数列综合试题

合集下载

高三数学数列综合应用试题答案及解析

高三数学数列综合应用试题答案及解析

高三数学数列综合应用试题答案及解析1.已知数列{an }中,a1=2,an-an-1-2n=0(n≥2,n∈N*).(1)写出a2,a3的值(只写结果),并求出数列{an}的通项公式;(2)设bn=+++…+,若对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+>bn恒成立,求实数t的取值范围.【答案】(1)a2=6,a3=12. an=n(n+1).(2)实数t的取值范围为(-∞,-2)∪(2,+∞)【解析】解:(1)∵a1=2,an-an-1-2n=0(n≥2,n∈N*),∴a2=6,a3=12.当n≥3时,an -an-1=2n,a n-1-a n-2=2(n-1),又a3-a2=2×3,a2-a1=2×2,∴an -a1=2[n+(n-1)+…+3+2],∴an=2[n+(n-1)+…+3+2+1]=2×=n(n+1).当n=1时,a1=2;当n=2时,a2=6,也满足上式,∴数列{an }的通项公式为an=n(n+1).(2)bn=++…+=++…+=-+-+…+-=-==.令f(x)=2x+(x≥1),则f′(x)=2-,当x≥1时,f′(x)>0恒成立,∴函数f(x)在[1,+∞)上是增函数,故当x=1时,f(x)min=f(1)=3,即当n=1时,(bn )max=.要使对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+>bn恒成立,则需t2-2mt+>(bn )max=,即t2-2mt>0对∀m∈[-1,1]恒成立,∴,解得t>2或t<-2,∴实数t的取值范围为(-∞,-2)∪(2,+∞).2.一函数y=f(x)的图象在给定的下列图象中,并且对任意an ∈(0,1),由关系式an+1=f(a n)得到的数列{an }满足an+1>a n(n∈N*),则该函数的图象是()【答案】A【解析】由an+1>a n可知数列{a n}为递增数列,又由a n+1=f(a n)>a n可知,当x∈(0,1)时,y=f(x)的图象在直线y=x的上方,故选A.3.设函数)定义为如下数表,且对任意自然数n均有xn+1=的值为( ) A.1B.2C.4D.5【答案】D【解析】,又根据,所以有,,,, .,所以可知:,,故选D.【考点】数列的周期性4.是点集A到点集B的一个映射,且对任意,有.现对点集A中的点,,均有,点为(0,2),则线段的长度 .【答案】【解析】∵,∴,,,,,,…,根据变化规律可知,∴,,∴.【考点】1.数列的性质;2.两点间距离公式.5.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:(1)b2012是数列{an}中的第项;(2)b2k-1=.(用k表示)【答案】(1)5030(2)【解析】由以上规律可知三角形数1,3,6,10,…的一个通项公式为an=,写出其若干项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…其中能被5整除的为10,15,45,55,105,120,…故b1=a4,b2=a5,b3=a9,b4=a10,b5=a14,b6=a15,….从而由上述规律可猜想:b2k =a5k= (k为正整数),b2k-1=a5k-1==,故b2012=b2×1006=a5×1006=a5030,即b2012是数列{an}中的第5030项.6.已知数列满足,则该数列的通项公式_________.【答案】【解析】∵,∴,∴,∴,,…,,∴,∴,∴.【考点】1.累加法求通项公式;2.裂项相消法求和.7.数列满足,则 .【答案】【解析】这类问题类似于的问题处理方法,在中用代换得(),两式相减得,,又,即,故.【考点】数列的通项公式.8.已知函数,记,若是递减数列,则实数的取值范围是______________.【答案】【解析】是递减数列,从开始是用式子计算,这时只要,即即可,关键是是通过二次式计算,根据二次函数的性质,应该有且,即且,解得,综上取值范围是.【考点】数列的单调性.9.已知数列{}的前n项和为,且,则使不等式成立的n的最大值为.【答案】4【解析】当时,,得,当时,,所以,所以,又因为适合上式,所以,所以,所以数列是以为首项,以4为公比的等比数列,所以,所以,即,易知的最大值为4.【考点】1.等比数列的求和公式;2.数列的通项公式.10.甲、乙两人用农药治虫,由于计算错误,在A、B两个喷雾器中分别配制成12%和6%的药水各10千克,实际要求两个喷雾器中的农药的浓度是一样的,现在只有两个容量为1千克的药瓶,他们从A、B两个喷雾器中分别取1千克的药水,将A中取得的倒入B中,B中取得的倒入A中,这样操作进行了n次后,A喷雾器中药水的浓度为,B喷雾器中药水的浓度为.(1)证明:是一个常数;(2)求与的关系式;(3)求的表达式.【答案】(1)18;(2);(3) .【解析】(1)利用n次操作后A和B的农药的和应与开始时农药的重量和相等建立等量关系,证明是一个常数;(2)借助第一问的结论和第n次后A中10千克的药水中农药的重量具有关系式,求解与的关系式;(3)根据第二问的递推关系,采用构造数列的思想进行求解.试题解析:(1)开始时,A中含有10=1.2千克的农药,B中含有10=0.6千克的农药,,A中含有千克的农药,B中含有千克的农药,它们的和应与开始时农药的重量和相等,从而(常数). 4分(2)第n次操作后,A中10千克的药水中农药的重量具有关系式:由(1)知,代入化简得① 8分(3)令,利用待定系数法可求出λ=—9,所以,可知数列是以为首项,为公比的等比数列.由①,,由等比数列的通项公式知:,所以. 12分【考点】1.数列的递推式;(2)数列的通项公式;(3)实际应用问题.11.等比数列的各项均为正数,且,则【答案】B【解析】等比数列中,所以【考点】等比数列性质及对数运算点评:等比数列中,若则,在对数运算中12.已知数列的首项为,对任意的,定义.(Ⅰ)若,(i)求的值和数列的通项公式;(ii)求数列的前项和;(Ⅱ)若,且,求数列的前项的和.【答案】(1) ,,(2) 当为偶数时,;当为奇数时,【解析】(Ⅰ) 解:(i),,………………2分由得当时,=………4分而适合上式,所以.………………5分(ii)由(i)得:……………6分……………7分…………8分(Ⅱ)解:因为对任意的有,所以数列各项的值重复出现,周期为. …………9分又数列的前6项分别为,且这六个数的和为8. ……………10分设数列的前项和为,则,当时,,……………11分当时,,…………12分当时所以,当为偶数时,;当为奇数时,. ……………13分【考点】数列的通项公式,数列的求和点评:解决的关键是对于数列的递推关系的理解和运用,并能结合裂项法求和,以及分情况讨论求和,属于中档题。

等差数列数列综合测试题

等差数列数列综合测试题

等差数列测试题班级:_____________姓名:_____________得分:___________ 一选择题:(60分=5分×12)1.已知{}n a 为等差数列,135********,99,a a a a a a a ++=++=则等于( ) A. -1 B. 1 C. 3 D. 72.设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于( ) A .13 B .35 C .49 D . 633.等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4, 则公差d 等于 A .1 B. 53C.- 2D. 3 4.已知{}n a 为等差数列,且7a -24a =-1, 3a =0,则公差d =( )A.-2B. 12- C. 12D.25.若等差数列{}n a 的前5项和525S =,且23a =,则7a =( )A.12B.13C.14D.15 6.已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是 ( ) A .15 B .30 C .31 D .64 7.已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( ) A .64 B .100 C .110 D .120 8.记等差数列{}n a 的前n 项和为n S ,若112a =,420S =,则6S =( ) A .16 B .24 C .36 D .489.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63 B .45 C .36 D .27 10.设n S 是等差数列{}n a 的前n 项和,若36612S1,3S S S ==则( ) A.310 B.13 C.18 D.1911、等差数列{}n a 中,39||||,a a =公差d<0,则使前项n 和n S 取得最大值的自然数n 的值是( )A.4和5B.5和6C.6和7D.不存在12、含2n+1项的等差数列,其奇数项的和与偶数项的和之比为( ) A.21n n+ B.1n n + C.1n n - D.12n n +二、填空题(20分=5分×4)13.已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++= 14. 设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++= 15.设等差数列{}n a 的前n 项和为n S ,若535a a =,则95S S = 16.等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a = 三、解答题(70分=10分+5×12分,22,23大题任选一题作答) 17.在等差数列{}n a 中,40.8a =,11 2.2a =,求515280a a a +++.18.已知等差数列{n a }中,374616,0a a a a ⋅=-+=,求{n a }前n 项和n S .19、求数列{}n a 的前n 项和n S ,其中1(1)n a n n =+20、设等差数列{}n a 的前n 项和为n S ,已知312a =,12S >0,13S <0, ①求公差d 的取值范围;②1212,,,S S S 中哪一个值最大?并说明理由.21、设等差数列}{n a 的前n项的和为S n ,且S 4 =-62, S 6 =-75,求: (1)}{n a 的通项公式a n 及前n项的和n S ; (2)12314...a a a a ++++*22、某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后每年都增加4万元,每年捕鱼收益50万元, (Ⅰ)问第几年开始获利?(Ⅱ)若干年后,有两种处理方案:(1)年平均获利最大时,以26万元出售该渔船;(2)总纯收入获利最大时,以8万元出售该渔船.问哪种方案合算.*23.若两个数列的前n 项和之比是(71):(427)n n ++,试求它们的第11项之比,第n 项之比。

数列综合试题

数列综合试题

数列综合练习题一、选择题1. 数列{}n a 满足a 1=2,*110()n n a a n N +-+=∈,则此数列的通项a n 为 ( )A.3-nB.1-nC.3+nD.1+n2. 在等差数列{}n a 中,前15项之和15S =90,则8a = ( )A .6B 。

454 C.12 D. 4523.实数12345,,,,a a a a a 依次成等比数列,其中a 1=2,a 5=8,则a 3的值为 ( )A.-4B.4C.±4D.54. 等差数列{a n }中,a 1>0 , d ≠0, 311S S =,则n S 中的最大值为 ( )A. 7S 和8SB.14SC.7SD.无最大值5. 数列{a n }满足*212()n n n a a a n N +++=∈,则此数列的通项可表示为 ( )A.121(1)()n a a n a a =+--B.121()n a a n a a =+-C.1211()n n a a a a -= D.211()n n aa a a = 6.等比数列{}n a 中,已知112733n a a q ===,,,则n 为 ( )A .3B .4C .5D .67.已知等差数列{}n a 中15,652==a a ,若n n a b 2=,则数列{}n b 的前5项和等于( )A .186B .90C .45D .30 8.等比数列{n a }中,n a =2×31-n ,由此数列偶数项所组成的新数列的前n 项和n S =( )A.3n-1 B .3(3n-1) C.419-n 4n9.数列 ,1614,813,412,211前n 项的和为 ( ).A 22112n n n ++- .B 2212n n n ++-.C 22121n n n -+-+ .D 2212nn n ++10.已知数列{}n a 的前n 项和为n S ,且21()n n S a n *=-∈N ,则5a =( ) A .16-B .16C .31D .3211.一个等比数列的首项为1,公比为2,则2222123...n a a a a ++++= ( )A .2(21)n -B .1(21)3n - C .41n - D .1(41)3n -12.等差数列}{n a 中,3,121==a a ,数列}1{1+n n a a 的前n 项和为3115,则n 的值为( )A .15B .16C .17D .1813.在等比数列{}n a 中,201020078a a = ,则公比q 的值为( )A. 2B. 3C. 4D. 814.公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a = ( )(A ) 1 (B )2 (C ) 4 (D )815.{a n }是等比数列,0>n a 且,187465=+a a a a 则=+⋅⋅⋅++1032313log log log a a a ( )A .12B .10C .8D .2+5log 3 16.数列{}n a 的通项公式是11++=n n a n ,若前n 项和为10,则项数=n( )A.11B.99C.120D.12117.已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,,则n S = ( ) A.12-n B.1)23(-n C.1)32(-n D.121-n二、填空题18、等比数列{a n }中,已知a 1+a 2+a 3=7,a 1a 2a 3=8,且{a n }为递增数列,则a 4= . 19、 已知{a n }是等差数列,且有a 2+a 3+a 10+a 11=48, 则a 6+a 7=_____________.20、 一个等差数列共2n+1项,其中奇数项之和为305,偶数项之和为300,则第n+1项为______21、已知{a n }为等差数列,S n 为其前n 项和,若211=a ,S 2=a 3,则a 2=______,S n =_______。

数列测试题及答案

数列测试题及答案

数列测试题及答案数列测试题及答案 数列测试题及答案: ⼀、选择题:本⼤题共12⼩题,每⼩题5分,共60分. 1.在等差数列{an}中,若a1+a2+a12+a13=24,则a7为( ) A.6 B.7 C.8 D.9 解析:∵a1+a2+a12+a13=4a7=24,∴a7=6. 答案:A 2.若等差数列{an}的前n项和为Sn,且满⾜S33-S22=1,则数列{an}的公差是( ) A.12 B.1 C.2 D.3 解析:由Sn=na1+n(n-1)2d,得S3=3a1+3d,S2=2a1+d,代⼊S33-S22=1,得d=2,故选C. 答案:C 3.已知数列a1=1,a2=5,an+2=an+1-an(n∈N*),则a2 011等于( ) A.1 B.-4 C.4 D.5 解析:由已知,得a1=1,a2=5,a3=4,a4=-1,a5=-5,a6=-4,a7=1,a8=5,… 故{an}是以6为周期的数列, ∴a2 011=a6×335+1=a1=1. 答案:A 4.设{an}是等差数列,Sn是其前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是( ) A.d<0 B.a7=0 C.S9>S5 D.S6与S7均为Sn的最⼤值 解析:∵S5<S6,∴a6>0.S6=S7,∴a7=0. ⼜S7>S8,∴a8<0. 假设S9>S5,则a6+a7+a8+a9>0,即2(a7+a8)>0. ∵a7=0,a8<0,∴a7+a8<0.假设不成⽴,故S9<S5.∴C错误. 答案:C 5.设数列{an}是等⽐数列,其前n项和为Sn,若S3=3a3,则公⽐q的值为( ) A.-12 B.12 C.1或-12 D.-2或12[ 解析:设⾸项为a1,公⽐为q, 则当q=1时,S3=3a1=3a3,适合题意. 当q≠1时,a1(1-q3)1-q=3a1q2, ∴1-q3=3q2-3q3,即1+q+q2=3q2,2q2-q-1=0, 解得q=1(舍去),或q=-12. 综上,q=1,或q=-12. 答案:C 6.若数列{an}的通项公式an=5 252n-2-425n-1,数列{an}的最⼤项为第x项,最⼩项为第y 项,则x+y等于( ) A.3 B.4 C.5 D.6 解析:an=5252n-2-425n-1=525n-1-252-45, ∴n=2时,an最⼩;n=1时,an最⼤. 此时x=1,y=2,∴x+y=3. 答案:A 7.数列{an}中,a1 =15,3an+1= 3an-2(n∈N *),则该数列中相邻两项的乘积是负数的是( ) A.a21a22 B.a22a23 C.a23a24 D.a24a25 解析:∵3an+1=3an-2, ∴an+1-an=-23,即公差d=-23. ∴an=a1+(n-1)d=15-23(n-1). 令an>0,即15-23(n-1)>0,解得n<23.5. ⼜n∈N*,∴n≤23,∴a23>0,⽽a24<0,∴a23a24<0. 答案:C 8.某⼯⼚去年产值为a,计划今后5年内每年⽐上年产值增加10%,则从今年起到第5年,这个⼚的总产值为( ) A.1.14a B.1.15a C.11×(1.15-1)a D.10×(1.16-1)a 解析:由已知,得每年产值构成等⽐数列a1=a,w an=a(1+10%)n-1(1≤n≤6). ∴总产值为S6-a1=11×(1.15-1)a. 答案:C 9.已知正数组成的等差数列{an}的前20项的和为100,那么a7a14的最⼤值为( ) A.25 B.50 C.1 00 D.不存在 解析:由S20=100,得a1+a20=10. ∴a7+a14=10. ⼜a7>0,a14>0,∴a7a14≤a7+a1422=25. 答案:A 10.设数列{an}是⾸项为m,公⽐为q(q≠0)的等⽐数列,Sn是它的前n项和,对任意的n∈N*,点an,S2nSn( ) A.在直线mx+qy-q=0上 B.在直线qx-my+m=0上 C.在直线qx+my-q=0上 D.不⼀定在⼀条直线上 解析:an=mqn-1=x,①S2nSn=m(1-q2n)1-qm(1-qn)1-q=1+qn=y,② 由②得qn=y-1,代⼊①得x=mq(y-1),即qx-my+m=0. 答案:B 11.将以2为⾸项的偶数数列,按下列⽅法分组:(2),(4,6),(8,10,12),…,第n组有n个数,则第n组的⾸项为( ) A.n2-n B.n2+n+2 C.n2+n D.n2-n+2 解析:因为前n-1组占⽤了数列2,4,6,…的前1+2+3+…+(n-1)=(n-1)n2项,所以第n组的⾸项为数列2,4,6,…的第(n-1)n2+1项,等于2+(n-1)n2+1-12=n2-n+2. 答案:D 12.设m∈N*,log2m的整数部分⽤F(m)表⽰,则F(1)+F(2)+…+F(1 024)的值是( ) A.8 204 B.8 192 C.9 218 D.以上都不对 解析:依题意,F(1)=0, F(2)=F(3)=1,有2 个 F(4)=F(5)=F(6)=F(7)=2,有22个. F(8)=…=F(15)=3,有23个. F(16)=…=F(31)=4,有24个. … F(512)=…=F(1 023)=9,有29个. F(1 024)=10,有1个. 故F(1)+F(2)+…+F(1 024)=0+1×2+2×22+3×23+…+9×29+10. 令T=1×2+2×22+3×23+…+9×29,① 则2T=1×22+2×23+…+8×29+9×210.② ①-②,得-T=2+22+23+…+29-9×210 = 2(1-29)1-2-9×210=210-2-9×210=-8×210-2, ∴T=8×210+2=8 194, m] ∴F(1)+F(2)+…+F(1 024)=8 194+10=8 204. 答案:A 第Ⅱ卷 (⾮选择共90分) ⼆、填空题:本⼤题共4个⼩题,每⼩题5分,共20分. 13.若数列{an} 满⾜关系a1=2,an+1=3an+2,该数列的通项公式为__________. 解析:∵an+1=3an+2两边加上1得,an+1+1=3(an+1), ∴{an+1}是以a1+1=3为⾸项,以3为公⽐的等⽐数列, ∴an+1=33n-1=3n,∴an=3n-1. 答案:an=3n-1 14.已知公差不为零的等差数列{an}中,M=anan+3,N=an+1an+2,则M与N的⼤⼩关系是__________. 解析:设{an}的公差为d,则d≠0. M-N=an(an+3d)-[(an+d)(an+2d)] =an2+3dan-an2-3dan-2d2=-2d2<0,∴M<N. 答案:M<N 15.在数列{an}中,a1=6,且对任意⼤于1的正整数n,点(an,an-1)在直线x-y=6上,则数列{ann3(n+1)}的前n项和Sn=__________. 解析:∵点(an,an-1)在直线x-y=6上, ∴an-an-1=6,即数列{an}为等差数列. ∴an=a1+6(n-1)=6+6(n-1)=6n, ∴an=6n2. ∴ann3(n+1)=6n2n3(n+1)=6n(n+1)=61n-1n+1 ∴Sn=61-12+12-13+…+1n-1n+1.=61-1n+1=6nn+1. 答案:6nn+1 16.观察下表: 1 2 3 4 3 4 5 6 7 4 5 6 7 8 9 10 … 则第__________⾏的各数之和等于2 0092. 解析:设第n⾏的各数之和等于2 0092, 则此⾏是⼀个⾸项a1=n,项数为2n-1,公差为1的等差数列. 故S=n×(2n-1)+(2n-1)(2n-2)2=2 0092,解得n=1 005. 答案:1 005 三、解答题:本⼤题共6⼩题,共70分. 17.(10分)已知数列{an}中,a1=12,an+1=12an+1(n∈N*),令bn=an-2. (1)求证:{bn}是等⽐数列,并求bn; (2)求通项an并求{an}的前n项和Sn. 解析:(1)∵bn+1bn=an+1-2an-2=12an+1-2an-2=12an-1an-2=12, ∴{bn}是等⽐数列. ∵b1=a1-2=-32, ∴bn=b1qn-1=-32×12n-1=-32n. (2)an=bn+2=-32n+2, Sn=a1+a2+…+an =-32+2+-322+2+-323+2+…+-32n+2 =-3×12+122+…+12n+2n=-3×12×1-12n1-12+2n=32n+2n-3. 18.(12分)若数列{an}的`前n项和Sn=2n. (1)求{an}的通项公式; (2)若数列{bn}满⾜b1=-1,bn+1=bn+(2n-1),且cn=anbnn,求数列{cn}的通项公式及其前n 项和Tn. 解析:(1)由题意Sn=2n, 得Sn-1=2n-1(n≥2), 两式相减,得an=2n-2n-1=2n-1(n≥2). 当n=1时,21-1=1≠S1=a1=2. ∴an=2 (n=1),2n-1 (n≥2). (2)∵bn+1=bn+(2n-1), ∴b2-b1=1, b3-b2=3, b4-b3=5, … bn-bn-1=2n-3. 以上各式相加,得 bn-b1=1+3+5+…+(2n-3) =(n-1)(1+2n-3)2=(n-1)2. ∵b1=-1,∴bn=n2-2n, ∴cn=-2 (n=1),(n-2)×2n-1 (n≥2), ∴Tn=-2+0×21+1×22+2×23+…+(n-2)×2n-1, ∴2Tn=-4+0×22+1×23+2×24+…+(n-2)×2n. ∴-Tn=2+22+23+…+2n-1-(n-2)×2n =2(1-2n-1)1-2-(n-2)×2n =2n-2-(n-2)×2n =-2-(n-3)×2n. ∴Tn=2+(n-3)×2n. 19.(12分)已知等差数列{an}的前n项和为Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等⽐数列. (1)求数列{an}的通项公式; (2)若从数列{an}中依次取出第2项,第4项,第8项,…,第2n项,…,按原来顺序组成⼀个新数列{bn},记该数列的前n项和为Tn,求Tn的表达式. 解析:(1)依题意,得 3a1+3×22d+5a1+5×42d=50,(a1+3d)2=a1(a1+12d),解得a1=3,d=2. ∴an=a1+(n-1)d=3+2(n-1)=2n+1, 即an=2n+1. (2)由已知,得bn=a2n=2×2n+1=2n+1+1, ∴Tn=b1+b2+…+bn =(22+1)+(23+1)+…+(2n+1+1) =4(1-2n)1-2+n=2n+2-4+n. 20.(12分)设数列{an}的前n项和为Sn,且ban-2n=(b-1)Sn. (1)证明:当b=2时,{an-n2n-1}是等⽐数列; (2)求通项an. 新课标第⼀⽹ 解析:由题意知,a1=2,且ban-2n=(b-1)Sn, ban+1-2n+1=(b-1)Sn+1, 两式相减,得b(an+1-an)-2n=(b-1)an+1, 即an+1=ban+2n.① (1)当b=2时,由①知,an+1=2an+2n. 于是an+1-(n+1)2n=2an+2n-(n+1)2n =2an-n2n-1. ⼜a1- 120=1≠0, ∴{an-n2n-1}是⾸项为1,公⽐为2的等⽐数列. (2)当b=2时, 由(1)知,an-n2n-1=2n-1,即an=(n+1)2n-1 当b≠2时,由①得 an +1-12-b2n+1=ban+2n-12-b2n+1=ban-b2-b2n =ban-12-b2n, 因此an+1-12-b2n+1=ban-12-b2n=2(1-b)2-bbn. 得an=2, n=1,12-b[2n+(2-2b)bn-1], n≥2. 21.(12分)某地在抗洪抢险中接到预报,24⼩时后⼜⼀个超历史最⾼⽔位的洪峰到达,为保证万⽆⼀失,抗洪指挥部决定在24⼩时内另筑起⼀道堤作为第⼆道防线.经计算,如果有 20辆⼤型翻⽃车同时作业25⼩时,可以筑起第⼆道防线,但是除了现有的⼀辆车可以⽴即投⼊作业外,其余车辆需从各处紧急抽调,每隔20分钟就有⼀辆车到达并投⼊⼯作.问指挥部⾄少还需组织多少辆车这样陆续⼯作,才能保证24⼩时内完成第⼆道防线,请说明理由. 解析:设从现有这辆车投⼊⼯作算起,各车的⼯作时间依次组成数列{an},则an-an-1=-13. 所以各车的⼯作时间构成⾸项为24,公差为-13的等差数列,由题知,24⼩时内最多可抽调72辆车. 设还需组织(n-1)辆车,则 a1+a2+…+an=24n+n(n-1)2×-13≥20×25. 所以n2-145n+3 000≤0, 解得25≤n≤120,且n≤73. 所以nmin=25,n-1=24. 故⾄少还需组织24辆车陆续⼯作,才能保证在24⼩时内完成第⼆道防线. 22.(12分)已知点集L={(x,y)|y=mn},其中m=(2x-2b,1),n=(1,1+2b),点列Pn(an,bn)在点集L中,P1为L的轨迹与y轴的交点,已知数列{an}为等差数列,且公差为1,n∈N*. (1)求数列{an},{bn}的通项公式; (3)设cn=5nan|PnPn+1|(n≥2),求c2+c3+c4+…+cn的值. 解析:(1)由y=mn,m=(2x-2b,1),n=(1,1+2b), 得y=2x+1,即L:y=2x+1. ∵P1为L的轨迹与y轴的交点, ∴P1(0,1),则a1=0,b1=1. ∵数列{an}为等差数列,且公差为1, ∴an=n-1(n∈N*) . 代⼊y=2x+1,得bn=2n-1(n∈N*). (2)∵Pn(n-1,2n-1),∴Pn+1(n,2n+1). =5n2-n-1=5n-1102-2120. ∵n∈N*, (3)当n≥2时,Pn(n-1,2n-1), ∴c2+c3+…+cn =1-12+12-13+…+1n-1-1n=1-1n.。

高二数学数列综合测试题(解析版)

高二数学数列综合测试题(解析版)
所以 或 或 ,所以 或 或 ,所以 的最小值为 .故选:A.
7.已知 分别是等差数列 与 的前 项和,且 ,则 ()
A. B. C. D.
【答案】B
【详解】因为数列 是等差数列,所以 ,
所以 ,
又因为 分别是等差数列 与 的前 项和,且 ,
所以 ,
故选: .
8.已知数列 满足 ,则满足 的 的最大取值为()
11.一个弹性小球从 高处自由落下,每次着地后又跳回原来高度的 再落下.设它第 次着地时,经过的总路程记为 ,则当 时,下面说法正确的是()
A. B. C. 的最小值为 D. 的最小值为250
【答案】BC
【详解】由题可知,第一次着地时, ;第二次着地时, ;
第三次着地时, ;……
第 次着地后,
则 ,显然 ,又 是关于 的增函数, ,故当 时, 的最小值为 ;
A.39B.45C.48D.51
【答案】D
【详解】设该塔群共有n阶,自上而下每一阶的塔数所构成的数列为 ,依题意可知 , ,…, 成等差数列,且公差为2, ,
则 ,解得 .
故最下面三价的塔数之和为 .故选:D
4.等比数列 的前 项和为 , , ,则 为()
A. B. C. D.28或-21
ห้องสมุดไป่ตู้【答案】A
数列复习训练题
一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一个
1.等差数列 中,已知 ,则 ()
A.36B.27C.18D.9
【答案】B
【详解】解:由题得 .故选:B
2.若数列 满足 , , ,则 的值为()
A.-3B.-2C.-1D.2
【答案】C
【详解】由 得 ,故有

数列测试题及答案解析

数列测试题及答案解析

数列测试题及答案解析一、选择题1. 已知数列{an}满足a1=2,an+1 = 2an,判断数列{an}是否为等比数列。

A. 是B. 不是C. 无法判断答案:A2. 若数列{bn}是等差数列,且b3=5,b5=9,求b7。

A. 11B. 13C. 无法确定答案:B二、填空题1. 给定数列{cn},其中c1=1,cn+1 = cn + n,求c5的值。

答案:152. 已知等差数列{dn}的首项d1=3,公差d=2,求d20的值。

答案:43三、解答题1. 求等比数列{en}的前n项和Sn,若e1=1,公比q=3。

解:根据等比数列前n项和公式Sn = e1 * (1 - q^n) / (1 - q),代入e1=1和q=3,得到Sn = (1 - 3^n) / (1 - 3)。

2. 已知等差数列{fn}的前n项和为Tn,若f1=2,d=3,求T10。

解:根据等差数列前n项和公式Tn = n/2 * (2a1 + (n - 1)d),代入f1=2和d=3,得到T10 = 10/2 * (2*2 + (10 - 1)*3) = 5 * (4 + 27) = 5 * 31 = 155。

四、证明题1. 证明数列{gn},其中gn = n^2,是一个单调递增数列。

证明:设n≥2,我们需要证明对于任意的n,有gn ≥ gn-1。

即证明n^2 ≥ (n-1)^2。

展开得n^2 - (n-1)^2 = 2n - 1 > 0,所以数列{gn}是单调递增的。

2. 证明等差数列{hn}的任意两项hn和hm(m > n)之和等于它们中间项的两倍。

证明:设等差数列{hn}的首项为h1,公差为d。

根据等差数列的定义,hn = h1 + (n - 1)d,hm = h1 + (m - 1)d。

将两项相加得hn + hm = 2h1 + (m + n - 2)d。

由于m > n,所以m + n - 2 = m - 1 + n - 1,即hn + hm = h1 + (m - 1)d + h1 + (n - 1)d = 2h1 + (m + n - 2)d = 2h((m + n - 1)/2),这正是它们中间项的两倍。

等差数列综合练习

等差数列综合练习

数列等差数列综合练习一.选择题5.设S n是等差数列{a n}的前n项和,若=()二.填空题8.设数列{a n},{b n}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=_________.9.在等差数列{a n}中,a3+a7=37,则a2+a4+a6+a8=_________.10.已知{a n}为等差数列,a3+a8=22,a6=7,则a5=_________.11.在等差数列{a n}中,a5=3,a6=﹣2,则a4+a5+…+a10=_________.12.已知等差数列{a n}中,a2=5,a4=11,则前10项和S10=_________.13.已知等差数列{a n}前17项和S17=51,则a7+a11=_________.三.解答题14.已知数列{a n}的前n项和S n,求通项公式a n:(1)S n=5n2+3n;(2)S n=3n﹣2.15.已知{a n}为等差数列,且a1+a3=8,a2+a4=12.(Ⅰ)求{a n}的通项公式(Ⅱ)记{a n}的前n项和为S n,若a1,a k,S k+2成等比数列,求正整数k的值.16.已知等差数列{a n}前三项的和为﹣3,前三项的积为8.(1)求等差数列{a n}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.17.已知数列{a n}的前n项和为S n,满足a n+S n=2n.(Ⅰ)证明:数列{a n﹣2}为等比数列,并求出a n;(Ⅱ)设b n=(2﹣n)(a n﹣2),求{b n}的最大项.数列等差数列综合练习参考答案与试题解析一.选择题(共7小题)=,即=5.(2004•福建)设S n是等差数列{a n}的前n项和,若=()===60==390和这两二.填空题(共9小题)8.(2012•江西)设数列{a n},{b n}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=35.9.(2011•重庆)在等差数列{a n}中,a3+a7=37,则a2+a4+a6+a8=74.10.(2008•海南)已知{a n}为等差数列,a3+a8=22,a6=7,则a5=15.11.(2003•上海)在等差数列{a n}中,a5=3,a6=﹣2,则a4+a5+…+a10=﹣49.﹣=12.已知等差数列{a n}中,a2=5,a4=11,则前10项和S10=155.10+13.已知等差数列{a n}前17项和S17=51,则a7+a11=6.14.设等差数列{a n}的前n项和为S n,若m>1,且a m﹣1+a m+1﹣a m2﹣1=0,S2m﹣1=39,则m=20.15.在等差数列{a n} 中,S n是它的前n项的和,若a1>0,S16>0,S17<0,则当n=8时,S n最大.16.若两等差数列{a n}、{b n}的前n项和分别为s n,s n′,且,则的值为.,把=====.三.解答题(共4小题)17.(2012•湛江)已知数列{a n}的前n项和S n,求通项公式a n:(1)S n=5n2+3n;(2)S n=3n﹣2.18.(2012•重庆)已知{a n}为等差数列,且a1+a3=8,a2+a4=12.(Ⅰ)求{a n}的通项公式(Ⅱ)记{a n}的前n项和为S n,若a1,a k,S k+2成等比数列,求正整数k的值.,解得,再由=a,则由题意可得,解得成等比数列,∴19.(2012•湖北)已知等差数列{a n}前三项的和为﹣3,前三项的积为8.(1)求等差数列{a n}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.,由题意可得,7|=或=综上可得20.84已知数列{a n}的前n项和为S n,满足a n+S n=2n.(Ⅰ)证明:数列{a n﹣2}为等比数列,并求出a n;(Ⅱ)设b n=(2﹣n)(a n﹣2),求{b n}的最大项.2=,公比为﹣.初夏早上六点,清亮透明的月儿还躲藏在云朵里,不忍离去,校园内行人稀少,我骑着单车,晃晃悠悠的耷拉着星松的睡眼。

高一数学数列综合应用试题答案及解析

高一数学数列综合应用试题答案及解析

高一数学数列综合应用试题答案及解析1.数列1,-3,5,-7,9,的一个通项公式为()A.B.C.D.【答案】B【解析】由数列中1,-3,5,-7,9,可以看出:符号正负相间,通项的绝对值为1,3,5,7,9 为等差数列,其通项公式.【考点】本题考查了等差数列的通项公式,属于基础题2.数列满足,则 .【答案】.【解析】当时,,;当时,由于,,两式相减得,不满足.【考点】由得.3.数列中,=2,,则=().A.2+ln n B.2+ (n-1) ln n C.2+ n ln n D.1+n+ln n【答案】A【解析】所以得.故选A.【考点】迭加消元求和.4.已知数列{an }的通项公式an=,若前n项和为6,则n=_________.【答案】48【解析】试题分析:,;令,解得.【考点】数列的前项和.5.数列的前n项和记为,点(n,)在曲线()上(1)求数列的通项公式;(2)设,求数列的前n项和的值.【答案】(1);(2).【解析】(1)由与满足的关系式,由可求得的通项公式;(2)由一个等差数列和一个等比数列的乘积采用错位相减法求和的方法求数列的和.试题解析:(1)由条件得()当当也适合所以通项公式为:.(2)、2两式相减得,解得【考点】(1)由的表达式求数列的通项公式;(2)错位相减求和.6.若数列中,则其前项和取最大值时,__________.【答案】或【解析】令,则,又∵,∴当时,,,当时,,∴当取最大值时,或.【考点】数列的性质.7.已知数列的前n项和满足(1)写出数列的前3项、、;(2)求数列的通项公式;(3)证明对于任意的整数有【答案】(1)、、;(2);(3)见解析.【解析】(1)是考查已知递推公式求前几项,属于基础题,需注意的是S1=a1,需要先求出a1才能求出a2,这是递推公式的特点;(2)解答需要利用公式进行代换,要注意n=1和n≥2的讨论,在得到,可以利用叠加法求解;(3)解答需要在代换后,适当的变形,利用不等式放缩法进行放缩.试题解析:(1)由,得,由,得,由,得;(2)当时,,,……,经验证:也满足上式,所以,;(3)证明:由通项知当,且n 为奇数时当且m为偶数时,当且m为奇数时∴对任意有【考点】1、递推数列;2、放缩法.8.给定函数的图像如下列图中,经过原点和(1,1),且对任意,由关系式得到数列{},满足,则该函数的图像为()【答案】A【解析】由题意,知:,即在图中应该是满足的所有点,只有A选项正确.【考点】数列的基本概念.9.已知数列的前n项和为,,且(),数列满足,,对任意,都有。

高二数学数列综合应用试题答案及解析

高二数学数列综合应用试题答案及解析

高二数学数列综合应用试题答案及解析1.()A.3B.-3C.6D.-6【答案】A【解析】经计算验证可得:数列是以6为周期的一个数列,所以.【考点】数列的递推公式.2..如果{an }为递增数列,则{an}的通项公式可以为( ).A.an =-2n+3 B.an=-n2-3n+1 C.an= an=1+log2n【答案】D【解析】A选项是n的一次函数,一次系数为-1∴为递减数列B选项是n的二次函数,且对称轴为n=∴第一,二项相同.C是n的指数函数,且底数为,是递减数列D是n的对数函数,且底数为2,是递增函数.故选D【考点】数列的函数特性.3. Sn 是数列{an}的前n项和,,则,,,,由此可以归纳出()A.B.C.D.【答案】C.【解析】直接根据数列的通项公式及,,,,利用归纳法推理可得.【考点】归纳推理.4.已知数列满足,归纳出的一个通项公式为()A.B.C.D.【答案】A【解析】由递推公式,可得,,,故可猜测的一个通项公式为.【考点】归纳推理.5.在数列中,,且前n项的算术平均数等于第n项的倍().(1)写出此数列的前5项;(2)归纳猜想的通项公式,并用数学归纳法证明.【答案】(1);(2),证明过程详见解析.【解析】(1)根据条件中描述前项的算术平均数等于第项的倍,可以得到相应其数学表达式为,结合,分别取,得,;(2)根据(1)中所求,可以猜测,利用数学归纳法,假设当时,结论成立,则当时,根据(1)中得到的式子,令,可以求得,即当时,猜想也成立,从而得证.(1)由已知,分别取,得,;∴数列的前5项是: 6分;(2)由(1)中的分析可以猜想 8分,下面用数学归纳法证明:①当时,猜想显然成立 9分,②假设当时猜想成立,即 10分,那么由已知,得,即.∴,即,又由归纳假设,得,∴,即当时,猜想也成立.综上①和②知,对一切,都有成立 13分.【考点】1.数列的通项公式;2.数学归纳法.6.下列命题中,真命题的序号是 .①中,②数列{}的前n项和,则数列{}是等差数列.③锐角三角形的三边长分别为3,4,,则的取值范围是.④等差数列{}前n项和为。

数列综合练习题(含答案)精选全文

数列综合练习题(含答案)精选全文

3月6日数列综合练习题一、单选题1.已知数列为等比数列,是它的前n项和.若,且与的等差中项为,则()A .35B .33C .31D .29【答案】C 【解析】试题分析:∵等比数列{}n a ,∴21a a q =⋅,∴13134222a q a a q a a ⋅⋅=⇒⋅=⇒=,又∵与的等差中项为54,∴477512244a a a ⋅=+⇒=,∴3741182a q q a ==⇒=,∴41316a a q ==,515116(1)(1)32311112a q S q--===--.2.等差数列{}n a 中,19173150a a a ++=则10112a a -的值是()A.30B.32C.34D.25【答案】A 【解析】试题分析:本题考查等差数列的性质,难度中等.由条件知930a =,所以10112a a -=930a =,故选A.3.数列满足且,则等于()A.B.C.D.【答案】D 【解析】由有解知数列1n x ⎧⎫⎨⎬⎩⎭是首项为1,公差为211112x x -=的等差数列;所以11121(1),221n n n n x x n +=+-=∴=+.故选D 4.设等差数列{}n a 的前n 项和为n S ,数列21{}n a -的前n 项和为n T ,下列说法错误..的是()A .若n S 有最大值,则n T 也有最大值B .若n T 有最大值,则n S 也有最大值C .若数列{}n S 不单调,则数列{}n T 也不单调D .若数列{}n T 不单调,则数列{}n S 也不单调【答案】C 【解析】【详解】解:数列{a 2n ﹣1}的首项是a 1,公差为2d ,A .若S n 有最大值,则满足a 1>0,d <0,则2d <0,即T n 也有最大值,故A 正确,B .若T n 有最大值,则满足a 1>0,2d <0,则d <0,即S n 也有最大值,故B 正确,C .S n =na 1()12n n -+•d 2d =n 2+(a 12d -)n ,对称轴为n 111122222d da a a d d d --=-==--⨯,T n =na 1()12n n -+•2d =dn 2+(a 1﹣d )n ,对称轴为n 111222a d d -=-=-•1a d,不妨假设d >0,若数列{S n }不单调,此时对称轴n 11322a d =-≥,即1a d-≥1,此时T n 的对称轴n 1122=-•111122a d ≥+⨯=1,则对称轴1122-•132a d <有可能成立,此时数列{T n }有可能单调递增,故C 错误,D .不妨假设d >0,若数列{T n }不单调,此时对称轴n 1122=-•132a d ≥,即1a d-≥2,此时{S n }的对称轴n 11122a d =-≥+25322>=,即此时{S n }不单调,故D 正确则错误是C ,故选C .5.设n=()A .333n 个B .21333n - 个C .21333n- 个D .2333n 个【答案】A【解析】1013333n n -====⋅⋅⋅ 个.故选A.6.已知各项均为正数的数列{}n a 的前n 项和为n S ,满足2124n n a S n +=++,且21a -,3a ,7a 恰好构成等比数列的前三项,则4a =().A .1B .3C .5D .7【答案】C 【详解】∵2124n n a S n +=++,当2n ≥,()21214n n a S n -=+-+,两式相减,化简得()2211n n a a +=+,∵0n a >,∴11n n a a +=+,数列{}n a 是公差1的等差数列.又21a -,3a ,7a 恰好构成等比数列的前三项,∴()()211126a a a +=+,∴12a =,∴45a =.故选:C第II 卷(非选择题)二、填空题7.已知数列{}n a 的首项11a =,且1(1)12nn na a n a +=+ ,则5a =____.【答案】198.等差数列{}n a 中,39||||a a =,公差0d <,则使前n 项和n S 取得最大值的自然数n 是________.【答案】5或6【解析】试题分析:因为0d <,且39||||a a =,所以39a a =-,所以1128a d a d +=--,所以150a d +=,所以60a =,所以0n a >()15n ≤≤,所以n S 取得最大值时的自然数n 是5或6.9.数列{}n a 满足:11a =,121n n a a +=+,且{}n a 的前n 项和为n S ,则n S =__.【答案】122n n +--【详解】由121n n a a +=+得()1+121n n a a +=+所以1112+n n a a +=+,且112a +=所以数列{}1n a +是以2为首项,2为公比的等比数列,且11=222n nn a -+⨯=所以21nn a =-前n 项和()123121222222212n nn nS n n n +-=++++-==--- 10.已知数列{}n a 中,132a =前n 项和为n S ,且满足()*123n n a S n N ++=∈,则满足2348337n n S S <<所有正整数n 的和是___________.【答案】12【详解】由()*123n n a S n N++=∈得()123n n n SS S +-+=,即()11332n n S S +-=-,所以数列{}3n S -是首项为113332S a -=-=-,公比为12的等比数列,故31322n nS -=-⋅,所以332n n S =-,所以22332n n S =-.由2348337n n S S <<得2332334833732n n -<-<,化简得1113327n <<,故3,4,5n =.满足2348337n nS S <<所有正整数n 的和为34512++=.故答案为:12三、解答题11.已知数列{a n }满足a 1=3,a n ﹣a n ﹣1﹣3n =0,n ≥2.(1)求数列{a n }的通项公式;(2)设b n 1na =,求数列{b n }的前n 项和S n .【详解】(1)数列{a n }满足a 1=3,a n ﹣a n ﹣1﹣3n =0,n ≥2,即a n ﹣a n ﹣1=3n ,可得a n =a 1+(a 2﹣a 1)+(a 3﹣a 2)+…+(a n ﹣a n ﹣1)=3+6+9+…+3n 12=n (3+3n )32=n 232+n ;(2)b n 123n a ==•2123n n =+(111n n -+),前n 项和S n 23=(1111112231n n -+-++-+ )23=(111n -+)()231n n =+.12.在数列{}n a 中,n S 为其前n 项和,满足2(,*)n n S ka n n k R n N =+-∈∈.(I )若1k =,求数列{}n a 的通项公式;(II )若数列{}21n a n --为公比不为1的等比数列,求n S .【答案】解:(1)当1k =时,2,n n S a n n =+-所以21,(2)n S n n n -=-≥,即22(1)(1),(1)n S n n n n n =+-+=+≥……3分所以当1n =时,112a S ==;当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=所以数列{}n a 的通项公式为.……………6分(II )当时,1122n n n n n a S S ka ka n --=-=-+-,1(1)22n n k a ka n --=-+,111a S ka ==,若1k =,则211n a n --=-,从而{}21n a n --为公比为1的等比数列,不合题意;……………8分若1k ≠,则10a =,221a k=-,3246(1)k a k -=-212325378333,5,71(1)k k k a a a k k --+--=--=-=--由题意得,2213(5)(3)(7)0a a a -=--≠,所以0k =或32k =.……10分当0k =时,2n S n n =-,得22n a n =-,213n a n --=-,不合题意;…12分当32k =时,1344n n a a n -=-+,从而1213[2(1)1]n n a n a n ---=---因为121130,a -⨯-=-≠210n a n --≠,{}21n a n --为公比为3的等比数列,213nn a n --=-,所以231nn a n =-+,从而1233222n n S n n +=+-+.………………………14分【解析】试题分析:解:(1)当1k =时,2,n n S a n n =+-所以21,(2)n S n n n -=-≥,即22(1)(1),(1)n S n n n n n =+-+=+≥……3分所以当1n =时,112a S ==;当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=所以数列{}n a 的通项公式为…6分(2)当时,1122n n n n n a S S ka ka n --=-=-+-,1(1)22n n k a ka n --=-+,111a S ka ==,若1k =,则211n a n --=-,从而{}21n a n --为公比为1的等比数列,不合题意;若1k ≠,则10a =,221a k=-,3246(1)k a k -=-212325378333,5,71(1)k k k a a a k k --+--=--=-=--由题意得,2213(5)(3)(7)0a a a -=--≠,所以0k =或32k =.当0k =时,2n S n n =-,得22n a n =-,213n a n --=-,不合题意;当32k =时,1344n n a a n -=-+,从而1213[2(1)1]n n a n a n ---=---因为121130,a -⨯-=-≠210n a n --≠,{}21n a n --为公比为3的等比数列,213nn a n --=-,所以231nn a n =-+,从而1233222n n S n n +=+-+.13.设数列{}n a 的通项公式63n a n =-+,{}n b 为单调递增的等比数列,123512b b b =,1133a b a b +=+.()1求数列{}n b 的通项公式.()2若3nn na cb -=,求数列{}n c 的前n 项和n T .【详解】()1由题意,数列{}n a 的通项公式n a 6n 3=-+,{}n b 为单调递增的等比数列,设公比为q ,123b b b 512=,1133a b a b +=+.可得331b q 512=,2113b 15b q -+=-+,解得1b 4=,或1q 2(2=-舍去),则n 1n 1n b 422-+=⋅=。

数列综合测试题

数列综合测试题

高二数学数列综合测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知a ,b ,c 成等比数列,a ,m ,b 与b ,n ,c 分别成两个等差数列,则a m +cn等于 ( )A .4B .3C .2D .1 2.已知{a n }是等差数列,a 4=15,S 5=55,则过点P (3,a 3),Q (4,a 4)的直线斜率为 ( )A .4 B.14 C .-4 D .-143.设等比数列{a n }的前n 项与为S n ,若S 6S 3=3,则S 9S 6= ( )A .2 B.73 C.83D .34.已知数列{a n }的前n 项与为S n ,且15S n =a n -1,则a 2等于 ( ) A .-54 B.54 C.516 D.25165.等比数列{a n }的前n 项与为S n ,且4a 1,2a 2,a 3成等差数列,若a 1=1,则S 4=( ) A .7 B .8 C .15 D .166.若数列{a n }的通项公式为a n =n (n -1)·…·2·110n,则{a n }为( )A .递增数列B .递减数列C .从某项后为递减D .从某项后为递增7.等差数列{a n }的通项公式是a n =1-2n ,其前n 项与为S n ,则数列{S nn}的前11项与为( )A .-45B .-50C .-55D .-668.设数列{a n }的前n 项与为S n , 已知15a =,且12(1)(1)n n nS n n n S +=+++( n ∈N*), 则过点P(n,n a ) 与Q(n+2,2+n a )( n ∈N*)的直线的一个方向向量的坐标可以是 ( )A .(2,21)B .(-1, -1)C .(21-, -1)D .(2,21--)9.在等比数列{a n }中,若a 3a 5a 7a 9a 11=32,则a 29a 11的值为( )A .4B .2C .-2D .-410.已知两个等差数列{a n }与{b n }的前n 项与分别为A n 与B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是 ( )A .2B .3C .4D .511.已知{a n }是递增数列,对任意的n ∈N *,都有a n =n 2+λn 恒成立,则λ的取值范围是 ( )A .(-72,+∞) B .(0,+∞)C .(-2,+∞)D .(-3,+∞)12.已知数列{a n }满足a n +1=12+a n -a 2n ,且a 1=12,则该数列的前2 008项的与等于 ( ) A .1 506 B .3 012 C .1 004D .2 008二、填空题(本大题共4小题,每小题4分,共16分.将答案填写在题中的横线上)13.已知数列{a n }满足:a 1=m (m 为正整数),a n +1=⎩⎪⎨⎪⎧a n 2,当a n 为偶数时3a n +1,当a n 为奇数时,若a 6=1,则m 所有可能的取值为________.14.已知数列{a n }满足a 1=12,a n =a n -1+1n 2-1(n ≥2),则{a n }的通项公式为________.15.已知等差数列{a n }的首项a 1及公差d 都是整数,前n 项与为S n (n ∈N *).若a 1>1,a 4>3,S 3≤9,则通项公式a n =________. 16.下面给出一个“直角三角形数阵”: 14 12,1434,38,316满足每一列的数成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为a ij (i ≥j ,i ,j ∈N *),则a 83=________.三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知等差数列{a n }的首项a 1=1,公差d >0,且第二项,第五项,第十四项分别是等比数列{b n }的第二项,第三项,第四项. ⑴求数列{a n }与{b n }的通项公式.⑵设数列{c n }对任意正整数n ,均有1332211+=+⋯⋯+++n nna b c b c b c b c ,求c 1+c 2+c 3+…+c 2010的值. 18.(本小题满分12分)已知数列{a n }中,其前n 项与为S n ,且n ,a n ,S n 成等差数列(n ∈N *). (1)求数列{a n }的通项公式;(2)求S n >57时n 的取值范围. 19.(本小题满分12分)已知二次函数f (x )=x 2-ax +a (a ≠0),不等式f (x )≤0的解集有且只有一个元素,设数列{a n }的前n 项与为S n =f (n ).(1)求数列{a n }的通项公式;(2)设各项均不为0的数列{c n }中,满足c i ·c i +1<0的正整数i 的个数称作数列{c n }的变号数,令c n =1-aa n(n ∈N *),求数列{c n }的变号数.20.(本小题满分12分)已知数列{a n }满足:a 1=1,a 2=12,且[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0,n ∈N *.(1)求a 3,a 4,a 5,a 6的值及数列{a n }的通项公式; (2)设b n =a 2n -1·a 2n ,求数列{b n }的前n 项与S n .21.(本小题满分12分)已知数列{a n }的前n 项与为S n ,点(n ,S nn)在直线y =12x +112上.数列{b n }满足b n +2-2b n +1+b n =0(n ∈N *),b 3=11,且其前9项与为153.(1)求数列{a n },{b n }的通项公式;(2)设c n =3(2a n -11)(2b n -1),数列{c n }的前n 项与为T n ,求使不等式T n >k57对一切n ∈N *都成立的最大正整数k 的值.22.(本小题满分14分)在数列{a n }中,a 1=1,3a n a n -1+a n -a n -1=0(n ≥2,n ∈N).(1)试判断数列{1a n}是否为等差数列;(2)若λa n +1a n +1≥λ,对任意n ≥2的整数恒成立,求实数λ的取值范围.数列综合测试题参考答案一、选择题CABDC DDDBD DA 二、填空题13、4,5,32 14、a n =54-2n +12n (n +1)15、n +1 16、12三、解答题17.⑴由题意得(a 1+d )(a 1+13d )=(a 1+4d )2(d >0) 解得d =2,∴a n =2n -1,b n =3n -1.⑵当n =1时,c 1=3 当n ≥2时,∵,1n n nna abc -=+∴⎩⎨⎧≥⋅==-)2(32)1(31n n c n n故132-⋅=n n c18.解:(1)∵n ,a n ,S n 成等差数列,∴S n =2a n -n ,S n -1=2a n -1-(n -1) (n ≥2), ∴a n =S n -S n -1=2a n -2a n -1-1 (n ≥2), ∴a n =2a n -1+1 (n ≥2),两边加1得a n +1=2(a n -1+1) (n ≥2),∴a n +1a n -1+1=2 (n ≥2). 又由S n =2a n -n 得a 1=1.∴数列{a n +1}是首项为2,公比为2的等比数列,∴a n +1=2·2n -1,即数列{a n }的通项公式为a n =2n -1. (2)由(1)知,S n =2a n -n =2n +1-2-n ,∴S n +1-S n =2n +2-2-(n +1)-(2n +1-2-n ) =2n +1-1>0,∴S n +1>S n ,{S n }为递增数列.由题设,S n >57,即2n +1-n >59. 又当n =5时,26-5=59,∴n >5.∴当S n >57时,n 的取值范围为n ≥6(n ∈N *).19.解:(1)由于不等式f (x )≤0的解集有且只有一个元素, ∴Δ=a 2-4a =0⇒a =4, 故f (x )=x 2-4x +4.由题S n =n 2-4n +4=(n -2)2 则n =1时,a 1=S 1=1;n ≥2时,a n =S n -S n -1=(n -2)2-(n -3)2=2n -5, 故a n =⎩⎪⎨⎪⎧1 n =1,2n -5 n ≥2.(2)由题可得,c n =⎩⎪⎨⎪⎧-3 n =11-42n -5 n ≥2.由c 1=-3,c 2=5,c 3=-3,所以i =1,i =2都满足c i ·c i +1<0,当n ≥3时,c n +1>c n ,且c 4=-13,同时1-42n -5>0⇒n ≥5,可知i =4满足c i 、c i +1<0,n ≥5时,均有c n c n +1>0.∴满足c i c i +1<0的正整数i =1,2,4,故数列{c n }的变号数为3.20.解:(1)经计算a 3=3,a 4=14,a 5=5,a 6=18.当n 为奇数时,a n +2=a n +2,即数列{a n }的奇数项成等差数列,∴a 2n -1=a 1+(n -1)·2=2n -1.当n 为偶数时,a n +2=12a n ,即数列{a n }的偶数项成等比数列,∴a 2n =a 2·(12)n -1=(12)n.因此,数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧n (n 为奇数),(12)n2(n 为偶数).(2)∵b n =(2n -1)·(12)n,∴S n =1·12+3·(12)2+5·(12)3+…+(2n -3)·(12)n -1+(2n -1)·(12)n, ①12S n =1·(12)2+3·(12)3+5·(12)4+…+(2n -3)·(12)n+(2n -1)·(12)n +1, ②①②两式相减, 得12S n =1·12+2[(12)2+(12)3+…+(12)n ]-(2n -1)·(12)n +1 =12+12·[1-(12)n -1]1-12-(2n -1)·(12)n +1=32-(2n +3)·(12)n +1. ∴S n =3-(2n +3)·(12)n .21.解:(1)由已知得S n n =12n +112,∴S n =12n 2+112n .当n ≥2时,a n =S n -S n -1 =12n 2+112n -12(n -1)2-112(n -1)=n +5; 当n =1时,a 1=S 1=6也符合上式. ∴a n =n +5.由b n +2-2b n +1+b n =0(n ∈N *)知{b n }是等差数列,由{b n }的前9项与为153,可得9(b 1+b 9)2=9b 5=153,得b 5=17,又b 3=11,∴{b n }的公差d =b 5-b 32=3,b 3=b 1+2d ,∴b 1=5,∴b n =3n +2.(2)c n =3(2n -1)(6n +3)=12(12n -1-12n +1),∴T n =12(1-13+13-15+…+12n -1-12n +1)=12(1-12n +1). ∵n 增大,T n 增大, ∴{T n }是递增数列.∴T n ≥T 1=13.T n >k57对一切n ∈N *都成立,只要T 1=13>k57,∴k <19,则k max =18.22.解:(1)∵a 1≠0,∴a n ≠0,∴由已知可得1a n -1a n -1=3(n ≥2),故数列{1a n}是等差数列.(2)将a n =1b n =13n -2代入λa n +1a n +1≥λ并整理得λ(1-13n -2)≤3n +1,∴λ≤(3n +1)(3n -2)3n -3,原命题等价于该式对任意n ≥2的整数恒成立.设C n =(3n +1)(3n -2)3n -3,则C n +1-C n =(3n +1)(3n -4)3n (n -1)>0,故C n +1>C n ,∴C n 的最小值为C 2=283,∴λ的取值范围是(-∞,283].。

最新数列专题:数列与函数综合问题(含答案)超经典

最新数列专题:数列与函数综合问题(含答案)超经典

数列专题:数列与函数综合问题一.选择题(共30小题)1.已知函数f (x )=x e1+x e (e 是自然对数的底数),设a n ={f(n),n ≤2019f(14039−n ),n >2019,数列{a n }的前n 项和为S n ,则S 4037的值是( ) A .2018B .2019C .40372D .403922.已知函数f (x )={x +12,x ≤122x −1,12<x <1x −1,x ≥1,若数列{a n }满足a 1=73,a n +1=f (a n )(n ∈N +),则a 2019=( )A .73B .43C .56D .133.已知定义在R 上的奇函数f (x )满足f (x −32)=f (x ),f (﹣2)=﹣3,数列{a n }是等差数列,若a 2=3,a 7=13,则f (a 1)+f (a 2)+f (a 3)+…+f (a 2018)=( ) A .﹣2B .﹣3C .2D .34.定义:F (x ,y )=y x (x >0,y >0),已知数列{a n }满足:a n =F(n ,2)F(2,n)(n ∈N *),若对任意正整数n ,都有a n ≥a k (k ∈N *)成立,则a k 的值为( ) A .12B .2C .98D .895.对于数列{a n },a 1=4,a n +1=f (a n ),n =1,2,…,则a 2020等于( )x 1 2 3 4 5 f (x ) 5 43 12A .2B .3C .4D .56.已知定义在R 上的函数f (x )是奇函数,且满足f (32−x )=f (x ),f (﹣2)=﹣2,数列{a n }满足a 1=﹣1,且S n n=2a n n+1(S n 为{a n }的前n 项和),则f (a 5)=( ) A .﹣3B .﹣2C .3D .27.已知{a n }满足a n +1=a n +2n ,且a 1=32,则a nn的最小值为( )A .8√2−1B .525C .373D .108.在数列{a n }中,a 1=2,其前n 项和为S n .若点(S n n,S n+1n+1)在直线y =2x ﹣1上,则a 9等于( )A .1290B .1280C .1281D .18219.已知函数y =f (x )为定义域R 上的奇函数,且在R 上时单调递增函数,函数g (x )=f (x ﹣3)+x ,数列{a n }为等差数列,且公差不为0,若g (a 1)+g (a 2)+…+g (a 9)=27,则a 1+a 2+…+a 9=( ) A .18B .9C .27D .8110.已知f (x )是定义在R 上的奇函数,且满足f (2﹣x )=f (x ),f (﹣1)=1,数列{a n }满足a 1=﹣1,S n n=2a n n+1(n ∈N +),其中S n 是数列{a n }的前n 项和,则f (a 5)+f (a 6)=( )A .﹣2B .﹣1C .0D .111.已知定义域为正整数集的函数f (x )满足f (x +y )=f (x )+f (y )+1,f (1)=1,则数列{(﹣1)n f (n )f (n +1)}(n ∈N *)的前99项和为( ) A .﹣19799B .﹣19797C .﹣19795D .﹣1979312.已知函数y =f (x )的定义域为R ,当x <0时,f (x )>1,且对任意的实数x ,y ∈R ,f (x )f (y )=f (x +y )恒成立,若数列{a n }满足f (a n +1)f (11+a n)=l (n ∈N *)且a 1=f (0),则下列结论成立的是( )A .f (a 2015)>f (a 2018)B .f (a 2018)>f (a 2019)C .f (a 2017)>f (a 2018)D .f (a 2015)>f (a 2017)13.已知函数f(n)=n 2sin(2n−32π),且a n =f (n ),则a 1+a 2+a 3+…+a 200=( )A .20100B .20500C .40100D .1005014.已知函数f (x )=4x2x−1,M =f (1n)+f (2n)+…+f (n n)(n ∈N *,且n 为奇数),则M 等于( ) A .2n ﹣1B .n −12C .2n +2D .2n +1215.已知各项都为正数的等比数列{a n },满足a 3=2a 1+a 2,若存在两项a m ,a n ,使得√a m a n =4a 1,则1m+4n的最小值为( ) A .2B .32C .13D .116.已知数列{a n }中,a 1=2,n •a n +1﹣(n +1)•a n =1,n ∈N *.若对于任意的n ∈N *,不等式a n+1n+1<a 恒成立,则实数a 的取值范围为( ) A .(3,+∞)B .(﹣∞,3)C .[3,+∞)D .(﹣∞,3]17.已知F (x )=f (x +12)﹣1是R 上的奇函数,a n =f (0)+f (1n)+f (2n)+…+f (n−1n)+f (1)(n ∈N *),则数列{a n } 的通项公式为( ) A .a n =n ﹣1B .a n =nC .a n =n +1D .a n =n 231.已知定义在R 上的函数f (x )是奇函数,且满足f (3﹣x )=f (x ),f (﹣1)=3,数列{a n }满足a 1=1,且a n =n (a n +1﹣a n )(n ∈N *),则f (a 36)+f (a 37)=32.对于函数f (x )和实数M ,若存在m ,n ∈N +,使f (m )+f (m +1)+f (m +2)+…+f (m +n )=M 成立,则称(m ,n )为函数f (x )关于M 的一个“生长点”.若(1,2)为函数f (x )=cos (π2x +π3)关于M的一个“生长点”,则M = ;若f (x )=2x +1,M =105,则函数f (x )关于M 的“生长点”共有 个.33.如果函数f (x )满足:对任意实数a ,b 都有f (a +b )=f (a )f (b ),且f (1)=1,则f(2)f(1)+f(3)f(2)+f(4)f(3)+⋯+f(2018)f(2017)=参考答案与试题解析一.选择题(共30小题)1.已知函数f (x )=x e1+x e (e 是自然对数的底数),设a n ={f(n),n ≤2019f(14039−n ),n >2019,数列{a n }的前n 项和为S n ,则S 4037的值是( ) A .2018B .2019C .40372D .40392【解答】解:根据题意,函数f (x )=x e 1+x e ,则f (1x )=(1x )e1+(1x)e =11+x e ,且f (1)=11+1=12,则有f (x )+f (1x)=x e 1+x e +11+x e=1, 又由a n ={f(n),n ≤2019f(14039−n ),n >2019, 则S 4037=f (1)+f (2)+……+f (2019)+f (12019)+f (12018)+……+f (12)=f (1)+[f (2)+f (12)]+[f (3)+f (13)]+……+f (2019)+f (12019)=12+2018=40372; 故选:C .2.已知函数f (x )={x +12,x ≤122x −1,12<x <1x −1,x ≥1,若数列{a n }满足a 1=73,a n +1=f (a n )(n ∈N +),则a 2019=( )A .73B .43C .56D .13【解答】解:根据题意,函数f (x )={x +12,x ≤122x −1,12<x <1x −1,x ≥1,若数列{a n }满足a 1=73,a n +1=f (a n ),则a 2=a 1﹣1=43, a 3=a 2﹣1=13, a 4=a 3+12=56, a 5=2a 4﹣1=23,a 6=2a 5﹣1=13, a 7=a 6+12=56,则数列{a n }满足a n +3=a n ,(n ≥3),即数列{a n }从第三项开始,组成周期为3的数列, 则a 2019=a 3+2016=a 3=13, 故选:D .3.已知定义在R 上的奇函数f (x )满足f (x −32)=f (x ),f (﹣2)=﹣3,数列{a n }是等差数列,若a 2=3,a 7=13,则f (a 1)+f (a 2)+f (a 3)+…+f (a 2018)=( ) A .﹣2B .﹣3C .2D .3【解答】解:根据题意,f (x )为奇函数,则f (x )=﹣f (﹣x ), 又由f (x )满足f (32−x )=f (x ),则f (32−x )=﹣f (﹣x ),则有f (3﹣x )=﹣f (32−x )=f (x ),即函数f (x )是周期为3的周期函数,数列{a n }是等差数列,若a 2=3,a 7=13,则d =a 7−a27−2=2,则a n =2n ﹣1, 则a 1=1,a 3=5,则f (a 1)=f (1)=f (﹣2)=﹣3, f (a 2)=f (3)=f (0)=0,f (a 3)=f (5)=f (﹣1)=﹣f (1)=3,则有f (a 1)+f (a 2)+f (a 3)=(﹣3)+0+(3)=0, f (a 1)+f (a 2)+f (a 3)+…+f (a 2018)=f (1)+f (3)+f (5)+f (7)+f (8)+f (9)+……+f (2016)+f (2017)+f (2018) =672×[f (a 1)+f (a 2)+f (a 3)]+f (2017)+f (2018)=﹣3; 故选:B .4.定义:F (x ,y )=y x (x >0,y >0),已知数列{a n }满足:a n =F(n ,2)F(2,n)(n ∈N *),若对任意正整数n ,都有a n ≥a k (k ∈N *)成立,则a k 的值为( ) A .12B .2C .98D .89【解答】解:∵F (x ,y )=y x (x >0,y >0),∴a n =F(n ,2)F(2,n)=2nn2∴a n+1a n=2n+1(n+1)22n n 2=2⋅n 2(n+1)2,∵2n 2﹣(n +1)2=(n ﹣1)2﹣2,当n ≥3时,(n ﹣1)2﹣2>0, ∴当n ≥3时a n +1>a n ;当,n <3时,(n ﹣1)2﹣2<O ,所以当n <3时a n +1<a n . ∴当n =3时a n 取到最小值为f (3)=89 故选:D .5.对于数列{a n },a 1=4,a n +1=f (a n ),n =1,2,…,则a 2020等于( )x 1 2 3 4 5 f (x ) 5 43 12A .2B .3C .4D .5【解答】解:数列{a n },a 1=4,a n +1=f (a n ),n =1,2…,其中f (x )如表所示x 1 2 3 4 5 f (x )54312则a 2=f (4)=1,a 3=f (1)=5,a 4=f (5)=2,a 5=f (2)=4,…,数列是周期数列,周期为4, ∴a 2020=a 504×4+4=a 4=2. 故选:A .6.已知定义在R 上的函数f (x )是奇函数,且满足f (32−x )=f (x ),f (﹣2)=﹣2,数列{a n }满足a 1=﹣1,且S n n=2a n n+1(S n 为{a n }的前n 项和),则f (a 5)=( ) A .﹣3B .﹣2C .3D .2【解答】解:∵函数f (x )是奇函数 ∴f (﹣x )=﹣f (x ) ∵f (32−x )=f (x ),∴f (32−x )=﹣f (﹣x )∴f (3+x )=f [32−(−32−x )]=﹣f (32+x )=﹣f [32−(﹣x )]=﹣f (﹣x )=f (x )∴f (x )是以3为周期的周期函数.∵数列{a n }满足a 1=﹣1,且S n n=2a n n+1,∴a 1=﹣1,且S n =2a n +n , ∴a 5=﹣31,∴f (a 5)=f (﹣31)=f (2)=f (2)=﹣f (﹣2)=3 故选:C .7.已知{a n }满足a n +1=a n +2n ,且a 1=32,则a n n的最小值为( )A .8√2−1B .525C .373D .10【解答】解:∵a 1=32,a n +1﹣a n =2n ,∴n ≥2时,a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+……+(a 2﹣a 1)+a 1 =2(n ﹣1)+2(n ﹣2)+……+2×1+32 =2×(n−1)(n−1+1)2+32=n 2﹣n +32, 则a nn=n +32n +1. 令f (x )=x +32x+1,(x ≥1). f ′(x )=1−32x 2=(x+4√2)(x−4)x 2. 可得:函数f (x )在[1,4 √2)内单调递减;在(4√2,+∞)上单调递增. 又f (5)=6+325=625=12+25,f (6)=7+326=373=12+13. ∴n =6时,则a n n 取得最小值373.故选:C .8.在数列{a n }中,a 1=2,其前n 项和为S n .若点(S n n,S n+1n+1)在直线y =2x ﹣1上,则a 9等于( )A .1290B .1280C .1281D .1821【解答】解:点(S n n,S n+1n+1)在直线y =2x ﹣1上,可得S n+1n+1−1=2(S n n−1),又S 11−1=a 1−1=1,所以数列{S n n−1}是首项为1公比为2的等比数列,所以S n n−1=2n ﹣1,得S n =n (1+2n ﹣1),当n ≥2时,a n =S n ﹣S n ﹣1=(n +1)2n ﹣2+1,故 a 9=10×128+1=1281. 故选:C .9.已知函数y =f (x )为定义域R 上的奇函数,且在R 上时单调递增函数,函数g (x )=f (x ﹣3)+x ,数列{a n }为等差数列,且公差不为0,若g (a 1)+g (a 2)+…+g (a 9)=27,则a 1+a 2+…+a 9=( ) A .18B .9C .27D .81【解答】解:根据题意,函数y =f (x )为定义域R 上的奇函数, 则有f (﹣x )+f (x )=0, ∵g (x )=f (x ﹣3)+x ,∴若g (a 1)+g (a 2)+…+g (a 9)=27,即f (a 1﹣3)+a 1+f (a 2﹣3)+a 2+…+f (a 9﹣3)+a 9=27, 即f (a 1﹣3)+f (a 2﹣3)+…+f (a 9﹣3)+(a 1+a 2+…+a 9)=27, f (a 1﹣3)+f (a 2﹣3)+…+f (a 9﹣3))+(a 1﹣3+a 2﹣3+…+a 9﹣3)=0, 又由y =f (x )+x 为定义域R 上的奇函数,且在R 上是单调函数, 且(a 1﹣3)+(a 9﹣3)=(a 2﹣3)+(a 8﹣3)=…=2(a 5﹣3), a 5﹣3=0,即a 1+a 9=a 2+a 8=…=2a 5=6, 则a 1+a 2+…+a 9=9a 5=27; 故选:C .10.已知f (x )是定义在R 上的奇函数,且满足f (2﹣x )=f (x ),f (﹣1)=1,数列{a n }满足a 1=﹣1,S n n=2a n n+1(n ∈N +),其中S n 是数列{a n }的前n 项和,则f (a 5)+f (a 6)=( )A .﹣2B .﹣1C .0D .1【解答】解:∵数列{a n }满足a 1=﹣1,S n n=2a n n+1(n ∈N +),其中S n 是数列{a n }的前n 项和,∴S n =2a n +n ,a n =S n ﹣S n ﹣1=2a n +n ﹣2a n ﹣1﹣(n ﹣1), 整理,得a n −1a n−1−1=2,∵a 1﹣1=﹣2,∴{a n ﹣1}是首项为﹣2,公差为2的等比数列, ∴a n ﹣1=﹣2×2n ﹣1,∴a n =1﹣2×2n ﹣1.∴a 5=1﹣2×24=﹣31,a 6=1−2×25=−63,∵f (2﹣x )=f (x ),f (﹣1)=1, ∴f (x )关于直线x =1对称,又∵函数f (x )是定义在R 上的奇函数 ∴函数f (x )是一个周期函数,且T =4, ∴f (a 5)+f (a 6)=f (﹣31)+f (﹣63)=f (32﹣31)+f (64﹣63)=f (1)+f (1)=﹣f (﹣1)﹣f (﹣1)=﹣1﹣1=﹣2. 故选:A .11.已知定义域为正整数集的函数f (x )满足f (x +y )=f (x )+f (y )+1,f (1)=1,则数列{(﹣1)n f (n )f (n +1)}(n ∈N *)的前99项和为( ) A .﹣19799B .﹣19797C .﹣19795D .﹣19793【解答】解:令x =n ,y =1,可得f (n +1)=f (n )+f (1)+1, 则f (n +1)﹣f (n )=f (1)+1=2,则数列{f (n )}的首项为1,公差为2的等差数列, 从而f (n )=2n ﹣1,则(﹣1)n f (n )f (n +1)=(﹣1)n (4n 2﹣1)=4(﹣1)n n 2﹣(﹣1)n , 则{(﹣1)n f (n )f (n +1)}(n ∈N *)的前99项和为 4(﹣12+22﹣32+42+…﹣972+982﹣992)﹣(﹣1), =4[(1+2)+(3+4)+…+(97+98)﹣992]+1, =4[(1+98)×982−992]+1,=4×99×(49﹣99)+1, =﹣19799, 故选:A .12.已知函数y =f (x )的定义域为R ,当x <0时,f (x )>1,且对任意的实数x ,y ∈R ,f (x )f (y )=f (x +y )恒成立,若数列{a n }满足f (a n +1)f (11+a n)=l (n ∈N *)且a 1=f (0),则下列结论成立的是( )A .f (a 2015)>f (a 2018)B .f (a 2018)>f (a 2019)C .f (a 2017)>f (a 2018)D .f (a 2015)>f (a 2017)【解答】解:对任意的实数x ,y ∈R ,f (x )f (y )=f (x +y )恒成立, 取x =y =0,则f (0)f (0)=f (0),解得f (0)=0,或f (0)=1. 取f (0)=1.取y=﹣x<0,则f(x)f(﹣x)=1,∴f(x)=1f(−x)<1,设x1<x2,则f(x1﹣x2)=f(x1)•f(﹣x2)=f(x1)f(x2)>1,∴f(x1)>f(x2).∴函数f(x)在R上单调递减.∵数列{a n}满足f(a n+1)f(11+a n)=l=f(0).∴a n+1+11+a n=0,∵a1=f(0)=1,∴a2=−12,a3=﹣2,a4=1,a5=−12,…….∴a n+3=a n.∴a2015=a3×671+2=a2=−12,a2017=a3×672+1=a1=1.a2018=a3×672+2=a2=−12,a2019=a3×672+3=a3=﹣2.∴f(a2015)=f(−12)>1,f(a2017)=f(1)<1.∴f(a2015)>f(a2017).而f(a2015)=f(a2018),f(a2017)<1<f(a2018),f(a2018)=f(−12)<f(a2019)=f(﹣2),因此只有:D正确.故选:D.13.已知函数f(n)=n2sin(2n−32π),且a n=f(n),则a1+a2+a3+…+a200=()A.20100B.20500C.40100D.10050【解答】解:可得f(2k)=4k2sin(−32π)=4k2,f(2k﹣1)=(2k﹣1)2sin(−5π2)=﹣(2k﹣1)2.k∈N*,∴且a n=f(n)={n2,(n为偶数)−n2,(n为奇数),∴a1+a2+a3+…+a200=(22﹣12)+(32﹣22)+(42﹣32)+…+(2002﹣1992)=1+2+3+…+200=20100.故选:A.14.已知函数f(x)=4x2x−1,M=f(1n)+f(2n)+…+f(nn)(n∈N*,且n为奇数),则M等于()A.2n﹣1B.n−12C.2n+2D.2n+12【解答】解:∵f (x )=4x2x−1, ∴f (x )+f (1﹣x )=4x2x−1+4(1−x)2(1−x)−1 =4x 2x−1+4−4x 1−2x =4x 2x−1−4−4x 2x−1=4(2x−1)2x−1=4. ∴M =f (1n )+f (2n )+…+f (nn )=4×n−12+f (1)=2n ﹣2+4=2n +2. 故选:C .15.已知各项都为正数的等比数列{a n },满足a 3=2a 1+a 2,若存在两项a m ,a n ,使得√a m a n =4a 1,则1m+4n的最小值为( ) A .2B .32C .13D .1【解答】解:各项都为正数且公比为q 的等比数列{a n }, ∵a 3=2a 1+a 2,∴a 1⋅q 2=2a 1+a 1⋅q 即q 2=2+q ,解得q =2或﹣1(舍去﹣1). ∵存在两项a m ,a n ,使得√a m a n =4a 1, ∴得a 21•2m +n ﹣2=16a 21,∴m +n =6. 则1m+4n=16(m +n )(1m +4n)=16(1+4m n +n m +4)≥16(2√4m n ⋅n m +5)=32. 当且仅当m =1,n =2时,等号成立. 则1m+4n的最小值为32.故选:B .16.已知数列{a n }中,a 1=2,n •a n +1﹣(n +1)•a n =1,n ∈N *.若对于任意的n ∈N *,不等式a n+1n+1<a 恒成立,则实数a 的取值范围为( ) A .(3,+∞)B .(﹣∞,3)C .[3,+∞)D .(﹣∞,3]【解答】解:数列{a n }中,a 1=2,n •a n +1﹣(n +1)•a n =1,n ∈N *. 可得a n+1n+1−a n n=1n(n+1)=1n−1n+1,由a 22−a 11=1−12,a 33−a 22=12−13,a 44−a 33=13−14,…,a n+1n+1−a n n=1n(n+1)=1n−1n+1,上面各式相加可得, 得a n+1n+1−a 11=1−1n+1, 则a n+1n+1=3−1n+1<3,由对于任意的n ∈N *,不等式a n+1n+1<a 恒成立,可得a ≥3,即有a 的取值范围是[3,+∞). 故选:C .17.已知F (x )=f (x +12)﹣1是R 上的奇函数,a n =f (0)+f (1n)+f (2n)+…+f (n−1n)+f (1)(n ∈N *),则数列{a n } 的通项公式为( ) A .a n =n ﹣1B .a n =nC .a n =n +1D .a n =n 2【解答】解:F (x )=f (x +12)﹣1在R 上为奇函数 故F (﹣x )=﹣F (x ),代入得:f (12−x )+f (12+x )=2,(x ∈R )当x =0时,f (12)=1.令t =12−x ,则12+x =1﹣t , 上式即为:f (t )+f (1﹣t )=2. 当n 为偶数时:a n =f (0)+f (1n)+f (2n )+…+f (n−1n)+f (1)(n ∈N *)=[f (0)+f (1)]+[f (1n)+f (n−1n)]+…+[f (12n−12)+f (12n+12)]+f (12)=2×n 2+1 =n +1. 当n 为奇数时:a n =f (0)+f (1n)+f (2n )+…+f (n−1n)+f (1)(n ∈N *)=[f (0)+f (1)]+[f (1n)+f (n−1n)]+…+[f (n−12n)+f (n+12n)]=2×n+12=n +1.综上所述,a n =n +1. 故选:C .填空题31.已知定义在R 上的函数f (x )是奇函数,且满足f (3﹣x )=f (x ),f (﹣1)=3,数列{a n }满足a 1=1,且a n =n (a n +1﹣a n )(n ∈N *),则f (a 36)+f (a 37)= ﹣3【解答】解:∵函数f (x )是奇函数,且满足f (3﹣x )=f (x ),f (﹣1)=3, ∴f (x )=f (3﹣x )=﹣f (x ﹣3),即f (x +3)=﹣f (x ),则f (x +6)=﹣f (x +3)=f (x ), 即函数f (x )是周期为6的周期函数,由数列{a n }满足a 1=1且a n =n (a n +1﹣a n ) (n ∈N *), 则a n =na n +1﹣na n , 即(1+n )a n =na n +1, 则a n+1a n =1+n n , 则a 2a 1=21,a 3a 2=32,⋯a nan−1=nn−1,等式两边同时相乘得a n a 1=n ,即a n =na 1=n ,即数列{a n }的通项公式为a n =n ,则f (a 36)+f (a 37)=f (36)+f (37)=f (0)+f (1), ∵f (x )是奇函数,∴f (0)=0, ∵f (﹣1)=3,∴﹣f (1)=3, 即f (1)=﹣3,则f (a 36)+f (a 37)=f (36)+f (37)=f (0)+f (1)=0﹣3=﹣3, 故答案为:﹣3.32.对于函数f (x )和实数M ,若存在m ,n ∈N +,使f (m )+f (m +1)+f (m +2)+…+f (m +n )=M 成立,则称(m ,n )为函数f (x )关于M 的一个“生长点”.若(1,2)为函数f (x )=cos (π2x +π3)关于M的一个“生长点”,则M = −12 ;若f (x )=2x +1,M =105,则函数f (x )关于M 的“生长点”共有3 个.【解答】解:若(1,2)为函数f (x )=cos (π2x +π3)关于M 的一个“生长点”,则M =f (1)+f (2)+f (3)=cos (π2+π3)+cos (π2×2+π3)+cos (π2×3+π3)=﹣sin π3−cos π3+cos (−π6)=−√32−12+√32=−12,若f (x )=2x +1,M =105, 则f (m )是公差为2的等差数列,则由f (m )+f (m +1)+f (m +2)+…+f (m +n )=105 得(n +1)(2m +1)+(n+1)⋅n2×2=105 即(n +1)(2m +1)+n (n +1)=105, 即(n +1)(2m +n +1)=105,∵105=1×105=3×35=5×21=7×15,∴由{n +1=32m +n +1=35得{n =2m =16,此时“生长点”为(2,16),由{n +1=52m +n +1=21得{n =4m =8,此时“生长点”为(4,8), 由{n +1=72m +n +1=15得{n =6m =4,此时“生长点”为(6,4), 故函数f (x )关于M 的“生长点”共有3个, 故答案为:−12,333.如果函数f (x )满足:对任意实数a ,b 都有f (a +b )=f (a )f (b ),且f (1)=1,则f(2)f(1)+f(3)f(2)+f(4)f(3)+⋯+f(2018)f(2017)= 2017【解答】解:∵f (x )满足对任意的实数a ,b 都有f (a +b )=f (a )•f (b ),且f (1)=2, ∴f (a +1)=f (a )•f (1)=f (a ), ∴f(a+1)f(a)=1,∴f(2)f(1)+f(3)f(2)+f(4)f(3)+⋯+f(2018)f(2017)=1×2017=2017.故答案为:2017.。

数列考试题型及答案详解

数列考试题型及答案详解

数列考试题型及答案详解一、选择题1. 已知数列\( a_n \)的通项公式为\( a_n = 2n - 1 \),该数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 常数数列答案:A2. 若数列\( b_n \)满足\( b_n = b_{n-1} + 3 \),且\( b_1 = 1 \),则\( b_5 \)的值为:A. 10B. 13C. 16D. 19答案:B二、填空题3. 给定数列\( c_n \)的前几项为\( c_1 = 1, c_2 = 3, c_3 = 6 \),若数列\( c_n \)是等差数列,则\( c_4 \)的值为______。

答案:104. 若数列\( d_n \)的前\( n \)项和为\( S_n = 2n^2 - n \),求\( d_4 \)的值。

答案:15三、解答题5. 已知数列\( e_n \)的前\( n \)项和为\( S_n = 3n^2 + n \),求证数列\( e_n \)是等差数列,并求出其首项和公差。

证明:由题意知,\( S_1 = e_1 = 3 \times 1^2 + 1 = 4 \)。

当\( n \geq 2 \)时,\( e_n = S_n - S_{n-1} = (3n^2 + n) - [3(n-1)^2 + (n-1)] = 6n - 2 \)。

又\( e_1 = 4 \),满足上述等式,故\( e_n = 6n - 2 \)。

由\( e_n \)的表达式可知,\( e_n - e_{n-1} = 6 \),即数列\( e_n \)的公差为6,首项为4,因此\( e_n \)是等差数列。

6. 已知数列\( f_n \)的通项公式为\( f_n = 3^n - 2^n \),求\( f_{10} \)的值。

解答:根据题意,\( f_{10} = 3^{10} - 2^{10} \)。

计算得\( f_{10} = 59049 - 1024 = 58025 \)。

高一数学数列综合应用试题答案及解析

高一数学数列综合应用试题答案及解析

高一数学数列综合应用试题答案及解析1.若数列满足为常数,则称数列为“调和数列”,若正项数列为“调和数列”,且,则的最大值是()A.10B.100C.200D.400【答案】B【解析】由于正项数列为“调和数列”,,为等差数列,,.的最大值为100.【考点】等差数列的性质和基本不等式的应用.2.数列满足,则 .【答案】.【解析】当时,,;当时,由于,,两式相减得,不满足.【考点】由得.3.已知数列中,,则数列通项公式=______________.【答案】【解析】由,得,得所以得.【考点】等比数列.4.已知数列的各项均为正整数,对于,有,若存在,当且为奇数时,恒为常数,则的值为 .【答案】1或5【解析】设当且为奇数,由题意有,即,又数列的各项均为正整数,因此的值为1或5.【考点】递推数列的性质5.已知数列满足,,则的值为_______.【答案】-3【解析】由递推式观察可知,式子并不好转化为新的数列形式.故可尝试计算几项并寻找规律.,故此数列为以4为周期的周期数列.,则【考点】计算数列值.6.设数列的前n项和,则的值为( ).A.15B.16C.49D.64【答案】A.【解析】因为,所以选A.【考点】数列中与的关系:.7.若数列中,则其前项和取最大值时,__________.【答案】或【解析】令,则,又∵,∴当时,,,当时,,∴当取最大值时,或.【考点】数列的性质.8.已知数列满足,,则()A.2B.C.D.【答案】B.【解析】∵,,∴,,,,而,∴.【考点】数列的通项公式.9.在数列中,若,,则.【答案】.【解析】由变形为,即有,令,则有,说明与互为倒数关系,而由有,则,同理……,因此有,所以,故.【考点】运用数列特殊递推关系解决问题,本题要注意构造新数列进行归纳寻求相应规律,从而解决问题.10.给定函数的图像如下列图中,经过原点和(1,1),且对任意,由关系式得到数列{},满足,则该函数的图像为()【答案】A【解析】由题意,知:,即在图中应该是满足的所有点,只有A选项正确.【考点】数列的基本概念.11.已知数列前项和,(1)求其通项;(2)若它的第项满足,求的值。

六年级下册数学试题-思维训练:第9讲 数列综合(PDF 解析版)人教版

六年级下册数学试题-思维训练:第9讲 数列综合(PDF 解析版)人教版

个,分子、分母和为 18 的分数依次为 1 , 2 , 3 ,所以 3 是第 139 个数
17 16 15
15
6. 有七根竹竿排成一行.第一根竹竿长 1 米,其余每根的长都是前一根的一半.问:这七根竹竿
的总长是多少米?
【答案】1 63 64
【解析】1 1 1 1 1 1 1 1 63 (米). 2 4 8 16 32 64 64
4. 小明想把 55 枚棋子放在若干个盒子里,按第一个盒子里放 1 枚,第 2 个盒子里放 2 枚,第 3 个 盒子里放 3 枚,……,这样下去,最后刚好将棋子放完,那么小明用了多少个盒子呢? 【答案】 10 【解析】根据学学的放法,可知:
第 1 个盒子放了 1 枚棋子; 第 2 个盒子放了 2 枚棋子; 第 3 个盒子放了 3 枚棋子;…… 因此,只要是从自然数加起,加数依次增加 1,一直加到某个自然数,它们的和正好是 55, 那么,这些加数的个数就是盒子数了.我们估算一下结果:1 2 3 4 5 15 ,但是 15 和 55 相差较大,所以还要增加加数(自然数)的个数1 2 3 4 5 6 7 8 9 45 , 45 与 55 比较接近了,又因为 55 45 10 ,所以,1 2 3 4 5 6 7 8 9 10 55 , 这个式子说明,55 是 10 个自然数的和,所以需要用 10 个盒子做游戏.
第 9 讲 数列综合
同步练习: 1. 算式 1+2+3+…+2017 的和被 7 除,余数是 . 【答案】1 【解析】(1+2017)×2017÷2÷7 的余数是 1.
2.计算:1 3 32 33 36 _____ .
【答案】1093
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.设n S 和n T 分别为两个等差数列的前n 项和,若对任意*n N ∈,都有71427n n S n T n +=+ ,则第一个数列的第11项与第二个数列的第11项的比是 .2.求555555555n n S =++++个3.求2323n n S a a a na =++++4.设{}n a 是正数组成的数列,其前n 项和为n S ,并且对所有自然数n ,n a 与2的等差中项等于n S 与2的等比中项,(1)写出数列{}n a 的前三项;(2)求数列{}n a 的通项公式(写出推证过程);(3)令111()2n n n n n aa b a a ++=+()n N ∈,求123n b b b b n ++++- .6.若数列{}n a 成等差数列,且,()m n S n S m m n ==≠,求n m S +.7.数列{}n a 是首项为1000,公比为110的等比数列,数列{b }n 满足121(lg lg lg )k k b a a a k =+++ *()k N ∈,(1)求数列{b }n 的前n 项和的最大值;(2)求数列{|b |}n 的前n 项和n S '.8.某地区森林原有木材存量为a ,且每年增长率为25%,因生产建设的需要每年年底要砍伐的木材量为b ,设n a 为n 年后该地区森林木材的存量, (1)求n a 的表达式;(2)为保护生态环境,防止水土流失,该地区每年的森林木材存量不少于79a ,如果1972a b =,那么该地区今后会发生水土流失吗?若会,需要经过几年?(参考数据:lg 20.3=)9.对数列{}n a ,规定{}n a 为数列{}n a 的一阶差分数列,其中1(*)n n n a a a n N +=-∈ .对正整数k ,规定{}k n a 为{}n a 的k 阶差分数列, 其中1111()k k k k n n n n a a a a ---+=-= .(规定0n n a a = )(Ⅰ)已知数列{}n a 的通项公式2(*)n a n n n N =+∈,是判断{}n a 是否为等差或等比数列,并说明理由;(Ⅱ)若数列{}n a 首项11a =,且满足212n n n n a a a +-+=- (*)n N ∈,求数列{}n a 的通项公式10.银行按规定每经过一定的时间结算存(贷)款的利息一次,结算后即将利息并入本金,这种计算利息的方法叫做复利.现在有某企业进行技术改造,有两种方案:甲方案:一次性贷款10万元,第一年便可获得利润1万元,以后每年比上年增加30%的利润;乙方案:每年贷款1万元,第一年可获得利润1万元,以后每年比前一年多获利5000元.两种方案的期限都是10年,到期一次行归还本息.若银行贷款利息均以年息10%的复利计算,试比较两个方案哪个获得存利润更多?(计算精确到千元,参考数据:10101.12.594,1.313.796==)1.设{}n a 是正数组成的数列,其前n 项和为n S ,并且对所有自然数n ,n a 与2的等差中项等于n S 与2的等比中项,(1)写出数列{}n a 的前三项;(2)求数列{}n a 的通项公式(写出推证过程);(3)令111()2n n n n n aa b a a ++=+()n N ∈,求123n b b b b n ++++- .解:(1)由题意:22n a +=0n a >,令1n =,122a +=解得12a =令2n =,222a +=, 解得26a = 令3n =,322a += 解得310a = ∴该数列的前三项为2,6,10.(2)∵22n a +=21(2)8n n S a =+,由此2111(2)8n n S a ++=+,∴221111[(2)(2)]8n n n n n a S S a a +++=-=+-+,整理得:11()(4)0n n n n a a a a +++--=由题意:1()0n n a a ++≠,∴140n n a a +--=,即14n n a a +-=, ∴数列{}n a 为等差数列,其中12,a =公差4d =,∴1(1)n a a n d =+-=42n -(3)14242122()(11)2424222121n n n b n n n n +-=+=++--+-+1112121n n =+--+ 121111113352121n b b b n n n +++=+-+-++--+ n -1121n -+. 2.若数列{}n a 成等差数列,且,()m n S n S m m n ==≠,求n m S +. 解:(法一)基本量法(略);(法二)设2n S An Bn =+,则22(1)(2)An Bn m Am Bm n⎧+=⎪⎨+=⎪⎩ (1)(2)-得:22()()n m A n m B m n -+-=-,m n ≠ , ∴()1m n A B ++=-,∴2()()()n m S n m A n m B n m +=+++=-+.3.设n S 和n T 分别为两个等差数列的前n 项和,若对任意*n N ∈,都有71427n n S n T n +=+ ,则第一个数列的第11项与第二个数列的第11项的比是43. 说明:2121n n n n a S b T --=. 4.2323nn S a a a na =++++ ,当1a =时,123n S =+++ (1)2n n n ++=, 当1a ≠时,2323n S a a a =+++…nna + ,23423n aS a a a =+++…1n na ++,两式相减得 23(1)n a S a a a -=+++ (1)1(1)1n nn n a a a nana a++-+-=--,∴212(1)(1)n n n na n a aS a ++-++=-.6.555555555n n S =++++ 个5(999999999)9n =++++个235[(101)(101)(101)(101)]9n =-+-+-++- 235505[10101010](101)9819n n n n =++++-=-- .7.数列{}n a 是首项为1000,公比为110的等比数列,数列{b }n 满足121(lg lg lg )k k b a a a k=+++*()k N ∈,(1)求数列{b }n 的前n 项和的最大值;(2)求数列{|b |}n 的前n 项和n S '.解:(1)由题意:410n n a -=,∴lg 4n a n =-,∴数列{lg }n a 是首项为3,公差为1-的等差数列,∴12(1)lg lg lg 32k k k a a a k -+++=-,∴1(1)7[3]22n n n nb n n --=-=由100n n b b +≥⎧⎨≤⎩,得67n ≤≤,∴数列{b }n 的前n 项和的最大值为67212S S ==(2)由(1)当7n ≤时,0n b ≥,当7n >时,0n b <,∴当7n ≤时,212731132()244n n nS b b b n n n -+'=+++==-+ 当7n >时,12n nS b b b b b b '=+++---- 27121132()2144n S b b b n n =-+++=-+∴22113(7)4411321(7)44n n n n S n n n ⎧-+≤⎪⎪'=⎨⎪-+>⎪⎩8.某地区森林原有木材存量为a ,且每年增长率为25%,因生产建设的需要每年年底要砍伐的木材量为b ,设n a 为n 年后该地区森林木材的存量, (1)求n a 的表达式;(2)为保护生态环境,防止水土流失,该地区每年的森林木材存量不少于79a ,如果1972ab =,那么该地区今后会发生水土流失吗?若会,需要经过几年?(参考数据:lg 20.3=) 解:(1)设第一年的森林的木材存量为1a ,第n 年后的森林的木材存量为n a ,则115(1)44a a b a b =+-=-,221555()(1)444a a b a b =-=-+,32325555()[()1]4444a ab a b =-=-++,………12*55555()[()()1]()4[()1]()44444n n n n n n a a a b n N --=-+++=--∈ .(2)当1972b a =时,有79n a a <得55197()4[()1]44729n n a a a --⨯<即5()54n >, 所以,lg51lg 27.2lg52lg 213lg 2n ->=≈--.答:经过8年后该地区就开始水土流失.9.(安徽两地●2010届高三联考)(本小题满分12分)对数列{}n a ,规定{}n a 为数列{}n a 的一阶差分数列,其中1(*)n n n a a a n N +=-∈ .对正整数k ,规定{}kn a 为{}n a 的k 阶差分数列,其中1111()k k k k n n n n a a a a ---+=-= .(规定0n n a a = )(Ⅰ)已知数列{}n a 的通项公式2(*)n a n n n N =+∈,是判断{}n a 是否为等差或等比数列,并说明理由;(Ⅱ)若数列{}n a 首项11a =,且满足212n n n n a a a +-+=- (*)n N ∈,求数列{}n a 的通项公式解:(Ⅰ)221(1)(1)()n n n a a a n n n n +∆=-=+++-+22n =+ (2分)所以{}n a ∆是首项为4,公差为2的等差数列。

(2分)(Ⅱ)212n n n n a a a +∆-∆+=-,即 (1分) 112n n n n n a a a a ++∆-∆-∆+=- (1分) 所以122n n n a a +=+ (1分)因为11a =,所以1223422,1232,a a ==⨯==⨯343242a ==⨯ ``` ```(1分)猜想:12n n a n -=⋅ (1分)证明:①当1n =时,01112a ==⨯,符合猜想; (1分) ②假设*()n k k N =∈时,12k k a k -=⋅ 当1n k =+时,1222k k k k k a a a k +=+=⋅+ (1)1(1)2k k +-=+⋅ (2分)由①②可知,12n n a n -=⋅10.银行按规定每经过一定的时间结算存(贷)款的利息一次,结算后即将利息并入本金,这种计算利息的方法叫做复利.现在有某企业进行技术改造,有两种方案:甲方案:一次性贷款10万元,第一年便可获得利润1万元,以后每年比上年增加30%的利润;乙方案:每年贷款1万元,第一年可获得利润1万元,以后每年比前一年多获利5000元.两种方案的期限都是10年,到期一次行归还本息.若银行贷款利息均以年息10%的复利计算,试比较两个方案哪个获得存利润更多?(计算精确到千元,参考数据:10101.1 2.594,1.313.796==)解:甲方案10年获利润是每年利润数组成的数列的前10项的和:10291.311(130%)(130%)(130%)42.621.31-+++++++==- (万元)到期时银行的本息和为1010(110%)10 2.59425.94⨯+=⨯=(万元) ∴甲方案扣除本息后的净获利为:42.6225.9416.7-≈(万元)乙方案:逐年获利成等差数列,前10年共获利:10(1 5.5)1(10.5)(120.5)(190.5)32.502+++++⨯+++⨯== (万元) 贷款的本利和为:1091.111.1[1(110%)(110%)] 1.117.531.11-+++++=⨯=- (万元)∴乙方案扣除本息后的净获利为:32.5017.5315.0-=(万元)所以,甲方案的获利较多.。

相关文档
最新文档