什邡市第三中学校2018-2019学年上学期高二数学12月月考试题含解析
什邡市高级中学2018-2019学年上学期高二数学12月月考试题含解析
什邡市高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系式如图所示,那么水瓶的形状是( )A .B .C .D .2. 设m 是实数,若函数f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,但不是偶函数,则下列关于函数f (x )的性质叙述正确的是( )A .只有减区间没有增区间B .是f (x )的增区间C .m=±1D .最小值为﹣33. 《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。
问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽AD =3丈,长AB =4丈,上棱EF =2丈,EF ∥平面ABCD .EF 与平面ABCD 的距离为1丈,问它的体积是( ) A .4立方丈B .5立方丈C .6立方丈D .8立方丈4. 若函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点,则实数m 的取值范围是( ) A .m ≥0或m <﹣1B .m >0或m <﹣1C .m >1或m ≤0D .m >1或m <05. 若,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列为真命题的是( ) A .若,m βαβ⊂⊥,则m α⊥B .若,//m m n αγ=,则//αβC .若,//m m βα⊥,则αβ⊥D .若,αγαβ⊥⊥,则βγ⊥6. 已知函数()3sin cos (0)f x x x ωωω=+>,()y f x =的图象与直线2y =的两个相邻交点的距离等于π,则()f x 的一条对称轴是( )A .12x π=-B .12x π=C .6x π=-D .6x π=7. 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .恰有一个白球;一个白球一个黑球D .至少有一个白球;红、黑球各一个8. 已知抛物线C :24y x =的焦点为F ,定点(0,2)A ,若射线FA 与抛物线C 交于点M ,与抛 物线C 的准线交于点N ,则||:||MN FN 的值是( )A .(52):5-B .2:5C .1:25D .5:(15)+ 9. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为( ) A .4 B .8 C .12 D .20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力. 10.若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3B .2C .3D .411.设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( ) A .50x -<<或5x > B .5x <-或5x > C .55x -<< D .5x <-或05x <<12.如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为()A .11B .11.5C .12D .12.5二、填空题13.分别在区间[0,1]、[1,]e 上任意选取一个实数a b 、,则随机事件“ln a b ≥”的概率为_________.14.设R m ∈,实数x ,y 满足23603260y m x y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若182≤+y x ,则实数m 的取值范围是___________.【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.15.已知A (1,0),P ,Q是单位圆上的两动点且满足,则+的最大值为 .16.一组数据2,x ,4,6,10的平均值是5,则此组数据的标准差是 .17.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是 米.(太阳光线可看作为平行光线)18.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全 校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取 100人,则应在高三年级中抽取的人数等于 .三、解答题19.已知f (x )=log 3(1+x )﹣log 3(1﹣x ). (1)判断函数f (x )的奇偶性,并加以证明; (2)已知函数g (x )=log ,当x ∈[,]时,不等式 f (x )≥g (x )有解,求k 的取值范围.20.21.(文科)(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟 确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分 按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨), 将数据按照[)[)[)0,0.5,0.5,1,,4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中的值;(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.22.已知函数f(x)=1+(﹣2<x≤2).(1)用分段函数的形式表示函数;(2)画出该函数的图象;(3)写出该函数的值域.23.已知函数f(x)=lnx﹣ax+(a∈R).(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若函数y=f(x)在定义域内存在两个极值点,求a的取值范围.24.设定义在(0,+∞)上的函数f(x)=,g(x)=,其中n∈N*(Ⅰ)求函数f(x)的最大值及函数g(x)的单调区间;(Ⅱ)若存在直线l:y=c(c∈R),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,求n的最大值.(参考数据:ln4≈1.386,ln5≈1.609)什邡市高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:考虑当向高为H的水瓶中注水为高为H一半时,注水量V与水深h的函数关系.如图所示,此时注水量V与容器容积关系是:V<水瓶的容积的一半.对照选项知,只有A符合此要求.故选A.【点评】本小题主要考查函数、函数的图象、几何体的体积的概念等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.2.【答案】B【解析】解:若f(x)=|x﹣m|﹣|x﹣1|是定义在R上的奇函数,则f(0)=|m|﹣1=0,则m=1或m=﹣1,当m=1时,f(x)=|x﹣1|﹣|x﹣1|=0,此时为偶函数,不满足条件,当m=﹣1时,f(x)=|x+1|﹣|x﹣1|,此时为奇函数,满足条件,作出函数f(x)的图象如图:则函数在上为增函数,最小值为﹣2,故正确的是B,故选:B【点评】本题主要考查函数的奇偶性的应用,根据条件求出m 的值是解决本题的关键.注意使用数形结合进行求解.3. 【答案】 【解析】解析:选B.如图,设E 、F 在平面ABCD 上的射影分别为P ,Q ,过P ,Q 分别作GH ∥MN ∥AD 交AB 于G ,M ,交DC 于H ,N ,连接EH 、GH 、FN 、MN ,则平面EGH 与平面FMN 将原多面体分成四棱锥E -AGHD 与四棱锥F -MBCN 与直三棱柱EGH -FMN .由题意得GH =MN =AD =3,GM =EF =2,EP =FQ =1,AG +MB =AB -GM =2,所求的体积为V =13(S 矩形AGHD +S 矩形MBCN )·EP +S △EGH ·EF =13×(2×3)×1+12×3×1×2=5立方丈,故选B.4. 【答案】A【解析】解:∵函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点, ∴﹣m=3﹣|x ﹣1|无解,∵﹣|x ﹣1|≤0,∴0<3﹣|x ﹣1|≤1,∴﹣m ≤0或﹣m >1, 解得m ≥0或m >﹣1 故选:A .5. 【答案】C【解析】试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A 不正确;两个平面平行,两个平面内的直线不一定平行,所以B 不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D 不正确;根据面面垂直的判定定理知C 正确.故选C . 考点:空间直线、平面间的位置关系. 6. 【答案】D 【解析】试题分析:由已知()2sin()6f x x πω=+,T π=,所以22πωπ==,则()2sin(2)6f x x π=+,令 2,62x k k Z πππ+=+∈,得,26k x k Z ππ=+∈,可知D 正确.故选D .考点:三角函数()sin()f x A x ωϕ=+的对称性. 7. 【答案】D【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况, 所以至少有一个白球,至多有一个白球不互斥;至少有一个白球,至少有一个红球不互斥; 至少有一个白球,没有白球互斥且对立;至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,故选:D【点评】本题考查了互斥事件和对立事件,是基础的概念题.8. 【答案】D 【解析】考点:1、抛物线的定义; 2、抛物线的简单性质.【 方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将M 到焦点的距离转化为到准线的距离后进行解答的. 9. 【答案】C【解析】由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,所以此四棱锥体积为1231231=⨯⨯,故选C. 10.【答案】A【解析】解:∵l 1:x+y ﹣7=0和l 2:x+y ﹣5=0是平行直线, ∴可判断:过原点且与直线垂直时,中的M 到原点的距离的最小值∵直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0,∴两直线的距离为=,∴AB 的中点M 到原点的距离的最小值为+=3,故选:A【点评】本题考查了两点距离公式,直线的方程,属于中档题.11.【答案】B考点:函数的奇偶性与单调性.【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于y 轴对称,单调性在y 轴两侧相反,即在0x >时单调递增,当0x <时,函数单调递减.结合(5)0f =和对称性,可知(5)0f ±=,再结合函数的单调性,结合图象就可以求得最后的解集.112.【答案】C【解析】解:由题意,0.06×5+x ×0.1=0.5,所以x 为2,所以由图可估计样本重量的中位数是12. 故选:C .二、填空题13.【答案】1e e- 【解析】解析: 由ln a b ≥得ab e ≤,如图所有实数对(,)a b 表示的区域的面积为e ,满足条件“ab e ≤”的实数对(,)a b 表示的区域为图中阴影部分,其面积为111|a a e da e e ==-⎰,∴随机事件“ln a b ≥”的概率为1e e-. 14.【答案】[3,6]-. 【解析】15.【答案】.【解析】解:设=,则==,的方向任意.∴+==1××≤,因此最大值为.故答案为:.【点评】本题考查了数量积运算性质,考查了推理能力与计算能力,属于中档题.16.【答案】2.【解析】解:∵一组数据2,x,4,6,10的平均值是5,∴2+x+4+6+10=5×5,解得x=3,∴此组数据的方差[(2﹣5)2+(3﹣5)2+(4﹣5)2+(6﹣5)2+(10﹣5)2]=8,∴此组数据的标准差S==2.故答案为:2.【点评】本题考查一组数据的标准差的求法,解题时要认真审题,注意数据的平均数和方差公式的求法.17.【答案】 3.3【解析】解:如图BC为竿的高度,ED为墙上的影子,BE为地面上的影子.设BC=x,则根据题意=,AB=x,在AE=AB﹣BE=x﹣1.4,则=,即=,求得x=3.3(米)故树的高度为3.3米,故答案为:3.3.【点评】本题主要考查了解三角形的实际应用.解题的关键是建立数学模型,把实际问题转化为数学问题.18.【答案】25【解析】考点:分层抽样方法.三、解答题19.【答案】【解析】解:(1)f(x)=log3(1+x)﹣log3(1﹣x)为奇函数.理由:1+x>0且1﹣x>0,得定义域为(﹣1,1),(2分)又f(﹣x)=log3(1﹣x)﹣log3(1+x)=﹣f(x),则f(x)是奇函数.(2)g(x)=log=2log3,(5分)又﹣1<x<1,k>0,(6分)由f(x)≥g(x)得log3≥log3,即≥,(8分)即k2≥1﹣x2,(9分)x∈[,]时,1﹣x2最小值为,(10分)则k2≥,(11分)又k>0,则k≥,即k的取值范围是(﹣∞,].【点评】本题考查函数的奇偶性的判断和证明,考查不等式有解的条件,注意运用对数函数的单调性,考查运算化简能力,属于中档题.20.【答案】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图),(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X的分布列和数学期望.(以直方图中的频率作为概率)【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.【专题】概率与统计.【分析】(1)求解得a=0.03,由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20根据平均数值公式求解即可.(2)X~B(3,),根据二项分布求解P(X=0),P(X=1),P(X=2)=,P(X=3),列出分布列,求解数学期望即可.【解析】解:(1)由题意得,(0.02+0.032+a+0.018)×10=1解得a=0.03;又由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20,而50个样本小球重量的平均值为:=0.2×10+0.32×20+0.3×30+0.18×40=24.6(克)故估计盒子中小球重量的平均值约为24.6克.(2)利用样本估计总体,该盒子中小球的重量在[5,15]内的0.2;则X~B(3,),X=0,1,2,3;P(X=0)=×()3=;P(X=1)=×()2×=;P(X=2)=×()×()2=;P(X=3)=×()3=,∴X的分布列为:0 1 2 3即E(X)=0×=.【点评】本题考查了离散型的随机变量及概率分布列,数学期望的求解,注意阅读题意,得出随机变量的数值,准确求解概率,难度不大,需要很好的计算能力a ;(2)3.6万;(3)2.9.21.【答案】(1)0.3【解析】(3)由图可得月均用水量不低于2.5吨的频率为:()0.50.080.160.30.40.520.7385%⨯++++=<;月均用水量低于3吨的频率为:()0.50.080.160.30.40.520.30.8885%⨯+++++=>;则0.850.732.50.5 2.90.30.5x -=+⨯=⨯吨.1 考点:频率分布直方图.22.【答案】【解析】解:(1)函数f (x )=1+=,(2)函数的图象如图:.(3)函数值域为:[1,3).23.【答案】【解析】解:(Ⅰ)当a=1时,f(x)=lnx﹣x+,∴f(1)=1,∴切点为(1,1)∵f′(x)=﹣1﹣=,∴f′(1)=﹣2,∴切线方程为y﹣1=﹣2(x﹣1),即2x+y﹣3=0;(Ⅱ)f(x)的定义域是(0,+∞),f′(x)=,若函数y=f(x)在定义域内存在两个极值点,则g(x)=ax2﹣x+2在(0,+∞)2个解,故,解得:0<a<.24.【答案】【解析】解:(Ⅰ)函数f(x)在区间(0,+∞)上不是单调函数.证明如下,,令f′(x)=0,解得.所以函数f(x)在区间上为单调递增,区间上为单调递减.所以函数f(x)在区间(0,+∞)上的最大值为f()==.g′(x)=,令g′(x)=0,解得x=n.x g x g x(Ⅱ)由(Ⅰ)知g(x)的最小值为g(n)=,∵存在直线l:y=c(c∈R),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,∴≥,即e n+1≥n n﹣1,即n+1≥(n﹣1)lnn,当n=1时,成立,当n≥2时,≥lnn,即≥0,设h(n)=,n≥2,则h(n)是减函数,∴继续验证,当n=2时,3﹣ln2>0,当n=3时,2﹣ln3>0,当n=4时,,当n=5时,﹣ln5<﹣1.6<0,则n的最大值是4.【点评】本题考查了导数的综合应用及恒成立问题,同时考查了函数的最值的求法,属于难题.。
什邡市实验中学2018-2019学年上学期高二数学12月月考试题含解析
什邡市实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.半径R的半圆卷成一个圆锥,则它的体积为()A.πR3B.πR3C.πR3D.πR32.以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C,其左、右焦点分别是F1,F2,已知点M坐标为(2,1),双曲线C上点P(x0,y0)(x0>0,y0>0)满足=,则﹣S()A.2 B.4 C.1 D.﹣13.执行如图所示的程序框图,若输入的分别为0,1,则输出的()A.4 B.16 C.27 D.364.在△ABC中,AB边上的中线CO=2,若动点P满足=(sin2θ)+(cos2θ)(θ∈R),则(+)•的最小值是()A.1 B.﹣1 C.﹣2 D.05. 若变量x ,y 满足:,且满足(t+1)x+(t+2)y+t=0,则参数t 的取值范围为( )A .﹣2<t <﹣B .﹣2<t ≤﹣C .﹣2≤t ≤﹣D .﹣2≤t <﹣6. 在复平面内,复数1zi+所对应的点为(2,1)-,i 是虚数单位,则z =( ) A .3i --B .3i -+C .3i -D .3i +7. 如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )A 1CA.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力. 8. 下面的结构图,总经理的直接下属是( )A .总工程师和专家办公室B .开发部C .总工程师、专家办公室和开发部D .总工程师、专家办公室和所有七个部9. 已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则ba的 取值范围是( )A .(1,)-+∞B .(1,0)- C. (2,)-+∞ D .(2,0)- 10.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )A .B .(4+π)C .D .11.为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知C B A ,,三个社区分别有低收入家 庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从C 社 区抽取低收入家庭的户数为( )A .48B .36C .24D .18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题. 12.在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是( )A .60°B .45°C .90°D .120°二、填空题13.不等式()2110ax a x +++≥恒成立,则实数的值是__________.14.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为 .15.在正方体ABCD ﹣A 1B 1C 1D 1中,异面直线A 1B 与AC 所成的角是 °.16.过原点的直线l 与函数y=的图象交于B ,C 两点,A 为抛物线x 2=﹣8y 的焦点,则|+|= .17.曲线在点(3,3)处的切线与轴x 的交点的坐标为 .18.【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数 的取值范围为______.三、解答题19.(本小题满分16分)给出定义在()+∞,0上的两个函数2()ln f x x a x =-,()g x x =- (1)若()f x 在1=x 处取最值.求的值;(2)若函数2()()()h x f x g x =+在区间(]0,1上单调递减,求实数的取值范围; (3)试确定函数()()()6m x f x g x =--的零点个数,并说明理由.20.(本小题满分10分)选修4-1:几何证明选讲1111]如图,点C 为圆O 上一点,CP 为圆的切线,CE 为圆的直径,3CP =.(1)若PE 交圆O 于点F ,165EF =,求CE 的长; (2)若连接OP 并延长交圆O 于,A B 两点,CD OP ⊥于D ,求CD 的长.21.已知椭圆G:=1(a>b>0)的离心率为,右焦点为(2,0),斜率为1的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(﹣3,2).(Ⅰ)求椭圆G的方程;(Ⅱ)求△PAB的面积.22.已知函数f(x)=4x﹣a•2x+1+a+1,a∈R.(1)当a=1时,解方程f(x)﹣1=0;(2)当0<x<1时,f(x)<0恒成立,求a的取值范围;(3)若函数f(x)有零点,求实数a的取值范围.23.已知函数f(x)=lnx﹣kx+1(k∈R).(Ⅰ)若x轴是曲线f(x)=lnx﹣kx+1一条切线,求k的值;(Ⅱ)若f(x)≤0恒成立,试确定实数k的取值范围.24.已知函数f(x)=1+(﹣2<x≤2).(1)用分段函数的形式表示函数;(2)画出该函数的图象;(3)写出该函数的值域.什邡市实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:2πr=πR,所以r=,则h=,所以V=故选A2.【答案】A【解析】解:∵椭圆方程为+=1,∴其顶点坐标为(3,0)、(﹣3,0),焦点坐标为(2,0)、(﹣2,0),∴双曲线方程为,设点P(x,y),记F1(﹣3,0),F2(3,0),∵=,∴=,整理得:=5,化简得:5x=12y﹣15,又∵,∴5﹣4y2=20,解得:y=或y=(舍),∴P(3,),∴直线PF1方程为:5x﹣12y+15=0,∴点M到直线PF1的距离d==1,易知点M到x轴、直线PF2的距离都为1,结合平面几何知识可知点M(2,1)就是△F1PF2的内心.故﹣===2,故选:A.【点评】本题考查椭圆方程,双曲线方程,三角形面积计算公式,注意解题方法的积累,属于中档题.3.【答案】D【解析】【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是,则输出的36。
什邡市高级中学2018-2019学年高二上学期第一次月考测试数学
什邡市高级中学2018-2019学年高二上学期第一次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知命题p:“∀x∈R,e x>0”,命题q:“∃x0∈R,x0﹣2>x02”,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题2.某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S的值为()A.9.6 B.7.68 C.6.144 D.4.91523.某几何体三视图如下图所示,则该几何体的体积是()A.1+B.1+C.1+D.1+π4.在下列区间中,函数f(x)=()x﹣x的零点所在的区间为()A.(0,1) B.(1,2) C.(2,3 )D.(3,4)5.一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.6.如果随机变量ξ~N (﹣1,σ2),且P(﹣3≤ξ≤﹣1)=0.4,则P(ξ≥1)等于()A.0.1 B.0.2 C.0.3 D.0.47.在平面直角坐标系中,直线y=x与圆x2+y2﹣8x+4=0交于A、B两点,则线段AB的长为()A.4B.4C.2D.28.函数f(x)=,则f(﹣1)的值为()A.1 B.2 C.3 D.49.设集合,,则( )ABCD10.下列哪组中的两个函数是相等函数( )A .()()4f x x =g B .()()24=,22x f x g x x x -=-+C .()()1,01,1,0x f x g x x >⎧==⎨<⎩ D .()()=f x x x =,g 11.执行如图所示的程序,若输入的3x =,则输出的所有x 的值的和为( ) A .243 B .363 C .729 D .1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.12.已知等差数列{}n a 的前项和为n S ,且120a =-,在区间()3,5内任取一个实数作为数列{}n a 的公差,则n S 的最小值仅为6S 的概率为( )A .15 B .16 C .314 D .13二、填空题13.已知直线:043=++m y x (0>m )被圆C :062222=--++y x y x 所截的弦长是圆心C 到直线的距离的2倍,则=m .14.满足关系式{2,3}⊆A ⊆{1,2,3,4}的集合A 的个数是 .15.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式210bx ax ++>的解集 为___________.16.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 .17.若与共线,则y= .18.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .三、解答题19.己知函数f (x )=lnx ﹣ax+1(a >0). (1)试探究函数f (x )的零点个数;(2)若f (x )的图象与x 轴交于A (x 1,0)B (x 2,0)(x 1<x 2)两点,AB 中点为C (x 0,0),设函数f (x )的导函数为f ′(x ),求证:f ′(x 0)<0.20.已知函数xx x f ---=713)(的定义域为集合A ,{x |210}B x =<<,{x |21}C a x a =<<+(1)求A B ,B A C R ⋂)(;(2)若B C B =,求实数a 的取值范围.21.【2017-2018学年度第一学期如皋市高三年级第一次联考】设函数()1ln 1f x a x x=+-. (1)当2a =时,求函数()f x 在点()()11f ,处的切线方程; (2)讨论函数()f x 的单调性;(3)当102a <<时,求证:对任意1+2x ⎛⎫∈∞ ⎪⎝⎭,,都有1e x aa x +⎛⎫+< ⎪⎝⎭.22.已知二次函数()f x 的最小值为1,且(0)(2)3f f ==. (1)求()f x 的解析式;(2)若()f x 在区间[]2,1a a +上不单调,求实数的取值范围; (3)在区间[]1,1-上,()y f x =的图象恒在221y x m =++的图象上方,试确定实数m 的取值范围.23.如图,在四棱柱中,底面,,,.(Ⅰ)求证:平面;(Ⅱ)求证:; (Ⅲ)若,判断直线与平面是否垂直?并说明理由.24.设集合{}()(){}222|320,|2150A x x x B x x a x a =-+==+-+-=.(1)若{}2A B =,求实数的值;(2)A B A =,求实数的取值范围.1111]什邡市高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:命题p:“∀x∈R,e x>0”,是真命题,命题q:“∃x0∈R,x0﹣2>x02”,即﹣x0+2<0,即:+<0,显然是假命题,∴p∨q真,p∧q假,p∧(¬q)真,p∨(¬q)假,故选:C.【点评】本题考查了指数函数的性质,解不等式问题,考查复合命题的判断,是一道基础题.2.【答案】C【解析】解:由题意可知,设汽车x年后的价值为S,则S=15(1﹣20%)x,结合程序框图易得当n=4时,S=15(1﹣20%)4=6.144.故选:C.3.【答案】A【解析】解:由三视图知几何体的下部是正方体,上部是圆锥,且圆锥的高为4,底面半径为1;正方体的边长为1,∴几何体的体积V=V正方体+=13+××π×12×1=1+.故选:A.【点评】本题考查了由三视图求几何体的体积,解答此类问题的关键是判断几何体的形状及图中数据所对应的几何量.4.【答案】A【解析】解:函数f(x)=()x﹣x,可得f(0)=1>0,f(1)=﹣<0.f(2)=﹣<0,函数的零点在(0,1).故选:A.5.【答案】B【解析】解:三视图复原的几何体是一个半圆锥和圆柱的组合体,它们的底面直径均为2,故底面半径为1,圆柱的高为1,半圆锥的高为2,故圆柱的体积为:π×12×1=π,半圆锥的体积为:×=,故该几何体的体积V=π+=,故选:B6.【答案】A【解析】解:如果随机变量ξ~N(﹣1,σ2),且P(﹣3≤ξ≤﹣1)=0.4,∵P(﹣3≤ξ≤﹣1)=∴∴P(ξ≥1)=.【点评】一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位.7.【答案】A【解析】解:圆x2+y2﹣8x+4=0,即圆(x﹣4)2+y2 =12,圆心(4,0)、半径等于2.由于弦心距d==2,∴弦长为2=4,故选:A.【点评】本题主要考查求圆的标准方程的方法,直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题.8.【答案】A【解析】解:由题意可得f(﹣1)=f(﹣1+3)=f(2)=log22=1故选:A【点评】本题考查分度函数求值,涉及对数的运算,属基础题.9. 【答案】C【解析】送分题,直接考察补集的概念,,故选C 。
城区第三中学校2018-2019学年上学期高二数学12月月考试题含解析(2)
城区第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 命题“若α=,则tan α=1”的逆否命题是( )A .若α≠,则tan α≠1 B .若α=,则tan α≠1C .若tan α≠1,则α≠D .若tan α≠1,则α= 2. 已知向量,,其中.则“”是“”成立的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件 3. 如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A . =B .∥ C . D .4. 若关于的不等式2043x ax x +>++的解集为31x -<<-或2x >,则的取值为( )A .B .12C .12-D .2-5. A B C ∆中,“A B >”是“co s 2co s 2B A >”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 6. 已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( ) A .若 m ∥α,n ∥α,则 m ∥n B .若α⊥γ,β⊥γ,则 α∥β C .若m ⊥α,n ⊥α,则 m ∥n D .若 m ∥α,m ∥β,则 α∥β7. 已知函数f (x )=x 3+(1﹣b )x 2﹣a (b ﹣3)x+b ﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不等式组所确定的平面区域在x 2+y 2=4内的面积为( )A .B .C .πD .2π8. 设a ∈R ,且(a ﹣i )•2i (i 为虚数单位)为正实数,则a 等于( )A .1B .0C .﹣1D .0或﹣19. 一个算法的程序框图如图所示,若运行该程序后输出的结果为,则判断框中应填入的条件是( )A .i ≤5?B .i ≤4?C .i ≥4?D .i ≥5?10.抛物线x 2=4y 的焦点坐标是( )A .(1,0)B .(0,1)C .()D .()11.在平面直角坐标系中,直线y=x 与圆x 2+y 2﹣8x+4=0交于A 、B 两点,则线段AB 的长为( )A .4B .4C .2D .212.定义运算:,,a a b a b b a b≤⎧*=⎨>⎩.例如121*=,则函数()sin co s f x x x =*的值域为( )A .22⎡-⎢⎣⎦ B .[]1,1- C .2⎤⎥⎣⎦ D .1,2⎡-⎢⎣⎦ 二、填空题13.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式a n = .14.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .15.定义)}(),(min{x g x f 为)(x f 与)(x g 中值的较小者,则函数},2m in{)(2x x x f -=的取值范围是 16.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= .17.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 .18.在各项为正数的等比数列{a n }中,若a 6=a 5+2a 4,则公比q= .三、解答题19.(本题满分15分) 已知函数c bx ax x f ++=2)(,当1≤x 时,1)(≤x f 恒成立.(1)若1=a ,c b =,求实数b 的取值范围;(2)若a bx cxx g +-=2)(,当1≤x 时,求)(x g 的最大值.【命题意图】本题考查函数单调性与最值,分段函数,不等式性质等基础知识,意在考查推理论证能力,分析问题和解决问题的能力.20.甲乙两个地区高三年级分别有33000人,30000人,为了了解两个地区全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个地区一共抽取了105名学生的数学成绩,并作出了如下的频数分布统计表,规定考试成绩在[120,150]内为优秀.(Ⅱ)根据抽样结果分别估计甲地区和乙地区的优秀率;若将此优秀率作为概率,现从乙地区所有学生中随机抽取3人,求抽取出的优秀学生人数ξ的数学期望;(Ⅲ)根据抽样结果,从样本中优秀的学生中随机抽取3人,求抽取出的甲地区学生人数η的分布列及数学期望.21.已知函数f (x )=log a (1﹣x )+log a (x+3),其中0<a <1. (1)求函数f (x )的定义域;(2)若函数f (x )的最小值为﹣4,求a 的值.22.已知在等比数列{a n }中,a 1=1,且a 2是a 1和a 3﹣1的等差中项.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1+2b 2+3b 3+…+nb n =a n (n ∈N *),求{b n }的通项公式b n .23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是2c o s ρθ=,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是243x ty t =-+⎧⎨=⎩(为参数).(1)写出曲线C 的参数方程,直线的普通方程; (2)求曲线C 上任意一点到直线的距离的最大值.24.已知双曲线过点P(﹣3,4),它的渐近线方程为y=±x.(1)求双曲线的标准方程;(2)设F1和F2为该双曲线的左、右焦点,点P在此双曲线上,且|PF1||PF2|=41,求∠F1PF2的余弦值.城区第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】C【解析】解:命题“若α=,则tan α=1”的逆否命题是“若tan α≠1,则α≠”.故选:C .2. 【答案】A【解析】【知识点】平面向量坐标运算【试题解析】若,则成立;反过来,若,则或所以“”是“”成立的充分而不必要条件。
2018-2019学年上学期高二数学12月月考试题含解析(529)
正蓝旗第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( )A .T 1=T 19B .T 3=T 17C .T 5=T 12D .T 8=T 112. 抛物线x=﹣4y 2的准线方程为( )A .y=1B .y=C .x=1D .x=3. 已知命题p ;对任意x ∈R ,2x 2﹣2x+1≤0;命题q :存在x ∈R ,sinx+cosx=,则下列判断:①p 且q 是真命题;②p 或q 是真命题;③q 是假命题;④¬p 是真命题,其中正确的是( ) A .①④B .②③C .③④D .②④4. 函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( )A.32-B.1-C.D.【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.5. f ()=,则f (2)=( )A .3B .1C .2D .6. 设i 是虚数单位,是复数z 的共轭复数,若z=2(+i ),则z=( )A .﹣1﹣iB .1+iC .﹣1+iD .1﹣i7. 在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )A .0<B .0C .0D .08. 已知等比数列{a n }的第5项是二项式(x+)4展开式的常数项,则a 3•a 7( ) A .5 B .18C .24D .369. 设函数y=x 3与y=()x 的图象的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)10.直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( ) A .0B .1C .2D .311.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(][),4064,-∞+∞ B .[40,64] C .(],40-∞ D .[)64,+∞12.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有( ) A .90种 B .180种C .270种D .540种二、填空题13.已知函数f (x )=(2x+1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为 .14.已知平面向量a ,b 的夹角为3π,6=-b a,向量c a -,c b -的夹角为23π,23c a -=,则a 与c的夹角为__________,a c ⋅的最大值为 .【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.15.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0e ktP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1%的污染物,则需要___________小时.【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用. 16.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.17.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .18.设向量a =(1,-1),b =(0,t ),若(2a +b )·a =2,则t =________.三、解答题19.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ; (2)设1(1)n n a b n =+,n S 为数列{}n b 的前n 项和,若不等式n S t <对于任意的*n ∈N 恒成立,求实数t 的取值范围.20.如图,在Rt △ABC 中,∠ACB=,AC=3,BC=2,P 是△ABC 内一点.(1)若P 是等腰三角形PBC 的直角顶角,求PA 的长;(2)若∠BPC=,设∠PCB=θ,求△PBC 的面积S (θ)的解析式,并求S (θ)的最大值.21.已知函数的图象在y轴右侧的第一个最大值点和最小值点分别为(π,2)和(4π,﹣2).(1)试求f(x)的解析式;(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象.写出函数y=g(x)的解析式.22.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X 1 2 3 4Y 51 48 45 42这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.23.(本小题满分12分)已知函数2()(21)ln f x x a x a x =-++(a R ∈).(I )若12a >,求)(x f y =的单调区间; (II )函数()(1)g x a x =-,若0[1,]x e ∃∈使得00()()f x g x ≥成立,求实数a 的取值范围.24.如图,在四边形ABCD 中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积.正蓝旗第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】C【解析】解:∵a n =29﹣n ,∴T n =a 1•a 2•…•a n =28+7+…+9﹣n=∴T 1=28,T 19=2﹣19,故A 不正确T 3=221,T 17=20,故B 不正确 T 5=230,T 12=230,故C 正确 T 8=236,T 11=233,故D 不正确 故选C2. 【答案】D【解析】解:抛物线x=﹣4y 2即为y 2=﹣x ,可得准线方程为x=.故选:D .3. 【答案】D【解析】解:∵命题p ;对任意x ∈R ,2x 2﹣2x+1≤0是假命题, 命题q :存在x ∈R ,sinx+cosx=是真命题,∴①不正确,②正确,③不正确,④正确.故选D .4. 【答案】D【解析】易知周期112()1212T π5π=-=π,∴22T ωπ==.由52212k ϕπ⨯+=π(k ∈Z ),得526k ϕπ=-+π(k Z ∈),可得56ϕπ=-,所以5()2c o s (2)6f x x π=-,则5(0)2c o s (36f π=-=,故选D.5. 【答案】A【解析】解:∵f ()=,∴f(2)=f()==3.故选:A.6.【答案】B【解析】解:设z=a+bi(a,b∈R),则=a﹣bi,由z=2(+i),得(a+bi)(a﹣bi)=2[a+(b﹣1)i],整理得a2+b2=2a+2(b﹣1)i.则,解得.所以z=1+i.故选B.【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.7.【答案】D【解析】解:∵A1B∥D1C,∴CP与A1B成角可化为CP与D1C成角.∵△AD1C是正三角形可知当P与A重合时成角为,∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,∴0<θ≤.故选:D.8.【答案】D【解析】解:二项式(x+)4展开式的通项公式为T r+1=•x4﹣2r,令4﹣2r=0,解得r=2,∴展开式的常数项为6=a5,∴a3a7=a52=36,故选:D.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.9. 【答案】A【解析】解:令f (x )=x 3﹣,∵f ′(x )=3x 2﹣ln =3x 2+ln2>0,∴f (x )=x 3﹣在R 上单调递增;又f (1)=1﹣=>0, f (0)=0﹣1=﹣1<0,∴f (x )=x 3﹣的零点在(0,1),∵函数y=x 3与y=()x的图象的交点为(x 0,y 0),∴x 0所在的区间是(0,1). 故答案为:A .10.【答案】B【解析】解:∵直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”, ∴命题P 是真命题,∴命题P 的逆否命题是真命题; ¬P :“若直线m 不垂直于α,则m 不垂直于l ”,∵¬P 是假命题,∴命题p 的逆命题和否命题都是假命题. 故选:B .11.【答案】A 【解析】试题分析:根据()248f x x kx =--可知,函数图象为开口向上的抛物线,对称轴为8k x =,所以若函数()f x 在区间[]5,8上为单调函数,则应满足:58k ≤或88k≥,所以40k ≤或64k ≥。
2018-2019学年上学期高二数学12月月考试题含解析.doc
玛多县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 设曲线2()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象 可以为( )A .B . C. D . 2. 已知a n =(n ∈N *),则在数列{a n }的前30项中最大项和最小项分别是( )A .a 1,a 30B .a 1,a 9C .a 10,a 9D .a 10,a 303. 设函数,则有( )A .f (x )是奇函数,B .f (x )是奇函数, y=b xC .f (x )是偶函数D .f (x )是偶函数,4. 在△ABC 中,若A=2B ,则a 等于( ) A .2bsinAB .2bcosAC .2bsinBD .2bcosB5. 如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是( )A .i ≥7?B .i >15?C .i ≥15?D .i >31?6. 实数x ,y满足不等式组,则下列点中不能使u=2x+y 取得最大值的是( )A .(1,1)B .(0,3) C.(,2) D.(,0)7. 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积为1S 、2S 、3S ,则( )A .123S S S <<B .123S S S >>C .213S S S <<D .213S S S >>8. 已知集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则实数a 的范围是( ) A .[3,+∞) B .(3,+∞) C .[﹣∞,3] D .[﹣∞,3)9. 1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆,则该双曲线的离心率为( )C.1D. 1【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力. 10.已知数列{}n a 的各项均为正数,12a =,114n n n n a a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n =( )A .35B . 36C .120D .12111.如图,该程序运行后输出的结果为( )A .7B .15C .31D .6312.为得到函数的图象,只需将函数y=sin2x 的图象( )A.向左平移个长度单位 B.向右平移个长度单位 C.向左平移个长度单位D.向右平移个长度单位二、填空题13.已知,0()1,0x e x f x x ì³ï=í<ïî,则不等式2(2)()f x f x ->的解集为________.【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力. 14.S n=++…+= .15.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .16.已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_________(单位:).17.已知三棱锥ABC D -的四个顶点均在球O 的球面上,ABC ∆和DBC ∆所在的平面互相垂直,3=AB ,3=AC ,32===BD CD BC ,则球O 的表面积为 .18.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,),(3,),则O 点到直线AB 的距离是 .三、解答题19.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且bcosC=3acosB ﹣ccosB . (Ⅰ)求cosB 的值; (Ⅱ)若,且,求a 和c 的值.20.已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.(I)求证:EF⊥平面PAD;(II)求平面EFG与平面ABCD所成锐二面角的大小.21.如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D、E分别是AC、AB上的点,且DE∥BC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.(Ⅰ)求证:平面A1BC⊥平面A1DC;(Ⅱ)若CD=2,求BD与平面A1BC所成角的正弦值;(Ⅲ)当D 点在何处时,A 1B 的长度最小,并求出最小值.22.(本小题满分10分)直线l 的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中α∈[0,π),曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos ty =1+sin t(t 为参数),圆C 2的普通方程为x 2+y 2+23x =0.(1)求C 1,C 2的极坐标方程;(2)若l 与C 1交于点A ,l 与C 2交于点B ,当|AB |=2时,求△ABC 2的面积.23.(本小题满分10分)选修4—5:不等式选讲 已知函数()f x x a =-,()a R ∈.(Ⅰ)若当04x ≤≤时,()2f x ≤恒成立,求实数a 的取值; (Ⅱ)当03a ≤≤时,求证:()()()()f x a f x a f ax af x ++-≥-.24.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动.(1)证明:BC 1∥平面ACD 1.(2)当时,求三棱锥E ﹣ACD 1的体积.玛多县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】A【解析】试题分析:()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=,()cos y g x x ∴=为奇函数,排除B ,D ,令0.1x =时0y >,故选A. 1考点:1、函数的图象及性质;2、选择题“特殊值”法. 2. 【答案】C【解析】解:an ==1+,该函数在(0,)和(,+∞)上都是递减的, 图象如图, ∵9<<10.∴这个数列的前30项中的最大项和最小项分别是a 10,a 9.故选:C .【点评】本题考查了数列的函数特性,考查了数形结合的解题思想,解答的关键是根据数列通项公式画出图象,是基础题.3. 【答案】C【解析】解:函数f (x )的定义域为R ,关于原点对称.又f (﹣x )===f (x ),所以f (x )为偶函数.而f ()===﹣=﹣f (x ),故选C .【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法.4. 【答案】D 【解析】解:∵A=2B ,∴sinA=sin2B ,又sin2B=2sinBcosB , ∴sinA=2sinBcosB ,根据正弦定理==2R 得:sinA=,sinB=,代入sinA=2sinBcosB得:a=2bcosB.故选D5.【答案】C【解析】解:模拟执行程序框图,可得S=2,i=0不满足条件,S=5,i=1不满足条件,S=8,i=3不满足条件,S=11,i=7不满足条件,S=14,i=15由题意,此时退出循环,输出S的值即为14,结合选项可知判断框内应填的条件是:i≥15?故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查.6.【答案】D【解析】解:由题意作出其平面区域,将u=2x+y化为y=﹣2x+u,u相当于直线y=﹣2x+u的纵截距,故由图象可知,使u=2x+y取得最大值的点在直线y=3﹣2x上且在阴影区域内,故(1,1),(0,3),(,2)成立,而点(,0)在直线y=3﹣2x上但不在阴影区域内,故不成立;故选D.【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题.7.【答案】A【解析】考点:棱锥的结构特征.8.【答案】B【解析】解:∵集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则a >3, 故选:B .【点评】本题考查了集合的包含关系,考查不等式问题,是一道基础题.9. 【答案】D【解析】∵120PF PF ⋅=,∴12PFPF ⊥,即12PF F ∆为直角三角形,∴222212124PF PF F F c +==,12||2PF PF a -=,则221212122()4()P FP F P FP F P ⋅=+--=-, 2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径12122PF PF F F r c +-==,外接圆半径R c =.由题意,得12c c =,整理,得2()4ca=+,∴双曲线的离心率1e =,故选D.10.【答案】C【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前n 项和.由114n n n na a a a ++-=+得2214n n a a +-=,∴{}2n a 是等差数列,公差为4,首项为4,∴244(1)4n a n n =+-=,由0n a >得n a =.1112n n a a +==+,∴数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为11111)(1)52222n +++==,∴120n =,选C .11.【答案】如图,该程序运行后输出的结果为( ) D【解析】解:因为A=1,s=1判断框内的条件1≤5成立,执行s=2×1+1=3,i=1+1=2; 判断框内的条件2≤5成立,执行s=2×3+1=7,i=2+1=3; 判断框内的条件3≤5成立,执行s=2×7+1=15,i=3+1=4; 判断框内的条件4≤5成立,执行s=2×15+1=31,i=4+1=5; 判断框内的条件5≤5成立,执行s=2×31+1=63,i=5+1=6;此时6>5,判断框内的条件不成立,应执行否路径输出63,所以输入的m 值应是5. 故答案为5.【点评】本题考查了程序框图中的当型循环结构,当型循环是先判断后执行,满足条件进入循环,不满足条件,算法结束.12.【答案】A【解析】解:∵,只需将函数y=sin2x 的图象向左平移个单位得到函数的图象.故选A .【点评】本题主要考查诱导公式和三角函数的平移.属基础题.二、填空题13.【答案】(-【解析】函数()f x 在[0,)+?递增,当0x <时,220x ->,解得0x -<<;当0x ³时,22x x ->,解得01x ?,综上所述,不等式2(2)()f x f x ->的解集为(-. 14.【答案】【解析】解:∵ ==(﹣),∴S n =++…+= [(1﹣)+(﹣)+(﹣)+…+(﹣)=(1﹣)=,故答案为:.【点评】本题主要考查利用裂项法进行数列求和,属于中档题.15.【答案】.【解析】解:因为全称命题的否定是特称命题所以,命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是:.故答案为:.16.【答案】【解析】【知识点】空间几何体的三视图与直观图 【试题解析】该几何体是半个圆柱。
城区三中2018-2019学年上学期高二数学12月月考试题含解析(2)
城区三中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 姓名__________ 分数__________一、选择题1. 如图,函数f (x )=Asin (2x+φ)(A >0,|φ|<)的图象过点(0,),则f (x )的图象的一个对称中心是( )A .(﹣,0)B .(﹣,0)C .(,0)D .(,0)2. 设f (x )=e x +x ﹣4,则函数f (x )的零点所在区间为( ) A .(﹣1,0)B .(0,1)C .(1,2)D .(2,3)3. 某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽 车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘 坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有( )种. A .24 B .18 C .48 D .36【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力. 4. 已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于( ) A .8B .1C .5D .﹣15. 已知点M (﹣6,5)在双曲线C :﹣=1(a >0,b >0)上,双曲线C 的焦距为12,则它的渐近线方程为( )A .y=±x B .y=±x C .y=±xD .y=±x6. 已知函数f (x )=,则的值为( )A .B .C .﹣2D .37. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B . {}|3003x x x -<<<<或 C .{}|33x x x <->或 D . {}|303x x x <-<<或 8. 已知a ,b 都是实数,那么“a 2>b 2”是“a >b ”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9. 数列{a n }满足a 1=, =﹣1(n ∈N *),则a 10=( )A .B .C .D .10.在△ABC 中,a 2=b 2+c 2+bc ,则A 等于( ) A .120° B .60° C .45° D .30°11.将函数f (x )=3sin (2x+θ)(﹣<θ<)的图象向右平移φ(φ>0)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P (0,),则φ的值不可能是( )A .B .πC .D .12.设集合 A={ x|﹣3≤2x ﹣1≤3},集合 B 为函数 y=lg ( x ﹣1)的定义域,则 A ∩B=( ) A .(1,2) B .[1,2]C .[1,2)D .(1,2]二、填空题13.一组数据2,x ,4,6,10的平均值是5,则此组数据的标准差是 .14.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()2f x x x =-,则()y f x =在R 上的解析式为15.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .16.如图,是一回形图,其回形通道的宽和OB 1的长均为1,回形线与射线OA 交于A 1,A 2,A 3,…,若从点O 到点A 3的回形线为第1圈(长为7),从点A 3到点A 2的回形线为第2圈,从点A 2到点A 3的回形线为第3圈…依此类推,第8圈的长为 .17.设函数f (x )=,则f (f (﹣2))的值为 . 18.已知是等差数列,为其公差,是其前项和,若只有是中的最小项,则可得出的结论中所有正确的序号是___________ ①②③④⑤三、解答题19.已知f(x)=x2+ax+a(a≤2,x∈R),g(x)=e x,φ(x)=.(Ⅰ)当a=1时,求φ(x)的单调区间;(Ⅱ)求φ(x)在x∈[1,+∞)是递减的,求实数a的取值范围;(Ⅲ)是否存在实数a,使φ(x)的极大值为3?若存在,求a的值;若不存在,请说明理由.20.在等比数列{a n}中,a3=﹣12,前3项和S3=﹣9,求公比q.21.(本小题满分12分)一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号.(Ⅰ)求第一次或第二次取到3号球的概率;(Ⅱ)设ξ为两次取球时取到相同编号的小球的个数,求ξ的分布列与数学期望.22.如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AA1=4,AB=5,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.23.已知数列{a n}的首项a1=2,且满足a n+1=2a n+3•2n+1,(n∈N*).(1)设b n=,证明数列{b n}是等差数列;(2)求数列{a n}的前n项和S n.24.已知P(m,n)是函授f(x)=e x﹣1图象上任一于点(Ⅰ)若点P关于直线y=x﹣1的对称点为Q(x,y),求Q点坐标满足的函数关系式(Ⅱ)已知点M(x0,y0)到直线l:Ax+By+C=0的距离d=,当点M在函数y=h(x)图象上时,公式变为,请参考该公式求出函数ω(s,t)=|s﹣e x﹣1﹣1|+|t﹣ln(t﹣1)|,(s∈R,t>0)的最小值.城区三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】 B【解析】解:由函数图象可知:A=2,由于图象过点(0,),可得:2sin φ=,即sin φ=,由于|φ|<,解得:φ=,即有:f (x )=2sin (2x+).由2x+=k π,k ∈Z 可解得:x=,k ∈Z ,故f (x )的图象的对称中心是:(,0),k ∈Z当k=0时,f (x )的图象的对称中心是:(,0),故选:B .【点评】本题主要考查由函数y=Asin (ωx+φ )的部分图象求函数的解析式,正弦函数的对称性,属于中档题.2. 【答案】C【解析】解:f (x )=e x+x ﹣4, f (﹣1)=e ﹣1﹣1﹣4<0, f (0)=e 0+0﹣4<0, f (1)=e 1+1﹣4<0, f (2)=e 2+2﹣4>0, f (3)=e 3+3﹣4>0, ∵f (1)•f (2)<0,∴由零点判定定理可知,函数的零点在(1,2). 故选:C .3. 【答案】A【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有12121223=C C C 种. 孪生姐妹不乘坐甲车,则有12121213=C C C 种. 共有24种. 选A.4. 【答案】B【解析】解:∵函数f (2x+1)=3x+2,且f (a )=2,令3x+2=2,解得x=0,∴a=2×0+1=1. 故选:B .5. 【答案】A【解析】解:∵点M (﹣6,5)在双曲线C :﹣=1(a >0,b >0)上,∴,①又∵双曲线C 的焦距为12,∴12=2,即a 2+b 2=36,②联立①、②,可得a 2=16,b 2=20,∴渐近线方程为:y=±x=±x ,故选:A .【点评】本题考查求双曲线的渐近线,注意解题方法的积累,属于基础题.6. 【答案】A【解析】解:∵函数f (x )=,∴f ()==﹣2,=f (﹣2)=3﹣2=.故选:A .7. 【答案】B 【解析】试题分析:因为()f x 为奇函数且()30f -=,所以()30f =,又因为()f x 在区间()0,+∞上为增函数且()30f =,所以当()0,3x ∈时,()0f x <,当()3,x ∈+∞时,()0f x >,再根据奇函数图象关于原点对称可知:当()3,0x ∈-时,()0f x >,当(),3x ∈-∞-时,()0f x <,所以满足()0x f x ⋅<的x 的取值范围是:()3,0x ∈-或()0,3x ∈。
什邡市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案
什邡市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )A .①②B .①C .③④D .①②③④ 2. 执行如图的程序框图,则输出S 的值为( )A .2016B .2C .D .﹣13. 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,则f (2)+g (2)=( ) A .16B .﹣16C .8D .﹣84. 若()()()()2,106,10x x f x f f x x -≥⎧⎪=⎨+<⎡⎤⎪⎣⎦⎩,则()5f 的值为( ) A .10 B .11 C.12 D .135. 已知函数f (x )=log 2(x 2+1)的值域为{0,1,2},则满足这样条件的函数的个数为( ) A .8 B .5C .9D .276. 已知函数f (x )=x 3+(1﹣b )x 2﹣a (b ﹣3)x+b ﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不等式组所确定的平面区域在x 2+y 2=4内的面积为( )A. B.C .πD .2π7. 设数集M={x|m ≤x ≤m+},N={x|n﹣≤x ≤n},P={x|0≤x ≤1},且M ,N 都是集合P 的子集,如果把b ﹣a 叫做集合{x|a ≤x ≤b}的“长度”,那么集合M ∩N 的“长度”的最小值是( ) A. B.C.D.8. 复数z=(其中i 是虚数单位),则z的共轭复数=( ) A.﹣i B.﹣﹣i C.+iD.﹣+i9. 已知22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩,则方程[()]2f f x =的根的个数是( )A .3个B .4个C .5个D .6个10.设F 1,F 2是双曲线的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( ) A.B.C .24D .4811.设、是两个非零向量,则“(+)2=||2+||2”是“⊥”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件12.已知正项数列{a n }的前n 项和为S n ,且2S n =a n+,则S 2015的值是( )A. B.C .2015 D.二、填空题13.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy 中,P 是曲线x C y e :=上一点,直线20l x y c :++=经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为________. 14.在(1+2x )10的展开式中,x 2项的系数为 (结果用数值表示). 15.已知函数f (x )=,若关于x 的方程f (x )=k 有三个不同的实根,则实数k 的取值范围是 . 16.直线l:(t 为参数)与圆C:(θ为参数)相交所得的弦长的取值范围是 .17.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .18.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角的余弦值是 .三、解答题19.(本小题满分10分)选修4-4:坐标系与参数方程.在直角坐标系中,曲线C 1:⎩⎪⎨⎪⎧x =1+3cos αy =2+3sin α(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,C 2的极坐标方程为ρ=2sin (θ+π4).(1)求C 1,C 2的普通方程;(2)若直线C 3的极坐标方程为θ=3π4(ρ∈R ),设C 3与C 1交于点M ,N ,P 是C 2上一点,求△PMN 的面积.20.在平面直角坐标系xOy 中.己知直线l 的参数方程为(t 为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是ρ=4. (1)写出直线l 的普通方程与曲线C 的直角坐标系方程; (2)直线l 与曲线C 相交于A 、B 两点,求∠AOB 的值.21.设函数f(x)=mx2﹣mx﹣1.(1)若对一切实数x,f(x)<0恒成立,求m的取值范围;(2)对于x∈[1,3],f(x)<﹣m+5恒成立,求m的取值范围.22.已知数列{a n}的前n项和为S n,且S n=a n﹣,数列{b n}中,b1=1,点P(b n,b n+1)在直线x﹣y+2=0上.(1)求数列{a n},{b n}的通项a n和b n;(2)设c n=a n•b n,求数列{c n}的前n项和T n.23.已知函数f(x)=sin2x•sinφ+cos2x•cosφ+sin(π﹣φ)(0<φ<π),其图象过点(,.)(Ⅰ)求函数f(x)在[0,π]上的单调递减区间;(Ⅱ)若x 0∈(,π),sinx 0=,求f (x 0)的值.24.(本题满分12分)已知向量(sin cos ))a x x x =+,)cos sin ,(cos x x x b -=,R x ∈,记函数 x f ⋅=)(.(1)求函数)(x f 的单调递增区间;(2)在ABC ∆中,角C B A ,,的对边分别为c b a ,,且满足C a c b cos 22=-,求)(B f 的取值范围.【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,但突出了基础知识的考查,仍属于容易题.什邡市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案)一、选择题1.【答案】A【解析】考点:斜二测画法.2.【答案】B【解析】解:模拟执行程序框图,可得s=2,k=0满足条件k<2016,s=﹣1,k=1满足条件k<2016,s=,k=2满足条件k<2016,s=2.k=3满足条件k<2016,s=﹣1,k=4满足条件k<2016,s=,k=5…观察规律可知,s的取值以3为周期,由2015=3*671+2,有满足条件k<2016,s=2,k=2016不满足条件k<2016,退出循环,输出s的值为2.故选:B.【点评】本题主要考查了程序框图和算法,依次写出前几次循环得到的s,k的值,观察规律得到s的取值以3为周期是解题的关键,属于基本知识的考查.3.【答案】B【解析】解:∵f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3﹣2x2,∴f(﹣2)﹣g(﹣2)=(﹣2)3﹣2×(﹣2)2=﹣16.即f(2)+g(2)=f(﹣2)﹣g(﹣2)=﹣16.故选:B.【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力.4.【答案】B【解析】考点:函数值的求解.5.【答案】C【解析】解:令log2(x2+1)=0,得x=0,令log2(x2+1)=1,得x2+1=2,x=±1,令log(x2+1)=2,得x2+1=4,x=.2则满足值域为{0,1,2}的定义域有:{0,﹣1,﹣},{0,﹣1,},{0,1,﹣},{0,1,},{0,﹣1,1,﹣},{0,﹣1,1,},{0,﹣1,﹣,},{0,1,﹣,},{0,﹣1,1,﹣,}.则满足这样条件的函数的个数为9.故选:C.【点评】本题考查了对数的运算性质,考查了学生对函数概念的理解,是中档题.6.【答案】B【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2.则f(x)=x3﹣x2+ax,函数的导数f′(x)=x2﹣2x+a,因为原点处的切线斜率是﹣3,即f′(0)=﹣3,所以f′(0)=a=﹣3,故a=﹣3,b=2,所以不等式组为则不等式组确定的平面区域在圆x2+y2=4内的面积,如图阴影部分表示,所以圆内的阴影部分扇形即为所求.∵k OB=﹣,k OA=,∴tan∠BOA==1,∴∠BOA=,∴扇形的圆心角为,扇形的面积是圆的面积的八分之一,∴圆x2+y2=4在区域D内的面积为×4×π=,故选:B【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a,b的是值,然后借助不等式区域求解面积是解决本题的关键.7.【答案】C【解析】解:∵集M={x|m≤x≤m+},N={x|n﹣≤x≤n},P={x|0≤x≤1},且M,N都是集合P的子集,∴根据题意,M的长度为,N的长度为,当集合M∩N的长度的最小值时,M与N应分别在区间[0,1]的左右两端,故M∩N的长度的最小值是=.故选:C.8.【答案】C【解析】解:∵z==,∴=.故选:C.【点评】本题考查了复数代数形式的乘除运算,是基础题.9.【答案】C【解析】由[()]2f f x =,设f (A )=2,则f (x )=A,则2log 2x =,则A=4或A=14,作出f (x )的图像,由数型结合,当A=14时3个根,A=4时有两个交点,所以[()]2f f x =的根的个数是5个。
2018-2019学年上学期高二数学12月月考试题含解析(200)
新余市第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )A .{, }B .{,, }C .{V|≤V ≤}D .{V|0<V ≤}2. 函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( )A. ),0(+∞B. )2,(-∞C. ),2(+∞D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力.3. 在空间中,下列命题正确的是( ) A .如果直线m ∥平面α,直线n ⊂α内,那么m ∥nB .如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC .如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m ⊥αD .如果平面α⊥平面β,任取直线m ⊂α,那么必有m ⊥β4. 一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )A. B.(4+π)C. D.5.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a=3,,A=60°,则满足条件的三角形个数为()A.0 B.1 C.2 D.以上都不对6.已知函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x).当0≤x≤1时,f(x)=x2.若直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,则实数a的值是()A.0 B.0或C.或D.0或7.如图,一个底面半径为R的圆柱被与其底面所成角是30°的平面所截,截面是一个椭圆,则该椭圆的离心率是()A.B.C.D.8.将n2个正整数1、2、3、…、n2(n≥2)任意排成n行n列的数表.对于某一个数表,计算某行或某列中的任意两个数a、b(a>b)的比值,称这些比值中的最小值为这个数表的“特征值”.当n=2时,数表的所有可能的“特征值”的最大值为()A.B.C.2 D.39.函数f(x)=Asin(ωx+φ)(A>0,ω>0,)的部分图象如图所示,则函数y=f(x)对应的解析式为()A.B. C.D.10.在平面直角坐标系中,直线y=x 与圆x 2+y 2﹣8x+4=0交于A 、B 两点,则线段AB的长为( )A .4B .4C .2D .211.设M={x|﹣2≤x ≤2},N={y|0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是( )A .B .C .D .12.已知集合{}|5A x N x =∈<,则下列关系式错误的是( )A .5A ∈B .1.5A ∉C .1A -∉D .0A ∈二、填空题13.若直线y ﹣kx ﹣1=0(k ∈R )与椭圆恒有公共点,则m 的取值范围是 .14.已知实数x ,y 满足,则目标函数z=x ﹣3y 的最大值为15.设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )>0,则使得f (x )>0成立的x 的取值范围是 . 16.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .17.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为.18.把函数y=sin2x的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为.三、解答题19.在直接坐标系中,直线的方程为,曲线的参数方程为(为参数)。
什邡市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析
什邡市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 集合A={1,2,3},集合B={﹣1,1,3},集合S=A ∩B ,则集合S 的子集有( )A .2个B .3 个C .4 个D .8个2. 函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是()A .2B .3C .7D .93. 已知,其中i 为虚数单位,则a+b=()A .﹣1B .1C .2D .34. 已知函数f (x )的图象如图,则它的一个可能的解析式为()A .y=2B .y=log 3(x+1)C .y=4﹣D .y=5. 已知定义域为的偶函数满足对任意的,有,且当R )(x f R x ∈)1()()2(f x f x f -=+时,.若函数在上至少有三个零点,则]3,2[∈x 18122)(2-+-=x x x f )1(log )(+-=x x f y a ),0(+∞实数的取值范围是( )111]A .B .C .D .)22,0()33,0()55,0()66,0(6. 数列1,3,6,10,…的一个通项公式是( )A .B .C .D .21n a n n =-+(1)2n n n a -=(1)2n n n a +=21n a n =+7. 以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C ,其左、右焦点分别是F 1,F 2,已知点M 坐标为(2,1),双曲线C 上点P (x 0,y 0)(x 0>0,y 0>0)满足=,则﹣S()A .2B .4C .1D .﹣18. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( )A .T 1=T 19B .T 3=T 17C .T 5=T 12D .T 8=T 119. 若等式(2x ﹣1)2014=a 0+a 1x+a 2x 2+…+a 2014x 2014对于一切实数x 都成立,则a 0+1+a 2+…+a 2014=()A .B .C .D .010.函数y=a x +2(a >0且a ≠1)图象一定过点( )A .(0,1)B .(0,3)C .(1,0)D .(3,0)11.设f (x )=asin (πx+α)+bcos (πx+β)+4,其中a ,b ,α,β均为非零的常数,f (1988)=3,则f (2008)的值为( )A .1B .3C .5D .不确定12.若a <b <0,则下列不等式不成立是( )A .>B .>C .|a|>|b|D .a 2>b 2二、填空题13.数列{a n }是等差数列,a 4=7,S 7= .14.已知命题p :∃x ∈R ,x 2+2x+a ≤0,若命题p 是假命题,则实数a 的取值范围是 .(用区间表示) 15.已知两个单位向量满足:,向量与的夹角为,则 .,a b 12a b ∙=- 2a b - cos θ=16.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数的零点在区间()ln 4f x x x =+-内,则正整数的值为________.()1k k +,k 17.直线l 过原点且平分平行四边形ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为 .18.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 . 三、解答题19.如图,三棱柱ABC ﹣A 1B 1C 1中,侧面AA 1C 1C ⊥底面ABC ,AA 1=A 1C=AC=2,AB=BC ,且AB ⊥BC ,O 为AC 中点.(Ⅰ)证明:A 1O ⊥平面ABC ;(Ⅱ)求直线A 1C 与平面A 1AB 所成角的正弦值;(Ⅲ)在BC 1上是否存在一点E ,使得OE ∥平面A 1AB ,若不存在,说明理由;若存在,确定点E 的位置.20.(本小题满分12分)一直线被两直线截得线段的中点是12:460,:3560l x y l x y ++=--=P 点, 当点为时, 求此直线方程.P ()0,021.已知椭圆:(),点在椭圆上,且椭圆的离心率为.C 22221x y a b +=0a b >>3(1,)2C C 12(1)求椭圆的方程;C (2)过椭圆的右焦点的直线与椭圆交于,两点,为椭圆的右顶点,直线,分别C F C P Q A C PA QA 交直线:于、两点,求证:.4x =M N FM FN ⊥22.已知函数f (x )=(a >0)的导函数y=f ′(x )的两个零点为0和3.(1)求函数f (x )的单调递增区间;(2)若函数f (x )的极大值为,求函数f (x )在区间[0,5]上的最小值.23.已知椭圆E 的长轴的一个端点是抛物线y 2=4x 的焦点,离心率是.(1)求椭圆E 的标准方程;(2)已知动直线y=k (x+1)与椭圆E 相交于A 、B 两点,且在x 轴上存在点M ,使得与k 的取值无关,试求点M 的坐标.24.(本小题满分12分)如图,多面体中,四边形ABCD 为菱形,且,,,ABCDEF 60DAB∠= //EF AC 2AD =.EA ED EF ===(1)求证:;AD BE ⊥(2)若,求三棱锥的体积.BE =-F BCD什邡市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:∵集合A={1,2,3},集合B={﹣1,1,3},∴集合S=A∩B={1,3},则集合S的子集有22=4个,故选:C.【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础. 2.【答案】C【解析】解:∵函数f(x)=sinωx+acosωx(a>0,ω>0)在x=处取最小值﹣2,∴sin+acos=﹣=﹣2,∴a=,∴f(x)=sinωx+cosωx=2sin(ωx+).再根据f()=2sin(+)=﹣2,可得+=2kπ+,k∈Z,∴ω=12k+7,∴k=0时,ω=7,则ω的可能值为7,故选:C.【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.3.【答案】B【解析】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选B.【点评】本题考查复数相等的意义、复数的基本运算,是基础题.4.【答案】C【解析】解:由图可得,y=4为函数图象的渐近线,函数y=2,y=log3(x+1),y=的值域均含4,即y=4不是它们的渐近线,函数y=4﹣的值域为(﹣∞,4)∪(4,+∞),故y=4为函数图象的渐近线,故选:C【点评】本题考查的知识点是函数的图象,函数的值域,难度中档. 5. 【答案】B 【解析】试题分析:,令,则,是定义在上的偶函数,()()1)2(f x f x f -=+ 1-=x ()()()111f f f --=()x f R .则函数是定义在上的,周期为的偶函数,又∵当时,()01=∴f ()()2+=∴x f x f ()x f R []3,2∈x ,令,则与在的部分图象如下图,()181222-+-=x x x f ()()1log +=x x g a ()x f ()x g [)+∞,0在上至少有三个零点可化为与的图象在上至少有三个交点,()()1log +-=x x f y a ()+∞,0()x f ()x g ()+∞,0在上单调递减,则,解得:故选A .()x g ()+∞,0⎩⎨⎧-><<23log 10a a 330<<a 考点:根的存在性及根的个数判断.【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得是周期函数,其周期为,要使函数在上至少有三个零点,等价于函数的()x f ()()1log +-=x x f y a ()+∞,0()x f 图象与函数的图象在上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的()1log +=x y a ()+∞,0范围.6. 【答案】C 【解析】试题分析:可采用排除法,令和,验证选项,只有,使得,故选C .1n =2n =(1)2n n n a +=121,3a a ==考点:数列的通项公式.7. 【答案】 A【解析】解:∵椭圆方程为+=1,∴其顶点坐标为(3,0)、(﹣3,0),焦点坐标为(2,0)、(﹣2,0),∴双曲线方程为,设点P(x,y),记F1(﹣3,0),F2(3,0),∵=,∴=,整理得:=5,化简得:5x=12y﹣15,又∵,∴5﹣4y2=20,解得:y=或y=(舍),∴P(3,),∴直线PF1方程为:5x﹣12y+15=0,∴点M到直线PF1的距离d==1,易知点M到x轴、直线PF2的距离都为1,结合平面几何知识可知点M(2,1)就是△F1PF2的内心.故﹣===2,故选:A.【点评】本题考查椭圆方程,双曲线方程,三角形面积计算公式,注意解题方法的积累,属于中档题. 8.【答案】C【解析】解:∵a n=29﹣n,∴T n=a1•a2•…•a n=28+7+…+9﹣n=∴T1=28,T19=2﹣19,故A不正确T3=221,T17=20,故B不正确T5=230,T12=230,故C正确T8=236,T11=233,故D不正确故选C9.【答案】B【解析】解法一:∵,∴(C为常数),取x=1得,再取x=0得,即得,∴,故选B.解法二:∵,∴,∴,故选B.【点评】本题考查二项式定理的应用,定积分的求法,考查转化思想的应用.10.【答案】B【解析】解:由于函数y=a x (a>0且a≠1)图象一定过点(0,1),故函数y=a x+2(a>0且a≠1)图象一定过点(0,3),故选B.【点评】本题主要考查指数函数的单调性和特殊点,属于基础题.11.【答案】B【解析】解:∵f(1988)=asin(1988π+α)+bcos(1998π+β)+4=asinα+bcosβ+4=3,∴asinα+bcosβ=﹣1,故f(2008)=asin(2008π+α)+bcos(2008π+β)+4=asinα+bcosβ+4=﹣1+4=3,故选:B.【点评】本题主要考查利用诱导公式进行化简求值,属于中档题.12.【答案】A【解析】解:∵a<b<0,∴﹣a>﹣b>0,∴|a|>|b|,a2>b2,即,可知:B,C,D都正确,因此A不正确.故选:A.【点评】本题考查了不等式的基本性质,属于基础题.二、填空题13.【答案】49【解析】解:==7a4=49.故答案:49.【点评】本题考查等差数列的性质和应用,解题时要认真审题,仔细求解.14.【答案】 (1,+∞) 【解析】解:∵命题p:∃x∈R,x2+2x+a≤0,当命题p是假命题时,命题¬p:∀x∈R,x2+2x+a>0是真命题;即△=4﹣4a<0,∴a>1;∴实数a的取值范围是(1,+∞).故答案为:(1,+∞).【点评】本题考查了命题与命题的否定的真假性相反问题,也考查了二次不等式恒成立的问题,是基础题目. 15.【答案】.【解析】考点:向量的夹角.【名师点睛】平面向量数量积的类型及求法(1)求平面向量的数量积有三种方法:一是定义;二是坐标运算公式cos a b a b θ⋅=;三是利用数量积的几何意义.1212a b x x y y ⋅=+(2)求较复杂的平面向量的数量积的运算时,可先利用平面向量数量积的运算律或相减公式进行化简16.【答案】2【解析】17.【答案】 .【解析】解:∵直线l 过原点且平分平行四边形ABCD 的面积,则直线过BD 的中点(3,2),故斜率为=,∴由斜截式可得直线l 的方程为,故答案为.【点评】本题考查直线的斜率公式,直线方程的斜截式. 18.【答案】 .【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,其中4个点构成平行四边形的选法有3个,∴4个点构成平行四边形的概率P==.故答案为:.【点评】本题考查古典概型及其概率计算公式的应用,是基础题.确定基本事件的个数是关键. 三、解答题19.【答案】【解析】解:(Ⅰ)证明:因为A1A=A1C,且O为AC的中点,所以A1O⊥AC.又由题意可知,平面AA1C1C⊥平面ABC,交线为AC,且A1O⊂平面AA1C1C,所以A1O⊥平面ABC.(Ⅱ)如图,以O为原点,OB,OC,OA1所在直线分别为x,y,z轴建立空间直角坐标系.由题意可知,A1A=A1C=AC=2,又AB=BC,AB⊥BC,∴,所以得:则有:.设平面AA1B的一个法向量为n=(x,y,z),则有,令y=1,得所以..因为直线A1C与平面A1AB所成角θ和向量n与所成锐角互余,所以.(Ⅲ)设,即,得所以,得,令OE∥平面A1AB,得,即﹣1+λ+2λ﹣λ=0,得,即存在这样的点E ,E 为BC 1的中点.【点评】本小题主要考查空间线面关系、直线与平面所成的角、三角函数等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力 20.【答案】.16y x =-【解析】试题分析:设所求直线与两直线分别交于,根据因为分别在直线12,l l ()()1122,,,A x y B x y ()()1122,,,A x y B x y 上,列出方程组,求解的值,即可求解直线的方程. 112,l l 11,x y考点:直线方程的求解.21.【答案】(1) ;(2)证明见解析.22143x y +=【解析】试题分析: (1)由题中条件要得两个等式,再由椭圆中的等式关系可得的值,求得椭圆的方程;c b a ,,b a ,(2)可设直线的方程,联立椭圆方程,由根与系数的关系得,,得P Q 122634m y y m -+=+122934y y m -=+直线,直线,求得点 、坐标,利用得.PA l QA l M N 0=⋅FN FM FM FN ⊥试题解析: (1)由题意得解得22222191,41,2,a b c a a bc ⎧+=⎪⎪⎪=⎨⎪⎪=+⎪⎩2,a b =⎧⎪⎨=⎪⎩∴椭圆的方程为.C 22143x y +=又,,111x my =+221x my =+∴,,则,,112(4,)1y M my -222(4,)1y N my -112(3,1y FM my =- 222(3,1y FN my =-1212212121222499111()y y y y FM FN my my m y y m y y ⋅=+⋅=+---++ 22222363499906913434m m m m m -+=+=-=---+++∴FM FN⊥考点:椭圆的性质;向量垂直的充要条件.22.【答案】 【解析】解:f ′(x )=令g (x )=﹣ax 2+(2a ﹣b )x+b ﹣c函数y=f ′(x )的零点即g (x )=﹣ax 2+(2a ﹣b )x+b ﹣c 的零点即:﹣ax 2+(2a ﹣b )x+b ﹣c=0的两根为0,3则解得:b=c=﹣a ,令f ′(x )>0得0<x <3所以函数的f (x )的单调递增区间为(0,3),(2)由(1)得:函数在区间(0,3)单调递增,在(3,+∞)单调递减,∴,∴a=2,∴;,∴函数f (x )在区间[0,4]上的最小值为﹣2. 23.【答案】【解析】解:(1)由题意,椭圆的焦点在x 轴上,且a=,…1分c=e •a=×=,故b===,…4分所以,椭圆E 的方程为,即x 2+3y 2=5…6分(2)将y=k (x+1)代入方程E :x 2+3y 2=5,得(3k 2+1)x 2+6k 2x+3k 2﹣5=0;…7分设A (x 1,y 1),B (x 2,y 2),M (m ,0),则x 1+x 2=﹣,x 1x 2=;…8分∴=(x 1﹣m ,y 1)=(x 1﹣m ,k (x 1+1)),=(x 2﹣m ,y 2)=(x 2﹣m ,k (x 2+1));∴=(k 2+1)x 1x 2+(k 2﹣m )(x 1+x 2)+k 2+m 2=m 2+2m ﹣﹣,要使上式与k 无关,则有6m+14=0,解得m=﹣;∴存在点M (﹣,0)满足题意…13分【点评】本题考查了直线与圆锥曲线的综合应用问题,也考查了椭圆的标准方程及其几何性质,考查了一定的计算能力,属于中档题. 24.【答案】【解析】【命题意图】本小题主要考查空间直线与直线、直线与平面的位置关系及几何体的体积等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等.(2)在中,,,EAD △EA ED ==2AD =。
2018届四川省什邡中学高中高三上学期第二次月考文科数学试题及答案 精品
四川省什邡中学高中2018届高三上学期第二次月考数学文试题一.选择题(每小题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合{}cos ,A y y x x R ==∈,{}ln B x y x ==,则A B =( )A .{}|11x x -≤≤B .{}|0x x ≥C .{}01x x <≤D .∅ 2.在复平面内,复数2121i(i )i+++对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.“6πα=”是“212cos =α”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.执行如图所示的程序框图,输出的M 的值为( )A.17B.53C.161D.4855.将函数()sin f x x =图象上所有点的横坐标伸长到原来的2倍,再向右平移6π个单位长度,得到函数()y g x =的图象,则()y g x =图象的解析式是( ) A .()sin(2)6g x x π=- B .()sin(2)3g x x π=-C .1()sin()212g x x π=-D .1()sin()26g x x π=- 6.已知函数()log a f x x =在其定义域上单调递减,则函数2()log (1)a g x x =-的单调减区间是 ( )A. (,0]-∞B. (1,0)-C. (0,]+∞D. [0,1) 7.在ABC ∆中,点P 在BC 上,且2BP PC =,点Q 是AC 的中点,若(4,3)PA =,(1,5)PQ =,则BC = ( )A .(2,7)-B .(2,7)-C .(6,21)-D .(6,21)-8.已知函数223)(a bx ax x x f +++=在1=x 处有极值10,则)2(f 等于( ) A.11或18 B.11 C. 17或18 D. 189.已知函数212,2()1|log |,2x x f x x x ⎧≤⎪=⎨⎪>⎩,()g x x b =+,若函数()()y f x g x =+有两个不同的零点,则实数b 的取值为( )A .1-或32B .1或32- C .1或32D .1-或32- 10.若函数2()2ln f x x x =-在其定义域的一个子区间(1,1)t t -+上不是单调函数,则实数t 的取值范围是A .31,2⎡⎫⎪⎢⎣⎭B .1,2⎛⎫-∞- ⎪⎝⎭C .3,2⎛⎫+∞ ⎪⎝⎭D .13,22⎛⎫⎪⎝⎭二、填空题:本大题共5个小题,每小题5分,共25分.将答案直接填在答题卡上11.曲线2x y e x =+在点()01,处的切线方程为 12.已知函数2log ,0,()3,0,x x x f x x >⎧=⎨≤⎩,则14f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦= 13.已知53)4sin(=-x π,则x 2sin 的值为14.在ABC ∆中,若A ∠=60°, ∠B =45°,BC =23,则AC = 15.给出下列几个命题:①若函数()f x 的定义域为R ,则()()()g x f x f x =+-一定是偶函数;②若函数()f x 是定义域为R 的奇函数,对于任意的x R ∈都有()(2)0f x f x +-=,则函数()f x 的图象关于直线1x =对称;③已知12,x x 是函数()f x 定义域内的两个值,当12x x <时,12()()f x f x >,则()f x 是减函数;④设函数13y x x =-++的最大值和最小值分别为M 和m ,则2M m =; ⑤若()f x 是定义域为R 的奇函数,且(2)f x +也为奇函数,则()f x 是以4为周期的周期函数.其中正确的命题序号是 .(写出所有正确命题的序号) 三.解答题(本大题共6个小题,共75分) 16. (本小题共12分)设递增等差数列{}n a 的前n 项和为n S ,已知13=a ,4a 是3a 和7a 的等比中项. (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S .17.(本小题共12分)已知函数2()3sin cos cos f x x x x ωωω=+的周期为2π,其中0ω>. (Ⅰ)求ω的值及函数()f x 的单调递增区间;(Ⅱ)在ABC ∆中,设内角A 、B 、C 所对边的长分别为a 、b 、c ,若3a =,2c =,f (A )=32,求b 的值.18.(本小题共12分)某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[)50,40,[)60,50…[]100,90后得到如下部分频率分布直方图.观察图形的信息,回答下列问题: (Ⅰ)求分数在[)70,80内的频率,并补全这个频率分布直方图;(Ⅱ)用分层抽样的方法在分数段为[)80,60的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[)80,70的概率.19. (本题共13分)已知向量33(cos ,sin )22a x x =,(cos ,sin )22x x b =-,且[0,]2x π∈.(1)当4x π=时,求||a b +;(2)设函数()||f x a b a b =++⋅,求函数()f x 的最值及相应的x 的值.20.(本小题满分12分) 设a R ∈,函数233)(x ax x f -=.(1)若1a =,求函数()f x 的极值与单调区间;(2)若函数()f x 的图象在1x =-处的切线与直线3y x =平行,求a 的值;(3)若函数233)(x ax x f -=的图象与直线2y =-有三个公共点,求a 的取值范围.第18题21.(本题共14分)已知函数()ln a f x x x=-,()()6ln g x f x ax x =+-,其中a R ∈.(Ⅰ)讨论()f x 的单调性;(Ⅱ)若()g x 在其定义域内为增函数,求正实数a 的取值范围; (Ⅲ)设函数2()4h x x mx =-+,当2a =时,若1(0,1)x ∃∈,2[1,2]x ∀∈,总有12()()g x h x ≥成立,求实数m 的取值范围.什邡中学2018级月考卷文科数学答题卷 第Ⅱ卷(非选择题,共100分)二、填空题(本大题共5小题,每小题5分,共25分)11. 12. 13.14. 15. 三.解答题(本大题共6个小题,共75分) 16. (本小题共12分)设递增等差数列{}n a 的前n 项和为n S ,已知13=a ,4a 是3a 和7a 的等比中项. (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S . 17.(本小题共12分)已知函数2()3sin cos cos f x x x x ωωω=+的周期为2π,其中0ω>. (Ⅰ)求ω的值及函数()f x 的单调递增区间;(Ⅱ)在ABC ∆中,设内角A 、B 、C 所对边的长分别为a 、b 、c ,若3a =,2c =,f (A )=32,求b 的值.18.(本小题共12分)某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[)50,40,[)60,50…[]100,90后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)求分数在[)70,80内的频率,并补全这个频率分布直方图; (Ⅱ)用分层抽样的方法在分数段为[)80,60的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[)80,70的概率.19. (本题共13分)已知向量33(cos ,sin )22a x x =,(cos ,sin )22x x b =-,且[0,]2x π∈.(1)当4x π=时,求||a b +;(2)设函数()||f x a b a b =++⋅,求函数()f x 的最值及相应的x 的值.20.(本小题满分12分) 设a R ∈,函数233)(x ax x f -=.(1)若1a =,求函数()f x 的极值与单调区间;(2)若函数()f x 的图象在1x =-处的切线与直线3y x =平行,求a 的值;(3)若函数233)(x ax x f -=的图象与直线2y =-有三个公共点,求a 的取值范围.21.(本题共14分)已知函数()ln a f x x x=-,()()6ln g x f x ax x =+-,其中a R ∈.(Ⅰ)讨论()f x 的单调性;(Ⅱ)若()g x 在其定义域内为增函数,求正实数a 的取值范围;(Ⅲ)设函数2()4h x x mx =-+,当2a =时,若1(0,1)x ∃∈,2[1,2]x ∀∈,总有12()()g x h x ≥成立,求实数m 的取值范围.第18题文科答案一.选择题1—10 CBACC BDDDA二、填空题11.31y x=+ 12. 19 13. 72514. 22 15.①④⑤16.17.18. 解析:(Ⅰ)分数在[)70,80内的频率为:1(0.0100.0150.0150.0250.005)10-++++⨯10.70.3=-=,故0.30.0310=, 如图所示:-----------------------6分 (求频率3分,作图3分)(Ⅱ)由题意,[)60,70分数段的人数为:0.15609⨯=人; ----------------8分 [)70,80分数段的人数为:0.36018⨯=人;----------------10分∵在[)80,60的学生中抽取一个容量为6的样本,∴[)60,70分数段抽取2人,分别记为,m n ;[)70,80分数段抽取4人,分别记为,,,a b c d ;设从样本中任取2人,至多有1人在分数段[)80,70为事件A ,则基本事件空间包含的基本事件有:(,)m n 、(,)m a 、(,)m b 、(,)m c 、(,)m d 、……、(,)c d 共15种,则事件A 包含的基本事件有:(,)m n 、(,)m a 、(,)m b 、(,)m c 、(,)m d 、(,)n a 、(,)n b 、(,)n c 、(,)n d 共9种,15分 ∴93()155P A ==. 19.22)2sin 23(sin )2cos 23(cos )2sin 23sin ,2cos 23(cos xx x x x x x x b a -++=-+=+2cos 22cos x x =+= 所以,当4x π=时,||2a b +=.33(2)()2cos cos cos sin sin 2222x x x xf x x =+-2cos cos 2x x =+22cos 2cos 1x x =+-2132(cos )22x =+-,(0)2x π≤≤∴当cos 0x =,即2x π=时,min ()1f x =-;当cos 1x =,即0x =时,max ()3f x =20.解:2()363(2)f x ax x x ax '=-=-(1)1a =时,()3(2)f x x x '=-,当02x <<时,()0f x '<,当0x <,或2x >时,()0f x '>,所以,()f x 的单调减区间为[0,2],单调增区间为(,0)-∞和(2,)+∞;当2x =时,()f x 有极小值(2)4f =-,当0x =时,()f x 有极大值(0)0f =.(2) (1)363f a '-=+=,所以1a =-,此时,切点为(1,2)--,切线方程为31y x =+,它与已知直线平行,符合题意.(3)当0a =时,2()3f x x =-,它与2y =-没有三个公共点,不符合题意.当0a >时,由2()363(2)f x ax x x ax '=-=-知,()f x 在(,0)-∞和2(,)a+∞上单调递增,在2(0,)a上单调递减,又(0)0f =,224()f aa =-,所以242a-<-,即2222a -<<, 又因为0a >,所以022a <<;当0a <时,由2()363(2)f x ax x x ax '=-=-知,()f x 在2(,)a-∞和(0,)+∞上单调递减,在2(0,)a 上单调递增,又(0)0f =,224()f a a =-,所以242a-<-,即2222a -<<,又因为0a <,所以220a -<<;综上所述,a 的取值范围是(22,0)(0,22)-. 21.解:(I )()f x 的定义域为(0,)+∞,且2()x af x x+'=, ………………1分所以实数m的取值范围是[85ln2,)-+∞……14分.。
2018-2019学年上学期高二数学12月月考试题含解析(88)
西固区第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 棱台的两底面面积为1S 、2S ,中截面(过各棱中点的面积)面积为0S ,那么( )A .=B .0S =C .0122S S S =+D .20122S S S =2. 已知圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x ﹣4y+4=0关于直线l 对称,则直线l 的方程为( )A .x+y=0B .x+y=2C .x ﹣y=2D .x ﹣y=﹣2 3. 设i 是虚数单位,则复数21ii-在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4. 如图Rt △O ′A ′B ′是一平面图形的直观图,斜边O ′B ′=2,则这个平面图形的面积是( )A .B .1C .D .5. 三个数a=0.52,b=log 20.5,c=20.5之间的大小关系是( ) A .b <a <c B .a <c <b C .a <b <c D .b <c <a6. 在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .7. 已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( )A .2B .6C .4D .28. 已知△ABC 是锐角三角形,则点P (cosC ﹣sinA ,sinA ﹣cosB )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限9. 已知函数f (x )的图象如图,则它的一个可能的解析式为( )A .y=2B .y=log 3(x+1)C .y=4﹣D .y=10.已知命题“如果﹣1≤a ≤1,那么关于x 的不等式(a 2﹣4)x 2+(a+2)x ﹣1≥0的解集为∅”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .1个C .2个D .4个11.若复数满足71i i z+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -12.函数y=x 3﹣x 2﹣x 的单调递增区间为( )A .B .C .D .二、填空题13.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .14.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 . 15.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .16.定义某种运算⊗,S=a ⊗b 的运算原理如图;则式子5⊗3+2⊗4= .17.已知f(x),g(x)都是定义在R上的函数,且满足以下条件:①f(x)=a x g(x)(a>0,a≠1);②g(x)≠0;③f(x)g'(x)>f'(x)g(x);若,则a=.18.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M 点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100m,则山高MN=m.三、解答题19.如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.(Ⅰ)求证:AC⊥平面BDE;(Ⅱ)求二面角F﹣BE﹣D的余弦值;(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.20.已知数列{a n}满足a1=﹣1,a n+1=(n∈N*).(Ⅰ)证明:数列{+}是等比数列;(Ⅱ)令b n=,数列{b n}的前n项和为S n.①证明:b n+1+b n+2+…+b2n<②证明:当n≥2时,S n2>2(++…+)21.如图,直三棱柱ABC﹣A1B1C1中,D、E分别是AB、BB1的中点,AB=2,(1)证明:BC1∥平面A1CD;(2)求异面直线BC1和A1D所成角的大小;(3)求三棱锥A1﹣DEC的体积.22.已知函数f(x)=x﹣alnx(a∈R)(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(2)求函数f(x)的极值.23.我市某校某数学老师这学期分别用m,n两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如图所示.(Ⅰ)依茎叶图判断哪个班的平均分高?(Ⅱ)现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用ξ表示抽到成绩为86分的人数,求ξ的分布列和数学期望;(Ⅲ)学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”下面临界值表仅供参考:P(K2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001k 2.072 2.706 3.841 5.024 6.635 7.879 10.828(参考公式:K2=,其中n=a+b+c+d)24.已知全集U=R,集合A={x|x2﹣4x﹣5≤0},B={x|x<4},C={x|x≥a}.(Ⅰ)求A∩(∁U B);(Ⅱ)若A⊆C,求a的取值范围.西固区第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】A 【解析】试题分析:不妨设棱台为三棱台,设棱台的高为2h 上部三棱锥的高为,根据相似比的性质可得:220()2()a S a hS a S a hS '⎧=⎪+⎪⎨'⎪=+⎪⎩,解得=A . 考点:棱台的结构特征. 2. 【答案】D【解析】【分析】由题意可得圆心C 1和圆心C 2,设直线l 方程为y=kx+b ,由对称性可得k 和b 的方程组,解方程组可得.【解答】解:由题意可得圆C 1圆心为(0,0),圆C 2的圆心为(﹣2,2),∵圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x ﹣4y+4=0关于直线l 对称,∴点(0,0)与(﹣2,2)关于直线l 对称,设直线l 方程为y=kx+b , ∴•k=﹣1且=k •+b ,解得k=1,b=2,故直线方程为x ﹣y=﹣2, 故选:D . 3. 【答案】B【解析】因为所以,对应的点位于第二象限 故答案为:B 【答案】B4. 【答案】D【解析】解:∵Rt △O'A'B'是一平面图形的直观图,斜边O'B'=2, ∴直角三角形的直角边长是,∴直角三角形的面积是, ∴原平面图形的面积是1×2=2故选D .5.【答案】A【解析】解:∵a=0.52=0.25,b=log20.5<log21=0,c=20.5>20=1,∴b<a<c.故选:A.【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.6.【答案】D【解析】解:双曲线(a>0,b>0)的渐近线方程为y=±x联立方程组,解得A(,),B(,﹣),设直线x=与x轴交于点D∵F为双曲线的右焦点,∴F(C,0)∵△ABF为钝角三角形,且AF=BF,∴∠AFB>90°,∴∠AFD>45°,即DF<DA∴c﹣<,b<a,c2﹣a2<a2∴c2<2a2,e2<2,e<又∵e>1∴离心率的取值范围是1<e<故选D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a,c的齐次式,再解不等式.7.【答案】B【解析】解:∵圆C:x2+y2﹣4x﹣2y+1=0,即(x﹣2)2+(y﹣1)2 =4,表示以C(2,1)为圆心、半径等于2的圆.由题意可得,直线l:x+ay﹣1=0经过圆C的圆心(2,1),故有2+a﹣1=0,∴a=﹣1,点A(﹣4,﹣1).∵AC==2,CB=R=2,∴切线的长|AB|===6.故选:B.【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题.8.【答案】B【解析】解:∵△ABC是锐角三角形,∴A+B>,∴A>﹣B,∴sinA>sin(﹣B)=cosB,∴sinA﹣cosB>0,同理可得sinA﹣cosC>0,∴点P在第二象限.故选:B9.【答案】C【解析】解:由图可得,y=4为函数图象的渐近线,函数y=2,y=log3(x+1),y=的值域均含4,即y=4不是它们的渐近线,函数y=4﹣的值域为(﹣∞,4)∪(4,+∞),故y=4为函数图象的渐近线,故选:C【点评】本题考查的知识点是函数的图象,函数的值域,难度中档.10.【答案】C【解析】解:若不等式(a2﹣4)x2+(a+2)x﹣1≥0的解集为∅”,则根据题意需分两种情况:①当a2﹣4=0时,即a=±2,若a=2时,原不等式为4x﹣1≥0,解得x≥,故舍去,若a=﹣2时,原不等式为﹣1≥0,无解,符合题意;②当a2﹣4≠0时,即a≠±2,∵(a2﹣4)x2+(a+2)x﹣1≥0的解集是空集,∴,解得,综上得,实数a的取值范围是.则当﹣1≤a≤1时,命题为真命题,则命题的逆否命题为真命题,反之不成立,即逆命题为假命题,否命题也为假命题,故它的逆命题、否命题、逆否命题及原命题中是假命题的共有2个,故选:C .【点评】本题考查了二次不等式的解法,四种命题真假关系的应用,注意当二次项的系数含有参数时,必须进行讨论,考查了分类讨论思想.11.【答案】A 【解析】 试题分析:42731,1i i i i i ==-∴==-,因为复数满足71i i z+=,所以()1,1i i i i z i z+=-∴=-,所以复数的虚部为,故选A. 考点:1、复数的基本概念;2、复数代数形式的乘除运算.12.【答案】A【解析】解:∵y=x 3﹣x 2﹣x ,∴y ′=3x 2﹣2x ﹣1,令y ′≥0即3x 2﹣2x ﹣1=(3x+1)(x ﹣1)≥0解得:x ≤﹣或x ≥1故函数单调递增区间为,故选:A .【点评】本题主要考查导函数的正负和原函数的单调性的关系.属基础题.二、填空题13.【答案】8或﹣18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.【解答】解:整理圆的方程为(x ﹣1)2++y 2=1 故圆的圆心为(1,0),半径为1 直线与圆相切∴圆心到直线的距离为半径 即=1,求得m=8或﹣18故答案为:8或﹣1814.【答案】 x ﹣y ﹣2=0 .【解析】解:直线AB的斜率k AB=﹣1,所以线段AB的中垂线得斜率k=1,又线段AB 的中点为(3,1),所以线段AB的中垂线得方程为y﹣1=x﹣3即x﹣y﹣2=0,故答案为x﹣y﹣2=0.【点评】本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的2个端点距离相等)来求中垂线的方程.15.【答案】(﹣1,1].【解析】解:在同一坐标系中画出函数f(x)和函数y=log2(x+1)的图象,如图所示:由图可得不等式f(x)≥log2(x+1)的解集是:(﹣1,1],.故答案为:(﹣1,1]16.【答案】14.【解析】解:有框图知S=a⊗b=∴5⊗3+2⊗4=5×(3﹣1)+4×(2﹣1)=14故答案为14【点评】新定义题是近几年常考的题型,要重视.解决新定义题关键是理解题中给的新定义.17.【答案】.【解析】解:由得,所以.又由f(x)g'(x)>f'(x)g(x),即f(x)g'(x)﹣f'(x)g(x)>0,也就是,说明函数是减函数,即,故.故答案为【点评】本题考查了应用导数判断函数的单调性,做题时应认真观察.18.【答案】150【解析】解:在RT△ABC中,∠CAB=45°,BC=100m,所以AC=100m.在△AMC中,∠MAC=75°,∠MCA=60°,从而∠AMC=45°,由正弦定理得,,因此AM=100m.在RT△MNA中,AM=100m,∠MAN=60°,由得MN=100×=150m.故答案为:150.三、解答题19.【答案】【解析】【分析】(I)由已知中DE⊥平面ABCD,ABCD是边长为3的正方形,我们可得DE⊥AC,AC⊥BD,结合线面垂直的判定定理可得AC⊥平面BDE;(Ⅱ)以D为坐标原点,DA,DC,DE方向为x,y,z轴正方向,建立空间直角坐标系,分别求出平面BEF和平面BDE的法向量,代入向量夹角公式,即可求出二面角F﹣BE﹣D的余弦值;(Ⅲ)由已知中M是线段BD上一个动点,设M(t,t,0).根据AM∥平面BEF,则直线AM的方向向量与平面BEF法向量垂直,数量积为0,构造关于t的方程,解方程,即可确定M点的位置.【解答】证明:(Ⅰ)因为DE⊥平面ABCD,所以DE⊥AC.因为ABCD是正方形,所以AC⊥BD,从而AC⊥平面BDE.…(4分)解:(Ⅱ)因为DA,DC,DE两两垂直,所以建立空间直角坐标系D﹣xyz如图所示.因为BE与平面ABCD所成角为600,即∠DBE=60°,所以.由AD=3,可知,.则A(3,0,0),,,B(3,3,0),C(0,3,0),所以,.设平面BEF的法向量为=(x,y,z),则,即.令,则=.因为AC⊥平面BDE,所以为平面BDE的法向量,.所以cos.因为二面角为锐角,所以二面角F﹣BE﹣D的余弦值为.…(8分)(Ⅲ)点M是线段BD上一个动点,设M(t,t,0).则.因为AM∥平面BEF,所以=0,即4(t﹣3)+2t=0,解得t=2.此时,点M坐标为(2,2,0),即当时,AM∥平面BEF.…(12分)20.【答案】【解析】(Ⅰ)证明:∵数列{a n}满足a1=﹣1,a n+1=(n∈N*),∴na n=3(n+1)a n+4n+6,两边同除n(n+1)得,,即,也即,又a1=﹣1,∴,∴数列{+}是等比数列是以1为首项,3为公比的等比数列.(Ⅱ)(ⅰ)证明:由(Ⅰ)得,=3n﹣1,∴,∴,原不等式即为:<,先用数学归纳法证明不等式:当n≥2时,,证明过程如下:当n=2时,左边==<,不等式成立假设n=k时,不等式成立,即<,则n=k+1时,左边=<+=<,∴当n=k+1时,不等式也成立.因此,当n≥2时,,当n≥2时,<,∴当n≥2时,,又当n=1时,左边=,不等式成立故b n+1+b n+2+…+b2n<.(ⅱ)证明:由(i)得,S n=1+,当n≥2,=(1+)2﹣(1+)2==2﹣,,…=2•,将上面式子累加得,﹣,又<=1﹣=1﹣,∴,即>2(),∴当n≥2时,S n2>2(++…+).【点评】本题考查等比数列的证明,考查不等式的证明,解题时要认真审题,注意构造法、累加法、裂项求和法、数学归纳法、放缩法的合理运用,综合性强,难度大,对数学思维能力的要求较高.21.【答案】【解析】(1)证明:连接AC1与A1C相交于点F,连接DF,由矩形ACC1A1可得点F是AC1的中点,又D是AB的中点,∴DF∥BC1,∵BC1⊄平面A1CD,DF⊂平面A1CD,∴BC1∥平面A1CD;…(2)解:由(1)可得∠A1DF或其补角为异面直线BC1和A1D所成角.DF=BC1==1,A1D==,A1F=A1C=1.在△A1DF中,由余弦定理可得:cos∠A1DF==,∵∠A1DF∈(0,π),∴∠A1DF=,∴异面直线BC1和A1D所成角的大小;…(3)解:∵AC=BC,D为AB的中点,∴CD⊥AB,∵平面ABB1A1∩平面ABC=AB,∴CD⊥平面ABB1A1,CD==1.∴=﹣S△BDE﹣﹣=∴三棱锥C﹣A1DE的体积V=…【点评】本题考查线面平行的证明,考查三棱锥的体积的求法,考查异面直线BC1和A1D 所成角,是中档题,解题时要注意空间中线线、线面、面面间的位置关系及性质的合理运用.22.【答案】【解析】解:函数f(x)的定义域为(0,+∞),.(1)当a=2时,f(x)=x﹣2lnx,,因而f(1)=1,f′(1)=﹣1,所以曲线y=f(x)在点A(1,f(1))处的切线方程为y﹣1=﹣(x﹣1),即x+y﹣2=0(2)由,x>0知:①当a≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a.又当x∈(0,a)时,f′(x)<0,当x∈(a,+∞)时,f′(x)>0.从而函数f(x)在x=a处取得极小值,且极小值为f(a)=a﹣alna,无极大值.综上,当a≤0时,函数f(x)无极值;当a>0时,函数f(x)在x=a处取得极小值a﹣alna,无极大值.23.【答案】【解析】【专题】综合题;概率与统计.【分析】(Ⅰ)依据茎叶图,确定甲、乙班数学成绩集中的范围,即可得到结论;(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2,求出概率,可得ξ的分布列和数学期望;(Ⅲ)根据成绩不低于85分的为优秀,可得2×2列联表,计算K2,从而与临界值比较,即可得到结论.【解答】解:(Ⅰ)由茎叶图知甲班数学成绩集中于60﹣9之间,而乙班数学成绩集中于80﹣100分之间,所以乙班的平均分高┉┉┉┉┉┉(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2P(ξ=0)==,P(ξ=1)==,P(ξ=2)==┉┉┉┉┉┉则随机变量ξ的分布列为ξ0 1 2P数学期望Eξ=0×+1×+2×=人﹣┉┉┉┉┉┉┉┉(Ⅲ)2×2列联表为甲班乙班合计优秀 3 10 13不优秀17 10 27合计20 20 40┉┉┉┉┉K2=≈5.584>5.024因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关.┉┉【点评】本题考查概率的计算,考查独立性检验知识,考查学生的计算能力,属于中档题.24.【答案】【解析】解:(Ⅰ)∵全集U=R,B={x|x<4},∴∁U B={x|x≥4},又∵A={x|x2﹣4x﹣5≤0}={x|﹣1≤x≤5},∴A∩(∁U B)={x|4≤x≤5};(Ⅱ)∵A={x|﹣1≤x≤5},C={x|x≥a},且A⊆C,∴a的范围为a≤﹣1.【点评】此题考查了交、并、补集的混合运算,以及集合的包含关系判断及应用,熟练掌握各自的定义是解本题的关键.。
什邡市三中2018-2019学年上学期高二数学12月月考试题含解析
什邡市三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 把函数y=sin (2x ﹣)的图象向右平移个单位得到的函数解析式为( )A .y=sin (2x ﹣) B .y=sin (2x+)C .y=cos2xD .y=﹣sin2x2. 已知空间四边形ABCD ,M 、N 分别是AB 、CD 的中点,且4AC =,6BD =,则( ) A .15MN << B .210MN << C .15MN ≤≤ D .25MN << 3. 设命题p :,则p 为( )A .B .C .D .4. 如图所示,函数y=|2x ﹣2|的图象是( )A .B .C .D .5. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(2,+∞)B .(0,2)C .(4,+∞)D .(0,4)6. “x ≠0”是“x >0”是的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 7. 下列函数中,为偶函数的是( )A .y=x+1B .y=C .y=x 4D .y=x 58. 在定义域内既是奇函数又是减函数的是( )A .y=B .y=﹣x+C .y=﹣x|x|D .y=9. 在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .10.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为 1的半圆,则其侧视图的面积是( )A .B .C .1D .11.设S n 为等差数列{a n }的前n 项和,已知在S n 中有S 17<0,S 18>0,那么S n 中最小的是( ) A .S 10 B .S 9C .S 8D .S 712.给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各 面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中 正确命题的个数是( )A .0B .1C .2D .3二、填空题13.抛物线24x y =的焦点为F ,经过其准线与y 轴的交点Q 的直线与抛物线切于点P ,则FPQ ∆ 外接圆的标准方程为_________.14.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=,则sin (α+)= .15.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于他前面两个数的和.该数列是一个非常美丽、和谐的数列,有很多奇妙的属性.比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887….人们称该数列{a n }为“斐波那契数列”.若把该数列{a n }的每一项除以4所得的余数按相对应的顺序组成新数列{b n },在数列{b n }中第2016项的值是 .16.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是 _______17.若全集,集合,则18.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .三、解答题19.已知二阶矩阵M 有特征值λ1=4及属于特征值4的一个特征向量=并有特征值λ2=﹣1及属于特征值﹣1的一个特征向量=, =(Ⅰ)求矩阵M ;(Ⅱ)求M 5.20.已知数列{a n }满足a 1=,a n+1=a n +,数列{b n }满足b n =(Ⅰ)证明:b n ∈(0,1)(Ⅱ)证明:=(Ⅲ)证明:对任意正整数n 有a n .21.(本小题满分12分)2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达3.32亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为0.4.(Ⅰ)确定x,y,p,q的值;(Ⅱ)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.(参考公式:()()()()()2n ad bca b c d a c b d-K=++++,其中n a b c d=+++)22.(本小题满分10分)选修4—4:坐标系与参数方程以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的参数方程为⎪⎩⎪⎨⎧==θθsin 2cos 2y x (θ为参数,],0[πθ∈),直线l 的参数方程为2cos 2sin x t y t ì=+ïí=+ïîaa(t 为参数).(I )点D 在曲线C 上,且曲线C 在点D 处的切线与直线+2=0x y +垂直,求点D 的极坐标;(II )设直线l 与曲线C 有两个不同的交点,求直线l 的斜率的取值范围.【命题意图】本题考查圆的参数方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力.23.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图1的矩形,俯视图为两个边长为1的正方形拼成的矩形. (1)求该几何体的体积V ;111] (2)求该几何体的表面积S .24.某中学为了普及法律知识,举行了一次法律知识竞赛活动.下面的茎叶图记录了男生、女生各10名学生在该次竞赛活动中的成绩(单位:分).已知男、女生成绩的平均值相同.(1)求的值;(2)从成绩高于86分的学生中任意抽取3名学生,求恰有2名学生是女生的概率.什邡市三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】D【解析】解:把函数y=sin (2x ﹣)的图象向右平移个单位,所得到的图象的函数解析式为:y=sin[2(x ﹣)﹣]=sin (2x ﹣π)=﹣sin2x .故选D . 【点评】本题是基础题,考查三角函数的图象平移,注意平移的原则:左右平移x 加与减,上下平移,y 的另一侧加与减.2. 【答案】A 【解析】试题分析:取BC 的中点E ,连接,ME NE ,2,3ME NE ==,根据三角形中两边之和大于第三边,两边之差小于第三边,所以15MN <<,故选A .考点:点、线、面之间的距离的计算.1【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题. 3. 【答案】A【解析】【知识点】全称量词与存在性量词 【试题解析】因为特称命题的否定是全称命题,p 为:。
什邡市实验中学2018-2019学年高二上学期第二次月考试卷数学卷
什邡市实验中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.设集合M={x|x2﹣2x﹣3<0},N={x|log2x<0},则M∩N等于()A.(﹣1,0)B.(﹣1,1)C.(0,1) D.(1,3)2.在如图5×5的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+zA.1 B.2 C.3 D.43.下列函数中,既是奇函数又是减函数的为()A.y=x+1 B.y=﹣x2C.D.y=﹣x|x|4.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20﹣80mg/100ml(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml(含80)以上,属于醉酒驾车.据《法制晚报》报道,2011年3月15日至3月28日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为()A.2160 B.2880 C.4320 D.86405.己知y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x+2,那么不等式2f(x)﹣1<0的解集是()A.B.或C. D.或6.某三棱锥的三视图如图所示,该三棱锥的表面积是A、28+B、30+C 、56125+D 、 60125+7. 执行下面的程序框图,若输入2016x =-,则输出的结果为( )A .2015B .2016C .2116D .20488. 对任意的实数k ,直线y=kx+1与圆x 2+y 2=2的位置关系一定是( ) A .相离 B .相切 C .相交但直线不过圆心D .相交且直线过圆心9. 如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为( )A .4B .5C .32D .3310.已知集合A ,B ,C 中,A ⊆B ,A ⊆C ,若B={0,1,2,3},C={0,2,4},则A 的子集最多有( ) A .2个 B .4个 C .6个 D .8个11.沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )A .B .C .D .12.设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++=与sin sin 0bx B y C -+=的位置关系是( )A .平行B . 重合C . 垂直D .相交但不垂直二、填空题13.设抛物线24y x =的焦点为F ,,A B 两点在抛物线上,且A ,B ,F 三点共线,过AB 的中点M 作y 轴的垂线与抛物线在第一象限内交于点P ,若32PF =,则M 点的横坐标为 . 14.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=5,BC=4,AA 1=3,沿该长方体对角面ABC 1D 1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 .15.等比数列{a n }的前n 项和为S n ,已知S 3=a 1+3a 2,则公比q= .16.已知曲线y=(a ﹣3)x 3+lnx 存在垂直于y 轴的切线,函数f (x )=x 3﹣ax 2﹣3x+1在[1,2]上单调递减,则a 的范围为 .17.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 .18.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN ⋅=时,则MN的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.三、解答题19.已知数列a 1,a 2,…a 30,其中a 1,a 2,…a 10,是首项为1,公差为1的等差数列;列a 10,a 11,…a 20,是公差为d 的等差数列;a 20,a 21,…a 30,是公差为d 2的等差数列(d ≠0).(1)若a 20=40,求d ;(2)试写出a30关于d的关系式,并求a30的取值范围;(3)续写已知数列,使得a30,a31,…a40,是公差为d3的等差数列,…,依此类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?20.已知x2﹣y2+2xyi=2i,求实数x、y的值.21.将射线y=x(x≥0)绕着原点逆时针旋转后所得的射线经过点A=(cosθ,sinθ).(Ⅰ)求点A的坐标;(Ⅱ)若向量=(sin2x,2cosθ),=(3sinθ,2cos2x),求函数f(x)=•,x∈[0,]的值域.22.如图,在三棱柱ABC﹣A1B1C1中,底面△ABC是边长为2的等边三角形,D为AB中点.(1)求证:BC1∥平面A1CD;(2)若四边形BCCB1是正方形,且A1D=,求直线A1D与平面CBB1C1所成角的正弦值.123.已知函数.(1)求f(x)的周期和及其图象的对称中心;(2)在△ABC中,角A、B、C的对边分别是a、b、c,满足(2a﹣c)cosB=bcosC,求函数f(A)的取值范围.24.已知函数上为增函数,且θ∈(0,π),,m∈R.(1)求θ的值;(2)当m=0时,求函数f(x)的单调区间和极值;(3)若在上至少存在一个x0,使得f(x0)>g(x0)成立,求m的取值范围.什邡市实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:∵集合M={x|x 2﹣2x ﹣3<0}={x|﹣1<x <3}, N={x|log 2x <0}={x|0<x <1}, ∴M ∩N={x|0<x <1}=(0,1). 故选:C .【点评】本题考查集合的交集及其运算,是基础题,解题时要注意一元二次不等式和对数函数等知识点的合理运用.2. 【答案】A【解析】解:因为每一纵列成等比数列,所以第一列的第3,4,5个数分别是,,.第三列的第3,4,5个数分别是,,.又因为每一横行成等差数列,第四行的第1、3个数分别为,,所以y=,第5行的第1、3个数分别为,.所以z=.所以x+y+z=++=1.故选:A .【点评】本题主要考查等差数列、等比数列的通项公式等基础知识,考查运算求解能力.3. 【答案】D【解析】解:y=x+1不是奇函数; y=﹣x 2不是奇函数;是奇函数,但不是减函数; y=﹣x|x|既是奇函数又是减函数, 故选:D .【点评】本题考查的知识点是函数的奇偶性和函数的单调性,难度不大,属于基础题.4. 【答案】C【解析】解:由题意及频率分布直方图的定义可知:属于醉酒驾车的频率为:(0.01+0.005)×10=0.15, 又总人数为28800,故属于醉酒驾车的人数约为:28800×0.15=4320. 故选C【点评】此题考查了学生的识图及计算能力,还考查了频率分布直方图的定义,并利用定义求解问题.5. 【答案】B【解析】解:因为y=f (x )为奇函数,所以当x >0时,﹣x <0, 根据题意得:f (﹣x )=﹣f (x )=﹣x+2,即f (x )=x ﹣2, 当x <0时,f (x )=x+2,代入所求不等式得:2(x+2)﹣1<0,即2x <﹣3,解得x <﹣,则原不等式的解集为x <﹣; 当x ≥0时,f (x )=x ﹣2,代入所求的不等式得:2(x ﹣2)﹣1<0,即2x <5,解得x <,则原不等式的解集为0≤x <,综上,所求不等式的解集为{x|x <﹣或0≤x <}. 故选B6. 【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥, 所求表面积为三棱锥四个面的面积之和。
什邡市一中2018-2019学年上学期高二数学12月月考试题含解析
什邡市一中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.设定义在R上的函数f(x)对任意实数x,y,满足f(x)+f(y)=f(x+y),且f(3)=4,则f(0)+f (﹣3)的值为()A.﹣2 B.﹣4 C.0 D.42.函数f(x﹣)=x2+,则f(3)=()A.8 B.9 C.11 D.103.函数f(x)=tan(2x+),则()A.函数最小正周期为π,且在(﹣,)是增函数B.函数最小正周期为,且在(﹣,)是减函数C.函数最小正周期为π,且在(,)是减函数D.函数最小正周期为,且在(,)是增函数4.把函数y=cos(2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f(x)的图象关于直线x=对称,则φ的值为()A.﹣B.﹣C.D.5.某程序框图如图所示,则该程序运行后输出的S的值为()A.1 B.C.D.6.已知双曲线的方程为﹣=1,则双曲线的离心率为()A.B.C.或D.或7.某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如表几组样本数据:0.7,则这组样本数据的回归直线方程是()A.=0.7x+0.35 B.=0.7x+1 C.=0.7x+2.05 D.=0.7x+0.458.已知函数f(x)=2x﹣2,则函数y=|f(x)|的图象可能是()A .B .C .D .9. 若f (x )=sin (2x+θ),则“f (x )的图象关于x=对称”是“θ=﹣”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件10.为了得到函数y=sin3x 的图象,可以将函数y=sin (3x+)的图象( )A .向右平移个单位 B .向右平移个单位C .向左平移个单位D .向左平移个单位11.设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣2)∪(0,2)B .(﹣∞,﹣2)∪(2,+∞)C .(﹣2,0)∪(2,+∞)D .(﹣2,0)∪(0,2)12.“双曲线C 的渐近线方程为y=±x ”是“双曲线C 的方程为﹣=1”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .不充分不必要条件二、填空题13.正六棱台的两底面边长分别为1cm ,2cm ,高是1cm ,它的侧面积为 .14.已知函数f (x )=sinx ﹣cosx ,则= .15.在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为,AB AC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示).若AP ED AF λμ=+,其中,R λμ∈,则2λμ-的取值范围是___________.16.已知i是虚数单位,复数的模为.17.设复数z满足z(2﹣3i)=6+4i(i为虚数单位),则z的模为.18.如图是正方体的平面展开图,则在这个正方体中①BM与ED平行;②CN与BE是异面直线;③CN与BM成60︒角;④DM与BN是异面直线.以上四个命题中,正确命题的序号是(写出所有你认为正确的命题).三、解答题19.已知f(x)=|﹣x|﹣|+x|(Ⅰ)关于x的不等式f(x)≥a2﹣3a恒成立,求实数a的取值范围;(Ⅱ)若f(m)+f(n)=4,且m<n,求m+n的取值范围.20.(本小题满分16分)给出定义在()+∞,0上的两个函数2()ln f x x a x =-,()g x x =- (1)若()f x 在1=x 处取最值.求的值;(2)若函数2()()()h x f x g x =+在区间(]0,1上单调递减,求实数的取值范围; (3)试确定函数()()()6m x f x g x =--的零点个数,并说明理由.21.设函数f (x )=lnx ﹣ax 2﹣bx .(1)当a=2,b=1时,求函数f (x )的单调区间;(2)令F (x )=f (x )+ax 2+bx+(2≤x ≤3)其图象上任意一点P (x 0,y 0)处切线的斜率k ≤恒成立,求实数a 的取值范围;(3)当a=0,b=﹣1时,方程f (x )=mx 在区间[1,e 2]内有唯一实数解,求实数m 的取值范围.22.如图,在四棱锥中,等边所在的平面与正方形所在的平面互相垂直,为的中点,为的中点,且(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在点,使线段与所在平面成角.若存在,求出的长,若不存在,请说明理由.23.求下列各式的值(不使用计算器):(1);(2)lg2+lg5﹣log21+log39.24.在数列中,,,其中,.(Ⅰ)当时,求的值;(Ⅱ)是否存在实数,使构成公差不为0的等差数列?证明你的结论;(Ⅲ)当时,证明:存在,使得.什邡市一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:因为f(x)+f(y)=f(x+y),令x=y=0,则f(0)+f(0)=f(0+0)=f(0),所以,f(0)=0;再令y=﹣x,则f(x)+f(﹣x)=f(0)=0,所以,f(﹣x)=﹣f(x),所以,函数f(x)为奇函数.又f(3)=4,所以,f(﹣3)=﹣f(3)=﹣4,所以,f(0)+f(﹣3)=﹣4.故选:B.【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f(x)为奇函数是关键,考查推理与运算求解能力,属于中档题.2.【答案】C【解析】解:∵函数=,∴f(3)=32+2=11.故选C.3.【答案】D【解析】解:对于函数f(x)=tan(2x+),它的最小正周期为,在(,)上,2x+∈(,),函数f(x)=tan(2x+)单调递增,故选:D.4.【答案】B【解析】解:把函数y=cos(2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f(x)=cos[2(x+)+φ]=cos(2x+φ+)的图象关于直线x=对称,则2×+φ+=k π,求得φ=k π﹣,k ∈Z ,故φ=﹣,故选:B .5. 【答案】 C【解析】解:第一次循环 第二次循环得到的结果第三次循环得到的结果第四次循环得到的结果…所以S 是以4为周期的,而由框图知当k=2011时输出S ∵2011=502×4+3所以输出的S 是 故选C6. 【答案】C【解析】解:双曲线的方程为﹣=1,焦点坐标在x 轴时,a 2=m ,b 2=2m ,c 2=3m ,离心率e=.焦点坐标在y 轴时,a 2=﹣2m ,b 2=﹣m ,c 2=﹣3m ,离心率e==.故选:C .【点评】本题考查双曲线的离心率的求法,注意实轴所在轴的易错点.7. 【答案】A【解析】解:设回归直线方程=0.7x+a ,由样本数据可得, =4.5, =3.5.因为回归直线经过点(,),所以3.5=0.7×4.5+a ,解得a=0.35.故选A .【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.8. 【答案】B【解析】解:先做出y=2x的图象,在向下平移两个单位,得到y=f (x )的图象,再将x轴下方的部分做关于x轴的对称图象即得y=|f(x)|的图象.故选B【点评】本题考查含有绝对值的函数的图象问题,先作出y=f(x)的图象,再将x轴下方的部分做关于x轴的对称图象即得y=|f(x)|的图象.9.【答案】B【解析】解:若f(x)的图象关于x=对称,则2×+θ=+kπ,解得θ=﹣+kπ,k∈Z,此时θ=﹣不一定成立,反之成立,即“f(x)的图象关于x=对称”是“θ=﹣”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键.10.【答案】A【解析】解:由于函数y=sin(3x+)=sin[3(x+)]的图象向右平移个单位,即可得到y=sin[3(x+﹣)]=sin3x的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+∅)的图象平移变换,属于中档题.11.【答案】A【解析】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)﹣f(x)<0成立,即当x>0时,g′(x)<0,∴当x>0时,函数g(x)为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数,∴x<0时,函数g(x)是增函数,又∵g(﹣2)==0=g(2),∴x>0时,由f(x)>0,得:g(x)<g(2),解得:0<x<2,x<0时,由f(x)>0,得:g(x)>g(﹣2),解得:x<﹣2,∴f(x)>0成立的x的取值范围是:(﹣∞,﹣2)∪(0,2).故选:A.12.【答案】C【解析】解:若双曲线C的方程为﹣=1,则双曲线的方程为,y=±x,则必要性成立,若双曲线C的方程为﹣=2,满足渐近线方程为y=±x,但双曲线C的方程为﹣=1不成立,即充分性不成立,故“双曲线C的渐近线方程为y=±x”是“双曲线C的方程为﹣=1”的必要不充分条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据双曲线和渐近线之间的关系是解决本题的关键.二、填空题13.【答案】cm2.【解析】解:如图所示,是正六棱台的一部分,侧面ABB1A1为等腰梯形,OO1为高且OO1=1cm,AB=1cm,A1B1=2cm.取AB和A1B1的中点C,C1,连接OC,CC1,O1C1,则C1C为正六棱台的斜高,且四边形OO1C1C为直角梯形.根据正六棱台的性质得OC=,OC1==,1∴CC1==.又知上、下底面周长分别为c=6AB=6cm,c′=6A1B1=12cm.∴正六棱台的侧面积:S=.==(cm2).故答案为:cm2.【点评】本题考查正六棱台的侧面积的求法,是中档,解题时要认真审题,注意空间思维能力的培养.14.【答案】.【解析】解:∵函数f(x)=sinx﹣cosx=sin(x﹣),则=sin(﹣)=﹣=﹣,故答案为:﹣.【点评】本题主要考查两角差的正弦公式,属于基础题.-15.【答案】[]1,1【解析】考点:向量运算.【思路点晴】本题主要考查向量运算的坐标法. 平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.16.【答案】.【解析】解:∵复数==i﹣1的模为=.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,属于基础题.17.【答案】2.【解析】解:∵复数z满足z(2﹣3i)=6+4i(i为虚数单位),∴z=,∴|z|===2,故答案为:2.【点评】本题主要考查复数的模的定义,复数求模的方法,利用了两个复数商的模等于被除数的模除以除数的模,属于基础题.18.【答案】③④【解析】试题分析:把展开图复原成正方体,如图,由正方体的性质,可知:①BM与ED是异面直线,所以是错误的;②DN 与BE 是平行直线,所以是错误的;③从图中连接,AN AC ,由于几何体是正方体,所以三角形ANC 为等边三角形,所以,AN AC 所成的角为60︒,所以是正确的;④DM 与BN 是异面直线,所以是正确的.考点:空间中直线与直线的位置关系.三、解答题19.【答案】【解析】解:(Ⅰ)关于x 的不等式f (x )≥a 2﹣3a 恒成立,即|﹣x|﹣|+x|≥a 2﹣3a 恒成立.由于f (x )=|﹣x|﹣|+x|=,故f (x )的最小值为﹣2,∴﹣2≥a 2﹣3a ,求得1≤a ≤2.(Ⅱ)由于f (x )的最大值为2,∴f (m )≤2,f (n )≤2,若f (m )+f (n )=4,∴m <n ≤﹣,∴m+n <﹣5.【点评】本题主要考查分段函数的应用,求函数的最值,函数的恒成立问题,属于中档题.20.【答案】(1) 2a = (2) a ≥2(3)两个零点. 【解析】试题分析:(1) 开区间的最值在极值点取得,因此()f x 在1=x 处取极值,即(1)0f =′,解得2a = ,需验证(2) ()h x 在区间(]0,1上单调递减,转化为()0h x ′≤在区间(]0,1上恒成立,再利用变量分离转化为对应函数最值:241x a x +≥的最大值,根据分式函数求最值方法求得()241x F x x =+最大值2(3)先利用导数研究函数()x m 单调性:当()1,0∈x 时,递减,当()+∞∈,1x 时,递增;再考虑区间端点函数值的符号:()10m <,4)0m e ->( , 4()0m e >,结合零点存在定理可得零点个数试题解析:(1) ()2af x x x=-′由已知,(1)0f =′即: 20a -=, 解得:2a = 经检验 2a = 满足题意 所以 2a = ………………………………………4分因为(]0,1x ∈,所以[)11,x ∈+∞,所以2min112x x ⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭ 所以()max 2F x =,所以a ≥2 ……………………………………10分(3)函数()()()6m x f x g x =--有两个零点.因为()22ln 6m x x x x =--+所以())()1222221x m x x x x=--+==′ ………12分当()1,0∈x 时,()'x m ,当()+∞∈,1x 时,()0>'x m所以()()min 140m x m ==-<, ……………………………………14分 3241-e)(1+e+2e )(=0e m e -<() ,8424812(21))0e e e m e e -++-=>(4442()1)2(7)0m e e e e =-+->( 故由零点存在定理可知:函数()x m 在4(,1)e - 存在一个零点,函数()x m 在4(1,)e 存在一个零点,所以函数()()()6m x f x g x =--有两个零点. ……………………………………16分 考点:函数极值与最值,利用导数研究函数零点,利用导数研究函数单调性 【思路点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等. 21.【答案】【解析】解:(1)依题意,知f (x )的定义域为(0,+∞).…当a=2,b=1时,f(x)=lnx﹣x2﹣x,f′(x)=﹣2x﹣1=﹣.令f′(x)=0,解得x=.…当0<x<时,f′(x)>0,此时f(x)单调递增;当x>时,f′(x)<0,此时f(x)单调递减.所以函数f(x)的单调增区间(0,),函数f(x)的单调减区间(,+∞).…(2)F(x)=lnx+,x∈[2,3],所以k=F′(x0)=≤,在x0∈[2,3]上恒成立,…所以a≥(﹣x02+x0)max,x0∈[2,3]…当x0=2时,﹣x02+x0取得最大值0.所以a≥0.…(3)当a=0,b=﹣1时,f(x)=lnx+x,因为方程f(x)=mx在区间[1,e2]内有唯一实数解,所以lnx+x=mx有唯一实数解.∴m=1+,…设g(x)=1+,则g′(x)=.…令g′(x)>0,得0<x<e;g′(x)<0,得x>e,∴g(x)在区间[1,e]上是增函数,在区间[e,e2]上是减函数,…1 0分∴g(1)=1,g(e2)=1+=1+,g(e)=1+,…所以m=1+,或1≤m<1+.…22.【答案】【解析】【知识点】空间的角利用直线方向向量与平面法向量解决计算问题垂直【试题解析】(Ⅰ)是等边三角形,为的中点,平面平面,是交线,平面平面.(Ⅱ)取的中点,底面是正方形,,两两垂直.分别以的方向为轴、轴、轴的正方向建立空间直角坐标系,则,,,设平面的法向量为,,,,平面的法向量即为平面的法向量.由图形可知所求二面角为锐角,(Ⅲ)设在线段上存在点,,使线段与所在平面成角,平面的法向量为,,,解得,适合在线段上存在点,当线段时,与所在平面成角.23.【答案】【解析】解:(1)=4+1﹣﹣=1;(2)lg2+lg5﹣log21+log39=1﹣0+2=3.【点评】本题考查对数的运算法则的应用,有理指数幂的化简求值,考查计算能力.24.【答案】【解析】【知识点】数列综合应用【试题解析】(Ⅰ),,.(Ⅱ)成等差数列,,即,,即.,.将,代入上式,解得.经检验,此时的公差不为0.存在,使构成公差不为0的等差数列.(Ⅲ),又,令.由,,……,将上述不等式相加,得,即.取正整数,就有。
什邡市民族中学2018-2019学年上学期高二数学12月月考试题含解析
什邡市民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 设F 1,F 2为椭圆=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则的值为( )A .B .C .D .2. 某程序框图如图所示,该程序运行输出的k 值是( )A .4B .5C .6D .73. 设集合M={x|x >1},P={x|x 2﹣6x+9=0},则下列关系中正确的是( ) A .M=P B .P ⊊M C .M ⊊P D .M ∪P=R 4. i 是虚数单位,i 2015等于( )A .1B .﹣1C .iD .﹣i5. 如图,棱长为的正方体1111D ABC A B C D -中,,E F 是侧面对角线11,BC AD 上一点,若 1BED F 是菱形,则其在底面ABCD 上投影的四边形面积( )A .12 B .34 C. 2D .34-6. 在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺, 末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( ) A .33% B .49% C .62% D .88%7. 给出下列命题:①在区间(0,+∞)上,函数y=x ﹣1,y=,y=(x ﹣1)2,y=x 3中有三个是增函数;②若log m 3<log n 3<0,则0<n <m <1;③若函数f (x )是奇函数,则f (x ﹣1)的图象关于点A (1,0)对称;④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0有2个实数根.其中假命题的个数为( )A .1B .2C .3D .48. 定义集合运算:A*B={z|z=xy ,x ∈A ,y ∈B}.设A={1,2},B={0,2},则集合A*B 的所有元素之和为( ) A .0B .2C .3D .69. 已知抛物线C :24y x =的焦点为F ,定点(0,2)A ,若射线FA 与抛物线C 交于点M ,与抛 物线C 的准线交于点N ,则||:||MN FN 的值是( )A .B .C .1:D (1 10.高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为( ) A .720 B .270 C .390 D .30011.已知,,那么夹角的余弦值( )A .B .C .﹣2D .﹣12.已知集合M={x|x 2<1},N={x|x >0},则M ∩N=( ) A .∅ B .{x|x >0} C .{x|x <1} D .{x|0<x <1}可.二、填空题13.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2132n n S S n n ++=+,若对n N *∀∈,1n n a a +< 恒成立,则m 的取值范围是_______.【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.14.【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且对恒成立,则的取值范围是__________________.15.曲线y=x+e x 在点A (0,1)处的切线方程是 .16.已知函数f (x )的定义域为[﹣1,5],部分对应值如下表,f (x )的导函数y=f ′(x )的图象如图示.①函数f (x )的极大值点为0,4; ②函数f (x )在[0,2]上是减函数;③如果当x ∈[﹣1,t]时,f (x )的最大值是2,那么t 的最大值为4; ④当1<a <2时,函数y=f (x )﹣a 有4个零点;⑤函数y=f (x )﹣a 的零点个数可能为0、1、2、3、4个. 其中正确命题的序号是 .17.若函数f (x )=x 2﹣2x (x ∈[2,4]),则f (x )的最小值是 .18.设集合A={﹣3,0,1},B={t 2﹣t+1}.若A ∪B=A ,则t= .三、解答题19.如图,在四边形ABCD 中,,,3,2,45AD DC AD BC AD CD AB DAB ⊥===∠=, 四 边形绕着直线AD 旋转一周.(1)求所成的封闭几何体的表面积; (2)求所成的封闭几何体的体积.20.在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.21.已知函数f(x)=4x﹣a•2x+1+a+1,a∈R.(1)当a=1时,解方程f(x)﹣1=0;(2)当0<x<1时,f(x)<0恒成立,求a的取值范围;(3)若函数f(x)有零点,求实数a的取值范围.22.(本小题满分12分)已知椭圆C的离心率为2,A、B分别为左、右顶点,2F为其右焦点,P是椭圆C上异于A、B的动点,且PA PB的最小值为-2. (1)求椭圆C的标准方程;(2)若过左焦点1F 的直线交椭圆C 于M N 、两点,求22F M F N 的取值范围.23.已知P (m ,n )是函授f (x )=e x ﹣1图象上任一于点(Ⅰ)若点P 关于直线y=x ﹣1的对称点为Q (x ,y ),求Q 点坐标满足的函数关系式(Ⅱ)已知点M (x 0,y 0)到直线l :Ax+By+C=0的距离d=,当点M 在函数y=h (x )图象上时,公式变为,请参考该公式求出函数ω(s ,t )=|s ﹣e x ﹣1﹣1|+|t ﹣ln (t ﹣1)|,(s ∈R ,t >0)的最小值.24.已知a >b >0,求证:.什邡市民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:F,F2为椭圆=1的两个焦点,可得F1(﹣,0),F2().a=2,b=1.1点P在椭圆上,若线段PF1的中点在y轴上,PF1⊥F1F2,|PF2|==,由勾股定理可得:|PF1|==.==.故选:C.【点评】本题考查椭圆的简单性质的应用,考查计算能力.2.【答案】C【解析】解:程序在运行过程中各变量的值如下表示:S k 是否继续循环循环前100 0/第一圈100﹣20 1 是第二圈100﹣20﹣21 2 是…第六圈100﹣20﹣21﹣22﹣23﹣24﹣25<0 6 是则输出的结果为7.故选C.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.3.【答案】B【解析】解:P={x|x=3},M={x|x>1};∴P⊊M.故选B.4. 【答案】D【解析】解:i 2015=i 503×4+3=i 3=﹣i ,故选:D【点评】本题主要考查复数的基本运算,比较基础.5. 【答案】B 【解析】试题分析:在棱长为的正方体1111D ABC A B C D -中,11BC AD ==AF x =x解得x =,即菱形1BED F =,则1BED F 在底面ABCD 上的投影四边形是底边为34,高为的平行四边形,其面积为34,故选B. 考点:平面图形的投影及其作法. 6. 【答案】B 【解析】7. 【答案】 A【解析】解:①在区间(0,+∞)上,函数y=x ﹣1,是减函数.函数y=为增函数.函数y=(x ﹣1)2在(0,1)上减,在(1,+∞)上增.函数y=x 3是增函数.∴有两个是增函数,命题①是假命题;②若log m 3<log n 3<0,则,即lgn <lgm <0,则0<n <m <1,命题②为真命题;③若函数f (x )是奇函数,则其图象关于点(0,0)对称, ∴f (x ﹣1)的图象关于点A (1,0)对称,命题③是真命题;④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0即为3x ﹣2x ﹣3=0,也就是3x=2x+3,两函数y=3x与y=2x+3有两个交点,即方程f (x )=0有2个实数根命题④为真命题.∴假命题的个数是1个.故选:A.【点评】本题考查了命题的真假判断与应用,考查了基本初等函数的性质,训练了函数零点的判定方法,是中档题.8.【答案】D【解析】解:根据题意,设A={1,2},B={0,2},则集合A*B中的元素可能为:0、2、0、4,又有集合元素的互异性,则A*B={0,2,4},其所有元素之和为6;故选D.【点评】解题时,注意结合集合元素的互异性,对所得集合的元素的分析,对其进行取舍.9.【答案】D【解析】考点:1、抛物线的定义;2、抛物线的简单性质.【方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将M到焦点的距离转化为到准线的距离后进行解答的.10.【答案】C解析:高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.各个班的人数有5班的3人、16班的4人、33班的5人,首发共有1、2、2;2、1、2;2、2、1类型;所求方案有:++=390.故选:C.11.【答案】A【解析】解:∵,,∴=,||=,=﹣1×1+3×(﹣1)=﹣4,∴cos<>===﹣,故选:A.【点评】本题考查了向量的夹角公式,属于基础题.12.【答案】D【解析】解:由已知M={x|﹣1<x<1},N={x|x>0},则M∩N={x|0<x<1},故选D.【点评】此题是基础题.本题属于以不等式为依托,求集合的交集的基础题,二、填空题13.【答案】15 (,)4314.【答案】【解析】点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。
什邡市第一中学2018-2019学年上学期高二数学12月月考试题含解析
什邡市第一中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 直线2x+y+7=0的倾斜角为( ) A .锐角 B .直角 C .钝角 D .不存在2. 若函数21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩则函数1()2y f x x =+的零点个数为( )A .1B .2C .3D .4 3. 如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个 圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )A .π1B .π21 C .π121- D .π2141- 【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度. 4. 已知a n=(n ∈N *),则在数列{a n }的前30项中最大项和最小项分别是( )A .a 1,a 30B .a 1,a 9C .a 10,a 9D .a 10,a 305. 已知复数z 满足z •i=2﹣i ,i 为虚数单位,则z=( ) A .﹣1﹣2i B .﹣1+2i C .1﹣2i D .1+2i6. 若实数x ,y满足,则(x ﹣3)2+y 2的最小值是( )A.B .8C .20D .27. 已知A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},则a 的值是( )A .a=3B .a=﹣3C .a=±3D .a=5或a=±38. 已知函数f (x )=2x﹣+cosx ,设x 1,x 2∈(0,π)(x 1≠x 2),且f (x 1)=f (x 2),若x 1,x 0,x 2成等差数列,f ′(x )是f (x )的导函数,则( )DABCOA .f ′(x 0)<0B .f ′(x 0)=0C .f ′(x 0)>0D .f ′(x 0)的符号无法确定9. 下列函数在其定义域内既是奇函数又是增函数的是( )A .B .C .D .10.设偶函数f (x )在[0,+∞)单调递增,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是( )A .(,1)B .(﹣∞,)∪(1,+∞)C .(﹣,)D .(﹣∞,﹣)∪(,+∞)11.过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .5612.已知命题:()(0x p f x a a =>且1)a ≠是单调增函数;命题5:(,)44q x ππ∀∈,sin cos x x >.则下列命题为真命题的是( )A .p q ∧B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧二、填空题13.当a >0,a ≠1时,函数f (x )=log a (x ﹣1)+1的图象恒过定点A ,若点A 在直线mx ﹣y+n=0上,则4m +2n 的最小值是 .14.命题“若1x ≥,则2421x x -+≥-”的否命题为.15.圆柱形玻璃杯高8cm ,杯口周长为12cm ,内壁距杯口2cm 的点A 处有一点蜜糖.A 点正对面的外壁(不是A 点的外壁)距杯底2cm 的点B 处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少 cm .(不计杯壁厚度与小虫的尺寸)16.长方体ABCD ﹣A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 为AB 的中点,CE=3,异面直线A 1C 1与CE所成角的余弦值为,且四边形ABB 1A 1为正方形,则球O 的直径为 .17.已知(1+x+x 2)(x )n (n ∈N +)的展开式中没有常数项,且2≤n ≤8,则n= .18.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,asinA=bsinB+(c ﹣b )sinC ,且bc=4,则△ABC 的面积为 .三、解答题19.在平面直角坐标系xOy 中,过点(2,0)C 的直线与抛物线24y x =相交于点A 、B 两点,设11(,)A x y ,22(,)B x y .(1)求证:12y y 为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程 和弦长,如果不存在,说明理由.20.已知函数f (x )=2|x ﹣2|+ax (x ∈R ). (1)当a=1时,求f (x )的最小值;(2)当f (x )有最小值时,求a 的取值范围;(3)若函数h (x )=f (sinx )﹣2存在零点,求a 的取值范围.21. (本题满分12分)在如图所示的几何体中,四边形ABCD 为矩形,直线⊥AF 平面ABCD ,AB EF //,12,2====EF AF AB AD ,点P 在棱DF 上.(1)求证:BF AD ⊥;(2)若P 是DF 的中点,求异面直线BE 与CP 所成角的余弦值; (3)若FD FP 31=,求二面角C AP D --的余弦值.22.(本小题满分12分)已知椭圆1C :14822=+y x 的左、右焦点分别为21F F 、,过点1F 作垂直 于轴的直线,直线2l 垂直于点P ,线段2PF 的垂直平分线交2l 于点M . (1)求点M 的轨迹2C 的方程;(2)过点2F 作两条互相垂直的直线BD AC 、,且分别交椭圆于D C B A 、、、,求四边形ABCD 面积 的最小值.23.已知函数f (x )=的定义域为A ,集合B 是不等式x 2﹣(2a+1)x+a 2+a >0的解集.(Ⅰ) 求A ,B ;(Ⅱ) 若A ∪B=B ,求实数a 的取值范围.24.设A=2{x|2x+ax+2=0},2A ∈,集合2{x |x 1}B ==(1)求a 的值,并写出集合A 的所有子集;(2)若集合{x |bx 1}C ==,且C B ⊆,求实数b 的值。
什邡市第三中学校2018-2019学年高二上学期第二次月考试卷数学
什邡市第三中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知命题p ;对任意x ∈R ,2x 2﹣2x+1≤0;命题q :存在x ∈R ,sinx+cosx=,则下列判断:①p 且q是真命题;②p 或q 是真命题;③q 是假命题;④¬p 是真命题,其中正确的是( )A .①④B .②③C .③④D .②④2. 若实数x ,y满足,则(x ﹣3)2+y 2的最小值是( )A.B .8C .20D .23. 已知双曲线(a >0,b >0)的右焦点F ,直线x=与其渐近线交于A ,B 两点,且△ABF 为钝角三角形,则双曲线离心率的取值范围是( )A.B.C.D.4. 在数列{}n a 中,115a =,*1332()n n a a n N +=-∈,则该数列中相邻两项的乘积为负数的项是 ( )A .21a 和22aB .22a 和23aC .23a 和24aD .24a 和25a5. 双曲线()222210,0x y a b a b-=>>的左右焦点分别为12F F 、,过2F 的直线与双曲线的右支交于A B 、两点,若1F AB ∆是以A 为直角顶点的等腰直角三角形,则2e =( )A.1+ B.4- C.5- D.3+6. 已知函数f (x )=ax 3﹣3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是( ) A .(1,+∞) B .(2,+∞)C .(﹣∞,﹣1)D .(﹣∞,﹣2)7. 已知函数f (x )=m (x﹣)﹣2lnx (m ∈R ),g (x )=﹣,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的范围是( ) A .(﹣∞,] B .(﹣∞,) C .(﹣∞,0]D .(﹣∞,0)8. 已知实数[1,1]x ∈-,[0,2]y ∈,则点(,)P x y 落在区域20210220x y x y x y +-⎧⎪-+⎨⎪-+⎩……… 内的概率为( )A.34B.38C.14D.18【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力. 9. 设a ,b ∈R ,i 为虚数单位,若2+a i1+i =3+b i ,则a -b 为( )A .3B .2C .1D .010.若复数z=2﹣i ( i 为虚数单位),则=( )A .4+2iB .20+10iC .4﹣2iD .11.如图是一个多面体的三视图,则其全面积为( )A .B .C .D .12.函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数,则下列结论成立的是( ) A .f (2)<f (π)<f (5) B .f (π)<f (2)<f (5)C .f (2)<f (5)<f (π)D .f (5)<f (π)<f (2)二、填空题13.命题“若a >0,b >0,则ab >0”的逆否命题是 (填“真命题”或“假命题”.)14.已知点E 、F 分别在正方体 的棱上,且, ,则面AEF 与面ABC 所成的二面角的正切值等于 .15.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁U A )∪B= .16.已知圆O :x 2+y 2=1和双曲线C :﹣=1(a >0,b >0).若对双曲线C 上任意一点A (点A 在圆O外),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD ,则﹣= .17.(若集合A ⊊{2,3,7},且A 中至多有1个奇数,则这样的集合共有 个.18.设平面向量()1,2,3,i a i =,满足1ia =且120a a ⋅=,则12a a += ,123a a a ++的最大值为 .【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力.三、解答题19.已知函数f (x )=2x ﹣,且f (2)=. (1)求实数a 的值; (2)判断该函数的奇偶性;(3)判断函数f (x )在(1,+∞)上的单调性,并证明.20.已知p :2x 2﹣3x+1≤0,q :x 2﹣(2a+1)x+a (a+1)≤0(1)若a=,且p ∧q 为真,求实数x 的取值范围. (2)若p 是q 的充分不必要条件,求实数a 的取值范围.21.某实验室一天的温度(单位:)随时间(单位;h )的变化近似满足函数关系;(1) 求实验室这一天的最大温差; (2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?22.在平面直角坐标系xOy 中,过点(2,0)C 的直线与抛物线24y x 相交于点A 、B 两点,设11(,)A x y ,22(,)B x y .(1)求证:12y y 为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程 和弦长,如果不存在,说明理由.23.已知等差数列{a n },满足a 3=7,a 5+a 7=26. (Ⅰ)求数列{a n }的通项a n ;(Ⅱ)令b n =(n ∈N *),求数列{b n }的前n 项和S n .24.(本小题满分12分)已知椭圆1C :14822=+y x 的左、右焦点分别为21F F 、,过点1F 作垂直 于轴的直线,直线2l 垂直于点P ,线段2PF 的垂直平分线交2l 于点M . (1)求点M 的轨迹2C 的方程;(2)过点2F 作两条互相垂直的直线BD AC 、,且分别交椭圆于D C B A 、、、,求四边形ABCD 面积 的最小值.什邡市第三中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:∵命题p;对任意x∈R,2x2﹣2x+1≤0是假命题,命题q:存在x∈R,sinx+cosx=是真命题,∴①不正确,②正确,③不正确,④正确.故选D.2.【答案】A【解析】解:画出满足条件的平面区域,如图示:,由图象得P(3,0)到平面区域的最短距离d min=,∴(x﹣3)2+y2的最小值是:.故选:A.【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.3.【答案】D【解析】解:∵函数f(x)=(x﹣3)e x,∴f′(x)=e x+(x﹣3)e x=(x﹣2)e x,令f′(x)>0,即(x﹣2)e x>0,∴x﹣2>0,解得x>2,∴函数f(x)的单调递增区间是(2,+∞).故选:D .【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目.4. 【答案】C 【解析】考点:等差数列的通项公式. 5. 【答案】C 【解析】试题分析:设1A F A B m==,则12,2,22B F m A F m B F m a==--,因为22AB AF BF m =+=,所以22m a a m --=,解得4a =,所以21AF m ⎛=- ⎝⎭,在直角三角形12AF F 中,由勾股定理得22542c m ⎛= ⎝,因为4a =,所以225482c a ⎛=⨯ ⎝,所以25e =-考点:直线与圆锥曲线位置关系.【思路点晴】本题考查直线与圆锥曲线位置关系,考查双曲线的定义,考查解三角形.由于题目给定的条件是等腰直角三角形,就可以利用等腰直角三角形的几何性质来解题.对于圆锥曲线的小题,往往要考查圆锥曲线的定义,本题考查双曲线的定义:动点到两个定点距离之差的绝对值为常数.利用定义和解直角三角形建立方程,从而求出离心率的平方] 6. 【答案】D【解析】解:∵f (x )=ax 3﹣3x 2+1,∴f ′(x )=3ax 2﹣6x=3x (ax ﹣2),f (0)=1;①当a=0时,f (x )=﹣3x 2+1有两个零点,不成立;②当a >0时,f (x )=ax 3﹣3x 2+1在(﹣∞,0)上有零点,故不成立; ③当a <0时,f (x )=ax 3﹣3x 2+1在(0,+∞)上有且只有一个零点;故f (x )=ax 3﹣3x 2+1在(﹣∞,0)上没有零点;而当x=时,f (x )=ax 3﹣3x 2+1在(﹣∞,0)上取得最小值;故f()=﹣3•+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.7.【答案】B【解析】解:由题意,不等式f(x)<g(x)在[1,e]上有解,∴mx<2lnx,即<在[1,e]上有解,令h(x)=,则h′(x)=,∵1≤x≤e,∴h′(x)≥0,∴h(x)max=h(e)=,∴<h(e)=,∴m<.∴m的取值范围是(﹣∞,).故选:B.【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用.8.【答案】B【解析】9.【答案】【解析】选A.由2+a i1+i=3+b i 得,2+a i =(1+i )(3+b i )=3-b +(3+b )i , ∵a ,b ∈R ,∴⎩⎪⎨⎪⎧2=3-b a =3+b,即a =4,b =1,∴a -b =3(或者由a =3+b 直接得出a -b =3),选A. 10.【答案】A【解析】解:∵z=2﹣i ,∴====,∴=10•=4+2i ,故选:A .【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.11.【答案】C【解析】解:由三视图可知几何体是一个正三棱柱, 底面是一个边长是的等边三角形,侧棱长是,∴三棱柱的面积是3××2=6+,故选C .【点评】本题考查根据三视图求几何体的表面积,考查由三视图确定几何图形,考查三角形面积的求法,本题是一个基础题,运算量比较小.12.【答案】B【解析】解:∵函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数, ∴f (π)=f (6﹣π),f (5)=f (1), ∵f (6﹣π)<f (2)<f (1), ∴f (π)<f (2)<f (5) 故选:B【点评】本题考查的知识点是抽象函数的应用,函数的单调性和函数的奇偶性,是函数图象和性质的综合应用,难度中档.二、填空题13.【答案】真命题【解析】解:若a>0,b>0,则ab>0成立,即原命题为真命题,则命题的逆否命题也为真命题,故答案为:真命题.【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键.14.【答案】【解析】延长EF交BC的延长线于P,则AP为面AEF与面ABC的交线,因为,所以为面AEF与面ABC所成的二面角的平面角。
什邡市第一中学2018-2019学年上学期高二数学12月月考试题含解析
什邡市第一中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 直线2x+y+7=0的倾斜角为( )A .锐角B .直角C .钝角D .不存在2. 若函数则函数的零点个数为( )21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩1()2y f x x =+A .1B .2C .3D .43. 如图在圆中,,是圆互相垂直的两条直径,现分别以,,,为直径作四个O AB CD O OA OB OC OD 圆,在圆内随机取一点,则此点取自阴影部分的概率是()O DABCO A .B .C .D .π1π21π121-π2141-【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.4. 已知a n =(n ∈N *),则在数列{a n }的前30项中最大项和最小项分别是( )A .a 1,a 30B .a 1,a 9C .a 10,a 9D .a 10,a 305. 已知复数z 满足z •i=2﹣i ,i 为虚数单位,则z=( )A .﹣1﹣2iB .﹣1+2iC .1﹣2iD .1+2i 6. 若实数x ,y 满足,则(x ﹣3)2+y 2的最小值是( )A .B .8C .20D .27. 已知A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},则a 的值是( )A .a=3B .a=﹣3C .a=±3D .a=5或a=±38. 已知函数f (x )=2x ﹣+cosx ,设x 1,x 2∈(0,π)(x 1≠x 2),且f (x 1)=f (x 2),若x 1,x 0,x 2成等差数列,f ′(x )是f (x )的导函数,则()A .f ′(x 0)<0B .f ′(x 0)=0C .f ′(x 0)>0D .f ′(x 0)的符号无法确定9. 下列函数在其定义域内既是奇函数又是增函数的是( )A .B .C .D .10.设偶函数f (x )在[0,+∞)单调递增,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是( )A .(,1)B .(﹣∞,)∪(1,+∞)C .(﹣,)D .(﹣∞,﹣)∪(,+∞)11.过点,的直线的斜率为,则( )),2(a M -)4,(a N 21-=||MN A .B .C .D .10180365612.已知命题且是单调增函数;命题,.:()(0xp f x a a =>1)a ≠5:(,44q x ππ∀∈sin cos x x >则下列命题为真命题的是( )A .B .C. D .p q ∧p q ∨⌝p q ⌝∧⌝p q⌝∧二、填空题13.当a >0,a ≠1时,函数f (x )=log a (x ﹣1)+1的图象恒过定点A ,若点A 在直线mx ﹣y+n=0上,则4m +2n 的最小值是 .14.命题“若1x ≥,则2421x x -+≥-”的否命题为.15.圆柱形玻璃杯高8cm ,杯口周长为12cm ,内壁距杯口2cm 的点A 处有一点蜜糖.A 点正对面的外壁(不是A 点的外壁)距杯底2cm 的点B 处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少 cm .(不计杯壁厚度与小虫的尺寸)16.长方体ABCD ﹣A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 为AB 的中点,CE=3,异面直线A 1C 1与CE 所成角的余弦值为,且四边形ABB 1A 1为正方形,则球O 的直径为 .17.已知(1+x+x 2)(x)n (n ∈N +)的展开式中没有常数项,且2≤n ≤8,则n= .18.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,asinA=bsinB+(c ﹣b )sinC ,且bc=4,则△ABC 的面积为 .三、解答题19.在平面直角坐标系中,过点的直线与抛物线相交于点、两点,设xOy (2,0)C 24y x =A B ,.11(,)A x y 22(,)B x y (1)求证:为定值;12y y (2)是否存在平行于轴的定直线被以为直径的圆截得的弦长为定值?如果存在,求出该直线方程y AC 和弦长,如果不存在,说明理由.20.已知函数f (x )=2|x ﹣2|+ax (x ∈R ).(1)当a=1时,求f (x )的最小值;(2)当f (x )有最小值时,求a 的取值范围;(3)若函数h (x )=f (sinx )﹣2存在零点,求a 的取值范围. 21. (本题满分12分)在如图所示的几何体中,四边形为矩形,直线平面,ABCD ⊥AF ABCD ,AB EF //,点在棱上.12,2====EF AF AB AD P DF (1)求证:;BF AD ⊥(2)若是的中点,求异面直线与所成角的余弦值;P DF BE CP(3)若的余弦值.FP =C APD --22.(本小题满分12分)已知椭圆:的左、右焦点分别为,过点作垂直1C 14822=+y x 21F F 、1F 于轴的直线,直线垂直于点,线段的垂直平分线交于点.2l P 2PF 2l M (1)求点的轨迹的方程;M 2C (2)过点作两条互相垂直的直线,且分别交椭圆于,求四边形面积2F BD AC 、D C B A 、、、ABCD 的最小值.23.已知函数f (x )=的定义域为A ,集合B 是不等式x 2﹣(2a+1)x+a 2+a >0的解集.(Ⅰ) 求A ,B ;(Ⅱ) 若A ∪B=B ,求实数a 的取值范围.24.设A=,,集合2{x|2x+ax+2=0}2A ∈2{x |x 1}B ==(1)求的值,并写出集合A 的所有子集;a (2)若集合,且,求实数的值。
什邡市高级中学2018-2019学年高二上学期第二次月考试卷数学
什邡市高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=3cos (2x ﹣),则下列结论正确的是( )A .导函数为B .函数f (x )的图象关于直线对称C .函数f (x )在区间(﹣,)上是增函数D .函数f (x )的图象可由函数y=3co s2x 的图象向右平移个单位长度得到2. 已知函数()2sin()f x x ωϕ=+(0)2πϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2πD .23π3. 在抛物线y 2=2px (p >0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为( ) A .x=1 B .x= C .x=﹣1D .x=﹣4. 如图可能是下列哪个函数的图象( )A .y=2x ﹣x 2﹣1B .y=C .y=(x 2﹣2x )e xD .y=5. 过直线3x ﹣2y+3=0与x+y ﹣4=0的交点,与直线2x+y ﹣1=0平行的直线方程为( ) A .2x+y ﹣5=0B .2x ﹣y+1=0C .x+2y ﹣7=0D .x ﹣2y+5=06. 已知数列{n a }满足nn n a 2728-+=(*∈N n ).若数列{n a }的最大项和最小项分别为M和m ,则=+m M ( ) A .211 B .227 C . 32259 D .324357. 函数f (x )=ax 2+bx 与f (x )=log x (ab ≠0,|a|≠|b|)在同一直角坐标系中的图象可能是( )A .B .C .D .8. 下列4个命题:①命题“若x 2﹣x=0,则x=1”的逆否命题为“若x ≠1,则x 2﹣x ≠0”; ②若“¬p 或q ”是假命题,则“p 且¬q ”是真命题;③若p :x (x ﹣2)≤0,q :log 2x ≤1,则p 是q 的充要条件;④若命题p :存在x ∈R ,使得2x <x 2,则¬p :任意x ∈R ,均有2x ≥x 2; 其中正确命题的个数是( ) A .1个 B .2个 C .3个 D .4个9. 设i 是虚数单位,若z=cos θ+isin θ且对应的点位于复平面的第二象限,则θ位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限10.如图,四面体D ﹣ABC 的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D ﹣ABC 中最长棱的长度为( )A .B .2C .D .311.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(][),4064,-∞+∞ B .[40,64] C .(],40-∞ D .[)64,+∞12.设a >0,b >0,若是5a 与5b的等比中项,则+的最小值为( )A .8B .4C .1D .二、填空题13.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 .14.设函数f (x )=,①若a=1,则f (x )的最小值为 ;②若f (x )恰有2个零点,则实数a 的取值范围是 .15.若函数y=ln (﹣2x )为奇函数,则a= .16.不等式的解集为R ,则实数m 的范围是.17.已知一组数据1x ,2x ,3x ,4x ,5x 的方差是2,另一组数据1ax ,2ax ,3ax ,4ax ,5ax (0a >)的标准差是a = .18.函数f (x )=log a (x ﹣1)+2(a >0且a ≠1)过定点A ,则点A 的坐标为 .三、解答题19.现有5名男生和3名女生.(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?(2)若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法?20.若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f()=f(x)﹣f(y)(1)求f(1)的值,(2)若f(6)=1,解不等式f(x+3)﹣f()<2.21.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()ABCD22.△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a.(Ⅰ)求;(Ⅱ)若c2=b2+a2,求B.23.已知数列{a n }满足a 1=,a n+1=a n +(n ∈N *).证明:对一切n ∈N *,有(Ⅰ)<;(Ⅱ)0<a n <1.24.(本小题满分12分)已知数列{n a }的前n 项和为n S ,且满足*)(2N n a n S n n ∈=+. (1)证明:数列}1{+n a 为等比数列,并求数列{n a }的通项公式;(2)数列{n b }满足*))(1(log 2N n a a b n n n ∈+⋅=,其前n 项和为n T ,试求满足201522>++nn T n 的最小正整数n .【命题意图】本题是综合考察等比数列及其前n 项和性质的问题,其中对逻辑推理的要求很高.什邡市高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:对于A,函数f′(x)=﹣3sin(2x﹣)•2=﹣6sin(2x﹣),A错误;对于B,当x=时,f()=3cos(2×﹣)=﹣3取得最小值,所以函数f(x)的图象关于直线对称,B正确;对于C,当x∈(﹣,)时,2x﹣∈(﹣,),函数f(x)=3cos(2x﹣)不是单调函数,C错误;对于D,函数y=3co s2x的图象向右平移个单位长度,得到函数y=3co s2(x﹣)=3co s(2x﹣)的图象,这不是函数f(x)的图象,D错误.故选:B.【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目.2.【答案】A【解析】考点:三角函数的图象性质.3.【答案】C【解析】解:由题意可得抛物线y2=2px(p>0)开口向右,焦点坐标(,0),准线方程x=﹣,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即4﹣(﹣)=5,解之可得p=2故抛物线的准线方程为x=﹣1.故选:C.【点评】本题考查抛物线的定义,关键是由抛物线的方程得出其焦点和准线,属基础题.4.【答案】C【解析】解:A中,∵y=2x﹣x2﹣1,当x趋向于﹣∞时,函数y=2x的值趋向于0,y=x2+1的值趋向+∞,∴函数y=2x﹣x2﹣1的值小于0,∴A中的函数不满足条件;B中,∵y=sinx是周期函数,∴函数y=的图象是以x轴为中心的波浪线,∴B中的函数不满足条件;C中,∵函数y=x2﹣2x=(x﹣1)2﹣1,当x<0或x>2时,y>0,当0<x<2时,y<0;且y=e x>0恒成立,∴y=(x2﹣2x)e x的图象在x趋向于﹣∞时,y>0,0<x<2时,y<0,在x趋向于+∞时,y趋向于+∞;∴C中的函数满足条件;D中,y=的定义域是(0,1)∪(1,+∞),且在x∈(0,1)时,lnx<0,∴y=<0,∴D中函数不满足条件.故选:C.【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目.5.【答案】A【解析】解:联立,得x=1,y=3,∴交点为(1,3),过直线3x﹣2y+3=0与x+y﹣4=0的交点,与直线2x+y﹣1=0平行的直线方程为:2x+y+c=0,把点(1,3)代入,得:2+3+c=0,解得c=﹣5,∴直线方程是:2x+y﹣5=0,故选:A.6.【答案】D【解析】试题分析: 数列n n n a 2728-+=,112528++-+=∴n n n a ,11252722n nn nn n a a ++--∴-=- ()11252272922n n n n n ++----+==,当41≤≤n 时,n n a a >+1,即12345a a a a a >>>>;当5≥n 时,n n a a <+1,即...765>>>a a a .因此数列{}n a 先增后减,32259,55==∴a n 为最大项,8,→∞→n a n ,2111=a ,∴最小项为211,M m +∴的值为3243532259211=+.故选D. 考点:数列的函数特性. 7. 【答案】 D【解析】解:A 、由图得f (x )=ax 2+bx 的对称轴x=﹣>0,则,不符合对数的底数范围,A 不正确;B 、由图得f (x )=ax 2+bx 的对称轴x=﹣>0,则,不符合对数的底数范围,B 不正确;C 、由f (x )=ax 2+bx=0得:x=0或x=,由图得,则,所以f (x )=log x 在定义域上是增函数,C 不正确;D 、由f (x )=ax 2+bx=0得:x=0或x=,由图得,则,所以f (x )=logx 在定义域上是减函数,D 正确.【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力.8. 【答案】C【解析】解:①命题“若x 2﹣x=0,则x=1”的逆否命题为“若x ≠1,则x 2﹣x ≠0”,①正确; ②若“¬p 或q ”是假命题,则¬p 、q 均为假命题,∴p 、¬q 均为真命题,“p 且¬q ”是真命题,②正确; ③由p :x (x ﹣2)≤0,得0≤x ≤2,由q :log 2x ≤1,得0<x ≤2,则p 是q 的必要不充分条件,③错误;④若命题p :存在x ∈R ,使得2x <x 2,则¬p :任意x ∈R ,均有2x ≥x 2,④正确. ∴正确的命题有3个. 故选:C .9. 【答案】B【解析】解:∵z=cos θ+isin θ对应的点坐标为(cos θ,sin θ), 且点(cos θ,sin θ)位于复平面的第二象限,∴,∴θ为第二象限角,故选:B .【点评】本题考查复数的几何意义,考查三角函数值的符号,注意解题方法的积累,属于中档题.10.【答案】 B【解析】解:因为AD •(BC •AC •sin60°)≥V D ﹣ABC =,BC=1,即AD •≥1,因为2=AD+≥2=2,当且仅当AD==1时,等号成立,这时AC=,AD=1,且AD ⊥面ABC ,所以CD=2,AB=,得BD=,故最长棱的长为2.故选B .【点评】本题考查四面体中最长的棱长,考查棱锥的体积公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题.11.【答案】A 【解析】试题分析:根据()248f x x kx =--可知,函数图象为开口向上的抛物线,对称轴为8kx =,所以若函数()f x 在区间[]5,8上为单调函数,则应满足:58k ≤或88k≥,所以40k ≤或64k ≥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什邡市第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知双曲线﹣=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A .B .C .3D .52. 已知函数f (x )=lg (1﹣x )的值域为(﹣∞,1],则函数f (x )的定义域为( ) A .[﹣9,+∞) B .[0,+∞) C .(﹣9,1)D .[﹣9,1)3. 若f (x )=sin (2x+θ),则“f (x )的图象关于x=对称”是“θ=﹣”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件4. 数列{a n }的首项a 1=1,a n+1=a n +2n ,则a 5=( ) A .B .20C .21D .315. 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )A .232B .252C .472D .4846. 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信 息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )A .20,2B .24,4C .25,2D .25,47. 已知在△ABC 中,a=,b=,B=60°,那么角C 等于( )A .135°B .90°C .45°D .75°8. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( ) A .m ⊥α,m ⊥β,则α∥β B .m ∥n ,m ⊥α,则n ⊥αC .m ⊥α,n ⊥α,则m ∥nD .m ∥α,α∩β=n ,则m ∥n9. sin (﹣510°)=( ) A.B.C.﹣ D.﹣10.已知曲线C 1:y=e x 上一点A (x 1,y 1),曲线C 2:y=1+ln (x ﹣m )(m >0)上一点B (x 2,y 2),当y 1=y 2时,对于任意x 1,x 2,都有|AB|≥e 恒成立,则m 的最小值为( ) A .1 B.C .e ﹣1D .e+111.在曲线y=x 2上切线倾斜角为的点是( )A .(0,0)B .(2,4) C.(,)D.(,)12.若函数21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩则函数1()2y f x x =+的零点个数为( )A .1B .2C .3D .4二、填空题13.若数列{}n a 满足212332n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅,则数列{}n a 的通项公式为 .14.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .15.已知,x y 满足41y xx y x ≥⎧⎪+≤⎨⎪≥⎩,则22223y xy x x -+的取值范围为____________. 16.设函数f (x )=若f[f (a )],则a 的取值范围是 .17.某城市近10年居民的年收入x 与支出y之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是 亿元.18.已知两个单位向量,a b 满足:12a b ∙=-,向量2a b -与的夹角为,则cos θ= . 三、解答题19.已知命题p :x 2﹣3x+2>0;命题q :0<x <a .若p 是q 的必要而不充分条件,求实数a 的取值范围.20.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,且60oABC ∠=,侧面PDC 为等边三角形,且与底面ABCD 垂直,M 为PB 的中点. (Ⅰ)求证:PA ⊥DM ;(Ⅱ)求直线PC 与平面DCM 所成角的正弦值.21.已知椭圆,过其右焦点F 且垂直于x 轴的弦MN 的长度为b .(Ⅰ)求该椭圆的离心率;(Ⅱ)已知点A 的坐标为(0,b ),椭圆上存在点P ,Q ,使得圆x 2+y 2=4内切于△APQ ,求该椭圆的方程.22.已知椭圆E的长轴的一个端点是抛物线y2=4x的焦点,离心率是.(1)求椭圆E的标准方程;(2)已知动直线y=k(x+1)与椭圆E相交于A、B两点,且在x轴上存在点M,使得与k的取值无关,试求点M的坐标.23.已知函数f(x)=.(1)求f(f(﹣2));(2)画出函数f(x)的图象,根据图象写出函数的单调增区间并求出函数f(x)在区间(﹣4,0)上的值域.24.解关于x的不等式12x2﹣ax>a2(a∈R).什邡市第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:抛物线y2=12x的焦点坐标为(3,0)∵双曲线的右焦点与抛物线y2=12x的焦点重合∴4+b2=9∴b2=5∴双曲线的一条渐近线方程为,即∴双曲线的焦点到其渐近线的距离等于故选A.【点评】本题考查抛物线的性质,考查时却显得性质,确定双曲线的渐近线方程是关键.2.【答案】D【解析】解:函数f(x)=lg(1﹣x)在(﹣∞,1)上递减,由于函数的值域为(﹣∞,1],则lg(1﹣x)≤1,则有0<1﹣x≤10,解得,﹣9≤x<1.则定义域为[﹣9,1),故选D.【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题.3.【答案】B【解析】解:若f(x)的图象关于x=对称,则2×+θ=+kπ,解得θ=﹣+kπ,k∈Z,此时θ=﹣不一定成立,反之成立,即“f(x)的图象关于x=对称”是“θ=﹣”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键.4.【答案】C【解析】解:由a n+1=a n+2n,得a n+1﹣a n=2n,又a1=1,∴a5=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)+a1=2(4+3+2+1)+1=21.故选:C.【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题.5.【答案】C【解析】【专题】排列组合.【分析】不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,由此可得结论.【解答】解:由题意,不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,故所求的取法共有﹣﹣=560﹣16﹣72=472故选C.【点评】本题考查组合知识,考查排除法求解计数问题,属于中档题.6.【答案】C【解析】考点:茎叶图,频率分布直方图.7.【答案】D【解析】解:由正弦定理知=,∴sinA==×=,∵a<b,∴A<B,∴A=45°,∴C=180°﹣A﹣B=75°,故选:D.8.【答案】D【解析】解:A选项中命题是真命题,m⊥α,m⊥β,可以推出α∥β;B选项中命题是真命题,m∥n,m⊥α可得出n⊥α;C选项中命题是真命题,m⊥α,n⊥α,利用线面垂直的性质得到n∥m;D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.故选D.【点评】本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.9.【答案】C【解析】解:sin(﹣510°)=sin(﹣150°)=﹣sin150°=﹣sin30°=﹣,故选:C.10.【答案】C【解析】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.11.【答案】D【解析】解:y'=2x,设切点为(a,a2)∴y'=2a,得切线的斜率为2a,所以2a=tan45°=1,∴a=,在曲线y=x2上切线倾斜角为的点是(,).故选D . 【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.12.【答案】D 【解析】考点:函数的零点.【易错点睛】函数零点个数的判断方法:(1)直接求零点:令0)(=x f ,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:要求函数在],[b a 上是连续的曲线,且0)()(<b f a f .还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.二、填空题13.【答案】 6,12,2,n n a n n n n *=⎧⎪=+⎨≥∈⎪⎩N【解析】【解析】()()12312n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅11:6n a ==;()()()123112312:12 1n n n n a a a a a n n a a a a n n --≥⋅=++=+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅故22:n n n a n+≥=14.【答案】.【解析】解:不等式组的可行域为:由题意,A(1,1),∴区域的面积为=(x3)=,由,可得可行域的面积为:1=,∴坐标原点与点(1,1)的连线的斜率大于1,坐标原点与与坐标原点连线的斜率大于1的概率为:=故答案为:.【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积.2,615.【答案】[]【解析】考点:简单的线性规划.【方法点睛】本题主要考查简单的线性规划.与二元一次不等式(组)表示的平面区域有关的非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成.常见代数式的几何意义:(1表示点(),x y与原点()0,0的距离;(2(),x y与点(),a b间的距离;(3)yx可表示点(),x y与()0,0点连线的斜率;(4)y bx a--表示点(),x y与点(),a b连线的斜率.16.【答案】或a=1.【解析】解:当时,.∵,由,解得:,所以;当,f(a)=2(1﹣a),∵0≤2(1﹣a)≤1,若,则,分析可得a=1.若,即,因为2[1﹣2(1﹣a)]=4a﹣2,由,得:.综上得:或a=1.故答案为:或a=1.【点评】本题考查了函数的值域,考查了分类讨论的数学思想,此题涉及二次讨论,解答时容易出错,此题为中档题.17.【答案】 18.2【解析】解:∵某城市近10年居民的年收入x 和支出y 之间的关系大致是=0.9x+0.2,∵x=20, ∴y=0.9×20+0.2=18.2(亿元).故答案为:18.2. 【点评】本题考查线性回归方程的应用,考查学生的计算能力,考查利用数学知识解决实际问题的能力,属于基础题.18.【答案】7-. 【解析】考点:向量的夹角.【名师点睛】平面向量数量积的类型及求法 (1)求平面向量的数量积有三种方法:一是定义cos a b a b θ⋅=;二是坐标运算公式1212a b x x y y ⋅=+;三是利用数量积的几何意义.(2)求较复杂的平面向量的数量积的运算时,可先利用平面向量数量积的运算律或相减公式进行化简三、解答题19.【答案】【解析】解:对于命题p :x 2﹣3x+2>0,解得:x >2或x <1,∴命题p :x >2或x <1,又∵命题q :0<x <a ,且p 是q 的必要而不充分条件, 当a ≤0时,q :x ∈∅,符合题意;当a >0时,要使p 是q 的必要而不充分条件, 需{x|0<x <a}⊊{x|x >2或x <1}, ∴0<a ≤1.综上,取并集可得a ∈(﹣∞,1].【点评】本题考查必要条件、充分条件与充要条件的判断方法,考查了一元二次不等式的解法,是基础题.20.【答案】【解析】由底面ABCD 为菱形且60oABC ∠=,∴ABC ∆,ADC ∆是等边三角形, 取DC 中点O ,有,OA DC OP DC ⊥⊥,∴POA ∠为二面角P CD A --的平面角, ∴90oPOA ∠=.分别以,,OA OC OP 所在直线为,,x y z 轴,建立空间直角坐标系如图,则(0,1,0),(0,1,0)A P D B C -. …… 3分(Ⅰ)由M 为PB 中点,(22M ∴3(2DM =(3,0,3),PA =-0),0,DC PA DM PA DC =∴== ∴ PA ⊥DM …… 6分(Ⅱ)由(0,2,0)DC =,0PA DC ⋅=,∴PA ⊥DC , ∴ 平面DCM 的法向量可取(3,0,PA = …… (0,1,PC =, 设直线PC 与平面DCM 所成角为θ则sin |cos ,|||4||||6PC PA PC PA PC PA θ⋅=<>===.即直线PC 与平面DCM .…… 12分 21.【答案】【解析】解:(Ⅰ)设F (c ,0),M (c ,y 1),N (c ,y 2), 则,得y 1=﹣,y 2=,MN=|y 1﹣y 2|==b ,得a=2b ,椭圆的离心率为:==.(Ⅱ)由条件,直线AP、AQ斜率必然存在,设过点A且与圆x2+y2=4相切的直线方程为y=kx+b,转化为一般方程kx﹣y+b=0,由于圆x2+y2=4内切于△APQ,所以r=2=,得k=±(b>2),即切线AP、AQ关于y轴对称,则直线PQ平行于x轴,∴y Q=y P=﹣2,不妨设点Q在y轴左侧,可得x Q=﹣x P=﹣2,则=,解得b=3,则a=6,∴椭圆方程为:.【点评】本题考查了椭圆的离心率公式,点到直线方程的距离公式,内切圆的性质.22.【答案】【解析】解:(1)由题意,椭圆的焦点在x轴上,且a=,…1分c=e•a=×=,故b===,…4分所以,椭圆E的方程为,即x2+3y2=5…6分(2)将y=k(x+1)代入方程E:x2+3y2=5,得(3k2+1)x2+6k2x+3k2﹣5=0;…7分设A(x1,y1),B(x2,y2),M(m,0),则x1+x2=﹣,x1x2=;…8分∴=(x1﹣m,y1)=(x1﹣m,k(x1+1)),=(x2﹣m,y2)=(x2﹣m,k(x2+1));∴=(k2+1)x1x2+(k2﹣m)(x1+x2)+k2+m2=m2+2m﹣﹣,要使上式与k无关,则有6m+14=0,解得m=﹣;∴存在点M(﹣,0)满足题意…13分【点评】本题考查了直线与圆锥曲线的综合应用问题,也考查了椭圆的标准方程及其几何性质,考查了一定的计算能力,属于中档题.23.【答案】【解析】解:(1)函数f(x)=.f(﹣2)=﹣2+2=0,f(f(﹣2))=f(0)=0.3分(2)函数的图象如图:…单调增区间为(﹣∞,﹣1),(0,+∞)(开区间,闭区间都给分)…由图可知:f(﹣4)=﹣2,f(﹣1)=1,函数f(x)在区间(﹣4,0)上的值域(﹣2,1].…12分.24.【答案】【解析】解:由12x2﹣ax﹣a2>0⇔(4x+a)(3x﹣a)>0⇔(x+)(x﹣)>0,①a>0时,﹣<,解集为{x|x<﹣或x>};②a=0时,x2>0,解集为{x|x∈R且x≠0};③a<0时,﹣>,解集为{x|x<或x>﹣}.综上,当a>0时,﹣<,解集为{x|x<﹣或x>};当a=0时,x2>0,解集为{x|x∈R且x≠0};当a<0时,﹣>,解集为{x|x<或x>﹣}.。