2017年春季学期新版新人教版八年级数学下学期18.2.1、矩形导学案7

合集下载

最新人教版八年级数学下册18.2.1矩形(2课时)word导学案教学设计

最新人教版八年级数学下册18.2.1矩形(2课时)word导学案教学设计

第十八章平行四边形18.2.1 矩形第1课时矩形的性质学习目标:1.理解矩形的概念,知道矩形与平行四边形的区别与联系;2.会证明矩形的性质,会用矩形的性质解决简单的问题;3.掌握直角三角形斜边中线的性质,并会简单的运用.重点:理解矩形的概念,知道矩形与平行四边形的区别与联系;掌握直角三角形斜边中线的性质,并会简单的运用.难点:会证明矩形的性质,会用矩形的性质解决简单的问题.一、知识回顾1.平行四边形是什么?它有哪些性质?2.你还记得长方形是什么吗?二、新知预习1.如图,现有一个活动的平行四边形,使它的一个内角变化,当内角变化为90°时,这是我们学过的哪个图形?2.自主学习:(1)矩形的定义:有一个角是直角的平行四边形叫做_________,也就是长方形.(2)矩形是特殊的平行四边形,平行四边形_________是矩形.三、自学自测1.矩形是常见的图形,你能举出一些生活中的实例吗?2.矩形是特殊的平行四边形,你能根据平行四边形的性质,说出3条矩形的性质吗?四、我的疑惑____________________________________________________________一、要点探究探究点1:矩形的性质思考因为矩形是平行四边形,所以它具有平行四边形的所有性质,由于它有一个角为课堂探究自主学习教学备注学生在课前完成自主学习部分配套PPT讲授1.情景引入(见幻灯片3-4)2.探究点1新知讲授(见幻灯片5-19)活动准备素材:直尺、量角器、橡皮擦、课本、铅笔盒等.(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四个角度数和对角线的长度,并记录测量结果.AC BD ∠BAD ∠ADC ∠ABC ∠BCD 橡皮擦课本桌子(2)根据测量的结果,你有什么猜想?猜想1 矩形的四个角都是_________.猜想2 矩形的对角线__________.证一证如图,四边形ABCD是矩形,∠B=90°.求证:∠B=∠C=∠D=∠A=90°.证明:∵四边形ABCD是矩形,∴∠B____∠D,∠C____∠A, AB____DC.∴∠B+∠C=_____°.又∵∠B = 90°,∴∠C =____°.∴∠B=∠C=∠D=∠A =_____°.如图,四边形ABCD是矩形,∠ABC=90°,对角线AC与DB相较于点O.求证:AC=DB.证明:∵四边形ABCD是矩形,∴AB____DC,∠ABC=∠DCB=_____°,在△ABC和△DCB中,∵AB=DC,∠ABC=∠DCB,BC= CB,∴△ABC____△DCB.∴AC____DB.思考请同学们拿出准备好的矩形纸片,折一折,观察并思考. 矩形是不是轴对称图形?如果是,那么对称轴有几条?要点归纳:矩形除了具有平行四边形所有性质,还具有的性质有:1.矩形的四个角都是_______.矩形的对角线________.2.矩形是_________图形,它有_____条对称轴.几何语言描述:在矩形ABCD中,对角线AC与DB相交于点O.∠ABC=∠BCD=∠CDA=∠DAB =90°,AC=DB.典例精析例1如图,在矩形ABCD中,E是BC上一点,AE=AD,DF⊥AE ,垂足为F.求证:DF=DC. 教学备注2.探究点1新知讲授(见幻灯片5-19)例2如图,将矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,求△BED的面积.针对训练1.如图,在矩形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A.AB∥DC B.AC=BDC.AC⊥BD D.OA=OB2.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD面积的_________.3.如图,在矩形ABCD中,AE⊥BD于E,∠DAE:∠BAE=3:1,求∠BAE和∠EAO的度数.课堂探究教学备注2.探究点1新知讲授(见幻灯片5-19)教学备注配套PPT讲授3.探究点2新知讲授(见幻灯片20-25)探究点2:直角三角形斜边上的中线的性质活动如图,一张矩形纸片,画出两条对角线,沿着对角线AC剪去一半.问题Rt△ABC中,BO是一条怎样的线段?它的长度与斜边AC有什么关系?猜想直角三角形斜边上的中线等于斜边的________.证一证如图,在Rt△ABC中,∠ABC=90°,BO是AC上的中线.1.2BO AC求证:证明:延长BO至D, 使OD=BO,连接AD、DC.∵AO=OC, BO=OD,∴四边形ABCD是____________.∵∠ABC=90°,∴平行四边形ABCD是________,∴AC_______BD,∴BO=_____BD=_____AC.要点归纳:直角三角形的性质:直角三角形斜边上的_______等于斜边的________.典例精析例3 如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若AB=10,AC=8,求四边形AEDF的周长;(2)求证:EF垂直平分AD.方法总结:当已知条件含有线段的中点、直角三角形的条件时,可联想直角三角形斜边上的中线的性质进行求解.例4 如图,已知BD,CE是△ABC不同边上的高,点G,F分别是BC,DE的中点,试说明GF⊥DE.当堂检测方法总结:在直角三角形中,遇到斜边中点常作斜边中线,进而可将问题转化为等腰三角形的问题,然后利用等腰三角形“三线合一”的性质解题.针对训练如图,在△ABC 中,∠ABC = 90°,BD 是斜边AC 上的中线.(1)若BD=3cm,则AC =_____cm;(2)若∠C = 30° ,AB = 5cm,则AC =_____cm, BD =_____cm.二、课堂小结内 容 矩形的概念 有一个角是直角的平行四边形叫做矩形矩形的性质 1. 具有平行四边形的一切性质;2. 四个内角都是直角,两条对角线互相平分且相等3. 具有2条对称轴的轴对称图形直角三角形的性质 直角三角形斜边上的中线等于斜边的一半1.矩形具有而一般平行四边形不具有的性质是 ( ) A.对角线相等 B.对边相等 C.对角相等 D.对角线互相平分2.若直角三角形的两条直角边分别5和12,则斜边上的中线长为 ( ) A.13 B.6 C.6.5 D.不能确定3.若矩形的一条对角线与一边的夹角为40°,则两条对角线相交的锐角是 ( ) A.20 ° B.40° C.80 ° D.10°4.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则EF=______cm .当堂检测教学备注 配套PPT 讲授3.探究点2新知讲授 (见幻灯片20-25)4.课堂小结(见幻灯片30)5.当堂检测(见幻灯片26-30)教学备注5.当堂检测(见幻灯片26-30)第4题图第5题图5.如图,△ABC中,E在AC上,且BE⊥AC.D为AB中点,若DE=5,AE=8,则BE的长为______.6.如图,四边形ABCD是矩形,对角线AC,BD相交于点O,BE∥AC交DC的延长线于点E.(1)求证:BD=BE;(2)若∠DBC=30° , BO=4 ,求四边形ABED的面积.能力提升7.如图,在矩形ABCD中,AB=6,AD=8,P是AD上的动点,PE⊥AC,PF⊥BD于F,求PE+PF的值.第十八章平行四边形18.2.1 矩形第2课时矩形的判定学习目标:1.经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理;2.能应用矩形的判定解决简单的证明题和计算题.重点:经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理.难点:能应用矩形的判定解决简单的证明题和计算题.自主学习一、知识回顾1.矩形的定义是什么?2.矩形有哪些性质?二、要点探究探究点1:二次根式的乘法想一想 1.类比平行四边形的定义也是判定平行四边形的一种方法,那么矩形的定义也是判定矩形的一种方法.除了定义以外,判定矩形的方法还有没有呢?2.上节课我们已经知道“矩形的对角线相等”,反过来,小明猜想对角线相等的四边形是矩形,你觉得对吗?如果不对,你的猜想是什么?对角线_______的__________________是矩形.证一证已知:如图,在□ABCD中,AC,DB是它的两条对角线, AC=DB.求证:□ABCD是矩形.证明:∵AB = DC,BC = CB,AC = DB,∴△ABC______△DCB ,∴∠ABC______∠DCB.∵AB∥CD,∴∠ABC + ∠DCB =______°,∴∠ABC = _______°,∴□ ABCD是__________.思考数学来源于生活,事实上工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,窗框一定是矩形,你现在知道为什么了吗?要点归纳:矩形的判定定理:对角线相等的平行四边形是矩形.几何语言描述:在平行四边形ABCD中,∵AC=BD,∴平行四边形ABCD是矩形.典例精析例1如图,矩形ABCD的对角线AC、BD相交于点O,E、F、G、H分别是AO、BO、CO、DO上的一点,且AE=BF=CG=DH.求证:四边形EFGH是矩形.针对训练1.如图,在▱ABCD中,AC和BD相交于点O,则下面条件能判定▱ABCD是矩形的是()A.AC=BDB.AC=BCC.AD=BCD.AB=AD2.如图,在平行四边形ABCD中, ∠1= ∠2中.此时四边形ABCD是矩形吗?为什么?探究点2:有三个角是直角的四边形是矩形想一想 1.上节课我们研究了矩形的四个角,知道它们都是直角,它的逆命题是什么?成立吗?2.至少有几个角是直角的四边形是矩形?猜测:有_____个角是直角的四边形是矩形.证一证已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°.求证:四边形ABCD是矩形.证明:∵∠A=∠B=∠C=90°,∴∠A+∠B=_______°,∠B+∠C=_______°,∴AD_____BC,AB_____CD.教学备注配套PPT讲授3.探究点1新知讲授(见幻灯片14-20)∴四边形ABCD是______________,∴四边形ABCD是________.思考一个木匠要制作矩形的踏板.他在一个对边平行的长木板上分别沿与长边垂直的方向锯了两次,就能得到矩形踏板.为什么?要点归纳:矩形的判定定理:有三个角是直角的四边形是矩形.几何语言描述:在四边形ABCD中,∵∠A=∠B=∠C=90°,∴四边形ABCD是矩形.典例精析例3 如图,□ ABCD的四个内角的平分线分别相交于E、F、G、H,求证:四边形EFGH为矩形.例4 如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E,求证:四边形ADCE为矩形.针对训练在判断“一个四边形门框是否为矩形”的数学活动课上,一个合作学习小组的4位同学分别拟定了如下的方案,其中正确的是()A.测量对角线是否相等B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中三个角是否都为直角二、课堂小结内容矩形的判定定义:有一个角是直角的平行四边形是矩形.判定定理:对角线相等的平行四边形是矩形.有三个角是直角的四边形是矩形.1.如图,直线EF∥MN,PQ交EF、MN于A、C两点,AB、CB、CD、AD分别是∠EAC、∠MCA、∠ACN、∠CAF的平分线,则四边形ABCD是()A.梯形B.平行四边形C.矩形D.不能确定2.下列各句判定矩形的说法是否正确?(1)对角线相等的四边形是矩形;(2)对角线互相平分且相等的四边形是矩形;(3)有一个角是直角的四边形是矩形;(4)有三个角都相等的四边形是矩形;(5)有三个角是直角的四边形是矩形;(6)四个角都相等的四边形是矩形;(7)对角线相等,且有一个角是直角的四边形是矩形;(8)一组对角互补的平行四边形是矩形.3.如图,在四边形ABCD中,AB∥CD,∠BAD=90°,AB=5,BC=12,AC=13.求证:四边形ABCD是矩形.4.如图,平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,使ON=OB,再延长OC至M,使CM=AN.求证:四边形NDMB为矩形.教学备注4.课堂小结(见幻灯片29)5.当堂检测(见幻灯片21-28)5.如图,△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E,求证:四边形ADCE是矩形.能力提升6.如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从A出发沿A方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?八年级数学下册期中综合检测卷一、选择题(每小题3分,共30分)x x的取值范围是()1.3A.x≥3B.x≤3C.x>3D.x<32.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,12C.6,8,11D.5,12,233.下列各式是最简二次根式的是()97200.34.下列运算正确的是( ) A.5-3=2 B.149=213C.8-2=2D.2(25)-=2-5 5.方程|4x -8|+x y m --=0,当y>0时,m 的取值范围是( ) A.0<m <1 B.m ≥2 C.m ≤2 D.m <26.若一个三角形的三边长为6,8,x ,则此三角形是直角三角形时,x 的值是( ) A.8 B.10 C.27 D.10或277.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( ) A.可能是锐角三角形 B.不可能是直角三角形 C.仍然是直角三角形 D.可能是钝角三角形8.能判定四边形ABCD 为平行四边形的题设是( ) A.AB ∥CD ,AD=BC B.AB=CD ,AD=BC C.∠A=∠B ,∠C=∠D D.AB=AD ,CB=CD9.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A.当AB=BC 时,它是菱形 B.当AC ⊥BD 时,它是菱形 C.当∠ABC=90°时,它是矩形 D.当AC=BD 时,它是正方形第9题图 第10题图 第13题图 第15题图10.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4) S △AOB =S 四边形DEOF 中正确的有( )A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.43a b +126b a b +-+可以合并,则ab = .12.若直角三角形的两直角边长为a 、b 269a a -+|b -4|=0,则该直角三角形的斜边长为 .13.如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积S 1=258π,S2=2π,则S3= .14.四边形ABCD的对角线AC,BD相交于点O,AC⊥BD,且OB=OD,请你添加一个适当的条件,使四边形ABCD成为菱形(只需添加一个即可).15.如图,△ABC在正方形网格中,若小方格边长为1,则△ABC的形状是.16.已知菱形ABCD中,对角线AC与BD相交于点O,∠BAD=120°,AC=4,则该菱形的面积是.17.△ABC中,若AB=15,AC=13,高AD=12,则△ABC的周长是.18.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A,C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P为线段BC上的点.小明同学写出了一个以OD为腰的等腰三角形ODP的顶点P的坐标(3,4),请你写出其余所有符合这个条件的P点坐标.三、解答题(共66分)19.(8分)计算下列各题:(1)48-18-13-0.5;(2)(23)2015·3)2016-2×|3|-(3)0.20.(8分)如图是一块地,已知AD=4 m,CD=3 m,AB=13 m,BC=12 m,且CD⊥AD,求这块地的面积.21.(8分)已知9+11与9-11的小数部分分别为a,b,试求ab-3a+4b-7的值.22.(10分)如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上中点,过D 点作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,求EF的长.23.(10分)如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC的中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.24.(10分)如图,四边形ABCD是一个菱形绿地,其周长为402 m,∠ABC=120°,在其内部有一个四边形花坛EFGH,其四个顶点恰好在菱形ABCD各边的中点,现在准备在花坛中种植茉莉花,其单价为10元/m2,请问需投资金多少元?(结果保留整数)25.(12分)(1)如图①,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹) (2)如图②,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE和CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图③,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.八年级数学下期末综合检测卷一、选择题(每小题3分,共30分)1. ) A.1个 B.2个 C.3个 D.4个2.x 的取值范围为( ) A.x ≥4 B.x ≠3 C.x ≥4或x ≠3 D.x ≥4且x ≠33.下列计算正确的是( )=22 D.-154.在Rt △ABC 中,∠ACB=90°,AC=9,BC=12,则点C 到AB 的距离是( )A.365 B.1225 C.945.平行四边形ABCD 中,∠B=4∠A,则∠C=( ) A.18° B.36° C.72° D.144°6.如图,菱形ABCD 的两条对角线相交于O,菱形的周长是20 cm ,AC ∶BD=4∶3,则菱形的面积是( )A.12 cm 2B.24 cm 2C.48 cm 2D.96 cm 2第6题图第8题图第10题图7.若方程组的解是.则直线y=-2x+b与y=x-a的交点坐标是()A.(-1,3)B.(1,-3)C.(3,-1)D.(3,1)8.甲、乙两人在一次百米赛跑中,路程s(m)与赛跑时间t(s)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多9.在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是()A.1.70,1.65B.1.70,1.70C.1.65,1.70D.3,410.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF ⊥AC于F,M为EF中点,则AM的最小值为()A.54B.52C.53D.65二、填空题(每小题3分,共24分)11.当x= 时,二次根式x+1有最小值,最小值为.12.已知a,b,c是△ABC的三边长,且满足关系式222c a b--+|a-b|=0,则△ABC的形状为.13.平行四边形ABCD的两条对角线AC、BD相交于点O,AB=13,AC=10,DB=24,则四边形ABCD的周长为.14.如图,一次函数y1=k1x+b1与y2=k2x+b2的图象相交于A(3,2),则不等式(k2-k1)x+b2-b1>0的解集为.第14题图第16题图第18题图15.在数据-1,0,3,5,8中插入一个数据x,使得该组数据的中位数为3,则x的值为.16.如图,□ABCD中,E、F分别在CD和BC的延长线上,∠ECF=60°,AE∥BD,EF ⊥BC,EF=23,则AB的长是.17.(山东临沂中考)某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示:则这50名学生一周的平均课外阅读时间是小时.18.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF,②∠AEB=75°,③BE+DF=EF,④S正方形ABCD=3其中正确的序号是.(把你认为正确的都填上)三、解答题(共66分)19.(8分)计算下列各题:(1)2-3|-212-⎛⎫-⎪⎝⎭18(2)先化简,再求值:a ba+÷(-a-22ab ba+),其中a3+1,b3-1.20.(8分)如图,折叠矩形的一边AD,使点D落在BC边上的点F处,折痕为AE.若BC=10 cm,AB=8 cm.求EF的长.21.(9分)已知一次函数的图象经过点A(2,2)和点B(-2,-4).(1)求直线AB的解析式;(2)求图象与x轴的交点C的坐标;(3)如果点M(a,-12)和点N(-4,b)在直线AB上,求a,b的值.22.(9分)(湖北黄冈中考)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况做一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户?23.(10分)(山东德州中考)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?24.(10分)如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.25.(12分)如图,在平面直角坐标系中,已知直线y=kx+6与x轴、y轴分别交于A、B 两点,且△ABO的面积为12.(1)求k的值;(2)若点P为直线AB上的一动点,P点运动到什么位置时,△PAO是以OA为底的等腰三角形?求出此时点P的坐标;(3)在(2)的条件下,连接PO,△PBO是等腰三角形吗?如果是,试说明理由;如果不是,请在线段AB上求一点C,使得△CBO是等腰三角形.更多全套优质教学课件、教案、习题、试卷,请关注本人主页!第1题图 第2题图 教学备注 教学备注。

八年级数学下册 18.2.1《矩形》矩形的判定导学案(新版)新人教版

八年级数学下册 18.2.1《矩形》矩形的判定导学案(新版)新人教版

八年级数学下册 18.2.1《矩形》矩形的判定导学案(新版)新人教版18、2、1《矩形》矩形的判定学习目标:1、理解并掌握矩形的判定方法、2、能熟练应用矩形的性质、判定等知识进行有关证明和计算、重点:会证明矩形的判定定理难点:会运用矩形的三种判定方法解决相关问题。

学习过程:一、自主探究探究一:下面给大家介绍一下工人制作窗框的过程、1、先截出两对符合规格的铝合金窗料如图,使AB=CD,EF=GH2、摆成四边形(如第2个图),这时窗框的形状是平行四边形,依据的数学道理是_________________________是平行四边形、3、将直角尺紧靠窗框的一个角(如第3个图),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时,说明窗框合格,这时窗框是矩形,依据的数学道理是__________________________ 是矩形、探究二:1、除了上面制作矩形的方法外,还有其他的方法吗?请你画一个矩形;、交流画矩形的方法,得到矩形的判定方法;(自学教材54页)矩形的判定定理(1)__________________________________几何语言:∵_______________________________∴_______________________________矩形的判定定理(2)__________________________________几何语言:∵_______________________________∴_______________________________证明矩形的判定定理(1)已知:求证:证明:证明矩形的判定定理(2)已知:求证:证明:探究三:二、典例展示三、巩固练习。

人教版八年级数学下册第十八章18.2.1 矩形 导学案设计

人教版八年级数学下册第十八章18.2.1 矩形 导学案设计

人教版八年级数学下册第十八章18.2.1 矩形 导学案第1课时 矩形的性质学习目标1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系. 2.会初步运用矩形的概念和性质来解决有关问题. 预习反馈阅读教材P52~53,完成下列问题.1.矩形的定义:有一个角是直角的平行四边形叫做矩形.如图1,∵四边形ABCD 是平行四边形,∠A =90°, ∴四边形ABCD 是矩形.2.矩形的性质:矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线互相平分且相等.如图2,∵四边形ABCD 是矩形, ∴AB 平行且等于CD ,AD 平行且等于BC , ∠BAD =∠ABC =∠BCD =∠ADC =90°, AO =OC =12AC ,BO =DO =12BD ,AC =BD .3.直角三角形斜边上的中线等于斜边的一半.如图,在Rt △ABC 中,∠ACB =90°,D 为AB 的中点,则CD =12AB .例题讲解例1 如图,矩形ABCD 的对角线AC ,BD 相交于点O ,∠AOB =60°,AB =4,求矩形对角线的长.【思路点拨】 因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个性质和已知条件,可得△OAB 是等边三角形,因此对角线的长度可求.【解答】∵四边形ABCD 是矩形,∴AC 与BD 相等且互相平分. ∴OA =OB. 又∠AOB =60°,∴△OAB 是等边三角形.∴OA =AB =4. ∴AC =BD =2OA =2×4=8.【方法归纳】应用矩形性质计算的一般思路:①根据矩形的四个角都是直角,一条对角线将矩形分成两个全等的直角三角形,用勾股定理求线段的长度是常用的思路;②根据矩形对角线相等且互相平分,故可借助对角线的关系得到全等三角形,矩形的两条对角线把矩形分成四个等腰三角形,在矩形性质相关的计算和证明中要注意这个结论的运用,建立能够得到线段或角度的等量关系. 【跟踪训练1】(《名校课堂》18.2第1课时习题)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,∠ACB =30°,则∠AOB 的大小为(B)A .30°B .60°C .90°D .120°【跟踪训练2】如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 在BD 上,OE =OF.求证:AE =CF.证明:∵四边形ABCD 是矩形, ∴OA =OC.在△AOE 和△COF 中, ⎩⎪⎨⎪⎧OA =OC ,∠AOE =∠COF ,OE =OF ,∴△AOE ≌△COF(SAS). ∴AE =CF.例2 如图,D ,E ,F 分别是△ABC 各边的中点,AH 是高,如果ED =5 cm ,求HF 的长.【思路点拨】由中位线定理可知DE =12AC ,即可求出AC 的长度,又因为HF 是Rt △AHC 斜边上的中线,即可求出HF的长度.【解答】 由题意,得DE 是△ABC 的中位线, ∴DE =12AC.∵HF 是Rt △AHC 的斜边AC 上的中线, ∴HF =12AC.∴HF =DE =5 cm.【跟踪训练3】如图,在△ABC 中,D 为AB 的中点,BE ⊥AC ,垂足为E.若DE =4,AE =6,则BE 的长度是(D)A .10B .2 5C .8D .27 课后巩固训练1.在下面性质中,矩形不一定具有的是(D)A .对角线相等B .四个角都相等C .是轴对称图形D .对角线互相垂直2.直角三角形中,斜边长为12,则斜边上的中线长是(A)A .6B .4C .8D .123.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别是AO ,AD 的中点,若AB =6 cm ,BC =8 cm ,则△AEF 的周长为(C)A .7 cmB .8 cmC .9 cmD .12 cm4.如图,已知矩形ABCD 中,对角线AC ,BD 相交于O ,AE ⊥BD 于E ,若∠DAE ∶∠BAE =3∶1,则∠ABD 为(D)A .60°B .62.5°C .65°D .67.5°5.如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E ,F ,AB =2,BC =4,则图中阴影部分的面积为4.6.如图,已知四边形ABCD 是矩形(AD >AB),点E 在BC 上,且AE =AD ,DF ⊥AE ,垂足为点F ,求证:DF =AB.证明:∵四边形ABCD 是矩形,DF ⊥AE , ∴∠EBA =∠DFA =90°,AD ∥BC. ∴∠DAF =∠AEB.在△AFD 和△EBA 中,⎩⎪⎨⎪⎧∠DAF =∠AEB ,∠AFD =∠EBA ,AD =AE ,∴△AFD ≌△EBA(AAS). ∴DF =AB. 课堂小结1.矩形的定义及性质.2.矩形是特殊的平行四边形,矩形的四个角都是直角,对角线互相平分且相等.第2课时 矩形的判定教学目标1.能应用矩形定义、判定定理,解决简单的证明题和计算题,进一步培养分析能力. 2.培养综合应用知识分析解决问题的能力. 预习反馈阅读教材P54~55,完成下列问题.1.如图1,∵四边形ABCD 是平行四边形,∠A =90°,∴四边形ABCD 是矩形.图1 图22.如图2,∵四边形ABCD 是平行四边形,AC =BD ,∴四边形ABCD 是矩形.3.如图,∵在四边形ABCD 中,∠A =∠B =∠C =90°,∴四边形ABCD 是矩形.例题讲解例 如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,且OA =OD ,∠OAD =50°.求∠OAB 的度数. 【思路点拨】 先证明▱ABCD 是矩形,再根据矩形的四个内角均为90°,即可求出∠OAB 的度数. 【解答】 ∵四边形ABCD 是平行四边形,∴OA =OC =12AC ,OB =OD =12BD.又∵OA =OD , ∴AC =BD.∴四边形ABCD 是矩形. ∴∠DAB =90°. 又∠OAD =50°, ∴∠OAB =40°.【方法归纳】 判定矩形的基本思路:①若已知一个直角,则可以证该四边形是平行四边形或其他角中有两个是直角; ②若对角线相等,则可以证该四边形是平行四边形;③若已知四边形是平行四边形,则需要证明一个内角是直角或对角线相等.【跟踪训练1】 如图所示,在△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线交CE 的延长线于点F ,且AF =BD ,连接BF.(1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.证明:(1)∵AF ∥BC , ∴∠AFC =∠FCB.又∵∠AEF =∠DEC ,AE =DE , ∴△AEF ≌△DEC(AAS). ∴AF =DC.又∵AF =BD ,∴BD =DC ,即D 是BC 的中点. (2)四边形AFBD 是矩形. ∵AF ∥BC ,AF =BD ,∴四边形AFBD 是平行四边形. ∵AB =AC ,D 是BC 的中点, ∴AD ⊥BC ,即∠ADB =90°. ∴四边形AFBD 是矩形.【跟踪训练2】 (《名校课堂》18.2.1第2课时习题)已知:如图,在▱ABCD 中,AF ,BH ,CH ,DF 分别是∠BAD ,∠ABC ,∠BCD ,∠ADC 的平分线.求证:四边形EFGH 为矩形.证明:∵四边形ABCD 是平行四边形, ∴∠DAB +∠ADC =180°.∵AF ,DF 分别平分∠DAB ,∠ADC , ∴∠FAD =∠BAF =12∠DAB ,∠ADF =∠CDF =12∠ADC.∴∠FAD +∠ADF =90°.∴∠AFD =90°. 同理可得,∠BHC =∠HEF =90°. ∴四边形EFGH 是矩形. 课后巩固训练1.在▱ABCD 中,增加一个条件四边形ABCD 就成为矩形,这个条件是(B)A .AB =CDB .∠A +∠C =180°C .BD =2AB D .AC ⊥BD2.如图,四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是(D)A .AB =CD B .AD =BC C .AB =BCD .AC =BD3.如图,在四边形ABCD 中,对角线AC ⊥BD ,E ,F ,G ,H 分别是各边的中点.若AC =8,BD =6,则四边形EFGH 的面积是12.4.如图,在▱ABCD 中,E 是DC 边的中点,且EA =EB.求证:▱ABCD 是矩形.证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC. ∴∠D +∠C =180°.∵E 是DC 边的中点,∴DE =EC.在△ADE 和△BCE 中, ⎩⎪⎨⎪⎧DE =CE ,AD =BC ,AE =BE ,∴△ADE ≌△BCE(SSS).∴∠D =∠C. ∵∠D +∠C =180°,∴∠D =∠C =90°. ∵四边形ABCD 是平行四边形, ∴平行四边形ABCD 是矩形.5.已知:如图,D 是△ABC 的边AB 上一点,CN ∥AB ,DN 交AC 于点M ,MA =MC.(1)求证:AD =CN ;(2)若∠BAN =90°,求证:四边形ADCN 是矩形.证明:(1)∵CN ∥AB , ∴∠DAM =∠NCM. 在△AMD 和△CMN 中, ⎩⎪⎨⎪⎧∠DAM =∠NCM ,MA =MC ,∠AMD =∠CMN ,∴△AMD ≌△CMN(ASA).∴AD =CN. (2)∵AD ∥CN ,AD =CN , ∴四边形ADCN 是平行四边形. 又∵∠BAN =90°,即∠DAN =90°, ∴四边形ADCN 是矩形. 课堂小结矩形的判定方法:1.定义:有一个角是直角的平行四边形是矩形. 2.对角线相等的平行四边形是矩形. 3.有三个角是直角的四边形是平行四边形.。

八年级数学下册 18.2.1 矩形教学设计 (新版)人教版

八年级数学下册 18.2.1 矩形教学设计 (新版)人教版

矩形的判定一、【回顾】1.四边形-----------→平行四边形-------------→矩形2.矩形的性质边:角:对角线:学习研讨:矩形是特殊的平行四边形,怎样判定一个平行四边形是矩形呢?请同学们说出最基本的方法:(用定义)二、【导入】情境一:工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你知道为什么吗?根据工人师傅的操作猜想矩形的判定方法:情景二:李芳同学有“边——直角、边——直角、边——直角、边”这样四步,画出了一个四边形,她说这就是一个矩形,她的判断对吗?为什么?根据李芳的做法猜想矩形的判定方法:三、【探究】探究一:探究“对角线相等的平行四边形是矩形.”【补充思考】(学法指导:利用矩形的定义来证)如图在□ABCD 中,对角线AC 、BD 相交于O ,如果AC =BD, 求证:□ABCD 是矩形.2.探究二:探究“三个角都是直角的四边形是矩形.”逻辑证明“有三个角是直角的四边形...是矩形. (学法指导:先证明它是平行四边形,然后用矩形的定义来证明)已知: 在四边形ABCD 中∠A =∠B =∠C =90°,求证:四边形ABCD 矩形跟踪练习:下列各句判定矩形的说法是否正确?为什么? (1)有一个角是直角的四边形是矩形;( ) (2)有四个角是直角的四边形是矩形;( ) (3)四个角都相等的四边形是矩形;( ) (4)对角线相等的四边形是矩形;( ) (5)对角线相等且互相垂直的四边形是矩形;( ) (6)对角线互相平分且相等的四边形是矩形;( ) (7)对角线相等,且有一个角是直角的四边形是矩形;( ) (8)一组邻边垂直,一组对边平行且相等的四边形是矩形;( ) (9)两组对边分别平行,且对角线相等的四边形是矩形. ( ) 3.例题研究:例1:如图,M 为平行四边形ABCD 边AD 的中点,且MB =MC , 求证:四边形ABCD 是矩形.例2:已知,如图.矩形ABCD 的对角线AC 、BD 相交于点O ,且E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的中点, 求证:四边形EFGH 是矩形.A DB C OA B C D A B CD MDN六、【学习检测】1.下列各句判定矩形的说法是否正确?1)对角线相等的四边形是矩形. 2)对角线互相平分且相等的四边形是矩形.3)有一个角是直角的四边形是矩形. 4)有三个角都相等的四边形是矩形.5)有三个角是直角的四边形是矩形. 6)四个角都相等的四边形是矩形.7)对角线相等,且有一个角是直角的四边形是矩形.8)一组对角互补的平行四边形是矩形.9)对角线相等且互相垂直的四边形是矩形.10)一组邻边垂直,一组对边平行且相等的四边形是矩形.2.能够判断一个四边形是矩形的条件是()A 对角线相等B 对角线垂直 C对角线互相平分且相等 D对角线垂直且相等3.矩形的一组邻边长分别是3cm和4cm,则它的对角线长是 cm4.把矩形ABCD绕顶点A旋转90°后得到矩形AEFG(如图20—2—12),连接AF、AC、CF,则∠AFC= .5.现有一张长为40 cm,宽为20 cm的长方形纸片,要从中剪出长为18 cm,宽为12 cm的长方形纸片,则最多能剪拼_________张.6.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM 的周长为__________.7.如图,矩形ABCD中,对角线AC,BD相交于点O,M,N分别为OA,OD的中点,求证:.。

八年级数学下册18平行四边形1821矩形1导学案新人教版

八年级数学下册18平行四边形1821矩形1导学案新人教版

18.2.1矩形(1)课型: 新授课 上课时间:课时: 1 学习目标:1、理解矩形的意义,知道矩形与平行四边形的区别与联系。

2、掌握矩形的性质定理,会用定理进行有关的计算与证明。

3、掌握直角三角形斜边上中线的性质与应用。

学习重点:矩形的性质及“直角三角形斜边上的中线等于斜边的一半” 学习难点:矩形性质的得出及灵活应用。

一、自学教材,明确目标阅读教材内容 二、研读教材,解读目标1. 叫做矩形。

矩形是 的平行四边形。

2.矩形是轴对称图形吗?它有几条对称轴? 3.从矩形的意义可以探究矩形具有的性质:(1)矩形具有平行四边形的一切性质吗?这些性质什么?(2)矩形与平行四边形比较又有其特殊的性质,这些特殊的性质是什么?(3)用几何语言表述矩形的所有性质:4.从矩形的性质可以说明:直角三角形斜边上的中线等于斜边的 如图,在Rt ΔABC 中,O 是斜边AC 的中点, 求证:OB=21AC 证明:B ACO5. 如图,在矩形ABCD中,AC与BD相交于点O,∠AOB=60O,AB=4㎝,求矩形对角线的长。

6. 教材练习:7.教材习题三、巩固训练,达成目标:1、由矩形的一个顶点向其所对的对角线引垂线,该垂线分直角为1:3两部分,则该垂线与另一条对角线的夹角为()A、22.5°B、45°C、30°D、60°2、矩形的两条对角线的夹角为60°,较短的边长为4.5厘米,则对角线长为。

3、已知:如图2,矩形ABCD中,E是BC4、折叠矩形ABCD纸片,先折出折痕BD 上A′位置上,折痕为DG。

AB=2,BC=1。

求AG的长。

5、如图5A DB CF12EGA`D CB AC D6、如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在F 的位置,BF 交AD 于E ,AD=8,AB=4,求△BED 的面积。

7、在Rt ΔABC 中,∠C=90°,CD 是AB 边上的中线,∠A=30°,AC=5 3。

最新人教版八年级数学下册 18.2.1 第2课时 矩形的判定 导学案

最新人教版八年级数学下册 18.2.1 第2课时 矩形的判定 导学案

.
. 那么矩形的定义也是判 , AC=DB.
要点归纳:矩形的判定定理:对角线相等的平行四边形是矩形.
几何语言描述:在平行四边形ABCD 中,∵AC=BD ,
∴平行四边形ABCD 是矩形.
例1如图,矩形ABCD 的对角线AC 、BD 相交于点O ,E 、F 、G 、H 分别是AO 、BO
、CO 、
DO 上的一点,且AE=BF=CG=DH.求证:四边形EFGH 是矩形.
1.如图,在▱ABCD 中,AC 和BD 相交于点O ,则下面条件能判定▱ABCD 是矩形的是
( )
A .AC=BD
B .AC=BC
C .AD=BC
D .AB=AD
2.如图,在平行四边形ABCD 中, ∠1= ∠2中.此时四边形ABCD 是矩形吗?为什么?
探究点2:有三个角是直角的四边形是矩形
想一想 1.上节课我们研究了矩形的四个角,知道它们都是直角,它的逆命题是什么?成
立 吗?
2.至少有几个角是直角的四边形是矩形?
猜测:有_____个角是直角的四边形是矩形.
,求证:四边形EFGH为
外角∠CAM的平分线,CE⊥
在判断“一个四边形门框是否为矩形”的数学活动课上,一个合作学习小组的4位同学分别拟
()
(见幻灯片
21-28)
)对角线相等,且有一个角是直角的四边形是矩形;
5.如图,△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E,求证:四边形ADCE是矩形.。

新人教版八年级数学下册第十八章平行四边形18.2特殊的平行四边形18.2.1矩形导学案(2课时)

新人教版八年级数学下册第十八章平行四边形18.2特殊的平行四边形18.2.1矩形导学案(2课时)

第十八章平行四边形_________,也就是于它有一个角为直角,它是否具有一般平行四边形不具有的一些特殊性质呢?,∠BAD ∠ADC ∠ABC相较于点O.矩形是不是轴对称图形?如果是,那么对F.求证:DF=DC.例2如图,将矩形ABCD 沿着直线BD 折叠,使点C 落在C ′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.1.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误的是 ( )A .AB ∥DC B .AC=BDC .AC ⊥BD D .OA=OB2.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 面积的_________.3.如图,在矩形ABCD 中,AE ⊥BD 于E,∠DAE :∠BAE =3:1,求∠BAE 和∠EAO 的度数.探究点2:直角三角形斜边上的中线的性质活动 如图,一张矩形纸片,画出两条对角线,沿着对角线AC 剪去一半.问题 Rt △ABC 中,BO 是一条怎样的线段?它的长度与斜边AC 有什么关系?猜想 直角三角形斜边上的中线等于斜边的________.证一证 如图,在Rt △ABC 中,∠ABC=90°,BO 是AC 上的中线.1.2BO AC 求证:证明:延长BO 至D, 使OD=BO,连接AD 、DC.∵AO=OC, BO=OD ,∴四边形ABCD 是____________.∵∠ABC=90°,∴平行四边形ABCD 是________, ∴AC_______BD ,∴BO=_____BD=_____AC.要点归纳:直角三角形的性质:直角三角形斜边上的_______等于斜边的________.例3 如图,在△ABC 中,AD 是高,E 、F 分别是AB 、AC 的中点. (1)若AB =10,AC =8,求四边形AEDF 的周长;(2)求证:EF 垂直平分AD.方法总结:当已知条件含有线段的中点、直角三角形的条件时,可联想直角三角形斜边上的中线的性质进行求解.例4 如图,已知BD ,CE 是△ABC 不同边上的高,点G ,F 分别是BC ,DE 的中点,试说明GF ⊥DE.方法总结:利用等腰三角形“三线合一”的性质解题.有一个角是直角的平行四边形叫做矩形1.矩形具有而一般平行四边形不具有的性质是A.对角线相等B.对边相等C.对角相等D.对角线互相平分2.若直角三角形的两条直角边分别5和12,则斜边上的中线长为 ( )A.13B.6C.6.5D.不能确定3.若矩形的一条对角线与一边的夹角为40°,则两条对角线相交的锐角是 ( )A.20 °B.40°C.80 °D.10°4.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB= 6cm,BC=8cm,则EF=______cm.5.如图,△ABC中,E在AC上,且BE⊥AC.D为AB中点,若DE=5,AE=8,则BE的长为______.6.如图,四边形ABCD是矩形,对角线AC,BD相交于点O,BE∥AC交DC的延长线于点E.(1)求证:BD=BE;(2)若∠DBC=30° , BO=4 ,求四边形ABED 的面积.能力提升7.如图,在矩形ABCD 中,AB=6,AD=8,P 是AD 上的动点,PE ⊥AC ,PF ⊥BD 于F ,求PE+PF 的值.第十八章 平行四边形.. 那么矩形的定义也 , AC=DB. .几何语言描述:在平行四边形ABCD 中,∵AC=BD ,∴平行四边形ABCD 是矩形.例1如图,矩形ABCD 的对角线AC 、BD 相交于点O ,E 、F 、G 、H 分别是AO 、BO、CO 、DO 上的一点,且AE=BF=CG=DH.求证:四边形EFGH 是矩形.1.如图,在▱ABCD 中,AC 和BD 相交于点O ,则下面条件能判定▱ABCD 是矩形的是 ( ) A .AC=BD B .AC=BCC .AD=BCD .AB=AD 2.如图,在平行四边形ABCD 中, ∠1= ∠2中.此时四边形ABCD 是矩形吗?为什么?探究点2:有三个角是直角的四边形是矩形想一想 1.上节课我们研究了矩形的四个角,知道它们都是直角,它的逆命题是什么?成立 吗?2.至少有几个角是直角的四边形是矩形?猜测:有_____个角是直角的四边形是矩形.证一证 已知:如图,在四边形ABCD 中,∠A=∠B=∠C=90°. 求证:四边形ABCD 是矩形.。

新人教版初中数学八年级下册18.2.1第2课时矩形的判定公开课优质课导学案

新人教版初中数学八年级下册18.2.1第2课时矩形的判定公开课优质课导学案

18.2 特殊的平行四边形18.2.1 矩形 第2课时 矩形的判定学习目标:1、学习矩形的判定定理,解决简单的证明题和计算题,进一步培养分析能力;2、培养综合应用知识分析解决问题的能力. 重难点:掌握矩形的判定定理 学习过程: 一、复习旧知二、探究新知1、探究归纳矩形的判定定理,并用模式表示:(1)你能确定有三个角是直角的四边形是矩形吗?(自己探究)。

判定定理1(从四边形⇒矩形):有三个角是直角的四边形是矩形。

几何语言 在四边形ABCD 中,∵ ∴(2)我们知道矩形的定义:有一个角是直角的平行四边形叫做矩形。

由此这个定义可以作为一个判定吗?判定定理2(从平行四边形⇒矩形):有一个角是直角(900)的平行四边形是矩形。

几何语言 在平行四边形ABCD 中, ∵ 或 或 或 ∴(3)矩形的对角线 ,对角线相等的平行四边形是矩形吗?(证明你的回答)A BD A BD证明:判定定理3(从平行四边形 矩形):对角线相等的平行四边形是矩形。

几何语言在平行四边形ABCD中,∵∴【归纳总结】矩形的判定方法:1、有一个角是的平行四边形是矩形;2、四个角都是的四边形是矩形;3、对角线的四边形是矩形。

或者说,对角线的平行四边形是矩形三、课堂练习思考:下列命题是否正确,正确的加以证明,不正确的通过举反例或画图加以说明(1)有一个角是直角的四边形是矩形(2)对角线互相平分且又相等的四边形是矩形(3)四个角都相等的四边形是矩形四、课堂小结(1)证明四边形是矩形的方法:一般先证明它是平行四边形,然后再证明一个直角或者对角线相等(2)证明平行四边形是矩形的方法:一般可在角上找条件,也可在对角线上找条件。

判定方法:从角的条件看、( 种)D C从对角线的条件看。

五、课后作业1、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是().A、测量对角线是否相互平分B、测量两组对边是否分别相等C、测量一组对角是否都为直角D、测量其中三个角是否都为直角2、如图,已知ABCD的对角线AC、BD 相交于O,△ABO是等边三角形,AB=4cm,求这个平行四边形的面积六、课后反思。

八年级数学下册 18.2.1 矩形(一)导学案(无答案)(新版)新人教版

八年级数学下册 18.2.1 矩形(一)导学案(无答案)(新版)新人教版

18.2.1 矩形(一)第一标 设置目标【学习目标】经历矩形性质定理的探索、发现过程,理解矩形的性质定理,认识矩形的特殊性,会应用性质定理进行计算和证明,感受和体会矩形在生活中的广泛应用。

第二标 我的任务【任务1】探索矩形的概念和性质1.在现实生活中我还能举出更多是矩形的例子: 2.叫做矩形,也称为 4.从矩形的定义可以看出,矩形是特殊的平行四边形,特殊在于它有一个角是( )从上可得,都是直角的四边形是矩形。

由此容易得出:矩形的四个角都5.结合图形1我能说出矩形的一些性质:(1)边:AB=,AD=(2)角:====(3)对角线:AC=,OA===(4)在图1中有对全等的三角形,它们分别是;(5)图1中有个等腰三角形,它们分别是6.从矩形的定义可以探究矩形具有的性质:(1)矩形具有平行四边形具有的一切性质。

(2)矩形还具有与平行四边形不同的性质(画图、探究、归纳、用数学符号表示):7.你能用矩形的性质证明:直角三角形斜边上的中线等于斜边的一半(亲自画图,写已知和求证)第三标 反馈目标( 18 分钟)图1赋分 学成情况:;家长签名:1.由矩形的一个顶点向其所对的对角线引垂线,该垂线分直角为1:3两部分,则该垂线与另一条对角线的夹角为( )A 、22.5°B 、45°C 、30°D 、60°2.矩形的两条对角线的夹角为60°,较短的边长为4.5厘米,则对角线长为。

3.已知:如图,矩形ABCD 的两条对角线相交于点O ,∠A OB=60°,AB=4cm ,求矩形对角线的长.4.已知:如图2,矩形ABCD 中,E 是BC 上一点,于F ,若。

求证:CE =EF 。

5.折叠矩形ABCD 纸片,先折出折痕BD ,再折叠使A 落在对角线BD 上A′位置上,折痕为DG 。

AB=2,BC=1。

求AG 的长。

第3题 图 第4题 图 第5题 图。

八年级数学下册 18.2.1 矩形 第2课时 矩形的判定导学案 (新版)新人教版

八年级数学下册 18.2.1 矩形 第2课时 矩形的判定导学案 (新版)新人教版

第2课时矩形的判定1.能应用矩形定义、判定定理,解决简单的证明题和计算题,进一步培养分析能力.2.培养综合应用知识分析解决问题的能力.自学指导:阅读课本54页至55页,完成下列问题.(1)角:①有一个角是直角的平行四边形是矩形.②有三个角是直角的四边形是矩形.(2)对角线:①对角线相等的平行四边形是矩形.②对角线相等且互相平分的四边形是矩形.知识探究1.根据定义双重性,可以得出判定矩形的一种方法:有一个角是直角的平行四边形是矩形.2.工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你知道为什么吗?命题:对角线相等的平行四边形是矩形.已知:平行四边形ABCD如图,AC=BD.求证:四边形ABCD是矩形.根据平行四边形的对边相等,再加上AC=BD,AB=AB得出△ABC≌△BAD,得出∠ABC=∠BAD;又AD ∥BC,得出∠ABC+∠BAD=180°,∴∠ABC=∠BAD=90°.∴对角线相等的平行四边形是矩形.3.李芳同学用四步画出了一个四边形,她的画法是“边——直角、边——直角、边——直角、边”,她说这就是一个矩形,她的判断对吗?为什么?命题:有三个角是直角的四边形是平行四边形.已知:四边形ABCD,∠A=∠B=∠C=90°.求证:四边形ABCD是矩形.∠A=∠B=90°得出AD∥BC,∠B=∠C=90°得出AB∥DC,得出四边形ABCD是平行四边形,又有角是90°,所以是矩形.自学反馈1.能够判断一个四边形是矩形的条件是( C )A.对角线相等B.对角线垂直C.对角线互相平分且相等D.对角线垂直且相等2.矩形的一组邻边分别长3 cm和4 cm,则它的对角线长5cm.3.如图,直线EF∥MN,PQ交EF、MN于A、C两点,AB、CB、CD、AD分别是∠EAC、∠MCA、∠NCA、∠FAC的角平分线,(1)AB和CD、BC和AD的位置关系?解:AB∥CD,BC∥AD.(2)∠ABC、∠BCD、∠CDA、∠DAB各等于多少度?解:90°.(3)四边形ABCD是( C )A.菱形B.平行四边形C.矩形D.不能确定(4)AC和BD有怎样的大小关系?为什么?解:相等.因为矩形的对角线相等.活动1 小组讨论例如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE.求证:(1)△ABF≌△DCE;(2)四边形ABCD是矩形.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD.又∵BE=CF,∴BE+EF=CF+EF,∴BF=CE.在△ABF与△DCE中,AB=CD,BF=CE,AF=DE,∴△ABF≌△DCE.(2)△ABF≌△DCE,∴∠B=∠C∵平行四边形ABCD,∴AB∥CD,∴∠B+∠C=180°,∴∠B=90°,∴四边形ABCD是矩形.矩形的判定通常有两种情况:(1)先证四边形是平行四边形,再证有一个角是直角或对角线相等.(2)直接证四边形有三个角是直角.活动2 跟踪训练1.下列四边形中不是矩形的是( C )A.有三个角是直角的四边形是矩形B.四个角都相等的四边形C.一组对边平行且对角相等的四边形D.对角线相等且互相平分的四边形2.如果E、F、G、H是四边形ABCD四条边的中点,要使四边形EFGH是矩形,那么四边形ABCD应具备的条件是( C )A.一组对边平行而另一组对边不平行B.对角线相等C.对角线互相垂直D.对角线相等且互相平分3.已知:如图,□ABCD的四个内角的平分线分别相交于E、F、G、H.求证:四边形EFGH为矩形.证明:∵□ABCD,∴AD∥BC,∴∠BAD+∠ABC=180°.又BG、AE平分∠ABC与∠BAD,∴∠BAF+∠ABF=90°,即∠AFB=90°,∴∠EFG=∠AFB=90°.同理:∠FEH=∠FGH=∠GHE=∠GFE=90°,∴四边形EFGH 为矩形.4.已知平行四边形ABCD 的对角线AC ,BD 交于点O ,△AOB 是等边三角形,AB=4 cm.(1)平行四边形是矩形吗?说明你的理由.(2)求这个平行四边形的面积.(1)是.△AOB 是等边三角形,AO=BO=4 cm 根据平行四边形对角线互相平分,可得AC=BD=8 cm.由对角线相等的平行四边形是矩形可知平行四边形ABCD 是矩形.(2)矩形一边是4 cm ,根据勾股定理可知另一边为2284 =43(cm).故面积为163(cm 2). 活动3 课堂小结矩形的判定方法:1.定义:有一个角是直角的平行四边形是矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是平行四边形.。

八年级数学下册18.2.1 矩形导学案

八年级数学下册18.2.1 矩形导学案

18.2 特殊的平行四边形18.2.1 矩形 第一课时教学目标1.掌握矩形的性质,学会运用矩形的性质解决问题.2.经历探索矩形的性质的过程,发展学生主动探索、研究的习惯.3.通过动手操作,感受矩形与平行四边形之间的关系,掌握矩形性质相对于平行四边形性质的相关性和特殊性. 教学重难点重点:矩形的性质. 难点:矩形性质的探究.教学过程一、情境引入请同学们针对以下几个问题进行实验和探究:【问题1】 用四根木棒拼成一个平行四边形,拼成的平行四边形形状唯一吗? 【问题2】 试着改变平行四边形的形状,你能发现平行四边形的内角有什么变化? 这时教师可从两方面引导学生:对于一般的学生可以通过观察、测量得到结论,对于能力较好的学生要求说明理由.学生通过观察以下图形的变化特征,师生共同引出矩形的概念.K平行四边形――→有一个角是直角矩形有一个角是直角的平行四边形叫做矩形.【问题3】 矩形是生活中非常常见的图形,你能举出一些例子吗?学生回答后,教师用多媒体展示图片.如:门窗框、书桌面、教科书封面、地砖等. 本节课我们就来研究矩形具有哪些性质.【设计意图】 通过动手操作,使学生感受到角度的变化引起了平行四边形形状的变化,使得由平行四边形变化到矩形的过程显得非常直观,便于学生对矩形概念的理解.二、互动新授【问题4】 因为矩形是平行四边形,所以它具有平行四边形的所有性质,由于它有一个角为直角,它是否具有一般平行四边形不具有的一些特殊性质呢?再次让学生操作、观察,然后交流、讨论,得出矩形的性质:(请学生自己完成证明) 矩形的四个角都是直角. 矩形的对角线相等.【思考】 如教材图18.2-3,矩形ABCD 的对角线AC ,BD 相交于点O ,请同学们观察在Rt △ABC 中,BO 是斜边AC 上的中线,BO 与AC 有什么关系?教材图18.2-3学生交流、讨论后,可证得:(1)BO =12BD =12AC .由此,我们得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.(2)矩形的两条对角线把矩形分成四个等腰三角形,其中相对的两个三角形全等. 【例1】 如教材图18.2-4,矩形ABCD 的两条对角线AC ,BD 相交于点O ,∠AOB =60°,AB =4.求矩形对角线的长.教材图18.2-4【解】 ∵四边形ABCD 是矩形,∴AC 与BD 相等且互相平分,∴OA =OB. 又∠AOB =60°,∴△OAB 是等边三角形. ∴OA =AB =4cm , ∴AC =BD =2OA =8cm. 四、 板书设计五、教学反思本节课教师通过引导学生主动参与观察、实验、猜测、验证、推理与交流等数学活动,使学生自己形成对数学知识的理解和有效的学习策略.教学中通过不同问题的设计,使学生在动手操作的同时也能加以理性思考,使活动不流于形式,也满足了不同的学生学习不同的数学的需要.在活动过程中,学生通过动手操作、自主探究发现矩形的性质,使数学活动与知识的学习有机地结合,达到做一题会一类的效果.导学方案一、学法点津学生在学习矩形时,首先要明确矩形是一个平行四边形,同时它必有一个角是直角,所以矩形是特殊的平行四边形,它具备平行四边形的所有性质;矩形的性质是证明线段相等或角相等、线段平行、垂直及求角的大小或线段的长度的重要依据.二、学点归纳总结 1.知识要点总结(1)矩形的定义:有一个角是直角的平行四边形是矩形.(2)矩形的性质:矩形的四个角都是直角;矩形的对角线都相等. 2.规律方法总结18.2 特殊的平行四边形 18.2.1 矩形 第一课时 1.矩形的定义:有一个角是直角的平行四边形叫做矩形.2.矩形的性质:(1)矩形具有平行四边形的所有性质;(2)矩形的四个角都是直角;(3)矩形的对角线相等;(4)矩形是轴对称图形,有两条对称轴.3.直角三角形斜边上的中线等于斜边的一半.(1)矩形是特殊的平行四边形,它的特殊性主要表现为四个角都是直角和对角线相等. (2)矩形的性质是求线段的长度、角度等问题的常用知识,它可以用来验证两条线段是否相等,两条直线是否平行、两个角是否相等.(3)由于矩形四个角都是直角,则常把关于矩形的问题转化为直角三角形的问题来解决.(4).矩形的两条对角线将矩形分成两对全等的等腰三角形,因此在解决相关问题时,常常用到等腰三角形的性质.第一课时作业设计一、选择题1.下列说法正确的是( ).A .平行四边形是矩形B .矩形是平行四边形C .矩形的对角线互相垂直D .矩形的对角线不一定相等 2.矩形具有而平行四边形不一定具有的特征是( ).A .对边相等B .对角相等C .对角线相等D .对边平行3.若直角三角形的两条直角边的长分别为5和12,斜边上的中线长是( ). A .13 B .6 C .6.5 D .不能确定 二、填空题 4.在矩形ABCD 中,对角线AC ,BD 相交于点O ,AC =10,∠ACB =30°,则∠AOB =________. 5.矩形ABCD 的对角线AC ,BD 相交于点O ,∠AOB =2∠BOC ,若对角线AC =18cm ,则AD =__________.三、解答题6.如图,矩形ABCD 的两条对角线相交于点O ,∠AOD =120°,AD =3cm ,求AB ,AC 的长.K7.如图,在矩形ABCD 中,AC 与BD 交于点O ,BE ⊥AC 于点E ,CF ⊥BD 于点F ,求证:BE =CF.K【参考答案】一、1.B 2.C 3.C 二、4.60° 5.9cm三、6.解:∵四边形ABCD 是矩形,∴AC =BD ,AO =OC =12AC ,OB =OD =12BD ,∴AO =OC =OB =OD ,∴∠1=∠2.∵∠AOD =120°,∴∠1=∠2=30°.在Rt △ADB 中,设AB =x cm ,则BD =2x cm ,由勾股定理得x 2+32=(2x )2,解得x =3cm ,∴AC =BD =23cm.7.证明:∵四边形ABCD 是矩形,∴AC =BD ,OB =12BD ,OC =12AC ,∴OB =OC ,又∵BE ⊥AC ,CF ⊥BD ,∴∠BEO =∠CFO =90°,又∵∠BOE =∠COF ,∴△BOE ≌△COF ,∴BE =CF .第二课时教学目标1.经历探索矩形的判定方法的过程,掌握判定条件,并能运用其解决简单的问题. 2.在探索矩形的判定方法的直观操作和简单的说理活动过程中,培养学生的推理能力. 教学重难点重点:矩形判定方法的探索与运用. 难点:矩形判定方法的探究.教学过程一、情境引入请同学们来看一个问题: 【问题】 工人师傅在做门窗或矩形零件时,不仅要测量两组对边的长度是否分别相等,常常还要测量它们的两条对角线是否相等,以确保图形是矩形.你知道其中的道理吗?二、互动新授教师引导学生将实际问题转化为数学问题,并进行分析: 由矩形的定义可知,有一个角是直角的平行四边形是矩形.当平行四边形的一个角为直角时,另外三个角同时都变为直角,也使两条对角线成为相等的线段.工人师傅检测门窗是否为矩形,可用以下数学知识来说明:如右图,在四边形ABCD 中,若AB =DC ,AD =BC ,AC =BD.求证:四边形ABCD 是矩形.【证明】 ∵AB =DC ,AD =BC , ∴四边形ABCD 是平行四边形, ∴∠BAD +∠ADC =180°.在△ABD 与△ADC 中,{AB =DC ,AD =DA ,BD =CA . ∴△ABD ≌△DCA ,∴∠BAD =∠ADC =90°.∴平行四边形ABCD 是矩形(有一个角是直角的平行四边形是矩形).实际上,我们得到矩形的一个判定定理:对角线相等的平行四边形是矩形.【思考】 前面我们研究了矩形的四个角,知道它们都是直角.它的逆命题成立吗?即四个角都是直角的四边形是矩形吗?进一步,至少有几个角是直角的四边形是矩形?学生交流、讨论后,尝试进行证明.教师评析:四个角是直角的四边形是矩形,至少有三个角是直角的四边形是矩形. 于是,我们又得到矩形的另一个判定定理:有三个角是直角的四边形是矩形.【例2】 如教材图18.2-5,在▱ABCD 中,对角线AC ,BD 相交于点O ,且OA =OD ,∠OAD =50°,求∠OAB 的度数.教材图18.2-5【解】 ∵四边形ABCD 是平行四边形,∴OA =OC =12AC ,OB =OD =12BD.又OA =OD ,∴AC=BD.∴四边形ABCD是矩形.∴∠DAB=90°.又∠OAD=50°,∴∠OAB=40°.三、课堂小结通过本节课的学习,你有什么收获?本节课主要学习了矩形的判定定理:(1)有一个角是直角的平行四边形是矩形;(2)对角线相等的平行四边形是矩形;(3)有三个角是直角的四边形是矩形.四、板书设计五、教学反思本节课采用了“情境——解释——归纳——应用”的教学模式,把知识的学习放到实际情境中,既可激发学生的学习兴趣,又可使学生借助情境发现问题,从数学的角度考察身边的事物现象,提高学生运用数学知识和方法解决问题的能力,使学生初步体会数学建模的思想,体会数学与现实世界的联系.矩形的判定方法比较多,学生易混淆,可以速记为:(1)一个直角+平行四边形=矩形;(2)对角线相等+平行四边形=矩形;(3)三个直角+四边形=矩形;(4)对角线相等且互相平分+四边形=矩形.有了速记技巧学生就不会混淆了.导学方案一、学法点津学生用定义来证明矩形时,应分两步:先证明四边形是平行四边形;证明四边形中有一个角是直角.利用对角线相等证明四边形是矩形,也应分两步:先证明四边形是平行四边形,再证明其对角线相等.另外还应注意矩形的判定和性质的区别.二、学点归纳总结1.知识要点总结矩形的判定定理:(1)有一个角是直角的平行四边形是矩形.(2)对角线相等的平行四边形是矩形.(3)有三个角是直角的四边形是矩形.2.规律方法总结矩形判定定理与其性质定理是互逆定理.判定一个四边形是矩形要分两种情况:一是在平行四边形的基础上判断矩形,只要证明出有一个角是直角或对角线相等即可;二是在四边形的基础上判断矩形,可以直接证明出三个角是直角或先证明出四边形是平行四边形,再进一步证明有一个角是直角.第二课时作业设计一、选择题1.下列四边形不是矩形的是( ).A.四个角相等的四边形B.有三个角是直角的四边形C.一组对边平行且对角线相等的四边形D.对角线相等且平分的四边形2.顺次连接四边形ABCD各边中点得到四边形EFGH,要使四边形EFGH是矩形,可以添加的一个条件是( ).A.AD∥BC B.AC=BD C.AC⊥BD D.AD=AB3.已知四边形ABCD的对角线AC,BD互相平分,要使它成为矩形,那么添加的条件是( ).A.AB=CD B.AD=BC C.AB=BC D.AC =BD二、填空题4.在四边形ABCD中,AB=DC,AD=BC,请添加一个条件,使四边形ABCD是矩形,可添加的条件是__________________(写出一个即可).5.矩形的一条较短边长为6cm,对角线长为12cm,两条对角线交角中较大角为__________.6.如果矩形的一个角的平分线分一边为4cm和3cm两部分,那么矩形的周长为________cm.三、解答题7.如图,点M是▱ABCD的边AD的中点,且MB=MC,求证:▱ABCD是矩形.K8.如图,在矩形ABCD中,AB=16cm,AD=6cm,若动点P,Q分别从点A,C同时出发,点P以3cm/s的速度向点B移动,一直到点B为止,点Q以2cm/s的速度向点D移动,则经过几秒时,四边形PBCQ的面积是33cm2?K【参考答案】一、1.C2.C3.D二、4.∠A=90°或∠B=90°或∠C=90°或∠D=90°或AC=BD(答案不唯一)5.120°6.20或22三、7.证明:∵四边形ABCD是平行四边形,∴AB=CD,∠A+∠D=180°.又∵M是AD的中点,∴AM=DM.又∵MB=MC,∴△ABM≌△DCM,∴∠A=∠D=90°,∴▱ABCD 是矩形.8.解:设经过x秒时,四边形PBCQ的面积为33cm2,则AP=3x cm,BP=(16-3x)cm,CQ=2x cm,∴S四边形PBCQ=12(CQ+PB)·BC=33,即12(2x+16-3x)×6=33,解得x=5,∴经过5s,四边形PBCQ的面积是33cm2.。

人教版八年级数学下册导学案设计:18.2.1矩形的判定

人教版八年级数学下册导学案设计:18.2.1矩形的判定

八年级数学下册导学案
A
判定定理3(从平行四边形 矩形):
几何语言: 在平行四边形ABCD 中, ∵ ∴
【归纳总结】矩形的判定方法:
1、有一个角是 的平行四边形是矩形;
2、四个角都是 的四边形是矩形;
3、对角线 的四边形是矩形。

或者说,对角线 的平行四边形是矩形
【课堂练习】
思考:下列命题是否正确,正确的加以证明,不正确的通过举反例或画图加以说明
(1)有一个角是直角的四边形是矩形 (2)对角线互相平分且又相等的四边形是矩形 (3)四个角都相等的四边形是矩形 三、当堂检测
1、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( ).
A 、测量对角线是否相互平分
B 、测量两组对边是否分别相等
C 、测量一组对角是否都为直角
D 、测量其中三个角是否都为直角 2.如图,在四边形ABCD 中,AB ∥CD ,∠BAD=90°,AB=5,BC=12,AC=13.求证:四边形AB CD 是矩形.
3.如图,△ABC 中,AB =AC ,AD 是BC 边上的高,AE 是△BAC 的外角平分线,DE ∥AB 交AE 于点E ,求证:四边形ADCE 是矩形.
D
O
C B A。

八年级数学下册18平行四边形182特殊的平行四边形1821矩形1导学案新人教版

八年级数学下册18平行四边形182特殊的平行四边形1821矩形1导学案新人教版

18.2.1矩形(1)学习目标:1、掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系2、掌握直角三角形斜边上的中线等于斜边的一半的性质3、会初步运用矩形的概念和性质来解决有关问题.学习重点和难点重点:矩形的性质难点:矩形的性质的灵活应用一、预习内容自主预习P52-53,回答下列问题:(1)如图,将两两等长的四根细木条用小钉绞合在一起,做成一个四边形,使等长的木条成为对边,转动这个四边形,使它形状改变,在图形变化过程中,它一直是一个平行四边形吗?拼成的平行四边形形状唯一吗?A DB C(2)试着改变平行四边形的形状,你能拼出底边上的高最长、面积最大的平行四边形吗?这时这个平行四边形的内角是多少度?(3)观察图形特征,得出概念.叫做矩形。

(4)操作,思考、归纳:在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.①、随着∠α的变化,两条对角线的长度分别是怎样变化的?②、当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?二、数学概念1、矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质外,还有:矩形性质1 矩形的四个角都是___________.矩形性质2 矩形的对角线___________.矩形是轴对称图形,它的对称轴是____________.2、思考:1问题一 如图,矩形ABCD 中,对角线相交于O ,观察对角线所分成的三角形,你有什么发现?问题二 将目光锁定在Rt △ABC 中,你能发现它有什么特殊的性质吗?3、证明:“直角三角形斜边上的中线等于斜边的一半.”已知: 求证: 证明:三、例题讲解已知:如图,矩形ABCD 的两条对角线相交于点O ,且AC=2AB 。

求证:△AOB 是等边三角形。

(注意表达格式完整性与逻辑性)O D A OD CBA ODCB A拓展与延伸:本题若将“AC=2AB”改为“∠BOC=120°”,你能获得有关这个矩形的哪些结论?四、总结反思1、说说你的收获;2、你还有什么问题?五、反馈练习1、填空(1)矩形的定义中有两个条件:一是,二是.(2)已知矩形的一条对角线与一边的夹角为30°,则矩形两条对角线相交所得的四个角的度数分别为、、、.(3)已知矩形的一条对角线长为10cm,两条对角线的一个交角为120°,则矩形的边长分别为 cm,cm, cm, cm.2、选择(1)下列说法错误的是().(A)矩形的对角线互相平分(B)矩形的对角线相等(C)有一个角是直角的四边形是矩形(D)有一个角是直角的平行四边形叫做矩形(2)矩形的对角线把矩形分成的三角形中全等三角形一共有()(A)2对(B)4对(C)6对(D)8对3、已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠AEO的度数.4、在矩形ABCD 中,两条对角线AC 、BD 相交于O ,∠ACD =30°,AB=4.(1)判断△AOD 的形状;(2)求对角线AC 、BD 的长.六、能力提升已知:如图,矩形ABCD 中,E 是BC 上一点,DF ⊥AE 于F ,若AE=BC .求证:CE =EF .七、作业布置 O BCD A2019-2020学年初二下学期期末数学模拟试卷一、选择题(每题只有一个答案正确)1.下列图形是中心对称图形的是( )A .B .C .D .2.已知1x =是关于x 的一元二次方程230ax bx --=的根,则-a b 的值是( )A .-1B .3C .1D .-33.点(2,1)P -关于原点对称点的坐标是( )A .(2,1)-B .(2,1)--C .(1,2)-D .(1,2)-4.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y (升)与时间x (分钟)之间满足某种函数关系,其函数图象大致为( )A .B .C .D .56+1的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间6.下列说法:①对角线互相垂直的四边形是菱形;②矩形的对角线垂直且互相平分;③对角线相等的四边形是矩形;④对角线相等的菱形是正方形;⑤邻边相等的矩形是正方形.其中正确的是( )A .1个B .2个C .3个D .4个7.如图在ABC △中,D 、E 分别是AB 、AC 的中点若ABC △的周长为16,则ADE 的周长为( )A .6B .7C .8D .98.以下列各组数为边长,不能构成直角三角形的是( )A .5,12,13B .1,2,5C .1,3,2D .4,5,69.如图,△ABC 和△DCE 都是等边三角形,点B 、C 、E 在同一条直线上,BC=1,CE=2,连接BD ,则BD 的长为( )A .3B .22C .23D .710.函数y=3x ﹣1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题11.如果关于x 的方程2320x x k --=没有实数根,则k 的取值范围为______.12.如图,在矩形ABCD 中,∠ACB =30°,BC =23,点E 是边BC 上一动点(点E 不与B ,C 重合),连接AE ,AE 的中垂线FG 分别交AE 于点F ,交AC 于点G ,连接DG ,GE .设AG =a ,则点G 到BC 边的距离为_____(用含a 的代数式表示),ADG 的面积的最小值为_____.13.已知直线y 33x +与x 轴、y 轴分别交于点A 、B ,在坐标轴上找点P ,使△ABP 为等腰三角形,则点P 的个数为_____个.14.一个小区大门的栏杆如图所示,BA 垂直地面AE 于A ,CD 平行于地面AE ,那么ABC BCD ∠+∠=_________.15.若代数式132x -的值大于﹣1且小于等于2,则x 的取值范围是_____. 16.单位举行歌咏比赛,分两场举行,第一场8名参赛选手的平均成绩为88分,第二场4名参赛选手的平均成绩为94分,那么这12名选手的平均成绩是____分.17.将直线y=2x ﹣2向右平移1个单位长度后所得直线的解析式为y=_____.三、解答题18.解下列方程(1)480600452x x-=; (2)()22x x x -=-;(3)248x x +=.19.(6分)某班同学进行数学测验,将所得成绩(得分取整数)进行整理分成五组,并绘制成频数直方图(如图),请结合直方图提供的信息,回答下列问题:(1)该班共有多少名学生参加这次测验?(2)求1.5~2.5这一分数段的频数是多少,频率是多少?(3)若80分以上为优秀,则该班的优秀率是多少?20.(6分)先化简,再求值:21111121x x x x x +⎛⎫-÷⎪-+++⎝⎭,其中21x = 21.(6分)解关于x 的方程:32211x x x +=-+ 22.(8分)已知:如图,在等腰梯形ABCD 中,AD BC ∥,2BC AD =,E 为BC 的中点,设AB a =,AD b =.(1)填空:BD =________;DC =________;AC =________;(用a ,b 的式子表示)(2)在图中求作BE DC +.(不要求写出作法,只需写出结论即可)23.(8分)某校七、八年级各有学生400人,为了解这两个年级普及安全教育的情况,进行了抽样调查,过程如下选择样本,收集数据从七、八年级各随机抽取20名学生,进行安全教育考试,测试成绩(百分制)如下: 七年级 85 79 89 83 89 98 68 89 79 5999 87 85 89 97 86 89 90 89 77八年级 71 94 87 92 55 94 98 78 86 9462 99 94 51 88 97 94 98 85 91分组整理,描述数据(1)按如下频数分布直方图整理、描述这两组样本数据,请补全八年级20名学生安全教育频数分布直方图;(2)两组样本数据的平均数、中位数、众数、优秀率如下表所示,请补充完整;得出结论,说明理由.(3)整体成绩较好的年级为___,理由为___(至少从两个不同的角度说明合理性).24.(10分)如图,已知四边形ABCD 为平行四边形,BE AC ⊥于点E ,DF AC ⊥于点F . (1)求证:AE CF =;(2)若M 、N 分别为边AD 、BC 上的点,且DM BN =,证明:四边形MENF 是平行四边形.25.(10分)因式分解:(1)a(x﹣y)﹣b(y﹣x)2(2)2x3﹣8x2+8x.参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.考点:中心对称图形.【详解】请在此输入详解!2.B【解析】【分析】把x=1代入一元二次方程ax2-bx-1=0即可得到a-b的值.【详解】解:把x=1代入一元二次方程ax2-bx-1=0得a-b-1=0,所以a-b=1.故选:B .【点睛】此题考查一元二次方程的解,解题关键在于掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.A【解析】【分析】根据原点对称的点的坐标特点,横坐标、纵坐标都互为相反数,求出对称点的坐标【详解】由直角坐标系中关于原点对称的点的坐标特点:横坐标、纵坐标都互为相反数可得点(2,1)P -关于坐标原点的对称点的坐标为(2,1)-,故答案为A【点睛】本题了考查了关于原点对称的坐标的性质以及求解,掌握原点对称的坐标特点是解题的关键4.D【解析】【分析】【详解】解:因为进水时水量增加,函数图象的走势向上,所以可以排除B ,清洗时水量大致不变,函数图象与x 轴平行,排水时水量减少,函数图象的走势向下,排除A ,对于C 、D ,因为题目中明确说明了一开始时洗衣机内无水.故选D .5.B【解析】【分析】利用”夹逼法“+1的范围.【详解】∵4 < 6 < 9 ,<<23<,∴34<<,故选B.6.B【解析】【分析】利用正方形的判定和性质,菱形的判定和性质,矩形的判定和性质进行依次判断可求解.【详解】解:①对角线互相垂直的四边形不一定是菱形,故①错误;②矩形的对角线相等且互相平分,故②错误;③对角线相等的四边形不一定是矩形,故③错误;④对角线相等的菱形是正方形,故④正确,⑤邻边相等的矩形是正方形,故⑤正确故选B.【点睛】本题考查了正方形的判定和性质,菱形的判定和性质,矩形的判定和性质,灵活运用这些性质和判定解决问题是本题的关键.7.C【解析】【分析】根据三角形的中位线定理可以证得DE∥BC,则△ADE∽△ABC,根据相似三角形的性质即可求解【详解】解:∵D、E分别是AB和AC的中点,∴DE∥BC,且12DE BC=,即12DEBC=,∴△ADE∽△ABC,∴12 C ADEC ABC=∴△ADE的周长是:1168 2⨯=.故选:C.【点睛】本题考查了三角形中位线定理以及相似三角形的性质定理,理解定理是关键.8.D【解析】【分析】根据勾股定理逆定理进行判断即可.【详解】因为,A. 52+122=132B. 12+22=(5)2C. 12+()23?=22D. 42+52≠62所以,只有选项D不能构成直角三角形.故选:D【点睛】本题考核知识点:勾股定理逆定理.解题关键点:能运用勾股定理逆定理.9.D【解析】【分析】作DF⊥CE于F,构建两个直角三角形,运用勾股定理逐一解答即可.【详解】过D作DF⊥CE于F,根据等腰三角形的三线合一,得:CF=1,在直角三角形CDF中,根据勾股定理,得:DF2=CD2-CF2=22-12=3,在直角三角形BDF中,BF=BC+CF=1+1=2,根据勾股定理得:BD=222237+=+=,BF DF故选D.【点睛】本题考查了等边三角形的性质,勾股定理等,正确添加辅助线、熟练应用相关的性质与定理是解题的关键. 10.B【解析】试题分析:根据一次函数的性质即可得到结果。

八年级数学下册-18-2-1-矩形-第1课时-矩形的性质导学案-(新版)新人教版

八年级数学下册-18-2-1-矩形-第1课时-矩形的性质导学案-(新版)新人教版

18.2特殊的平行四边形18.2.1 矩形第1课时矩形的性质1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.2.会初步运用矩形的概念和性质来解决有关问题.自学指导:阅读课本52页至53页,完成下列问题.1.有一个角是直角的平行四边形叫做矩形.2.生活中你见到过的矩形有五星红旗、毛巾.3.矩形的四个角都是直角.4.矩形的对角线相等.5.矩形是特殊的平行四边形,具有平行四边形的一切性质.知识探究1.在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.(1)随着∠α的变化,两条对角线的长度分别是怎样变化的?(2)当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?操作、思考、交流、归纳后得到矩形的性质.矩形性质1 矩形的四个角都是直角.矩形性质2 矩形的对角线相等.2.如图,在矩形ABCD中,AC、BD相交于点O,OB与AC是什么关系?解:由矩形性质2得:AC=BD,再由平行四边形性质得:AO=OC,BO=OD,所以AO=BO=CO=DO=12AC=12BD.因此可得直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.3.矩形的对称性:中心对称轴对称自学反馈(一)矩形是轴对称图形吗?如果是的话它有几条对称轴?解:既是轴对称图形,也是中心对称图形,对称轴有两条.(二)请用所学的知识诊断下面的语句,若正确请在括号里打“√”,若“有病”请开药方:1.矩形是特殊的平行四边形,特殊之处就是有一个角是直角.(√)2.平行四边形是矩形.(×)解:矩形是平行四边形.3.平行四边形具有的性质(如平行四边形的对边平行且相等;平行四边形的对角相等;平行四边形的对角线互相平分)矩形也具有.(√)(三)请猜想矩形还有没有区别于平行四边形的性质.活动1 小组讨论例1如图,矩形A BCD的两条对角线相交于点O,∠AOB=60°,AB=4 cm,求矩形对角线的长.分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知条件,可得△OAB是等边三角形,因此对角线的长度可求.解:∵四边形ABCD是矩形,∴AC与BD相等且互相平分.∴OA=OB.又∠AOB=60°,∴△OAB是等边三角形.∴矩形的对角线长AC=BD=2OA=2×4=8(cm).例2如图,矩形ABCD,AB长8 cm,对角线比A D边长4 cm.求AD的长及点A到BD的距离AE的长.分析:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.解:设AD=xcm,则对角线长(x+4)cm,在Rt△ABD中,由勾股定理可知:x2+82=(x+4)2,解得x=6.则AD=6 cm.(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式:AE×DB=AD×AB,解得AE=4.8 cm.例3如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.分析:CE、EF分别是BC,AE等线段上的一部分,若AF=BE,则问题解决,而证明AF=BE,只要证明△ABE ≌△DFA即可,在矩形中容易构造全等的直角三角形.证明:∵四边形ABCD是矩形,∴∠B=90°,且AD∥BC.∴∠1=∠2.∵DF⊥AE,∴∠AFD=90°.∴∠B=∠AFD.又AD=AE,∴△ABE≌△DFA(AAS).∴AF=BE.∴EF=EC.活动2 跟踪训练1.矩形的四个角都是直角,对角线相等且平分.2.直角三角形两直角边长分别为6 cm、8 cm,则斜边上的中线长为5cm.3.如图,在矩形ABCD中,对角线AC、BD相交于点O,若AB=6 cm,∠BOC=120°,则∠ACB=30°,AC=12 cm.4.若矩形的两条对角线的一个夹角是60°,且一条对角线的一半与一条短边的和是12 cm,则此矩形的对角线的长是12 cm.3、4题都是依据矩形对角线互相平分和相等来判断两条对角线的一半与一短边构成等边三角形.5.如图,矩形ABCD沿AE折叠,使点D落在BC边上的F处,如果∠BAF=60°,则∠DAE=15°.在Rt△ABF中,∠BAF=60°,则∠BFA=30°,∵点D落在点F处,∴∠AFE=90°,∴∠EFC=60°,∴∠FEC=30°,又∠AEF=∠AED,∴∠AED=(180°-30°)÷2=75°,∴∠DAE=90°-75°=15°.6.如图,在矩形ABCD中,两条对角线AC、BD相交于O,∠ACD=30°,AB=4. (1)判断△AOD的形状;(2)求对角线AC、BD的长.解:(1)△AOD是等边三角形;(2)AC=BD=.3(2)设BC=x,∵矩形ABCD中,∠ACD=30°,∴∠BAC=30°,AC=2x,∴(2x)2=x2+42.∴;∴7.如图,矩形ABCD中,AE平分∠BAD交BC于E,若∠CAE=15°.求:∠BOE的度数.(提示:要充分利用等腰Rt△ABE,等边△AOB的性质) 解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=OB.又∵AE平分∠BAD,∴∠BAE=45°.∵∠CAE=15°,∴∠BAO=60°.又OA=OB,∴△AOB是等边三角形,∴OB=AB.∵∠BAE=45°,∠ABE=90°.∴∠BEA=∠BAE=45°.∴BE=AB.∴OB=BE.又∵OB=OC,∠AOB=60°,∴∠OBE=30°.∴∠BOE=180302︒-︒=75°.活动3 课堂小结1.矩形的定义及性质.2.矩形是角特殊的平行四边形,决定了矩形的四个角都是直角,对角线相等.。

人教版八年级下册数学导学案:18.2.1 矩形

人教版八年级下册数学导学案:18.2.1 矩形

18.2 特殊的平行四边形18.2.1矩形第1课时矩形的性质一、新课导入1.导入课题演示平行四边形方框,使方框相邻两边成直角时,让学生尝试说出此时四边形的名称,并板书课题.2.学习目标(1)理解矩形的意义,知道矩形与平行四边形的区别与联系.(2)掌握矩形的性质及其推论,会进行有关的计算与证明.3.学习重、难点重点:矩形的性质及其推论.难点:矩形性质的运用.二、分层学习第一层次学习1.自学指导(1)自学内容:P52内容.(2)自学时间:8分钟.(3)自学方法:观看平行四边形方框改变成有一个角是直角时,边的关系是否发生改变.(4)自学参考提纲:①矩形是平行四边形吗?它具有平行四边形的性质吗?②如图,四边形ABCD是矩形,那么:AD∥BC且AD=BC,AB∥CD且AB=CD,∠D=∠B=90°,∵∠A+∠B=180°,∴∠A=∠C=∠D,OA=OC,OB=OD.③矩形还具有哪些一般平行四边形不一定具有的性质呢?结合上图进行论证归纳出来.对于四个角来说有四个角都是直角.对于对角线来说有对角线相等.2.自学:结合自学参考提纲进行自主学习.3.助学(1)师助生:①明了学情:了解学生完成参考提纲时存在的困难问题.②差异指导:引导学生通过平行四边形性质及三角形全等知识探究矩形的特殊性质.(2)生助生:学生之间相互交流和帮助.4.强化(1)矩形具有一般平行四边形的性质.(2)矩形具有的特殊性质.第二层次学习1.自学指导(1)自学内容:P53练习以上的内容.(2)自学时间:6分钟.(3)自学方法:认真阅读“思考”文字内容,对照图形思考BO与AC之间存在什么关系.(4)自学参考提纲:①如教材中图18.2-3,因为矩形ABCD是平行四边形,所以AO=OC,即O是AC的中点,BO是△ABC的边AC上的中线.②因为∠ABC=90°,BO是AC的中线,BO=12BD,AC=BD,所以BO=12AC;也就是说直角三角形中,斜边上的中线等于斜边的一半.③归纳:直角三角形斜边上的中线等于斜边的一半.④例1中OA=OB运用了对角线相等和对角线互相平分性质.2.自学:学生结合自学参考提纲进行自主学习.3.助学(1)师助生:①明了学情:关注学生找BO与AC关系的思考过程.②差异指导:指导学生将结论用文字表达出来.(2)生助生:学生相互交流帮助.4.强化:直角三角形的性质:(1)两锐角互余.(2)两直角边的平方和等于斜边的平方.(3)在直角三角形中,30°角所对的直角边等于斜边的一半.(4)直角三角形斜边上的中线等于斜边的一半.三、评价1.学生的自我评价(围绕三维目标):各小组学生代表介绍自己的学习方法、收获和困惑之处.2.教师对学生的评价:(1)表现性评价:点评学生在课堂学习中的态度、方法、收获及不足.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).在学习本节课之前,学生对矩形的基本知识有一定的了解,而且有前一节探究平行四边形有关知识作为基础,学生已具有一定的独立思考和探究的能力,所以本节课主要在学生已有的认知水平上,在实际问题情景中,由学生自主探索发现矩形的性质定理,使学生经历实践、推理、交流等数学活动过程,亲身体验数学思想方法,促进学生能力的提高.评价作业(时间:12分钟满分:100分)一、基础巩固(共60分)1.(15分)矩形具有而一般平行四边形不一定具有的性质是(C)A.对边相等B.对角相等C.对角互补D.对角线互相平分2.(15分)直角三角形中,两直角边长分别为12和5,则斜边的中线长是(D)A.26B.13C.8.5D.6.53.(15分)矩形ABCD对角线AC,BD相交于点O,AB=5cm,BC=12cm,则△ABO的周长等于18cm .4.(15分)如图,在Rt△ABC中,∠A=30°,∠ACB=90°.点D是AB边的中点.试判断△BCD的形状,并说明理由.解:△BCD为等边三角形.∵∠ACB=90°,点D是AB的中点,∴CD=12AB=BD.在Rt△ABC中,∠A=30°,∴∠B=90°-∠A=60°.在△CBD中,CD=BD,∠B=60°,∴△BCD为等边三角形.二、综合应用(20分)5.矩形的两条对角线的夹角为60°,较短的边长为4.5cm,求对角线长.解:对角线长=2×4.5=9(cm).三、拓展延伸(20分)6.如图,在矩形ABCD中,AC与BD交于O点,BE⊥AC于E,CF⊥BD于F,求证:BE=CF.证明:∵AC、BD为矩形ABCD的对角线,∴OB=OC.又∵∠BEO=∠CFO=90°,∠EOB=∠FOC.∴Rt△EBO≌Rt△FCO,∴BE=CF.18.2.1 矩形第2课时矩形的判定一、新课导入1.导入课题工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你知道为什么吗?(板书课题)2.学习目标(1)能推导归纳判定一个四边形是矩形的几种方法.(2)能选取适当的判定方法判定一个四边形是矩形.3.学习重、难点重点:矩形的判定方法的探究.难点:矩形的性质与判定的综合运用.二、分层学习第一层次学习1.自学指导(1)自学内容:P53最后二行至P54例2前的内容.(2)自学时间:10分钟.(3)自学要求:用已学的矩形意义和性质推导出矩形的判定方法.(4)自学参考提纲:①按定义:有一个角是直角的平行四边形是矩形.②“矩形的对角线相等”的逆命题是对角线相等的平行四边形是矩形,这个命题成立吗?请给予证明.③有三个角是直角的四边形是矩形.④判断:a.对角线相等的四边形是矩形.(×)b.对角线相等且互相平分的四边形是矩形.(√)2.自学:结合自学指导自主学习.3.助学(1)师助生:①明了学情:关注学生是否能完成对两个判定定理的推导,命题证明存在的障碍在哪里?②差异指导:指导学生依据矩形定义完成两个定理的论证及证明一个四边形是矩形的方法步骤.(2)生助生:同桌之间相互研讨.4.强化归纳矩形的三种判定方法及几何推理格式:方法1:有一个角是直角的平行四边形是矩形;方法2:有三个角是直角的四边形是矩形;方法3:对角线相等的平行四边形是矩形.第二层次学习1.自学指导(1)自学内容:P 54至P55例2.(2)自学时间:5分钟.(3)自学方法:边看例题,边思考解题思路及解答过程中的每步依据.(4)自学参考提纲:①课本中求∠OAB 的度数的思路是:50()OAD OAB DAB OAD ∠=︒∠=−−−−−→∠∠-求∠DAB 的度数→证明∠DAB=90°→证明四边形ABCD 是矩形.②(证明)解答第一步推理运用了平行四边形的性质:对角线互相平分.第二步由OA=OD 得到AC=BD 的依据是等量代换.第三步由AC=BD 得到四边形ABCD 是矩形的依据是对角线相等的平行四边形是矩形. ③完成课本P 55练习第2题,参照例2的思路写出解答过程.2.自学:结合自学参考提纲进行自学.3.助学(1)师助生:①明了学情:关注学生是否理解例2的解题思路和步骤,存在的困难在哪里.②差异指导:对练习第2题的条件进行分析,猜测有什么结论.(2)生助生:学生之间相互交流帮助.4.强化(1)矩形的判定方法.(2)由条件到问题之间的联系如何分析.三、评价1.学生自我评价(围绕三维目标):各组学生代表介绍自己的学习方法、收获及困惑.2.教师对学生的评价:(1)表现性评价:点评学生课堂学习中的态度、学习方式、成果及不足之处.(2)纸笔评价:评价作业.3.教师的自我评价(教学反思).本节课通过观察、探究,让学生掌握矩形的三个判定方法:(1)有一个角是直角的平行四边形是矩形;(2)对角线相等的平行四边形是矩形;(3)有三个角是直角的四边形是矩形.教学过程中应将矩形的判定与平行四边形的判定作比较,让同学之间相互交流,说出矩形与平行四边形的区别与联系,进而更好地掌握知识.在本节课的教学中,教师应最大限度地将课堂交给学生,提高学生学习的积极性与主动性.评价作业(时间:12分钟满分:100分)一、基础巩固(50分)1.(20分)下列判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形.(×)(2)四个角都相等的四边形是矩形.(√)(3)对角线相等的四边形是矩形.(×)(4)对角线互相平分,且有一个角是直角的四边形是矩形. (√)2.(10分)下列四边形中不一定是矩形的是 (C)A.有三个角是直角的四边形B.四个角都相等的四边形C.一组对边平行且对角相等的四边形D.对角线相等且互相平分的四边形3.(20分)如图:(1)当AC=BD 是矩形;(2)当∠ABC=∠BCD=∠CDA=90°时,四边形ABCD 是矩形.二、综合应用(20分)4.已知平行四边形ABCD 的对角线AC ,BD 交于点O ,△AOB 是等边三角形,AB=4cm.(1)这个平行四边形是矩形吗?说明你的理由;(2)求这个平行四边形的面积.解:(1)是.∵△AOB 是等边三角形,∴AO=BO ,又∵AO=12AC,BO=12BD.(平行四边形的性质)∴AC=BD.是矩形.(2))2144.2ABCD S cm =⨯⨯=三、拓展延伸(30分)5.如图,在△ABC中,D在AB边上,AD=BD=CD,DE∥AC,DF∥BC.求证:四边形DECF是矩形.证明:∵AD=BD=CD,∴△ABC为直角三角形,∠FCE=90°,∵DE∥AC,DF∥BC,∴四边形DECF为平行四边形,又∵∠FCE=90°,∴平行四边形DECF是矩形.。

人教版初中数学八年级下册18.2.1特殊平行四边形--矩形导学案设计(无答案)

人教版初中数学八年级下册18.2.1特殊平行四边形--矩形导学案设计(无答案)

人教版初中数学八年级18.2.1 特殊的平行四边形──矩形教案一、学习目标1.理解矩形的概念,探索并证明矩形的性质和性质定理推论,探索并证明矩形的判定定理。

2通过观察、猜想、证明的方法,培养学生研究几何问题的思路;综合矩形的性质定理和判定定理进行相关证明。

3.通过启发学生参照平行四边形的性质定理判定定理的研究方法来研究矩形,提高学生合情推理和演绎推理的能力,培养学习数学的热情。

二、学习过程(一)提出问题引发思考上节课我们研究了平行四边形,现在我们通过平行四边形角、边的特殊化,研究特殊的平行四边形。

首先从角入手,把平行四边形的一个内角特殊化──变成90°,会有什么样的图形产生呢?矩形定义:写出你生活中常见的矩形:(二)探究证明深化认知【思考一】因为矩形是平行四边形,所以它具有平行四边形的所有性质。

由于它有一个角为直角,它是否具有一般平行四边形不具有的一些性质呢?猜想1:矩形的四个角都是直角.证明:ADC猜想2:矩形的对角线相等.证明:【问题二】如图,矩形ABCD的对角线AC,BD相交于点O.我们观察Rt△ABC,在Rt△ABC中,BO 是斜边AC上的中线,BO与AC有什么关系?证明:例1:如图,矩形ABCD的两条对角线AC,BD相交于点O,∠AOB=60°,AB=4 .求矩形对角线的长.归纳1:小结1:从角上看:矩形的性质定理:从对角线上看:矩形性质推论:【思考三】由矩形的定义可知,有一个角是直角的平行四边形是矩形.除此之外,还有没有其他判定方法呢?参照研究平行四边形判定的方法,我们从矩形性质定理逆命题入手。

命题1:对角线相等的平行四边形是矩形.如图,在ABCD中,对角线AC=BD.求证:ABCD为矩形.证明:矩形判定定理1:例2 如图,在ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=50°.求∠OAB的度数.【思考四】前面我们研究了矩形的四个角,知道它们都是直角.它的逆命题成立吗?即四个角都是直角的四边形是矩形吗?进一步,至少有几个角是直角的四边形是矩形?命题2:有三个角是直角的四边形是矩形证明:矩形判定定理2:基础巩固:1.下列判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形.( )(2)四个角都相等的四边形是矩形.( )(3)对角线相等的四边形是矩形.( )(4)对角线互相平分,且有一个角是直角的四边形是矩形. ( )判定1:对角线相等的平行四边形是矩形.判定2:有三个角是直角的四边形是矩形.归纳2:在矩形的两个判定定理中,一定要注意它们的前提条件:一个是______,另一个是_________.小结2:判定矩形的方法:1.定义:2.判定1:3.判定2:注意:这三种判定方法的前提条件要记清!(三)巩固练习应用新知如图, ABCD的对角线AC、BD相交于点O,△OAB是等边三角形,且AB=4.求 ABCD 的面积.(四)课堂小结:畅谈你的收获三、课后作业:1.▱ABCD中,AC交BD于点O,再添加一个条件,仍不能判定四边形ABCD是矩形的是( )A.AB=ADB.OA=OBC.AC=BDD.DC⊥BC2.如图,△ABC中,AC的垂直平分线分别交A C,AB于点D,F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是( )A.2B.C.4D.33.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为.4.如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB的中点,DE⊥AC,垂足为E,若DE=2,CD=2,则BE的长为.5.如图,▱ABCD中,点O是AC与BD的交点,过点O的直线与BA,DC的延长线分别交于点E,F.(1)求证:△AOE≌△COF.(2)请连接EC,AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.6.如图,在△ABC中,点O是AC边上(端点除外)的一个动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的邻补角的平分线于点F,连接AE,AF.那么当点O运动到何处时,四边形AECF是矩形?并证明你的结论.。

2017年春季学期新版新人教版八年级数学下学期18.2.1、矩形学案8

2017年春季学期新版新人教版八年级数学下学期18.2.1、矩形学案8
18.2.1.2矩形 的判定
自主学习目标
理解并掌握矩形的判定方法.
合作学习目标
使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题。合作探究目标进一步培养 Nhomakorabea生的分析能力
合作
重点
矩形的判定.
合作
难点
矩形的判定及性质的综合应用
合作
关键
矩形的判定及性质的综合应用
教学
流程
教学素材
教学环节
教师行为
学生活动
A、一组对边平行而另一组对边不平行
B、对角线相等
C、对角线互相垂直
D、对角线相等互相平分
3、已知:如图,ABCD的四个内角的平分线分别相交于E、F、G、H,
求证:四边形EFGH为矩形.
导学2
提问
自主合作
评价
自学
互动 交流
巡视
巩固达标
巡视
举手展示
课堂
小结
本节学习了哪些内容?
小结质疑
合作与交流
(补充)已知:如图(1), ABCD的四个内角的平分线分别相交于 点E,F,G,H.求证:四边形EFGH是矩形
导学1
巡视
探讨、交流,
自主合作
巡视
自主独立完成
互动交流
指导学生评价
举手展示
巩固达标
巡视
独立练习
学习
内容2
命题:对角线相等的平行四 边形是矩形
已知:平行四边形ABCD,AC=BD。
求证:四边形ABCD是矩形。
有三个角是直角的四边形是矩形写出已知求证。
你能归纳矩形的几种判 定方法吗?
例、已知MN∥PQ,同旁内角的平分线AB、BC和AD、CD分别相交于点B、D.

人教版八年级数学下册18.2.1矩形导学案

人教版八年级数学下册18.2.1矩形导学案

第课时,共课时班级姓名等级【学习目标】1.学会矩形的性质,能应用矩形的性质解决简单的计算题。

2.通过探索矩形判定的过程,形成集合分析思路和方法。

3.激情投入,展示自我。

【学习重、难点】矩形的性质和判定定理。

.预习案自学课本,完成下列各题:1、矩形的定义:_____________________________________2、矩形的性质:(1)边:_____________________________(2 )角:__________________________(3 )对角线:___________________________(4)对称性:______________________3.矩形的判定:(1)定义:有一个角是直角的平行四边形是矩形。

(2)有三个角都是直角的四边形是矩形。

(3)对角线相等的平行四边形是矩形。

巩固案1.矩形的对边是,对角线且,四个角都是。

2.矩形是面积的60,一边长为5,则它的一条对角线长等于。

3.平行四边形没有而矩形具有的性质是()A、对角线相等B、对角线互相垂直C、对角线互相平分D、对角相等4、下列叙述错误的是()A.平行四边形的对角线互相平分。

B.平行四边形的四个内角相等。

C.矩形的对角线相等。

D.有一个角时90º的平行四边形是矩形8、下列图形中既是轴对称图形,又是中心对称图形的是()A、平行四边形B、等边三角形C、矩形D、直角三角形9、四边形ABCD的对角线相交于点O,在下列条件中不能判定它是矩形的是()A、AB=CD,AB∥CD, ∠BAD=90°B、AO=CO,BO=DO,AC=BDC、∠BAD=∠ABC=90°, ∠BCD+∠ADC=180°D、∠BAD=∠BCD, ∠ABC=∠ADC=90探究案1.如图,已知矩形ABCD的两条对角线相交于O,,AB=4cm,求此矩形的面积。

2、折叠矩形纸片ABCD,先折出折痕BD,再折叠使AD边与对角线BD重合,得折痕DG,如图,若AB=8 BC=6,求AG,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导学反思:
探究点三:性质的综合应用
4、已知矩形ABCD和点P,当点P在图1中的位置时,则有结论:S△PBC=S△PAC+S△PCD理由:过点P作EF垂直BC,分别交AD、BC于E、F两点.
∵S△PBC+S△PAD=12BC•PF+12AD•PE=12BC(PF+PE)=12BC•EF=12S矩形ABCD
又∵S△PAC+S△PCD+S△PAD=12S矩形ABCD
探究点一:矩形性质的应用
1、已知:如图1,矩形ABCD中,E是BC上一点, 于F,若 。求证:CE=EF。
2、折叠矩形ABCD纸片,先折出折痕BD,再折叠使A落在对角线BD上A′位置上,折痕为DG。AB=12,BC=5。求AG的长。
探究点二:直角三角形斜边中线的特性的应用
3、已知如图, 是矩形 对角线交点, 平分 , ,求 的度数
通过本节课的学习,你有什么收获?你还有什么困惑?
画知识树
五、达标测试
学法指导:1、分层达标,敢于突破,横向比较,找出差距。
2、完成较早的小组与同学把答案写到小黑板上奖励分5’
3、对子互改,组长验收,教师查阅。
A.基础达标
1、由矩形的一个顶点向其所对的对角线引垂线,该垂线分直角为1:3两部分,则该垂线与另一条对角线的夹角为()
A、22.5°B、45°C、30°D、60°
2、矩形的两条对角线的夹角为60°,较短的边长为4.5厘米,则对角线长为。
B.能力测试
3、如图,将矩形ABCD沿对角线BD折叠,使点C落在F的位置,BF交AD于E,AD=8,AB=4,求△BED的面积。
C、拓展与提高
4、在直角三角形ABC中,∠C=90°,CD是AB边上的中线,∠A=30°,AC=5 ,求△ADC的周长。
矩形(一)
【励志语录】
1、把握当下.就是用心,帮助别人,其实就是在帮助自己。
2、不断发挥生命功能.才是活着的人生。
【学习目标】
学法指导:仔细阅读,做到有的放矢。
1、能说出矩形的定义和直角三角形斜边中线的特性,能概括矩形的性质。
2、知道矩形与平行四边形的区别与联系,会运用矩形的概念和性质解决问题。
3、知道解决矩形问题的基本思想是化为三角形的问题来解决。
∴S△PBC+S△PAD= S△PAC+S△PCD+S△PAD.
∴S△PBC=S△PAC+S△PCD.
请你参考上述信息,当点P分别在图2、图3中的位置时,S△PBC、S△PAC、SPCD又有怎样的数量关系?请写出你对上述两种情况的猜想,并选择其中一种情况的猜想给予证明
四.小结提升
学法指导:1、对照学习目标找差补缺。2、画出知识树。
二、教材预习
学法指导:课前独学教材预习内容,总结本节课的重点、难点、注意点。课堂再以小组为单位交流,找出还存在的问题,并在小黑板上扼要展示本节重点内容和存在的问题。注意双色笔的使用,书写工整。
1、预习内容:自学课本94页—95页,完成P95练习1、2、3。
2、预习测试:1、矩形的定义:做矩形。矩形是的平行四边形。4、培养观察能力、动手能力、自学能力、计算能力、逻辑思维能力。
【重点】矩形的性质及直角三角形斜边中线的特性
一、知识链接:
1.什么叫平行四边形?它和四边形有什么区别?
2.我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说,也有特殊情况即特殊的平行四边形,我们就来研究一种特殊的平行四边形——矩形.
2、从矩形的意义可以探究矩形具有的性质:
(1)矩形具有平行四边形具有的一切性质:。
(2)矩形与平行四边形比较又有其特殊的性质(探究、归纳、):

几何语言为:
3、直角三角形斜边中线的特性:从矩形的性质可以说明直角三角形斜边上的中线等于斜边的
几何语言为:
合作探究
学法指导:课前独学,解决会的,有问题的上课对子或小组交流,形成共识,进行课堂大展示。展示时要讲清所用知识点、易错点。展示到小黑板的题要标清所用知识点、易错点;注意双色笔的使用,字体工整。
相关文档
最新文档