渑池县实验中学2018-2019学年高三上学期11月月考数学试卷含答案
城区实验中学2018-2019学年高三上学期11月月考数学试卷含答案(2)
城区实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 曲线y=在点(1,﹣1)处的切线方程为( )A .y=x ﹣2B .y=﹣3x+2C .y=2x ﹣3D .y=﹣2x+12. 如果定义在R 上的函数满足:对于任意,都有)(x f 21x x ≠)()(2211x f x x f x +,则称为“函数”.给出下列函数:①;②)()(1221x f x x f x +>)(x f H 13++-=x x y ;③;④,其中“函数”的个数是( ))cos sin (23x x x y --=1+=x e y ⎩⎨⎧=≠=00||ln x x x y H A . B . C . D .43213. 下列函数中,既是偶函数又在单调递增的函数是( )(0,)+∞A .B .C .D .3y x =21y x =-+||1y x =+2xy -=4. 已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( )A .若 m ∥α,n ∥α,则 m ∥nB .若α⊥γ,β⊥γ,则 α∥βC .若m ⊥α,n ⊥α,则 m ∥nD .若 m ∥α,m ∥β,则 α∥β5. 在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( )A .33%B .49%C .62%D .88%6. 已知函数f (x )=lnx+2x ﹣6,则它的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)7. 如图,已知平面=,.是直线上的两点,是平面内的两点,且,,,.是平面上的一动点,且有,则四棱锥体积的最大值是()A .B .C .D .8. 已知a >b >0,那么下列不等式成立的是( )A .﹣a >﹣bB .a+c <b+cC .(﹣a )2>(﹣b )2D .9. 如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别为()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.10 13B.12.5 12C.12.5 13D.10 1510.已知圆C:x2+y2﹣2x=1,直线l:y=k(x﹣1)+1,则l与C的位置关系是( )A.一定相离B.一定相切C.相交且一定不过圆心D.相交且可能过圆心11.(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切实数x恒成立,则实数m的取值范围是()A.(1,+∞)B.(﹣∞,﹣1)C.D.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1B.C.e﹣1D.e+1二、填空题13.不等式的解集为 .14.已知f(x)=,若不等式f(x﹣2)≥f(x)对一切x∈R恒成立,则a的最大值为 . 15.设a抛掷一枚骰子得到的点数,则方程x2+ax+a=0有两个不等实数根的概率为 .16.平面内两定点M(0,一2)和N(0,2),动点P(x,y)满足,动点P的轨迹为曲线E,给出以下命题:∃①m,使曲线E过坐标原点;∀②对m,曲线E与x轴有三个交点;③曲线E只关于y轴对称,但不关于x轴对称;④若P、M、N三点不共线,则△PMN周长的最小值为+4;⑤曲线E上与M,N不共线的任意一点G关于原点对称的另外一点为H,则四边形GMHN的面积不大于m。
高2018级高三(上)11月月考数学试题(理科)【含答案】
2.已知复数 z 满足 z(1 i) 2i ,则复数 z 在复平面内对应的点所在象限为( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
3.“直线 l 与平面 内无数条直线垂直”是“直线 l 与平面 垂直”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不必要也不充分条件
15.在 ABC
中,已知
AB
2
,|
CA CB
|| CA CB
|
, cos 2A
2 sin 2
B
C 2
1,则
BA 在 BC
方向上的投
影为__________.
数学(理科)“11 月月考”考试题
第2页共4页
16.已知数列an 的前 n 项和为 Sn ,直线 y x 2 2 与圆 x2 y2 2an 2 交于 An , Bn n N * 两点,且
高 2018 级高三(上)11 月月考
数学(理科)试题 共 1 张 4 页 考试时间:120 分钟 满分:150 分
注意事项: 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷 1 至 2 页,第Ⅱ卷 3 至 4 页,共 4 页。考
生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
(1)求角 A 的大小; (2)若 a 4 ,求 ABC 面积的最大值.
18.(本小题满分 12 分) 某中学准备对高 2020 级学生文理科倾向做摸底调查,由教务处对高一学生文科、理科进行了问卷,问卷共 100 道
题,每题 1 分,总分 100 分。教务处随机抽取了 200 名学生的问卷成绩(单位:分)进行统计,将数据按照 0, 20 , 20, 40 ,40, 60 ,60,80 ,80,100 分成 5 组,绘制的频率分布直方图如图所示,若将不低于 60 分的称为“文
城区实验中学2018-2019学年高三上学期11月月考数学试卷含答案(3)
城区实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 函数f (x )=Asin (ωx+φ)(A >0,ω>0,)的部分图象如图所示,则函数y=f (x )对应的解析式为( )A.B. C. D.2. 如图,一个底面半径为R 的圆柱被与其底面所成角是30°的平面所截,截面是一个椭圆,则该椭圆的离心率是( )A. B. C. D.3. 已知圆O 的半径为1,,PA PB 为该圆的两条切线,,A B 为两切点,那么PA PB ∙ 的最小值为A、4- B、3-+ C、4-+ D、3-+4. 如果过点M (﹣2,0)的直线l与椭圆有公共点,那么直线l 的斜率k 的取值范围是( )A.B.C.D.5. 如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m ,n 为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a 和b ,则一定有( )A .a >bB .a <bC .a=bD .a ,b 的大小与m ,n 的值有关6. 棱长为2的正方体的8个顶点都在球O 的表面上,则球O 的表面积为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .π4B .π6C .π8D .π107. 直线2x+y+7=0的倾斜角为( ) A .锐角 B .直角 C .钝角 D .不存在8. 等差数列{a n }中,已知前15项的和S 15=45,则a 8等于( )A .B .6C .D .39. 一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是( )A .4πB .12πC .16πD .48π10.已知定义在R 上的可导函数y=f (x )是偶函数,且满足xf ′(x )<0, =0,则满足的x 的范围为( )A .(﹣∞,)∪(2,+∞)B .(,1)∪(1,2)C .(,1)∪(2,+∞)D .(0,)∪(2,+∞)11.若数列{a n }的通项公式a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),{a n }的最大项为第p 项,最小项为第q 项,则q ﹣p 等于( ) A .1B .2C .3D .412.下列说法正确的是( )A .命题“若x 2=1,则x=1”的否命题为“若x 2=1,则x ≠1”B .命题“∃x 0∈R ,x+x 0﹣1<0”的否定是“∀x ∈R ,x 2+x ﹣1>0”C .命题“若x=y ,则sin x=sin y ”的逆否命题为假命题D .若“p 或q ”为真命题,则p ,q 中至少有一个为真命题二、填空题13.等差数列{}n a 的前项和为n S ,若37116a a a ++=,则13S 等于_________.14.已知(1+x+x 2)(x)n (n ∈N +)的展开式中没有常数项,且2≤n ≤8,则n= .15.设O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,过F 斜率为的直线与抛物线C相交于A ,B 两点,直线AO 与l 相交于D ,若|AF|>|BF|,则= .16.已知一个算法,其流程图如图,则输出结果是 .17.定义在R上的偶函数f(x)在[0,+∞)上是增函数,且f(2)=0,则不等式f(log8x)>0的解集是.18.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于.三、解答题19.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.20.(本小题满分12分)△ABC的三内角A,B,C的对边分别为a,b,c,已知k sin B=sin A+sin C(k为正常数),a=4c.(1)当k=5时,求cos B;4(2)若△ABC面积为3,B=60°,求k的值.21.在直角坐标系中,已知圆C的圆心坐标为(2,0),半径为,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.,直线l的参数方程为:(t为参数).(1)求圆C和直线l的极坐标方程;(2)点P的极坐标为(1,),直线l与圆C相交于A,B,求|PA|+|PB|的值.22.某市出租车的计价标准是4km以内10元(含4km),超过4km且不超过18km的部分1.5元/km,超出18km的部分2元/km.(1)如果不计等待时间的费用,建立车费y元与行车里程x km的函数关系式;(2)如果某人乘车行驶了30km,他要付多少车费?23.(1)求z=2x+y的最大值,使式中的x、y满足约束条件(2)求z=2x+y的最大值,使式中的x、y满足约束条件+=1.24.求下列函数的定义域,并用区间表示其结果.(1)y=+;(2)y=.城区实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】A【解析】解:由函数的图象可得A=1, =•=﹣,解得ω=2,再把点(,1)代入函数的解析式可得 sin (2×+φ)=1,结合,可得φ=,故有,故选:A .2. 【答案】A【解析】解:因为底面半径为R 的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R ,长半轴为:=,∵a 2=b 2+c 2,∴c=,∴椭圆的离心率为:e==. 故选:A .【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力.3. 【答案】D.【解析】设PO t =,向量PA 与PB 的夹角为θ,PA PB ==,1sin2t θ=,222cos 12sin 12t θθ=-=-,∴222cos (1)(1)(1)PA PB PA PB t t t θ==-->,2223(1)PA PB t t t∴=+->,依不等式PA PB ∴的最小值为3.4. 【答案】D【解析】解:设过点M (﹣2,0)的直线l 的方程为y=k (x+2),联立,得(2k 2+1)x 2+8k 2x+8k 2﹣2=0,∵过点M(﹣2,0)的直线l与椭圆有公共点,∴△=64k4﹣4(2k2+1)(8k2﹣2)≥0,整理,得k2,解得﹣≤k≤.∴直线l的斜率k的取值范围是[﹣,].故选:D.【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.5.【答案】C【解析】解:根据茎叶图中的数据,得;甲得分的众数为a=85,乙得分的中位数是b=85;所以a=b.故选:C.6.【答案】B【解析】考点:球与几何体7.【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,即可判断出结论.【解答】解:设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,则θ为钝角.故选:C.8.【答案】D【解析】解:由等差数列的性质可得:S15==15a8=45,则a8=3.故选:D.9.【答案】B【解析】解:由三视图可知几何体是底面半径为2的圆柱,∴几何体的侧面积为2π×2×h=12π,解得h=3,∴几何体的体积V=π×22×3=12π.故选B.【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.10.【答案】D【解析】解:当x>0时,由xf′(x)<0,得f′(x)<0,即此时函数单调递减,∵函数f(x)是偶函数,∴不等式等价为f(||)<,即||>,即>或<﹣,解得0<x<或x>2,故x的取值范围是(0,)∪(2,+∞)故选:D【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.11.【答案】A【解析】解:设=t∈(0,1],a n=5()2n﹣2﹣4()n﹣1(n∈N*),∴a n=5t2﹣4t=﹣,∴a n∈,当且仅当n=1时,t=1,此时a n取得最大值;同理n=2时,a n取得最小值.∴q﹣p=2﹣1=1,故选:A.【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题.12.【答案】D【解析】解:A.命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,因此不正确;B.命题“∃x0∈R,x+x0﹣1<0”的否定是“∀x∈R,x2+x﹣1≥0”,因此不正确;C.命题“若x=y,则sin x=sin y”正确,其逆否命题为真命题,因此不正确;D.命题“p或q”为真命题,则p,q中至少有一个为真命题,正确.故选:D.二、填空题13.【答案】26【解析】试题分析:由题意得,根据等差数列的性质,可得371177362a a a a a ++==⇒=,由等差数列的求和11313713()13262a a S a +===.考点:等差数列的性质和等差数列的和. 14.【答案】 5 .【解析】二项式定理. 【专题】计算题.【分析】要想使已知展开式中没有常数项,需(x )n (n ∈N +)的展开式中无常数项、x ﹣1项、x ﹣2项,利用(x)n (n ∈N +)的通项公式讨论即可.【解答】解:设(x )n(n ∈N +)的展开式的通项为T r+1,则T r+1=x n ﹣r x ﹣3r =x n ﹣4r ,2≤n ≤8,当n=2时,若r=0,(1+x+x 2)(x)n(n ∈N +)的展开式中有常数项,故n ≠2;当n=3时,若r=1,(1+x+x 2)(x)n(n ∈N +)的展开式中有常数项,故n ≠3;当n=4时,若r=1,(1+x+x 2)(x)n(n ∈N +)的展开式中有常数项,故n ≠4;当n=5时,r=0、1、2、3、4、5时,(1+x+x 2)(x )n(n ∈N +)的展开式中均没有常数项,故n=5适合题意;当n=6时,若r=1,(1+x+x 2)(x )n (n ∈N +)的展开式中有常数项,故n ≠6;当n=7时,若r=2,(1+x+x 2)(x)n(n ∈N +)的展开式中有常数项,故n ≠7;当n=8时,若r=2,(1+x+x 2)(x)n (n ∈N +)的展开式中有常数项,故n ≠2;综上所述,n=5时,满足题意.故答案为:5.【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题.15.【答案】.【解析】解:∵O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F , 过F 斜率为的直线与抛物线C 相交于A ,B 两点,直线AO 与l 相交于D ,∴直线AB 的方程为y=(x ﹣),l 的方程为x=﹣,联立,解得A(﹣,P),B(,﹣)∴直线OA的方程为:y=,联立,解得D(﹣,﹣)∴|BD|==,∵|OF|=,∴==.故答案为:.【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质.16.【答案】5.【解析】解:模拟执行程序框图,可得a=1,a=2不满足条件a2>4a+1,a=3不满足条件a2>4a+1,a=4不满足条件a2>4a+1,a=5满足条件a2>4a+1,退出循环,输出a的值为5.故答案为:5.【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a的值是解题的关键,属于基本知识的考查.17.【答案】(0,)∪(64,+∞).【解析】解:∵f(x)是定义在R上的偶函数,∴f (log 8x )>0,等价为:f (|log 8x|)>f (2),又f (x )在[0,+∞)上为增函数, ∴|log 8x|>2,∴log 8x >2或log 8x <﹣2,∴x >64或0<x <.即不等式的解集为{x|x >64或0<x <}故答案为:(0,)∪(64,+∞)【点评】本题考查函数奇偶性与单调性的综合,是函数性质综合考查题,熟练掌握奇偶性与单调性的对应关系是解答的关键,根据偶函数的对称性将不等式进行转化是解决本题的关键.18.【答案】 .【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,其中4个点构成平行四边形的选法有3个,∴4个点构成平行四边形的概率P==.故答案为:.【点评】本题考查古典概型及其概率计算公式的应用,是基础题.确定基本事件的个数是关键.三、解答题19.【答案】【解析】解:(Ⅰ)f (x )=lnx+a (1﹣x )的定义域为(0,+∞),∴f ′(x )=﹣a=,若a ≤0,则f ′(x )>0,∴函数f (x )在(0,+∞)上单调递增,若a >0,则当x ∈(0,)时,f ′(x )>0,当x ∈(,+∞)时,f ′(x )<0,所以f (x )在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x=取得最大值,最大值为f ()=﹣lna+a ﹣1,∵f ()>2a ﹣2, ∴lna+a ﹣1<0,令g (a )=lna+a ﹣1, ∵g (a )在(0,+∞)单调递增,g (1)=0,∴当0<a <1时,g (a )<0, 当a >1时,g (a )>0,∴a 的取值范围为(0,1).【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题.20.【答案】【解析】解:(1)∵54sin B =sin A +sin C ,由正弦定理得54b =a +c ,又a =4c ,∴54b =5c ,即b =4c ,由余弦定理得cos B =a 2+c 2-b 22ac =(4c )2+c 2-(4c )22×4c ·c =18.(2)∵S △ABC =3,B =60°.∴12ac sin B = 3.即ac =4. 又a =4c ,∴a =4,c =1.由余弦定理得b 2=a 2+c 2-2ac cos B =42+12-2×4×1×12=13.∴b =13,∵k sin B =sin A +sin C ,由正弦定理得k =a +c b =513=51313,即k 的值为51313.21.【答案】【解析】解:(1)圆C 的直角坐标方程为(x ﹣2)2+y 2=2,代入圆C 得:(ρcos θ﹣2)2+ρ2sin 2θ=2化简得圆C 的极坐标方程:ρ2﹣4ρcos θ+2=0…由得x+y=1,∴l 的极坐标方程为ρcos θ+ρsin θ=1…(2)由得点P 的直角坐标为P (0,1),∴直线l 的参数的标准方程可写成…代入圆C 得:化简得:,∴,∴t 1<0,t 2<0…∴…22.【答案】【解析】解:(1)依题意得:当0<x≤4时,y=10;…(2分)当4<x≤18时,y=10+1.5(x﹣4)=1.5x+4…当x>18时,y=10+1.5×14+2(x﹣18)=2x﹣5…(8分)∴…(9分)(2)x=30,y=2×30﹣5=55…(12分)【点评】本题考查函数模型的建立,考查利用数学知识解决实际问题,考查学生的计算能力,属于中档题.23.【答案】【解析】解:(1)由题意作出可行域如下,,结合图象可知,当过点A(2,﹣1)时有最大值,故Z max=2×2﹣1=3;(2)由题意作图象如下,,根据距离公式,原点O到直线2x+y﹣z=0的距离d=,故当d有最大值时,|z|有最大值,即z有最值;结合图象可知,当直线2x+y﹣z=0与椭圆+=1相切时最大,联立方程化简可得,116x2﹣100zx+25z2﹣400=0,故△=10000z2﹣4×116×(25z2﹣400)=0,故z2=116,故z=2x+y的最大值为.【点评】本题考查了线性规划的应用及圆锥曲线与直线的位置关系的应用.24.【答案】【解析】解:(1)∵y=+,∴,解得x≥﹣2且x≠﹣2且x≠3,∴函数y的定义域是(﹣2,3)∪(3,+∞);(2)∵y=,∴,解得x≤4且x≠1且x≠3,∴函数y的定义域是(﹣∞,1)∪(1,3)∪(3,4].。
渑池县高级中学2018-2019学年高三上学期11月月考数学试卷含答案
渑池县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 执行下面的程序框图,若输入,则输出的结果为( )2016x =-A .2015B .2016C .2116D .20482. 已知幂函数y=f (x )的图象过点(,),则f (2)的值为( )A .B .﹣C .2D .﹣23. 已知定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (ax+1)≤f (x ﹣2)对任意都成立,则实数a 的取值范围为( )A .[﹣2,0]B .[﹣3,﹣1]C .[﹣5,1]D .[﹣2,1) 4. 下列命题中的说法正确的是()A .命题“若x 2=1,则x=1”的否命题为“若x 2=1,则x ≠1”B .“x=﹣1”是“x 2+5x ﹣6=0”的必要不充分条件C .命题“∃x ∈R ,使得x 2+x+1<0”的否定是:“∀x ∈R ,均有x 2+x+1>0”D .命题“在△ABC 中,若A >B ,则sinA >sinB ”的逆否命题为真命题5. 我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a =6 102,b =2 016时,输出的a 为()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.6B.9C.12D.186.函数y=a x+1(a>0且a≠1)图象恒过定点()A.(0,1)B.(2,1)C.(2,0)D.(0,2) 7.如果命题p∨q是真命题,命题¬p是假命题,那么()A.命题p一定是假命题B.命题q一定是假命题C.命题q一定是真命题D.命题q是真命题或假命题8.()0﹣(1﹣0.5﹣2)÷的值为()A.﹣B.C.D.9.已知等比数列{a n}的公比为正数,且a4•a8=2a52,a2=1,则a1=()A.B.2C.D.10.一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是()A.8πcm2B.12πcm2C.16πcm2D.20πcm211.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:①若m∥l,m⊥α,则l⊥α;②若m∥l,m∥α,则l∥α;③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,则l∥m.其中正确命题的个数是()A.1B.2C.3D.412.函数y=f ′(x )是函数y=f (x )的导函数,且函数y=f (x )在点p (x 0,f (x 0))处的切线为l :y=g (x )=f ′(x 0)(x ﹣x 0)+f (x 0),F (x )=f (x )﹣g (x ),如果函数y=f (x )在区间[a ,b]上的图象如图所示,且a <x 0<b ,那么()A .F ′(x 0)=0,x=x 0是F (x )的极大值点B .F ′(x 0)=0,x=x 0是F (x )的极小值点C .F ′(x 0)≠0,x=x 0不是F (x )极值点D .F ′(x 0)≠0,x=x 0是F (x )极值点二、填空题13.已知函数f (x )=,若关于x 的方程f (x )=k 有三个不同的实根,则实数k 的取值范围是 .14.已知(1+x+x 2)(x)n (n ∈N +)的展开式中没有常数项,且2≤n ≤8,则n= .15.设函数f (x )=若f[f (a )],则a 的取值范围是 .16.直线与抛物线交于,两点,且与轴负半轴相交,若为坐标原点,则20x y t +-=216y x =A B x O 面积的最大值为.OAB ∆【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.17.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .18.若函数的定义域为,则函数的定义域是.()f x []1,2-(32)f x -三、解答题19.已知矩阵M 所对应的线性变换把点A (x ,y )变成点A ′(13,5),试求M 的逆矩阵及点A 的坐标. 20.已知圆的极坐标方程为ρ2﹣4ρcos (θ﹣)+6=0.(1)将极坐标方程化为普通方程;(2)若点P 在该圆上,求线段OP 的最大值和最小值.21.设集合.{}()(){}222|320,|2150A x x x B x x a x a =-+==+-+-=(1)若,求实数的值;{}2A B =I (2),求实数的取值范围.1111]A B A =U 22.【徐州市2018届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点、、、在圆周上,、在边上,且,设.(1)记游泳池及其附属设施的占地面积为,求的表达式;(2)怎样设计才能符合园林局的要求?23.某公司春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金30元,三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金.(1)员工甲抽奖一次所得奖金的分布列与期望;(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少? 24.(本小题满分12分)已知函数f (x )=x 2+x +a ,g (x )=e x .12(1)记曲线y =g (x )关于直线y =x 对称的曲线为y =h (x ),且曲线y =h (x )的一条切线方程为mx -y -1=0,求m 的值;(2)讨论函数φ(x )=f (x )-g (x )的零点个数,若零点在区间(0,1)上,求a 的取值范围.渑池县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案D A ADDDDDB题号1112答案BB二、填空题13. (0,1) .14. 5 . 15. 或a=1 .1617.()53,44--18.1,22⎡⎤⎢⎥⎣⎦三、解答题19. 20.21.(1)或;(2).1a =5a =-3a >22.(1)(2)23. 24.。
渑池县高级中学2018-2019学年上学期高三数学10月月考试题
渑池县高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知集合{| lg 0}A x x =≤,1={|3}2B x x ≤≤,则A B =( ) A .(0,3] B .(1,2]C .(1,3]D .1[,1]2【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力. 2. 已知直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8平行,则实数m 的值为( )A .﹣7B .﹣1C .﹣1或﹣7D.3. 设函数的集合,平面上点的集合,则在同一直角坐标系中,P 中函数的图象恰好经过Q 中两个点的函数的个数是 A4 B6 C8 D104. 函数f (x )=sin (ωx +φ)(ω>0,-π2≤φ≤π2)的部分图象如图所示,则φω的值为( )A.18 B .14C.12D .15. 与命题“若x ∈A ,则y ∉A ”等价的命题是( )A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A6. 如果点P 在平面区域220,210,20x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q 在曲线22(2)1x y ++=上,那么||PQ 的最小值为( )A 1B 1- C. 1 D 1 7. “3<-b a ”是“圆056222=++-+a y x y x 关于直线b x y 2+=成轴对称图形”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度.8. 双曲线=1(m ∈Z )的离心率为( )A .B .2C .D .39. “”是“”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( ) A .m ⊥α,m ⊥β,则α∥β B .m ∥n ,m ⊥α,则n ⊥α C .m ⊥α,n ⊥α,则m ∥n D .m ∥α,α∩β=n ,则m ∥n11.将函数)63sin(2)(π+=x x f 的图象向左平移4π个单位,再向上平移3个单位,得到函数)(x g 的图象, 则)(x g 的解析式为( )A .3)43sin(2)(--=πx x g B .3)43sin(2)(++=πx x g C .3)123sin(2)(+-=πx x g D .3)123sin(2)(--=πx x g【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度.12.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆,则该双曲线的离心率为( )C. 1D. 1【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为 .14.平面内两定点M (0,一2)和N (0,2),动点P (x ,y )满足,动点P 的轨迹为曲线E ,给出以下命题: ①∃m ,使曲线E 过坐标原点; ②对∀m ,曲线E 与x 轴有三个交点;③曲线E 只关于y 轴对称,但不关于x 轴对称;④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为+4;⑤曲线E 上与M,N 不共线的任意一点G 关于原点对称的另外一点为H ,则四边形GMHN 的面积不大于m 。
城区实验中学2018-2019学年高三上学期11月月考数学试卷含答案(1)
城区实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1.已知集合M={x|x2<1},N={x|x>0},则M∩N=().lnx<x D.∀x>0,lnx<x43意在考查学生空间想象能力和计算能)45120(D))A .B .C .D .8. 如图,一隧道截面由一个长方形和抛物线构成现欲在随道抛物线拱顶上安装交通信息采集装置若位置C 对隧道底AB 的张角θ最大时采集效果最好,则采集效果最好时位置C 到AB 的距离是()A .2mB .2mC .4 mD .6 m9. 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为()A .2sin 2cos 2αα-+B .sin 3αα+C. 3sin 1αα-+ D .2sin cos 1αα-+10.椭圆=1的离心率为( )A .B .C .D .11.执行右面的程序框图,若输入x=7,y=6,则输出的有数对为()A .(11,12)B .(12,13)C .(13,14)D .(13,12)12.阅读如图所示的程序框图,运行相应的程序,若输出的的值等于126,则判断框中的①可以是()A .i >4?B .i >5?C .i >6?D .i >7?二、填空题13.由曲线y=2x 2,直线y=﹣4x ﹣2,直线x=1围成的封闭图形的面积为 . 14.设m 是实数,若x ∈R 时,不等式|x ﹣m|﹣|x ﹣1|≤1恒成立,则m 的取值范围是 . 15.某几何体的三视图如图所示,则该几何体的体积为 16.设S n 是数列{a n }的前n 项和,且a 1=﹣1, =S n .则数列{a n }的通项公式a n = .17.过点(0,1)的直线与x 2+y 2=4相交于A 、B 两点,则|AB|的最小值为 .18.等差数列中,,公差,则使前项和取得最大值的自然数是________.{}n a 39||||a a =0d <n S 三、解答题19.设命题p :实数x 满足x 2﹣4ax+3a 2<0,其中a >0;命题q :实数x 满足x 2﹣5x+6≤0(1)若a=1,且q ∧p 为真,求实数x 的取值范围;(2)若p 是q 必要不充分条件,求实数a 的取值范围.20.已知曲线C1:ρ=1,曲线C2:(t为参数)(1)求C1与C2交点的坐标;(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′与C2′,写出C1′与C2′的参数方程,C1与C2公共点的个数和C1′与C2′公共点的个数是否相同,说明你的理由.2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)21.已知椭圆的离心率,且点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆交于、两点,且线段的垂直平分线经过点.求(为坐标原点)面积的最大值.22.已知数列{a n}的前n项和为S n,且满足a n=3S n﹣2(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n.23.已知函数f(x)=lnx﹣ax﹣b(a,b∈R)(Ⅰ)若函数f(x)在x=1处取得极值1,求a,b的值(Ⅱ)讨论函数f(x)在区间(1,+∞)上的单调性(Ⅲ)对于函数f(x)图象上任意两点A(x1,y1),B(x2,y2)(x1<x2),不等式f′(x0)<k恒成立,其中k为直线AB的斜率,x0=λx1+(1﹣λ)x2,0<λ<1,求λ的取值范围.24.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望.城区实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】D【解析】解:由已知M={x|﹣1<x <1},N={x|x >0},则M ∩N={x|0<x <1},故选D .【点评】此题是基础题.本题属于以不等式为依托,求集合的交集的基础题, 2. 【答案】D 【解析】试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项D 是正确,故选D.考点:集合的概念;子集的概念.3. 【答案】B【解析】解:因为特称命题的否定是全称命题,所以,命题“p :∃x >0,lnx <x ”,则¬p 为∀x >0,lnx ≥x .故选:B .【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查. 4. 【答案】D 【解析】5. 【答案】C【解析】因为,所以项只能在10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++ ⎪ ⎪⎝⎭⎝⎭L 2x 展开式中,即为,系数为故选C .10(1)x +2210C x 21045.C =6. 【答案】 B【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah≤2rh.∴当a=2r时截面面积最大,即轴截面面积最大,故A正确.对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为,∴截面三角形SAB的高为,∴截面面积S==≤=.故截面的最大面积为.故B错误.对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确.对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确.故选:B.【点评】本题考查了旋转体的结构特征,属于中档题.7.【答案】B【解析】解:因为△ABC中,已知A=30°,C=45°,所以B=180°﹣30°﹣45°=105°.因为a=2,也由正弦定理,c===2.所以△ABC的面积,S===2=2()=1+.故选:B.【点评】本题考查三角形中正弦定理的应用,三角形的面积的求法,两角和正弦函数的应用,考查计算能力. 8.【答案】A【解析】解:建立如图所示的坐标系,设抛物线方程为x2=﹣2py(p>0),将点(4,﹣4)代入,可得p=2,所以抛物线方程为x2=﹣4y,设C(x,y)(y>﹣6),则由A (﹣4,﹣6),B (4,﹣6),可得k CA =,k CB =,∴tan ∠BCA===,令t=y+6(t >0),则tan ∠BCA==≥∴t=2时,位置C 对隧道底AB 的张角最大,故选:A .【点评】本题考查抛物线的方程与应用,考查基本不等式,确定抛物线的方程及tan ∠BCA ,正确运用基本不等式是关键. 9. 【答案】A 【解析】试题分析:利用余弦定理求出正方形面积()ααcos 22cos 2-11221-=+=S ;利用三角形知识得出四个等腰三角形面积ααsin 2sin 112142=⨯⨯⨯⨯=S ;故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式ααsin 21sin 1121=⨯⨯⨯=S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()αcos 2-1122+,进而得到正方形的面积()ααcos 22cos 2-11221-=+=S ,最后得到答案.10.【答案】D【解析】解:根据椭圆的方程=1,可得a=4,b=2,则c==2;则椭圆的离心率为e==,故选D .【点评】本题考查椭圆的基本性质:a 2=b 2+c 2,以及离心率的计算公式,注意与双曲线的对应性质的区分.11.【答案】A【解析】解:当n=1时,满足进行循环的条件,故x=7,y=8,n=2,当n=2时,满足进行循环的条件,故x=9,y=10,n=3,当n=3时,满足进行循环的条件,故x=11,y=12,n=4,当n=4时,不满足进行循环的条件,故输出的数对为(11,12),故选:A【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.12.【答案】C【解析】解:模拟执行程序框图,可得S=0,i=1S=2,i=2不满足条件,S=2+4=6,i=3不满足条件,S=6+8=14,i=4不满足条件,S=14+16=30,i=5不满足条件,S=30+32=62,i=6不满足条件,S=62+64=126,i=7由题意,此时应该满足条件,退出循环,输出S的值为126,故判断框中的①可以是i>6?故选:C.【点评】本小题主要考查循环结构、数列等基础知识.根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基本知识的考查.二、填空题13.【答案】 .【解析】解:由方程组解得,x=﹣1,y=2故A(﹣1,2).如图,故所求图形的面积为S=∫﹣11(2x2)dx﹣∫﹣11(﹣4x﹣2)dx=﹣(﹣4)=故答案为:【点评】本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题.14.【答案】 [0,2] .【解析】解:∵|x﹣m|﹣|x﹣1|≤|(x﹣m)﹣(x﹣1)|=|m﹣1|,故由不等式|x﹣m|﹣|x﹣1|≤1恒成立,可得|m﹣1|≤1,∴﹣1≤m﹣1≤1,求得0≤m≤2,故答案为:[0,2].【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于基础题.15.【答案】 26 【解析】解:由三视图知几何体为为三棱柱,去掉一个三棱锥的几何体,如图:三棱柱的高为5,底面是直角边为4,3,去掉的三棱锥,是底面是直角三角形直角边为4,3,高为2的三棱锥.∴几何体的体积V==26.故答案为:26.【点评】本题考查由三视图求几何体的体积,解题的关键是由三视图判断几何体的形状及数据所对应的几何量.16.【答案】 .【解析】解:S n是数列{a n}的前n项和,且a1=﹣1,=S n,∴S n+1﹣S n=S n+1S n,∴=﹣1,=﹣1,∴{}是首项为﹣1,公差为﹣1的等差数列,∴=﹣1+(n﹣1)×(﹣1)=﹣n.∴S n=﹣,n=1时,a1=S1=﹣1,n≥2时,a n=S n﹣S n﹣1=﹣+=.∴a n=.故答案为:.17.【答案】 2 【解析】解:∵x2+y2=4的圆心O(0,0),半径r=2,∴点(0,1)到圆心O(0,0)的距离d=1,∴点(0,1)在圆内.如图,|AB|最小时,弦心距最大为1,∴|AB|min =2=2.故答案为:2.18.【答案】或【解析】试题分析:因为,且,所以,所以,所以,所以0d <39||||a a =39a a =-1128a d a d +=--150a d +=,所以,所以取得最大值时的自然数是或.60a =0n a >()15n ≤≤n S 考点:等差数列的性质.【方法点晴】本题主要考查了等差数列的性质,其中解答中涉及到等差数列的通项公式以及数列的单调性等知识点的应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据数列的单调性,得出,所以是解答的关键,同时结论中自然数是或是结论的一个150a d +=60a =易错点.三、解答题19.【答案】【解析】解:(1)p :实数x 满足x 2﹣4ax+3a 2<0,其中a >0⇔(x ﹣3a )(x ﹣a )<0,∵a >0为,所以a <x <3a ;当a=1时,p :1<x <3;命题q :实数x 满足x 2﹣5x+6≤0⇔2≤x ≤3;若p ∧q 为真,则p 真且q 真,∴2≤x <3;故x 的取值范围是[2,3)(2)p 是q 的必要不充分条件,即由p 得不到q ,而由q 能得到p ;∴(a ,3a )⊃[2,3]⇔,1<a <2∴实数a 的取值范围是(1,2).【点评】考查解一元二次不等式,p ∧q 的真假和p ,q 真假的关系,以及充分条件、必要条件、必要不充分条件的概念.属于基础题. 20.【答案】【解析】解:(1)∵曲线C 1:ρ=1,∴C 1的直角坐标方程为x 2+y 2=1,∴C 1是以原点为圆心,以1为半径的圆,∵曲线C2:(t为参数),∴C2的普通方程为x﹣y+=0,是直线,联立,解得x=﹣,y=.∴C2与C1只有一个公共点:(﹣,).(2)压缩后的参数方程分别为:(θ为参数):(t为参数),化为普通方程为::x2+4y2=1,:y=,联立消元得,其判别式,∴压缩后的直线与椭圆仍然只有一个公共点,和C1与C2公共点个数相同.【点评】本题考查两曲线的交点坐标的求法,考查压缩后的直线与椭圆的公共点个数的判断,是基础题,解题时要认真审题,注意一元二次方程的根的判别式的合理运用.21.【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】(Ⅰ)由已知,点在椭圆上,,解得.所求椭圆方程为(Ⅱ)设,,的垂直平分线过点, 的斜率存在.当直线的斜率时,当且仅当时,当直线的斜率时,设.消去得:由.①,,的中点为由直线的垂直关系有,化简得②由①②得又到直线的距离为,时,.由,,解得;即时,;综上:;22.【答案】【解析】解:(1)∵a n=3S n﹣2,∴a n﹣1=3S n﹣1﹣2(n≥2),两式相减得:a n﹣a n﹣1=3a n,整理得:a n=﹣a n﹣1(n≥2),又∵a1=3S1﹣2,即a1=1,∴数列{a n}是首项为1、公比为﹣的等比数列,∴其通项公式a n=(﹣1)n﹣1•;(2)由(1)可知na n=(﹣1)n﹣1•,∴T n=1•1+(﹣1)•2•+…+(﹣1)n﹣2•(n﹣1)•+(﹣1)n﹣1•,∴﹣T n=1•(﹣1)•+2•+…+(﹣1)n﹣1•(n﹣1)•+(﹣1)n•n•,错位相减得:T n=1+[﹣+﹣+…+(﹣1)n﹣1•]﹣(﹣1)n•n•=1+﹣(﹣1)n•n•=+(﹣1)n﹣1••,∴T n=[+(﹣1)n﹣1••]=+(﹣1)n﹣1••.【点评】本题考查数列的通项及前n项和,考查运算求解能力,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.23.【答案】【解析】解:(Ⅰ)f(x)的导数为f′(x)=﹣a,由题意可得f′(1)=0,且f(1)=1,即为1﹣a=0,且﹣a﹣b=1,解得a=1.b=﹣2,经检验符合题意.故a=1,b=﹣2;(Ⅱ)由(Ⅰ)可得f′(x)=﹣a,x>1,0<<1,①若a≤0,f′(x)>0,f(x)在(1,+∞)递增;②0<a<1,x∈(1,),f′(x)>0,x∈(,+∞),f′(x)<0;③a≥1,f′(x)<0.f(x)在(1,+∞)递减.综上可得,a≤0,f(x)在(1,+∞)递增;0<a<1,f(x)在(1,)递增,在(,+∞)递减;a≥1,f(x)在(1,+∞)递减.(Ⅲ)f′(x0)=﹣a=﹣a,直线AB的斜率为k===﹣a,f′(x0)<k⇔<,即x2﹣x1<ln[λx1+(1﹣λ)x2],即为﹣1<ln[λ+(1﹣λ)],令t=>1,t﹣1<lnt[λ+(1﹣λ)t],即t﹣1﹣tlnt+λ(tlnt﹣lnt)<0恒成立,令函数g(t)=t﹣1﹣tlnt+λ(tlnt﹣lnt),t>1,①当0<λ时,g′(t)=﹣lnt+λ(lnt+1﹣)=,令φ(t)=﹣tlnt+λ(tlnt+t﹣1),t>1,φ′(t)=﹣1﹣lnt+λ(2+lnt)=(λ﹣1)lnt+2λ﹣1,当0<λ≤时,φ′(t)<0,φ(t)在(1,+∞)递减,则φ(t)<φ(1)=0,故当t>1时,g′(t)<0,则g(t)在(1,+∞)递减,g(t)<g(1)=0符合题意;②当<λ<1时,φ′(t)=(λ﹣1)lnt+2λ﹣1>0,解得1<t<,当t∈(1,),φ′(t)>0,φ(t)在(1,)递增,φ(t)>φ(1)=0;当t∈(1,),g′(t)>0,g(t)在(1,)递增,g(t)>g(1)=0,则有当t∈(1,),g(t)>0不合题意.即有0<λ≤.【点评】本题考查导数的运用:求单调区间和极值、最值,同时考查函数的单调性的运用,不等式恒成立思想的运用,运用分类讨论的思想方法是解题的关键.24.【答案】【解析】解:(1)设事件A为“两手所取的球不同色”,则P(A)=1﹣.(2)依题意,X的可能取值为0,1,2,左手所取的两球颜色相同的概率为=,右手所取的两球颜色相同的概率为=.P(X=0)=(1﹣)(1﹣)==;P(X=1)==;P(X=2)==.∴X的分布列为:X012PEX=0×+1×+2×=.【点评】本题考查概率的求法和求离散型随机变量的分布列和数学期望,是历年高考的必考题型.解题时要认真审题,仔细解答,注意概率知识的灵活运用.。
渑池县一中2018-2019学年高三上学期11月月考数学试卷含答案
渑池县一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1.已知向量=(1,n),=(﹣1,n ﹣2),若与共线.则n 等于( ) A .1B.C .2D .42. 已知全集U=R ,集合M={x|﹣2≤x ﹣1≤2}和N={x|x=2k ﹣1,k=1,2,…}的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有( )A .3个B .2个C .1个D .无穷多个3. 从单词“equation ”选取5个不同的字母排成一排,含有“qu ”(其中“qu ”相连且顺序不变)的不同排列共有( ) A .120个 B .480个 C .720个D .840个4.双曲线﹣=1(a >0,b >0)的一条渐近线被圆M :(x ﹣8)2+y 2=25截得的弦长为6,则双曲线的离心率为( ) A .2B.C .4D.5.设=(1,2),=(1,1),=+k,若,则实数k 的值等于( )A.﹣B.﹣C.D.6. 设集合P={3,log 2a},Q={a ,b},若P ∩Q={0},则P ∪Q=( ) A .{3,0}B .{3,0,1}C .{3,0,2}D .{3,0,1,2}7. 已知圆C :x 2+y 2﹣2x=1,直线l :y=k (x ﹣1)+1,则l 与C 的位置关系是( ) A .一定相离 B .一定相切C .相交且一定不过圆心D .相交且可能过圆心8. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( ) A .T 1=T 19 B .T 3=T 17 C .T 5=T 12 D .T 8=T 119. 两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .akmB.akmC .2akmD.akm10.直线2x+y+7=0的倾斜角为( ) A .锐角 B .直角 C .钝角 D .不存在11.已知f (x )在R 上是奇函数,且f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( ) A .﹣2 B .2 C .﹣98 D .9812.“24x ππ-<≤”是“tan 1x ≤”的( ) A.充分不必要条件B.必要不充分条件班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性.二、填空题13.等差数列{}n a 的前项和为n S ,若37116a a a ++=,则13S 等于_________. 14.二面角α﹣l ﹣β内一点P 到平面α,β和棱l 的距离之比为1::2,则这个二面角的平面角是度.15.已知复数,则1+z 50+z 100= .16.直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,则实数a 的值为 .17.设x ∈(0,π),则f (x )=cos 2x+sinx 的最大值是 .18.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是 米.(太阳光线可看作为平行光线)三、解答题19.(14分)已知函数1()ln ,()ex x f x mx a x m g x -=--=,其中m ,a 均为实数.(1)求()g x 的极值; 3分(2)设1,0m a =<,若对任意的12,[3,4]x x ∈12()x x ≠,212111()()()()f x f xg x g x -<-恒成立,求a 的最小值; 5分(3)设2a =,若对任意给定的0(0,e]x ∈,在区间(0,e]上总存在1212,()t t t t ≠,使得120()()()f t f t g x == 成立,求m 的取值范围. 6分20.【南师附中2017届高三模拟二】已知函数()()323131,02f x x a x ax a =+--+>. (1)试讨论()()0f x x ≥的单调性;(2)证明:对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤; (3)设(1)中的p 的最大值为()g a ,求()g a 得最大值.21.如图1,圆O 的半径为2,AB ,CE 均为该圆的直径,弦CD 垂直平分半径OA ,垂足为F ,沿直径AB 将半圆ACB 所在平面折起,使两个半圆所在的平面互相垂直(如图2) (Ⅰ)求四棱锥C ﹣FDEO 的体积(Ⅱ)如图2,在劣弧BC 上是否存在一点P (异于B ,C 两点),使得PE ∥平面CDO ?若存在,请加以证明;若不存在,请说明理由.22.已知函数f (x )=|x ﹣a|.(Ⅰ)若不等式f (x )≤2的解集为[0,4],求实数a 的值;(Ⅱ)在(Ⅰ)的条件下,若∃x 0∈R ,使得f (x 0)+f (x 0+5)﹣m 2<4m ,求实数m 的取值范围.23.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,设函数()()2n f x x R =??a b的图象关于点(,1)12p对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;(II )若()()4f x f p£对一切实数恒成立,求)(x f y 的单调递增区间.【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.24.已知等差数列的公差,,.(Ⅰ)求数列的通项公式;(Ⅱ)设,记数列前n项的乘积为,求的最大值.渑池县一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13.26 14. 75 度.15. i .16.1 17..18. 3.3三、解答题19.解:(1)e(1)()exx g x -'=,令()0g x '=,得x = 1. 列表如下:∵g (1) = 1,∴y =()g x 的极大值为1,无极小值. 3分(2)当1,0m a =<时,()ln 1f x x a x =--,(0,)x ∈+∞.∵()0x af x x-'=>在[3,4]恒成立,∴()f x 在[3,4]上为增函数. 设1e ()()e x h x g x x ==,∵12e (1)()x x h x x --'=> 0在[3,4]恒成立,∴()h x 在[3,4]上为增函数. 设21x x >,则212111()()()()f x f xg x g x -<-等价于2121()()()()f x f xh x h x -<-, 即2211()()()()f x h x f x h x -<-.设1e ()()()ln 1e xu x f x h x x a x x=-=---⋅,则u (x )在[3,4]为减函数.∴21e (1)()10e x a x u x x x -'=--⋅≤在(3,4)上恒成立. ∴11e e x x a x x---+≥恒成立. 设11e ()e x x v x x x --=-+,∵112e (1)()1e x x x v x x ---'=-+=121131e [()]24x x ---+,x ∈[3,4], ∴1221133e [()]e 1244x x --+>>,∴()v x '< 0,()v x 为减函数.∴()v x 在[3,4]上的最大值为v (3) = 3 -22e 3.∴a ≥3 -22e 3,∴a 的最小值为3 -22e 3. 8分(3)由(1)知()g x 在(0,e]上的值域为(0,1].∵()2ln f x mx x m =--,(0,)x ∈+∞,当0m =时,()2ln f x x =-在(0,e]为减函数,不合题意.当0m ≠时,2()()m x m f x x-'=,由题意知()f x 在(0,e]不单调, 所以20e m <<,即2em >.①此时()f x 在2(0,)m 上递减,在2(,e)m上递增,∴(e)1f ≥,即(e)e 21f m m =--≥,解得3e 1m -≥.②由①②,得3e 1m -≥.∵1(0,e]∈,∴2()(1)0f f m =≤成立.下证存在2(0,]t m∈,使得()f t ≥1.取e m t -=,先证e 2m m-<,即证2e 0m m ->.③设()2e x w x x =-,则()2e 10x w x '=->在3[,)e 1+∞-时恒成立.∴()w x 在3[,)e 1+∞-时为增函数.∴3e ))01((w x w ->≥,∴③成立.再证()e m f -≥1.∵e e 3()1e 1m m f m m m --+=>>-≥,∴3e 1m -≥时,命题成立. 综上所述,m 的取值范围为3[,)e 1+∞-. 14分20.(1)证明过程如解析;(2)对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤;(3)()g a21.22. 23.24.。
渑池县二中2018-2019学年高三上学期11月月考数学试卷含答案
)
B. x y 1 0 D. x y 2 0 或 x y 0 ,若 f(x)存在唯一的零点 x0,且 x0>0,则 a 的取值范围是( D.(﹣∞,﹣1) )
12.设 a=lge,b=(lge)2,c=lg
,则(
)
A.a>b>c B.c>a>b C.a>c>b D.c>b>a
3
对称
3. 已知函数 f x 1 A.1
2x 1 ,则曲线 y f x 在点 1 ,f 1 处切线的斜率为( x 1
B. 1 C.2
) D. 2 )
4. 已知向量 =(1,1,0) , =(﹣1,0,2)且 k + 与 2 ﹣ 互相垂直,则 k 的值是( A.1 B. C. D.
5. 过抛物线 C:x2=2y 的焦点 F 的直线 l 交抛物线 C 于 A、B 两点,若抛物线 C 在点 B 处的切线斜率为 1, 则线段|AF|=( A.1 6. 已知函数 f(x)=1+x﹣ + ﹣ +…+ ,则下列结论正确的是( ) B.2 ) C.3 D.4
A.f(x)在(0,1)上恰有一个零点 C.f(x)在(0,1)上恰有两个零点 7. 下列命题中的说法正确的是( A.命题“若 x2=1
实数的取值范围是( 班级_______________ 座号______ 姓名_______________ 分数_______________ ___________________________________________________________________________________________________ A. (0, )111] B. (0,
17.双曲线 x2﹣my2=1(m>0)的实轴长是虚轴长的 2 倍,则 m 的值为 . * 18.已知数列 {a n } 的前 n 项和为 S n ,且满足 a1 1 , an 1 2 S n (其中 n N ) ,则 S n .
杞县实验中学2018-2019学年高三上学期11月月考数学试卷含答案
杞县实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数(5)2()e22()2xf x x f x x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩,则(2016)f -=( ) A .2e B .e C .1 D .1e【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力. 2.定义行列式运算:.若将函数的图象向左平移m(m >0)个单位后,所得图象对应的函数为奇函数,则m 的最小值是( ) A.B.C.D.3. 下列式子中成立的是( ) A .log 0.44<log 0.46 B .1.013.4>1.013.5 C .3.50.3<3.40.3 D .log 76<log 674. 圆222(2)x y r -+=(0r >)与双曲线2213y x -=的渐近线相切,则r 的值为( ) AB .2 CD.【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力. 5.若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e 的取值范围是( ) A.B.C.D.6. 已知数列,则5是这个数列的( ) A .第12项B .第13项C .第14项D .第25项7. 已知函数[)[)1(1)sin 2,2,212()(1)sin 22,21,222nn x n x n n f x x n x n n ππ+⎧-+∈+⎪⎪=⎨⎪-++∈++⎪⎩(n N ∈),若数列{}m a 满足*()()m a f m m N =∈,数列{}m a 的前m 项和为m S ,则10596S S -=( ) A.909 B.910 C.911 D.912【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力.8. 已知长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=1,AA 1=2,E 是侧棱BB 1的中点,则直线AE 与平面A 1ED 1所成角的大小为( )A .60°B .90°C .45°D .以上都不正确班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为( )。
单县实验中学2018-2019学年高三上学期11月月考数学试卷含答案
单县实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 从单词“equation ”选取5个不同的字母排成一排,含有“qu ”(其中“qu ”相连且顺序不变)的不同排列共有( ) A .120个B .480个C .720个D .840个2. 已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B =( )A .{2,1,0}--B .{1,0,1,2}-C .{2,1,0}--D .{1,,0,1}-【命题意图】本题考查集合的交集运算,意在考查计算能力. 3. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )A .“∀a ∈R ,函数y=π”是减函数B .“∀a ∈R ,函数y=π”不是增函数C .“∃a ∈R ,函数y=π”不是增函数D .“∃a ∈R ,函数y=π”是减函数4. 设p 、q 是两个命题,若()p q ⌝∨是真命题,那么( )A .p 是真命题且q 是假命题B .p 是真命题且q 是真命题C .p 是假命题且q 是真命题D .p 是假命题且q 是假命题5. 直线x+y ﹣1=0与2x+2y+3=0的距离是( ) A.B.C.D.6. 已知点P (1,﹣),则它的极坐标是( )A.B.C.D.7. 已知集合A ,B ,C 中,A ⊆B ,A ⊆C ,若B={0,1,2,3},C={0,2,4},则A 的子集最多有( ) A .2个 B .4个 C .6个 D .8个8. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .9.()0﹣(1﹣0.5﹣2)÷的值为( )A.﹣B. C.D.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.如图,在长方形ABCD 中,AB=,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为( )A .B .C .D .11.已知函数()cos()3f x x π=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =的图象( )A .向右平移2π个单位B .向左平移2π个单位 C. 向右平移23π个单位 D .左平移23π个单位12.设集合3|01x A x x -⎧⎫=<⎨⎬+⎩⎭,集合(){}2|220B x x a x a =+++>,若 A B ⊆,则的取值范围( )A .1a ≥B .12a ≤≤ C.a 2≥ D .12a ≤<二、填空题13.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0ektP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了 消除27.1%的污染物,则需要___________小时.【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用.14.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)15.函数f (x )=的定义域是 .16.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.17.函数f (x )=(x >3)的最小值为 .18.△ABC 外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,则c 的值为 .三、解答题19.已知函数f (x )=|2x ﹣a|+|2x+3|,g (x )=|x ﹣1|+2.(1)解不等式|g(x)|<5;(2)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.20.某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:x 2 4 5 6 8y 30 40 60 50 70(1)画出散点图;(2)求线性回归方程;(3)预测当广告费支出7(百万元)时的销售额.21.如图,菱形ABCD的边长为2,现将△ACD沿对角线AC折起至△ACP位置,并使平面PAC⊥平面ABC.(Ⅰ)求证:AC⊥PB;(Ⅱ)在菱形ABCD中,若∠ABC=60°,求直线AB与平面PBC所成角的正弦值;(Ⅲ)求四面体PABC体积的最大值.22.若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f()=f(x)﹣f(y)(1)求f(1)的值,(2)若f(6)=1,解不等式f(x+3)﹣f()<2.23.已知斜率为2的直线l被圆x2+y2+14y+24=0所截得的弦长为,求直线l的方程.24.如图,在四棱锥中,等边所在的平面与正方形所在的平面互相垂直,为的中点,为的中点,且(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在点,使线段与所在平面成角.若存在,求出的长,若不存在,请说明理由.单县实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】B【解析】解:要选取5个字母时首先从其它6个字母中选3个有C 63种结果,再与“qu “组成的一个元素进行全排列共有C 63A 44=480,故选B .2. 【答案】C【解析】当{2,1,0,1,2,3}x ∈--时,||3{3,2,1,0}y x =-∈---,所以A B ={2,1,0}--,故选C .3. 【答案】C【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a ∈R ,函数y=π”是增函数的否定是:“∃a ∈R ,函数y=π”不是增函数. 故选:C .【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.4. 【答案】D 5. 【答案】A【解析】解:直线x+y ﹣1=0与2x+2y+3=0的距离,就是直线2x+2y ﹣2=0与2x+2y+3=0的距离是:=.故选:A .6. 【答案】C【解析】解:∵点P 的直角坐标为,∴ρ==2.再由1=ρcos θ,﹣=ρsin θ,可得,结合所给的选项,可取θ=﹣,即点P 的极坐标为 (2,),故选 C .【点评】本题主要考查把点的直角坐标化为极坐标的方法,属于基础题.7. 【答案】B【解析】解:因为B={0,1,2,3},C={0,2,4},且A ⊆B ,A ⊆C ; ∴A ⊆B ∩C={0,2}∴集合A 可能为{0,2},即最多有2个元素, 故最多有4个子集.8.【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m可以取:0,1,2.故答案为:C9.【答案】D【解析】解:原式=1﹣(1﹣)÷=1﹣(1﹣)÷=1﹣(1﹣4)×=1﹣(﹣3)×=1+=.故选:D.【点评】本题考查了根式与分数指数幂的运算问题,解题时应细心计算,是易错题.10.【答案】D【解析】解:由题意,将△AED沿AE折起,使平面AED⊥平面ABC,在平面AED内过点D作DK⊥AE,K 为垂足,由翻折的特征知,连接D'K,则D'KA=90°,故K点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是,如图当E与C重合时,AK==,取O为AD′的中点,得到△OAK是正三角形.故∠K0A=,∴∠K0D'=,其所对的弧长为=,故选:D.11.【答案】B试题分析:函数()cos ,3f x x π⎛⎫=+∴ ⎪⎝⎭()5'sin cos 36f x x x ππ⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭,所以函数 ()cos 3f x x π⎛⎫=+ ⎪⎝⎭,所以将函数函数()y f x =的图象上所有的点向左平移2π个单位长度得到5cos cos 326y x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭,故选B.考点:函数()sin y A x ωϕ=+的图象变换. 12.【答案】A 【解析】考点:集合的包含关系的判断与应用.【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键.二、填空题13.【答案】15【解析】由条件知5000.9e kP P -=,所以5e 0.9k-=.消除了27.1%的污染物后,废气中的污染物数量为00.729P ,于是000.729ekt P P -=,∴315e 0.7290.9e ktk --===,所以15t =小时.14.【答案】 24【解析】解:由题意,B 与C 必须相邻,利用捆绑法,可得=48种方法,因为A 必须在D 的前面完成,所以完成加工该产品的不同工艺的排列顺序有48÷2=24种,故答案为:24.【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础.15.【答案】 {x|x >2且x ≠3} .【解析】解:根据对数函数及分式有意义的条件可得解可得,x>2且x≠3故答案为:{x|x>2且x≠3}16.【答案】1【解析】17.【答案】12.【解析】解:因为x>3,所以f(x)>0由题意知:=﹣令t=∈(0,),h(t)==t﹣3t2因为h(t)=t﹣3t2的对称轴x=,开口朝上知函数h(t)在(0,)上单调递增,(,)单调递减;故h(t)∈(0,]由h(t)=⇒f(x)=≥12故答案为:1218.【答案】.【解析】解:∵△ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60°,b=2,∴由正弦定理可得:,解得:a=3,∴利用余弦定理:a2=b2+c2﹣2bccosA,可得:9=4+c2﹣2c,即c2﹣2c﹣5=0,∴解得:c=1+,或1﹣(舍去).故答案为:.【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题.三、解答题19.【答案】【解析】解:(1)由||x﹣1|+2|<5,得﹣5<|x﹣1|+2<5∴﹣7<|x﹣1|<3,得不等式的解为﹣2<x<4…(2)因为任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,所以{y|y=f(x)}⊆{y|y=g(x)},又f(x)=|2x﹣a|+|2x+3|≥|(2x﹣a)﹣(2x+3)|=|a+3|,g(x)=|x﹣1|+2≥2,所以|a+3|≥2,解得a≥﹣1或a≤﹣5,所以实数a的取值范围为a≥﹣1或a≤﹣5.…【点评】本题考查函数的恒成立,绝对值不等式的解法,考查分析问题解决问题的能力以及转化思想的应用.20.【答案】【解析】解:(1)(2)设回归方程为=bx+a则b=﹣5/﹣5=1380﹣5×5×50/145﹣5×52=6.5故回归方程为=6.5x+17.5(3)当x=7时,=6.5×7+17.5=63,所以当广告费支出7(百万元)时,销售额约为63(百万元).【点评】本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,这是解答正确的主要环节.21.【答案】【解析】解:(Ⅰ)证明:取AC中点O,连接PO,BO,由于四边形ABCD为菱形,∴PA=PC,BA=BC,∴PO⊥AC,BO⊥AC,又PO∩BO=O,∴AC⊥平面POB,又PB⊂平面POB,∴AC⊥PB.(Ⅱ)∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PO⊂平面PAC,PO⊥AC,∴PO⊥面ABC,∴OB,OC,OP两两垂直,故以O为原点,以方向分别为x,y,z轴正方向建立空间直角坐标系,∵∠ABC=60°,菱形ABCD 的边长为2,∴,,设平面PBC的法向量,直线AB与平面PBC成角为θ,∴,取x=1,则,于是,∴,∴直线AB与平面PBC成角的正弦值为.(Ⅲ)法一:设∠ABC=∠APC=α,α∈(0,π),∴,,又PO⊥平面ABC,∴=(),∴,∴,当且仅当,即时取等号,∴四面体PABC体积的最大值为.法二:设∠ABC=∠APC=α,α∈(0,π),∴,,又PO⊥平面ABC,∴=(),设,则,且0<t<1,∴,∴当时,V'PABC>0,当时,V'PABC<0,∴当时,V PABC取得最大值,∴四面体PABC体积的最大值为.法三:设PO=x,则BO=x,,(0<x<2)又PO⊥平面ABC,∴,∵,当且仅当x2=8﹣2x2,即时取等号,∴四面体PABC体积的最大值为.【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,直线与平面所成角的求法,几何体的体积的最值的求法,考查转化思想以及空间思维能力的培养.22.【答案】【解析】解:(1)在f()=f(x)﹣f(y)中,令x=y=1,则有f(1)=f(1)﹣f(1),∴f(1)=0;(2)∵f(6)=1,∴2=1+1=f(6)+f(6),∴不等式f(x+3)﹣f()<2等价为不等式f(x+3)﹣f()<f(6)+f(6),∴f(3x+9)﹣f(6)<f(6),即f()<f(6),∵f(x)是(0,+∞)上的增函数,∴,解得﹣3<x<9,即不等式的解集为(﹣3,9).23.【答案】【解析】解:将圆的方程写成标准形式,得x2+(y+7)2=25,所以,圆心坐标是(0,﹣7),半径长r=5.…因为直线l被圆所截得的弦长是,所以,弦心距为,即圆心到所求直线l的距离为.…因为直线l的斜率为2,所以可设所求直线l的方程为y=2x+b,即2x﹣y+b=0.所以圆心到直线l的距离为,…因此,解得b=﹣2,或b=﹣12.…所以,所求直线l的方程为y=2x﹣2,或y=2x﹣12.即2x﹣y﹣2=0,或2x﹣y﹣12=0.…【点评】本题主要考查直线方程,考查直线与圆的位置关系,在相交时半径的平方等于圆心到直线的距离平方与弦长一半的平方的和的灵活运用.24.【答案】【解析】【知识点】空间的角利用直线方向向量与平面法向量解决计算问题垂直【试题解析】(Ⅰ)是等边三角形,为的中点,平面平面,是交线,平面平面.(Ⅱ)取的中点,底面是正方形,,两两垂直.分别以的方向为轴、轴、轴的正方向建立空间直角坐标系,则,,,设平面的法向量为,,,,平面的法向量即为平面的法向量.由图形可知所求二面角为锐角,(Ⅲ)设在线段上存在点,,使线段与所在平面成角,平面的法向量为,,,解得,适合在线段上存在点,当线段时,与所在平面成角.。
渑池县实验中学2018-2019学年上学期高三数学10月月考试题
渑池县实验中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知全集,,,则有( )U R ={|239}xA x =<≤{|02}B y y =<≤A . B .C .D .A ØB A B B = ()R A B ≠∅ ð()R A B R= ð2. 已知函数,,若,则( )A1B2C3D-13. 圆()与双曲线的渐近线相切,则的值为( )222(2)x y r -+=0r >2213y x -=rA B . C . D .2【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力.4. 若,,则不等式成立的概率为()[]0,1b ∈221a b +≤A .B .C .D .16π12π8π4π5. 某几何体的三视图如图所示,则该几何体的体积为( )A .B .C .D .16163π-32163π-1683π-3283π-【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力.6. 复数z=的共轭复数在复平面上对应的点在()A .第一象限B .第二象限C .第三象限D .第四象限7. 函数在一个周期内的图象如图所示,此函数的解析式为( )sin()y A x ωϕ=+A . B . C . D .2sin(2)3y x π=+22sin(23y x π=+2sin()23x y π=-2sin(2)3y x π=-8. 设数列{a n }的前n 项和为S n ,若S n =n 2+2n (n ∈N *),则++…+=( )A .B .C .D .9. 已知点A (0,1),B (3,2),C (2,0),若=2,则||为( )AD → DB → CD→A .1 B.43C. D .25310.两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .akmB .akmC .2akmD .akm二、填空题11.已知圆的方程为,过点的直线与圆交于两点,若使C 22230x y y +--=()1,2P -C ,A B AB 最小则直线的方程是 .12.设全集______.13.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 .14.设幂函数()f x kx α=的图象经过点()4,2,则k α+= ▲ .15.若数列{a n }满足:存在正整数T ,对于任意的正整数n ,都有a n+T =a n 成立,则称数列{a n }为周期为T 的周期数列.已知数列{a n }满足:a1>=m (m >a ),a n+1=,现给出以下三个命题:①若 m=,则a 5=2;②若a3=3,则m可以取3个不同的值;③若m=,则数列{a n}是周期为5的周期数列.其中正确命题的序号是 .16.由曲线y=2x2,直线y=﹣4x﹣2,直线x=1围成的封闭图形的面积为 .三、解答题17.(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水x(单位:千克)清洗该蔬菜1千克后,蔬菜上残存的农药y(单位:微克)的统计表:x i12345y i5753403010(1)在下面的坐标系中,描出散点图,并判断变量x与y的相关性;(2)若用解析式y=cx2+d作为蔬菜农药残量与用水量的回归方程,求其解析式;(c,a精确到0.01);附:设ωi=x,有下列数据处理信息:=11,=38,2iωy(ωi-)(y i-)=-811,(ωi-)2=374,ωyω对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线方程y=bx+a的斜率和截距的最小二乘估计分别为(3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水.(结果保留1位有效数字)18.(本小题满分12分)为了普及法律知识,达到“法在心中”的目的,某市法制办组织了普法知识竞赛.统计局调查队随机抽取了甲、乙两单位中各5名职工的成绩,成绩如下表:甲单位8788919193乙单位8589919293(1)根据表中的数据,分别求出甲、乙两单位职工成绩的平均数和方差,并判断哪个单位对法律知识的掌握更稳定;(2)用简单随机抽样法从乙单位5名职工中抽取2名,他们的成绩组成一个样本,求抽取的2名职工的分数差至少是4的概率.19.已知椭圆E : =1(a >b >0)的焦距为2,且该椭圆经过点.(Ⅰ)求椭圆E 的方程;(Ⅱ)经过点P (﹣2,0)分别作斜率为k 1,k 2的两条直线,两直线分别与椭圆E 交于M ,N 两点,当直线MN 与y 轴垂直时,求k 1k 2的值.20.某城市100户居民的月平均用电量(单位:度),以,,,[)160,180[)180,200[)200,220,,,分组的频率分布直方图如图.[)220,240[)240,260[)260,280[]280,300(2)求月平均用电量的众数和中位数.1111]21.已知椭圆的左焦点为F,离心率为,过点M(0,1)且与x轴平行的直线被椭圆G截得的线段长为.(I)求椭圆G的方程;(II)设动点P在椭圆G上(P不是顶点),若直线FP的斜率大于,求直线OP(O是坐标原点)的斜率的取值范围.22.已知函数(a≠0)是奇函数,并且函数f(x)的图象经过点(1,3),(2)求函数f(x)的值域.渑池县实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】A【解析】解析:本题考查集合的关系与运算,,,∵,∴,选A .3(log 2,2]A =(0,2]B =3log 20>A ØB 2. 【答案】A【解析】g (1)=a ﹣1,若f[g (1)]=1,则f (a ﹣1)=1,即5|a ﹣1|=1,则|a ﹣1|=0,解得a=13. 【答案】C4. 【答案】D 【解析】考点:几何概型.5. 【答案】D【解析】由三视图知几何体为一个底面半径为2高为4的半圆柱中挖去一个以轴截面为底面高为2的四棱锥,因此该几何体的体积为,故选D .21132244428233V =π⨯⨯-⨯⨯⨯=π-6. 【答案】C【解析】解:∵复数z====﹣+i ,∴ =﹣﹣i ,它在复平面上对应的点为(﹣,﹣),在第三象限,故选C .【点评】本题主要考查复数的基本概念,复数代数形式的乘除运算,复数与复平面内对应点之间的关系,属于基础题. 7. 【答案】B 【解析】考点:三角函数的图象与性质.()sin()f x A x ωϕ=+8. 【答案】D【解析】解:∵S n =n 2+2n (n ∈N *),∴当n=1时,a 1=S 1=3;当n ≥2时,a n =S n ﹣S n ﹣1=(n 2+2n )﹣[(n ﹣1)2+2(n ﹣1)]=2n+1.∴==,∴++…+=++…+==﹣.故选:D .【点评】本题考查了递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题. 9. 【答案】【解析】解析:选C.设D 点的坐标为D (x ,y ),∵A (0,1),B (3,2),=2,AD → DB →∴(x ,y -1)=2(3-x ,2-y )=(6-2x ,4-2y ),∴即x =2,y =,{x =6-2x ,y -1=4-2y )53∴=(2,)-(2,0)=(0,),CD → 5353∴||==,故选C.CD → 02+(53)25310.【答案】D【解析】解:根据题意,△ABC 中,∠ACB=180°﹣20°﹣40°=120°,∵AC=BC=akm ,∴由余弦定理,得cos120°=,解之得AB=akm ,即灯塔A 与灯塔B 的距离为akm ,故选:D .【点评】本题给出实际应用问题,求海洋上灯塔A 与灯塔B 的距离.着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题. 二、填空题11.【答案】30x y -+=【解析】试题分析:由圆的方程为,表示圆心在,半径为的圆,点到圆心的距C 22230x y y +--=(0,1)C ()1,2P -,小于圆的半径,所以点在圆内,所以当时,最小,此时()1,2P -AB CP ⊥AB ,由点斜式方程可得,直线的方程为,即.11,1CP k k =-=21y x -=+30x y -+=考点:直线与圆的位置关系的应用.12.【答案】{7,9}【解析】∵全集U={n ∈N|1≤n ≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁U A )={4,6,7,9 },∴(∁U A )∩B={7,9},故答案为:{7,9}。
夏县实验中学2018-2019学年高三上学期11月月考数学试卷含答案
夏县实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若定义在R 上的函数f (x )满足f (0)=﹣1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( ) A.B.C.D.2. 已知在△ABC 中,a=,b=,B=60°,那么角C 等于( )A .135°B .90°C .45°D .75°3. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能4. 若f (x )=x 2﹣2x ﹣4lnx ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(﹣1,0)∪(2,+∞)C .(2,+∞)D .(﹣1,0)5. 阅读右图所示的程序框图,若8,10m n ==,则输出的S 的值等于( ) A .28 B .36 C .45 D .1206. 已知平面向量(12)=,a ,(32)=-,b ,若k +a b 与a 垂直,则实数k 值为( ) A .15-B .119C .11D .19【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力.7. “m=1”是“直线(m ﹣2)x ﹣3my ﹣1=0与直线(m+2)x+(m ﹣2)y+3=0相互垂直”的( )A .必要而不充分条件B .充分而不必要条件C .充分必要条件D .既不充分也不必要条件8. 已知向量=(1,1,0),=(﹣1,0,2)且k +与2﹣互相垂直,则k 的值是( ) A .1B .C .D .9. 如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.设变量x,y满足,则2x+3y的最大值为()A.20 B.35 C.45 D.5511.若复数(m2﹣1)+(m+1)i为实数(i为虚数单位),则实数m的值为()A.﹣1 B.0 C.1 D.﹣1或112.已知等比数列{a n}的前n项和为S n ,若=4,则=()A.3 B.4 C .D.13二、填空题13.过抛物线C:y 2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是.14.设全集______.15.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{52128lnx xxf xmx mx x+>=-++≤,,,,若()()g x f x m=-有三个零点,则实数m的取值范围是________.16.等差数列{}na中,39||||a a=,公差0d<,则使前项和nS取得最大值的自然数是________.17.椭圆C:+=1(a>b>0)的右焦点为(2,0),且点(2,3)在椭圆上,则椭圆的短轴长为.18.在ABC∆中,已知角CBA,,的对边分别为cba,,,且BcCba sincos+=,则角B为.三、解答题19.设f(x)=x2﹣ax+2.当x∈,使得关于x的方程f(x)﹣tf(2a)=0有三个不相等的实数根,求实数t 的取值范围.20.设数列的前项和为,且满足,数列满足,且(1)求数列和的通项公式(2)设,数列的前项和为,求证:(3)设数列满足(),若数列是递增数列,求实数的取值范围。
陕州区实验中学2018-2019学年高三上学期11月月考数学试卷含答案
陕州区实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A .2sin 2cos 2αα-+ B.sin 3αα+C. 3sin 1αα+ D .2sin cos 1αα-+ 2. 如果过点M (﹣2,0)的直线l与椭圆有公共点,那么直线l 的斜率k 的取值范围是( )A.B.C.D.3.如果向量满足,且,则的夹角大小为( ) A .30° B .45° C .75° D .135°4.若向量=(3,m),=(2,﹣1),∥,则实数m 的值为( ) A.﹣ B.C .2D .65. (2015秋新乡校级期中)已知x+x ﹣1=3,则x 2+x ﹣2等于( )A .7B .9C .11D .136. 在△ABC 中,已知a=2,b=6,A=30°,则B=( ) A .60° B .120° C .120°或60°D .45°7. 奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则()()210x f x f x -<--的解集为( ) A .()11-, B .()()11-∞-+∞,,C .()1-∞-,D .()1+∞,8. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=3,,A=60°,则满足条件的三角形个数为( ) A .0B .1C .2D .以上都不对9. 三个实数a 、b 、c 成等比数列,且a+b+c=6,则b 的取值范围是( ) A .[﹣6,2] B .[﹣6,0)∪( 0,2] C .[﹣2,0)∪( 0,6] D .(0,2]班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.抛物线y=x 2的焦点坐标为( ) A .(0,)B .(,0)C .(0,4)D .(0,2)11.如图,1111D C B A ABCD -为正方体,下面结论:① //BD 平面11D CB ;② BD AC ⊥1;③ ⊥1AC 平面11D CB .其中正确结论的个数是( )A .B .C .D .12.()()22f x a x a =-+ 在区间[]0,1上恒正,则的取值范围为( )A .0a >B .0a <<C .02a <<D .以上都不对二、填空题13.若不等式组表示的平面区域是一个锐角三角形,则k 的取值范围是 .14.过椭圆+=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 .15.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式1log 3)(log 33-<x x f 的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.16.△ABC 外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,则c 的值为 .17.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 .18.已知i 是虚数单位,且满足i 2=﹣1,a ∈R ,复数z=(a ﹣2i )(1+i )在复平面内对应的点为M ,则“a=1”是“点M 在第四象限”的 条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)三、解答题19.(本小题满分12分)已知向量,a b 满足:||1a =,||6b =,()2a b a ∙-=. (1)求向量与的夹角; (2)求|2|a b -.20.已知抛物线C:y2=2px(p>0)过点A(1,﹣2).(Ⅰ)求抛物线C的方程,并求其准线方程;(Ⅱ)是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C有公共点,且直线OA与L的距离等于?若存在,求直线L的方程;若不存在,说明理由.21.函数f(x)=sin2x+sinxcosx.(1)求函数f(x)的递增区间;(2)当x∈[0,]时,求f(x)的值域.22.已知f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线与直线6x+2y+5=0平行.(1)求函数的单调区间;(2)若x∈[1,3]时,f(x)>1﹣4c2恒成立,求实数c的取值范围.23.(本题满分12分)已知数列{a n}满足a1=1,a n+1=2a n+1.(1)求数列{a n}的通项公式;(2)令b n=n(a n+1),求数列{b n}的前n项和T n.24.设a,b互为共轭复数,且(a+b)2﹣3abi=4﹣12i.求a,b 的值.陕州区实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】A 【解析】试题分析:利用余弦定理求出正方形面积()ααcos 22cos 2-11221-=+=S ;利用三角形知识得出四个等腰三角形面积ααsin 2sin 112142=⨯⨯⨯⨯=S ;故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式ααsin 21sin 1121=⨯⨯⨯=S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()αcos 2-1122+,进而得到正方形的面积()ααcos 22cos 2-11221-=+=S ,最后得到答案.2. 【答案】D【解析】解:设过点M (﹣2,0)的直线l 的方程为y=k (x+2),联立,得(2k 2+1)x 2+8k 2x+8k 2﹣2=0,∵过点M (﹣2,0)的直线l 与椭圆有公共点,∴△=64k 4﹣4(2k 2+1)(8k 2﹣2)≥0,整理,得k 2,解得﹣≤k ≤.∴直线l 的斜率k 的取值范围是[﹣,].故选:D .【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.3. 【答案】B【解析】解:由题意故,即故两向量夹角的余弦值为=故两向量夹角的取值范围是45°故选B【点评】本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,并进而求出两向量的夹角.属于基础公式应用题.4. 【答案】A 【解析】解:因为向量=(3,m ),=(2,﹣1),∥,所以﹣3=2m ,解得m=﹣. 故选:A .【点评】本题考查向量共线的充要条件的应用,基本知识的考查.5. 【答案】A【解析】解:∵x+x ﹣1=3,则x 2+x ﹣2=(x+x ﹣1)2﹣2=32﹣2=7.故选:A .【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题.6. 【答案】C 【解析】解:∵a=2,b=6,A=30°,∴由正弦定理可得:sinB===,∵B ∈(0°,180°), ∴B=120°或60°. 故选:C .7. 【答案】B 【解析】试题分析:由()()()()()212102102x x x f x f x f x f x --<⇒⇒-<--,即整式21x -的值与函数()f x 的值符号相反,当0x >时,210x ->;当0x <时,210x -<,结合图象即得()()11-∞-+∞,,.考点:1、函数的单调性;2、函数的奇偶性;3、不等式. 8. 【答案】B 【解析】解:∵a=3,,A=60°,∴由正弦定理可得:sinB===1,∴B=90°,即满足条件的三角形个数为1个. 故选:B .【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题.9.【答案】B【解析】解:设此等比数列的公比为q,∵a+b+c=6,∴=6,∴b=.当q>0时,=2,当且仅当q=1时取等号,此时b∈(0,2];当q<0时,b=﹣6,当且仅当q=﹣1时取等号,此时b∈[﹣6,0).∴b的取值范围是[﹣6,0)∪(0,2].故选:B.【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题.10.【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,∴焦点坐标为(0,2).故选:D.【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.11.【答案】D【解析】考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直.12.【答案】C【解析】试题分析:由题意得,根据一次函数的单调性可知,函数()()22f x a x a =-+在区间[]0,1上恒正,则(0)0(1)0f f >⎧⎨>⎩,即2020a a a >⎧⎨-+>⎩,解得02a <<,故选C. 考点:函数的单调性的应用.二、填空题13.【答案】 (﹣1,0) .【解析】解:作出不等式组表示的平面区域,得到如图的△ABC 及其内部,其中A (0,5),B (2,7),C (2,2k+5) △ABC 的形状随着直线AC :y=kx+5斜率的变化而变化, 将直线AC 绕A 点旋转,可得当C 点与C 1(2,5)重合或与C 2(2,3)重合时,△ABC 是直角三角形, 当点C 位于B 、C 1之间,或在C 1C 2的延长线上时,△ABC 是钝角三角形, 当点C 位于C 1、C 2之间时,△ABC 是锐角三角形, 而点C 在其它的位置不能构成三角形综上所述,可得3<2k+5<5,解之得﹣1<k <0 即k 的取值范围是(﹣1,0) 故答案为:(﹣1,0)【点评】本题给出二元一次不等式组,在表示的图形为锐角三角形的情况下,求参数k 的取值范围,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.14.【答案】 .【解析】解:由题意知点P 的坐标为(﹣c ,)或(﹣c ,﹣),∵∠F 1PF 2=60°,∴=, 即2ac=b 2=(a 2﹣c 2).∴e 2+2e ﹣=0,∴e=或e=﹣(舍去).故答案为:.【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题.15.【答案】)3,0(【解析】构造函数x x f x F 3)()(-=,则03)(')('>-=x f x F ,说明)(x F 在R 上是增函数,且13)1()1(-=-=f F .又不等式1log 3)(log 33-<x x f 可化为1l o g 3)(l o g 33-<-x x f ,即)1()(l o g 3F x F <,∴1log 3<x ,解得30<<x .∴不等式1log 3)(log 33-<x x f 的解集为)3,0(.16.【答案】 .【解析】解:∵△ABC 外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,∴由正弦定理可得:,解得:a=3,∴利用余弦定理:a 2=b 2+c 2﹣2bccosA ,可得:9=4+c 2﹣2c ,即c 2﹣2c ﹣5=0,∴解得:c=1+,或1﹣(舍去).故答案为:.【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题.17.【答案】12π 【解析】考点:球的体积与表面积.【方法点晴】本题主要考查了球的体积与表面积的计算,其中解答中涉及到正方体的外接球的性质、组合体的结构特征、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于基础题,本题的解答中仔细分析,得出正方体的体对角线的长就外接球的直径是解答的关键. 18.【答案】 充分不必要【解析】解:∵复数z=(a ﹣2i )(1+i )=a+2+(a ﹣2)i , ∴在复平面内对应的点M 的坐标是(a+2,a ﹣2), 若点在第四象限则a+2>0,a ﹣2<0, ∴﹣2<a <2,∴“a=1”是“点M 在第四象限”的充分不必要条件, 故答案为:充分不必要.【点评】本题考查条件问题,考查复数的代数表示法及其几何意义,考查各个象限的点的坐标特点,本题是一个基础题.三、解答题19.【答案】(1)3π;(2)27. 【解析】试题分析:(1)要求向量,a b 的夹角,只要求得这两向量的数量积a b ⋅,而由已知()2a b a ∙-=,结合数量积的运算法则可得a b ⋅,最后数量积的定义可求得其夹角;(2)求向量的模,可利用公式22a a =,把考点:向量的数量积,向量的夹角与模.【名师点睛】本题考查向量的数量积运算及特殊角的三角函数值,求解两个向量的夹角的步骤:第一步,先计算出两个向量的数量积;第二步,分别计算两个向量的模;第三步,根据公式cos ,a b a b a b⋅<>=求得这两个向量夹角的余弦值;第四步,根据向量夹角的范围在[0,]π内及余弦值求出两向量的夹角. 20.【答案】【解析】解:(I )将(1,﹣2)代入抛物线方程y 2=2px , 得4=2p ,p=2∴抛物线C 的方程为:y 2=4x ,其准线方程为x=﹣1(II )假设存在符合题意的直线l ,其方程为y=﹣2x+t ,由得y 2+2y ﹣2t=0,∵直线l 与抛物线有公共点,∴△=4+8t ≥0,解得t ≥﹣又∵直线OA 与L 的距离d==,求得t=±1∵t≥﹣∴t=1∴符合题意的直线l存在,方程为2x+y﹣1=0【点评】本题小题主要考查了直线,抛物线等基础知识,考查推理论证能力,运算求解能力,考查函数与方程思想,数形结合的思想,化归与转化思想,分类讨论与整合思想.21.【答案】【解析】解:(1)…(2分)令解得…f(x)的递增区间为…(6分)(2)∵,∴…(8分)∴,∴…(10分)∴f(x)的值域是…(12分)【点评】本题考查两角和与差的三角函数,二倍角公式的应用,三角函数的最值,考查计算能力.22.【答案】【解析】解:(1)由题意:f′(x)=3x2+6ax+3b 直线6x+2y+5=0的斜率为﹣3;由已知所以﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)所以由f′(x)=3x2﹣6x>0得心x<0或x>2;所以当x∈(0,2)时,函数单调递减;当x∈(﹣∞,0),(2,+∞)时,函数单调递增.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)由(1)知,函数在x∈(1,2)时单调递减,在x∈(2,3)时单调递增;所以函数在区间[1,3]有最小值f(2)=c﹣4要使x∈[1,3],f(x)>1﹣4c2恒成立只需1﹣4c2<c﹣4恒成立,所以c<或c>1.故c的取值范围是{c|c或c>1}﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题主要考查函数在某点取得极值的条件和导数的几何意义,以及利用导数解决函数在闭区间上的最值问题和函数恒成立问题,综合性较强,属于中档题.23.【答案】解:(1)∵a n+1=2a n+1,∴a n+1+1=2(a n+1),又∵a1=1,∴数列{a n+1}是首项、公比均为2的等比数列,∴a n+1=2n,∴a n=﹣1+2n;6分(2)由(1)可知b n=n(a n+1)=n•2n=n•2n﹣1,∴T n=1•20+2•2+…+n•2n﹣1,2T n=1•2+2•22…+(n﹣1)•2n﹣1+n•2n,错位相减得:﹣T n=1+2+22…+2n﹣1﹣n•2n=﹣n•2n=﹣1﹣(n﹣1)•2n,于是T n=1+(n﹣1)•2n.则所求和为12nn6分24.【答案】【解析】解:因为a,b互为共轭复数,所以设a=x+yi,则b=x﹣yi,a+b=2x,ab=x2+y2,所以4x2﹣3(x2+y2)i=4﹣12i,所以,解得,所以a=1+i,b=1﹣i;或a=1﹣i,b=1+i;或a=﹣1+i,b=﹣1﹣i;或a=﹣1﹣i,b=﹣1+i.【点评】本题考查了共轭复数以及复数相等;正确设出a,b 是解答的关键.。
渑池县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
渑池县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为( ) A .3,6,9,12,15,18 B .4,8,12,16,20,24 C .2,7,12,17,22,27 D .6,10,14,18,22,262. 二项式(x 2﹣)6的展开式中不含x 3项的系数之和为( ) A .20 B .24C .30D .363. 已知双曲线C :22221x y a b-=(0a >,0b >),以双曲线C 的一个顶点为圆心,为半径的圆被双曲线C 截得劣弧长为23a π,则双曲线C 的离心率为( ) A .65 BC.5D4. 设b ,c 表示两条直线,α,β表示两个平面,则下列命题是真命题的是( ) A .若b ⊂α,c ∥α,则b ∥cB .若c ∥α,α⊥β,则c ⊥β C .若b ⊂α,b ∥c ,则c ∥α D .若c ∥α,c ⊥β,则α⊥β5. 设函数f (x )满足f (x+π)=f (x )+cosx ,当0≤x ≤π时,f (x )=0,则f()=( )A.B.C .0D.﹣6. 函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是( )A. B. C.D.7. 某几何体的三视图如图所示,该几何体的体积是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.B.C. D.8.已知f(x)=m•2x+x2+nx,若{x|f(x)=0}={x|f(f(x))=0}≠∅,则m+n的取值范围为()A.(0,4) B.[0,4)C.(0,5] D.[0,5]9.已知数列{a n}中,a1=1,a n+1=a n+n,若利用如图所示的程序框图计算该数列的第10项,则判断框内的条件是()A.n≤8?B.n≤9?C.n≤10?D.n≤11?10.如图,正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,则CD1与EF所成角为()A.0°B.45°C.60°D.90°11.已知命题p:对任意()x∈+∞,,48log logx x<,命题:存在x∈R,使得tan13xx=-,则下列命题为真命题的是()A.p q∧B.()()p q⌝∧⌝C.()p q∧⌝D.()p q⌝∧12.已知在R上可导的函数f(x)的图象如图所示,则不等式f(x)•f′(x)<0的解集为()A .(﹣2,0)B .(﹣∞,﹣2)∪(﹣1,0)C .(﹣∞,﹣2)∪(0,+∞)D .(﹣2,﹣1)∪(0,+∞)二、填空题13.定义:分子为1且分母为正整数的分数叫做单位分数.我们可以把1拆分为无穷多个不同的单位分数之和.例如:1=++,1=+++,1=++++,…依此方法可得:1=++++++++++++,其中m ,n ∈N *,则m+n= .14.若直线y ﹣kx ﹣1=0(k ∈R )与椭圆恒有公共点,则m 的取值范围是 .15.log 3+lg25+lg4﹣7﹣(﹣9.8)0= .16.不等式()2110ax a x +++≥恒成立,则实数的值是__________.17.81()x x-的展开式中,常数项为___________.(用数字作答)【命题意图】本题考查用二项式定理求指定项,基础题.18.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN ⋅=时,则MN 的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.三、解答题19.【海安县2018届高三上学期第一次学业质量测试】已知函数()()2xf x x ax a e =++,其中a R ∈,e 是自然对数的底数.(1)当1a =时,求曲线()y f x =在0x =处的切线方程; (2)求函数()f x 的单调减区间;(3)若()4f x ≤在[]4,0-恒成立,求a 的取值范围.20.(本小题满分12分)已知椭圆1C :14822=+y x 的左、右焦点分别为21F F 、,过点1F 作垂直 于轴的直线,直线2l 垂直于点P ,线段2PF 的垂直平分线交2l 于点M . (1)求点M 的轨迹2C 的方程;(2)过点2F 作两条互相垂直的直线BD AC 、,且分别交椭圆于D C B A 、、、,求四边形ABCD 面积 的最小值.21.已知=(sinx ,cosx ),=(sinx ,sinx ),设函数f (x )=﹣.(1)写出函数f (x )的周期,并求函数f (x )的单调递增区间;(2)求f (x )在区间[π,]上的最大值和最小值.22.已知二次函数f (x )=x 2+bx+c ,其中常数b ,c ∈R .(Ⅰ)若任意的x ∈[﹣1,1],f (x )≥0,f (2+x )≤0,试求实数c 的取值范围;(Ⅱ)若对任意的x 1,x 2∈[﹣1,1],有|f (x 1)﹣f (x 2)|≤4,试求实数b 的取值范围.23.(本小题满分12分)2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达3.32亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为0.4.(Ⅰ)确定x,y,p,q的值;(Ⅱ)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.(参考公式:()()()()()2n ad bca b c d a c b d-K=++++,其中n a b c d=+++)24.如图所示,在边长为的正方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个圆,M,N,K为切点,以扇形为圆锥的侧面,以圆O为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.渑池县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:从30件产品中随机抽取6件进行检验,采用系统抽样的间隔为30÷6=5,只有选项C中编号间隔为5,故选:C.2.【答案】A【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r•x12﹣3r,令12﹣3r=3,求得r=3,故展开式中含x3项的系数为•(﹣1)3=﹣20,而所有系数和为0,不含x3项的系数之和为20,故选:A.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.3.【答案】B考点:双曲线的性质.4.【答案】D【解析】解:对于A,设正方体的上底面为α,下底面为β,直线c是平面β内一条直线因为α∥β,c⊂β,可得c∥α,而正方体上底面为α内的任意直线b不一定与直线c平行故b⊂α,c∥α,不能推出b∥c.得A项不正确;对于B,因为α⊥β,设α∩β=b,若直线c∥b,则满足c∥α,α⊥β,但此时直线c⊂β或c∥β,推不出c⊥β,故B项不正确;对于C,当b⊂α,c⊄α且b∥c时,可推出c∥α.但是条件中缺少“c⊄α”这一条,故C项不正确;对于D,因为c∥α,设经过c的平面γ交平面α于b,则有c∥b结合c⊥β得b⊥β,由b⊂α可得α⊥β,故D项是真命题故选:D【点评】本题给出空间位置关系的几个命题,要我们找出其中的真命题,着重考查了线面平行、线面垂直的判定与性质,面面垂直的判定与性质等知识,属于中档题.5.【答案】D【解析】解:∵函数f(x)(x∈R)满足f(x+π)=f(x)+cosx,当0≤x<π时,f(x)=1,∴f()=f()=f()+cos=f()+cos+cos=f()+cos+cos=f()+cos+cos=f()+cos+cos+cos=0+cos﹣cos+cos=﹣.故选:D.【点评】本题考查抽象函数以及函数值的求法,诱导公式的应用,是基础题,解题时要认真审题,注意函数性质的合理运用.6.【答案】B【解析】解:根据选项可知a≤0a变动时,函数y=2|x|的定义域为[a,b],值域为[1,16],∴2|b|=16,b=4故选B.【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.7.【答案】A【解析】解:几何体如图所示,则V=,故选:A.【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键.8.【答案】B【解析】解:设x1∈{x|f(x)=0}={x|f(f(x))=0},∴f(x1)=f(f(x1))=0,∴f(0)=0,即f(0)=m=0,故m=0;故f(x)=x2+nx,f(f(x))=(x2+nx)(x2+nx+n)=0,当n=0时,成立;当n≠0时,0,﹣n不是x2+nx+n=0的根,故△=n2﹣4n<0,故0<n<4;综上所述,0≤n+m<4;故选B.【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题.9.【答案】B【解析】解:n=1,满足条件,执行循环体,S=1+1=2n=2,满足条件,执行循环体,S=1+1+2=4n=3,满足条件,执行循环体,S=1+1+2+3=7n=10,不满足条件,退出循环体,循环满足的条件为n≤9,故选B.【点评】本题主要考查了当型循环结构,算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.10.【答案】C【解析】解:连结A1D、BD、A1B,∵正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,∴EF∥A1D,∵A1B∥D1C,∴∠DA1B是CD1与EF所成角,∵A1D=A1B=BD,∴∠DA1B=60°.∴CD1与EF所成角为60°.故选:C.【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.11.【答案】D【解析】考点:命题的真假.12.【答案】B【解析】解:由f(x)图象单调性可得f′(x)在(﹣∞,﹣1)∪(0,+∞)大于0,在(﹣1,0)上小于0,∴f(x)f′(x)<0的解集为(﹣∞,﹣2)∪(﹣1,0).故选B.二、填空题13.【答案】33.【解析】解:∵1=++++++++++++,∵2=1×2,6=2×3,30=5×6,42=6×7,56=7×8,72=8×9,90=9×10, 110=10×11, 132=11×12,∴1=++++++++++++=(1﹣)+++(﹣)+,+==﹣+﹣=, ∴m=20,n=13, ∴m+n=33, 故答案为:33【点评】本题考查的知识点是归纳推理,但本题运算强度较大,属于难题.14.【答案】 [1,5)∪(5,+∞) .【解析】解:整理直线方程得y ﹣1=kx ,∴直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,由于该点在y 轴上,而该椭圆关于原点对称,故只需要令x=0有5y 2=5m得到y 2=m要让点(0.1)在椭圆内或者椭圆上,则y ≥1即是y 2≥1得到m ≥1∵椭圆方程中,m ≠5m 的范围是[1,5)∪(5,+∞) 故答案为[1,5)∪(5,+∞)【点评】本题主要考查了直线与圆锥曲线的综合问题.本题采用了数形结合的方法,解决问题较为直观.15.【答案】 .【解析】解:原式=+lg100﹣2﹣1=+2﹣2﹣1=, 故选:【点评】本题考查了对数的运算性质,属于基础题.16.【答案】1a = 【解析】试题分析:因为不等式()2110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;当0a ≠时,应满足20(1)40a a a >⎧⎨∆=+-≤⎩,即2(1)0a a >⎧⎨-≤⎩,解得1a =.1 考点:不等式的恒成立问题. 17.【答案】70【解析】81()x x -的展开式通项为8821881()(1)r r r r r rr T C x C x x--+=-=-,所以当4r =时,常数项为448(1)70C -=.18.【答案】(02x #,02y #)上的点(,)x y 到定点(2,2)2,故MN 的取值范围为.22yxB三、解答题19.【答案】(1)210x y -+=(2)当2a =时,()f x 无单调减区间;当2a <时,()f x 的单调减区间是()2,a --;当2a >时,()f x 的单调减区间是(),2a --.(3)244,4e ⎡⎤-⎣⎦【解析】试题分析:(1)先对函数解析式进行求导,再借助导数的几何意义求出切线的斜率,运用点斜式求出切线方程;(2)先对函数的解析式进行求导,然后借助导函数的值的符号与函数单调性之间的关系进行分类分析探求;(3)先不等式()4f x ≤进行等价转化,然后运用导数知识及分类整合的数学思想探求函数的极值与最值,进而分析推证不等式的成立求出参数的取值范围。
陕州区实验中学2018-2019学年高三上学期11月月考数学试卷含答案
陕州区实验中学 2018-2019 学年高三上学期 11 月月考数学试卷含答案(参考答案)
一、选择题
1. 【答案】A
【解析】
试题分析:利用余弦定理求出正方形面积 S1 12 12 - 2 cos 2 2 cos ;利用三角形知识得出四个等
腰三角形面积 S2
第 7 页,共 12 页
12.【答案】C
【解析】
试题分析:由题意得,根据一次函数的单调性可知,函数 f x 2 a2 x a 在区间 0,1 上恒正,则
f f
(0) 0 (1) 0
,即
a 2
0 a2
a
0
,解得
0
a
2
,故选
C.
考点:函数的单调性的应用.
r rr
已知向量 a,b 满足:| a | 1,| b | 6 , a (b a) 2 .
(1)求向量r 与r的夹角; (2)求| 2a b |.
第 2 页,共 12 页
20.已知抛物线 C:y2=2px(p>0)过点 A(1,﹣2). (Ⅰ)求抛物线 C 的方程,并求其准线方程; (Ⅱ)是否存在平行于 OA(O 为坐标原点)的直线 L,使得直线 L 与抛物线 C 有公共点,且直线 OA 与 L 的 距离等于 ?若存在,求直线 L 的方程;若不存在,说明理由.
∵过点 M(﹣2,0)的直线 l 与椭圆 ∴△=64k4﹣4(2k2+1)(8k2﹣2)≥0, 整理,得 k2 ,
有公共点,
解得﹣ ≤k≤ .
∴直线 l 的斜率 k 的取值范围是[﹣ , ].
故选:D. 【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用 . 3. 【答案】B
曹县实验中学2018-2019学年高三上学期11月月考数学试卷含答案
曹县实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且=2,=2,=2,则与()A .互相垂直B .同向平行C .反向平行D .既不平行也不垂直2. 在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是()A .<,乙比甲成绩稳定B .<,甲比乙成绩稳定C .>,甲比乙成绩稳定D .>,乙比甲成绩稳定3. 某公园有P ,Q ,R 三只小船,P 船最多可乘3人,Q 船最多可乘2人,R 船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( )A .36种B .18种C .27种D .24种4. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且c=2a ,则cosB=( )A .B .C .D .5. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .2013 B .2014 C .2015 D .20161111]6. 如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为4,点E ,F 分别是线段AB ,C 1D 1上的动点,点P 是上底面A 1B 1C 1D 1内一动点,且满足点P 到点F 的距离等于点P 到平面ABB 1A 1的距离,则当点P 运动时,PE 的最小值是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.5B.4C.4D.27.如果执行如图所示的程序框图,那么输出的a=()A.2B.C.﹣1D.以上都不正确8.已知a n=(n∈N*),则在数列{a n}的前30项中最大项和最小项分别是()A.a1,a30B.a1,a9C.a10,a9D.a10,a309.若双曲线M上存在四个点A,B,C,D,使得四边形ABCD是正方形,则双曲线M的离心率的取值范围是()A.B.C.D.10.函数y=2|x|的图象是()A.B.C.D.11.如图可能是下列哪个函数的图象()A.y=2x﹣x2﹣1B.y=C.y=(x2﹣2x)e x D.y=12.设函数y=x3与y=()x的图象的交点为(x0,y0),则x0所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)二、填空题13.已知点G 是△ABC 的重心,若∠A=120°,•=﹣2,则||的最小值是 .14.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .15.给出下列四个命题:①函数y=|x|与函数表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③函数y=3x 2+1的图象可由y=3x 2的图象向上平移1个单位得到;④若函数f (x )的定义域为[0,2],则函数f (2x )的定义域为[0,4];⑤设函数f (x )是在区间[a ,b]上图象连续的函数,且f (a )•f (b )<0,则方程f (x )=0在区间[a ,b]上至少有一实根;其中正确命题的序号是 .(填上所有正确命题的序号) 16.设i 是虚数单位,是复数z 的共轭复数,若复数z=3﹣i ,则z •= .17.如图,已知,是异面直线,点,,且;点,,且.若,分m n A B m ∈6AB =C D n ∈4CD =M N别是,的中点,与所成角的余弦值是______________.AC BD MN =m n【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.18.在三角形ABC 中,已知AB=4,AC=3,BC=6,P 为BC 中点,则三角形ABP 的周长为 . 三、解答题19.已知椭圆,过其右焦点F 且垂直于x 轴的弦MN 的长度为b .(Ⅰ)求该椭圆的离心率;(Ⅱ)已知点A 的坐标为(0,b ),椭圆上存在点P ,Q ,使得圆x 2+y 2=4内切于△APQ ,求该椭圆的方程.20.已知函数f (x )=sin2x+(1﹣2sin 2x ).(Ⅰ)求f (x )的单调减区间;(Ⅱ)当x ∈[﹣,]时,求f (x )的值域.21.已知等比数列中,。
河南省渑池高级中学2018-2019学年高三上学期第三次月考试卷数学含答案
河南省渑池高级中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 复数z=(﹣1+i )2的虚部为( )A .﹣2B .﹣2iC .2D .02. 《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。
问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽AD =3丈,长AB =4丈,上棱EF =2丈,EF ∥平面ABCD .EF 与平面ABCD 的距离为1丈,问它的体积是( ) A .4立方丈 B .5立方丈 C .6立方丈 D .8立方丈3. 已知双曲线和离心率为4sinπ的椭圆有相同的焦点21F F 、,P 是两曲线的一个公共点,若 21cos 21=∠PF F ,则双曲线的离心率等于( ) A . B .25 C .26 D .274. 对于复数,若集合具有性质“对任意,必有”,则当时,等于 ( )A1 B-1 C0 D5. 设a ,b 为正实数,11a b+≤23()4()a b ab -=,则log a b =( ) A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力.6. 集合{}{}2|ln 0,|9A x x B x x =≥=<,则AB =( )A .()1,3B .[)1,3C .[]1,+∞D .[],3e 7. 已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为( )A .240x y +-=B .240x y --=C .20x y +-=D .20x y --=8. 已知d 为常数,p :对于任意n ∈N *,a n+2﹣a n+1=d ;q :数列 {a n }是公差为d 的等差数列,则¬p 是¬q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9. 已知2->a ,若圆1O :01582222=---++a ay x y x ,圆2O :04422222=--+-++a a ay ax y x 恒有公共点,则a 的取值范围为( ).A .),3[]1,2(+∞--B .),3()1,35(+∞-- C .),3[]1,35[+∞-- D .),3()1,2(+∞--10.已知()x f 在R 上是奇函数,且满足()()x f x f -=+5,当()5,0∈x 时,()x x x f -=2,则()=2016f ( )A 、-12B 、-16C 、-20D 、0 11.已知集合{}|5A x N x =∈<,则下列关系式错误的是( )A .5A ∈B .1.5A ∉C .1A -∉D .0A ∈12.记集合{}22(,)1A x y x y =+?和集合{}(,)1,0,0B x y x y x y =+3?表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( ) A .12p B .1p C .2pD .13p【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ .14.函数的最小值为_________.15.81()x x-的展开式中,常数项为___________.(用数字作答)【命题意图】本题考查用二项式定理求指定项,基础题.16.已知函数y=f (x ),x ∈I ,若存在x 0∈I ,使得f (x 0)=x 0,则称x 0为函数y=f (x )的不动点;若存在x 0∈I ,使得f (f (x 0))=x 0,则称x 0为函数y=f (x )的稳定点.则下列结论中正确的是 .(填上所有正确结论的序号)①﹣,1是函数g (x )=2x 2﹣1有两个不动点;②若x 0为函数y=f (x )的不动点,则x 0必为函数y=f (x )的稳定点; ③若x 0为函数y=f (x )的稳定点,则x 0必为函数y=f (x )的不动点; ④函数g (x )=2x 2﹣1共有三个稳定点;⑤若函数y=f (x )在定义域I 上单调递增,则它的不动点与稳定点是完全相同.三、解答题(本大共6小题,共70分。
河南省漯河市渑池县高级中学2018年高三数学文联考试卷含解析
河南省漯河市渑池县高级中学2018年高三数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx在x=1处有极值,则a+b等于()C略2. 函数y=f(x)定义域为,f(1) =f(3) =1 ,f(x)的导数.,其中a为常数且a>0,则不等式组所表示的平面区域的面积等于()A.B.C.D.1参考答案:D略3. 在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限参考答案:B略4. 已知集合,是实数集,则等于( )A. B. C. D.参考答案:B略5. 若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a 的值为(A)5或8 (B)-1或5(C)-1或 -4 (D)-4或8参考答案:D6. 定义,若实数满足,则的最小值为()A. B.C.D.参考答案:B试题分析:因,故,故.又因,故,所以,所以.则,所以的最小值为.故应选答案B.考点:二元一次不等式组表示的区域及运用.7. 已知平面向量的夹角为且,在△ABC中,,,为中点,则( )A. B. C.6 D.12参考答案:A8. 若,且,则P(|)的值为()A. B. C . D.参考答案:答案:D解析:由,∴故选D。
9. 设变量a,b满足约束条件:若z=a-3b的最小值为m,则函数f(x)=x3+x2-2x+2的极小值等于()A.- B.- C.2 D.参考答案:A略10. 直线与圆相切,则圆的半径最大时,的值是()A. B. C. D.可为任意非零实数参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11. 四个大小相同的小球分别标有数字1、1、2、3,把它们放在一个盒子里,从中任意摸出两个小球,它们所标有的数字分别为,记,则随机变量的数学期望为.参考答案:3.512. 若函数f(x)=为奇函数,则a=________.参考答案:13. 已知函数y=f(x)=x3+3ax2+3bx+c在x=2处有极值,其图像在x=1处的切线平行于直线6x+2y+5=0,则f(x)极大值与极小值之差为________.参考答案:4略14. 若f(x)=2sinωx(0<ω<1在区间[0,]上的最大值是,则ω=参考答案:15. 已知向量与的夹角为,且,若,且,则实数.参考答案:7/1216. 已知不等式<0的解集为{x|a<x<b},点A(a,b)在直线mx+ny+1=0上,其中mn>0,则+的最小值为.参考答案:9考点:基本不等式在最值问题中的应用.专题:计算题;不等式的解法及应用.分析:不等式<0的解集为{x|a<x<b},可得a=﹣2,b=﹣1,代入直线方程可得m、n的关系,再利用1的代换结合均值不等式求解即可.解答:解:不等式<0的解集为{x|a<x<b},∴a=﹣2,b=﹣1,∵点A(a,b)在直线mx+ny+1=0上,∴﹣2m﹣n+1=0,即2m+n=1,∵mn>0,∴m>0,n>0,∴+=(+)(2m+n)=5++≥5+2=9当且仅当m=n=时取等号,即+的最小值为9.故答案为:9.点评:本题考查了不等式的解法和均值不等式等知识点,运用了整体代换思想,是2015届高考考查的重点内容.17. 在锐角△ABC中,,,则中线AD长的取值范围是.参考答案:设,,对运用正弦定理,得到,解得,结合该三角形为锐角三角形,得到不等式组,解得,故,结合二次函数性质,得到,运用向量得到,所以,结合bc的范围,代入,得到的范围为三、解答题:本大题共5小题,共72分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 3 页,共 16 页
求证: x1 x2 e .
23.(本小题满分 12 分) 设函数 f x 22 x 7 a 4 x 1 a 0且a 1 . (1)当 a
2 时,求不等式 f x 0 的解集; 2
1 时, f x 0 恒成立,求实数的取值范围. (2)当 x 0 ,
21.已知向量 , 满足| |=1,| |=2, 与 的夹角为 120°. (1)求 及| + |; (2)设向量 + 与 ﹣ 的夹角为 θ,求 cosθ 的值.
22.【无锡市 2018 届高三上期中基础性检测】已知函数 f x 2lnx mx 1 m R . (1)当 m 1 时,求 f x 的单调区间;
第 7 页,共 16 页
【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础 题. 11.【答案】D 【解析】解:命题 p:2≤2 是真命题, 方程 x2+2x+2=0 无实根, 故命题 q:∃x0∈R,使得 x02+2x0+2=0 是假命题, 故命题¬p,¬p∨q,p∧q 是假命题, 命题 p∨q 是真命题, 故选:D 12.【答案】B 【解析】解:∵函数 f(x)是奇函数,在(0,+∞)上单调递减,且 f ( )=0, ∴f (﹣ )=0,且在区间(﹣∞,0)上单调递减, ∵当 x<0,当﹣ <x<0 时,f(x)<0,此时 xf(x)>0 当 x>0,当 0<x< 时,f(x)>0,此时 xf(x)>0 综上 xf(x)>0 的解集为 故选 B
当且仅当 e1= 故选 C.
时取等号.即取得最大值且为
.
【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大 . 7. 【答案】C
第 6 页,共 16 页
【解析】解: 故选:C. 8. 【答案】B 【解析】
,因此
.a﹣b=1.
3 1 x z ,直线系在可 2 2 行域内的两个临界点分别为 A(0,2) 和 C (1,0) ,当直线过 A 点时, z 3 x 2 y 2 2 4 ,当直线过 C 点
渑池县实验中学 2018-2019 学年高三上学期 11 月月考数学试卷含答案 一、选择题
1. 下列函数中,与函数 f x A. y ln x 1 x 班级_______________ 座号______ 姓名_______________ 分数_______________ ___________________________________________________________________________________________________
∴由余弦定理可得 4c2=(r1)2+(r2)2﹣2r1r2cos 在椭圆中,①化简为即 4c2=4a2﹣3r1r2, 即 = ﹣1,②
在双曲线中,①化简为即 4c2=4a12+r1r2, 即 =1﹣ ,③ + =4, + )≥(1× + × )2,
联立②③得,
由柯西不等式得(1+ )( 即( 即 + + ≤ )2≤ ×4= , ,e2= ,
15.设 O 为坐标原点,抛物线 C: y2=2px(p>0)的准线为 l,焦点为 F,过 F 斜率为 交于 A,B 两点,直线 AO 与 l 相交于 D,若|AF|>|BF|,则 = .
的直线与抛物线 C 相
uuu r uuu r 16.如图所示,圆 C 中,弦 AB 的长度为 4 ,则 AB ×AC 的值为_______.
C A
17.若 名学生回答如下: 甲说:“我们四人都没考好.” 乙说:“我们四人中有人考的好.” 丙说:“乙和丁至少有一人没考好.” 丁说:“我没考好.” 与
B
共线,则 y= .
【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想. 18. 刘老师带甲、 乙、 丙、 丁四名学生去西安参加自主招生考试, 考试结束后刘老师向四名学生了解考试情况. 四
试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系 y 时, z 3 x 2 y 3 1 3 ,即的取值范围为 [ 4,3] ,所以 Z 的最小值为 4 .故本题正确答案为 B.
考点:线性规划约束条件中关于最值的计算. 9. 【答案】 C 【解析】解:命题 p:“∀x∈R,ex>0”,是真命题, 命题 q:“∃x0∈R,x0﹣2>x02”,即 即: ﹣x0+2<0,
第 2 页,共 16 页
结果,四名学生中有两人说对 了,则这四名学生中的
两人说对了.
三、解答题
19.根据下列条件求方程. (1)若抛物线 y2=2px 的焦点与椭圆 + =1 的右焦点重合,求抛物线的准线方程 + =1 有相同的焦点,求此双曲线标准方程.
(2)已知双曲线的离心率等于 2,且与椭圆
20.(1)已知 f(x)的定义域为[﹣2,1],求函数 f(3x﹣1)的定义域; (2)已知 f(2x+5)的定义域为[﹣1,4],求函数 f(x)的定义域.
第 1 页,共 16 页
10.在△ABC 中,内角 A,B,C 所对的边分别为 a,b,c,已知 a=3, 个数为( A.0 B.1 ) C.2 D.以上都不对
,A=60°,则满足条件的三角形
11.已知命题 p:2≤2,命题 q:∃x0∈R,使得 x02+2x0+2=0,则下列命题是真命题的是( A.¬p B.¬p∨q C.p∧q D.p∨q 12.定义在 R 上的奇函数 f(x),满足 ) A. C. B. D.
2
e x e x 的奇偶性、单调性相同的是( 3
B. y x
2
) D. y e
x
C. y tan x )
2. 过点 M ( 2, a ) , N ( a,4) 的直线的斜率为 A. 10 B. 180 C. 6 3
1 ,则 | MN | ( 2 D. 6 5
3. 下列 4 个命题: ①命题“若 x2﹣x=0,则 x=1”的逆否命题为“若 x≠1,则 x2﹣x≠0”; ②若“¬p 或 q”是假命题,则“p 且¬q”是真命题; ③若 p:x(x﹣2)≤0,q:log2x≤1,则 p 是 q 的充要条件; ④若命题 p:存在 x∈R,使得 2x<x2,则¬p:任意 x∈R,均有 2x≥x2; 其中正确命题的个数是( ) A.1 个 B.2 个 C.3 个 D.4 个 4. 设 x,y∈R,且满足 A.1 B.2
+ <0,显然是假命题,
∴p∨q 真,p∧q 假,p∧(¬q)真,p∨(¬q)假, 故选:C. 【点评】本题考查了指数函数的性质,解不等式问题,考查复合命题的判断,是一道基础题. 10.【答案】B 【解析】解:∵a=3, ∴由正弦定理可得:sinB= ∴B=90°, 即满足条件的三角形个数为 1 个. 故选:B. ,A=60°, = =1,
)
,且在(0,+∞)上单调递减,则 xf(x)>0 的解集为(
二、填空题
13.将一张坐标纸折叠一次,使点 0, 2 与点 4, 0 重合,且点 7,3 与点 m, n 重合,则 m n 的 值是 . 若 f[f(a)] ,则 a 的取值范围是 .
14.设函数 f(x)=
5 1 2 (2)令 g x xf x ,区间 D e , e 2 , e 为自然对数的底数。 (ⅰ)若函数 g x 在区间 D 上有两个极值,求实数 m 的取值范围;
(ⅱ)设函数 g x 在区间 D 上的两个极值分别为 g x1 和 g x2 ,
二、填空题
13.【答案】 【解析】
34 5
考 点:点关于直线对称;直线的点斜式方程. 14.【答案】 【解析】解:当 或 a=1 . 时, .
第 8 页,共 16 页
∵ 当
,由 ,f(a)=2(1﹣a),
2
,则 x+y=( C.3 D.4 )
)
5. 已知集合 A x | x 1 0 ,则下列式子表示正确的有( ① 1 A ;② 1 A ;③ A ;④ 1, 1 A . A.1 个 B.2 个
C.3 个
D.4 个 ,则椭圆和双曲线的离
6. 已知 F1,F2 是椭圆和双曲线的公共焦点,M 是它们的一个公共点,且∠F1MF2= 心率的倒数之和的最大值为( A.2 7. 设 a,b 为实数,若复数 A.﹣2 B.﹣1 C.1 D.2 ,则 a﹣b=( ) B. C. D.4 )
1. 【答案】A 【解析】 试题分析: f x f x 所以函数为奇函数,且为增函数.B 为偶函数,C 定义域与 f x 不相同,D 为非 奇非偶函数,故选 A. 考点:函数的单调性与奇偶性. 2. 【答案】 D 【解析】
考点:1.斜率;2.两点间距离. 3. 【答案】C 【解析】解:①命题“若 x2﹣x=0,则 x=1”的逆否命题为“若 x≠1,则 x2﹣x≠0”,①q 均为假命题,∴p、¬q 均为真命题,“p 且¬q”是真命题,②正确; ③由 p:x(x﹣2)≤0,得 0≤x≤2, 由 q:log2x≤1,得 0<x≤2,则 p 是 q 的必要不充分条件,③错误; ④若命题 p:存在 x∈R,使得 2x<x2,则¬p:任意 x∈R,均有 2x≥x2,④正确. ∴正确的命题有 3 个. 故选:C. 4. 【答案】D 【解析】解:∵(x﹣2)3+2x+sin(x﹣2)=2, ∴(x﹣2)3+2(x﹣2)+sin(x﹣2)=2﹣4=﹣2, ∵(y﹣2)3+2y+sin(y﹣2)=6, ∴(y﹣2)3+2(y﹣2)+sin(y﹣2)=6﹣4=2, 设 f(t)=t3+2t+sint, 则 f(t)为奇函数,且 f'(t)=3t2+2+cost>0, 即函数 f(t)单调递增. 由题意可知 f(x﹣2)=﹣2,f(y﹣2)=2, 即 f(x﹣2)+f(y﹣2)=2﹣2=0, 即 f(x﹣2)=﹣f(y﹣2)=f(2﹣y), ∵函数 f(t)单调递增