01-2009-2019年北京高考小题分类---集合与逻辑
2019年高考理科试题分类解析汇编:集合与简易逻辑共6页文档
第 1 页2019年高考试题分类解析汇编:集合与简易逻辑一、选择题1 .(2019年高考(新课标理))已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为 ( )A .3B .6C .8D .102 .(2019年高考(浙江理))设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},则A ∩(C R B )=( )A .(1,4)B .(3,4)C .(1,3)D .(1,2)3 .(2019年高考(陕西理))集合{|lg 0}M x x =>,2{|4}N x x =≤,则M N =I ( )A .(1,2)B .[1,2)C .(1,2]D .[1,2][来源:shulihua]4 .(2019年高考(山东理))已知全集{}0,1,2,3,4U=,集合{}{}1,2,3,2,4A B ==,则U C A B U 为( )A .{}1,2,4B .{}2,3,4C .{}0,2,4D .{}0,2,3,45 .(2019年高考(辽宁理))已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则)()(B C A C U U I 为 ( )A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6}6 .(2019年高考(湖南理))设集合M={-1,0,1},N={x|x 2≤x},则M∩N=( )A .{0}B .{0,1}C .{-1,1}D .{-1,0,0}[来源:数理化网]7 .(2019年高考(广东理))(集合)设集合{}1,2,3,4,5,6U =,{}1,2,4M =,则U C M = ( )A .UB .{}1,3,5C .{}3,5,6D .{}2,4,68 .(2019年高考(大纲理))已知集合{}{}1,3,,1,,A m B m A B A ==⋃=,则m =( )A .0或3B .0或3C .1或3D .1或39 .(2019年高考(北京理))已知集合{}320A x R x =∈+>,{}(1)(3)0B x R x x =∈+->,则A B I=( )A .(,1)-∞-B .2(1,)3--C .2(,3)3-D .(3,)+∞10.(2019年高考(江西理))若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x∈A,y∈B}中的元素的个数为( )A .5B .4C .3D .211.(2019年高考(上海春))设O 为ABC ∆所在平面上一点.若实数x y z 、、满足0xOA yOB zOC ++=u u u r u u u r u u u r r第 2 页222(0)x y z ++≠,则“0xyz =”是“点O 在ABC ∆的边所在直线上”的[答] ( )A .充分不必要条件.B .必要不充分条件.C .充分必要条件.D .既不充分又不必要条件.12.(2019年高考(辽宁理))已知命题p :∀x 1,x 2∈R,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是 ( )A .∃x 1,x 2∈R,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R,(f (x 2)-f (x 1))(x 2-x 1)<013.(2019年高考(江西理))下列命题中,假命题为( )A .存在四边相等的四边形不是正方形B .z 1,z 2∈c,z 1+z 2为实数的充分必要条件是z 1,z 2互为工复数 [来源:shulihuashulihua]C .若x,y∈CR,且x+y>2,则x,y 至少有一个大于1D .对于任意n∈N,C°+C 1.+C°.都是偶数14.(2019年高考(湖南理))命题“若α=4π,则tanα=1”的逆否命题是 ( )A .若α≠4π,则tanα≠1 B .若α=4π,则tanα≠1C .若tanα≠1,则α≠4πD .若tanα≠1,则α=4π15.(2019年高考(湖北理))命题“0x ∃∈R Q ð,30x ∈Q ”的否定是( )[来源:shulihuashulihua] A .0x ∃∉R Q ð,30x ∈Q B .0x ∃∈R Q ð,30x ∉QC .x ∀∉R Q ð,3x ∈QD .x ∀∈R Q ð,3x ∉Q [来源:shulihua16.(2019年高考(福建理))下列命题中,真命题是( )A .00,0x x R e∃∈≤ B .2,2xx R x ∀∈>C .0a b +=的充要条件是1ab=- D .1,1a b >>是1ab >的充分条件二、填空题17.(2019年高考(天津理))已知集合={||+2|<3}A x R x ∈,集合={|()(2)<0}B x R x m x ∈--,且=(1,)A B n -I ,则=m __________,=n ___________.18.(2019年高考(四川理))设全集{,,,}U a b c d =,集合{,}A a b =,{,,}B b c d =,则=)()(B C A C U U Y _______.第 3 页19.(2019年高考(上海理))若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A I =_________ .20.(2019年高考(上海春))已知集合[1,2,},{2,5}.A k B ==若{1,2,3,5},A B =U 则k =______.21.(2019年高考(江苏))已知集合{124}A =,,,{246}B =,,,则A B =U ____.第 4 页2019年高考试题分类解析汇编:集合与简易逻辑参考答案一、选择题1. 【解析】选D 5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个2. 【解析】A =(1,4),B =(-1,3),则A ∩(C R B )=(3,4).【答案】B3. 解析:{|lg 0}{|1}M x x x x =>=>,{|22}N x x =-≤≤,{12}M N x x I=<≤,故选C.4. 【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U Y ,选C. [来源:shulihuashulihua] 5. 【答案】B【解析一】因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U I 为{7,9}.故选B【解析二】 集合)()(B C A C U U I 为即为在全集U 中去掉集合A 和集合B 中的元素,所剩的元素形成的集合,由此可快速得到答案,选B【点评】本题主要考查集合的交集、补集运算,属于容易题.采用解析二能够更快地得到答案. 6. 【答案】B【解析】{}0,1N =Q M={-1,0,1} ∴M∩N={0,1}.【点评】本题考查了集合的基本运算,较简单,易得分.先求出{}0,1N =,再利用交集定义得出M∩N.7. 解析:C.{}3,5,6U C M =. 8. 答案B【命题意图】本试题主要考查了集合的概念和集合的并集运算,集合的关系的运用,元素与集合的关系的综合运用,同时考查了分类讨论思想.【解析】【解析】因为A B A =Y ,所以A B ⊆,所以3=m 或m m =.若3=m ,则}3,1{},3,3,1{==B A ,满足A B A =Y .若m m =,解得0=m 或1=m .若0=m ,则}0,3,1{},0,3,1{==B A ,满足A B A =Y .若1=m ,}1,1{},1,3,1{==B A 显然不成立,综上0=m 或3=m ,选B.9. 【答案】D【解析】2|3A x x ⎧⎫=>-⎨⎬⎩⎭,利用二次不等式的解法可得{}|31B x x x =><-或,画出数轴易得{}|3A x x ⋂=>.【考点定位】本小题考查的是集合(交集)运算和一次和二次不等式的解法. 10. C 【解析】本题考查集合的概念及元素的个数.容易看出x y +只能取-1,1,3等3个数值.故共有3个元素.【点评】集合有三种表示方法:列举法,图像法,解析式法.集合有三大特性:确定性,互异性,无序性.本题第 5 页考查了列举法与互异性.来年需要注意集合的交集等运算,Venn 图的考查等. 11. C[来源:数理化网] 12. 【答案】C【解析】命题p 为全称命题,所以其否定⌝p 应是特称命题,又(f (x 2)-f (x 1))(x 2-x 1)≥0否定为(f (x 2)-f (x 1))(x 2-x 1)<0,故选C【点评】本题主要考查含有量词的命题的否定,属于容易题. [来源:shulihua]13. B 【解析】本题以命题的真假为切入点,综合考查了充要条件,复数、特称命题、全称命题、二项式定理等. [来源:shulihuashulihua](验证法)对于B 项,令()121,9z mi z mi m =-+=-∈R ,显然128z z +=∈R ,但12,z z 不互为共轭复数,故B 为假命题,应选B.【点评】体现考纲中要求理解命题的概念,理解全称命题,存在命题的意义.来年需要注意充要条件的判断,逻辑连接词“或”、 “且”、 “非”的含义等. 14. 【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,所以 “若α=4π,则tanα=1”的逆否命题是 “若tanα≠1,则α≠4π”. 【点评】本题考查了“若p,则q”形式的命题的逆命题、否命题与逆否命题,考查分析问题的能力. [来源:shulihuashulihua]15.考点分析:本题主要考察常用逻辑用语,考察对命题的否定和否命题的区别.解析:根据对命题的否定知,是把谓词取否定,然后把结论否定.因此选D 16. 【答案】D【解析】A,B,C 均错,D 正确【考点定位】此题主要考查逻辑用语中的充分必要条件,考查逻辑推理能力、分析判断能力、必然与或然的能力.二、填空题17. 【答案】1-,1【命题意图】本试题主要考查了集合的交集的运算及其运算性质,同时考查绝对值不等式与一元二次不等式的解法以及分类讨论思想.【解析】∵={||+2|<3}A x R x ∈={||5<<1}x x -,又∵=(1,)A B n -I ,画数轴可知=1m -,=1n .18. [答案]{a, c, d}[解析]∵d}{c,=)(A C U ;}{a B C U =)( ∴=)()(B C A C U U Y {a,c,d} [点评]本题难度较低,只要稍加注意就不会出现错误.19. [解析] ),(21∞+-=A ,)3,1(-=B ,A ∩B =)3,(21-. 20. 321. 【答案】{}1,2,4,6.【考点】集合的概念和运算.第 6 页【分析】由集合的并集意义得{}1,2,4,6A B =U .。
(新课标全国I卷)20102019学年高考数学真题分类汇编专题01集合与常用逻辑用语文(含解析)
专题01会集与常用逻辑用语一、会集小题:10年10考,每年1题,都是交集、并集、补集和子集运算为主,多与解不等式等交汇,新定义运算也有较小的可能,但是难度较低;基本上是每年的送分题,相信命题组对会集小题进行大幅度变动的信心不大.1.(2019年)已知会集U{1,2,3,4,5,6,7},A{2,3,4,5},B{2,3,6,7},则BeUA()A.{1,6} B .{1,7} C .{6,7} D .{1,6,7}【答案】C【分析】U {1,2,3,4,5,6,7},A {2,3,4,5},B{2,3,6,7},C U A{1,6,7},则B e U A {6,7},应选C.2.(2018年)已知会集 A 0,2,B 2,1,0,1,2,则A B ()A.0,2 B .1,2 C .0D .2,1,0,1,2【答案】A【分析】∵A0,2 ,B2,1,0,1,2 ,∴0,2 ,应选A.3.(2017年)已知会集A={x|x<2},B={x|3 ﹣2x>0},则()3 3A.A∩B={x|x <2} B .A∩B=? C .A∪B={x|x<2} D .A∪B=R【答案】A3 3【分析】∵会集A={x|x<2},B={x|3 ﹣2x>0}={x|x<2},∴A∩B={x|x<2},故A正确,B错误;A∪B={x|x <2},故C,D错误;应选A.4.(2016年)设会集A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3} B.{3,5} C.{5,7} D.{1,7}【答案】B【分析】∵A={1,3,5,7},B={x|2≤x≤5},∴A∩B={3,5}.应选B.5.(2015年)已知会集A={x|x=3n+2,n∈N},B={6,8,10,12,14},则会集A∩B中元素的个数为()A.5B.4C.3D.2【答案】D【分析】A={x|x=3n+2,n∈N}={2,5,8,11,14,17,},∴A∩B={8,14},故会集A∩B中元素的个数为2个,应选D.6.(2014年)已知会集M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)【答案】B【分析】∵M={x|﹣1<x<3},N={x|﹣2<x<1},∴M∩N={x|﹣1<x<1},应选B.7.(2013年)已知会集A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}【答案】A【分析】依据题意得:x=1,4,9,16,即B={1,4,9,16},∵A={1,2,3,4},∴A∩B={1,4}.故选A.8.(2012年)已知会集A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.ABB.BAC.A=B D.A∩B=?【答案】B【分析】由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在会集B中的元素都属于会集A,但是在3会集A中的元素不必定在会集B中,比方x=2,∴BA.应选B.9.(2011年)已知会集M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个【答案】B【分析】∵M={0,1,2,3,4},N={1,3,5},∴P=M∩N={1,3},∴P的子集共有22=4个,应选B.10.(2010年)已知会集A={x||x| ≤2,x∈R},B={x| ≤4,x∈Z},则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2}【答案】D【分析】A={x||x|≤2,x∈R}={x|﹣2≤x≤2},B={x| ≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},∴A∩B={0,1,2},应选D.二、常用逻辑用语小题:10年1考,只有2013年考了一道复合命题的真假判断.这个考点包括的小考点较多,而且简单与函数、不等式、数列、三角函数和立体几何交汇,热门就是“充要条件”;难点:否定与否命题;冷点:全称与特称;思想:逆否.要注意,这种题可以分为两大类,一类只涉及形式的变换,比较简单;另一类涉及命题的真假判断,比较复杂.(2013()年)已知命题p:?x∈R,2x<3x;命题q:?x∈R,x3=1﹣x2,则以下命题中为真命题的是A.p∧qB.¬p∧q C.p∧¬q D.¬p∧¬q【答案】B【分析】由于x=﹣1时,2﹣1>3﹣1,因此命题p:?x∈R,2x<3x为假命题,则¬p为真命题.令f(x)=x3+x2﹣1,由于f(0)=﹣1<0,f(1)=1>0.因此函数f(x)=x3+x2﹣1在(0,1)上存在零点,即命题q:?x∈R,x3=1﹣x2为真命题.则¬p∧q为真命题.应选B.。
高考数学真题分项汇编 专题01 集合与常用逻辑用语 理(含解析)-人教版高三全册数学试题
专题01集合与常用逻辑用语1.【2019年高考全国Ⅰ卷理数】已知集合2|42{|60}{},M x x N x x x =-<<=--<,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C【解析】由题意得2|42,{|60}{}|23}{M x x N x x x x x =-<<=--<=-<<, 则{|22}MN x x =-<<.故选C .【名师点睛】注意区分交集与并集的不同,交集取公共部分,并集包括二者所有的部分. 2.【2019年高考全国Ⅱ卷理数】设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1)C .(–3,–1)D .(3,+∞)【答案】A【解析】由题意得,2{560|}{2|A x x x x x =-+><=或3}x >,{10}{1|}|B x x x x =-<=<,则{|1}(,1)A B x x =<=-∞.故选A .【名师点睛】本题考点为集合的运算,为基础题目.3.【2019年高考全国Ⅲ卷理数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =-.故选A .【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019年高考天津理数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D 【解析】因为{1,2}A C =,所以(){1,2,3,4}A C B =.故选D.【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.5.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()UA B =A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A 【解析】∵{1,3}UA =-,∴(){1}U A B =-.故选A.【名师点睛】注意理解补集、交集的运算.6.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是“ab ≤4”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果. 7.【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】B【解析】由250x x -<可得05x <<,由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件,即“250x x -<”是“|1|1x -<”的必要而不充分条件. 故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围. 8.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行. 故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.9.【2019年高考北京理数】设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AC -AB |⇔|AB +AC |2>|AC -AB |2AB ⇔·AC >0AB ⇔与AC 的夹角为锐角,故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件. 故选C.【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归的数学思想.10.【2018年高考浙江】已知全集U ={1,2,3,4,5},A ={1,3},则=UAA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}【答案】C【解析】因为全集U ={1,2,3,4,5},U ={1,3}, 所以根据补集的定义得∁U U ={2,4,5}. 故选C .【名师点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.11.【2018年高考全国Ⅰ卷理数】已知集合{}220A x x x =-->,则A =RA .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥【答案】B【解析】解不等式U 2−U −2>0得U <−1或U >2,所以U ={U |U <−1或U >2}, 所以可以求得{}|12A x x =-≤≤R.故选B .【名师点睛】该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.12.【2018年高考全国Ⅲ卷理数】已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 【答案】C【解析】易得集合{|1}A x x =≥, 所以{}1,2AB =.故选C .【名师点睛】本题主要考查交集的运算,属于基础题.13.【2018年高考天津理数】设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R ABA .{01}x x <≤B .{01}x x <<C .{12}x x ≤<D .{02}x x <<【答案】B【解析】由题意可得:B R={U |U <1}, 结合交集的定义可得:()=R A B {0<U <1}.故选B.【名师点睛】本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.14.【2018年高考全国Ⅱ卷理数】已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为A .9B .8C .5D .4【答案】A【解析】∵U 2+U 2≤3,∴U 2≤3,∵U ∈U ,∴U =−1,0,1,当U=−1时,U=−1,0,1;当U=0时,U=−1,0,1;当U=−1时,U=−1,0,1,所以共有9个元素.选A.【名师点睛】本题考查集合与元素的关系,点与圆的位置关系,考查学生对概念的理解与识别. 15.【2018年高考北京理数】已知集合A={x||x|<2},B={–2,0,1,2},则A B= A.{0,1} B.{–1,0,1}C.{–2,0,1,2} D.{–1,0,1,2}【答案】A【解析】∵|U|<2,∴−2<U<2,因此A∩B=(−2,2)∩{−2,0,1,2}={0,1}.故选A.【名师点睛】解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.16.【2018年高考浙江】已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】因为U⊄U,U⊂U,U//U,所以根据线面平行的判定定理得U//U.由U//U不能得出U与U内任一直线平行,所以U//U是U//U的充分不必要条件.故选A.【名师点睛】充分、必要条件的三种判断方法:(1)定义法:直接判断“若U则U”、“若U则U”的真假.并注意和图示相结合,例如“U⇒U”为真,则U是U的充分条件.(2)等价法:利用U⇒U与非U⇒非U,U⇒U与非U⇒非U,U⇔U与非U⇔非U的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若U ⊆U ,则U 是U 的充分条件或U 是U 的必要条件;若U =U ,则U 是U 的充要条件. 17.【2018年高考天津理数】设x ∈R ,则“11||22x -<”是“31x <”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】绝对值不等式|U −12|<12⇔−12<U −12<12⇔0<U <1, 由U 3<1⇔U <1.据此可知|U −12|<12是U 3<1的充分而不必要条件. 故选A.【名师点睛】本题主要考查绝对值不等式的解法、充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.18.【2018年高考北京理数】设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】2222223333699+6-=+⇔-=+⇔-⋅+=⋅+a b a b a b a b a a b b a a b b , 因为a ,b 均为单位向量,所以2222699+60=-⋅+=⋅+⇔⋅⇔a a b b a a b b a b ⊥a b , 即“33-=+a b a b ”是“a ⊥b ”的充分必要条件. 故选C.【名师点睛】充分、必要条件的三种判断方法:1.定义法:直接判断“若U 则U ”、“若U 则U ”的真假.并注意和图示相结合,例如“U ⇒U ”为真,则U 是U 的充分条件.2.等价法:利用U ⇒U 与非U ⇒非U ,U ⇒U 与非U ⇒非U ,U ⇔U 与非U ⇔非U 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若U ⊆U ,则U 是U 的充分条件或U 是U 的必要条件;若U =U ,则U 是U 的充要条件. 19.【2017年高考全国Ⅰ卷理数】已知集合A ={x |x <1},B ={x |31x <},则A .{|0}AB x x =< B .A B =RC .{|1}AB x x =>D .AB =∅【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<, 所以{|1}{|0}AB x x x x =<<{|0}x x =<,{|1}{|0}{|1}A B x x x x x x =<<=<.故选A .【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 20.【2017年高考全国Ⅱ卷理数】设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1AB =,则B =A .{}1,3-B .{}1,0C .{}1,3D .{}1,5【答案】C 【解析】由{}1AB =得1B ∈,即1x =是方程240x x m -+=的根,所以140,3m m -+==,{}1,3B =.故选C .【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:①不要忽视元素的互异性;②保证运算的准确性.21.【2017年高考全国Ⅲ卷理数】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3 B .2 C .1D .0【答案】B【解析】集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合, 集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点22⎛⎫ ⎪ ⎪⎝⎭,22⎛⎫-- ⎪ ⎪⎝⎭,则A B 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性. 22.【2017年高考北京理数】若集合A ={x |–2<x <1},B ={x |x <–1或x >3},则AB =A .{x |–2<x <–1}B .{x |–2<x <3}C .{x |–1<x <1}D .{x |1<x <3}【答案】A【解析】利用数轴可知{}21A B x x =-<<-.故选A.【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示;若集合是无限集合就用描述法表示,并注意代表元素是什么.集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.23.【2017年高考浙江】已知集合{|11}P x x =-<<,{02}Q x =<<,那么PQ =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2) 【答案】A【解析】利用数轴,取,P Q 中的所有元素,得P Q =(1,2)-.故选A.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 24.【2017年高考天津理数】设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()AB C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-≤≤R【答案】B 【解析】(){1,2,4,6}[1,5]{1,2,4}A B C =-=.故选B .【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.25.【2017年高考山东理数】设函数y =A ,函数ln(1)y x =-的定义域为B ,则A B =A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)【答案】D【解析】由240x -≥得22x -≤≤, 由10x ->得1x <, 故{|22}{|1}{|21}A B x x x x x x =-≤≤<=-≤<.选D.【名师点睛】集合的交、并、补运算问题,应把集合先化简再计算,常借助数轴或韦恩图进行求解. 26.【2017年高考浙江】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=, 可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充分必要条件.故选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=,结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.27.【2017年高考北京理数】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒, 那么cos1800⋅=︒=-<m n m n m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以“存在负数λ,使得λ=m n ”是“0<⋅m n ”的充分而不必要条件.故选A.【名师点睛】本题考查平面向量的知识及充分必要条件的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件.28.【2017年高考山东理数】已知命题p :0,ln(1)0x x ∀>+>;命题q :若a >b ,则22a b >,下列命题为真命题的是A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝【答案】B【解析】由0x >时11,x +>得ln(1)0x +>,知p 是真命题.由12,->-但22(2)(1)->-可知q 是假命题,则p q ∧⌝是真命题.故选B.【名师点睛】解答有关逻辑联结词的相关问题,首先要明确各命题的真假,利用或、且、非的真值表,进一步作出判断.29.【2017年高考全国Ⅰ卷理数】设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为A .13,p pB .14,p pC .23,p pD .24,p p 【答案】B【解析】令i(,)z a b a b =+∈R ,则由2211i i a b z a b a b -==∈++R 得0b =,所以z ∈R ,故1p 正确; 当i z =时,因为22i 1z ==-∈R ,而i z =∉R 知,故2p 不正确;当12i z z ==时,满足121z z ⋅=-∈R ,但12z z ≠,故3p 不正确;对于4p ,因为实数的共轭复数是它本身,也属于实数,故4p 正确.故选B.【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b =+∈R 的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.30.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB =▲. 【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B =.【名师点睛】本题主要考查交集的运算,属于基础题.31.【2018年高考江苏】已知集合U ={0,1,2,8},U ={−1,1,6,8},那么U ∩U =________.【答案】{1,8}【解析】由题设和交集的定义可知:U ∩U ={1,8}.【名师点睛】本题考查交集及其运算,考查基础知识,难度较小.32.【2017年高考江苏】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =,则实数a 的值为 ▲ .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意.故答案为1.【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,AB A B =∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.33.【2018年高考北京理数】能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________. 【答案】23()()2f x x =--(答案不唯一) 【解析】对于23()()2f x x =--,其图象的对称轴为32x =, 则f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是单调函数.【名师点睛】解题本题需掌握充分必要条件和函数的性质,举出反例即可.。
北京版高考数学分项汇编专题01集合与经常使用逻辑用语含解析理
【备战2016】(北京版)高考数学分项汇编 专题01 集合与经常使用逻辑用语(含解析)理1. 【2005高考北京理第1题】设合集U=R ,集合}1|{},1|{2>=>=x x P x x M ,那么以下关系中正确的选项是( )A .M=PB .P MC .M PD .【答案】C考点:集合与集合之间关系2. 【2020高考北京理第1题】已知全集U =R ,集合{}|23A x x =-≤≤,{}|14B x x x =<->或,那么集合()UAB 等于( )A .{}|24x x -<≤ B .{}|34x x x 或≤≥ C .{}|21x x -<-≤D .{}|13x x -≤≤考点:集合3. 【2020高考北京理第1题】集合P ={x ∈Z |0≤x <3},M ={x ∈R |x 2≤9},那么P ∩M 等于( ) A .{1,2} B .{0,1,2} C .{x |0≤x <3} D .{x |0≤x ≤3} 【答案】B考点:集合的运算.4. 【2020高考北京理第1题】已知集合2{|1}P x x =≤,{}M a =,若P M P =,那么a 的取值范围是A. (,1]-∞-B. [1,)+∞C. [1,1]-D. (,1]-∞-[1,)+∞【答案】C5. 【2021高考北京理第1题】已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 那么A ∩B= ( )A (-∞,-1)B (-1,-23)C (-23,3)D (3,+∞) 【答案】D考点:集合的运算.6. 【2021高考北京理第1题】已知集合A ={-1,0,1},B ={x |-1≤x <1},那么A ∩B =( ). A .{0} B .{-1,0} C .{0,1} D .{-1,0,1} 【答案】B考点:集合的运算.7. 【2021高考北京理第1题】 已知集合2{|20}A x x x =-=,{0,1,2}B =,那么A B =( )A.{0} B .{0,1} C .{0,2} D .{0,1,2}【答案】C考点:交集的运算.8. 【2007高考北京理第12题】已知集合{}|1A x x a =-≤, {}2540B x x x =-+≥.假设AB =∅,那么实数a 的取值范围是.。
十年高考真题汇编(北京卷,含解析)集合与逻辑用语
十年高考真题汇编(2011-2020)(北京卷)专题01集合与常用逻辑本专题考查的知识点为:集合的表示方法,集合的运算,历年考题主要以选择填空题型出现,重点考查的知识点为:集合的混合运算,预测明年本考点题目会比较稳定,备考方向以集合的运算为重点较佳.1.【2020年北京卷01】已知集合A={−1,0,1,2},B={x|0<x<3},则A∩B=().A.{−1,0,1}B.{0,1}C.{−1,1,2}D.{1,2}2.【2020年北京卷09】已知α,β∈R,则“存在k∈Z使得α=kπ+(−1)kβ”是“sinα=sinβ”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.【2019年北京理科06】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2﹣m1=52lg E1E2,其中星等为m k的星的亮度为E k(k=1,2).已知太阳的星等是﹣26.7,天狼星的星等是﹣1.45,则太阳与天狼星的亮度的比值为()A.1010.1B.10.1C.lg10.1D.10﹣10.14.【2018年北京理科01】已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.{﹣2,0,1,2}D.{﹣1,0,1,2}5.【2018年北京理科08】设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈AB.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉AD.当且仅当a≤32时,(2,1)∉A6.【2017年北京理科01】若集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A∩B=()A.{x|﹣2<x<﹣1}B.{x|﹣2<x<3}C.{x|﹣1<x<1}D.{x|1<x<3}7.【2016年北京理科01】已知集合A={x||x|<2},集合B={﹣1,0,1,2,3},则A∩B=()A.{0,1}B.{0,1,2}C.{﹣1,0,1}D.{﹣1,0,1,2}8.【2016年北京理科08】袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( ) A .乙盒中黑球不多于丙盒中黑球B .乙盒中红球与丙盒中黑球一样多C .乙盒中红球不多于丙盒中红球D .乙盒中黑球与丙盒中红球一样多9.【2014年北京理科01】已知集合A ={x |x 2﹣2x =0},B ={0,1,2},则A ∩B =( ) A .{0} B .{0,1}C .{0,2}D .{0,1,2} 10.【2014年北京理科08】学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有( ) A .2人 B .3人 C .4人 D .5人11.【2013年北京理科01】已知集合A ={﹣1,0,1},B ={x |﹣1≤x <1},则A ∩B =( ) A .{0} B .{﹣1,0} C .{0,1}D .{﹣1,0,1}12.【2012年北京理科01】已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x ﹣3)>0},则A ∩B =( )A .(﹣∞,﹣1)B .(﹣1,−23) C .(−23,3) D .(3,+∞)13.【2011年北京理科01】已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( ) A .(﹣∞,﹣1] B .[1,+∞)C .[﹣1,1]D .(﹣∞,﹣1]∪[1,+∞)14.【2018年北京理科20】设n 为正整数,集合A ={α|α=(t 1,t 2,…t n ),t k ∈{0,1},k =1,2,…,n },对于集合A 中的任意元素α=(x 1,x 2,…,x n )和β=(y 1,y 2,…y n ),记 M (α,β)=12[(x 1+y 1﹣|x 1﹣y 1|)+(x 2+y 2﹣|x 2﹣y 2|)+…(x n +y n ﹣|x n ﹣y n |)](Ⅰ)当n =3时,若α=(1,1,0),β=(0,1,1),求M (α,α)和M (α,β)的值;(Ⅱ)当n =4时,设B 是A 的子集,且满足:对于B 中的任意元素α,β,当α,β相同时,M (α,β)是奇数;当α,β不同时,M (α,β)是偶数.求集合B 中元素个数的最大值;(Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素α,β,M (α,β)=0,写出一个集合B ,使其元素个数最多,并说明理由.15.【2012年北京理科20】设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合.对于A∈S(m,n),记r i(A)为A的第i行各数之和(1≤i≤m),∁j(A)为A的第j列各数之和(1≤j≤n);记K(A)为|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.(1)如表A,求K(A)的值;11﹣0.80.1﹣0.3﹣1(2)设数表A∈S(2,3)形如11ca b﹣1求K(A)的最大值;(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值.1.【北京五中2020届高三(4月份)高考数学模拟】已知集合A={1,2,3,4,5},且A∩B=A,则集合B可以是()A.{x|2x>1}B.{x|x2〉1}C.{x|log2x〉1}D.{1,2,3}2.【北京市昌平区新学道临川学校2019-2020学年高三上学期期末】设集合M={x|x2−x≥0},N={x|x <2},则M∩N=()A.{x|x≤0}B.{x|1≤x<2}C.{x|x≤0或1≤x<2}D.{x|0≤x≤1}3.【2020届北京市西城区第四中学高三上学期期中】设命题P:∃n∈N,n2>2n,则¬P为()A.∀n∈N,n2>2n B.∃ n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n4.【北京市人大附中2020届高三(6月份)高考数学考前热身】a⃗,b⃗⃗为非零向量,“a⃗⃗|b⃗⃗|=b⃗⃗|a⃗⃗|”为“a⃗,b⃗⃗共线”的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.即不充分也不必要条件5.【北京市通州区2020届高考一模】已知集合A={x|0<x≤2},B={x|1<x<3},则A∩B=()A.{x|0<x<3}B.{x|2<x<3}C.{x|0<x≤1}D.{x|1<x≤2}6.【2020届北京市顺义区高三二模】已知集合A={x|−3<x<2},B={−3,−2,0},那么A∩B=()A.{−2}B.{0}C.{−2,0}D.{−2,0,2}7.【北京市丰台区2020届高三下学期综合练习(二)(二模)】集合A={x∈Z|−2<x<2}的子集个数为()A.4B.6C.7D.88.【2019届北京市中国人民大学附属中学高三下学期第三次调研】已知集合A={(x,y)|x+y≤2,x,y∈N },则A中元素的个数为()A.1B.5C.6D.无数个9.【北京市人大附中2018届高三高考数学零模】设全集U={1,3,5,7},集合M={1,a},∁U M={5,7},则实数a的值为()A.1B.3C.5D.710.【2020届北京市东城区高三高考第一次模拟】已知集合A={x|x(x+1)≤0},集合B={x|−1<x< 1},则A∪B=()A.{x|-1≤x≤1}B.{x|-1<x≤0}C.{x|-1≤x<1}D.{x|0<x<1}11.【2020届北京市东城区高三一模】已知集合A={x|x−1>0},B={−1,0,1,2},那么A∩B=() A.{−1,0}B.{0,1}C.{−1,0,1,2}D.{2}12.【北京市第八十中学2019届高三10月月考】已知集合A={x|−1<x<2},B={x|0<x<3},则A∪B=()A.(−1,3)B.(−1,0)C.(0,2)D.(2,3)13.【2020届北京市中国人民大学附属中学高三下学期数学统练】已知集合M={x|−4<x<2},N={x |x2−x−6<0},则M∩N=A.{x|−4<x<3}B.{x|−4<x<−2}C.{x|−2<x<2}D.{x|2<x<3}14.设集合A={0,1,2},B={x|x2−3x+2≤0},则A∩B=()A.{1}B.{2}C.{0,1}D.{1,2}15.【2020届北京市西城区高三诊断性考试(二模)】设集合A={x||x|<3},B={x|x=2k,k∈Z},则A ∩B=()A.{0,2}B.{−2,2}C.{−2,0,2}D.{−2,−1,0,1,2}16.【北京师范大学附属中学2019届高三高考模拟(三)】已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4}B.{3,4}C.{3}D.{4}17.【2020届北京市西城区高三第一次模拟】设集合A={x|x<3},B={x|x〈0或x〉2},则A∩B=()A.(−∞,0)B.(2,3)C.(−∞,0)∪(2,3)D.(−∞,3)18.【北京市房山区2019年高考第一次模拟测试】设a为实数,则a>1a2是a2>1a的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件19.已知m∈R,“函数y=2x+m−1有零点”是“函数y=log m x在(0,+∞)上是减函数”的().A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件20.若全集U={1,2,3,4},集合Μ={1,2},Ν={2,3},则C U(M∪N)=()A.{1,2,3}B.{2}C.{1,3,4}D.{4}21.【北京市第二十二中学2019-2020学年第一学期期中】设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是A.1B.3C.4D.822.【北京市2020届高考数学预测卷】设集合A={−1,0,1,2,3},B={x|x2−2x>0},则A∩(∁R B)=()A.{−1,3}B.{0,1,2}C.{1,2,3}D.{0,1,2,3}23.【北京市东城区2020届高三第二学期二模】已知全集U={0,1,2,3,4,5},集合A={0,1,2},B ={5},那么(∁U A)∪B=()A.{0,1,2}B.{3,4,5}C.{1,4,5}D.{0,1,2,5}24.【北京市北京大学附属中学2019-2020学年高三上学期月考(12月)】已知集合A={x|x<1},B={x|3x<1},则A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1}D.A∩B=∅25.【2020届北京市人民大学附属中学高考模拟(4月份)】集合A={x|x>2,x∈R},B={x|x2−2x−3 >0},则A∩B=()A.(3,+∞)B.(−∞,−1)∪(3,+∞)C.(2,+∞)D.(2,3) 26.【2020届北京市第十一中学高三一模】已知集合M={x|x2−3x−10<0},N={x|y=√9−x2},且M 、N 都是全集R (R 为实数集)的子集,则如图所示韦恩图中阴影部分所表示的集合为()A .{x|3<x ≤5}B .{x|x <−3或x >5}C .{x|−3≤x ≤−2}D .{x|−3≤x ≤5}27.【北京市人大附中2020届高三(6月份)高考数学考前热身】已知集合A ={x ∈N|x −2≤0},B ={x ∈Z||x|<2},则A ∪B =() A .{1}B .{−1,0,1,2}C .{0,1}D .(−2,2)28.【2020届北京市高考适应性测试】已知集合A ={x||x|<2},B ={−1,0,1,2,3},则A ∩B = A .{0,1} B .{0,1,2} C .{−1,0,1}D .{−1,0,1,2}29.【北京一零一中学2019-2020学年度第二学期高三数学统练(二)】已知全集U =R ,M ={x|x <−1},N ={x|x(x +2)<0},则图中阴影部分表示的集合是()A .{x|−1≤x <0}B .{x|−1<x <0}C .{x|−2<x <−1}D .{x|x <−1}30.【北京五中2020届高三(4月份)高考数学模拟】已知定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f (12)=0,则“不等式f (log 4x )>0的解集”是“{x |0<x <12}”的() A .充分不必要条件 B .充分且必要条件 C .必要不充分条件 D .既不充分也不必要条件1.【2020年北京卷01】已知集合A={−1,0,1,2},B={x|0<x<3},则A∩B=().A.{−1,0,1}B.{0,1}C.{−1,1,2}D.{1,2}【答案】D【解析】A∩B={−1,0,1,2}∩(0,3)={1,2},故选:D.2.【2020年北京卷09】已知α,β∈R,则“存在k∈Z使得α=kπ+(−1)kβ”是“sinα=sinβ”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】(1)当存在k∈Z使得α=kπ+(−1)kβ时,若k为偶数,则sinα=sin(kπ+β)=sinβ;若k为奇数,则sinα=sin(kπ−β)=sin[(k−1)π+π−β]=sin(π−β)=sinβ;(2)当sinα=sinβ时,α=β+2mπ或α+β=π+2mπ,m∈Z,即α=kπ+(−1)kβ(k=2m)或α=kπ+ (−1)kβ(k=2m+1),亦即存在k∈Z使得α=kπ+(−1)kβ.所以,“存在k∈Z使得α=kπ+(−1)kβ”是“sinα=sinβ”的充要条件.故选:C.3.【2019年北京理科06】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2﹣m1=52lg E1E2,其中星等为m k的星的亮度为E k(k=1,2).已知太阳的星等是﹣26.7,天狼星的星等是﹣1.45,则太阳与天狼星的亮度的比值为()A.1010.1B.10.1C.lg10.1D.10﹣10.1【答案】解:设太阳的星等是m1=﹣26.7,天狼星的星等是m2=﹣1.45,由题意可得:−1.45−(−26.7)=52lg E1E2,∴lg E1E2=50.55=10.1,则E1E2=1010.1.故选:A.4.【2018年北京理科01】已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.{﹣2,0,1,2}D.{﹣1,0,1,2}【答案】解:A={x||x|<2}={x|﹣2<x<2},B={﹣2,0,1,2},则A∩B={0,1},故选:A.5.【2018年北京理科08】设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈AB.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉AD.当且仅当a≤3时,(2,1)∉A2【答案】解:当a=﹣1时,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,﹣x+y >4,x+y≤2},显然(2,1)不满足,﹣x+y>4,x+y≤2,所以A不正确;当a=4,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,4x+y>4,x﹣4y≤2},显然(2,1)在可行域内,满足不等式,所以B不正确;当a=1,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,x+y>4,x﹣y≤2},显然(2,1)∉A,所以当且仅当a<0错误,所以C不正确;故选:D.6.【2017年北京理科01】若集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A∩B=()A.{x|﹣2<x<﹣1}B.{x|﹣2<x<3}C.{x|﹣1<x<1}D.{x|1<x<3}【答案】解:∵集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},∴A∩B={x|﹣2<x<﹣1}故选:A.7.【2016年北京理科01】已知集合A={x||x|<2},集合B={﹣1,0,1,2,3},则A∩B=()A.{0,1}B.{0,1,2}C.{﹣1,0,1}D.{﹣1,0,1,2}【答案】解:∵集合A={x||x|<2}={x|﹣2<x<2},B={﹣1,0,1,2,3},∴A∩B={﹣1,0,1}.故选:C.8.【2016年北京理科08】袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多【答案】解:取两个球共有4种情况:①红+红,则乙盒中红球数加1个;②黑+黑,则丙盒中黑球数加1个;③红+黑(红球放入甲盒中),则乙盒中黑球数加1个;④黑+红(黑球放入甲盒中),则丙盒中红球数加1个.设一共有球2a个,则a个红球,a个黑球,甲中球的总个数为a,其中红球x个,黑球y个,x+y=a.则乙中有x个球,其中k个红球,j个黑球,k+j=x;丙中有y个球,其中l个红球,i个黑球,i+l=y;黑球总数a=y+i+j,又x+y=a,故x=i+j由于x=k+j,所以可得i=k,即乙中的红球等于丙中的黑球.故选:B.9.【2014年北京理科01】已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}【答案】解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选:C.10.【2014年北京理科08】学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人【答案】解:用ABC分别表示优秀、及格和不及格,显然语文成绩得A的学生最多只有1个,语文成绩得B得也最多只有一个,得C最多只有一个,因此学生最多只有3人,显然(AC)(BB)(CA)满足条件,故学生最多有3个. 故选:B .11.【2013年北京理科01】已知集合A ={﹣1,0,1},B ={x |﹣1≤x <1},则A ∩B =( ) A .{0} B .{﹣1,0} C .{0,1}D .{﹣1,0,1}【答案】解:∵A ={﹣1,0,1},B ={x |﹣1≤x <1}, ∴A ∩B ={﹣1,0}. 故选:B .12.【2012年北京理科01】已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x ﹣3)>0},则A ∩B =( ) A .(﹣∞,﹣1) B .(﹣1,−23) C .(−23,3) D .(3,+∞) 【答案】解:因为B ={x ∈R |(x +1)(x ﹣3)>0}={x |x <﹣1或x >3}, 又集合A ={x ∈R |3x +2>0}={x |x >−23},所以A ∩B ={x |x >−23}∩{x |x <﹣1或x >3}={x |x >3},故选:D .13.【2011年北京理科01】已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( ) A .(﹣∞,﹣1] B .[1,+∞)C .[﹣1,1]D .(﹣∞,﹣1]∪[1,+∞) 【答案】解:∵P ={x |x 2≤1}, ∴P ={x |﹣1≤x ≤1} ∵P ∪M =P ∴M ⊆P ∴a ∈P ﹣1≤a ≤1 故选:C .14.【2018年北京理科20】设n 为正整数,集合A ={α|α=(t 1,t 2,…t n ),t k ∈{0,1},k =1,2,…,n },对于集合A 中的任意元素α=(x 1,x 2,…,x n )和β=(y 1,y 2,…y n ),记 M (α,β)=12[(x 1+y 1﹣|x 1﹣y 1|)+(x 2+y 2﹣|x 2﹣y 2|)+…(x n +y n ﹣|x n ﹣y n |)](Ⅰ)当n =3时,若α=(1,1,0),β=(0,1,1),求M (α,α)和M (α,β)的值;(Ⅱ)当n =4时,设B 是A 的子集,且满足:对于B 中的任意元素α,β,当α,β相同时,M (α,β)是奇数;当α,β不同时,M(α,β)是偶数.求集合B中元素个数的最大值;(Ⅲ)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素α,β,M(α,β)=0,写出一个集合B,使其元素个数最多,并说明理由.【答案】解:(I)M(α,α)=1+1+0=2,M(α,β)=0+1+0=1.(II)考虑数对(x k,y k)只有四种情况:(0,0)、(0,1)、(1,0)、(1,1),相应的x k+y k−|x k−y k|分别为0、20、0、1,所以B中的每个元素应有奇数个1,所以B中的元素只可能为(上下对应的两个元素称之为互补元素):(1,0,0,0)、(0,1,0,0)、(0,0,1,0)、(0,0,0,1),(0,1,1,1)、(1,0,1,1)、(1,1,0,1)、(1,1,1,0),对于任意两个只有1个1的元素α,β都满足M(α,β)是偶数,所以四元集合B={(1,0,0,0)、(0,1,0,0)、(0,0,1,0)、(0,0,0,1)}满足题意,假设B中元素个数大于等于4,就至少有一对互补元素,除了这对互补元素之外还有至少1个含有3个1的元素α,则互补元素中含有1个1的元素β与之满足M(α,β)=1不合题意,故B中元素个数的最大值为4.(Ⅲ)B={(0,0,0,…0),(1,0,0…,0),(0,1,0,…0),(0,0,1…0)…,(0,0,0,…,1)},此时B中有n+1个元素,下证其为最大.对于任意两个不同的元素α,β,满足M(α,β)=0,则α,β中相同位置上的数字不能同时为1,假设存在B有多于n+1个元素,由于α=(0,0,0,…,0)与任意元素β都有M(α,β)=0,所以除(0,0,0,…,0)外至少有n+1个元素含有1,根据元素的互异性,至少存在一对α,β满足x i=y i=l,此时M(α,β)≥1不满足题意,故B中最多有n+1个元素.15.【2012年北京理科20】设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合.对于A∈S(m,n),记r i(A)为A的第i行各数之和(1≤i≤m),∁j(A)为A的第j列各数之和(1≤j≤n);记K(A)为|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.(1)如表A,求K(A)的值;11﹣0.80.1﹣0.3﹣1(2)设数表A∈S(2,3)形如11ca b﹣1求K(A)的最大值;(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值.【答案】解:(1)由题意可知r1(A)=1.2,r2(A)=﹣1.2,c1(A)=1.1,c2(A)=0.7,c3(A)=﹣1.8∴K(A)=0.7(2)先用反证法证明k(A)≤1:若k(A)>1则|c1(A)|=|a+1|=a+1>1,∴a>0同理可知b>0,∴a+b>0由题目所有数和为0即a+b+c=﹣1∴c=﹣1﹣a﹣b<﹣1与题目条件矛盾∴k(A)≤1.易知当a=b=0时,k(A)=1存在∴k(A)的最大值为1.(3)k(A)的最大值为2t+1t+2首先构造满足k(A)=2t+1的A={a i,j}(i=1,2,j=1,2,…,2t+1):t+2a1,1=a1,2=…=a1,t=1,a1,t+1=a1,t+2=…=a1,2t+1=−t−1,t+2a2,1=a2,2=…=a2,t=t2+t+1,t(t+2)a2,t+1=a2,t+2=…=a2,2t+1=﹣1.经计算知,A中每个元素的绝对值都小于1,所有元素之和为0,且|r 1(A )|=|r 2(A )|=2t+1t+2,|c 1(A )|=|c 2(A )|=…=|c t (A )|=1+t 2+t+1t(t+2)>1+t+1t+2>2t+1t+2,|c t +1(A )|=|c t +2(A )|=…=|c 2t +1(A )|=1+t−1t+2=2t+1t+2.下面证明2t+1t+2是最大值.若不然,则存在一个数表A ∈S (2,2t +1),使得k (A )=x >2t+1t+2.由k (A )的定义知A 的每一列两个数之和的绝对值都不小于x ,而两个绝对值不超过1的数的和,其绝对值不超过2,故A 的每一列两个数之和的绝对值都在区间[x ,2]中.由于x >1,故A 的每一列两个数符号均与列和的符号相同,且绝对值均不小于x ﹣1.设A 中有g 列的列和为正,有h 列的列和为负,由对称性不妨设g <h ,则g ≤t ,h ≥t +1.另外,由对称性不妨设A 的第一行行和为正,第二行行和为负.考虑A 的第一行,由前面结论知A 的第一行有不超过t 个正数和不少于t +1个负数,每个正数的绝对值不超过1(即每个正数均不超过1),每个负数的绝对值不小于x ﹣1(即每个负数均不超过1﹣x ).因此|r 1(A )|=r 1(A )≤t •1+(t +1)(1﹣x )=2t +1﹣(t +1)x =x +(2t +1﹣(t +2)x )<x , 故A 的第一行行和的绝对值小于x ,与假设矛盾.因此k (A )的最大值为2t+1t+2.1.【北京五中2020届高三(4月份)高考数学模拟】已知集合A ={1,2,3,4,5},且A ∩B =A ,则集合B 可以是() A .{x|2x >1} B .{x|x 2〉1}C .{x|log 2x〉1}D .{1,2,3}【答案】A 【解析】由A ∩B =A 可知,A ⊆B ,对于A :{x|2x >1=20}={x|x >0}⊇A ,符合题意.对于B :{x|x 2〉1}={x|x <−1或x >1},没有元素1,所以不包含A ; 对于C :{x|log 2x >1=log 22}={x|x >2},不合题意; D 显然不合题意, 本题选择A 选项.2.【北京市昌平区新学道临川学校2019-2020学年高三上学期期末】设集合M ={x|x 2−x ≥0},N ={x|x<2},则M∩N=()A.{x|x≤0}B.{x|1≤x<2}C.{x|x≤0或1≤x<2}D.{x|0≤x≤1}【答案】C【解析】求解二次不等式x2−x≥0可得M={x|x≥1或x≤0},结合交集的定义可得:M∩N={x|x≤0或1≤x<2}.本题选择C选项.3.【2020届北京市西城区第四中学高三上学期期中】设命题P:∃n∈N,n2>2n,则¬P为()A.∀n∈N,n2>2n B.∃ n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n【答案】C【解析】特称命题的否定为全称命题,所以命题的否命题应该为∀n∈N,n2≤2n,即本题的正确选项为C.4.【北京市人大附中2020届高三(6月份)高考数学考前热身】a⃗,b⃗⃗为非零向量,“a⃗⃗|b⃗⃗|=b⃗⃗|a⃗⃗|”为“a⃗,b⃗⃗共线”的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.即不充分也不必要条件【答案】B【解析】a⃗⃗|b⃗⃗|,b⃗⃗|a⃗⃗|分别表示与a⃗,b⃗⃗同方向的单位向量,a⃗⃗|b⃗⃗|=b⃗⃗|a⃗⃗|,则有a⃗,b⃗⃗共线,而a⃗,b⃗⃗共线,则a⃗⃗|b⃗⃗|,b⃗⃗|a⃗⃗|是相等向量或相反向量,“a⃗⃗|b⃗⃗|=b⃗⃗|a⃗⃗|”为“a⃗,b⃗⃗共线”的充分不必要条件.故选:B.5.【北京市通州区2020届高考一模】已知集合A={x|0<x≤2},B={x|1<x<3},则A∩B=()A.{x|0<x<3}B.{x|2<x<3}C.{x|0<x≤1}D.{x|1<x≤2}【答案】D∵集合A={x|0<x≤2},B={x|1<x<3},∴A∩B={x|1<x≤2}.故选:D.6.【2020届北京市顺义区高三二模】已知集合A={x|−3<x<2},B={−3,−2,0},那么A∩B=()A.{−2}B.{0}C.{−2,0}D.{−2,0,2}【答案】C【解析】因为集合A={x|−3<x<2},B={−3,−2,0},所以A∩B={−2,0}.故选:C.7.【北京市丰台区2020届高三下学期综合练习(二)(二模)】集合A={x∈Z|−2<x<2}的子集个数为()A.4B.6C.7D.8【答案】D【解析】∵A={x∈Z|−2<x<2}={−1,0,1},∴集合A的子集个数为23=8个,故选:D.8.【2019届北京市中国人民大学附属中学高三下学期第三次调研】已知集合A={(x,y)|x+y≤2,x,y∈N },则A中元素的个数为()A.1B.5C.6D.无数个【答案】C【解析】由题得A={(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)},所以A中元素的个数为6.故选C9.【北京市人大附中2018届高三高考数学零模】设全集U={1,3,5,7},集合M={1,a},∁U M={5,7},则实数a的值为()A.1B.3C.5D.7【答案】B∵U={1,3,5,7},∁U M={5,7},∴M={1,3},∴a=3.故选:B.10.【2020届北京市东城区高三高考第一次模拟】已知集合A={x|x(x+1)≤0},集合B={x|−1<x< 1},则A∪B=()A.{x|-1≤x≤1}B.{x|-1<x≤0}C.{x|-1≤x<1}D.{x|0<x<1}【答案】C【解析】解一元二次不等x(x+1)≤0,可得A={x|−1≤x≤0},则A∪B={x|-1≤x<1},故选C。
北京市近十年高考作文题目汇总(2009-2019年)
北京市近十年高考作文题目汇总(2009-2019年)2019年从下面两个题目中任选一题,按要求作答。
不少于700字。
将题目抄在答题卡上。
①“韧性”是指物体柔软坚实、不易折断的性质。
中华文明历经风雨,绵延至今,体现出“韧”的精神。
回顾漫长的中国历史,每逢关键时刻,这种文明的韧性体现得尤其明显。
中华民族的伟大复兴,更需要激发出这种文明的韧性。
请以“文明的韧性”为题,写一篇议论文。
可以从中国的历史变迁、思想文化、语言文字、文学艺术、社会生活及中国人的品格等角度,谈谈你的思考。
要求:观点明确,论据充分,论证合理。
②色彩,指颜色;不同的色彩常被赋予不同的意义。
2019年,我们隆重纪念五四运动100周年,欢庆共和国70华诞。
作为在这个特殊年份参加高考的学生,你会赋予2019年哪一种色彩,来形象地表达你的感受和认识?请以“2019的色彩”为题,写一篇记叙文。
要求:思想健康,内容充实,感情真挚,运用记叙、描写和抒情等多种表达方式。
2018年2018北京高考作文题目:今年北京卷的高考大作文仍然是二选一,要求考生从下面两个题目中任选一题。
1、今天,众多2000年出生的考生走进高考考场。
18年过去了,祖国在不断发展,大家也成长为青年。
请以“新时代新青年——谈在祖国发展中成长”为题,写一篇议论文。
2、生态文明建设关乎中华民族的永续发展,优美生态环境是每一个中国人的期盼。
请展开想象,以“绿水青山图”为题,写一篇记叙文,形象展现人与自然和谐相处的美好图景。
北京高考微作文出炉,下列7名著至少得知道一部从下面三个题目中任选一题,按要求作答。
1、在《红岩》、《边城》、《老人与海》中,至少选择一部作品,用一组排比比喻句抒写你从中获得的教益。
2、从《红楼梦》、《呐喊》、《平凡的世界》中选择一个即可悲又可叹的人物,简述这个人物形象。
3、读过《论语》,在孔子的众弟子中,你喜欢颜回,还是曾参?或者其他哪位?请选择一位,为他写一段评语。
2017年大作文题目二选一:“说纽带”、“共和国,我为你拍照”。
文科数学2010-2019高考真题分类训练专题一 集合与常用逻辑用语第一讲 集合—后附解析答案
专题一 集合与常用逻辑用语第一讲 集合2019年1.(2019全国Ⅰ文2)已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则UB A =A .{}1,6 B .{}1,7C .{}6,7D .{}1,6,72.(2019全国Ⅱ文1)已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(–1,+∞) B .(–∞,2)C .(–1,2)D .∅3.(2019全国Ⅲ文1)已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,24.(2019北京文1)已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B = (A )(–1,1)(B )(1,2)(C )(–1,+∞)(D )(1,+∞)5.(2019天津文1)设集合{}1,1,2,3,5A =-,{}2,3,4B = ,{|13}C x R x =∈< ,则()A CB =(A ){2}(B ){2,3}(C ){-1,2,3}(D ){1,2,3,4}6.(2019江苏1)已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B = .7.(2019浙江1) 已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则UA B =A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-2010-2018年一、选择题1.(2018全国卷Ⅰ)已知集合{0,2}=A ,{21012}=--,,,,B ,则A B =A .{0,2}B .{1,2}C .{0}D .{21012}--,,,, 2.(2018浙江)已知全集{1,2,3,4,5}U =,{1,3}A =,则=UAA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}3.(2018全国卷Ⅱ)已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{3}B .{5}C .{3,5}D .{}1,2,3,4,5,74.(2018北京)已知集合{|||2}A x x =<,{2,0,1,2}B =-,则AB =A .{0,1}B .{–1,0,1}C .{–2,0,1,2}D .{–1,0,1,2}5.(2018全国卷Ⅲ)已知集合{|10}A x x =-≥,{0,1,2}B =,则A B =A .{0}B .{1}C .{1,2}D .{0,1,2}6.(2018天津)设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-<R ≤,则()A B C =A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}7.(2017新课标Ⅰ)已知集合{|2}A x x =<,{320}B x =->,则A .3{|}2AB x x =< B .A B =∅C .3{|}2A B x x =< D .A B =R8.(2017新课标Ⅱ)设集合{1,2,3}A =,{2,3,4}B =则AB =A .{1,2,3,4}B .{1,2,3}C .{2,3,4}D .{1,3,4} 9.(2017新课标Ⅲ)已知集合{1,2,3,4}A =,{2,4,6,8}B =,则AB 中元素的个数为A .1B .2C .3D .4 10.(2017天津)设集合{1,2,6}A =,{2,4}B =,{1,2,3,4}C =,则()AB C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{1,2,3,4,6} 11.(2017山东)设集合{}11M x x =-<,{}2N x x =<,则M N =A .()1,1-B .()1,2- C .()0,2D .()1,212.(2017北京)已知U =R ,集合{|22}A x x x =<->或,则UA =A .(2,2)-B .(,2)(2,)-∞-+∞ C .[2,2]- D .(,2][2,)-∞-+∞13.(2017浙江)已知集合{|11}P x x =-<<,{|02}Q x x =<<,那么PQ =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2) 14.(2016全国I 卷)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则=ABA .{1,3}B .{3,5}C .{5,7}D .{1,7}15.(2016全国Ⅱ卷)已知集合{123}A =,,,2{|9}B x x =<,则A B =A .{210123}--,,,,,B .{21012}--,,,,C .{123},,D .{12}, 16.(2016全国Ⅲ)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B =A .{48},B .{026},,C .{02610},,,D .{0246810},,,,,17.(2015新课标2)已知集合}21|{<<-=x x A ,}30|{<<=x x B ,则AB =A .)3,1(-B .)0,1(-C .)2,0(D .)3,2(18.(2015新课标1)已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合AB中的元素个数为A .5B .4C .3D .219.(2015北京)若集合{|52}A x x =-<<,{|33}B x x =-<<,则AB =A .{|32}x x -<<B .{|52}x x -<<C .{|33}x x -<<D .{|53}x x -<<20.(2015天津)已知全集{1,2,3,4,5,6}U =,集合{}2,3,5A =,集合{1,3,4,6}B =,则集合UAB =。
北京高三数学综合测试题(集合、逻辑、函数、导数)
北京高三数学综合测试题(集合、逻辑、函数、导数)1.设集合U ={1,2,3,4,5,6},集合M ={1,3},N ={2,3,4},则(∁UM)∩(∁UN)=( ) .A .{3}B .{4,6}C .{5,6}D .{3,6}2.已知全集I =R ,若函数23)(2+-=x x x f ,集合M ={x|f(x)≤0},N ={x|f′(x)<0},则M∩∁IN =( )A.⎣⎢⎡⎦⎥⎤32,2B.⎣⎢⎡⎭⎪⎫32,2C.⎝ ⎛⎦⎥⎤32,2D.⎝ ⎛⎭⎪⎫32,2 3.设某种蜡烛所剩长度P 与点燃时间t 的函数关系式是P =kt +b.若点燃6分钟后,蜡烛的长为17.4 cm ; 点燃21分钟后,蜡烛的长为8.4 cm ,则这支蜡烛燃尽的时间为( )A .21分钟B .25分钟C .30分钟D .35分钟4.已知命题p :“∀x ∈[1,2],x2-a≥0”,命题q :“∃x ∈R ,x2+2ax +2-a =0”.若命题“綈p 且q”是真命题,则实数a 的取值范围为( )A .a≤-2或a =1B .a≤-2或1≤a≤2C .a≥1D .a>15.幂函数n x x f =)( (n =1,2,3,12,-1)具有如下性质:]1)1()1([2)1()1(22--+=-+f f f f则函数f(x)( )A .是奇函数B .是偶函数C .既是奇函数,又是偶函数D .既不是奇函数,又不是偶函数6.已知定义在R 上的函数f(x)=(x2-3x +2)g(x)+3x -4,其中函数y =g(x)的图象是一条连续曲线,则方程f(x)=0在下面哪个范围内必有实数根( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)7.设集合I 是全集,A ⊆I ,B ⊆I ,则“A ∪B =I”是“B =∁IA”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.若曲线xy =a(a≠0),则过曲线上任意一点的切线与a 两坐标轴所围成的三角形的面积是( )A .22aB .2aC .a 2D .a 9.设a ∈R ,函数f(x)=x e +a·e -x 的导函数f′(x),且f′(x)是奇函数.若曲线y =f(x)的一条切线的斜率是32,则切点的横坐标为( )A .- ln22B .-ln2 C.ln22D .ln2 10.如图所示,点P 在边长为1的正方形的边上运动,设M 是CD 边的中点,则当点P 沿着A -B -C -M 运动时,以点P 经过的路程x 为自变量,三角形APM 的面积函数的图象的形状大致是( )11.已知函数f(x)=lna +lnx x在[1,+∞)上为减函数,则实数a 的取值范围是( ) A .0<a<1e B .0<a≤e C .a≤e D .a≥e12.有下列命题:①函数y =cos ⎝ ⎛⎭⎪⎫x -π4cos ⎝ ⎛⎭⎪⎫x +π4的图象中,相邻两个对称中心的距离为π;②函数y =x +3x -1的图象关于点(-1,1)对称;③关于x 的方程0122=--ax ax 有且仅有一个实数根,则实数a =-1;④已知命题p :对任意的x ∈R ,都有sinx≤1,则非p :存在x ∈R ,使得sinx>1.其中所有真命题的序号是( )A .①②B .③④C .②③④D .①②④:13.已知函数f(x)=⎩⎨⎧ f(x +2),x≤-12x +2,-1<x<1,2x -4,x≥1则f[f(-2010)]=________.14.已知函数f(x)=ln 1+x 1-x+sinx ,则关于a 的不等式f(a -2)+f(a2-4)<0的解集是______. 15.已知函数f(x)=12mx2+lnx -2x 在定义域内是增函数,则实数m 的取值范围为________.16.若函数x a x x f 2331)(-=满足:对于任意的x1,x2∈[0,1]都有|f(x1)-f(x2)|≤1恒成立,则a 的取值范围是________.17.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:y =1128000x3-380x +8(0<x≤120).已知甲、乙两地相距100千米.(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?18.已知函数f(x)=133x +a -222x -2ax -3,g(a)=163a +5a -7.(1)a =1时,求函数f(x)的单调递增区间;(2)若函数f(x)在区间[-2,0]上不单调,且x ∈[-2,0]时,不等式f(x)<g(a)恒成立,求实数a 的取值范围.19.设f(x)是定义在[-1,1]上的奇函数,且当-1≤x<0时,b x a ax x x f +++=223452)((1)求函数f(x)的解析式; (2)当1<a≤3时,求函数f(x)在(0,1]上的最大值g(a)..20.已知函数f(x)=2x -4x +(2-a)lnx(a ∈R ,a≠0).(1)当a =8时,求函数f(x)的单调区间及极值; (2)讨论函数f(x)的单调性.21.已知函数f(x)=2x +2a x (a ∈R).(1)若f(x)在x =1处的切线垂直于直线x -14y +13=0,求该点的切线方程,并求此时函数f(x)的单调区间;(2)若f(x)≤a2-2a +4对任意的x ∈[1,2]恒成立,求实数a 的取值范围.22.已知f(x)=ax-ln(-x),x∈[-e,0),g(x)=-ln(-x)x,其中e是常数,a∈R.(1)讨论a=-1时,f(x)的单调性、极值;(2)求证:在(1)的条件下,|f(x)|>g(x)+1 2;(3)是否存在实数a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,请说明理由.。
2009至2018年北京高考真题分类汇编之集合
2009至2018年北京高考真题分类汇编之集合精心校对版△注意事项:1.本系列试题包含2009年-2018年北京高考真题的分类汇编。
2.本系列文档有相关的试题分类汇编,具体见封面。
3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一 、选择题(本大题共10小题,每小题0分,共0分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.(2013年北京高考真题数学(文))已知集合{}1,0,1A =-,{}|11B x x =-≤<,则AB =( )A .{}0B .{}1,0-C .{}0,1D .{}1,0,1- 2.(2012年北京高考真题数学(文))已知集合{320}A x x =∈+>R ,{(1)(3)0}B x x x =∈+->R ,则A B =3.(2011年北京高考真题数学(文))已知全集U=R,集合P={x ︱x 2≤1},那么A .(-∞, -1]B .[1, +∞)C .[-1,1]D .(-∞,-1] ∪[1,+∞) 4.(2009年北京高考真题数学(文))设集合21{|2},{1}2A x xB x x =-<<=≤,则A B = ( )A .{12}x x -≤<B .1{|1}2x x -<≤ C .{|2}x x < D .{|12}x x ≤<5.(2010年北京高考真题数学(文))集合,则=(A) {1,2} (B) {0,1,2} (C){x|0≤x<3} (D) {x|0≤x ≤3}2{03},{9}P x Z x M x R x =∈≤<=∈≤PM(A )(,1)-∞- (B )2(1,)3--(C )2(,3)3-(D )(3,)+∞姓名:__________班级:__________考号:__________ ●-------------------------密--------------封--------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●6.(2014年北京高考真题数学(文))若集合{}0,1,2,4A =,{}1,2,3B =,则AB =( )(A ){}0,1,2,3,4 (B ){}0,4 (C ){}1,2 (D ){}37.(2015年北京高考真题数学(文))若集合A={x|﹣5<x <2},B={x|﹣3<x <3},则A∩B=( )A . {x|﹣3<x <2}B . {x|﹣5<x <2}C . {x|﹣3<x <3}D . {x|﹣5<x <3}8.(2016年北京高考真题数学(文))已知集合{|24},{|3>5}A x x B x x x =<<=<或,则AB =(A ){|2<<5}x x (B ){|<45}x x x >或(C ){|2<<3}x x (D ){|<25}x x x >或 9.(2017年北京高考真题数学(文))已知U =R ,集合{|22}A x x x =<->或,则(A )(2,2)- (B )(,2)(2,)-∞-+∞(C )[2,2]- (D )(,2][2,)-∞-+∞ 10.(2018年北京高考真题数学(文))已知集合A ={x||x |<2},B ={−2,0,1,2},则AB =(A ){0,1}(B ){−1,0,1} (C ){−2,0,1,2}(D ){−1,0,1,2}二 、填空题(本大题共2小题,每小题0分,共0分)11.(2009年北京高考真题数学(文))设A 是整数集的一个非空子集,对于k A ∈,如果1k A-∉且1k A +∉,那么k 是A 的一个“孤立元”,给定{1,2,3,4,5,6,7,8,}S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有 个.12.(2015年北京高考真题数学(文))如图,△ABC 及其内部的点组成的集合记为D ,P (x ,y )为D 中任意一点,则z=2x+3y 的最大值为 .2009至2018年北京高考真题分类汇编之集合答案解析一、选择题1.B2.D3.D4.A5.B6.C7.A8.C9.C10.A二、填空题11.612.7。
(完整版)历年集合与简易逻辑高考题
一、选择题1.(2009年 广 东 卷 文 )已 知 全 集 UR, 则 正 确 表 示 集 合 M{ 1,0,1} 和Nx | x 2x 0关系的韦恩(Venn )图是()答案B分析由 Nx | x 2x 0,得 N { 1,0} ,则 NM , 选B.2. ( 2009 全国卷Ⅰ理)设会合 A={ 4,5, 7, 9}, B={ 3, 4, 7, 8, 9},全集 U=A U B ,则会合 u ( AI B) 中的元素共有()A. 3 个B. 4个C. 5个 D. 6 个解: A U B {3,4,5,7,8,9} , A I B{4,7,9} C U ( A I B){3,5,8} 应选 A 。
也可用摩根律: C U ( A I B) (C U A) U (C U B)答案 A3. ( 2009 浙江理)设 U R , A { x | x 0} , B { x | x 1} ,则 A I e U B ( )A . { x | 0 x 1}B . { x | 0 x 1}C . { x | x 0}D . { x | x 1}答案 B分析对于 C Bx x 1 ,所以 A Ie U B { x | 0 x 1}U4. ( 2009 浙江理)设 U R , A { x | x 0} , B { x | x 1} ,则 A I e U B ( )A . { x | 0 x 1}B . { x | 0 x 1}C . { x | x 0}D . { x | x 1}答案 B分析对于C U Bx x 1 ,所以 A I e U B { x | 0 x 1} .5. ( 2009 浙江文)设 UR , A{ x | x 0} , B { x | x1} ,则 A I e U B ()A . { x | 0 x 1}B . { x | 0 x 1}C . { x | x 0}D . { x | x 1}答案 B【命题企图】本小题主要观察了会合中的补集、交集的知识,在会合的运算观察对于会合理解和掌握的程度,自然也很好地观察了不等式的基天性质.分析 对于 C Bx x 1 ,所以 A I e U B { x | 0 x 1} .U6.( 2009 北京文)设会合 A{ x |1 x 2}, B { x x2 1} ,则 A U B()21 A . { x 1 x 2}B.{ x |x 1}2C . { x | x 2} D. { x |1 x 2}答案 A分析本题主要观察会合的基本运算以及简单的不等式的解法 . 属于基础知识、基本运算的观察∵ A{ x | 1 x2}, B { x x 21} x | 1 x1 ,2∴ A U B { x1 x2} ,应选 A.7.(2009 山东卷理 ) 会合 A 0,2, a , B1,a 2 , 若 A U B0,1,2,4,16 , 则 a 的值为()答案 D分析 ∵ A0,2, a , B1,a 2 , A U B0,1,2,4,16 ∴ a 216∴ a 4 , 应选 D.a 4【命题立意】 : 本题观察了会合的并集运算 , 并用察看法获得相对应的元素 , 进而求得答案 ,本题属于简单题 .8. (2009 山东卷文 ) 会合 A 0,2, a , B 1,a 2 , 若 A U B 0,1,2,4,16 , 则 a 的值为()答案 D分析 ∵ A0,2, a , B1,a 2 , A U B0,1,2,4,16 ∴ a 2 16∴ a 4 , 应选 D.a 4【命题立意】 : 本题观察了会合的并集运算 , 并用察看法获得相对应的元素 , 进而求得答案 ,本题属于简单题 .9. ( 2009 全国卷Ⅱ文)已知全集 U ={1 , 2, 3,4, 5, 6,7, 8} , M ={1 , 3, 5,7} , N ={5 ,6, 7} ,则 C ( M U N )=( )uA.{5 , 7}B.{2 ,4}C. {2.4.8}D. {1, 3, 5, 6, 7}答案 C分析 本题观察会合运算能力。
(完整版)历年集合与简易逻辑高考题.doc
一、选择题1.(2009年 广 东 卷 文 )已 知 全 集 UR, 则 正 确 表 示 集 合 M{ 1,0,1} 和Nx | x 2x 0关系的韦恩(Venn )图是()答案B解析由 Nx | x 2x 0,得 N { 1,0} ,则 NM , 选B.2. ( 2009 全国卷Ⅰ理)设集合 A={ 4,5, 7, 9}, B={ 3, 4, 7, 8, 9},全集 U=A U B ,则集合 u ( AI B) 中的元素共有()A. 3 个B. 4个C. 5个 D. 6 个解: A U B {3,4,5,7,8,9} , A I B{4,7,9} C U ( A I B){3,5,8} 故选 A 。
也可用摩根律: C U ( A I B) (C U A) U (C U B)答案 A3. ( 2009 浙江理)设 U R , A { x | x 0} , B { x | x 1} ,则 A I e U B ( )A . { x | 0 x 1}B . { x | 0 x 1}C . { x | x 0}D . { x | x 1}答案 B解析对于 C Bx x 1 ,因此 A Ie U B { x | 0 x 1}U4. ( 2009 浙江理)设 U R , A { x | x 0} , B { x | x 1} ,则 A I e U B ( )A . { x | 0 x 1}B . { x | 0 x 1}C . { x | x 0}D . { x | x 1}答案 B解析对于C U Bx x 1 ,因此 A I e U B { x | 0 x 1} .5. ( 2009 浙江文)设 UR , A{ x | x 0} , B { x | x1} ,则 A I e U B ()A . { x | 0 x 1}B . { x | 0 x 1}C . { x | x 0}D . { x | x 1}答案 B【命题意图】本小题主要考查了集合中的补集、交集的知识,在集合的运算考查对于集合理解和掌握的程度,当然也很好地考查了不等式的基本性质.解析 对于 C Bx x 1 ,因此 A I e U B { x | 0 x 1} .U6.( 2009 北京文)设集合 A{ x |1 x 2}, B { x x2 1} ,则 A U B()21 A . { x 1 x 2}B.{ x |x 1}2C . { x | x 2} D. { x |1 x 2}答案 A解析本题主要考查集合的基本运算以及简单的不等式的解法 . 属于基础知识、基本运算的考查∵ A{ x | 1 x2}, B { x x 21} x | 1 x1 ,2∴ A U B { x1 x2} ,故选 A.7.(2009 山东卷理 ) 集合 A 0,2, a , B1,a 2 , 若 A U B0,1,2,4,16 , 则 a 的值为()A.0B.1C.2D.4答案 D解析 ∵ A0,2, a , B1,a 2 , A U B0,1,2,4,16 ∴ a 216∴ a 4 , 故选 D.a 4【命题立意】 : 本题考查了集合的并集运算 , 并用观察法得到相对应的元素 , 从而求得答案 ,本题属于容易题 .8. (2009 山东卷文 ) 集合 A 0,2, a , B 1,a 2 , 若 A U B 0,1,2,4,16 , 则 a 的值为()A.0B.1C.2D.4答案 D解析 ∵ A0,2, a , B1,a 2 , A U B0,1,2,4,16 ∴ a 2 16∴ a 4 , 故选 D.a 4【命题立意】 : 本题考查了集合的并集运算 , 并用观察法得到相对应的元素 , 从而求得答案 ,本题属于容易题 .9. ( 2009 全国卷Ⅱ文)已知全集 U ={1 , 2, 3,4, 5, 6,7, 8} , M ={1 , 3, 5,7} , N ={5 ,6, 7} ,则 C ( M U N )=( )uA.{5 , 7}B.{2 ,4}C. {2.4.8}D. {1, 3, 5, 6, 7}答案 C解析 本题考查集合运算能力。
高考数学真题分项汇编 专题01 集合与常用逻辑用语 文(含解析)-人教版高三全册数学试题
专题01集合与常用逻辑用语1.【2019年高考全国Ⅰ卷文数】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则UBA =A .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【答案】C 【解析】由已知得{}1,6,7UA =,所以UB A ={6,7}.故选C .【名师点睛】本题主要考查交集、补集的运算,根据交集、补集的定义即可求解. 2.【2019年高考全国Ⅱ卷文数】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2)C .(-1,2)D .∅【答案】C 【解析】由题知,(1,2)A B =-.故选C .【名师点睛】本题主要考查交集运算,是容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.3.【2019年高考全国Ⅲ卷文数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1AB =-.故选A .【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019年高考北京文数】已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B = A .(–1,1) B .(1,2) C .(–1,+∞)D .(1,+∞)【答案】C【解析】∵{|12},{|1}A x x B x =-<<=>, ∴(1,)AB =-+∞.故选C.【名师点睛】本题考查并集的求法,属于基础题.5.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()UA B =A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A 【解析】∵{1,3}UA =-,∴(){1}U A B =-.故选A.【名师点睛】注意理解补集、交集的运算.6.【2019年高考天津文数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D 【解析】因为{1,2}A C =,所以(){1,2,3,4}A C B =.故选D.【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.7.【2019年高考天津文数】设x ∈R ,则“05x <<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】B【解析】由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件, 即“05x <<”是“|1|1x -<”的必要而不充分条件. 故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围. 8.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是“ab ≤4”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果. 9.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行. 故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.10.【2019年高考北京文数】设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】当0b =时,()cos sin cos f x x b x x =+=,()f x 为偶函数; 当()f x 为偶函数时,()()f x f x -=对任意的x 恒成立,由()cos()sin()cos sin f x x b x x b x -=-+-=-,得cos sin cos sin x b x x b x +=-, 则sin 0b x =对任意的x 恒成立, 从而0b =.故“0b =”是“()f x 为偶函数”的充分必要条件. 故选C.【名师点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查. 11.【2018年高考浙江】已知全集U ={1,2,3,4,5},A ={1,3},则=UAA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}【答案】C【解析】因为全集U ={1,2,3,4,5},U ={1,3}, 所以根据补集的定义得∁U U ={2,4,5}. 故选C .【名师点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.12.【2018年高考全国Ⅰ卷文数】已知集合{}02A =,,{}21012B =--,,,,,则A B =A .{}02,B .{}12,C .{}0D .{}21012--,,,, 【答案】A【解析】根据集合的交集中元素的特征,可以求得U ∩U ={0,2}. 故选A.【名师点睛】该题考查的是有关集合的运算问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.13.【2018年高考全国Ⅱ卷文数】已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C【解析】∵U ={1,3,5,7},U ={2,3,4,5},∴U ∩U ={3,5}. 故选C.【名师点睛】集合题是每年高考的必考内容,一般以客观题的形式出现,解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn 图法解决,若是“连续型”集合则可借助不等式进行运算.14.【2018年高考全国Ⅲ卷文数】已知集合{|10}A x x =-≥,{0,1,2}B =,则AB =A .{0}B .{1}C .{1,2}D .{0,1,2} 【答案】C【解析】易得集合{|1}A x x =≥,所以{}1,2A B =.故选C.【名师点睛】本题主要考查交集的运算,属于基础题.15.【2018年高考北京文数】已知集合A ={x ||x |<2},B ={–2,0,1,2},则AB =A .{0,1}B .{–1,0,1}C .{–2,0,1,2}D .{–1,0,1,2}【答案】A【解析】∵|U |<2,∴−2<U <2, 因此A ∩B =(−2,2)∩{−2,0,1,2}={0,1}. 故选A.【名师点睛】解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.16.【2018年高考天津文数】设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-≤<R ,则()A B C =A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}【答案】C【解析】由并集的定义可得:U ∪U ={−1,0,1,2,3,4}, 结合交集的定义可知:(U ∪U )∩U ={−1,0,1}. 故选C.【名师点睛】本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力. 17.【2018年高考浙江】已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】因为U ⊄U ,U ⊂U ,U //U ,所以根据线面平行的判定定理得U //U .由U //U 不能得出U 与U 内任一直线平行, 所以U //U 是U //U 的充分不必要条件. 故选A.【名师点睛】充分、必要条件的三种判断方法:(1)定义法:直接判断“若U 则U ”、“若U 则U ”的真假.并注意和图示相结合,例如“U ⇒U ”为真,则U 是U 的充分条件.(2)等价法:利用U ⇒U 与非U ⇒非U ,U ⇒U 与非U ⇒非U ,U ⇔U 与非U ⇔非U 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若U ⊆U ,则U 是U 的充分条件或U 是U 的必要条件;若U =U ,则U 是U 的充要条件. 18.【2018年高考天津文数】设x ∈R ,则“38x >”是“||2x >”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】求解不等式U 3>8可得U >2, 求解绝对值不等式|U |>2可得U >2或U <−2,据此可知:“U 3>8”是“|U |>2” 的充分而不必要条件. 故选A.【名师点睛】本题主要考查绝对值不等式的解法、充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.19.【2018年高考北京文数】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】当U =4,U =1,U =1,U =14时,U ,U ,U ,U 不成等比数列,所以不是充分条件; 当U ,U ,U ,U 成等比数列时,则UU =UU ,所以是必要条件.综上所述,“UU =UU ”是“U ,U ,U ,U 成等比数列”的必要不充分条件.故选B.【名师点睛】此题主要考查充分必要条件,实质是判断命题“U ⇒U ”以及“U ⇒U ”的真假.判断一个命题为真命题,要给出理论依据、推理证明;判断一个命题为假命题,只需举出反例即可,或者当一个命题正面很难判断真假时,可利用原命题与逆否命题同真同假的特点转化问题. 20.【2017年高考全国Ⅰ卷文数】已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R【答案】A【解析】由320x ->得32x <, 所以33{|2}{|}{|}22A B x x x x x x =<<=<.故选A .【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 21.【2017年高考全国Ⅱ卷文数】设集合{1,2,3},{2,3,4}A B ==,则AB =A .{}123,4,,B .{}123,,C .{}234,, D .{}134,, 【答案】A 【解析】由题意{1,2,3,4}A B =.故选A.【名师点睛】集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提. (2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决. (3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 22.【2017年高考北京文数】已知全集U =R ,集合{|22}A x x x =<->或,则UA =A .(2,2)-B .(,2)(2,)-∞-+∞C .[2,2]-D .(,2][2,)-∞-+∞【答案】C【解析】因为{2A x x =<-或2}x >,所以{}22UA x x =-≤≤.故选C.【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示;若集合是无限集合就用描述法表示,并注意代表元素是什么.集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.23.【2017年高考全国Ⅲ卷文数】已知集合A ={1,2,3,4},B ={2,4,6,8},则AB 中元素的个数为A .1B .2C .3D .4【答案】B【解析】由题意可得{}2,4A B =,故AB 中元素的个数为2.所以选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性. 24.【2017年高考天津文数】设集合{1,2,6},{2,4},{1,2,3,4}A B C ===,则()AB C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{1,2,3,4,6}【答案】B【解析】由题意可得{}1,2,4,6A B =,所以{}()1,2,4A B C =.故选B .【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.25.【2017年高考浙江】已知集合{|11}P x x =-<<,{02}Q x =<<,那么PQ =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2)【答案】A【解析】利用数轴,取,P Q 中的所有元素,得P Q =(1,2)-.故选A.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 26.【2017年高考山东文数】设集合{}11M x x =-<,{}2N x x =<,则M N =A .()1,1-B .()1,2-C .()0,2D .()1,2【答案】C【解析】由|1|1x -<得02x <<, 故={|02}{|2}{|02}MN x x x x x x <<<=<<.故选C.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到,对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图.27.【2017年高考浙江】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充分必要条件.故选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=,结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.28.【2017年高考北京文数】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒, 那么cos1800⋅=︒=-<m n m n m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分而不必要条件.故选A.【名师点睛】本题考查平面向量的知识及充分必要条件的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件.29.【2017年高考山东文数】已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝【答案】B【解析】由0x =时,210x x -+≥成立知p 是真命题;由221(2),12<->-可知q 是假命题,所以p q ∧⌝是真命题.故选B.【名师点睛】判断一个命题为真命题,要给出推理与证明;判断一个命题是假命题,只需举出反例.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.30.【2017年高考天津文数】设x ∈R ,则“20x -≥”是“|1|1x -≤”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】由20x -≥,可得2x ≤,由|1|1x -≤,可得111x -≤-≤,即02x ≤≤, 因为{}{}022x x x x ≤≤⊂≤,所以“20x -≥”是“|1|1x -≤”的必要而不充分条件.故选B .【名师点睛】判断充要关系的的方法: ①根据定义,若,/p q q p ⇒⇒,那么p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件,若p q ⇔,那么p 是q 的充要条件,若,//p q q p ⇒⇒,那那么p 是q 的既不充分也不必要条件; ②当命题是以集合的形式给出时,那就看包含关系,若:p x A ∈,:q x B ∈,若A 是B 的真子集,那么p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件,若A B =,那么p 是q 的充要条件,若没有包含关系,那么p 是q 的既不充分也不必要条件;③命题的等价性,根据互为逆否命题的两个命题等价,将“p 是q ”的关系转化为“q ⌝是p ⌝”的关系进行判断.31.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB =▲.【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B =.【名师点睛】本题主要考查交集的运算,属于基础题.32.【2018年高考江苏】已知集合U ={0,1,2,8},U ={−1,1,6,8},那么U ∩U =________.【答案】{1,8}【解析】由题设和交集的定义可知:U ∩U ={1,8}.【名师点睛】本题考查交集及其运算,考查基础知识,难度较小.33.【2017年高考江苏】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =,则实数a 的值为 ▲ .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意.故答案为1.【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,AB A B =∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.34.【2018年高考北京文数】能说明“若a ﹥b ,则11a b<”为假命题的一组a ,b 的值依次为_________. 【答案】1,−1(答案不唯一)【解析】使“若U >U ,则1U <1U ”为假命题,则使“若U >U ,则1U ≥1U ”为真命题即可, 只需取U =1,U =−1即可满足,所以满足条件的一组U ,U 的值为1,−1(答案不唯一).【名师点睛】此题考查不等式的运算,解决本题的关键在于对原命题与命题的否定真假关系的灵活转换,对不等式性质及其等价变形的充分理解,只要多取几组数值,解决本题并不困难.35.【2017年高考北京文数】能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为______________________________.【答案】-1,-2,-3(答案不唯一)【解析】()123,1233->->--+-=->-,矛盾,所以−1,−2,−3可验证该命题是假命题.【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时利用赋值的方式举反例进行验证,答案不唯一.。
备战(北京版)高考数学分项汇编专题01集合与常用逻辑用语(含解析)文
【备战2016】(北京版)高考数学分项汇编 专题01 集合与常用逻辑用语(含解析)文1. 【2008高考北京文第1题】若集合{|23}A x x =-≤≤,{|14}B x x x =<->或,则集合A B 等于( )A .{}|34x x x ≤>或B .{}|13x x -<≤C .{}|34x x ≤<D .{}|21x x -≤-<【答案】D2. 【2009高考北京文第1题】设集合21{|2},{1}2A x xB x x =-<<=≤,则A B = ( )A .{12}x x -≤<B .1{|1}2x x -<≤ C .{|2}x x < D .{|12}x x ≤<【答案】A3. 【2010高考北京文第1题】集合P ={x ∈Z |0≤x <3},M ={x ∈Z |x 2≤9},则P ∩M 等于( ) A .{1,2} B .{0,1,2} C .{1,2,3} D .{0,1,2,3} 【答案】B4. 【2012高考北京文第1题】已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x -3)>0},则A ∩B =( ) A .(-∞,-1) B .{-1,23-} C .(23-,3) D .(3,+∞)【答案】D5. 【2013高考北京文第1题】已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B =( ). A .{0} B .{-1,0} C .{0,1} D .{-1,0,1} 【答案】B6. 【2014高考北京文第1题】若集合A={}0,1,2,4,B={}1,2,3,则A B ⋂=( ) A.{}0,1,2,3,4 B.{}0,4 C.{}1,2 D.{}3 【答案】C考点:本小题主要考查集合的基本运算,属容易题,熟练集合的基础知识是解答好集合题目的关键.7. 【2014高考北京文第5题】设a 、b 是实数,则“a b >”是“22a b >”的( )A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分也不必要条件 【答案】D考点:本小题主要考查不等式的性质,熟练不等式的性质是解答好本类题目的关键.8. 【2011高考北京文第1题】已知全集U=R ,集合{}21P x x =∣≤,那么U P =ð(A)(,1-∞-) (B)(1,+∞) (C)(-1,1) (D)()()11-∞,-,+∞9. 【2011高考北京文第4题】若p 是真命题,q 是假命题,则(A )p q ∧是真命题 (B)p q ∨是假命题 (C)p ⌝是真命题 (D)q ⌝是真命题10. 【2006高考北京文第1题】设集合A ={x |2x +1<3},B ={x |-3<x <2},则A ∩BA.{x |-3<x <1}B.{x |1<x <2}C.{x |x >-3}D.{x |x <1}【答案】A11. 【2006高考北京文第3题】若a 与b -c 都是非零向量,则“a ·b =a ·c ”是“a ⊥(b -c )A. B.C.D.既不充分也不必要条件【答案】C12. 【2005高考北京文第1题】设集合M ={x | x >1,P ={x | x 2>1},则下列关系中正确的是( ) (A )M =P (B )P M ⊂ (C )M P ⊂ ( D )M P R =【答案】C【解析】()()211101x x x x >⇒+->⇒<-或1x >.所以{}|11P x x x =<->或,则M P ⊂.故C 正确.13【2005高考北京文第3题】“m=21”是“直线(m+2)x+3my+1=0与直线(m -2)x+(m+2)y -3=0相互垂直”的( )(A )充分必要条件 (B )充分而不必要条件(C )必要而不充分条件 (D )既不充分也不必要条件 【答案】B14. 【2015高考北京,文1】若集合{}52x x A =-<<,{}33x x B =-<<,则A B =( )A .{}32x x -<< B .{}52x x -<< C .{}33x x -<< D .{}53x x -<< 【答案】A【考点定位】集合的交集运算.。
专题01 集合与常用逻辑-十年高考(2009-)之高三数学(理)分项与解读(北京专版)
专题01 集合与常用逻辑【考情概览】【应试策略】集合的概念及运算一直是高考热点,一般为基础题,解题时要充分利用韦恩图、数轴的直观性迅速得解,预计今后这种考查方式不会变.1、具体集合的运算:高考对集合的考查,多是考查具体集合(给出或可以求出集合的具体元素)的交、并、补运算,其解法依然是化简集合、列举法或借助于数轴、韦恩图等.预测明年对于集合的考查仍以此类题为主.2、抽象集合的运算: 解决此类问题的途径有二:一是利用特例法将抽象集合具体化; 二是利用韦恩图化抽象为直观.【真题展示】1. 【2008高考北京理第1题】已知全集U =R ,集合{}|23A x x =-≤≤,{}|14B x x x =<->或,那么集合()UAB 等于( )A .{}|24x x -<≤B .{}|34x x x 或≤≥C .{}|21x x -<-≤ D .{}|13x x -≤≤【答案】 D 【解析】试题分析:C U B=[-1, 4],()UA B ={}|13x x -≤≤考点:集合2. 【2010高考北京理第1题】集合P ={x ∈Z |0≤x <3},M ={x ∈R |x 2≤9},则P ∩M 等于( ) A .{1,2} B .{0,1,2} C .{x |0≤x <3} D .{x |0≤x ≤3} 【答案】B 【解析】试题分析:P ={0,1,2},M ={x |-3≤x ≤3},故P ∩M ={0,1,2}. 考点:集合的运算.3. 【2011高考北京理第1题】已知集合2{|1}P x x =≤,{}M a =,若P M P =,则a 的取值范围是A. (,1]-∞-B. [1,)+∞C. [1,1]-D. (,1]-∞-[1,)+∞【答案】C【解析】2{|1}{|11}P x x x x =≤=-≤≤,[1,1]PM P a =⇒∈-,选C 。
4. 【2012高考北京理第1题】已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B= ( ) A (-∞,-1)B (-1,-23) C (-23,3)D (3,+∞) 【答案】D考点:集合的运算.5. 【2013高考北京理第1题】已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B =( ). A .{0} B .{-1,0} C .{0,1} D .{-1,0,1} 【答案】B试题分析:{-1,0,1}∩{x |-1≤x <1}={-1,0}. 考点:集合的运算.6. 【2014高考北京理第1题】 已知集合2{|20}A x x x =-=,{0,1,2}B =,则A B =( )A.{0} B .{0,1} C .{0,2} D .{0,1,2} 【答案】C考点:交集的运算.7.【2016高考北京理数】已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则AB =( )A.{0,1}B.{0,1,2}C.{1,0,1}-D.{1,0,1,2}- 【答案】C 【解析】试题分析:由}22|{<<-=x x A ,得}1,0,1{-=B A ,故选C. 考点:集合交集.【名师点睛】1. 首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合)}(|{x f y x =,)}(|{x f y y =,)}(|),{(x f y y x =三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.8.【2017高考北京理第1题】若集合A ={x |–2<x <1},B ={x |x <–1或x >3},则A B =(A ){x |–2<x <–1} (B ){x |–2<x <3} (C ){x |–1<x <1}(D ){x |1<x <3}【答案】A试题分析:利用数轴可知{}21A B x x =-<<-,故选A.【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示;若集合是无限集合就用描述法表示,并注意代表元素是什么.集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.9.【2018高考北京理第1题】 已知集合A={x||x|<2},B={–2,0,1,2},则A B=A. {0,1}B. {–1,0,1}C. {–2,0,1,2}D. {–1,0,1,2} 【答案】A点睛:认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.【对症下药】解决集合问题的关键是正确地为集合进行化简求解,一般规律为:(1)若给定的集合是点集,用列举法(或结合Venn 图)求解. (2)若给定的集合是不等式的解集,用数轴求解. (3)若给定的集合是抽象集合,用Venn 图求解.【考题预测】1.设集合,,则下列结论正确的是( )A .B .C .D .【答案】B 【解析】,故选.2.设集合,集合,则等于 ( )A. B. C. D.【答案】B【解析】【分析】先求出集合A和集合B,由此能求出A∩B.【点睛】求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解;在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.3.已知集合,,则集合中元素的个数为A. 2 B. 3 C. 4 D. 5【答案】C【解析】【分析】先确定出集合,然后进行补集、交集的运算即可得到答案【详解】则故选【点睛】本题主要考查了集合的交集,补集的混合运算,熟练掌握各自的定义是解题的关键,属于基础题。
2010-2019高考真题分类训练 专题一 集合与常用逻辑用语 第一讲集合答案部分
专题一 集合与常用逻辑用语第一讲 集合答案部分2019年1.解析:依题意可得,2426023{|}{|}{} |M x x N x x x x x =-=--=-<<,<<<, 所以2|}2{M N x x =-I <<. 故选C .2.解析:由{}2560(,2)(3,)A x x x =-+>=-∞+∞U ,{}10(,1)A x x =-<=-∞,则(,1)A B =-∞I .故选A.3.解析 因为{}1,0,1,2A =-,2{|1}{|11}B x x x x ==-剟?, 所以{}1,0,1A B =-I .故选A .4.解析 因为{}1,0,1,6A =-,{}|0,B x x x =>∈R ,所以{}{}{}1,0,1,6|0,1,6A B x x x =->∈=R I I .5.解析:{1,3}U A =-ð,{1}U A B =-I ð.故选A . 6.解析 设集合{}1,1,2,3,5A =-,{}13C x x =∈<R „, 则{}1,2A C =I . 又{}2,3,4B =, 所以{}{}{}{}1,22,3,41,2,3,4A C B ==I U U .故选D.2010-2018年1.A 【解析】{|||2}(2,2)A x x =<=-,{2,0,1,2}B =-,∴{0,1}A B =I ,故选A .2.B 【解析】因为2{20}=-->A x x x ,所以2{|20}=--R ≤A x x x ð {|12}=-≤≤x x ,故选B .3.C 【解析】由题意知,{|10}A x x =-≥,则{1,2}A B =I .故选C .4.B 【解析】因为{1}B x x =≥,所以{|1}R B x x =<ð,因为{02}A x x =<<,所以()=R I A B ð{|01}x x <<,故选B .5.C 【解析】因为{1,2,3,4,5}U =,{1,3}A =,所以=U A ð{2,4,5}.故选C .6.A 【解析】通解 由223+≤x y知,≤xy又∈Z x ,∈Z y ,所以{1,0,1}∈-x ,{1,0,1}∈-y ,所以A 中元素的个数为1133C C 9=,故选A .优解 根据集合A 的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆223+=x y 中有9个整点,即为集合A 的元素个数,故选A .7.A 【解析】∵{|0}B x x =<,∴{|0}A B x x =<I ,选A .8.C 【解析】∵1B ∈,∴21410m -⨯+=,即3m =,∴{1,3}B =.选C .9.B 【解析】集合A 、B 为点集,易知圆221x y +=与直线y x =有两个交点,所以A B I 中元素的个数为2.选B .10.D 【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -<=-<I I ≤≤≤,选D.11.B 【解析】(){1246}[15]{124}A B C =-=U I I ,,,,,, ,选B.12.A 【解析】由题意可知{|12}P Q x x =-<<U ,选A .13.A 【解析】{}21A B x x =-<<-I ,故选A.14.C 【解析】因为{|||2}{|22}A x x x x =<=-<<,所以{1,0,1}A B =-I .15.C 【解析】集合A 表示函数2x y =的值域,故(0,)A =+∞.由210x -<,得11x -<<,故(1,1)B =-,所以(1,)A B =-+∞U .故选C .16.D 【解析】由题意{1,4,7,10}B =,所以{1,4}A B =I .17.D 【解析】由题意得,{|13}A x x =<<,3{|}2B x x =>,则3(,3)2A B =I .选D .18.C 【解析】由已知可得()(){}120B x x x x =+-<∈Z ,{}12x x x =-<<∈Z ,,∴{}01B =,,∴{}0123A B =U ,,,,故选C . 19.D 【解析】(,2][3,)S =-∞+∞U ,所以(0,2][3,)S T =+∞I U ,故选D .20.A 【解析】由于{|21}B x x =-<<,所以{1,0}A B =-I .21.C 【解析】{|02}R P x x =<<ð,故(){|1<<2}R P Q =x x I ð.22.A 【解析】{|12}A x x =-<<,{|13}B x x =<<,∴{|13}A B x x =-<<U .23.C 【解析】由已知得{},1,,1A i i =--,故A B =I {}1,1-,故选C .24.D 【解析】由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D.25.C 【解析】∵A B A =I ,得A B Í,反之,若A B Í,则A B A =I ;故“A B A =I ”是“A B ⊆”的充要条件.26.D 【解析】 由(4)(1)0x x ++=得4x =-或1x =-,得{1,4}M =--.由(4)(1)0x x --= 得4x =或1x =,得{1,4}N =.显然=∅I M N .27.A 【解析】{}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤, 所以[]0,1M N =U ,故选A .28.A 【解析】{2,5,8}U B =ð,所以{2,5}U A B =I ð,故选A.29.C 【解析】因为集合22{(,)1,,}A x y x y x y =+≤∈Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y =≤≤∈Z 中有25个元素(即 25个点):即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111D C B A 中的整点(除去四个顶点),即45477=-⨯个.30.A 【解析】{}|13A x x x =-≤或≥,故A B ⋂=[-2,-1].31.D 【解析】{}|12N x x =≤≤,∴M N ⋂={1,2}.32.B 【解析】∵{}1,2B =-,∴A B ⋂={}233.C 【解析】|1|213x x -<⇒-<<,∴(1,3)A =-,[1,4]B =.∴[1,3)A B ⋂=.34.C 【解析】∵(0,2)A =,[1,4]B =,所以A B =I [1,2).35.C 【解析】{}{}{}1,0,10,1,21,0,1,2M N ⋃=-⋃=-,选C .36.A 【解析】P Q ⋂=}{34x x ≤<37.B 【解析】由题意知{|2}U x N x =∈≥,{|5}A x N x =∈,所以=A C U {|25}x N x ∈<≤,选B .38.C 【解析】∵{}{}2|200,2A x x x =-==.∴A B =I ={}0,2.39.C 【解析】A B =I {|23}x x <<40.B 【解析】∵21x <,∴11x -<<,∴M N =I {}|01x x <≤,故选B . 41.C 【解析】{}|3,3A x x =-<,{}C |15R B x x x =->≤或,∴()R A C B =I {}|31x x --≤≤42.D 【解析】由已知得,{=0A B x x ≤U 或}1x ≥,故()U C A B =U {|01}x x <<.43.A 【解析】{|12}A x x =-≤≤,B Z =,故A B ⋂={1,0,1,2}-44.C 【解析】{}2,4,7U A =ð.45.C 【解析】“存在集合C 使得,U A C B C ⊆⊆ð”⇔“∅=B A I ”,选C . 46.B 【解析】A=(-∞,0)∪(2,+∞),∴A ∪B=R ,故选B .47.A 【解析】{}1,4,9,16B =,∴{}1,4A B ⋂=48.A 【解析】∵(1,3)M =-,∴{}0,1,2M N =I49.C 【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以M N I {2,1,0}=--,选C.50.A 【解析】由题意{}1,2,3A B =U ,且{1,2}B =,所以A 中必有3,没有4,{}3,4U C B =,故U A B =I ð{}3.51.C 【解析】0,0,1,2,0,1,2x y x y ==-=--;1,0,1,2,1,0,1x y x y ==-=-;2,0,1,2,2,1,0x y x y ==-=.∴B 中的元素为2,1,0,1,2--共5个.52.A 【解析】A :1->x ,}1|{-≤=x x A C R ,}2,1{)(--=B A C R I ,所以答案选A53.D 【解析】由集合A ,14x <<;所以(1,2]A B ⋂=54.B 【解析】集合B 中含-1,0,故{}1,0A B =-I55.A 【解析】∵{}2,0S =-,{}0,2T =,∴S T =I {}0.56.B 【解析】特殊值法,不妨令2,3,4x y z ===,1w =,则()(),,3,4,1y z w S =∈,()(),,2,3,1x y w S =∈,故选B .如果利用直接法:因为(),,x y z S ∈,(),,z w x S ∈,所以x y z <<…①,y z x <<…②,z x y <<…③三个式子中恰有一个成立;z w x <<…④,w x z <<…⑤,x z w <<…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时w x y z <<<,于是(),,y z w S ∈,(),,x y w S ∈;第二种:①⑥成立,此时x y z w <<<,于是(),,y z w S ∈,(),,x y w S ∈;第三种:②④成立,此时y z w x <<<,于是(),,y z w S ∈,(),,x y w S ∈;第四种:③④成立,此时z w x y <<<,于是(),,y z w S ∈,(),,x y w S ∈.综合上述四种情况,可得(),,y z w S ∈,(),,x y w S ∈.57.D 【解析】()f x 的定义域为M =[-1,1],故R M ð=(,1)(1,)-∞-⋃+∞,选D .58.A 【解析】当0a =时,10=不合,当0a ≠时,0∆=,则4a =.59.C 【解析】[)0,A =+∞,[]2,4B =,[)()0,24,R A C B ∴=+∞I U .60.A 【解析】U C M ={,,}24661.D 【解析】Q {}3,4,5Q =,∴U Q ð={}1,2,6,∴ U P Q ⋂ð={}1,2. 62.D 【解析】由M ={1,2,3,4},N ={-2,2},可知-2∈N ,但是-2∉M ,则N ⊄M ,故A 错误.∵M U N ={1,2,3,4,-2}≠M ,故B 错误.M∩N ={2}≠N ,故C 错误,D 正确.故选D63.B 【解析】A =(-1,2),故B ⊂≠A ,故选B.64.D 【解析】{3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=I65.C 【解析】根据题意,容易看出x y +只能取-1,1,3等3个数值.故共有3个元素.66.D 【解析】{|1}P x x =< ∴{|1}R C P x x =≥,又∵{|1}Q x x =>,∴R Q C P ⊆,故选D .67.B 【解析】{1,3}P M N ==I ,故P 的子集有4个.68.D 【解析】因为集合[1,1]P =-,所以(,1)(1,)U C P =-∞-+∞U .69.D 【解析】因为{1,2,3,4}M N =U ,所以()()n n C M C N ⋂=()U C M N U ={5,6}.70.B 【解析】因为U C M N ⊂,所以()()()U U U U N N C M C C N C M ==U U=[()]U U N M I 痧={1,3,5}.71.C 【解析】由2211x y x y ⎧+=⎨+=⎩消去y ,得20x x -=,解得0x =或1x =, 这时1y =或0y =,即{(0,1),(1,0)}A B ⋂=,有2个元素.72.A 【解析】集合{1,0,1}{0,1,2}={0,1}M N =-I I .73.C 【解析】因为P M P =U ,所以M P ⊆,即a P ∈,得21a ≤,解得11a -≤≤,所以a 的取值范围是[1,1]-.74.C 【解析】对于集合M ,函数|cos 2|y x =,其值域为[0,1],所以[0,1]M =,根据复<21x <,所以(1,1)N =-,则[0,1]M N =I .75.A 【解析】根据题意可知,N 是M 的真子集,所以M N M =U .76.C 【解析】{}{}{}1,2,32,3,42,3M N ==I I 故选C.77.D 【解析】{}{}|1,|12R R B x x A B x x =≥⋂=≤≤痧78.B 【解析】{}22<<x x Q -=,可知B 正确, 79.A 【解析】不等式121log 2x …,得12112201log log ()2x >⎧⎪⎨⎪⎩…,得2x „, 所以R A ð=(,0]2⎛⎫-∞+∞ ⎪ ⎪⎝⎭U .80.D 【解析】因为{3}A B =I ,所以3∈A ,又因为{9}U B A =I ð,所以9∈A ,所以选D .本题也可以用Venn 图的方法帮助理解.81.{1,8}【解析】由集合的交运算可得A B =I {1,8}.82.1【解析】由题意1B ∈,显然1a =,此时234a +=,满足题意,故1a =. 83.5【解析】{1,2,3}{2,4,5}{1,2,3,4,5}A B ==U U ,5个元素.84.{}1,3-【解析】=B A I {}1,3-85.{}7,9【解析】{}1,2,3,4,5,6,7,8,9,10U =,{}4,6,7,9,10U A =ð, {}()7,9U A B ⋂=ð.86.6【解析】因为①正确,②也正确,所以只有①正确是不可能的;若只有②正确,①③④都不正确,则符合条件的有序数组为(2,3,1,4),(3,2,1,4);若只有③正确,①②④都不正确,则符合条件的有序数组为(3,1,2,4);若只有④正确,①②③都不正确,则符合条件的有序数组为(2,1,4,3),(3,1,4,2),(4,1,3,2).综上符合条件的有序数组的个数是6.87.{}6,8【解析】()U A B I ð={6,8}{2,6,8}{6,8}=I .88.【解析】(1)5 根据k 的定义,可知1131225k --=+=;(2)12578{,,,,}a a a a a 此时211k =,是个奇数,所以可以判断所求集中必含元素1a ,又892,2均大于211,故所求子集不含910,a a ,然后根据2j (j =1,2,⋅⋅⋅7)的值易推导出所求子集为12578{,,,,}a a a a a .89.1【解析】考查集合的运算推理.3∈B ,23a +=,1a =.90.【解析】(1)因为(1,1,0)α=,(0,1,1)β=,所以1(,)[(11|11|)(11|11|)(00)|00|)]22M αα=+--++--++--=, 1(,)[(10|10|)(11|11|)(01|01|)]12M αβ=+--++--++--=. (2)设1234(,,,)x x x x B α=∈,则1234(,)M x x x x αα=+++.由题意知1x ,2x ,3x ,4x ∈{0,1},且(,)M αα为奇数,所以1x ,2x ,3x ,4x 中1的个数为1或3.所以B ⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有(,)1M αβ=.所以每组中的两个元素不可能同时是集合B 的元素.所以集合B 中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件, 所以集合B 中元素个数的最大值为4.(3)设1212121{(,,,)|(,,,),1,0}k n n k k S x x x x x x A x x x x -=⋅⋅⋅⋅⋅⋅∈===⋅⋅⋅==(1,2,,)k n =⋅⋅⋅,11212{(,,,)|0}n n n S x x x x x x +=⋅⋅⋅==⋅⋅⋅==,则121n A S S S +=⋅⋅⋅U U U . 对于k S (1,2,,1k n =⋅⋅⋅-)中的不同元素α,β,经验证,(,)1M αβ≥. 所以k S (1,2,,1k n =⋅⋅⋅-)中的两个元素不可能同时是集合B 的元素. 所以B 中元素的个数不超过1n +. 取12(,,,)k n k e x x x S =⋅⋅⋅∈且10k n x x +=⋅⋅⋅==(1,2,,1k n =⋅⋅⋅-). 令1211(,,,)n n n B e e e S S -+=⋅⋅⋅U U ,则集合B 的元素个数为1n +,且满足条件. 故B 是一个满足条件且元素个数最多的集合.。
2019北京各地高考数学联考分类篇:01集合
2019北京各地高考数学联考分类篇:01集合注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!【一】选择题:〔1〕(北京市东城区2018年1月高三考试文科〕集合{}0A x x =≥,{}0,1,2B =,那么 〔A 〕A B ⊆ 〔B 〕B A ⊆ 〔C 〕A B B ⋃= 〔D 〕A B ⋂=∅【答案】B2. (2018年3月北京市朝阳区高三一模文科)假设集合{}21,A m =,{}3,4B =,那么“2m =”是“{}4=B A ”的A 、充分不必要条件B 、必要不充分条件C 、充分必要条件D 、既不充分也不必要条件【答案】A〔2〕(北京市东城区2018年4月高考一模文科)假设集合},0{2m A =,}2,1{=B ,那么“1=m ”是“}2,1,0{=B A ”的〔A 〕充分不必要条件 〔B 〕必要不充分条件 〔C 〕充分必要条件 〔D 〕既不充分也不必要条件【答案】A【二】填空题:14. (2018年3月北京市朝阳区高三一模文科)集合{}22(,)4A x y x y =+≤,集合B =(){},,x y y m x m ≥为正常数.假设O 为坐标原点,M ,N 为集合A 所表示的平面区域与集合B 所表示的平面区域的边界的交点,那么MON ∆的面积S 与m 的关系式为 、241mm +生的理解能力和分析能力。
读懂题意是解题的前提,解题是注意分类讨论思想的应用。
解:〔Ⅰ〕因为①当0=x 时,0)0(=f ,所以方程0)(=-x x f 有实数根0; ②x x f cos 4121)(+=', 所以⎥⎦⎤⎢⎣⎡∈'43,41)(x f ,满足条件1)(0<'<x f ;由①②,函数4sin 2)(x x x f +=是集合M 中的元素.…………7分(20)〔2018年4月北京市海淀区高三一模理科〕〔本小题总分值14分〕对于集合M ,定义函数1,,()1,.M x M f x x M -∈⎧=⎨∉⎩对于两个集合M ,N ,定义集合(20)〔本小题总分值14分〕解:〔Ⅰ〕(1)=1A f ,(1)=1B f -,{1,6,10,16}A B ∆=.………………………………………3分〔Ⅱ〕根据题意可知:对于集合,C X ,①假设a C Î且a X Ï,那么(({})()C a r d C X a C a r d C X ∆=∆-;②假设a C Ï且a X Ï,那么(({})(C a r d C X a C a r d C X∆=∆+. 所以要使()()Card X A Card X B ∆+∆的值最小,2,4,8一定属于集合X ;1,6,10,16是否属于X 不影响()()Card X A Card X B ∆+∆的值;集合X 不能含有A B 之外的元素.所以()()()()A B C A B C f x f x ∆∆∆∆=.所以()()A B C A B C ∆∆=∆∆.由()()P A Q B A B ∆∆∆=∆知:()()P Q A B A B ∆∆∆=∆.所以()()()()()P Q A B A B A B A B ∆∆∆∆∆=∆∆∆.………………………………………14分〔20〕(北京市东城区2018年4月高考一模文科)(本小题共14分) 对于函数()f x ,假设00()f x x =,那么称0x 为()f x 的“不动点”;假设[]00()f f x x =,那么称0x 为()f x 的“稳定点”.函数()f x 的“不动点”和“稳定点”的集合分别记为A 和B ,即{}()A x f x x ==,[]{}()B x f f x x ==.〔Ⅰ〕设函数()34f x x =+,求集合A 和B ;〔Ⅱ〕求证:A B ⊆;〔Ⅲ〕设函数2()(0)f x ax bx c a =++≠,且A =∅,求证:B =∅. 〔20〕〔共14分〕A B ⊆.…………8分〔Ⅲ〕证明:由A =∅,得方程2ax bx c x ++=无实数解,那么B =∅.…………12分②当0a <时,二次函数()y f x x =-〔即2(1)y ax b x c =+-+〕的图象在x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京高考小题分类----集合与逻辑
(1)(2018北京1)已知集合A ={x ||x |<2}, B={-2,0,1,2},则A ∩B=(A )
(A ){0,1} (B ){-1,0,1} (C ){-2,0,1,2} (D ){-1,0,1,2}
(1)(2017北京1)若集合A ={x |–2<x <1},B ={x |x <–1或x >3},则A B = (A ) (A ){x |–2<x <–1} (B ){x |–2<x <3} (C ){x |–1<x <1} (D ){x |1<x <3}
1 (2016北京1)已知集合A={x||x|<2},A={x|-1,0,1,2,3},则A ∩B=( C )
(A ){0,1} (B ){0,1,2} (C ){1,0,1}- (D ){1,0,1,2}-
1(2014北京1)已知集合2{|20},{0,1,2}A x x x B =-==,则A
B =(
C ) .{0}A .{0,1}
B .{0,2}
C .{0,1,2}D
1(2013北京1)已知集合A={-1,0,1},B={x |-1≤x <1},则A∩B= ( B )
A.{0}
B.{-1,0}
C.{0,1}
D.{-1,0,1}
1(2012北京1)已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B=(D )
A (-∞,-1)
B (-1,-23)
C (-23
,3) D (3,+∞) 1(2011北京1)已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是(C )
A .(-∞, -1]
B .[1, +∞)
C .[-1,1]
D .(-∞,-1] ∪[1,+∞) 1(2010北京1)集合2
{03},{9}P x Z x M x Z x =∈≤<=∈≤,则P ∩M=(B )
(A) {1,2} (B) {0,1,2} (C){x|0≤x<3} (D) {x|0≤x ≤3}
5(2014北京5)设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的(D ) .A 充分且不必要条件 .B 必要且不充分条件
.C 充分必要条件 .D 既不充分也不必要条件
3(2013北京3).“φ=π”是“曲线y=sin(2x +φ)过坐标原点的”( A)
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
6(2010北京6)a 、b 为非零向量,“a b ⊥”是“函数f(x)=(xa+b)(xb-a)为一次函数”的(B )
(A )充分而不必要条件 (B )必要不充分条件
(C )充分必要条件 (D )既不充分也不必要条件 3(2012北京3)设a ,b ∈R 。
“a=0”是“复数a+bi 是纯虚数”的( B )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
2(2011北京2)已知向量a 、b 不共线,c k =a +b (k ∈R ),d =a -b ,如果c //d ,那么(D )
A .1k =且c 与d 同向
B .1k =且c 与d 反向
C .1k =-且c 与d 同向
D .1k =-且c 与d 反向。