2014年高考数学二轮专题复习名师讲义第6讲 数列求和及综合应用

合集下载

2014年高考数学二轮专题复习名师讲义第5讲 等差数列、等比数列

2014年高考数学二轮专题复习名师讲义第5讲 等差数列、等比数列

2014年高考数学二轮专题复习名师讲义第五讲 等差数列、等比数列真题试做►———————————————————1.(2013·高考课标全国卷Ⅰ)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( )A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n 2.(2013·高考重庆卷)已知{a n }是等差数列,a 1=1,公差d ≠0,S n 为其前n 项和,若a 1,a 2,a 5成等比数列,则S 8=________.3.(2013·高考江西卷)正项数列{a n }满足:a 2n -(2n -1)a n -2n =0. (1)求数列{a n }的通项公式a n ;(2)令b n =1(n +1)a n,求数列{b n }的前n 项和T n .考情分析►———————————————————等差数列与等比数列是最重要也是最基本的数列模型,因而也是高考中重点考查的内容.客观题突出“小而巧”,主要考查等差(比)数列的性质,利用方程思想求a 1、d 、q 、S n 、n 、a n 等一些基本元素;主观题一般“大而全”,常与函数、不等式、解析几何等知识相结合,注重考查题目的综合性与新颖性,属于中档题,主要考查考生灵活运用两种数列分析问题、解决问题的能力.考点一 等差(比)数列的基本运算等差数列和等比数列在公式和性质上有许多相似性,是高考必考内容,着重考查等差、等比数列的基本运算、基本技能和基本思想方法,题型不仅有选择题、填空题,还有解答题,题目难度中等.(2013·高考重庆卷)设数列{a n }满足:a 1=1,a n +1=3a n ,n ∈N +. (1)求{a n }的通项公式及前n 项和S n ;(2)已知{b n }是等差数列,T n 为其前n 项和,且b 1=a 2,b 3=a 1+a 2+a 3,求T 20.【思路点拨】 根据等比、等差数列的通项公式及前n 项和公式直接运算求解.关于等差(等比)数列的基本运算,一般通过其通项公式和前n 项和公式构造关于a 1和d (或q )的方程或方程组解决,如果在求解过程中能够灵活运用等差(等比)数列的性质,不仅可以快速获解,而且有助于加深对等差(等比)数列问题的认识.强化训练1 (2012·高考重庆卷)已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,若a 1,a k ,S k +2成等比数列,求正整数k 的值.考点二 等差(比)数列的判定与证明等差(比)数列的判定与证明,以及在此基础上延伸出来的一些新数列是历年高考数列问题的一大热点.主要以解答题的形式进行考查,考查的目的是:考生对基本数列的理解和利用,对已知信息进行转化和变通的能力.在解决此类问题时,要注意S n 与a n 关系的应用.(2013·高考陕西卷)设S n 表示数列{a n }的前n 项和. (1)若{a n }是等差数列, 推导S n 的计算公式;(2)若a 1=1,q ≠0,且对所有正整数n ,有S n =1-q n1-q,判断{a n }是否为等比数列,并证明你的结论.【思路点拨】 利用等差数列的性质倒序相加求和;等比数列的证明通过定义进行.判定或证明{a n }为等差数列或等比数列时也常用以下方法:(1)通项公式法:a n =pn +q (p ,q 为常数,n ∈N *)⇔{a n }为等差数列; a n =cq n (c ,q 为非零常数,n ∈N *)⇔{a n }为等比数列. (2)前n 项和公式法:S n =an 2+bn +c (a ,b ,c 都是常数),c =0⇔{a n }为等差数列;S n =k (q n -1),k 为常数,且q ≠0,1⇔{a n }为等比数列. 强化训练2 (2013·东北三校高三第一次联合模拟考试)已知数列{a n }的前n 项和S n 满足S n =2a n +(-1)n (n ∈N *).(1)求数列{a n }的前三项a 1,a 2,a 3;(2)求证:数列{a n +23(-1)n }为等比数列,并求出{a n }的通项公式.考点三等差数列与等比数列的综合应用从近几年的考题看,对于等差与等比数列的综合考查也频频出现.考查的目的在于测试考生灵活运用知识的能力,这个“灵活”就集中在“转化”的水平上.(2013·高考湖北卷)已知S n是等比数列{a n}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=-18.(1)求数列{a n}的通项公式;(2)是否存在正整数n,使得S n≥2 013?若存在,求出符合条件的所有n的集合;若不存在,说明理由.【思路点拨】首先由S4,S2,S3成等差数列,且a2+a3+a4=-18,求得a1和公比q,进而得通项公式;然后根据等比数列的前n项和公式列出关于n的不等式,通过解不等式进而做出判断.对于等差数列与等比数列综合性的问题,要找准其结合点,弄清哪些是等差数列中的量,哪些是等比数列中的量,注意它们的区别,避免用错公式.强化训练3已知等比数列{a n}的前n项和为S n,a1=2,S1、2S2、3S3成等差数列.(1)求数列{a n}的通项公式;(2)数列{b n-a n}是首项为-6,公差为2的等差数列,求数列{b n}的前n项和.结构创新型试题的解题技巧 ——函数与数列的珠联璧合数列是定义在正整数集上的一类特殊的函数,以函数为背景的数列问题通常有两种:一是数列由函数关系给出;二是利用函数的有关方法求解数列的有关问题.数列与函数的这种关系也是数列解答题命题的重点之一.(2012·高考四川卷)设函数f (x )=2x -cos x ,{a n }是公差为π8的等差数列,f (a 1)+f (a 2)+…+f (a 5)=5π,则[f (a 3)]2-a 1a 5=( )A .0 B.116π2C.18π2D.1316π2 (1)给出以等差数列前5项为自变量的函数值之和.(2)根据等差数列性质和三角函数性质把f (a 1)+f (a 2)+f (a 3)+f (a 4)+f (a 5)的结构用a 3表达.(3)构造函数,通过函数的单调性确定a 3的值. (4)将求解结果用a 3表示、化简.抓信息 寻思路 【解析】 f (a 1)+f (a 2)+f (a 3)+f (a 4)+f (a 5)=2(a 1+a 2+a 3+a 4+a 5)-(cos a 1+cos a 2+cos a 3+cos a 4+cos a 5)=10a 3-[cos(a 3-π4)+cos(a 3-π8)+cos a 3+cos(a 3+π8)+cos(a 3+π4)]=10a 3-(2cos π4+2cos π8+1)cos a 3.构造函数g (x )=10x -(2cos π4+2cos π8+1)cos x -5π,g ′(x )=10+(2cos π4+2cos π8+1)sin x >0,函数g (x )在(-∞,+∞)内单调递增,由g (π2)=0,所以方程10x -(2cos π4+2cos π8+1)cos x -5π=0有唯一解x =π2,所以a 3=π2.所以[f (a 3)]2-a 1a 5=[f (a 3)]2-(a 3-π4)(a 3+π4)=[f (a 3)]2-a 23+π216=π2-(π2)2+π216=13π216. 【答案】 D跟踪训练 (2013·成都市高中毕业班第二次诊断性检测)已知数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *,且a 5=π2.若函数f (x )=sin 2x +2cos 2 x2,记y n =f (a n ),则数列{y n }的前9项和为( )A .0B .-9C .9D .1_体验真题·把脉考向_ 1.【解析】选D.法一:在等比数列{a n }中,S n =a 1-a n q1-q=1-a n ·231-23=3-2a n .法二:在等比数列{a n }中,a 1=1,q =23,∴a n =1×(23)n -1=(23)n -1.S n =1×[1-(23)n ]1-23=3[1-(23)n ]=3[1-23(23)n -1]=3-2a n .2.【解析】∵a 1,a 2,a 5成等比数列,∴a 22=a 1a 5,∴(1+d )2=1×(4d +1),∴d 2-2d =0. ∵d ≠0,∴d =2.∴S 8=8×1+8×72×2=64.【答案】64 3.【解】(1)由a 2n -(2n -1)a n -2n =0,得 (a n -2n )(a n +1)=0.由于{a n }是正项数列,所以a n =2n .(2)由a n =2n ,b n =1(n +1)a n,则b n =12n (n +1)=12⎝⎛⎭⎫1n -1n +1,T n =12⎝⎛⎭⎫1-12+12-13+…+1n -1-1n +1n -1n +1=12⎝⎛⎭⎫1-1n +1=n2(n +1). _典例展示·解密高考_ 【例1】【解】(1)由题设知{a n }是首项为1,公比为3的等比数列,所以a n =3n -1,S n =1-3n 1-3=12(3n -1).(2)b 1=a 2=3,b 3=1+3+9=13,b 3-b 1=10=2d , 所以公差d =5,故T 20=20×3+20×192×5=1 010.[强化训练1]【解】(1)设数列{a n }的公差为d ,由题意知⎩⎪⎨⎪⎧2a 1+2d =8,2a 1+4d =12,解得⎩⎪⎨⎪⎧a 1=2,d =2.所以a n =a 1+(n -1)d =2+2(n -1)=2n .(2)由(1)可得S n =n (a 1+a n )2=n (2+2n )2=n (n +1).因为a 1,a k ,S k +2成等比数列,所以a 2k =a 1S k +2.从而(2k )2=2(k +2)(k +3),即k 2-5k -6=0, 解得k =6或k =-1(舍去).因此k =6. 【例2】【解】(1)法一:设{a n }的公差为d ,则S n =a 1+a 2+…+a n =a 1+(a 1+d )+…+[a 1+(n -1)d ]. 又S n =a n +(a n -d )+…+[a n -(n -1)d ],∴2S n =n (a 1+a n ),∴S n =n (a 1+a n )2.法二:设{a n }的公差为d ,则S n =a 1+a 2+…+a n =a 1+(a 1+d )+…+[a 1+(n -1)d ]. 又S n =a n +a n -1+…+a 1=[a 1+(n -1)d ]+[a 1+(n -2)d ]+…+a 1,∴2S n =[2a 1+(n -1)d ]+[2a 1+(n -1)d ]+…+[2a 1+(n -1)d ]=2na 1+n (n -1)d ,∴S n =na 1+n (n -1)2d .(2){a n }是等比数列.证明如下:∵S n =1-q n1-q,∴a n +1=S n +1-S n =1-q n +11-q -1-q n 1-q =q n (1-q )1-q=q n.∵a 1=1,q ≠0,∴当n ≥1时,有a n +1a n =q nq n -1=q .因此,{a n }是首项为1且公比为q (q ≠0)的等比数列.[强化训练2]【解】(1)在S n =2a n +(-1)n (n ∈N *)中分别令n =1,2,3得: ⎩⎪⎨⎪⎧a 1=2a 1-1a 1+a 2=2a 2+1a 1+a 2+a 3=2a 3-1,解得⎩⎪⎨⎪⎧a 1=1a 2=0a 3=2. (2)证明:由S n =2a n +(-1)n (n ∈N *)得:S n -1=2a n -1+(-1)n -1(n ≥2),两式相减得: a n =2a n -1-2(-1)n (n ≥2),a n =2a n -1-43(-1)n -23(-1)n=2a n -1+43(-1)n -1-23(-1)n (n ≥2),∴a n +23(-1)n =2[a n -1+23(-1)n -1](n ≥2).故数列{a n +23(-1)n }是以a 1-23=13为首项,公比为2的等比数列.∴a n +23(-1)n =13×2n -1,∴a n =13×2n -1-23×(-1)n =2n -13-23(-1)n . 【例3】【解】(1)设等比数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得⎩⎪⎨⎪⎧S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18,即⎩⎪⎨⎪⎧-a 1q 2-a 1q 3=a 1q 2,a 1q (1+q +q 2)=-18, 解得⎩⎪⎨⎪⎧a 1=3,q =-2.故数列{a n }的通项公式为a n =3×(-2)n -1.(2)由(1)有S n =3[1-(-2)n ]1-(-2)=1-(-2)n .假设存在n ,使得S n ≥2 013,则1-(-2)n ≥2 013, 即(-2)n ≤-2 012.当n 为偶数时,(-2)n >0,上式不成立;当n 为奇数时,(-2)n =-2n ≤-2 012,即2n ≥2 012,即n ≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}. [强化训练3]【解】(1)由已知4S 2=S 1+3S 3, 4(a 1+a 1q )=a 1+3a 1(1+q +q 2),3q 2-q =0,∴q =0(舍),或q =13,∴a n =2·⎝⎛⎭⎫13n -1.(2)由题意得:b n -a n =2n -8,b n =a n +2n -8=2⎝⎛⎭⎫13n -1+2n -8.设数列{b n }的前n 项和为T n ,T n =2⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13+n (-6+2n -8)2=3⎝⎛⎭⎫1-13n +n (n -7) =-13n -1+n 2-7n +3._名师讲坛·精彩推荐_[跟踪训练]【解析】选C.由数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *可知该数列是等差数列,根据题意可知只要该数列中a 5=π2,数列{y n }的前9项和就能计算得到一个定值,又因为f (x )=sin 2x +1+cos x ,则可令数列{a n }的公差为0,则数列{y n }的前9项和为S 9=(sin 2a 1+sin 2a 2+…+sin 2a 9)+(cos a 1+cos a 2+…+cos a 9)+9=9sin 2a 5+9cos a 5+9=9sin(2×π2)+9cos π2+9=9.。

2014届高考数学一轮复习 第6章《数列的通项与求和》名师首选学案 新人教A版

2014届高考数学一轮复习 第6章《数列的通项与求和》名师首选学案 新人教A版

学案30 数列的通项与求和导学目标: 1.能利用等差、等比数列前n 项和公式及其性质求一些特殊数列的和.2.能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.自主梳理 1.求数列的通项(1)数列前n 项和S n 与通项a n 的关系:a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1, n ≥2.(2)当已知数列{a n }中,满足a n +1-a n =f (n ),且f (1)+f (2)+…+f (n )可求,则可用________求数列的通项a n ,常利用恒等式a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1).(3)当已知数列{a n }中,满足a n +1a n=f (n ),且f (1)·f (2)·…·f (n )可求,则可用________求数列的通项a n ,常利用恒等式a n =a 1·a 2a 1·a 3a 2·…·a na n -1. (4)作新数列法:对由递推公式给出的数列,经过变形后化归成等差数列或等比数列来求通项.(5)归纳、猜想、证明法. 2.求数列的前n 项的和 (1)公式法①等差数列前n 项和S n =____________=________________,推导方法:____________; ②等比数列前n 项和S n =⎩⎪⎨⎪⎧,q =1, = ,q ≠1.推导方法:乘公比,错位相减法. ③常见数列的前n 项和: a .1+2+3+…+n =________; b .2+4+6+…+2n =________; c .1+3+5+…+(2n -1)=________; d .12+22+32+…+n 2=________; e .13+23+33+…+n 3=____________.(2)分组求和:把一个数列分成几个可以直接求和的数列.(3)拆项相消:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和.常见的拆项公式有: ①1nn +1=1n -1n +1; ②12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1;③1n +n +1=n +1-n .(4)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和. (5)倒序相加:例如,等差数列前n 项和公式的推导. 自我检测1.(原创题)已知数列{a n }的前n 项的乘积为T n =3n 2(n ∈N *),则数列{a n }的前n 项的和为________.2.设{a n }是公比为q 的等比数列,S n 是其前n 项和,若{S n }是等差数列,则q =________. 3.已知等比数列{a n }的公比为4,且a 1+a 2=20,故b n =log 2a n ,则b 2+b 4+b 6+…+b 2n=________.4.已知数列{a n }的通项公式a n =log 2n +1n +2(n ∈N *),设{a n }的前n 项的和为S n ,则使S n <-5成立的自然数n 的最小值为________.5.设关于x 的不等式x 2-x <2nx (n ∈N *)的解集中整数的个数为a n ,数列{a n }的前n 项和为S n ,则S 100的值为________.6.数列1,412,714,1018,…前10项的和为________.探究点一 求通项公式 例1 已知数列{a n }满足a n +1=2n +1·a na n +2n +1,a 1=2,求数列{a n }的通项公式.变式迁移1 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明数列{b n }是等比数列; (2)求数列{a n }的通项公式.探究点二 裂项相消法求和例2 已知数列{a n },S n 是其前n 项和,且a n =7S n -1+2(n ≥2),a 1=2. (1)求数列{a n }的通项公式;(2)设b n =1log 2a n ·log 2a n +1,T n 是数列{b n }的前n 项和,求使得T n <m 20对所有n ∈N *都成立的最小正整数m .变式迁移2 求数列1,11+2,11+2+3,…,11+2+3+…+n ,…的前n 项和.探究点三 错位相减法求和例3 已知数列{a n }是首项、公比都为q (q >0且q ≠1)的等比数列,b n =a n log 4a n (n ∈N *). (1)当q =5时,求数列{b n }的前n 项和S n ; (2)当q =1415时,若b n <b n +1,求n 的最小值.变式迁移3 求和S n =1a +2a 2+3a 3+…+nan .分类讨论思想例 (5分)二次函数f (x )=x 2+x ,当x ∈[n ,n +1](n ∈N *)时,f (x )的函数值中所有整数值的个数为g (n ),a n =2n 3+3n2g n(n ∈N *),则S n =a 1-a 2+a 3-a 4+…+(-1)n -1a n =______________________.答案 (-1)n -1n n +12解析 当x ∈[n ,n +1](n ∈N *)时,函数f (x )=x 2+x 的值随x 的增大而增大,则f (x )的值域为[n 2+n ,n 2+3n +2](n ∈N *),∴g (n )=2n +3(n ∈N *),于是a n =2n 3+3n 2g n=n 2.当n 为偶数时,S n =a 1-a 2+a 3-a 4+…+a n -1-a n =(12-22)+(32-42)+…+[(n -1)2-n 2]=-[3+7+…+(2n -1)]=-3+2n -12·n 2=-n n +12;当n 为奇数时,S n =(a 1-a 2)+(a 3-a 4)+…+(a n -2-a n -1)+a n =S n -1+a n =-n n -12+n 2=n n +12,∴S n =(-1)n -1n n +12.【突破思维障碍】在利用并项转化求和时,由于数列的各项是正负交替的,所以一般需要对项数n 进行分类讨论,但最终的结果却往往可以用一个公式来表示.1.求数列的通项:(1)公式法:例如等差数列、等比数列的通项; (2)观察法:例如由数列的前几项来求通项; (3)可化归为使用累加法、累积法;(4)可化归为等差数列或等比数列,然后利用公式法; (5)求出数列的前几项,然后归纳、猜想、证明. 2.数列求和的方法:一般的数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和.3.求和时应注意的问题:(1)直接用公式求和时,注意公式的应用范围和公式的推导过程.(2)注意观察数列的特点和规律,在分析数列通项的基础上或分解为基本数列求和,或转化为基本数列求和.课后练习(满分:90分)一、填空题(每小题6分,共48分)1.已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2·a 3=2a 1且a 4与2a 7的等差中项为54,则S 5=________.2.有两个等差数列{a n },{b n },其前n 项和分别为S n ,T n ,若S n T n =7n +2n +3,则a 5b 5=________.3.如果数列{a n }满足a 1=2,a 2=1且a n -1-a n a n a n -1=a n -a n +1a n a n +1(n ≥2),则此数列的第10项为________.4.数列{a n }的前n 项和为S n ,若a n =1n n +1,则S 5=________.5.数列1,1+2,1+2+4,…,1+2+22+…+2n -1,…的前n 项和S n >1 020,那么n的最小值是________.6.数列{a n }的前n 项和为S n 且a 1=1,a n +1=3S n (n =1,2,3,…),则log 4S 10=__________. 7.已知数列{a n }满足a 1=1,a 2=-2,a n +2=-1a n,则该数列前26项的和为________.8.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项为2n,则数列{a n }的前n 项和S n =____________.二、解答题(共42分)9.(12分)已知函数f (x )=x 2-2(n +1)x +n 2+5n -7(n ∈N *).(1)若函数f (x )的图象的顶点的横坐标构成数列{a n },试证明数列{a n }是等差数列; (2)设函数f (x )的图象的顶点到x 轴的距离构成数列{b n },试求数列{b n }的前n 项和S n .10.(14分)设等差数列{a n }的前n 项和为S n ,且S n =12na n +a n -c (c 是常数,n ∈N *),a 2=6.(1)求c 的值及数列{a n }的通项公式; (2)证明1a 1a 2+1a 2a 3+…+1a n a n +1<18.11.(16分)已知数列{a n }的前n 项和为S n =3n,数列{b n }满足b 1=-1,b n +1=b n +(2n-1) (n ∈N *).(1)求数列{a n }的通项公式a n ; (2)求数列{b n }的通项公式b n ; (3)若c n =a n ·b nn,求数列{c n }的前n 项和T n .答案 自主梳理 1.(4)n =1或n ≥2 自我检测1.22 2.32 3.15 4.8 5.919课堂活动区例1 解题导引 1.等差数列与等比数列相结合的综合问题是高考考查的重点,特别是等差、等比数列的通项公式、前n 项和公式以及等差中项、等比中项问题是历年命题的热点.2.利用等比数列前n 项和公式时注意公比q 的取值.同时对两种数列的性质,要熟悉它们的推导过程,利用好性质,可降低题目的思维难度,解题时有时还需利用条件联立方程求解.解 (1)由已知得⎩⎪⎨⎪⎧a 1+a 2+a 3=7a 1+3+a 3+42=3a 2,解得a 2=2.设数列{a n }的公比为q ,由a 2=2,可得a 1=2q ,a 3=2q .又S 3=7,可知2q+2+2q =7,即2q 2-5q +2=0.解得q 1=2,q 2=12.由题意得q >1,∴q =2,∴a 1=1. 故数列{a n }的通项为a n =2n -1.(2)由(1)得a 3n +1=23n, ∴b n =ln a 3n +1=ln 23n =3n ln 2. 又b n +1-b n =3ln 2,∴{b n }是等差数列, ∴T n =b 1+b 2+…+b n=n b 1+b n2=3n n +12·ln 2.故T n =3n n +12ln 2.变式迁移1 4解析 设a 1,a 2,a 3,a 4的公差为d ,则a 1+2d =4,又0<a 1<2,所以1<d <2.易知数列{b n }是等比数列,故(1)正确;a 2=a 3-d ∈(2,3),所以b 2=2a 2>4,故(2)正确;a 4=a 3+d >5,所以b 4=2a 4>32,故(3)正确;又a 2+a 4=2a 3=8,所以b 2b 4=2a 2+a 4=28=256,故(4)正确.例2 解题导引 这是一道数列、函数、不等式的综合题,利用函数关系式求通项a n ,观察T n 特点,求出T n .由a n 再求b n 从而求S n ,最后利用不等式知识求出m .解 (1)∵a n +1=f ⎝ ⎛⎭⎪⎫1a n =2a n +33a n=2+3a n 3=a n +23, ∴{a n }是以23为公差的等差数列.又a 1=1,∴a n =23n +13.(2)T n =a 1a 2-a 2a 3+a 3a 4-a 4a 5+…-a 2n a 2n +1 =a 2(a 1-a 3)+a 4(a 3-a 5)+…+a 2n (a 2n -1-a 2n +1) =-43(a 2+a 4+…+a 2n )=-43·n ⎝ ⎛⎭⎪⎫53+4n 3+132=-49(2n 2+3n ).(3)当n ≥2时,b n =1a n -1a n =1⎝ ⎛⎭⎪⎫23n -13⎝ ⎛⎭⎪⎫23n +13=92⎝ ⎛⎭⎪⎫12n -1-12n +1,又b 1=3=92×⎝ ⎛⎭⎪⎫1-13,∴S n =b 1+b 2+…+b n=92×⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1 =92⎝⎛⎭⎪⎫1-12n +1=9n2n +1,∵S n <m -2 0012对一切n ∈N *成立.即9n 2n +1<m -2 0012, 又∵9n 2n +1=92⎝ ⎛⎭⎪⎫1-12n +1递增,且9n 2n +1<92.∴m -2 0012≥92, 即m ≥2 010.∴最小正整数m =2 010.变式迁移2 解 (1)设等比数列{a n }的首项为a 1,公比为q . 依题意,有2(a 3+2)=a 2+a 4, 代入a 2+a 3+a 4=28,得a 3=8.∴a 2+a 4=20.∴⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 3=a 1q 2=8,解之,得⎩⎪⎨⎪⎧q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32.又{a n }单调递增,∴⎩⎪⎨⎪⎧q =2,a 1=2. ∴a n =2n.(2)b n =2n ·log 122n =-n ·2n,∴-S n =1×2+2×22+3×23+…+n ×2n.①∴-2S n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1.②∴①-②,得S n =2+22+23+…+2n -n ·2n +1=21-2n1-2-n ·2n +1=2n +1-n ·2n +1-2.由S n +(n +m )a n +1<0, 即2n +1-n ·2n +1-2+n ·2n +1+m ·2n +1<0对任意正整数n 恒成立,∴m ·2n +1<2-2n +1对任意正整数n ,m <12n -1恒成立.∵12n -1>-1,∴m ≤-1, 即m 的取值范围是(-∞,-1]. 例3 解 依题意,第1个月月余款为a 1=10 000(1+20%)-10 000×20%×10%-300=11 500,第2个月月底余款为a 2=a 1(1+20%)-a 1×20%×10%-300, 依此类推下去,设第n 个月月底的余款为a n 元,第n +1个月月底的余款为a n +1元,则a n +1=a n (1+20%)-a n ×20%×10%-300=1.18a n-300.下面构造一等比数列. 设a n +1+xa n +x=1.18,则a n +1+x =1.18a n +1.18x , ∴a n +1=1.18a n +0.18x .∴0.18x =-300. ∴x =-5 0003,即a n +1-5 0003a n -5 0003=1.18.∴数列{a n -5 0003}是一个等比数列,公比为1.18,首项a 1-5 0003=11 500-5 0003=29 5003. ∴a n -5 0003=29 5003×1.18n -1,∴a 12-5 0003=29 5003×1.1811,∴a 12=5 0003+29 5003×1.1811≈62 396.6(元),即到年底该职工共有资金62 396.6元. 纯收入有a 12-10 000(1+25%) =62 396.6-12 500=49 896.6(元).变式迁移3 解 (1)设中低价房的面积形成的数列为{a n }, 由题意可知{a n }是等差数列,其中a 1=250,d =50, 则a n =250+(n -1)·50=50n +200,S n =250n +n n -12×50=25n 2+225n ,令25n 2+225n ≥4 750,即n 2+9n -190≥0,而n 是正整数,∴n ≥10.∴到2020年底,该市历年所建中低价房的累计面积将首次不少于4 750万平方米.(2)设新建住房面积形成数列{b n },由题意可知{b n }是等比数列,其中b 1=400,q =1.08, 则b n =400·(1.08)n -1.由题意可知a n >0.85b n , 即50n +200>400·(1.08)n -1·0.85.当n =5时,a 5<0.85b 5, 当n =6时,a 6>0.85b 6,∴满足上述不等式的最小正整数n 为6.∴到2016年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%. 课后练习区1.3+2 2 2.② 3.991 4.7解析 设至少需要n 秒钟,则1+21+22+…+2n -1≥100,∴1-2n1-2≥100,∴n ≥7.5.64解析 依题意有a n a n +1=2n,所以a n +1a n +2=2n +1,两式相除得a n +2a n=2,所以a 1,a 3,a 5,…成等比数列,a 2,a 4,a 6,…也成等比数列,而a 1=1,a 2=2,所以a 10=2×24=32,a 11=1×25=32,又因为a n +a n +1=b n ,所以b 10=a 10+a 11=64.6.3解析 该题是数列知识与函数知识的综合.a n =5·⎝ ⎛⎭⎪⎫252n -2-4·⎝ ⎛⎭⎪⎫25n -1=5·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫25n -1-252-45,显然当n =2时,a n 取得最小值,当n =1时,a n 取得最大值,此时x =1,y =2,∴x +y =3.7.21解析 y ′=(x 2)′=2x ,则过点(a k ,a 2k )的切线斜率为2a k ,则切线方程为y -a 2k =2a k (x -a k ),令y =0,得-a 2k =2a k (x -a k ), ∴x =12a k ,即a k +1=12a k .故{a n }是a 1=16,q =12的等比数列, 即a n =16×(12)n -1,∴a 1+a 3+a 5=16+4+1=21. 8.107解析 由数表知,第一行1个奇数,第3行3个奇数,第5行5个奇数,第61行61个奇数,前61行用去1+3+5+…+61=62×312=961个奇数.而2 009是第1 005个奇数,故应是第63行第44个数,即i +j =63+44=107.9.解 (1)∵f (1)=a =13,∴f (x )=⎝ ⎛⎭⎪⎫13x .…………………………………………………(1分)a 1=f (1)-c =13-c ,a 2=[f (2)-c ]-[f (1)-c ]=-29,a 3=[f (3)-c ]-[f (2)-c ]=-227;又数列{a n }成等比数列,a 1=a 22a 3=481-227=-23=13-c , ∴c =1;……………………………………………………………………………………(2分)公比q =a 2a 1=13,a n =-23×⎝ ⎛⎭⎪⎫13n -1 =-2×⎝ ⎛⎭⎪⎫13n ,n ∈N *;……………………………………………………………………(3分) ∵S n -S n -1=()S n -S n -1()S n +S n -1 =S n +S n -1(n >2),……………………………………………………………………(4分) 又b n >0,S n >0,∴S n -S n -1=1.数列{S n }构成一个首项为1、公差为1的等差数列,S n =1+(n -1)×1=n ,S n =n 2.…………………………………………………………(6分)当n ≥2,b n =S n -S n -1=n 2-(n -1)2=2n -1;又当n =1时,也适合上式,∴b n =2n -1,n ∈N *.………………………………………………………………………(8分)(2)T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=11×3+13×5+15×7+…+12n -1×2n +1=12⎝⎛⎭⎪⎫1-13+12⎝ ⎛⎭⎪⎫13-15+12⎝ ⎛⎭⎪⎫15-17+…+ 12⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1.……………………………………………(12分)由T n =n 2n +1>1 0002 009,得n >1 0009, ∴满足T n >1 0002 009的最小正整数为112.…………………………………………………(14分)10.解 设乙企业仍按现状生产至第n 个月所带来的总收益为A n (万元),技术改造后生产至第n 个月所带来的总收益为B n (万元).依题意得A n =45n -[3+5+…+(2n +1)]=43n -n 2,………………………………………………………………………………(5分) 当n ≥5时,B n =16⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫325-132-1+ 16⎝ ⎛⎭⎪⎫324(n -5)-400=81n -594,………………………………………………………(10分)∴当n ≥5时,B n -A n =n 2+38n -594,令n 2+38n -594>0,即(n +19)2>955,解得n ≥12,∴至少经过12个月,改造后的乙企业的累计总收益多于仍按现状生产所带来的总收益.……………………………………………………………………………………………(14分)11.(1)解 令x =n ,y =1,得到f (n +1)=f (n )·f (1)=12f (n ),…………………………………………………………(2分) ∴{f (n )}是首项为12,公比为12的等比数列, 即f (n )=(12)n .………………………………………………………………………………(5分)(2)证明 记S n =a 1+a 2+a 3+…+a n ,∵a n =n ·f (n )=n ·(12)n ,……………………………………………………………………(6分)∴S n =12+2×(12)2+3×(12)3+…+n ×(12)n , 12S n =(12)2+2×(12)3+3×(12)4+…+(n -1)×(12)n +n ×(12)n +1, 两式相减得12S n =12+(12)2+…+(12)n -n ×(12)n +1, 整理得S n =2-(12)n -1-n (12)n <2. ∴a 1+a 2+a 3+…+a n <2.………………………………………………………………(9分)(3)解 ∵f (n )=(12)n ,而b n =(9-n )f n +1f n=(9-n )12n +112n =9-n 2.…………………………………………………………………(11分)当n ≤8时,b n >0;当n =9时,b n =0;当n >9时,b n <0,∴n =8或9时,S n 取到最大值.………………………………………………………(14分)。

最新高考数学二轮复习-专题三-第2讲-数列求和及其综合应用-学案讲义

最新高考数学二轮复习-专题三-第2讲-数列求和及其综合应用-学案讲义

第2讲数列求和及其综合应用[考情分析] 1.数列求和重点考查分组转化、错位相减、裂项相消三种求和方法.2.数列的综合问题,一般以等差数列、等比数列为背景,与函数、不等式相结合,考查最值、范围以及证明不等式等.3.主要以选择题、填空题及解答题的形式出现,难度中等.考点一数列求和核心提炼1.裂项相消法就是把数列的每一项分解,使得相加后项与项之间能够相互抵消,但在抵消的过程中,有的是相邻项抵消,有的是间隔项抵消.常见的裂项方式有:1n (n +k )=14n 2-1=2.错位相减法求和,主要用于求{a n b n }的前n 项和,其中{a n },{b n }分别为等差数列和等比数列.考向1分组转化法例1(2023·枣庄模拟)已知数列{a n }的首项a 1=3,且满足a n +1+2a n =2n +2.(1)证明:{a n -2n }为等比数列;(2)已知b n n ,n 为奇数,2a n ,n 为偶数,T n 为{b n }的前n 项和,求T 10.(1)证明由a n +1+2a n =2n +2可得a n +1-2n +1=2n +1-2a n =-2(a n -2n ).又a 1-21=1≠0,所以{a n -2n }是以1为首项,-2为公比的等比数列.(2)解由(1)可得a n -2n =(-2)n -1,即a n =2n +(-2)n -1.当n 为奇数时,b n =a n =2n +(-2)n -1=3×2n -1;当n 为偶数时,b n =log 2a n =log 2[2n +(-2)n -1]=log 22n -1=n -1.所以T 10=(b 1+b 3+b 5+b 7+b 9)+(b 2+b 4+b 6+b 8+b 10)=(3+3×22+3×24+3×26+3×28)+(1+3+5+7+9)=3×(1-45)1-4+(1+9)×52=1048.考向2裂项相消法例2(2023·沈阳质检)设n ∈N *,向量AB →=(n -1,1),AC →=(n -1,4n -1),a n =AB →·AC →.(1)令b n =a n +1-a n ,求证:数列{b n }为等差数列;(2)求证:1a 1+1a 2+…+1a n <34.证明(1)由题意可得a n =AB →·AC →=(n -1)2+4n -1=n 2+2n ,则b n =a n +1-a n =[(n +1)2+2(n +1)]-(n 2+2n )=2n +3,可得b n +1-b n =(2n +5)-(2n +3)=2,故数列{b n }是首项b 1=5,公差d =2的等差数列.(2)由(1)可得1a n =1n 2+2n则1a 1+1a 2+…+1a n=12×-13+12-14+…+1n -=12×-1n +1-∵1n +1>0,1n +2>0,故1a 1+1a 2+…+1a n =12×-1n +1-<34.考向3错位相减法例3(2023·全国甲卷)记S n 为数列{a n }的前n 项和,已知a 2=1,2S n =na n .(1)求{a n }的通项公式;(2)n 项和T n .解(1)因为2S n =na n ,当n =1时,2a 1=a 1,即a 1=0;当n =3时,2(1+a 3)=3a 3,即a 3=2,当n ≥2时,2S n -1=(n -1)a n -1,所以2S n -2S n -1=na n -(n -1)a n -1=2a n ,化简得(n -2)a n =(n -1)a n -1,则当n ≥3时,a n a n -1=n -1n -2,则a n a n -1·a n -1a n -2·…·a 3a 2=n -1n -2·n -2n -3·…·21,即a n a 2=n -1,又因为a 2=1,所以a n =n -1,当n =1,2时都满足上式,所以a n =n -1,n ∈N *.(2)令b n =a n +12n =n 2n,则T n =b 1+b 2+…+b n -1+b n=12+222+…+n -12n -1+n 2n ,①12T n =122+223+…+n -12n +n 2n +1,②由①-②得12T n =12+122+123+…+12n -n 2n +1=21-12-n 2n +1=1-2+n 2n +1,即T n =2-2+n 2n .规律方法(1)分组转化法求和的关键是将数列通项转化为若干个可求和的数列通项的和或差.(2)裂项相消法的基本思路是将通项拆分,可以产生相互抵消的项.(3)用错位相减法求和时,应注意:①等比数列的公比为负数的情形;②在写出“S n ”和“qS n ”的表达式时应特别注意将两式“错项对齐”,以便准确写出“S n -qS n ”的表达式.跟踪演练1(1)(2023·淮南模拟)已知数列{a n }满足a n +1-a n =2n ,且a 1=1.①求数列{a n }的通项公式;②设b n =a n +1a n a n +1,求数列{b n }的前n 项和T n .解①∵数列{a n }满足a n +1-a n =2n ,且a 1=1,∴当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+2+1=2n -1.当n =1时也成立,∴a n =2n -1(n ∈N *).②b n =a n +1a n a n +1=2n (2n -1)(2n +1-1)=12n -1-12n +1-1,∴数列{b n }的前n 项和T n …1-12n +1-1.(2)(2023·浙江省强基联盟模拟)已知a 1=1,{a n +1}是公比为2的等比数列,{b n }为正项数列,b 1=1,当n ≥2时,(2n -3)b n =(2n -1)b n -1.①求数列{a n },{b n }的通项公式;②记c n =a n ·b n .求数列{c n }的前n 项和T n .解①因为数列{a n +1}为等比数列,公比为2,首项为a 1+1=2,所以a n +1=2×2n -1=2n ,所以a n =2n -1(n ∈N *),由(2n -3)b n =(2n -1)b n -1,推得b n b n -1=2n -12n -3(n ≥2),所以b 2b 1=31,b 3b 2=53,b 4b 3=75,…,b n b n -1=2n -12n -3(n ≥2),故b n b n -1·b n -1b n -2·…·b 2b 1=2n -12n -3·2n -32n -5·…·31(n ≥2),又b 1=1,所以当n ≥2时,b n =2n -11b 1=2n -1,又b 1=1符合上式,所以b n =2n -1(n ∈N *).②由题可得c n =2n (2n -1)-(2n -1),令d n =2n (2n -1),{d n }的前n 项和为P n .所以P n =1×21+3×22+5×23+…+(2n -1)2n ,2P n =1×22+3×23+5×24+…+(2n -3)2n +(2n -1)2n +1,两式相减得-P n =2+2(22+23+…+2n )-(2n -1)2n +1,所以P n =(2n -1)2n +1-2-2(2n +1-4),所以P n =6+(2n -3)2n +1.令e n =2n -1,{e n }的前n 项和为E n ,则E n =(1+2n -1)n 2=n 2,综上,T n =P n -E n =(2n -3)2n +1+6-n 2.考点二数列的综合问题核心提炼数列与函数、不等式,以及数列新定义的综合问题,是高考命题的一个方向,考查逻辑推理、数学运算、数学建模等核心素养.解决此类问题,一是把数列看成特殊的函数,利用函数的图象、性质求解;二是将新数列问题转化为等差或等比数列,利用特殊数列的概念、公式、性质,结合不等式的相关知识求解.例4(1)分形的数学之美,是以简单的基本图形,凝聚扩散,重复累加,以迭代的方式而形成的美丽的图案.自然界中存在着许多令人震撼的天然分形图案,如鹦鹉螺的壳、蕨类植物的叶子、孔雀的羽毛、菠萝等.如图所示,为正方形经过多次自相似迭代形成的分形图形,且相邻的两个正方形的对应边所成的角为15°.若从外往里最大的正方形边长为9,则第5个正方形的边长为()A.814 B.8168C .4 D.463答案C 解析设第n 个正方形的边长为a n ,则由已知可得a n =a n +1sin 15°+a n +1cos 15°,∴a n +1a n =1sin 15°+cos 15°=12sin 60°=63,∴{a n }是以9为首项,63为公比的等比数列,∴a 5=a 1q 4=9=4.(2)(2023·武汉模拟)将1,2,…,n 按照某种顺序排成一列得到数列{a n },对任意1≤i <j ≤n ,如果a i >a j ,那么称数对(a i ,a j )构成数列{a n }的一个逆序对.若n =4,则恰有2个逆序对的数列{a n }的个数为()A .4B .5C .6D .7答案B解析若n=4,则1≤i<j≤4,由1,2,3,4构成的逆序对有(4,3),(4,2),(4,1),(3,2),(3,1),(2,1),若数列{a n}的第一个数为4,则至少有3个逆序对;若数列{a n}的第二个数为4,则恰有2个逆序对的数列{a n}为{1,4,2,3};若数列{a n}的第三个数为4,则恰有2个逆序对的数列{a n}为{1,3,4,2}或{2,1,4,3};若数列{a n}的第四个数为4,则恰有2个逆序对的数列{a n}为{2,3,1,4}或{3,1,2,4},综上,恰有2个逆序对的数列{a n}的个数为5.规律方法数列的“新定义问题”,主要是指定义新概念、新公式、新定理、新法则、新运算等,关键是将新数列转化为等差或等比数列,或者找到新数列的递推关系,主要考查的还是数列的基础知识.跟踪演练2(1)如图甲是第七届国际数学家大会(简称ICME-7)的会徽图案,会徽的主题图案是由图乙的一连串直角三角形演化而成的.已知OA1=A1A2=A2A3=A3A4=A4A5=A5A6=A6A7=A7A8=…=2,A1,A2,A3…为直角顶点,设这些直角三角形的周长从小到大组成的数列为{a n},令b n=2a n-2,S n为数列{b n}的前n项和,则S120等于()A.8B.9C.10D.11答案C解析由OA1=A1A2=A2A3=A3A4=A4A5=A5A6=A6A7=A7A8= (2)可得OA2=22,OA3=23,…,OA n=2n,所以a n=OA n+OA n+1+A n A n+1=2n+2n+1+2,所以b n=2a n-2=1n+n+1=n+1-n,所以前n项和S n=b1+b2+…+b n=2-1+3-2+…+n+1-n=n+1-1,所以S120=120+1-1=10.(2)(2023·郑州模拟)“角谷猜想”首先流传于美国,不久便传到欧洲,后来一位名叫角谷静夫的日本人又把它带到亚洲,因而人们就顺势把它叫作“角谷猜想”.“角谷猜想”是指一个正整数,如果是奇数就乘以3再加1,如果是偶数就除以2,这样经过若干次运算,最终回到1.对任意正整数a0,按照上述规则实施第n次运算的结果为a n(n∈N),若a5=1,且a i(i=1,2,3,4)均不为1,则a0等于()A.5或16B.5或32C.5或16或4D.5或32或4答案B解析由题知a n+1+1,a n为奇数,a n为偶数,因为a5=1,则有,若a4为奇数,则a5=3a4+1=1,得a4=0,不合题意,所以a4为偶数,且a4=2a5=2;若a3为奇数,则a4=3a3+1=2,得a3=13,不合题意,所以a3为偶数,且a3=2a4=4;若a2为奇数,则a3=3a2+1=4,得a2=1,不合题意,所以a2为偶数,且a2=2a3=8;若a1为奇数,则a2=3a1+1=8,得a1=73,不合题意,所以a1为偶数,且a1=2a2=16;若a0为奇数,则a1=3a0+1=16,可得a0=5;若a0为偶数,则a0=2a1=32.综上所述,a0=5或a0=32.专题强化练一、单项选择题1.数列{a n}满足2a n+1=a n+a n+2,且a8,a4040是函数f(x)=x2-8x+3的两个零点,则a2024的值为()A.4B.-4C.4040D.-4040答案A解析因为a8,a4040是函数f(x)=x2-8x+3的两个零点,即a8,a4040是方程x2-8x+3=0的两个根,所以a8+a4040=8.又2a n+1=a n+a n+2,所以数列{a n}是等差数列,所以a8+a4040=2a2024=8,所以a2024=4.2.(2023·阜阳模拟)在数列{a n}中,已知a n+1+a n=3·2n,则{a n}的前10项和为() A.1023B.1024C.2046D.2047答案C解析∵a n+1+a n=3·2n,∴a2+a1=3×2,a4+a3=3×23,a6+a5=3×25,a8+a7=3×27,a10+a9=3×29,则{a n}的前10项和为3×(2+23+25+27+29)=3×2-29×41-4=2046.3.已知函数f(x)=x2+bx的图象在点A(1,f(1))处的切线的斜率为3n项和为S n,则S2026的值为()A.2023 2024B.2024 2025C.2025 2026D.2026 2027答案D解析由题意得f′(x)=2x+b,∴f′(1)=2+b=3,解得b=1,∴f(n)=n2+n,∴1f(n)=1n2+n=1n(n+1)=1n-1n+1,∴S2026=1-12+12-13+13-14+…+12026-12027=1-12027=20262027.4.(2023·佛山模拟)已知数列{a n}的通项公式为a n=n2+kn+2,若对于n∈N*,数列{a n}为递增数列,则实数k的取值范围为()A.k≥-3B.k≥-2C.k>-3D.k>-2答案C解析因为数列{a n}为递增数列,所以a n+1>a n,即(n+1)2+k(n+1)+2>n2+kn+2,整理得k>-(2n+1),因为当n∈N*时,f(n)=-(2n+1)单调递减,f(n)max=f(1)=-(2×1+1)=-3,所以k>-3.5.(2023·盐城模拟)将正整数n 分解为两个正整数k 1,k 2的积,即n =k 1·k 2,当k 1,k 2两数差的绝对值最小时,我们称其为最优分解.如20=1×20=2×10=4×5,其中4×5即为20的最优分解,当k 1,k 2是n 的最优分解时,定义f (n )=|k 1-k 2|,则数列{f (5n )}的前2023项的和为()A .51012B .51012-1C .52023D .52023-1答案B 解析当n =2k (k ∈N *)时,由于52k =5k ×5k ,此时f (52k )=|5k -5k |=0,当n =2k -1(k ∈N *)时,由于52k -1=5k -1×5k ,此时f (52k -1)=|5k -5k -1|=5k -5k -1,所以数列{f (5n )}的前2023项的和为(5-1)+0+(52-5)+0+(53-52)+0+…+(51011-51010)+0+(51012-51011)=51012-1.6.某软件研发公司对某软件进行升级,主要是软件程序中的某序列A ={a 1,a 2,a 3,…}重新编辑,编辑新序列为A *,a 3a 2,a 4a 3,…n 项为a n +1a n,若序列(A *)*的所有项都是3,且a 5=1,a 6=27,则a 1等于()A.19B.127C.181D.1243答案A 解析令b n =a n +1a n,即A *={b 1,b 2,b 3,…},则(A *)*,b 3b 2,b 4b 3,由已知得b 2b 1=b 3b 2=b 4b 3=…=b n +1b n=3,所以数列{b n }为公比为3的等比数列,设b 1=m ,则a 2a 1=b 1=m ,a 3a 2=b 2=3m ,…,a n +1a n=b n =3n -1·m ,当n ≥2时,累乘可得a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=m ·3m ·32m ·…·3n -2m =m n -131+2+3+…+(n -2),即a n a 1=m n -1(2)(1)23n n --,当n =5时,1a 1=m 436,当n =6时,27a 1=m 5310,解得m =13,a 1=19.二、多项选择题7.(2023·唐山模拟)如图,△ABC 是边长为2的等边三角形,连接各边中点得到△A 1B 1C 1,再连接△A 1B 1C 1的各边中点得到△A 2B 2C 2,…,如此继续下去,设△A n B n C n 的边长为a n ,△A n B n C n 的面积为M n ,则()A .M n =34a 2n B .a 24=a 3a 5C .a 1+a 2+…+a n =2-22-n D .M 1+M 2+…+M n <33答案ABD 解析显然△A n B n C n 是正三角形,因此M n =34a 2n ,故A 正确;由中位线性质易得a n =12a n -1,即{a n }是等比数列,公比为12,因此a 24=a 3a 5,故B 正确;a 1=12AB =1,a 1+a 2+…+a n 1-12=2-21-n ,故C 错误;M 1=34×12=34,{a n }是等比数列,公比为12,则{M n }也是等比数列,公比是14,M 1+M 2+…+M n =34×11-14<33,故D 正确.8.已知函数f (x )=e x -x -1,数列{a n }的前n 项和为S n ,且满足a 1=12,a n +1=f (a n ),则下列有关数列{a n }的叙述不正确的是()A .a 5<|4a 2-3a 1|B .a 7≤a 8C .a 10>1D .S 100>26答案BCD 解析由e x ≥x +1知,a n +1=f (a n )=e n a -a n -1≥0,故{a n }为非负数列,又a n +1-a n =e n a -2a n -1,设g (x )=e x -2x -1,则g ′(x )=e x -2,易知g (x )在[0,ln 2)上单调递减,在(ln 2,+∞)上单调递增,且-12<1-2ln 2=g (x )min <g (0)=0,又0<a 1=12<ln 2,所以0≤a 2<a 1=12,从而-12<a n +1-a n <0,所以{a n }为递减数列,且0≤a n ≤12,故B ,C 错误;又a 2=12e -12-1=12e -32<-32=14,故当n ≥2时,有a n <14,所以S 100=a 1+a 2+a 3+…+a 100<12+14+14+…+14=1014,故D 错误;又a 2<14,a 5<12,而|4a 2-3a 1|=|4a 2-32|>12,故A 正确.三、填空题9.(2023·铜仁质检)为了进一步学习贯彻党的二十大精神,推进科普宣传教育,激发学生的学习热情,营造良好的学习氛围,不断提高学生对科学、法律、健康等知识的了解,某学校组织高一10个班级的学生开展“红色百年路·科普万里行”知识竞赛.统计发现,10个班级的平均成绩恰好成等差数列,最低平均成绩为70,公差为2,则这10个班级的平均成绩的第40百分位数为________.答案77解析记10个班级的平均成绩构成的等差数列为{a n},则a n=70+2(n-1)=2n+68,又10×40%=4,所以这10个班级的平均成绩的第40百分位数为a4+a52=76+782=77.10.在一个数列中,如果每一项与它的后一项的和为同一个常数,那么这个数列称为等和数列,这个常数称为该数列的公和.已知数列{a n}是等和数列,且a1=-2,a2024=8,则这个数列的前2024项的和为________.答案6072解析依题意得a1+a2=a2+a3=a3+a4=a4+a5=…,故a1=a3=a5=…=a2023=-2,a2=a4=a6=…=a2024=8,则S2024=1012×(-2)+1012×8=6072.11.(2023·江苏联考)已知a1,a2,…,a n(n∈N*)是一组平面向量,记S n=a1+a2+…+a n,若a n=(4-n,1),则满足a n⊥S n的n的值为____________.答案5或6解析记b n=4-n的前n项和为T n,则T n=(3+4-n)n2=7n-n22,因为a n=(4-n,1),所以S n=a1+a2+…+a n=(3,1)+(2,1)+…+(4-n,1)又a n⊥S n,所以a n·S n=(4-n)×7n-n22+n=0,整理得n(n-5)(n-6)=0,解得n=0或n=5或n=6,因为n∈N*,所以n=5或n=6.12.在圆x2+y2=5x n条弦的长度成等差数列,最短弦长为数列的首项a1,最长弦长为a n,若公差d ,13,那么n的取值集合为__________.答案{4,5,6}解析由圆的方程为x 2+y 2=5x ,得圆心r =52.∴过点P 即a n =2r =5,过点P CP 垂直的弦为圆的最短弦,即a 1=2r 2-|PC |2=4,由a n =a 1+(n -1)d ,得5=4+(n -1)d ,∴d =1n -1,∵16<d ≤13,∴16<1n -1≤13,∴4≤n <7,n ∈N *,∴n 的取值为4,5,6.∴n 的取值集合为{4,5,6}.四、解答题13.(2023·锦州模拟)已知数列{a n }和{b n }满足a n +b n =2n -1,数列{a n },{b n }的前n 项和分别记作A n ,B n ,且A n -B n =n .(1)求A n 和B n ;(2)设c n =2n b +12A n,求数列{c n }的前n 项和S n .解(1)因为a n +b n =2n -1,所以数列{a n +b n }是首项为1,公差为2的等差数列,所以其前n 项和A n +B n =12(1+2n -1)×n =n 2,又因为A n -B n =n ,所以A n =n (n +1)2,B n =n (n -1)2.(2)当n ≥2时,b n =B n -B n -1=n (n -1)2-(n -1)(n -2)2=n -1.当n =1时,b 1=B 1=0也适合通项公式,故b n =n -1.所以c n =2n b +12A n =2n -1+1n (n +1)=2n -1+1n -1n +1,所以S n =(1+2+22+…+2n -1)-12+12-13+…+1n -=1×(1-2n )1-2+2n -1n +1.14.(2023·湖南省新高考教学教研联盟联考)已知数列{a n }的前n 项和为S n ,且S n =n -a n .(1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且2b n =(n -2)(a n -1),若T n ≥λb n 对于n ∈N *恒成立,求λ的取值范围.解(1)∵S n =n -a n ,∴S n -1=(n -1)-a n -1(n ≥2),两式作差得2a n =a n -1+1,∴2(a n -1)=a n -1-1,当n =1时,S 1=1-a 1,∴a 1-1=-12,∴{a n -1}是首项为-12,公比为12的等比数列,故a n =1.(2)∵2b n =(n -2)(a n -1),∴b n =(2-n +1,∴T n =b 1+b 2+…+b n =1+0+(-1)+…+(2-n +1,①12T n =1+0+(-1)+…+(2-n +2,②两式作差得12T n =1+…+1-(2-n +2,化简得T n =n 2n +1,∵T n ≥λb n 恒成立,∴n 2n +1≥λ(2-n )12n +1,n ≥λ(2-n ),当n =1时,λ≤1;当n =2时,λ∈R ;当n ≥3时,λ≥n 2-n =-(n -2)+2n -2=-即λ≥-,∴λ≥-1,综上所述,-1≤λ≤1.。

2014届高考人教A版数学(理)一轮复习讲义6.4数列求和

2014届高考人教A版数学(理)一轮复习讲义6.4数列求和

第4讲 数列求和【2014年高考会这样考】以数列为载体,考查数列求和的各种方法和技巧.对应学生87考点梳理1.公式法与分组求和法 (1)公式法直接利用等差数列、等比数列的前n 项和公式求和 ①等差数列的前n 项和公式: S n =n (a 1+a n )2=na 1+n (n -1)2d .②等比数列的前n 项和公式:S n =⎩⎨⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.(2)分组求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减. 2.倒序相加法与并项求和法 (1)倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的. (2)并项求和法在一个数列的前n 项和中,可两两结合求解,则称之为并项求和. 形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(1002-992)+(982-972)+…+(22-12)=(100+99)+(98+97)+…+(2+1)=5 050.3.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.4.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.【助学·微博】一种思路一般数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和.两点提醒在利用裂项相消法求和时应注意:(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或有时前面剩下两项,后面也剩下两项.三个公式(1)1n(n+1)=1n-1n+1;(2)1(2n-1)(2n+1)=12⎝⎛⎭⎪⎫12n-1-12n+1;(3)1n+n+1=n+1-n.考点自测1.数列{a n}的通项公式是a n=1n+n+1,前n项和为9,则n等于().A .9B .99C .10D .100 解析 ∵a n =n +1-n ,∴a 1+a 2+…+a n =n +1-1,∴n +1-1=9,∴n =99. 答案 B2.(2011·天津)已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为( ). A .-110 B .-90 C .90 D .110解析 由题意得a 27=a 3·a 9,又公差d =-2,∴(a 3-8)2=a 3(a 3-12),∴a 3=16.∴S 10=10(a 1+a 10)2=10(a 3+a 8)2=5(a 3+a 3+5d )=5×(16+16-10)=110,故选D. 答案 D3.(2013·泉州月考)若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为( ).A .2n +n 2-1B .2n +1+n 2-1C .2n +1+n 2-2D .2n +n -2解析 S n =2(1-2n )1-2+n (1+2n -1)2=2n +1+n 2-2.答案 C4.(2012·全国)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前100项和为( ).A.100101B.99101C.99100D.101100解析 设数列{a n }的公差为d ,则a 1+4d =5,S 5=5a 1+5×42d =15,得d =1,a 1=1,故a n =1+(n -1)×1=n ,所以1a n a n +1=1n (n +1)=1n -1n +1,所以S 100=1-12+12-13+…+1100-1101=1-1101=100101,故选A. 答案 A5.已知S n =1+23+332+…+n -13n -2+n3n -1,则S n =________.解析 S n =1+23+332+…+n -13n -2+n3n -1,①13S n =13+232+…+n -13n -1+n 3n ,②①-②得:23S n =1+13+132+…+13n -1-n3n=1-13n1-13-n 3n =32⎝ ⎛⎭⎪⎫1-13n -n 3n∴S n =94⎝ ⎛⎭⎪⎫1-13n -32·n 3n =94-⎝ ⎛⎭⎪⎫94+3n 2·13n =94-6n +94·13n . 答案 94-6n +94·13n对应学生88考向一 分组转化求和【例1】►(2011·山东)在等比数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2,a 3中的任何两个数不在下表中的同一列.(1)求数列n (2)若数列{b n }满足:b n =a n +(-1)n ln a n ,求数列{b n }的前n 项和S n . [审题视点] (1)观察法;(2)合理分组利用求和公式求解,同时注意对n 的奇偶性讨论.解 (1)当a 1=3时,不合题意;当a 1=2时,当且仅当a 2=6,a 3=18时,符合题意; 当a 1=10时,不合题意.因此a 1=2,a 2=6,a 3=18,所以公比q =3, 故a n =2·3n -1.(2)因为b n =a n +(-1)n ln a n =2·3n -1+(-1)n ln(2·3n -1) =2·3n -1+(-1)n [ln 2+(n -1)ln 3] =2·3n -1+(-1)n (ln 2-ln 3)+(-1)n n ln 3,所以S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n ]·(ln 2-ln 3)+[-1+2-3+…+(-1)n n ]ln 3. 所以当n 为偶数时,S n =2×1-3n 1-3+n 2ln 3=3n +n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+⎝ ⎛⎭⎪⎫n -12-n ·ln 3 =3n -n -12ln 3-ln 2-1.综上所述,S n =⎩⎪⎨⎪⎧3n+n 2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化,特别注意在含有字母的数列中对字母的讨论. 【训练1】 求数列1,1+a,1+a +a 2,…,1+a +a 2+…+a n -1的前n 项和S n . 解 若a =1,则a n =1+1+…+1=n , 于是S n =1+2+…+n =n (n +1)2;若a ≠1,则a n =1+a +…+an -1=1-a n 1-a =11-a(1-a n ), 于是S n =1-a 1-a +1-a 21-a +…+1-a n 1-a =11-a [n -(a +a 2+…+a n )]=11-a⎣⎢⎡⎦⎥⎤n -a (1-a n )1-a . 考向二 裂项相消法求和【例2】►在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎪⎫S n -12.(1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .[审题视点] 第(1)问利用a n =S n -S n -1 (n ≥2)后,再同除S n -1·S n 转化为⎩⎨⎧⎭⎬⎫1S n 的等差数列即可求S n .第(2)问求出{b n }的通项公式,用裂项相消求和. 解(1)∵S 2n =a n ⎝⎛⎭⎪⎫S n -12,a n =S n -S n -1 (n ≥2),∴S 2n =(S n -S n -1)⎝ ⎛⎭⎪⎫S n -12,即2S n -1S n =S n -1-S n ,①由题意S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n=1+2(n -1)=2n -1,∴S n =12n -1.(2)又b n =S n 2n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1.使用裂项相消法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.【训练2】 (2011·新课标全国)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6.(1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和.解 (1)设数列{a n }的公比为q .由a 23=9a 2a 6得a 23=9a 24,所以q 2=19.由条件可知q >0,故q =13.由2a 1+3a 2=1,得2a 1+3a 1q =1,所以a 1=13. 故数列{a n }的通项公式为a n =13n . (2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n (n +1)2. 故1b n =-2n (n +1)=-2⎝ ⎛⎭⎪⎫1n -1n +1.1b 1+1b 2+…+1b n=-2⎣⎢⎡ ⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…⎦⎥⎤+⎝ ⎛⎭⎪⎫1n -1n +1 =-2n n +1.所以数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和为-2n n +1. 考向三 错位相减法求和【例3】►(2012·江西)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N +),且S n 的最大值为8. (1)确定常数k ,并求a n ;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫9-2a n 2n 的前n 项和T n .[审题视点] 第(1)问先根据n 的二次函数求最值条件确定k 的值,并利用结论a n =⎩⎪⎨⎪⎧a 1,n =1,S n -S n -1,n ≥2求出通项即可;第(2)问把第(1)问的结果代入后错位相减求和.解 (1)当n =k ∈N +时,S n =-12n 2+kn 取最大值,即 8=S k =-12k 2+k 2=12k 2,故k 2=16,因此k =4, 从而a n =S n -S n -1=92-n (n ≥2). 又a 1=S 1=72,所以a n =92-n . (2)因为b n =9-2a n 2n =n2n -1,T n =b 1+b 2+…+b n =1+22+322+…+n -12n -2+n2n -1,所以T n =2T n -T n =2+1+12+…+12n -2-n2n -1=4-12n -2-n2n -1=4-n +22n -1.(1)一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.【训练3】 已知等差数列{a n }满足a 2=0,a 6+a 8=-10. (1)求数列{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎨⎧a 1+d =0,2a 1+12d =-10,解得⎩⎨⎧a 1=1,d =-1.故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和为S n ,∵a n 2n -1=2-n 2n -1=12n -2-n 2n -1,∴S n=2+1+12+122+…+12n -2-⎝ ⎛⎭⎪⎫1+22+322+…+n 2n -1. 记T n =1+22+322+…+n2n -1,①则12T n =12+222+323+…+n2n ,②①-②得:12T n =1+12+122+…+12n -1-n2n ,∴12T n =1-12n1-12-n 2n .即T n =4⎝⎛⎭⎪⎫1-12n -n 2n -1.∴S n =2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12-4⎝ ⎛⎭⎪⎫1-12n +n 2n -1 =4⎝ ⎛⎭⎪⎫1-12n -4⎝ ⎛⎭⎪⎫1-12n +n 2n -1=n 2n -1.对应学生89规范解答10——求数列{|a n |}的前n 项和问题【命题研究】 通过近三年的高考试题分析,对数列求和的考查是高考命题的重点,常与求数列的通项一起考查,多以解答题的形式出现,难度为中等偏上.【真题探究】► (本小题满分13分)(2012·湖北)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和. [教你审题] 第1步 列方程组求a 1,d ; 第2步 令a n ≤0确定正、负项; 第3步 分类讨论求和.[规范解答] (1)设等差数列{a n }的公差为d , 则a 2=a 1+d ,a 3=a 1+2d , 由题意,得⎩⎨⎧3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8.解得⎩⎨⎧ a 1=2,d =-3或⎩⎨⎧a 1=-4,d =3.(4分)所以由等差数列的通项公式,可得a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7. 故a n =-3n +5或a n =3n -7.(6分)(2)由(1),知当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎨⎧ -3n +7,n =1,2,3n -7,n ≥3.(8分)记数列{|a n |}的前n 项和为S n . 当n =1时,S 1=|a 1|=4;(9分) 当n =2时,S 2=|a 1|+|a 2|=5;(10分) 当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n | =5+(3×3-7)+(3×4-7)+…+(3n -7) =5+(n -2)[2+(3n -7)]2=32n 2-112n +10.当n =2时,满足此式.(12分) 综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n >1. (13分)[阅卷老师手记] 求有关数列{|a n |}的前n 项和的问题,考生经常出现因解题思路不清晰导致出错,如:(1)未想到分类讨论解题;(2)讨论过程中,对a i ≤0(a i ≥0)分别求和时出错.求数列{|a n |}的前n 项和一般步骤如下:第一步:求数列{a n }的前n 项和;第二步:令a n ≤0(或a n ≥0)确定分类标准; 第三步:分两类分别求前n 项和; 第四步:用分段函数形式下结论;第五步:反思回顾:查看{|a n |}的前n 项和与{a n }的前n 项和的关系,以防求错结果.【试一试】 在等比数列{a n }中,a n >0(n ∈N *),公比q ∈(0,1),且a 3a 5+2a 4a 6+a 3a 9=100,又4是a 4与a 6的等比中项. (1)求数列{a n }的通项公式;(2)设b n =log 2a n ,求数列{|b n |}的前n 项和S n . 解 (1)∵a 3a 5+2a 4a 6+a 3a 9=100,∴a 24+2a 4a 6+a 26=100,∴(a 4+a 6)2=100,又a n >0,∴a 4+a 6=10,∵4是a 4与a 6的等比中项, ∴a 4a 6=16,而q ∈(0,1),∴a 4>a 6,∴a 4=8,a 6=2, ∴q =12,a 1=64,∴a n =64·⎝ ⎛⎭⎪⎫12n -1=27-n. (2)b n =log 2a n =7-n ,则数列{b n }的前n 项和为T n =n (13-n )2,∴当1≤n ≤7时,b n ≥0,∴S n =n (13-n )2.当n ≥8时,b n <0,∴S n =b 1+b 2+…+b 7-(b 8+b 9+…+b n ) =-(b 1+b 2+…+b n )+2(b 1+b 2+…+b 7) =-n (13-n )2+2×7×62=n 2-13n +842,∴S n =⎩⎪⎨⎪⎧13n -n 22(1≤n ≤7且n ∈N *),n 2-13n +842(n ≥8且n ∈N *).对应学生279A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=( ).A.8 B.9 C.16 D.17解析S17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.答案 B2.(2013·广州调研)等比数列{a n}的前n项和为S n,若a1=1,且4a1,2a2,a3成等z以差数列,则S4=().A.7 B.8 C.15 D.16解析设数列{a n}的公比为q,则4a2=4a1+a3,∴4a1q=4a1+a1q2,即q2-4q+4=0,∴q=2.∴S4=1-241-2=15.答案 C3.(2013·临沂模拟)在数列{a n}中,a n=1n(n+1),若{a n}的前n项和为2 0132 014,则项数n为().A.2 011 B.2 012 C.2 013 D.2 014解析∵a n=1n(n+1)=1n-1n+1,∴S n=1-1n+1=nn+1=2 0132 014,解得n=2 013.答案 C4.(2012·新课标全国)数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为().A.3 690 B.3 660 C.1 845 D.1 830解析当n=2k时,a2k+1+a2k=4k-1,当n=2k-1时,a2k-a2k-1=4k-3,∴a 2k +1+a 2k -1=2,∴a 2k +1+a 2k +3=2, ∴a 2k -1=a 2k +3,∴a 1=a 5=…=a 61.∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(4×30-1)=30×(3+119)2=30×61=1 830.答案 D二、填空题(每小题5分,共10分)5.(2011·北京)在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q |=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12. 答案 -2 2n -1-126.数列{a n }的前n 项和为S n ,a 1=1,a 2=2,a n +2-a n =1+(-1)n (n ∈N *),则S 100=________.解析 由a n +2-a n =1+(-1)n ,知a 2k +2-a 2k =2,a 2k +1-a 2k -1=0,∴a 1=a 3=a 5=…=a 2n -1=1,数列{a 2k }是等差数列,a 2k =2k . ∴S 100=(a 1+a 3+a 5+…+a 99)+(a 2+a 4+a 6+…+a 100)=50+(2+4+6+…+100)=50+(100+2)×502=2 600.答案 2 600 三、解答题(共25分)7.(12分)(2013·包头模拟)已知数列{x n }的首项x 1=3,通项x n =2n p +nq (n ∈N *,p ,q 为常数),且x 1,x 4,x 5成等差数列.求: (1)p ,q 的值; (2)数列{x n }前n 项和S n .解 (1)由x 1=3,得2p +q =3,又因为x 4=24p +4q ,x 5=25p +5q ,且x 1+x 5=2x 4,得3+25p +5q =25p +8q ,解得p =1,q =1.(2)由(1),知x n =2n +n ,所以S n =(2+22+…+2n )+(1+2+…+n )=2n +1-2+n (n +1)2.8.(13分)已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=12S n (n =1,2,3,…). (1)求数列{a n }的通项公式;(2)设b n =log 32(3a n +1)时,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和T n .解(1)由已知得⎩⎪⎨⎪⎧a n +1=12S n ,a n =12S n -1(n ≥2),得到a n +1=32a n (n ≥2).∴数列{a n }是以a 2为首项,以32为公比的等比数列. 又a 2=12S 1=12a 1=12,∴a n =a 2×⎝ ⎛⎭⎪⎫32n -2=12⎝ ⎛⎭⎪⎫32n -2(n ≥2).又a 1=1不适合上式,∴a n =⎩⎪⎨⎪⎧1,n =1,12⎝ ⎛⎭⎪⎫32n -2,n ≥2.(2)b n =log 32(3a n +1)=log 32⎣⎢⎡⎦⎥⎤32·⎝ ⎛⎭⎪⎫32n -1=n . ∴1b n b n +1=1n (1+n )=1n -11+n. ∴T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=⎝ ⎛⎭⎪⎫11-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -11+n =1-11+n =n n +1.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2012·福建)数列{a n }的通项公式a n =n cos n π2,其前n 项和为S n ,则S 2 012等于( ).A .1 006B .2 012C .503D .0解析 因cos n π2呈周期性出现,则观察此数列求和规律,列项如下:a 1=0,a 2=-2,a 3=0,a 4=4,此4项的和为2.a 5=0,a 6=-6,a 7=0,a 8=8,此4项的和为2.依次类推,得S 2 012=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 2 009+a 2 010+a 2 011+a 2 012)=2 0124×2=1 006.故选A. 答案 A2.(2012·西安模拟)数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=( ).A.212B .6C .10D .11解析 依题意得a n +a n +1=a n +1+a n +2=12,则a n +2=a n ,即数列{a n }中的奇数项、偶数项分别相等,则a 21=a 1=1,S 21=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)+a 21=10(a 1+a 2)+a 21=10×12+1=6,故选B. 答案 B二、填空题(每小题5分,共10分)3.(2013·长沙模拟)等差数列{a n }中有两项a m 和a k (m ≠k ),满足a m =1k ,a k =1m ,则该数列前mk 项之和是S mk =________. 解析 设数列{a n }的首项为a 1,公差为d .则有 ⎩⎪⎨⎪⎧a m =a 1+(m -1)d =1k ,a k =a 1+(k -1)d =1m ,解得⎩⎪⎨⎪⎧a 1=1mk ,d =1mk ,所以S mk =mk ·1mk +mk (mk -1)2·1mk =mk +12. 答案mk +124.设f (x )=4x 4x +2,利用倒序相加法,可求得f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫211+…+f ⎝ ⎛⎭⎪⎫1011的值为________. 解析当x 1+x 2=1时,f (x 1)+f (x 2)=4x 14x 1+2+4x 24x 2+2=2×4x 1+x 2+2×(4x 1+4x 2)4x 1+x 2+(4x 1+4x 2)×2+4=1.设S =f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫211+…+f ⎝ ⎛⎭⎪⎫1011,倒序相加有2S =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫1011+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫211+f ⎝ ⎛⎭⎪⎫911+…+f ⎝ ⎛⎭⎪⎫1011+f ⎝ ⎛⎭⎪⎫111=10,即S =5.答案 5三、解答题(共25分)5.(12分)设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,n ∈N *. (1)求数列{a n }的通项;(2)设b n =na n,求数列{b n }的前n 项和S n .思维启迪:(1)由已知写出前n -1项之和,两式相减.(2)b n =n ·3n 的特点是数列{n }与{3n }之积,可用错位相减法.解 (1)∵a 1+3a 2+32a 3+…+3n -1a n =n3,①∴当n ≥2时, a 1+3a 2+32a 3+…+3n -2a n -1=n -13,②①-②得3n -1a n =13,∴a n =13n .在①中,令n =1,得a 1=13,适合a n =13n ,∴a n =13n . (2)∵b n =na n,∴b n =n ·3n .∴S n =3+2×32+3×33+…+n ·3n ,③ ∴3S n =32+2×33+3×34+…+n ·3n +1.④ ④-③得2S n =n ·3n +1-(3+32+33+…+3n ), 即2S n =n ·3n +1-3(1-3n )1-3,∴S n =(2n -1)3n +14+34.探究提高 解答本题的突破口在于将所给条件式视为数列{3n -1a n }的前n 项和,从而利用a n 与S n 的关系求出通项3n -1a n ,进而求得a n ;另外乘公比错位相减是数列求和的一种重要方法,但值得注意的是,这种方法运算过程复杂,运算量大,应加强对解题过程的训练,重视运算能力的培养.6.(13分)(2012·泰州模拟)将数列{a n }中的所有项按每一行比上一行多两项的规则排成如下数表:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 …已知表中的第一列数a 1,a 2,a 5,…构成一个等差数列,记为{b n },且b 2=4,b 5=10.表中每一行正中间一个数a 1,a 3,a 7,…构成数列{c n },其前n 项和为S n .(1)求数列{b n }的通项公式;(2)若上表中,从第二行起,每一行中的数按从左到右的顺序均构成等比数列,公比为同一个正数,且a 13=1. ①求S n ;②记M ={n |(n +1)c n ≥λ,n ∈N *},若集合M 的元素个数为3,求实数λ的取值范围.解 (1)设等差数列{b n }的公差为d , 则⎩⎨⎧ b 1+d =4,b 1+4d =10,解得⎩⎨⎧b 1=2,d =2, 所以b n =2n .(2)①设每一行组成的等比数列的公比为q .由于前n 行共有1+3+5+…+(2n -1)=n 2个数,且32<13<42,a 10=b 4=8, 所以a 13=a 10q 3=8q 3,又a 13=1,所以解得q =12. 由已知可得c n =b n q n -1,因此c n =2n ·⎝ ⎛⎭⎪⎫12n -1=n 2n -2. 所以S n =c 1+c 2+c 3+…+c n =12-1+220+321+…+n 2n -2, 12S n =120+221+…+n -12n -2+n2n -1, 因此12S n =12-1+120+121+…+12n -2-n 2n -1=4-12n -2-n2n -1=4-n +22n -1,解得S n =8-n +22n -2.②由①知c n =n 2n -2,不等式(n +1)c n ≥λ,可化为n (n +1)2n -2≥λ. 设f (n )=n (n +1)2n -2, 计算得f (1)=4,f (2)=f (3)=6,f (4)=5,f (5)=154. 因为f (n +1)-f (n )=(n +1)(2-n )2n -1,所以当n ≥3时,f (n +1)<f (n ).因为集合M 的元素个数为3,所以λ的取值范围是(4,5].。

2014版高考数学知识点讲座:考点24 数列的综合问题与数列的应用(解析版)

2014版高考数学知识点讲座:考点24 数列的综合问题与数列的应用(解析版)

【命题探究】2014版高考数学知识点讲座:考点24数列的综合问题与数列的应用(解析版)加(*)号的知识点为了解内容,供学有余力的学生学习使用一。

考纲目标等差、等比数列的综合运用;灵活运用数列知识、解决有关数列的综合问题. 二.知识梳理(一)。

数列的知识结构等比数列等差数列表示方法图像与函数的关系前n 项和通项定义数列正整数集上函数及性质数列知识结构(二).数列总论1。

数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想.2.等差、等比数列中,a 1、n a 、n 、d (q )、nS “知三求二”,体现了方程(组)的思想、整体思想,有时用到换元法3。

求等比数列的前n 项和时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想4.数列求和的基本方法有:公式法,倒序相加法,错位相减法,拆项法,裂项法,累加法,等价转化等. (三).等差数列1相关公式: (1)定义:),1(1为常数d n d a an n ≥=-+(2)通项公式:d n a an)1(1-+=(3)前n 项和公式:d n n na a a n S n n2)1(2)(11-+=+=(4)通项公式推广:d m n a am n)(-+=2等差数列}{na 的一些性质 (1)对于任意正整数n,都有121a a a a n n -=-+(2)}{na 的通项公式)2()(2112a a n a a an-+-=(3)对于任意的整数s r q p ,,,,如果s r q p +=+,那么s r q pa a a a +=+(4)对于任意的正整数r q p ,,,如果q r p 2=+,则q r pa a a 2=+(5)对于任意的正整数n 〉1,有112-++=n n na a a(6)对于任意的非零实数b,数列}{nba 是等差数列,则}{na 是等差数列 (7)已知}{nb 是等差数列,则}{n nb a±也是等差数列(8)}{},{},{},{},{23133122---n n n n na a a a a 等都是等差数列(9)n S 是等差数列{}na 的前n 项和,则kk k k kS S S S S232,,-- 仍成等差数列,即)(323m m mS S S-=(10)若)(n m S S n m≠=,则0=+n n S(11)若p S q S q p==,,则)(q p S q p +-=+(12)bn an Sn+=2,反之也成立(四).等比数列 1相关公式: (1)定义:)0,1(1≠≥=+q n q a ann(2)通项公式:11-=n nq a a(3)前n项和公式:⎪⎩⎪⎨⎧≠--==1q 1)1(1q11qq a na S n n (4)通项公式推广:mn m nq a a-=2等比数列}{na 的一些性质 (1)对于任意的正整数n ,均有121a a a ann =+(2)对于任意的正整数s r q p ,,,,如果s r q p +=+,则s r q pa a a a =(3)对于任意的正整数r q p ,,,如果r p q +=2,则2qr p a a a =(4)对于任意的正整数n>1,有112+-=n n na a a(5)对于任意的非零实数b ,}{nba 也是等比数列 (6)已知}{nb 是等比数列,则}{nn b a 也是等比数列(7)如果0>na ,则}{log n a a 是等差数列 (8)数列}{logn aa 是等差数列,则}{n a 是等比数列(9)}{},{},{},{},{23133122---n n n n na a a a a等都是等比数列(10)nS 是等比数列{}na 的前n 项和, ①当q =-1且k 为偶数时,kk k k kS S S S S 232,,--不是等比数列 ②当q ≠-1或k 为奇数时,kk k kkS S S SS 232,,-- 仍成等比数列(五)。

2014届高考数学(理科)二轮复习专题讲义:专题三 第2讲 数列的综合应用

2014届高考数学(理科)二轮复习专题讲义:专题三 第2讲 数列的综合应用

2014届高考数学(理科)二轮复习专题讲义:专题三 第2讲 数列的综合应用一、基础知识要记牢数列求和的关键是分析其通项,数列的基本求和方法有公式法、错位相减法、裂(拆)项相消法、分组法、倒序相加法和并项法等.二、经典例题领悟好[例1] 已知函数f (x )=x 2+bx 为偶函数,数列{a n }满足a n +1=2f (a n -1)+1,且a 1=3,a n >1.(1)设b n =log 2(a n -1),求证:数列{b n +1}为等比数列; (2)设c n =nb n ,求数列{c n }的前n 项和S n . [解] (1)∵函数f (x )=x 2+bx 为偶函数,∴b =0, ∴f (x )=x 2,∴a n +1=2f (a n -1)+1=2(a n -1)2+1, ∴a n +1-1=2(a n -1)2.又a 1=3,a n >1,b n =log 2(a n -1),∴b 1=log 2(a 1-1)=1,∴b n +1+1b n +1=log 2(a n +1-1)+1log 2(a n -1)+1=log 2[2(a n -1)2]+1log 2(a n -1)+1=2+2log 2(a n -1)log 2(a n -1)+1=2, ∴数列{b n +1}是首项为2,公比为2的等比数列. (2)由(1)得,b n +1=2n ,∴b n =2n -1, ∴c n =nb n =n 2n -n ,设A n =1×2+2×22+3×23+…+n ·2n , 则2A n =1×22+2×23+3×24+…+n ·2n +1,∴-A n =2+22+23+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1=2n +1-n ·2n +1-2,∴A n =(n -1)2n +1+2.设B n =1+2+3+4+…+n ,则B n =n (n +1)2,∴S n =A n -B n =(n -1)2n +1+2-n (n +1)2.(1)利用错位相减法求和时,应注意:①在写出“S n ”与“qS n ”的表达式时应注意两式“错项对齐”;②当等比数列的公比为字母时,应对字母是否为1进行讨论.(2)利用裂项相消法求和时,应注意抵消后并不一定只剩第一项和最后一项,也可能前面剩两项,后面也剩两项.三、预测押题不能少1.设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且3a 2是a 1+3和a 3+4的等差中项.(1)求数列{a n }的通项公式;(2)设b n =a n (a n +1)(a n +1+1),数列{b n }的前n 项和为T n ,求证:T n <12.解:(1)由已知,得⎩⎪⎨⎪⎧a 1+a 2+a 3=7,(a 1+3)+(a 3+4)2=3a 2.解得a 2=2.设数列{a n }的公比为q ,则a 1q =2, ∴a 1=2q ,a 3=a 1q 2=2q .由S 3=7,可知2q +2+2q =7,∴2q 2-5q +2=0, 解得q 1=2,q 2=12.由题意,得q >1,∴q =2.∴a 1=1. 故数列{a n }的通项公式为a 2=2n -1.(2)证明:∵b n =a n (a n +1)(a n +1+1)=2n -1(2n -1+1)(2n +1)=12n -1+1-12n +1, ∴T n =⎝⎛⎭⎫120+1-121+1+⎝⎛⎭⎫121+1-122+1+122+1-123+1+…+⎝⎛⎭⎫12n -1+1-12n +1=11+1-12n+1=12-12n +1<12.[例2] 某公司一下属企业从事某种高科技产品的生产,该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%,预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产,设第n 年年底企业上缴资金后的剩余资金为a n 万元.(1)用d 表示a 1,a 2,并写出a n +1与a n 的关系式;(2)若公司希望经过m (m ≥3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d 的值(用m 表示).[解] (1)由题意得a 1=2 000(1+50%)-d =3 000-d , a 2=a 1(1+50%)-d =32a 1-d =4 500-52d .a n +1=a n (1+50%)-d =32a n -d .(2)由(1)得a n =32a n -1-d=32⎝⎛⎭⎫32a n -2-d -d =⎝⎛⎭⎫322a n -2-32d -d …=⎝⎛⎫32n -1a 1-d 223331+222n ⎡⎤⎛⎫⎛⎫+++⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦-…. 整理得a n =⎝⎛⎭⎫32n -1(3 000-d )-2d ⎝⎛⎭⎫32n -1-1=⎝⎛⎭⎫32n -1(3 000-3d )+2d . 由题意,a m =4 000,即⎝⎛⎭⎫32m -1(3 000-3d )+2d =4 000.解得d =⎝⎛⎭⎫32m -2×1 000⎝⎛⎭⎫32m -1=1 000(3m -2m +1)3m -2m .故该企业每年上缴资金d 的值为1 000(3m -2m +1)3m -2m时,经过m (m ≥3)年企业的剩余资金为4 000万元.数列应用题常见模型(1)等差模型:即问题中增加(或减少)的量是一个固定量,此量即为公差. (2)等比模型:即问题中后一量与前一量的比是固定常数,此常数即为公比. (3)a n 与a n +1型,即问题中给出前后两项关系不固定,可考虑a n 与a n +1的关系. 二、预测押题不能少2.某个集团公司下属的甲、乙两个企业在2013年1月的产值都为a 万元,甲企业每个月的产值比前一个月的产值增加的数值相等,乙企业每个月的产值比前一个月的产值增加的百分数相等,到2014年1月两个企业的产值又相等.(1)到2013年7月,试比较甲、乙两个企业的产值的大小,并说明理由;(2)甲企业为了提高产能,决定用3.2万元买一台仪器,从2014年2月1日投放使用,从启用的第一天起连续使用,第n 天的维修保养费为n +4910元(n ∈N *),求前n 天这台仪器的日平均耗资(含仪器的购置费),并求日平均耗资最小时使用了多少天.解:(1)到2013年7月甲企业的产值比乙企业的产值大.理由如下:设从2013年1月到2014年1月甲企业每个月的产值(单位:万元)分别是a 1,a 2,…,a 13,乙企业每个月的产值(单位:万元)分别是b 1,b 2,…,b 13,由题意知{a n }成等差数列,{b n }成等比数列,∴a 7=12(a 1+a 13),b 7=b 1b 13.∵a 1=b 1,a 13=b 13,∴a 7=12(a 1+a 13)>a 1a 13=b 1b 13=b 7,即2013年7月甲企业的产值比乙企业的产值大. (2)设一共用了n 天,则n 天的平均耗资为p (n )元,则p (n )=3.2×104+⎝⎛⎭⎫5+n +4910n2n=3.2×104n +n 20+9.92.当且仅当3.2×104n =n20,即n =800时,p (n )有最小值,故日平均耗资最小时使用了800天.数列中的综合问题,大多与函数、方程、不等式及解析几何交汇,考查利用函数与方程的思想及分类讨论思想方法解决数列中的问题及用解决不等式的方法研究数列的性质,数列与解析几何交汇,主要涉及点列问题.[例1] (2013·湖北高考)已知等比数列{a n }满足:|a 2-a 3|=10,a 1a 2a 3=125. (1)求数列{a n }的通项公式;(2)是否存在正整数m ,使得1a 1+1a 2+…+1a m≥1?若存在,求m 的最小值;若不存在,说明理由.(1)学审题——审条件之审视结构条件―→求出a 1,q 的值―→写出{a n }的通项公式. (2)学审题——审条件之审视结构数列{a n }通项公式―→数列⎩⎨⎧⎭⎬⎫1a n 的类型―→求其和――→放缩法数列和范围―→结论. 用“思想”——尝试用“分类讨论思想”解题(1)设等比数列{a n }的公比为q ,则由已知可得⎩⎪⎨⎪⎧a 31q 3=125,|a 1q -a 1q 2|=10,解得⎩⎪⎨⎪⎧a 1=53,q =3,或⎩⎪⎨⎪⎧a 1=-5,q =-1. 故a n =53·3n -1,或a n =-5·(-1)n -1.(2)若a n =53·3n -1,则1a n =35·⎝⎛⎭⎫13n -1,故⎩⎨⎧⎭⎬⎫1a n 是首项为35,公比为13的等比数列, 从而∑n =1m 1a n =35·⎣⎡⎦⎤1-⎝⎛⎭⎫13m 1-13=910·⎣⎡⎦⎤1-⎝⎛⎭⎫13m <910<1. 若a n =-5·(-1)n -1,则1a n =-15(-1)n -1,故⎩⎨⎧⎭⎬⎫1a n 是首项为-15,公比为-1的等比数列,从而∑n =1m1a n =⎩⎪⎨⎪⎧-15,m =2k -1(k ∈N *),0,m =2k (k ∈N *),故∑n =1m1a n<1. 综上,对任何正整数m ,总有∑n =1m1a n<1. 故不存在正整数m ,使得1a 1+1a 2+…+1a m≥1成立.(1)数列与不等式的综合问题考查有:①判断数列问题中的一些不等关系;②以数列为载体,考查不等式的恒成立问题;③考查与数列问题有关的不等式的证明问题;④有关的最值问题.(2)在数列中应用分类讨论思想的常见题目类型:①公比q 的值不明确,求和时对q 是否为1讨论;②用n 表示a n 和S n 时,对n 分n =1与n ≥2讨论;③对项数n 的奇偶性讨论.二、预测押题不能少1.已知等比数列{a n }满足a n +1+a n =9·2n -1,n ∈N *.(1)求数列{a n }的通项公式;(2)设数列{a n }的前n 项和为S n ,若不等式S n >ka n -2对一切n ∈N *恒成立,求实数k 的取值范围.解:(1)设等比数列{a n }的公比为q , ∵a n +1+a n =9·2n -1,n ∈N *,∴a 2+a 1=9,a 3+a 2=18, ∴q =a 3+a 2a 2+a 1=189=2,∴2a 1+a 1=9,∴a 1=3.∴a n =3·2n -1,n ∈N *,经验证,满足题意.(2)由(1)知S n =a 1(1-q n )1-q =3(1-2n )1-2=3(2n -1),∴3(2n -1)>k ·3·2n -1-2,∴k <2-13·2n 1.令f (n )=2-13·2n -1,则f (n )随n 的增大而增大,∴f (n )min =f (1)=2-13=53.∴k <53.∴实数k 的取值范围为⎝⎛⎭⎫-∞,53.一、经典例题领悟好[例2] (2013·成都市检测)设函数f (x )=x 2,过点C 1(1,0)作x 轴的垂线l 1交函数f (x )的图像于点A 1,以A 1为切点作函数f (x )图像的切线交x 轴于点C 2,再过C 2作x 轴的垂线l 2交函数f (x )图像于点A 2,…,以此类推得点A n ,记A n 的横坐标为a n ,n ∈N *.(1)证明数列{a n }为等比数列并求出其通项公式;(2)设直线l n 与函数g (x )=log 12x 的图像相交于点B n ,记b n =n OA ·n OB (其中O 为坐标原点),求数列{b n }的前n 项和S n .[解] (1)证明:以点A n -1(a n -1,a 2n -1)(n ≥2)为切点的切线方程为y -a 2n -1=2a n -1(x -a n -1).当y =0时,得x =12a n -1,即a n =12a n -1.又∵a 1=1,∴数列{a n }是以1为首项,12为公比的等比数列.∴通项公式为a n =⎝⎛⎭⎫12n -1.(2)据题意,得B n ⎝⎛⎭⎫⎝⎛⎭⎫12n -1,n -1. ∴b n =n OA ·n OB =⎝⎛⎭⎫14n -1+⎝⎛⎭⎫14n -1·(n -1)=n ⎝⎛⎭⎫14n -1. ∵S n =1×⎝⎛⎭⎫140+2×⎝⎛⎭⎫141+…+n ×⎝⎛⎭⎫14n -1, 14S n =1×⎝⎛⎭⎫141+2×⎝⎛⎭⎫142+…+n ×⎝⎛⎭⎫14n , 两式相减,得34S n =1×⎝⎛⎭⎫140+1×⎝⎛⎭⎫141+…+⎝⎛⎭⎫14n -1-n ×⎝⎛⎭⎫14n =1-⎝⎛⎭⎫14n1-14-n ×⎝⎛⎭⎫14n.化简,得S n =169-⎝⎛⎭⎫4n 3+169×⎝⎛⎭⎫14n =169-3n +49×4n -1.对于数列与几何图形相结合的问题,通常利用几何知识,结合图形,得出关于数列相邻项a n 与a n +1之间的关系.根据这个关系和所求内容变形,得出通项公式或其他所求结论.二、预测押题不能少2.已知点A (1,0),B (0,1)和互不相同的点P 1,P 2,P 3,…,P n ,…,满足n OP =a n OA +b n OB (n ∈N *),其中{a n },{b n }分别为等差数列和等比数列,O 为坐标原点,若P 1是线段AB 的中点.(1)求a 1,b 1的值.(2)点P 1,P 2,P 3,…,P n ,…能否在同一条直线上?请证明你的结论. 解:(1)由P 1是线段AB 的中点⇒1OP =12OA +12OB , 又1OP =a 1OA +b 1OB ,且OA ,OB 不共线, 由平面向量基本定理,知a 1=b 1=12.(2)由n OP =a n OA +b n OB (n ∈N *)⇒n OP =(a n ,b n ),设{a n }的公差为d ,{b n }的公比为q ,则由于P 1,P 2,P 3,…,P n ,…互不相同,所以d =0,q =1不会同时成立.若d =0,则a n =a 1=12(n ∈N *)⇒P 1,P 2,P 3,…,P n ,…都在直线x =12上;若q =1,则b n =12为常数列⇒P 1,P 2,P 3,…,P n ,…都在直线y =12上;若d ≠0且q ≠1,P 1,P 2,P 3,…,P n ,…在同一条直线上⇔1n n P P -=(a n -a n -1,b n -b n -1)与1n n P P +=(a n +1-a n ,b n +1-b n )始终共线(n >1,n ∈N *)⇔(a n -a n -1)(b n +1-b n )-(a n +1-a n )(b n -b n -1)=0 ⇔d (b n +1-b n )-d (b n -b n -1)=0⇔b n +1-b n =b n -b n -1⇔q =1,这与q ≠1矛盾,所以当d ≠0且q ≠1时,P 1,P 2,P 3,…P n ,…不可能在同一条直线上.1.(2013·郑州质检)设{a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1=( )A .18B .20C .22D .24解析:选B 由S 10=S 11,得a 11=S 11-S 10=0.由于a 11=a 1+(11-1)×d ,所以a 1=a 11+(1-11)×d =0+(-10)×(-2)=20.2.(2013·浙江省名校联考)已知每项均大于零的数列{a n }中,首项a 1=1且前n 项和S n满足S n S n -1-S n -1S n =2S n S n -1(n ∈N *且n ≥2),则a 81=( )A .638B .639C .640D .641解析:选C 由已知S n S n -1-S n -1S n =2S n S n -1,可得S n -S n -1=2,∴{S n }是以1为首项,2为公差的等差数列,故S n =2n -1,S n =(2n -1)2,∴a 81=S 81-S 80=1612-1592=640.3.(2013·济南模拟)数列{a n }中,a n +1+(-1)n a n =2n -1,则数列{a n }的前12项和等于( )A .76B .78C .80D .82解析:选B 由已知a n +1+(-1)n a n =2n -1,得a n +2+(-1)n +1a n +1=2n +1,得a n +2+a n =(-1)n (2n -1)+(2n +1).取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.4.已知曲线C :y =1x(x >0)及两点A 1(x 1,0)和A 2(x 2,0),其中x 2>x 1>0.过A 1,A 2分别作x轴的垂线,交曲线C 于B 1,B 2两点,直线B 1B 2与x 轴交于点A 3(x 3,0),那么( )A .x 1,x 32,x 2成等差数列B .x 1,x 32,x 2成等比数列C .x 1,x 3,x 2成等差数列D .x 1,x 3,x 2成等比数列解析:选A 由题意,B 1,B 2两点的坐标分别为⎝⎛⎭⎫x 1,1x 1,⎝⎛⎭⎫x 2,1x 2, 所以直线B 1B 2的方程为y =-1x 1x 2(x -x 1)+1x 1,令y =0,得x =x 1+x 2,∴x 3=x 1+x 2,因此,x 1,x 32,x 2成等差数列.5.(2013·江西宜春模拟)如图所示,当n ≥2时,将若干点摆成三角形图案,每条边(包括两个端点)有n 个点,若第n 个图案中总的点数记为a n ,则a 1+a 2+a 3+…+a 10=( )A .126B .135C .136D .140解析:选C 由已知图形可知,当n ≥2时,a n =3(n -1),∴a 1+a 2+a 3+…+a 10=1+3+6+…+27=1+9×(3+27)2=136.6.(2013·辽宁省五校联考)设等差数列{a n }的前n 项和为S n ,已知(a 4-1)3+2 013(a 4-1)=1,(a 2 010-1)3+2 013(a 2 010-1)=-1,则下列结论中正确的是( )A .S 2 013=2 013,a 2 010<a 4B .S 2 013=2 013,a 2 010>a 4C .S 2 013=2 012,a 2 010≤a 4D .S 2 013=2 012,a 2 010≥a 4解析:选A 设f (x )=x 3+2 013x ,显然f (x )为奇函数和增函数,由已知得f (a 4-1)=-f (a 2010-1),所以f (a 4-1)=f (-a 2 010+1),a 4-1=-a 2 010+1,a 4+a 2 010=2,S 2 013=2 013(a 1+a 2 013)2=2 013;显然1>-1,即f (a 4-1)>f (a 2 010-1),又f (x )为增函数,故a 4-1>a 2 010-1,即a 4>a 2 010.7.函数y =x 2(x >0)的图像在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *,若a 1=16,则a 1+a 3+a 5=________.解析:∵y ′=2x ,∴k =y ′| x =a k =2a k , 故切线方程为y -a 2k =2a k (x -a k ),令y =0得x =12a k ,即a k +1=12a k .∴{a n }是以16为首项,12为公比的等比数列,即a n =16·⎝⎛⎭⎫12n -1. ∴a 1+a 3+a 5=16+4+1=21. 答案:218.(2013·江西高考)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于________.解析:设每天植树的棵数组成的数列为{a n },由题意可知它是等比数列,且首项为2,公比为2,所以由题意可得2(1-2n )1-2≥100,即2n ≥51,而25=32,26=64,n ∈N *,所以n ≥6.答案:69.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项为2n ,则数列{a n }的前n 项和S n =________.解析:∵a n +1-a n =2n , ∴当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n .当n =1时,a 1=2也适合上式,∴a n =2n (n ∈N *).∴S n =2-2n +11-2=2n +1-2.答案:2n +1-210.(2013·惠州市调研)已知向量p =(a n,2n ),向量q =(2n +1,-a n +1),n ∈N *,向量p 与q 垂直,且a 1=1.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =log 2a n +1,求数列{a n ·b n }的前n 项和S n . 解:(1)∵向量p 与q 垂直,∴2n a n +1-2n +1a n =0,即2n a n +1=2n +1a n ,∴a n +1a n=2,∴{a n }是以1为首项,2为公比的等比数列, ∴a n =2n -1.(2)∵b n =log 2a n +1,∴b n =n ,∴a n ·b n =n ·2n -1,∴S n =1+2·2+3·22+4·23+…+n ·2n -1,①∴2S n =1·2+2·22+3·23+4·24+…+n ·2n ,②①-②得,-S n =1+2+22+23+24+…+2n -1-n ·2n =1-2n1-2-n ·2n =(1-n )2n -1, ∴S n =1+(n -1)2n .11.(2013·南昌市模拟)设正项数列{a n }的前n 项和为S n ,若{a n }和{S n }都是等差数列,且公差相等.(1)求{a n }的通项公式;(2)若a 1,a 2,a 5恰为等比数列{b n }的前三项,记数列c n =24b n (12b n -1)2,数列{c n }的前n 项和为T n .求证:对任意n ∈N *,都有T n <2.解:(1)设{a n }的公差为d , 则S n = d 2n 2+⎝⎛⎭⎫a 1-d 2n =d 2·n ,且a 1-d 2=0. 又d =d 2,所以d =12, a 1=d 2=14,a n =2n -14. (2)证明:易知b n =14×3n -1,∴c n =2×3n (3n -1)2. 当n ≥2时,2×3n (3n -1)2<2×3n (3n -1)(3n -3)=2×3n -1(3n -1)(3n -1-1)=13n -1-1-13n -1, ∴当n ≥2时,T n =32+2×32(32-1)2+…+2×3n (3n -1)2<32+⎝⎛⎭⎫12-132-1+⎝⎛⎭⎫132-1-133-1+…+13n -1-1-13n -1=2-13n -1<2,且T 1=32<2, 故对任意n ∈N *,都有T n <2.12.(2013·湖北襄阳调研)已知数列{a n },如果数列{b n }满足b 1=a 1,b n =a n +a n -1,n ≥2,n ∈N *,则称数列{b n }是数列{a n }的“生成数列”.(1)若数列{a n }的通项为a n =n ,写出数列{a n }的“生成数列”{b n }的通项公式;(2)若数列{c n }的通项为c n =2n +b (其中b 是常数),试问数列{c n }的“生成数列”{q n }是否是等差数列,请说明理由;(3)已知数列{d n }的通项为d n =2n +n ,求数列{d n }的“生成数列”{p n }的前n 项和T n . 解:(1)当n ≥2时,b n =a n +a n -1=2n -1,当n =1时,b 1=a 1=1适合上式,∴b n =2n -1(n ∈N *).(2)q n =⎩⎪⎨⎪⎧2+b ,n =1,4n +2b -2,n ≥2, 当b =0时,q n =4n -2,由于q n +1-q n =4,所以此时数列{c n }的“生成数列”{q n }是等差数列.当b ≠0时,由于q 1=c 1=2+b ,q 2=6+2b ,q 3=10+2b ,此时q 2-q 1≠q 3-q 2,所以数列{c n }的“生成数列”{q n }不是等差数列.综上,当b =0时,{q n }是等差数列;当b ≠0时,{q n }不是等差数列.(3)p n =⎩⎪⎨⎪⎧3,n =1,3·2n -1+2n -1,n ≥2, 当n >1时,T n =3+(3·2+3)+(3·22+5)+…+(3·2n -1+2n -1), ∴T n =3+3(2+22+23+…+2n -1)+(3+5+7+…+2n -1)=3·2n +n 2-4. 又n =1时,T 1=3,适合上式,∴T n =3·2n +n 2-4.。

第六章§6.4数列求和、数列的综合应用

第六章§6.4数列求和、数列的综合应用
已知数列{ an } 的前 n 项和为 Sn ꎬa1 = 5ꎬnSn+1 -( n+ 1) Sn = n2 +n.
{ } (1)求证:数列 Sn 为等差数列ꎻ n
������������������������������������������������������������������������������
所以 Tn = 6+(2n-3)2n+1.
二、数列的综合应用问题
������������������������������������������������������������������������������������������������������������������������������
( 3) 倒序相加法求和的特征是首尾相加为定值. (4) 裂项相消法求和一般与不等式相联系ꎬ这类问题要注意 对常见放缩及裂项公式的理解和记忆. 利用裂项相消法求和时ꎬ应注意: ①抵消后并不一定只剩下第一项和最后一项ꎬ也有可能前 面剩两项ꎬ后面也剩两项. ②有些情况下ꎬ裂项时需要调整前面的系数ꎬ使裂开后的两 项之差和系数之积与原项相等.
1 (1) 对 n2 的放缩ꎬ根据不同的要求ꎬ大致有三种情况:
1 n2
< n
1 2-



1 -


1 n
( n≥2) ꎻ
( ) 1
n2

< n




1 2
1-1 n-1 n+1
( n≥2) ꎻ
( ) 1 1
n2
< n2 -
1 4
=2
1-1 2n-1 2n+1
( n≥1) .
1 (2) 对 的放缩ꎬ根据不同的要求ꎬ大致有两种情况:

2014年高考新课标数学 数列专题讲义(教师版)

2014年高考新课标数学 数列专题讲义(教师版)

6.数列的分类: (了解) 1) 按照数列的项数分:有穷数列、无穷数列。 2) 按照任何一项的绝对值是否不超过某一正数分:有界数列、无界数列。 3)从函数角度考虑分:递增数列、递减数列、常数列、摆动数列。 7、求通项公式的方法归纳:(掌握 ) ( 1)根据初始值以及递推公式的情况下,求数列的通项公式,常用的方法有:一是根据初 始值归纳猜想数列的通项公式,然后再证明;二是利用递推法求解;
真题回顾 ----9 在等差数列 {an } 中, a 2 1 , a 4 5 则 {an } 的前 5 项和 S 5 =( A.7 B.15 C.20 ) D.25
5、等差数列的性质(易考考点,重点掌握) ( m, n, p, q N )
*
( 1)在等差数列 {an } 中,从第 2 项起,每一项是与它相邻的两项的等差中项; ( 2)等差中项公式的变式: 2an anm an m ; ( 3)在等差数列 {an } 中,相隔等距离的项组成的数列是等差数列。 Sn , S2 n n , S3n 2 n 成 等差数列; ( 4)等差数列 {an } 中,对任意的 m, n N * ,均有 an am (n m)d ;
公差计算公式: d
an a1 a am ( n≠1) ;d n ( n≠ m) n 1 nm
( 5)若 m n p q ,则 am an a p aq ,反之不成立! ( 6)若项数是偶数,设共有 2n 项,则:1) S偶 S奇 = nd ; 2)
S 奇 an = ; S偶 an 1 S奇 n = ; S偶 n 1
课本中推导该公式的方法是:倒序相加,必须理解掌握。
a1 a n S n a1 a 2 a n 2 n n d d 变式: a1 (n 1) a n (n 1) ( ); 2 2 S a n 2 n 1 2n 1

2014届高考数学一轮复习(基础知识+高频考点+解题训练)《数列求和》教学案

2014届高考数学一轮复习(基础知识+高频考点+解题训练)《数列求和》教学案

第四节数_列_求_和[知识能否忆起]一、公式法1.如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n 项和公式,注意等比数列公比q 的取值情况要分q =1或q ≠1.2.一些常见数列的前n 项和公式: (1)1+2+3+4+…+n =n n +2;(2)1+3+5+7+…+2n -1=n 2; (3)2+4+6+8+…+2n =n 2+n . 二、非等差、等比数列求和的常用方法 1.倒序相加法如果一个数列{a n },首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法,等差数列的前n 项和即是用此法推导的.2.分组转化求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和而后相加减.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,等比数列的前n 项和就是用此法推导的.4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.[小题能否全取]1.(2012·沈阳六校联考)设数列{(-1)n}的前n 项和为S n ,则对任意正整数n ,S n =( ) A.n -n-1]2B.-n -1+12C.-1n+12D.-n-12解析:选D 因为数列{(-1)n}是首项与公比均为-1的等比数列,所以S n =-1--n-1--=-n-12.2.等差数列{a n }的通项公式为a n =2n +1,其前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( )A .120B .70C .75D .100 解析:选C ∵S n =n a 1+a n2=n (n +2),∴S n n =n +2.故S 11+S 22+…+S 1010=75. 3.数列a 1+2,…,a k +2k ,…,a 10+20共有十项,且其和为240,则a 1+…+a k +…+a 10的值为( )A .31B .120C .130D .185解析:选C a 1+…+a k +…+a 10=240-(2+…+2k +…+20)=240-+202=240-110=130.4.若数列{a n }的通项公式为a n =2n+2n -1,则数列{a n }的前n 项和为________. 解析:S n =-2n1-2+n+2n -2=2n +1-2+n 2.答案:2n +1+n 2-25.数列12×4,14×6,16×8,…,12n n +,…的前n 项和为________.解析:因a n =12nn +=14⎝ ⎛⎭⎪⎫1n -1n +1 则S n =14⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=14⎝ ⎛⎭⎪⎫1-1n +1=nn +.答案:n n +数列求和的方法(1)一般的数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和.(2)解决非等差、等比数列的求和,主要有两种思路:①转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.②不能转化为等差或等比数列的数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.典题导入[例1] (2011·山东高考)等比数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2,a 3中的任何两个数不在下表的同一列.(1)求数列{a n }的通项公式;(2)若数列{b n }满足:b n =a n +(-1)nln a n ,求数列{b n }的前2n 项和S 2n . [自主解答] (1)当a 1=3时,不合题意;当a 1=2时,当且仅当a 2=6,a 3=18时,符合题意; 当a 1=10时,不合题意.因此a 1=2,a 2=6,a 3=18.所以公比q =3,故a n =2·3n -1.(2)因为b n =a n +(-1)n ln a n =2·3n -1+(-1)n ln(2·3n -1)=2·3n -1+(-1)n(ln 2-ln 3)+(-1)nn ln 3,所以S 2n =b 1+b 2+…+b 2n =2(1+3+…+32n -1)+[-1+1-1+…+(-1)2n](ln 2-ln 3)+[-1+2-3+…+(-1)2n2n ]ln 3=2×1-32n1-3+n ln 3=32n+n ln 3-1.由题悟法分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和. (2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.以题试法1.已知数列{x n }的首项x 1=3,通项x n =2n p +nq (n ∈N *,p ,q 为常数),且x 1,x 4,x 5成等差数列.求:(1)p ,q 的值;(2)数列{x n }前n 项和S n 的公式.解:(1)由x 1=3,得2p +q =3,又因为x 4=24p +4q ,x 5=25p +5q ,且x 1+x 5=2x 4,得3+25p +5q =25p +8q ,解得p =1,q =1.(2)由(1),知x n =2n+n ,所以S n =(2+22+…+2n )+(1+2+…+n )=2n +1-2+n n +2.典题导入[例2] (2012·江西高考)已知数列{a n }的前n 项和S n =kc n-k (其中c ,k 为常数),且a 2=4,a 6=8a 3.(1)求a n ;(2)求数列{na n }的前n 项和T n .[自主解答] (1)由S n =kc n -k ,得a n =S n -S n -1=kc n -kc n -1(n ≥2).由a 2=4,a 6=8a 3 ,得kc (c -1)=4,kc 5(c -1)=8kc 2(c -1),解得⎩⎪⎨⎪⎧c =2,k =2,所以a 1=S 1=2,a n =kc n-kc n -1=2n(n ≥2),于是a n =2n.(2)T n =∑i =1nia i =∑i =1ni ·2i,即T n =2+2·22+3·23+4·24+…+n ·2n.T n =2T n -T n =-2-22-23-24-…-2n +n ·2n +1=-2n+1+2+n ·2n +1=(n -1)2n +1+2.由题悟法用错位相减法求和应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.以题试法2.(2012·济南模拟)已知等比数列{a n }的前n 项和为S n ,且满足S n =3n+k . (1)求k 的值及数列{a n }的通项公式; (2)若数列{b n }满足a n +12=(4+k )a n b n ,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,由a n =S n -S n -1=3n+k -3n -1-k =2·3n -1,得等比数列{a n }的公比q=3,首项为2.∴a 1=S 1=3+k =2,∴k =-1,∴数列{a n }的通项公式为a n =2·3n -1.(2)由a n +12=(4+k )a n b n ,可得b n =n2·3n -1, 即b n =32·n 3n .∵T n =32⎝ ⎛⎭⎪⎫13+232+333+…+n 3n ,∴13T n =32⎝ ⎛⎭⎪⎫132+233+334+…+n 3n +1,∴23T n =32⎝ ⎛⎭⎪⎫13+132+133+…+13n -n 3n +1,∴T n =94⎝ ⎛⎭⎪⎫12-12·3n -n 3n +1.典题导入[例3] 已知数列{a n }的前n 项和为S n ,a 1=1,S n =na n -n (n -1)(n ∈N *). (1)求数列{a n }的通项公式; (2)设b n =2a n a n +1,求数列{b n }的前n 项和T n .[自主解答] (1)∵S n =na n -n (n -1),当n ≥2时,S n -1=(n -1)·a n -1-(n -1)(n -2),∴a n =S n -S n -1=na n -n (n -1)-(n -1)a n -1+(n -1)·(n -2), 即a n -a n -1=2.∴数列{a n }是首项a 1=1,公差d =2的等差数列, 故a n =1+(n -1)·2=2n -1,n ∈N *. (2)由(1)知b n =2a n a n +1=2n -n +=12n -1-12n +1,故T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=1-12n +1=2n 2n +1.本例条件不变,若数列{b n }满足b n =1S n +n,求数列{b n }的前n 项和T n . 解:S n =na n -n (n -1)=n (2n -1)-n (n -1)=n 2.b n =1S n +n =1n 2+n =1n n +=1n -1n +1, T n =⎝⎛⎭⎪⎫11-12+⎝⎛⎭⎪⎫12-13+⎝⎛⎭⎪⎫13-14+…+⎝⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1.由题悟法利用裂项相消法求和应注意(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项; (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2.以题试法3.(2012·“江南十校”联考)在等比数列{a n }中,a 1>0,n ∈N *,且a 3-a 2=8,又a 1、a 5的等比中项为16.(1)求数列{a n }的通项公式;(2)设b n =log 4a n ,数列{b n }的前n 项和为S n ,是否存在正整数k ,使得1S 1+1S 2+1S 3+…+1S n<k 对任意n ∈N *恒成立.若存在,求出正整数k 的最小值;不存在,请说明理由.解:(1)设数列{a n }的公比为q ,由题意可得a 3=16, ∵a 3-a 2=8,则a 2=8,∴q =2. ∴a n =2n +1.(2)∵b n =log 42n +1=n +12,∴S n =b 1+b 2+…+b n =n n +4.∵1S n =4nn +=43⎝ ⎛⎭⎪⎫1n -1n +3, ∴1S 1+1S 2+1S 3+…+1S n=43⎝ ⎛⎭⎪⎫11-14+12-15+13-16+…+1n -1n +3=43⎝ ⎛⎭⎪⎫1+12+13-1n +1-1n +2-1n +3<229,∴存在正整数k 的最小值为3.1.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158或5B.3116或5 C.3116D.158解析:选C 设数列{a n }的公比为q .由题意可知q ≠1,且-q 31-q=1-q 61-q,解得q =2,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公比的等比数列,由求和公式可得S 5=3116.2.已知数列{a n }的前n 项和S n =an 2+bn (a 、b ∈R ),且S 25=100,则a 12+a 14等于( ) A .16 B .8 C .4D .不确定解析:选B 由数列{a n }的前n 项和S n =an 2+bn (a 、b ∈R ),可知数列{a n }是等差数列,由S 25=a 1+a 252=100,解得a 1+a 25=8,所以a 1+a 25=a 12+a 14=8.3.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( )A .n 2+1-12nB .2n 2-n +1-12nC .n 2+1-12n -1D .n 2-n +1-12n解析:选A 该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+⎝ ⎛⎭⎪⎫12+122+…+12n =n 2+1-12n .4.(2012·“江南十校”联考)若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( )A .1-14nB .1-12nC.23⎝⎛⎭⎪⎫1-14nD.23⎝⎛⎭⎪⎫1-12n解析:选C a n =2n -1,设b n =1a n a n +1=⎝ ⎛⎭⎪⎫122n -1, 则T n =b 1+b 2+…+b n =12+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫122n -1=12⎝ ⎛⎭⎪⎫1-14n 1-14=23⎝ ⎛⎭⎪⎫1-14n .5.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( )A.100101 B.99101 C.99100D.101100解析:选A 设等差数列{a n }的首项为a 1,公差为d .∵a 5=5,S 5=15,∴⎩⎪⎨⎪⎧a 1+4d =5,5a 1+-2d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1,∴a n =a 1+(n -1)d =n .∴1a n a n +1=1nn +=1n -1n +1,∴数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为1-12+12-13+…+1100-1101=1-1101=100101. 6.已知函数f (n )=⎩⎪⎨⎪⎧n 2当n 为奇数时,-n 2当n 为偶数时,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .0B .100C .-100D .10 200解析:选B 由题意,a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100.7.在等差数列{a n }中,S n 表示前n 项和,a 2+a 8=18-a 5,则S 9=________. 解析:由等差数列的性质及a 2+a 8=18-a 5, 得2a 5=18-a 5,则a 5=6, 故S 9=a 1+a 92=9a 5=54.答案:548.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项公式为2n,则数列{a n }的前n 项和S n =________.解析:∵a n +1-a n =2n,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n.∴S n =2-2n +11-2=2n +1-2.答案:2n +1-29.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和S n =________.解析:设等比数列{a n }的公比为q ,则a 4a 1=q 3=27,解得q =3.所以a n =a 1q n -1=3×3n -1=3n,故b n =log 3a n =n ,所以1b n b n +1=1nn +=1n -1n +1. 则数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和为1-12+12-13+…+1n -1n +1=1-1n +1=n n +1.答案:nn +110.(2013·唐山统考)在等比数列{a n }中,a 2a 3=32,a 5=32. (1)求数列{a n }的通项公式;(2)设数列{a n }的前n 项和为S n ,求S 1+2S 2+…+nS n . 解:(1)设等比数列{a n }的公比为q ,依题意得⎩⎪⎨⎪⎧a 1q ·a 1q 2=32,a 1q 4=32,解得a 1=2,q =2,故a n =2·2n -1=2n.(2)∵S n 表示数列{a n }的前n 项和, ∴S n =-2n1-2=2(2n-1),∴S 1+2S 2+…+nS n =2[(2+2·22+…+n ·2n )-(1+2+…+n )]=2(2+2·22+…+n ·2n )-n (n +1),设T n =2+2·22+…+n ·2n,① 则2T n =22+2·23+…+n ·2n +1,②①-②,得-T n =2+22+…+2n -n ·2n +1=-2n1-2-n ·2n +1=(1-n )2n +1-2,∴T n =(n -1)2n +1+2,∴S 1+2S 2+…+nS n =2[(n -1)2n +1+2]-n (n +1)=(n -1)2n +2+4-n (n +1).11.(2012·长春调研)已知等差数列{a n }满足:a 5=9,a 2+a 6=14. (1)求{a n }的通项公式;(2)若b n =a n +qa n (q >0),求数列{b n }的前n 项和S n .解:(1)设数列{a n }的首项为a 1,公差为d ,则由a 5=9,a 2+a 6=14,得⎩⎪⎨⎪⎧a 1+4d =9,2a 1+6d =14,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以{a n }的通项a n =2n -1.(2)由a n =2n -1得b n =2n -1+q 2n -1.当q >0且q ≠1时,S n =[1+3+5+…+(2n -1)]+(q 1+q 3+q 5+…+q 2n -1)=n 2+q-q 2n1-q2;当q =1时,b n =2n ,则S n =n (n +1). 所以数列{b n }的前n 项和S n =⎩⎪⎨⎪⎧n n +,q =1,n 2+q -q 2n1-q 2,q >0,q ≠1.12.(2012·“江南十校”联考)若数列{a n }满足:a 1=23,a 2=2,3(a n +1-2a n +a n -1)=2.(1)证明:数列{a n +1-a n }是等差数列;(2)求使1a 1+1a 2+1a 3+…+1a n >52成立的最小的正整数n .解:(1)由3(a n +1-2a n +a n -1)=2可得:a n +1-2a n +a n -1=23,即(a n +1-a n )-(a n -a n -1)=23,故数列{a n +1-a n }是以a 2-a 1=43为首项,23为公差的等差数列.(2)由(1)知a n +1-a n =43+23(n -1)=23(n +1),于是累加求和得a n =a 1+23(2+3+…+n )=13n (n +1),∴1a n =3⎝ ⎛⎭⎪⎫1n -1n +1, ∴1a 1+1a 2+1a 3+…+1a n =3-3n +1>52,∴n >5, ∴最小的正整数n 为6.1.已知数列{a n }的前n 项和S n =n 2-6n ,则{|a n |}的前n 项和T n =( ) A .6n -n 2B .n 2-6n +18 C.⎩⎪⎨⎪⎧6n -n 2n n 2-6n +nD.⎩⎪⎨⎪⎧6n -n 2n n 2-6n n解析:选C ∵由S n =n 2-6n 得{a n }是等差数列,且首项为-5,公差为2. ∴a n =-5+(n -1)×2=2n -7, ∴n ≤3时,a n <0,n >3时,a n >0,∴T n =⎩⎪⎨⎪⎧6n -n2n ,n 2-6n +n2.(2012·成都二模)若数列{a n }满足a 1=2且a n +a n -1=2n+2n -1,S n 为数列{a n }的前n 项和,则log 2(S 2 012+2)=________.解析:因为a 1+a 2=22+2,a 3+a 4=24+23,a 5+a 6=26+25,….所以S 2 012=a 1+a 2+a 3+a 4+…+a 2 011+a 2 012=21+22+23+24+…+22 011+22 012=-22 0121-2=22 013-2.故log 2(S 2 012+2)=log 222 013=2 013.答案:2 0133.已知递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求S n .解:(1)设等比数列{a n }的首项为a 1,公比为q . 依题意,有2(a 3+2)=a 2+a 4, 代入a 2+a 3+a 4=28,得a 3=8. ∴a 2+a 4=20.∴⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 3=a 1q 2=8,解得⎩⎪⎨⎪⎧q =2,a 1=2,或⎩⎪⎨⎪⎧q =12,a 1=32.又{a n }为递增数列, ∴⎩⎪⎨⎪⎧q =2,a 1=2.∴a n =2n.(2)∵b n =2n ·log 122n =-n ·2n,∴-S n =1×2+2×22+3×23+…+n ×2n.①∴-2S n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1.②①-②得S n =2+22+23+…+2n -n ·2n +1=-2n1-2-n ·2n +1=2n +1-n ·2n +1-2.∴S n =2n +1-n ·2n +1-2.1.已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列. (1)求数列{a n }的通项; (2)求数列{2a n }的前n 项和S n .解:(1)由题设知公差d ≠0,由a 1=1,a 1,a 3,a 9成等比数列得1+2d 1=1+8d1+2d ,解得d =1或d =0(舍去),故{a n }的通项a n =1+(n -1)×1=n . (2)由(1)知2a n =2n, 由等比数列前n 项和公式得S n =2+22+23+ (2)=-2n1-2=2n +1-2.2.设函数f (x )=x 3,在等差数列{a n }中,a 3=7,a 1+a 2+a 3=12,记S n =f (3a n +1),令b n =a n S n ,数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和为T n .(1)求{a n }的通项公式和S n ; (2)求证:T n <13.解:(1)设数列{a n }的公差为d ,由a 3=a 1+2d =7,a 1+a 2+a 3=3a 1+3d =12,解得a 1=1,d =3,则a n =3n -2.∵f (x )=x 3,∴S n =f (3a n +1)=a n +1=3n +1. (2)证明:∵b n =a n S n =(3n -2)(3n +1), ∴1b n =1n -n +=13⎝ ⎛⎭⎪⎫13n -2-13n +1.∴T n =1b 1+1b 2+…+1b n=13⎝ ⎛⎭⎪⎫1-14+14-17+…+13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1.∴T n <13. 3.已知二次函数f (x )=x 2-5x +10,当x ∈(n ,n +1](n ∈N *)时,把f (x )在此区间内的整数值的个数表示为a n .(1)求a 1和a 2的值; (2)求n ≥3时a n 的表达式; (3)令b n =4a n a n +1,求数列{b n }的前n 项和S n (n ≥3).解:(1)f (x )=x 2-5x +10,又x ∈(n ,n +1](n ∈N *)时,f (x )的整数个数为a n ,所以f (x )在(1,2]上的值域为[4,6)⇒a 1=2;f (x )在(2,3]上的值域为⎣⎢⎡⎦⎥⎤154,4⇒a 2=1.(2)当n ≥3时,f (x )是增函数,故a n =f (n +1)-f (n )=2n -4. (3)由(1)和(2)可知,b 1=42×1=2,b 2=41×2=2.而当n ≥3时,b n =4n -n -=2⎝⎛⎭⎪⎫12n -4-12n -2.所以当n ≥3时,S n =b 1+b 2+b 3+b 4+…+b n =2+2+2⎝ ⎛⎭⎪⎫12-14+14-16+…+12n -4-12n -2 =4+2⎝ ⎛⎭⎪⎫12-12n -2=5-1n -1.。

2014高考数学二轮复习名师知识点总结:数列求和及数列的综合应用

2014高考数学二轮复习名师知识点总结:数列求和及数列的综合应用

数列求和及数列的综合应用【高考考情解读】高考对本节知识主要以解答题的形式考查以下两个问题:1。

以递推公式或图、表形式给出条件,求通项公式,考查学生用等差、等比数列知识分析问题和探究创新的能力,属中档题。

2。

通过分组、错位相减等转化为等差或等比数列的求和问题,考查等差、等比数列求和公式及转化与化归思想的应用,属中档题.1.数列求和的方法技巧(1)分组转化法有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并.(2)错位相减法这是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{a n·b n}的前n项和,其中{a n},{b n}分别是等差数列和等比数列.(3)倒序相加法这是在推导等差数列前n项和公式时所用的方法,也就是将一个数列倒过来排列(反序),当它与原数列相加时若有公式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.(4)裂项相消法利用通项变形,将通项分裂成两项或n项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.这种方法,适用于求通项为错误!的数列的前n项和,其中{a n}若为等差数列,则错误!=错误!错误!。

常见的拆项公式:①错误!=错误!-错误!;②错误!=错误!(错误!-错误!);③错误!=错误!(错误!-错误!);④错误!=错误!(错误!-错误!).2.数列应用题的模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比.(3)混合模型:在一个问题中同时涉及等差数列和等比数列的模型.(4)生长模型:如果某一个量,每一期以一个固定的百分数增加(或减少),同时又以一个固定的具体量增加(或减少)时,我们称该模型为生长模型.如分期付款问题,树木的生长与砍伐问题等.(5)递推模型:如果容易找到该数列任意一项a n与它的前一项a n-1(或前n项)间的递推关系式,我们可以用递推数列的知识来解决问题.考点一分组转化求和法例1 等比数列{a n}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.(1)求数列{a n(2)若数列{b n}满足:b n=a n+(-1)n ln a n,求数列{b n}的前n项和S n.解(1)当a1=3时,不合题意;当a1=2时,当且仅当a2=6,a3=18时,符合题意;当a1=10时,不合题意.因此a1=2,a2=6,a3=18.所以公比q=3。

高考数学总复习 基础知识名师讲义 第五章 第六节数列的综合问题 理

高考数学总复习 基础知识名师讲义 第五章 第六节数列的综合问题 理

高考数学总复习 基础知识名师讲义 第五章 第六节数列的综合问题 理知识梳理一、等差、等比数列的一些重要结论1.等差数列{a n }中,若m +n =p +q ,则a m +a n =a p +a q . 2.等比数列{a n }中,若m +n =p +q ,则a m ·a n =a p ·a q .3.等差数列{a n }的任意连续m 项的和构成的数列S m ,S 2m -S m ,S 3m -S 2m ,S 4m - S 3m ,……仍为等差数列.4.等比数列{a n }的任意连续m 项的和构成的数列S m ,S 2m -S m ,S 3m -S 2m ,S 4m - S 3m ,……仍为等比数列(m 为偶数且公比为-1的情况除外).5.两个等差数列{a n }与{b n }的和、差构成的数列{a n +b n },{a n -b n }仍为等差数列.6.两个等比数列{a n }与{b n }的积、商、倒数构成的数列{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n ,⎩⎨⎧⎭⎬⎫1b n 仍为等比数列.7.等差数列{a n }的任意等距离的项构成的数列仍为等差数列. 8.等比数列{a n }的任意等距离的项构成的数列仍为等比数列. 9.若{a n }为等差数列,则{}ca n (c >0)是等比数列.10.若{b n }(b n >0)是等比数列,则{log c b n }(c >0且c ≠1)是等差数列. 二、几个数成等差、等比数列的设法三个数成等差的设法:a -d ,a ,a +d ;四个数成等差的设法:a -3d ,a -d ,a +d ,a +3d .三个数成等比的设法:a q ,a ,aq ;四个数成等比的设法:a q 3,a q,aq ,aq 3(因为其公比为q 2>0,对于公比为负的情况不能包括).三、用函数的观点理解等差数列、等比数列1.对于等差数列a n =a 1+(n -1)d =dn +(a 1-d ),当d ≠0时,a n 是关于n 的一次函数,对应的点(n ,a n )是位于直线上的若干个离散的点;当d >0时,函数是单调增函数,对应的数列是单调递增数列;当d =0时,函数是常数函数,对应的数列是常数列;当d <0时,函数是减函数,对应的数列是单调递减数列.若等差数列的前n 项和为S n ,则S n =pn 2+qn (p ,q ∈R ).当p =0时,{a n }为常数列;当p ≠0时,可用二次函数的方法解决等差数列问题.2.对于等比数列a n =a 1q n -1,可用指数函数的性质来理解.当a 1>0,q >1或a 1<0,0<q <1时,等比数列{a n }是单调递增数列; 当a 1>0,0<q <1或a 1<0,q >1时,等比数列{a n }是单调递减数列; 当q =1时,是一个常数列;当q <0时,无法判断数列的单调性,它是一个摆动数列. 四、数列应用的常见模型在具体的问题情境中,识别数列的等差关系或等比关系,并能用相关知识解决相应的问题.1.等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差数列模型,增加(或减少)的量就是公差.2.等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比数列模型,这个固定的数就是公比.3.递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是a n 与a n -1的递推关系,或前n 项和S n 与S n -1之间的递推关系.基础自测1.设{a n },{b n }分别为等差数列与等比数列,a 1=b 1=4,a 4=b 4=1,则下列结论正确的是( )A .a 2>b 2B .a 3<b 3C .a 5>b 5D .a 6>b 6解析:设{a n }的公差为d ,{b n }的公比为q ,由题可得d =-1,q =322,于是a 2=3>b 2=232.故选A. 答案:A2.设数列{a n }的前n 项和为S n (n ∈N *),关于数列{a n }有下列三个命题: ①若数列{a n }既是等差数列又是等比数列,则a n =a n +1;②若S n =an 2+bn (a ,b ∈R ),则数列{a n }是等差数列;③若S n =1-(-1)n,则数列{a n }是等比数列. 这些命题中,真命题的个数是( )A .0B .1C .2D .3解析:①不妨设数列{a n }的前三项为a -d ,a ,a +d ,则其又成等比数列,故a 2=a 2-d 2,∴d =0,即a n =a n +1,为真命题.②由S n 的公式,可求出a n =(2n -1)a +b ,故{a n }是等差数列,为真命题.③由S n 可求出a n =2×(-1)n -1,故数列{a n }是等比数列,为真命题.故选D.答案:D3.在数列{}a n 和{}b n 中,b n 是a n 与a n +1的等差中项,a 1=2且对任意n ∈N *都有3a n +1-a n =0,则数列{}b n 的通项公式为 ____________.答案:b n =4·3-n (n ∈N *)4. 一种专门占据内存的计算机病毒,开机时占据内存2KB ,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机后经过________分钟,该病毒占据64MB 内存(1MB =210KB).解析:依题意可知:a 0=2,a 1=22,a 2=23,…,a n =2n +1,64MB =64×210=216KB ,令2n+1=216,得n =15.∴开机后45分钟该病毒占据64MB 内存. 答案:451.(2013·福建卷)已知等比数列{a n }的公比为q ,记b n =a m (n -1)+1+a m (n -1)+2+…+a m (n -1)+m ,c n =a m (n -1)+1·a m (n -1)+2·…·a m (n -1)+m (m ,n ∈N *),则以下结论一定正确的是( )A .数列{b n }为等差数列,公差为q mB .数列{b n }为等比数列,公比为q 2mC .数列{c n }为等比数列,公比为qm 2D .数列{c n }为等比数列,公比为qmn解析:∵b n =a m (n -1)(q +q 2+…+q m) ∴b n +1b n =a mn q +q 2+…+q m a m n -1q +q 2+…+q m=a mn a m n -1=q m (常数).而b n +1-b n 不是常数. 又∵c n =(a m (n -1))m q 1+2+…+m=⎝ ⎛⎭⎪⎫a m n -1q m +12m ,∴c n +1c n =⎝ ⎛⎭⎪⎫a mn a m n -1m =(q m )m =qm 2(常数).而c n +1-c n 不是常数.故选C. 答案:C2.(2012·江西卷)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .解析:(1)当n =k ∈N *时,S n =-12n 2+kn 取最大值,即 8=-12k 2+k 2=12k 2,故 k =4,从而a n =S n -S n -1=92-n (n ≥2).又a 1=S 1=72符合上式,∴a n =92-n (n ∈N *).(2)令b n =9-2a n 2n =n 2n -1,则T n =b 1+b 2+…+b n =1+22+322+…+n -12n -2+n2n -1,∴T n =2T n -T n =2+1+12+…+12n -2-n 2n -1=4-12n -2-n 2n -1=4-n +22n -1.1.(2013·广州二模)数列{a n }的项是由1或2构成,且首项为1,在第k 个1和第k +1个1之间有2k -1 个2,即数列{a n } 为:1,2,1,2,2,2,1,2,2,2,2,2,1,…,记数列 {a n }的前n 项和为S n ,则S 20=__________; S 2 013=__________.解析:设f (k )=2k -1,则数列为1,2,1,2,2,2,1,2,2,2,2,2,1,…, 所以前20 项中共有16个2,4个1,所以S 20=16×2+4×1=36.记第k 个1与其后面的k 个2组成第k 组,其组内元素个数记为b k ,则b k =2k , b 1+b 2+…+b n =2+4+…+2n =n (n +1)<2 013, 而46×45=2 080<2 011,47×46=2 162>2 013,故n =45即前2 011项中有45个1以及1 968个2,所以S 2 013=45+1 968×2=3 981. 答案:36 3 9812.已知数列{a n },{b n }中,对任何正整数n 都有a 1b 1+a 2b 2+a 3b 3+…+a n -1b n -1+a n b n =(n -1)·2n+1.(1)若数列{b n }是首项为1和公比为2的等比数列,求数列{a n }的通项公式. (2)若数列{a n }是等差数列,数列{b n }是否是等比数列?若是,请求出通项公式;若不是,请说明理由.(3)求证:∑i =1n1a ib i <32.(1)解析:依题意,数列{b n }的通项公式为b n =2n -1,由a 1b 1+a 2b 2+a 3b 3+…+a n -1b n -1+a n b n =(n -1)·2n+1,可得a 1b 1+a 2b 2+a 3b 3+…+a n -1b n -1=(n -2)·2n -1+1()n ≥2,两式相减,可得a n ·b n =n ·2n -1,即a n =n .当n =1时,a 1=1,从而对一切n ∈N *,都有a n =n .所以数列{a n }的通项公式是a n =n (n ∈N *).(2)解析:(法一)设等差数列{a n }的首项为a 1,公差为d ,则a n =a 1+(n -1)d .由(1)得a n ·b n =n ·2n -1,即b n =n ·2n -1a 1+n -1d()n ≥2. ∴b n =n ·2n -1a 1-d +nd =2n -1a 1-dn+d.要使b n +1b n是一个与n 无关的常数,当且仅当a 1=d ≠0,即当等差数列{a n }满足a 1=d ≠0时,数列{b n }是等比数列,其通项公式是b n =2n -1d;当等差数列{a n }满足a 1≠d 时,数列{b n }不是等比数列.(法二)设等差数列{a n }的首项为a 1,公差为d ,则a n =a 1+(n -1)d .由(1)得a n ·b n =n ·2n -1,即b n =n ·2n -1a 1+n -1d()n ≥2. 若数列{b n }是等比数列,则 b n +1b n =2[dn 2+a 1n +a 1-d ]dn 2+a 1n, 要使上述比值是一个与n 无关的常数,需且只需a 1=d ≠0,即当等差数列{a n }满足a 1=d ≠0时,数列{b n }是等比数列,其通项公式是b n =2n -1d;当等差数列{a n }满足a 1≠d 时,数列{b n }不是等比数列.(3)证明:由(1)知a n b n =n ·2n -1,∑i =1n1a i b i =11×1+12×2+13×22+14×23+…+1n ×2n -1,∑i =1n1a ib i <11×1+12×2+12×22+12×23+…+12×2n -1=11+14+18 ×1-⎝ ⎛⎭⎪⎫12n -21-12≤11+14+14=32()n ≥3,当n =1时,1a 1b 1=1<32,当n =2时,1a 1b 1+1a 2b 2=1+14=54<32,故 i =1n1a i b i <32.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年高考数学二轮专题复习名师讲义第六讲 数列求和及综合应用真题试做►———————————————————1.(2011·高考江西卷)已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,那么a 10=( )A .1B .9C .10D .55 2.(2013·高考江西卷)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于________.3.(2013·高考湖南卷)设S n 为数列{a n }的前n 项和,已知a 1≠0,2a n -a 1=S 1·S n ,n ∈N *. (1)求a 1,a 2,并求数列{a n }的通项公式; (2)求数列{na n }的前n 项和.考情分析►———————————————————数列求和问题是数列中的重要知识,在各地的高考试题中频频出现,对于等差数列、等比数列的求和主要是运用公式;而非等差数列、非等比数列的求和问题,一般用倒序相加法、通项化归法、错位相减法、裂项相消法、分组求和法等.等差数列与等比数列、数列与函数、数列与不等式、数列与概率、数列的实际应用等知识交汇点的综合问题是近几年高考的重点和热点,此类问题在客观题和解答题中都有所体现,难度不一,求解此类问题的主要方法是利用转化与化归的思想,根据所学数列知识及题目特征,构造出解题所需的条件.考点一 数列求和数列的求和问题多从数列的通项入手,通过分组、错位相减等转化为等差或等比数列的求和问题,考查等差、等比数列求和公式及转化与化归思想的应用,属中档题.(2013·高考山东卷)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b1a1+b2a2+…+bn an =1-12n,n ∈N *,求{b n }的前n 项和T n .【思路点拨】 (1)由于已知{a n }是等差数列,因此可考虑用基本量a 1,d 表示已知等式,进而求出{a n }的通项公式.(2)先求出bnan,进而求出{b n }的通项公式,再用错位相减法求{b n }的前n 项和.强化训练 1 (2013·深圳调研)设{a n}是公比大于1的等比数列,S n为数列{a n}的前n项和.已知S3=7,且3a2是a1+3和a3+4的等差中项.(1)求数列{a n}的通项公式;(2)设b n=an(an+1)(an+1+1),数列{b n}的前n项和为T n,求证:T n<12.考点二数列的实际应用数列应用题是近年来高考命题改革的一个亮点,主要考查学生数列建模能力,其题型为:一是,构造等差数列或等比数列模型,然后用相应的通项公式与求和公式求解;二是,通过归纳得到结论,再用数列知识求解.(2012·高考湖南卷)某公司一下属企业从事某种高科技产品的生产,该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为a n万元.(1)用d表示a1,a2,并写出a n+1与a n的关系式;(2)若公司希望经过m(m≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d的值(用m表示).【思路点拨】(1)由第n年和第(n+1)年的资金变化情况,得到a n和a n+1的递推关系.(2)由递推关系,利用迭代的方法可求通项公式,问题得解.解决数列实际应用问题的关键是要做好三件事情:第一是努力读懂题意,能用自己的语言把问题表述出来;第二是找出关键字句,其他的文字可以不管;第三是将实际生活化的语言翻译成数学语言.在做好这三件事情的基础上,经过设元、列式,就不难实现这种数学模型的转化.强化训练 2 某市投资甲、乙两个工厂,2012年两工厂的年产量均为100万吨,在今后的若干年内,甲工厂的年产量每年比上一年增加10万吨,乙工厂第n年比上一年增加2n-1万吨.记2012年为第一年,甲、乙两工厂第n年的年产量分别记为a n,b n.(1)求数列{a n},{b n}的通项公式;(2)若某工厂年产量超过另一工厂年产量的2倍,则将另一工厂兼并,问到哪一年底其中一个工厂将被另一工厂兼并?考点三数列的综合问题数列与其他知识的综合问题在高考中大多属于中、高档难度问题.在复习这部分内容时,要注意对基础知识的梳理,把握通性通法,不必刻意追求难度.(2013·高考天津卷)已知首项为3 2的等比数列{a n}不是递减数列,其前n项和为S n(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.(1)求数列{a n}的通项公式;(2)设T n=S n-1Sn(n∈N *),求数列{Tn}的最大项的值与最小项的值.【思路点拨】(1)利用等比数列的性质结合已知条件求出公比q,进而可得到通项公式;(2)结合数列的单调性求数列的最大项与最小项的值.数列的综合性问题是高考的热点,此类问题一般以数列与函数、数列与不等式、数列与解析几何的综合应用为主.在该类问题的求解过程中往往会遇到递推数列,因此掌握递推数列的常见解法有助于该类问题的解决,解题时要注意沟通数列与函数的内在联系,灵活运用函数的思想方法求解,而本题利用数列的单调性求{T n}的最值.强化训练 3 设数列{a n}的前n项和为S n,如果Sn S2n为常数,则称数列{a n}为“幸福数列”.(1)等差数列{b n}的首项为1,公差不为零,若{b n}为“幸福数列”,求{b n}的通项公式;(2)数列{c n}的各项都是正数,前n项和为S n,若c31+c32+c3+…+c3n=S2n 对任意n∈N*都成立,试推断数列{c n}是否为“幸福数列”?并说明理由.数列与三类知识的交汇数列与函数、不等式、解析几何、平面几何等知识的交汇问题是高考的难点,与函数、不等式的交汇问题主要考查利用函数与方程的思想方法解决数列中的问题及用解决不等式的方法研究数列的性质;与解析几何交汇,主要涉及点列问题,与平面几何交汇,主要涉及面积(周长)问题,求解时应建立数列的递推关系或通项公式之间的关系,然后借助数列的知识加以解决.一、数列和平面几何的交汇(2013·高考安徽卷)如图,互不相同的点A 1,A 2,…,A n ,…和B 1,B 2,…,B n ,…分别在角O 的两条边上,所有A n B n 相互平行,且所有梯形A n B n B n +1A n +1的面积均相等,设OA n =a n .若a 1=1,a 2=2,则数列{a n }的通项公式是________.【解析】 设OA n =x (n ≥3),OB 1=y ,∠O =θ,记S △OA 1B 1=12×1×y sin θ=S ,那么S △OA 2B 2=12×2×2y sin θ=4S ,S △OA 3B 3=4S +(4S -S )=7S , …S △OA n B n =12x ·xy sin θ=(3n -2)S ,∴S △OAnBn S △OA2B2=12×x×xysin θ12×2×2ysin θ=(3n -2)S 4S, ∴x24=3n -24,∴x =3n -2. 即a n =3n -2(n ≥3).经验证知a n =3n -2(n∈N *). 【答案】 a n =3n -2对于数列与几何图形相结合的问题,通常利用几何知识,并结合图形,得出关于数列相邻项a n 与a n +1之间的关系,然后根据递推关系,结合所求内容变形,得出通项公式或其他所求结论.二、数列和函数的交汇(2013·高考安徽卷)设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈N *,函数f (x )=(a n -a n +1+a n +2)x +a n +1cos x -a n +2sin x 满足f ′(π2)=0.(1)求数列{a n }的通项公式;(2)若b n =2(a n +12an),求数列{b n }的前n 项和S n .【解】 (1)由题设可得f ′(x )=a n -a n +1+a n +2-a n +1sin x -a n +2cos x .对任意n ∈N *,f ′(π2)=a n -a n +1+a n +2-a n +1=0,即a n +1-a n =a n +2-a n +1,故{a n }为等差数列. 由a 1=2,a 2+a 4=8,可得数列{a n }的公差d =1, 所以a n =2+1·(n -1)=n +1.(2)由b n =2(a n +12an )=2(n +1+12n +1)=2n +12n +2知,S n =b 1+b 2+…+b n=2n +2·n (n +1)2+12[1-(12)n]1-12=n 2+3n +1-12n.(1)本题以函数为载体考查了数列的基本问题,求解中利用f ′(π2)=0,把函数知识转化为数列知识,这种题型经常见到.(2)数列与函数交汇问题的常见类型及解法:①已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题; ②已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、分式、求和方法对式子化简变形.另外,解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解.三、数列与不等式的交汇(2013·高考天津卷)已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式;(2)证明S n +1Sn ≤136(n ∈N *).【解】 (1)设等比数列{a n }的公比为q . 因为-2S 2,S 3,4S 4成等差数列, 所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4,可得2a 4=-a 3,于是q =a4a3=-12.又因为a 1=32,所以等比数列{a n }的通项公式为a n =32·⎝⎛⎭⎫-12n -1=(-1)n -1·32n.(2)证明:S n =1-⎝⎛⎭⎫-12n ,S n +1Sn=1-⎝⎛⎭⎫-12n +11-⎝⎛⎭⎫-12n=⎩⎨⎧2+12n (2n +1),n 为奇数,2+12n (2n -1),n 为偶数.当n 为奇数时,S n +1Sn随n 的增大而减小,所以S n +1Sn ≤S 1+1S1=136.当n 为偶数时,S n +1Sn随n 的增大而减小,所以S n +1Sn ≤S 2+1S2=2512.故对于n ∈N *,有S n +1Sn ≤136.本题考查了数列不等式的证明,求解此类问题时应根据题目特征,确定出与不等式有关的数列的项或前n 项和,根据题目特征求解,求解时注意放缩法的应用.而本题利用了数列的单调性求解.体验真题·把脉考向_ 1.【解析】选A.∵S n +S m =S n +m ,且a 1=1,∴S 1=1,可令m =1,得S n +1=S n +1,∴S n +1-S n =1,即当n ≥1时,a n +1=1,∴a 10=1.2.【解析】每天植树的棵数构成以2为首项,2为公比的等比数列,其前n 项和S n =a1(1-qn )1-q=2(1-2n )1-2=2n +1-2.由2n +1-2≥100,得2n +1≥102.由于26=64,27=128.则n +1≥7,即n ≥6.【答案】63.【解】(1)令n =1,得2a 1-a 1=a 21,即a 1=a 21. 因为a 1≠0,所以a 1=1.令n =2,得2a 2-1=S 2=1+a 2,解得a 2=2.当n ≥2时,由2a n -1=S n ,2a n -1-1=S n -1两式相减,得2a n -2a n -1=a n ,即a n =2a n -1. 于是数列{a n }是首项为1,公比为2的等比数列. 因此,a n =2n -1.所以数列{a n }的通项公式为a n =2n -1. (2)由(1)知,na n =n ·2n -1. 记数列{n ·2n -1}的前n 项和为B n ,于是B n =1+2×2+3×22+…+n ×2n -1,① 2B n =1×2+2×22+3×23+…+n ×2n .② ①-②,得-B n =1+2+22+…+2n -1-n ·2n =2n -1-n ·2n .从而B n =1+(n -1)·2n . _典例展示·解密高考_【例1】【解】(1)设等差数列{a n }的首项为a 1,公差为d . 由S 4=4S 2,a 2n =2a n +1,得 ⎩⎨⎧4a1+6d =8a1+4d ,a1+(2n -1)d =2a1+2(n -1)d +1.解得⎩⎨⎧a1=1,d =2.因此a n =2n -1,n ∈N *.(2)由已知b1a1+b2a2+…+bn an =1-12n ,n ∈N *,当n =1时,b1a1=12;当n ≥2时,bn an =1-12n -(1-12n -1)=12n .所以bn an =12n,n ∈N *.由(1)知a n =2n -1,n ∈N *,所以b n =2n -12n,n ∈N *.所以T n =12+322+523+…+2n -12n,12T n =122+323+…+2n -32n +2n -12n +1. 两式相减,得 12T n =12+(222+223+…+22n )-2n -12n +1 =32-12n -1-2n -12n +1,所以T n =3-2n +32n.[强化训练1]【解】(1)由已知,得⎩⎪⎨⎪⎧a1+a2+a3=7,(a1+3)+(a3+4)2=3a2.解得a 2=2.设数列{a n }的公比为q , 则a 1q =2,∴a 1=2q,a 3=a 1q 2=2q .由S 3=7,可知2q+2+2q =7,∴2q 2-5q +2=0,解得q 1=2,q 2=12.由题意,得q >1,∴q =2. ∴a 1=1.故数列{a n }的通项公式为a n =2n -1.(2)证明:∵b n =an(an +1)(an +1+1) =2n -1(2n -1+1)(2n +1)=12n -1+1-12n +1,∴T n =(11+1-121+1)+(121+1-122+1)+(122+1-123+1)+…+(12n -1+1-12n +1)=11+1-12n +1=12-12n +1<12. 【例2】【解】(1)由题意得a 1=2 000(1+50%)-d =3 000-d ,a 2=a 1(1+50%)-d =32a 1-d =4 500-52d ,a n +1=a n (1+50%)-d =32a n -d .(2)由(1)得a n =32a n -1-d =32⎝⎛⎭⎫32an -2-d -d =⎝⎛⎭⎫322a n -2-32d -d =…=⎝⎛⎭⎫32n -1a 1-d ⎣⎢⎡⎦⎥⎤1+32+⎝⎛⎭⎫322+…+⎝⎛⎭⎫32n -2.整理得a n =⎝⎛⎭⎫32n -1(3 000-d )-2d ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫32n -1-1 =⎝⎛⎭⎫32n -1(3 000-3d )+2d .由题意,知a m =4 000, 即⎝⎛⎭⎫32m -1(3 000-3d )+2d =4 000, 解得d =⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫32m -2×1 000⎝⎛⎭⎫32m-1=1 000(3m -2m +1)3m -2m.故该企业每年上缴资金d 的值为1 000(3m -2m +1)3m -2m时,经过m (m ≥3)年企业的剩余资金为4 000万元.[强化训练2]【解】(1)因为{a n }是等差数列,a 1=100,d =10, 所以a n =10n +90.因为b n -b n -1=2n -1,b n -1-b n -2=2n -2,…,b 2-b 1=2, 所以b n =100+2+22+…+2n -1=2n +98. (2)当n ≤5时,a n ≥b n 且a n <2b n .当n ≥6时,a n ≤b n ,所以甲工厂有可能被乙工厂兼并. 2a n <b n ,即2(10n +90)<2n +98,解得n ≥8,故2019年底甲工厂将被乙工厂兼并. 【例3】【解】(1)设等比数列{a n } 的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3,于是q 2=a5a3=14.又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为a n =32×⎝⎛⎭⎫-12n -1=(-1)n -1·32n.(2)由(1)得S n =1-⎝⎛⎭⎫-12n =⎩⎨⎧1+12n ,n 为奇数,1-12n,n 为偶数. 当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1=32,故0<S n -1Sn ≤S 1-1S1=32-23=56.当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1Sn ≥S 2-1S2=34-43=-712.所以数列{T n }最大项的值为56,最小项的值为-712.[强化训练3]【解】(1)设等差数列b n 的公差为d (d ≠0),SnS2n=k ,因为b 1=1,则n +12n (n -1)d =k [2n +12·2n (2n -1)d ],即2+(n -1)d =4k +2k (2n -1)d ,整理得,(4k -1)dn +(2k -1)(2-d )=0,因为对任意正整数n 上式恒成立,则⎩⎨⎧d (4k -1)=0(2k -1)(2-d )=0,解得⎩⎪⎨⎪⎧d =2k =14.故数列b n 的通项公式是b n =2n -1. (2)由已知,当n =1时,c 31=S 21=c 21.因为c 1>0,所以c 1=1.当n ≥2时,c 31+c 32+c 3+…+c 3n =S 2n ,c 31+c 32+c 3+…+c 3n -1=S 2n -1.两式相减,得c 3n =S 2n -S 2n -1=(S n -S n -1)(S n +S n -1)=c n ·(S n +S n -1). 因为c n >0,所以c 2n =S n +S n -1=2S n -c n , 显然c 1=1适合上式,所以当n ≥2时,c 2n -1=2S n -1-c n -1. 于是c 2n -c 2n -1=2(S n -S n -1)-c n +c n -1=2c n -c n +c n -1=c n +c n -1. 因为c n +c n -1>0,则c n -c n -1=1,所以数列{c n }是首项为1,公差为1的等差数列.所以SnS2n =n (n +1)2n (2n +1)=n +14n +2不为常数,故数列{c n }不是“幸福数列”。

相关文档
最新文档