件.
21.已知函数 , .
(1)若函数 在 上单调递减,且函数 在 上单调递增,求实数 的值;
(2)求证: ( ,且 ).
22.在直角坐标系 中,直线 的方程为 ,曲线 的参数方程为 ( 为参数).以坐标原点 为极点, 轴正半轴为极轴建立极坐标系.
(1)求直线 和曲线 的极坐标方程;
(2)若射线 与 的交点为 ,与曲线 的交点为 , ,且 ,求实数 的值.
2020届全国100所名校最新高考模拟示范卷高三理科数学(四)试题
学校:___________姓名:___________班级:___________考号:___________

2020届全国高考百所名校基础演练试卷(四)理科数学

2020届全国高考百所名校基础演练试卷(四)理科数学

2020届全国高考百所名校基础演练试卷(四)理科数学★祝考试顺利★注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题,的否定是()A. B.C. D.【答案】B【解析】【分析】按存在性命题的否定的规则写出即可.【详解】因命题为“,”,它是存在性命题,故其否定为:,选B.【点睛】全称命题的一般形式是:,,其否定为.存在性命题的一般形式是,,其否定为.2.抛物线上的点到其焦点的距离为()A. 3B. 4C. 5D. 6【答案】C【解析】【分析】利用焦半径公式可得的长度. 【详解】,故选C. 【点睛】如果抛物线的方程为,则抛物线上的点到焦点的距离为.3.圆形铜钱中间有一个边长为4毫米的正方形小孔,已知铜钱的直径为16毫米,现向该铜钱上随机地投入一粒米(米的大小忽略不计),那么该粒米落入小孔内的概率为()A. B. C. D.【答案】A【解析】【分析】算出正方形小孔的面积和铜钱的面积,利用几何概型的概率公式可得所求的概率.【详解】设为“该粒米落入小孔内”,因为正方形小孔的面积为平方毫米,铜钱的面积为平方毫米,故,故选A.【点睛】几何概型的概率计算关键在于测度的选取,测度通常是线段的长度、平面区域的面积、几何体的体积等.4.设,是两条不同的直线,,是两个不同的平面,则下列命题正确的是()A. 若,,则B. 若,,则C. 若,,,,则D. 若,,,则【答案】D【解析】【分析】对于A,B选项均有可能为线在面内,故错误;对于C选项,根据面面平行判定定理可知其错误;直接由线面平行性质定理可得D正确.【详解】若,,则有可能在面内,故A错误;若,,有可能面内,故B错误;若一平面内两相交直线分别与另一平面平行,则两平面平行,故C错误.若,,,则由直线与平面平行的性质知,故D正确.故选D.【点睛】本题考查的知识点是,判断命题真假,比较综合的考查了空间中直线与平面的位置关系,属于中档题.5.某地气象台预计,7月1日该地区下雨的概率为,刮风的概率为,既刮风又下雨的概率为,设表示下雨,表示刮风,则A. B. C. D.【答案】B【解析】解:因为5月1日浔阳区下雨的概率为,刮风的概率为,既刮风又下雨的概率为,设A 为下雨,B为刮风,则6.展开式中项的系数为()A. B. C. D.【答案】C【解析】【分析】考虑的二项展开式中的常数项、一次项和二次项的系数后可得所求的系数.【详解】的通项公式为,故的二项展开式中的常数项为,一次项系数为,二次项的系数为,展开式中的系数为,故选C.【点睛】二项展开式中指定项的系数,可利用赋值法来求其大小,也可以利用二项展开式的通项结合多项式的乘法来求.7.我市实行新高考,考试除了参加语文、数学、英语的统一考试外,还需从物理和历史中选考一科,从化学、生物、政治、地理中选考两科,学生甲想要报考某高校的法学专业,就必须要从物理、政治、历史三科中至少选考一科,则学生甲的选考方法种数为()A. 8B. 12C. 18D. 19【答案】B【解析】【分析】就甲选择物理或历史分类计数即可.【详解】如果甲选考物理,则化学、生物、政治、地理中选考两门,有选考方法种数;如果甲选考历史,则化学、生物、政治、地理中选考两门,有选考方法种数,综上,选考方法种数共有12种,选B.【点睛】本题考查组合的计数,为基础题,解题时注意合理分类.8.下表是某厂月份用水量(单位:百吨)的一组数据,其中有一个数据模糊不清,已知原来根据该数据由最小二乘法求得回归直线方程为,则表中模糊不清的数据为()用水量A. 2.5B. 4.5C. 3D. 4【答案】D【解析】【分析】利用线性回归方程对应的直线过计算可得缺失的值.【详解】因为回归直线方程,当时,,设2月份用水量为,则,故,故选D.【点睛】本题考查线性回归方程对应的直线过,属于基础题.9.某学期某大学数学专业的6名在校大学生到我校实习,则实习大学生按人数2,2,1,1安排到不同的四个年级的方案共有()A. 1080B. 540C. 180D. 90【答案】A【解析】【分析】先把6人分组(按2,2,1,1)后再分配给四个不同的班级可得总的方案数.【详解】不同的方案有,故选A.【点睛】对于排列问题,我们有如下策略:(1)特殊位置、特殊元素优先考虑,比如组中人数确定等;(2)先选后排(或先分组再分配),比如要求所选的人满足一定的数目,我们得先选出符合数目要求的人,再把他们分配到相应的对象中,此处特别注意均匀分组问题;(3)去杂法,也就是从反面考虑.10.平行四边形的四个顶点均在双曲线上,直线的斜率分别为,1,则该双曲线的渐近线方程为()A. B. C. D.【答案】A【解析】【分析】利用点差法可求,从而可得渐近线方程.【详解】因为双曲线是中心对称的,故平行四边形的顶点关于原点对称,设,,则,故,,所以,整理得到:即,故即,所以渐近线方程为即,选A.【点睛】直线和圆锥曲线的位置关系中,如果涉及到弦的中点问题,可以考虑用点差法来简化计算.11.观察:,,,,,,从而得到47的二进制数为,记作:,类比上述方法,根据三进制数“满三进一”的原则,则()A. 202B. 1202C. 021D. 2021 【答案】B【解析】【分析】把分解为后可得其三进制数的表示.【详解】因为,所以,故,故选B.【点睛】本题为新定义题,弄清题设中一个正整数的二进制表示是如何得到的是关键.12.定义在上的函数满足(其中为的导函数),则下列各式成立的是()A. B.C. D.【答案】C【解析】【分析】构建新函数,根据题设条件有在上为增函数,从而得到,化简后可得.【详解】,即令,则在上为增函数,,即,亦即,亦即,故选.【点睛】如果题设中有关于函数及其导数的不等式,我们应根据该式的形式构建新函数并且新函数的单调性可根据题设中的不等式得到,构建新函数时可借鉴导数的运算规则.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.某班共有52人,现根据学生的学号,用系统抽样的方法抽取一个容量为4的样本,已知学号为3号、16号、42号的同学在样本中,那么样本中还有一个同学的学号为__________.【答案】【解析】【分析】依据系统抽样可知学号是公差为的等差数列,从而可求余下一个同学的学号.【详解】因为该班总共52人,样本容量为4,故抽取的学号是公差为的等差数列,故余下一个同学的学号为.填.【点睛】本题考查系统抽样的性质,属于基础题.14.已知随机变量满足,,__________.【答案】【解析】【分析】利用公式直接计算即可.【详解】因为,所以,所以,填.【点睛】一般地,如果,,那么,.15.设,若,则非零实数__________.【答案】【解析】【分析】对题设中的等式两边求导后再令可得,从而求得的值.【详解】对等式两边求导后可得,令,则有,因,故即,填.【点睛】二项展开式中项的系数性质的讨论,可利用赋值法来求讨论,所赋之值应该根据解析式的特点作合适选择,有时还需要对原有等式做合适的代数变形后(如求导等)再赋值,也可以利用二项展开式的通项结合多项式的乘法来讨论.16.某几何体的三视图如图所示(小正方形的边长为1),则该几何体外接球的表面积__________.【答案】【解析】【分析】三视图对应的几何体为三棱锥,补体后可求其外接球的表面积.【详解】如图,几何体三棱锥,将三棱锥补形为直三棱柱,其中底面为等腰直角三角形,其外接圆的半径为,侧棱,故外接球的半径为,故三棱锥外接球的表面积为.【点睛】本题考查三视图,要求根据三视图复原几何体,注意复原前后点、线、面的关系.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在直角坐标系中,直线的参数方程为(其中为参数),以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设直线与曲线交于两点,点,求的值.【答案】(1);(2).【解析】【分析】(1)曲线的极坐标方程可以化为,利用可得其直角坐标方程. (2)把直线的参数代入抛物线的方程得到关于的一元二次方程,利用参数的几何意义可求的值.【详解】(1)曲线的极坐标方程可化为,因为,所以直角坐标方程为;(2)设直线上两点的参数分别为,,则,,将的参数方程代入曲线的直角坐标方程得,化简得,则,所以.【点睛】极坐标方程与直角方程的互化,关键是,必要时须在给定方程中构造.直线的参数方程有很多种,如果直线的参数方程为(其中为参数),注意表示直线上的点到的距离,我们常利用这个几何意义计算直线上线段的长度和、差、积等.18.我校某数学老师这学期分别用两种不同的教学方式在高一甲、乙两个班(人数均相同,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样)进行教学实验,现随机抽取甲、乙两班各20名学生的数学期末考试成绩,并作出茎叶图如下:(1)依茎叶图判断哪个班的平均分高?(2)现从甲班所抽数学成绩不低于80分的同学中随机抽取三名同学,事件表示“抽到成绩为86分的同学至少1名”,求.(3)学校规定:成绩不低于85分的为优秀,完成分类变量成绩教学方式的列联表,并判断“能否在犯错误的概率不超过的前提下认为成绩优秀与教学方式有关?”下面临界值表仅供参考:(参考公式:,其中)【答案】(1)乙班;(2);(3)详见解析.【解析】【分析】(1)根据茎叶图可得乙班的平均分高.(2)利用古典概型的概率计算公式计算即可.(3)利用给出的公式计算出的值,再结合临界值表可知在犯错误的概率不超过的前提下认为成绩优秀与教学方式有关.【详解】(1)由茎叶图知甲班数学成绩集中于分之间,而乙班数学成绩集中于分之间,所以乙班的平均分高.(2)根据题意得(3)根据题意得到列联表为因此在犯错误的概率不超过的前提下可以认为成绩优秀与教学方式有关.【点睛】本题主要考查统计中茎叶图的应用、古典概型的概率计算和独立性检验,此类问题为容易题.19.如图,已知多面体的底面是边长为2的菱形,底面,,且.(1)证明:平面;(2)若直线与平面所成的角为,求二面角的大小.【答案】(1)详见解析;(2).【解析】【分析】(1)可证平面平面,从而可证平面.(2)建立空间直角坐标系,通过计算两个平面的法向量可得二面角的余弦值,从而得到二面角的平面角的大小.【详解】(1)底面是菱形,,因平面,平面,所以平面.同理,平面,,平面平面,又平面,所以平面.(2)底面,即为直线与平面所成的角,故,中,,又底面是边长为2的菱形,,取中点,连,则,以为坐标原点,分别以所在方向为轴正方向建立空间直角坐标系,则各点坐标分别为,,,,,底面,,又底面是菱形,,平面,平面的法向量取 ,设平面的法向量,则:,,令得,,二面角的大小为.【点睛】线面平行的证明的关键是在面中找到一条与已知直线平行的直线,找线的方法是平行投影或中心投影,我们也可以通过面面平行证线面平行,这个方法的关键是构造过已知直线的平面,证明该平面与已知平面平行. 空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.20.经销商经销某种农产品,在一个销售季度内,每售出该产品获利润500元,未售出的产品,每亏损300元,根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示,经销商为下一个销售季度购进了的该农产品,以(单位:)表示下一个销售季度内的市场需求量,(单位:元)表示下一个销售季度内经销该产品的利润.(1)根据直方图估计下一个销售季度市场需求量的平均数、中位数和众数;(2)在直方图需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若,则取,且的概率等于需求量落入的频率,)求利润的分布列和数学期望.【答案】(1);;;(2)详见解析.【解析】【分析】(1)利用组中值可求平均数,众数就是频率最大的组的中值,而中位数就是能把诸矩形面积平分的那个值.(2)先求出利润与的关系,再利用直方图中的频率计算利润分布列,最后利用公式求其数学期望.【详解】(1),,,(2),利润的分布列为(元).【点睛】本题考查频率分布直方图的应用、离散型随机变量的分布列及其数学期望的求法,属于基础题.21.椭圆的左焦点为,点在椭圆上.(1)求椭圆的方程;(2)直线与椭圆交于两点,椭圆上另一点满足的重心为坐标原点,求的面积.【答案】(1);(2).【解析】【分析】(1)列出关于方程组,解出它们可得椭圆的方程.(2)设,联立直线方程和椭圆方程,消元后可得,利用韦达定理可用表示的坐标,再利用在椭圆上得到,利用该式化简的面积表达式可得其值.【详解】(1)依题意:解得,椭圆的方程为.(2)设,则由于的重心为坐标原点,所以.联立 ,得,,,在椭圆上,,即,在椭圆上, ,,,即,即,,的重心为坐标原点,到直线的距离等于到直线的距离的3倍,即即,,, .【点睛】求椭圆的标准方程,关键是基本量的确定,方法有待定系数法、定义法等. 直线与圆锥曲线的位置关系中的定点、定值、最值问题,一般可通过联立方程组并消元得到关于或的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有或,最后利用韦达定理把关系式转化为若干变量的方程(或函数),从而可求定点、定值、最值问题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.已知函数,. (1)若函数在单调递增,求实数的取值范围;(2)若恒成立,求的最小值的最大值.【答案】(1);(2). 【解析】 【分析】 (1)由题设有,参变分离后可得的取值范围. (2)等价于,令,分和后可得,其中,故即,从而,令,利用导数可求其最大值.【详解】(1),,若函数 在单调递增,对任意恒成立,,在单调递减,当时,,故所求实数的取值范围为.(2)即令,则恒成立若,则当时,与恒成立矛盾,所以,由得,当时,单调递增;当时,单调递减;,,, ,的最小值 .又,当时,,单调递增;当时,,单调递减,.【点睛】一般地,若在区间上可导,且,则在上为单调增(减)函数;反之,若在区间上可导且为单调增(减)函数,则.求函数的最值,应结合函数的定义域去讨论函数的单调性,有的函数的单调性可以利用基本初等函数的单调性、复合函数的单调性判断法则得到,有的函数的单调性需结合导数的符号进行判断,如果导数的符合还不能判断,则需构建新函数(也就是原函数的导函数),再利用导数判断其符号.。

2020届全国高三数学模拟考试试题(四)文(含解析)

2020届全国高三数学模拟考试试题(四)文(含解析)

2020届全国高三数学模拟考试试题(四)文(含解析)时量:120分钟满分:150分注意事项:1.答题前,考生务必将自己的姓名、考号等填写在答题卡相应的位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再涂选其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合{|A x x =是1~20以内的所有素数},{}8B x x =≤,则A B =( )A. {}3,5,7B. {}2,3,5,7C. {}1,2,3,5,7D.{}0,1,2,3,5,7【答案】B 【解析】 【分析】根据交集的定义可知,交集即为两集合的公共元素所组成的集合,求出即可. 【详解】解:{}2,3,5,7,11,13,17,19A =,{}88B x x =-≤≤.∴{}2,3,5,7AB =.故选B.【点睛】此题考查了两集合交集的求法.2. 若复数z 满足1zi i =+,则复数z 在复平面对应的点位于( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】D 【解析】 【分析】由1zi i =+可求得1z i =-,即可得出答案. 【详解】解:11iz i i+==-,则复数z 在复平面对应的点为11(,-)∴位于第四象限.故选D.【点睛】本题考查了复数的运算,复数的除法运算法则是分子分母同时乘以分母的共轭复数.3. 已知双曲线221(0)6x y m m m -=>+的虚轴长是实轴长的2倍,则双曲线的标准方程为( )A. 22124x y -=B. 22148x y -=C. 2218y x -=D. 22128x y -=【答案】D 【解析】 【分析】由题意得到关于m 的方程,解方程求得m 的值即可确定双曲线方程. 【详解】由题意可得:22,6a m b m ==+,则实轴长为:由题意有:2=,解得:2m =,代入2216x y m m -=+可得双曲线方程为22128x y -=.本题选择D 选项.【点睛】本题主要考查双曲线方程的求解,意在考查学生的转化能力和计算求解能力. 4. 已知二次函数()2f x x bx c =++,且()2f x +是偶函数,若满足()()24f a f ->,则实数a 的取值范围是( ) A. ()2,2- B. ()(),22,-∞-+∞C. 由b 的范围决定D. 由b ,c 的范围共同决定【答案】B 【解析】 【分析】由()2f x +是偶函数可得()()22f x f x -+=+,从而得到函数()f x 关于2x =对称,所以4b =-,再写出不等式()()24f a f ->,即可得答案;【详解】()2f x +是偶函数,∴()()22f x f x -+=+,∴函数()f x 关于2x =对称, ∴442bb -=⇒=-,∴()24f x x x c =-+, ∴()()()()2222442f a a f a c a c -->⇒+>⇒->-或2a <-,故选:B.【点睛】本题考查二次函数的性质、一元二次不等式的求解,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.5. 1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,例如求1到2000这2000个整数中,能被3除余1且被7除余1的数的个数,现由程序框图,其中MOD 函数是一个求余函数,记(,)MOD m n 表示m 除以n 的余数,例如(8,3)2=MOD ,则输出i 为( ).A. 98B. 97C. 96D. 95【答案】D 【解析】 【分析】根据程序图可知,能被3除余1且被7除余1的数,就是能被21整除余1的数,运用等差数列的通项公式,以及解不等式即得。

【备考2020】全国高考模拟考试数学试卷 (理科)4(含答案解析)

【备考2020】全国高考模拟考试数学试卷 (理科)4(含答案解析)

二〇二〇届全国高考模拟考试试卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的,共12题,满分60分。

1.已知点11,2P ⎛⎫- ⎪⎝⎭和抛物线2:2C x y =,过抛物线C 的焦点且斜率为k 的直线与C 交于,A B 两点,若PA PB ⊥u u u r u u u r,则直线斜率k 为( )A .4B .3C .2D .12.执行如图所示的程序框图,则输出的n 值是( )A .5B .7C .9D .113.1231261823n nn n n n C C C C -+++⋯+⨯=( )A .2123n + B .()2413n- C .123n -⨯ D .()2313n- 4.在平行四边形ABCD 中,对角线AC 与BD 相交于点O,若向量OA uuu r ,OB uuu r对应的复数分别是3+i,-1+3i,则CD uuu r对应的复数是( ) A .2+4iB .-2+4iC .-4+2iD .4-2i5.正方体1111ABCD A B C D -的棱长为4,点M 为1CC 的中点,点N 为线段1DD 上靠近1D 的三等分点,平面BMN 交1AA 于点Q ,则AQ 的长为( )A .13B .12 C .16D .236.已知关于x y 、的二元一次线性方程组的增广矩阵为111222a b c a b c ⎛⎫⎪⎝⎭,记121212(,),(,),(,)a a a b b b c c c ===r r r,则此线性方程组有无穷多组解的充要条件是( )A .0a b c ++=r rr r B .a b c r r r 、、两两平行 C .//a b rr D .a b c r r r 、、方向都相同7.已知2:11xp x <+,:()(3)0q x a x -->,p 为q 的充分不必要条件,则a 的范围是( ) A .[)1,+∞B .()1,+∞C .[)0,+∞D .()1,-+∞8.下列命题正确的是( )A .若lim()0n n n a b a →∞=⋅≠,则lim 0n n a →∞≠且lim 0n n b →∞≠B .若lim(,)0n n n a b →∞=,则lim 0n n a →∞=且lim 0n n b →∞= C .若无穷数列{}n a 有极限,且它的前n 项和为n S ,则12lim 0=lim lim lim n n n n n n S a a a →∞→∞→∞→∞=+++L D .若无穷数列{}n a 有极限,则1lim lim n n n n a a +→∞→∞= 9.设为负实数且,则下列说法正确的是( )A .B .C .D .以上都不对10.在四边形ABCD 中,已知M 是AB 边上的点,且1MA MB MC MD ====,120CMD ∠=o ,若点N 在线段CD (端点,C D 除外)上运动,则NA NB ⋅u u u r u u u r的取值范围是( ) A .[)1,0-B .[)1,1-C .3,04⎡⎫-⎪⎢⎣⎭D .1,12⎡⎫-⎪⎢⎣⎭11.若集合012|),{(},2,1,0{≥+-==y x y x N M 且M y x y x ∈≤--,,012},则N 中元素的个数为( ) A .9B .6C .4D .212.已知函数21()sin cos 2f x x x x =++,则下列结论正确的是( ) A .()f x 的最大值为1B .()f x 的最小正周期为2πC .()y f x =的图像关于直线3x π=对称D .()y f x =的图像关于点7,012π⎛⎫⎪⎝⎭对称 二、填空题:本大题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.若 的展开式中 的系数为-45,则实数 的值为( )
A. B.2C. D.
【答案】D
【解析】将多项式的乘法式展开,结合二项式定理展开式通项,即可求得 的值.
【详解】

所以展开式中 的系数为 ,
∴解得 .
故选:D.
【点睛】
本题考查了二项式定理展开式通项的简单应用,指定项系数的求法,属于基础题.
6.函数 的图象大致是( )
A. B. C. D.
【答案】A
【解析】根据题意,画出几何位置图形,由图形的位置关系分别求得 的值,即可比较各选项.
【详解】
如下图所示, 平面 ,从而 平面 ,
易知 与正方体的其余四个面所在平面均相交,
∴ ,
∵ 平面 , 平面 ,且 与正方体的其余四个面所在平面均相交,
∴ ,
∴结合四个选项可知,只有 正确.
(2)根据(1)中 的值可求得 和 ,进而可得 ,由三角形面积公式即可求解.
【详解】
(1)由 ,得 ,
由正弦定理将边化为角可得 ,
∵ ,
∴ ,
∴ ,化简可得 ,
∴解得 .
(2)∵在 中, ,
∴ ,
∴ ,
∴ ,
∴ .
【点睛】
本题考查了正弦定理在边角转化中的应用,正弦差角公式的应用,三角形面积公式求法,属于基础题.
易得 ,
则几何体 的外接球的球心为 ,半径 ,
所以几何体 的外接球的体积为 .
故答案为: .
【点睛】
本题考查了空间几何体的综合应用,折叠后空间几何体的线面位置关系应用,空间几何体外接球的性质及体积求法,属于中档题.
四、解答题
17.在① ,② ,③ 这三个条件中任选一个,补充在下面问题中.若问题中的正整数 存在,求 的值;若不存在,说明理由.
3.已知 , ,若 ,则实数 的值是( )
A.-1B.7C.1D.1或7
【答案】C
【解析】根据平面向量数量积的坐标运算,化简即可求得 的值.
【详解】
由平面向量数量积的坐标运算,代入化简可得
.
∴解得 .
故选:C.
【点睛】
本题考查了平面向量数量积的坐标运算,属于基础题.
4.“ ”是“函数 ( 为常数)为幂函数”的( )
14.某部门全部员工参加一项社会公益活动,按年龄分为 三组,其人数之比为 ,现用分层抽样的方法从总体中抽取一个容量为20的样本,若 组中甲、乙二人均被抽到的概率是 ,则该部门员工总人数为__________.
【答案】60
【解析】根据样本容量及各组人数比,可求得C组中的人数;由 组中甲、乙二人均被抽到的概率是 可求得C组的总人数,即可由各组人数比求得总人数.
【详解】
∵ 是函数 的一条对称轴,
∴ ,
令 ,得 ,即 ,解得 ,
∴将 代入可得 ,
又∵函数 在区间 上具有单调性,
∴ 的最大值为 ,
且 ,
∴ 和 两点关于函数 图象的一条对称轴对称,
∴ ( )
∴ ( ),当 时, 的最小值为 .
∴A,C,D项正确,B项错误.
综上可知,正确的为ACD,
故选:ACD.
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件
【答案】A
【解析】根据幂函数定义,求得 的值,结合充分条件与必要条件的概念即可判断.
【详解】
∵当函数 为幂函数时, ,
解得 或 ,
∴“ ”是“函数 为幂函数”的充分不必要条件.
故选:A.
【点睛】
本题考查了充分必要条件的概念和判断,幂函数定义的应用,属于基础题.
A. B.三棱锥 的体积为6
C.直线 与平面 的夹角是45°D.
【答案】AD
【解析】根据面面平行的性质,可判断A;由所给线段关系,结合三棱锥体积公式即可求得 即可判断B;根据线面平行关系,可知直线 与平面 所成的角为 ,利用 即可判断C;根据线段关系分别求得 , ,即可判断D.
【详解】
对于A选项,由于平面 平面 ,而平面 与这两个平面分别交于 和 ,根据面面平行的性质定理可知 ,故A选项判断正确;
A.4至5月份的收入的变化率与11至12月份的收入的变化率相同
B.支出最高值与支出最低值的比是
C.第三季度平均收入为5000元
D.利润最高的月份是3月份和10月份
【答案】ACD
【解析】根据折线图,分别求得4至5月份的收入的变化率与11至12月份的收入的变化率即可判断A;由折线图得最高值与最低值即可判断B;由表可得7,8,9月每个月的收入,计算得平均值即可判断C;从表中可计算出利润最高与最低,可判断D.
2020届全国100所名校最新高考模拟示范卷数学模拟测试(四)试题
一、单选题
1.已知集合 , ,则 ( )
A. B.
C. D.
【答案】A
【解析】根据对数性质可知 ,再根据集合的交集运算即可求解.
【详解】
∵ ,
集合 ,
∴由交集运算可得 .
故选:A.
【点睛】
本题考查由对数的性质比较大小,集合交集的简单运算,属于基础题.
12.已知函数 的一条对称轴为 ,函数 在区间 上具有单调性,且 ,则下述四个结论正确的是( )
A.实数 的值为1
B. 和 两点关于函数 图象的一条对称轴对称
C. 的最大值为
D. 的最小值为
【答案】ACD
【解析】根据函数关于 对称,可得 ,利用特殊值 ,代入即可求得 的值;由辅助角公式化简三角函数式,即可由在区间 上具有单调性确定周期最大值;由 结合函数的对称性即可判断B,并由对称性判断 的最值即可判断D.
A.焦距长约为300公里B.长轴长约为3988公里
C.两焦点坐标约为 D.离心率约为
【答案】AD
【解析】根据椭圆的几何性质及月球直径,分别求得椭圆的 和月球半径,即可确定长轴长、焦距和离心率,因为没有建立坐标系,所以不能得到焦点坐标,即C不正确.
【详解】
设该椭圆的半长轴长为 ,半焦距长为 .
依题意可得月球半径约为 ,
2.设复数 满足 , 在复平面内对应的点的坐标为 则( )
A. B.
C. D.
【答案】B
【解析】根据共轭复数定义及复数模的求法,代入化简即可求解.
【详解】
在复平面内对应的点的坐标为 ,则 ,

∵ ,
代入可得 ,
解得 .
故选:B.
【点睛】
本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题.
∴ ,
∴当 时,满足 成立.
【点睛】
本题考查了等差数列通项公式的求法,等比数列通项公式及前n项和公式的应用,递推公式的简单应用,补充条件后求参数的值,属于中档题.
18.已知在 中,内角 所对的边分别为 ,若 , ,且 .
(1)求 的值;
(2)求 的面积.
【答案】(1) ;(2)
【解析】(1)将 代入等式,结合正弦定理将边化为角,再将 及 代入,即可求得 的值;
【详解】
函数 , ,
由题意得 ,
即 ,
令 ,
∴ ,
∴ 在 上单调递增,在 上单调递减,
∴ ,而 ,
当且仅当 ,即当 时,等号成立,
∴ ,
∴ .
故选:A.
【点睛】
本题考查了导数在求函数最值中的应用,由基本不等式求函数的最值,存在性成立问题的解法,属于中档题.
二、多选题
9.刘女士的网店经营坚果类食品,2019年各月份的收入、支出(单位:百元)情况的统计如图所示,下列说法中正确的是( )
故选:A.
【点睛】
本题考查了空间几何体中直线与平面位置关系的判断与综合应用,对空间想象能力要求较高,属于中档题.
8.已知函数 , ,若存在实数 ,使 成立,则正数 的取值范围为( )
A. B. C. D.
【答案】A
【解析】根据实数 满足的等量关系,代入后将方程变形 ,构造函数 ,并由导函数求得 的最大值;由基本不等式可求得 的最小值,结合存在性问题的求法,即可求得正数 的取值范围.
则 ,即 ,
∵ , ,

当 时,等号成立,
∴ ,
∴ ,
∴ .
故答案为: .
【点】
本题考查了双曲线与向量的综合应用,由平面向量数量积的最值求离心率,属于中档题.
16.如图,在矩形 中, , 是 的中点,将 , 分别沿 折起,使得平面 平面 ,平面 平面 ,则所得几何体 的外接球的体积为__________.
【详解】
∵在等差数列 中, ,
∴ ,
∴公差 ,
∴ ,
∴ ,
若存在正整数 ,使得 成立,即 成立,设正数等比数列的公比为 的公比为 ,
若选①,∵ ,
∴ ,
∴ ,
∴ ,
∴当 时,满足 成立.
若选②,∵ ,
∴ ,
∴ ,
∴ ,
∴ 方程无正整数解,
∴不存在正整数 使得 成立.
若选③,∵ ,
∴ ,
∴ ,
∴ ,
∴解得 或 (舍去),


, , ,
椭圆的离心率约为 ,
可得结论A、D项正确,B项错误;
因为没有给坐标系,焦点坐标不确定,所以C项错误.
综上可知,正确的为AD,
故选:AD.
【点睛】
本题考查了椭圆几何性质的实际应用,属于基础题.
11.如图,已知正方体 的棱长为2, 为棱 的中点, 为棱 上的点,且满足 ,点 为过三点 的平面 与正方体 的棱的交点,则下列说法正确的是( )
【详解】
对于A选项,4至5月份的收入的变化率为 ,11至12月份的变化率为 ,因而两个变化率相同,所以A项正确.
对于B选项,支出最高值是2月份60百元,支出最低值是5月份的10百元,故支出最高值与支出最低值的比是 ,故B项错误.
相关文档
最新文档