八年级数学等腰三角形

合集下载

八年级等腰三角形数学教案【优秀6篇】

八年级等腰三角形数学教案【优秀6篇】

八年级等腰三角形数学教案【优秀6篇】作为一名专为他人授业解惑的人民教师,总归要编写教案,编写教案有利于我们科学、合理地支配课堂时间。

来参考自己需要的教案吧!小编为您精心收集了6篇《八年级等腰三角形数学教案》,如果能帮助到您,小编将不胜荣幸。

等腰三角形篇一9.3章等腰三角形教案(一)、温故知新,激发情趣:1、轴对称图形的有关概念,什么样的三角形叫做等腰三角形?2、指出等腰三角形的腰、底边、顶角、底角。

(首先教师提问了解前置知识掌握情况,学生动脑思考、口答。

)(二) 、构设悬念,创设情境:3、一般三角形有哪些特征?(三条边、三个内角、高、中线、角平分线)4、等腰三角形除具有一般三角形的特征外,还有那些特殊特征?(把问题3作为教学的出发点,激发学生的学习兴趣。

问题4给学生留下悬念。

)(三)、目标导向,自然引入:本节课我们一起研究——9.3 等腰三角形(板书课题) 9.3 等腰三角形(了解本节课的学习内容)(四)、设问质疑,探究尝试:结合问题4请同学们拿出准备好的不同规格的等腰三角形,与教师一起演示(模型)等腰三角形是轴对称图形的实验,引导学生观察实验现象。

[问题]通过观察,你发现了什么结论?(让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的特征)[结论]等腰三角形的两个底角相等。

(板书学生发现的结论)等腰三角形特征1:等腰三角形的两个底角相等在△ ABC中,△AB=AC()△△B=△C()[方法]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。

例1:已知:在△ABC中,AB=AC,△B=80°,求△C和△A的度数。

〔学生思考,教师分析,板书〕练习思考:课本P84 练习2(等腰三角形的底角可以是直角或钝角吗?为什么?)〔继续观察实验纸片图形〕(以下内容学生可能在前面实验中就会提出)[问题]纸片中的等腰三角形的对称轴可能是我们以前学习过的什么线?(通过设问、质疑、小组讨论,归纳总结,培养学生概括数学问题的能力)[引导学生观察]折痕AD是等腰三角形的对称轴,AD可能还是等腰三角形的什么线?[学生发现]AD是等腰三角形的顶角平分线、底边中线、底边上的高。

人教版八年级数学上册等腰三角形

人教版八年级数学上册等腰三角形

学习目标
1、理解等腰三角形的性质,体会等腰三角形性质和等边 三角形性质的联系.(重点) 2、探索并掌握等边三角形性质的过程,并用以解决实际 问题.(难点)
课堂导入
思考1:如果把等腰三角形的性质用于等边三角形,你能得到什么结论? 结论:等边三角形的三条边都相等,是一种特殊的等腰三角形.所以等边三 角形具有等腰三角形的所有性质.
新知探究
例1:如图,已知△ABC,△BDE都是等边三角形,求证:AE=CD.
证明:∵△ABC,△BDE都是等边三角形, ∴AB=BC,BE=BD,∠ABC=∠DBE=60°. ∵在△ABE和△CBD中,AB=CB, ∠ABE=∠CBD, BE=BD, ∴△ABE≌△CBD(SAS). ∴AE=CD.
∵等边三角形ABC的边长为3,点D是AC的中点, ∴CE=CD= 3 . 2
C
E
随堂练习
如图,已知△ABC是等边三角形,点B,C,D,E在同一直线上,且CG=CD,
DF=DE,则∠E=( A )
A.15° B.20°
C.25°
D.30°
解:∵△ABC是等边三角形, ∴∠ACB=60°. ∵CG=CD, ∴∠CGD =∠CDG. ∴∠ACB =∠CGD+∠CDG=2∠CDG. 同理可得∠CDG=2∠E, ∴∠ACB =4∠E=60°. ∴∠E=15°.
如图,在等边三角形ABC中,D,E分别是AB,AC上的点,且AD=CE,则
∠BCD+∠CBE的大小是多少?
解:∵△ABC是等边三角形,
∴∠ACB=∠A=∠ABC=60°,且AB=BC=AC.
∵在△ADC和△CEB中, AC=CB,
A
D
E
∠A=∠BCE, AD=CE, ∴△ADC≌△CEB(SAS),∠CBE=∠ACD.

新人教版初中数学——等腰三角形与直角三角形-知识点归纳及典型题解析

新人教版初中数学——等腰三角形与直角三角形-知识点归纳及典型题解析

新人教版初中数学——等腰三角形与直角三角形知识点归纳与典型题解析一、等腰三角形1.等腰三角形的性质定理:等腰三角形的两个底角相等(简称:等边对等角).推论1:等腰三角形顶角平分线平分底边并且垂直于底边,即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.2.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.推论1:三个角都相等的三角形是等边三角形.推论2:有一个角是60°的等腰三角形是等边三角形.推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.二、等边三角形1.定义:三条边都相等的三角形是等边三角形.2.性质:等边三角形的各角都相等,并且每一个角都等于60°.3.判定:三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.三、直角三角形与勾股定理1.直角三角形定义:有一个角是直角的三角形叫做直角三角形.性质:(1)直角三角形两锐角互余;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.判定:(1)两个内角互余的三角形是直角三角形;(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.2.勾股定理及逆定理(1)勾股定理:直角三角形的两条直角边a 、b 的平方和等于斜边c 的平方,即:a 2+b 2=c 2. (2)勾股定理的逆定理:如果三角形的三条边a 、b 、c 有关系:a 2+b 2=c 2,那么这个三角形是直角三角形.考向一 等腰三角形的性质1.等腰三角形是轴对称图形,它有1条或3条对称轴. 2.等腰直角三角形的两个底角相等且等于45°.3.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角). 4.等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a . 5.等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A =180°-2∠B ,∠B =∠C =2180A∠-︒.典例1 等腰三角形的一个内角为40°,则其余两个内角的度数分别为( ) A .40°,100° B .70°,70°C .60°,80°D .40°,100°或70°,70°【答案】D【解析】①若等腰三角形的顶角为40°时,另外两个内角=(180°–40°)÷2=70°; ②若等腰三角形的底角为40°时,它的另外一个底角为40°,顶角为180°–40°–40°=100°. 所以另外两个内角的度数分别为:40°、100°或70°、70°.故选D .【名师点睛】考查了等腰三角形的性质和三角形的内角和为180o ,解题关键是分情况进行讨论①已知角为顶角时;②已知角为底角时.典例2 如图,在ABC ∆中,AB =AC ,D 是BC 的中点,下列结论不正确的是( )A.AD BC B.∠B=∠CC.AB=2BD D.AD平分∠BAC【答案】C【解析】因为△ABC中,AB=AC,D是BC中点,根据等腰三角形的三线合一性质可得,A.AD⊥BC,故A选项正确;B.∠B=∠C,故B选项正确;C.无法得到AB=2BD,故C选项错误;D.AD平分∠BAC,故D选项正确.故选C.【名师点睛】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质.1.等腰三角形的周长为13cm,其中一边长为4cm,则该等腰三角形的底边为__________cm.考向二等腰三角形的判定1.等腰三角形的判定定理是证明两条线段相等的重要依据,是把三角形中的角的相等关系转化为边的相等关系的重要依据.2.底角为顶角的2倍的等腰三角形非常特殊,其底角平分线将原等腰三角形分成两个等腰三角形.典例3 如图,在△ABC中,AB=AC,AD⊥BC于D,E是AB上的一点,EF∥AD交CA的延长线于F.求证:△AEF是等腰三角形.【解析】∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.又∵AD∥EF,∴∠F=∠CAD,∠FEA=∠BAD,∴∠FEA=∠F,∴△AEF是等腰三角形.2.已知在△ABC中,AB=5,BC=2,且AC的长为奇数.(1)求△ABC的周长;(2)判断△ABC的形状.考向三等边三角形的性质1.等边三角形具有等腰三角形的一切性质.2.等边三角形是轴对称图形,它有三条对称轴.3.等边三角形的内心、外心、重心和垂心重合.典例4 如图,在△ABC中,∠B=∠C=60°,点D为AB边的中点,DE⊥BC于E,若BE=1,则AC 的长为__________.【答案】4【解析】∵DE ⊥BC ,∠B =∠C =60°, ∴∠BDE =30°,∴BD =2BE =2,∵点D 为AB 边的中点,∴AB =2BD =4, ∵∠B =∠C =60°,∴△ABC 为等边三角形, ∴AC =AB =4,故答案为:4.【名师点睛】本题主要考查直角三角形的性质、等边三角形的判定和性质,利用直角三角形的性质求得AB =2BD 是解题的关键.3.如图,ABC ∆是等边三角形,点D 在AC 上,以BD 为一边作等边BDE ∆,连接CE . (1)说明ABD CBE ∆≅∆的理由; (2)若080BEC ∠=,求DBC ∠的度数.考向四 等边三角形的判定在等腰三角形中,只要有一个角是60°,无论这个角是顶角还是底角,这个三角形就是等边三角形.典例5 下列推理中,错误的是A .∵∠A =∠B =∠C ,∴△ABC 是等边三角形 B .∵AB =AC ,且∠B =∠C ,∴△ABC 是等边三角形 C .∵∠A =60°,∠B =60°,∴△ABC 是等边三角形D .∵AB =AC ,∠B =60°,∴△ABC 是等边三角形 【答案】B【解析】A,∵∠A=∠B=∠C,∴△ABC是等边三角形,故正确;B,条件重复且条件不足,故不正确;C,∵∠A=60°,∠B=60°,∴∠C=60°,∴△ABC是等边三角形60°,故正确;D,根据有一个角是60°的等腰三角形是等边三角形可以得到,故正确.故选B.4.如图,已知OA=5,P是射线ON上的一个动点,∠AON=60°.当OP=__________时,△AOP为等边三角形.考向五直角三角形在直角三角形中,30°的角所对的直角边等于斜边的一半,这个性质常常用于计算三角形的边长,也是证明一边(30°角所对的直角边)等于另一边(斜边)的一半的重要依据.当题目中已知的条件或结论倾向于该性质时,我们可运用转化思想,将线段或角转化,构造直角三角形,从而将陌生的问题转化为熟悉的问题.典例6 如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若∠B=30°,BD=6,则CD 的长为__________.【答案】3【解析】∵在Rt△ABC中,∠C=90°,∠B=30°,∴∠BAC=60°.又AD平分∠BAC,∴∠BAD=∠CAD=30°,∴∠BAD=∠B=30°,∴AD=BD=6,∴CD=12AD=3,故答案为:3.5.已知直角三角形的两条边分别是5和12,则斜边上的中线的长度为__________.考向六 勾股定理1.应用勾股定理时,要分清直角边和斜边,尤其在记忆a 2+b 2=c 2时,斜边只能是c .若b 为斜边,则关系式是a 2+c 2=b 2;若a 为斜边,则关系式是b 2+c 2=a 2.2.如果已知的两边没有明确边的类型,那么它们可能都是直角边,也可能是一条直角边、一条斜边,求解时必须进行分类讨论,以免漏解.典例7 cm cm ,则这个直角三角形的周长为__________.【答案】【解析】∵直角边长为cm cm ,∴斜边(cm ),∴周长cm ).故答案为:【名师点睛】本题考查了二次根式与三角形边长,面积的综合运用.熟练掌握勾股定理的计算解出斜边是关键6.如图所示,在ABC ∆中,90B ∠=︒,3AB =,5AC =,D 为BC 边上的中点.(1)求BD 、AD 的长度;(2)将ABC ∆折叠,使A 与D 重合,得折痕EF ;求AE 、BE 的长度.1.直角三角形两直角边长分别为6和8,则此直角三角形斜边上的中线长是 A .3B .4C .7D .52.如图,ABC △是等边三角形,0,20BC BD BAD =∠=,则BCD ∠的度数为A .50°B .55°C .60°D .65°3.如图是“人字形”钢架,其中斜梁AB =AC ,顶角∠BAC =120°,跨度BC =10m ,AD 为支柱(即底边BC 的中线),两根支撑架DE ⊥AB ,DF ⊥AC ,则DE +DF 等于A .10mB .5mC .2.5mD .9.5m4.如图,ABC ∆是边长为1的等边三角形,BDC ∆为顶角120BDC ∠=︒的等腰三角形,点M 、N 分别在AB 、AC 上,且60MDN ∠=︒,则AMN ∆的周长为A.2 B.3 C.1.5 D.2.55.如图,△ABC中,D、E两点分别在AC、BC上,AB=AC,CD=DE.若∠A=40°,∠ABD:∠DBC=3:4,则∠BDE=A.24°B.25°C.30°D.35°6.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为A.22 B.17C.17或22 D.267.如图,△ABC中,AB=AC=5,BC=6,点D在BC上,且AD平分∠BAC,则AD的长为A.6 B.5C.4 D.38.如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC是等腰三角形,则符合条件是点C共有A .8个B .9个C .10个D .11个9.如图,Rt △ABC 中,∠B =90〬,AB =9,BC =6,,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段AN 的长等于A .5B .6C .4D .310.将一个有45°角的三角尺的直角顶点C 放在一张宽为3 cm 的纸带边沿上,另一个顶点A 在纸带的另一边沿上,测得三角尺的一边AC 与纸带的一边所在的直线成30°角,如图,则三角尺的最长边的长为A .6B .C .D .11.三角形的三边a ,b ,c (b ﹣c )2=0;则三角形是_____三角形. 12.如图,等腰△ABC 中,AB =AC =13cm ,BC =10cm ,△ABC 的面积=________.13.已知等腰三角形一腰上的高与另一腰的夹角为35°,则这个等腰三角形顶角的度数为__________. 14.若一个等腰三角形的周长为26,一边长为6,则它的腰长为__________.15.如图,在ABC △中,AB AC =,D 、E 分别是BC 、AC 上一点,且AD AE =,12EDC ∠=︒,则BAD ∠=__________.16.如图,已知△ABC是等边三角形,点B,C,D,E在同一直线上,且CG=CD,DF=DE,则∠EFD=__________°.17.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上的一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,CA1的长为__________.18.如图,在Rt△ABC中,点E在AB上,把△ABC沿CE折叠后,点B恰好与斜边AC的中点D 重合.(1)求证:△ACE为等腰三角形;(2)若AB=6,求AE的长.19.如图,一架2.5 m 长的梯子斜立在竖直的墙上,此时梯足B 距底端O 为0.7 m .(1)求OA 的长度;(2)如果梯子顶端下滑0.4米,则梯子将滑出多少米?20.ABC ∆与DCE ∆有公共顶点C (顶点均按逆时针排列),AB AC =,DC DE =,180BAC CDE ∠+∠=︒,//DE BC ,点G 是BE 的中点,连接DG 并延长交直线BC 于点F ,连接,AF AD .(1)如图,当90BAC ∠=︒时, 求证:①BF CD =; ②AFD ∆是等腰直角三角形.(2)当60BAC ∠=︒时,画出相应的图形(画一个即可),并直接指出AFD ∆是何种特殊三角形.21.已知:如图,有人在岸上点C 的地方,用绳子拉船靠岸,开始时,绳长CB =10米,CA ⊥AB ,且CA =6米,拉动绳子将船从点B 沿BA 方向行驶到点D 后,绳长CD (1)试判定△ACD 的形状,并说明理由; (2)求船体移动距离BD 的长度.1.如图,在OAB △和OCD △中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为A .4B .3C .2D .12.在△ABC 中,AB =AC ,∠A =40°,则∠B =__________.3.如图,在△ABC 中,AB =AC ,点D ,E 都在边BC 上,∠BAD =∠CAE ,若BD =9,则CE 的长为__________.4.如图,在四边形ABCD 中,AB CD ∥,连接AC ,BD .若90ACB ∠=︒,AC BC =,AB BD =,则ADC ∠=__________︒.5.腰长为5,高为4的等腰三角形的底边长为__________.6.若等腰三角形的一个底角为72︒,则这个等腰三角形的顶角为__________.7.如图,△ABC 中,AB =BC ,∠ABC =90°,F 为AB 延长线上一点,点E 在BC 上,且AE =CF ,若∠BAE =25°,则∠ACF =__________度.8.如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G .(1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.9.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D .(1)若∠C =42°,求∠BAD 的度数;(2)若点E 在边AB 上,EF ∥AC 交AD 的延长线于点F .求证:AE =FE .10.如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O .求证:(1)DBC ECB △≌△; (2)OB OC =.11.如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,连结AD ,BE 平分∠ABC 交AC 于点E ,过点E 作EF ∥BC 交AB 于点F . (1)若∠C =36°,求∠BAD 的度数.(2)若点E 在边AB 上,EF ∥AC 叫AD 的延长线于点F .求证:FB =FE .12.在ABC △中,90BAC ∠=︒,AB AC =,AD BC ⊥于点D .(1)如图1,点M ,N 分别在AD ,AB 上,且90BMN ∠=︒,当30AMN =︒∠,2AB =时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且90EDF ∠=︒,求证:BE AF =; (3)如图3,点M 在AD 的延长线上,点N 在AC 上,且90BMN ∠=︒,求证:AB AN +=.1.【答案】4cm 或5cm【解析】当长是4cm 的边是底边时,腰长是12(13–4)=4.5, 三边长为4cm ,4.5cm ,4.5cm ,等腰三角形成立;当长是4cm 的边是腰时,底边长是:13–4–4=5cm ,等腰三角形成立. 故底边长是:4cm 或5cm .故答案是:4cm 或5cm【名师点睛】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论,不要漏解. 2.【解析】(1)由题意得:5−2<AB <5+2,即:3<AB <7,∵AB 为奇数,∴AB =5, ∴△ABC 的周长为5+5+2=12. (2)∵AB =AC =5, ∴△ABC 是等腰三角形. 3.【答案】(1)见解析;(2)20°.【解析】(1)由060ABC DBE ∠=∠=,得ABD CBE ∠=∠,由,AB BC BD BE ==, 得ABD CBE ∆≅∆(SAS );(2)由ABD CBE ∆≅∆,得060BCE A ∠=∠=,所以00000180180806040CBE BEC BCE ∠=-∠-∠=--=, 所以000060604020DBC CBE ∠=-∠=-=.【名师点睛】本题主要考查全等三角形的判定和性质以及三角形内角和定理,先证明三角形全等是解决本题的突破口. 4.【答案】5【解析】已知∠AON =60°,当OP =OA =5时,根据有一个角为60°的等腰三角形为等边三角形,可得△AOP 为等边三角形.故答案为:5. 5.【答案】6或6.5【解析】分两种情况:①5和12是两条直角边,根据勾股定理求得斜边为13,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6.5;②5是直角边,12为斜边,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6,故答案为:6或6.5.6.【答案】(1)BD =2,AD =2)136AE =,56BE = 【解析】(1)∵在ABC ∆中,90B ∠=︒,3AB =,5AC =, ∴在Rt ABC ∆中,222225316BC AC AB =-=-=, ∴4BC =,又∵D 为BC 边上的中点, ∴122BD DC BC ===, ∴在Rt ABD ∆中,222222133AD AB BD =+=+=,∴AD =(2)ABC ∆折叠后如图所示,EF 为折痕,连接DE ,设AE x =,则DE x =,3BE x =-,在Rt BDE ∆中,222BE BD DE +=,即()22232x x -+=,解得:136x =, ∴136AE =, ∴135366BE =-=. 【名师点睛】本题主要考查了勾股定理的应用,也考查了折叠的性质.是常见中考题型.1.【答案】D【解析】∵两直角边分别为6和8,∴斜边10=, ∴斜边上的中线=12×10=5,故选D . 【名师点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理的应用,熟记性质是解题的关键. 2.【答案】A 【解析】ABC △是等边三角形,AC AB BC ∴==,又BC BD =,AB BD ∴=,∴20BAD BDA ∠=∠=︒0180CBD BAD BDA ABC ∴∠=-∠-∠-∠0000018020206080=---=,BC BD =,∴11(180)(18080)5022BCD CBD ∠=⨯︒-∠=⨯︒-︒=︒,故选A .【名师点睛】本题考查了等边三角形、等腰三角形的性质、等边对等角以及三角形内角和定理,熟练掌握性质和定理是正确解答本题的关键. 3.【答案】B【解析】∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°, ∵DE ⊥AB ,DF ⊥AC ,垂足为E ,F ,∴DE =12BD ,DF =12DC , ∴DE +DF =12BD +12DC =12(BD +DC )=12B C .∴DE +DF =12BC =12×10=5m .故选B . 【名师点睛】本题考查等腰三角形和直角三角形的性质,熟练掌握相关知识点是解题关键. 4.【答案】A【解析】如图所示,延长AC 到E ,使CE =BM ,连接DE ,∵BD =DC ,∠BDC =120°,∴∠CBD =∠BCD =30°, ∵∠ABC =∠ACB =60°,∴∠ABD =∠ACD =∠DCE =90°,在△BMD 和△CED 中,90BD CDDBM DCE BM CE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△BMD ≌△CED (SAS ),∴∠BDM =∠CDE ,DM =DE , 又∵∠MDN =60°,∴∠BDM +∠NDC =60°, ∴∠EDC +∠NDC =∠NDE =60°=∠NDM , 在△MDN 和△EDN 中,DM DEMDN NDE DN DN =⎧⎪∠=∠⎨⎪=⎩,∴△MDN ≌△EDN (SAS ), ∴MN =NE =NC +CE =NC +BM ,所以△AMN 周长=AM +AN +MN =AM +AN +NC +BM =AB +AC =2. 故选A.【名师点睛】本题考查全等三角形的判定和性质,做辅助线构造全等三角形,利用等边三角形的性质得到全等条件是解决本题的关键.5.【答案】C【解析】∵AB=AC,CD=DE,∴∠C=∠DEC=∠ABC,∴AB∥DE,∵∠A=40°,∴∠C=∠DEC=∠ABC=18040702,∵∠ABD:∠DBC=3:4,∴设∠ABD为3x,∠DBC为4x,∴3x+4x=70°,∴x=10°,∴∠ABD=30°,∵AB∥DE,∴∠BDE=∠ABD=30°,故答案为C.【名师点睛】本题主要考查了等腰三角形的性质:等边对等角和三角形内角和定理求解,难度适中.6.【答案】A【解析】分两种情况:①当腰为4时,4+4<9,所以不能构成三角形;②当腰为9时,9+9>4,9-9<4,所以能构成三角形,周长是:9+9+4=22.故选A.7.【答案】C【解析】∵AB=AC=5,AD平分∠BAC,BC=6,∴BD=CD=3,∠ADB=90°,∴AD=4.故选C.8.【答案】B【解析】如图,①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.故选B.9.【答案】A【解析】设AN=x,由翻折的性质可知DN=AN=x,则BN=9-x.∵D是BC的中点,∴BD=1632⨯=.在Rt△BDN中,由勾股定理得:ND2=NB2+BD2,即x2=(9-x)2+32,解得x=5,AN=5,故选A.10.【答案】D【解析】如图,作AH⊥CH,在Rt △ACH 中,∵AH =3,∠AHC =90°,∠ACH =30°,∴AC =2AH =6,在Rt △ABC 中,AB ==D .11.【答案】等边【解析】三角形的三边a ,b ,c 2()0b c -=,20,()0b c =-=,0,0a b b c ∴-=-=,解得:,a b b c ==,即a b c ==,则该三角形是等边三角形.故答案为:等边.【名师点睛】本题是一道比较好的综合题,考查了算术平方根的非负性、平方数的非负性、等边三角形的定义. 12.【答案】60cm 2.【解析】过点A 作AD ⊥BC 交BC 于点D , ∵AB =AC =13cm ,BC =10cm , ∴BD =CD =5cm ,AD ⊥BC ,由勾股定理得:AD (cm ), ∴△ABC 的面积=12×BC ×AD =12×10×12=60(cm 2).【名师点睛】本题考查的是等腰三角形的性质及勾股定理,能根据等腰三角形的“三线合一”正确的添加辅助线是关键. 13.【答案】55°或125°【解析】如图,分两种情况进行讨论:如图1,当高在三角形内部时,则∠ABD =35°,∴∠BAD =90°–35°=55°; 如图2,当高在三角形外部时,则∠ABD =35°,∴∠BAD =90°–35°=55°; ∴∠CAB =180°–55°=125°, 故答案为55°或125°.【名师点睛】本题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键. 14.【答案】10【解析】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形; ②当6为底边时,则腰长=(26-6)÷2=10,因为6-6<10<6+6,所以能构成三角形,故腰长为10.故答案为:10. 15.【答案】24︒【解析】∵ADC ∠是三角形ABD 的外角,AED ∠是三角形DEC 的一个外角,CDE x ∠=︒, ∴ADC BAD B ADE EDC ∠=∠+∠=∠+∠,AED EDC C ∠=∠+∠,B BAD ADE x ∠+∠=∠+︒,AEDC x ∠=∠+︒,∵AB AC =,D 、E 分别在BC 、AC 上,AD AE =,CDE x ∠=︒,∴B C ∠=∠,20ADE AED C ∠=∠=∠+︒,∴C BAD C x x ∠+∠=∠︒++︒,∵12EDC ∠=︒,∴24BAD ∠=︒,故答案为:24︒.16.【答案】15【解析】∵△ABC 是等边三角形,∴∠ACB =60°,∠ACD =120°, ∵CG =CD ,∴∠CDG =30°,∠FDE =150°, ∵DF =DE ,∴∠E =15°.故答案为:15.17.【答案】【解析】如图,过点A 1作A 1M ⊥BC 于点M .∵点A 的对应点A 1恰落在∠BCD 的平分线上,∠BCD =90°,∴∠A 1CM =45°,即△AMC 是等腰直角三角形,∴设CM =A 1M =x ,则BM =7-x .又由折叠的性质知AB =A 1B =5,∴在直角△A 1MB 中,由勾股定理得A 1M 2=A 1B 2-BM 2=25-(7-x )2,∴25-(7-x )2=x 2,解得x 1=3,x 2=4,∵在等腰Rt △A 1CM 中,CA 1A 1M ,∴CA 1.故答案为:18.【答案】(1)见解析;(2)4.【解析】(1)∵把△ABC 沿CE 折叠后,点B 恰好与斜边AC 的中点D 重合, ∴CD =CB ,∠CDE =∠B =90°,AD =CD ,在△ADE 和△CDE 中,90AD CDADE CDE ED ED =⎧⎪∠=∠=⎨⎪=⎩,∴△ADE ≌△CDE (SAS ), ∴EA=EC ,∴△ACE 为等腰三角形; (2)由折叠的性质知:∠BEC =∠DEC , ∵△ADE ≌△CDE ,∴∠AED =∠DEC , ∴∠AED =∠DEC =∠BEC =60°,∴∠BCE =30°,∴12BE CE =, 又∵EA=EC ,∴11223BE AE AB ===,∴AE=4.【名师点睛】本题考查了折叠的性质、全等三角形的判定和性质、等腰三角形的定义和30°角的直角三角形的性质,属于常考题型,熟练掌握上述图形的性质是解题关键. 19.【解析】在直角△ABO 中,已知AB =2.5 m ,BO =0.7 m ,则AO , ∵AO =AA ′+OA ′,∴OA ′=2 m ,∵在直角△A ′B ′O 中,AB =A ′B ′,且A ′B ′为斜边, ∴OB ′=1.5 m ,∴BB ′=OB ′-OB =1.5 m -0.7 m=0.8 m . 答:梯足向外移动了0.8 m .20.【答案】(1)①详见解析;②详见解析;(2)详见解析;【解析】(1)证明:①∵//DE BC ,∴GBF GED ∠=∠. 又,BG EG FGB DGE =∠=∠, ∴(ASA)GBF GED ∆∆≌,∴BF ED =. 又CD ED =,∴BF CD =;②当90BAC ∠=︒时,45ABC ACB ∠=∠=︒, ∵180BAC CDE ︒∠+∠=,∴90CDE ︒∠=.∵//DE BC ,∴90,45BCD CDE ACD ︒︒∠=∠=∠=,∴ABF ACD ∠=∠;又,AB AC BF CD ==,∴()ABF ACD SAS ∆∆≌, ∴,AF AD BAF CAD =∠=∠, ∴BAF FAC CAD FAC ∠+∠=∠+∠ 即90BAC FAD ∠=∠=︒,∴AFD ∆是等腰直角三角形.(2)所画图形如图1或图②,此时AFD ∆是等边三角形.图1 图2 与(1)同理,可证ABF ACD ∆∆≌, ∴AF =AD ,60BAC FAD ∠=∠=︒, ∴△AFD 是等边三角形.【名师点睛】本题考查了等边三角形的判定,等腰三角形的判定和性质,以及全等三角形的判定和性质,平行线的性质,解题的关键是正确找到证明三角形全等的条件,利用全等三角形的性质得到边的关系,角的关系.21.【解析】(1)由题意可得:AC =6 m ,DCm ,∠CAD =90°,可得AD(m ), 故△ACD 是等腰直角三角形.(2)∵AC =6 m ,BC =10 m ,∠CAD =90°, ∴AB(m ), 则BD =AB -AD =8-6=2(m ). 答:船体移动距离BD 的长度为2 m .1.【答案】B【解析】∵40AOB COD ∠=∠=︒,∴AOB AOD COD AOD ∠+∠=∠+∠,即AOC BOD ∠=∠,在AOC △和BOD △中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴AOC BOD △≌△,∴OCA ODB AC BD ∠=∠=,,①正确;∴OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠, ∴40AMB AOB ∠=∠=°,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=°,在OCG △和ODH △中,OCA ODBOGC OHD OC OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴OCG ODH △≌△,∴OG OH =,∴MO平分BMC ∠,④正确,正确的个数有3个,故选B . 2.【答案】70°【解析】∵AB =AC ,∴∠B =∠C , ∵∠A +∠B +∠C =180°,∴∠B =12(180°-40°)=70°.故答案为:70°. 3.【答案】9【解析】∵AB =AC ,∴∠B =∠C ,在△BAD 和△CAE 中,BAD CAE AB ACB C ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BAD ≌△CAE , ∴BD =CE =9,故答案为:9. 4.【答案】105【解析】作DE AB ⊥于E ,CF AB ⊥于F ,如图所示,则DE CF =,∵CF AB ⊥,90ACB ∠=︒,AC BC =,∴12CF AF BF AB ===, ∵AB BD =,∴1122DE CF AB BD ===,BAD BDA ∠=∠, ∴30ABD ∠=︒,∴75BAD BDA ∠=∠=︒,∵AB CD ∥,∴180ADC BAD ∠+∠=︒,∴105ADC ∠=︒,故答案为:105.5.【答案】6或【解析】①如图1,当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6; ②如图2,当5AB AC ==,4CD =时,则3AD =,∴2BD =,∴BC == ③如图3,当5AB AC ==,4CD =时,则3AD ==,∴8BD =,∴BC =∴此时底边长为6或【名师点睛】本题考查了勾股定理,等腰三角形的性质,解题的关键是分三种情况分类讨论. 6.【答案】36°【解析】∵等腰三角形的一个底角为72︒,∴等腰三角形的顶角180727236=︒-︒-︒=︒, 故答案为:36︒.【名师点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键. 7.【答案】70【解析】∵∠ABC =90°,AB =AC ,∴∠CBF =180°–∠ABC =90°,∠ACB =45°, 在Rt △ABE 和Rt △CBF 中,AB CBAE CF=⎧⎨=⎩,∴Rt △ABE ≌Rt △CBF ,∴∠BCF =∠BAE =25°,∴∠ACF =∠ACB +∠BCF =45°+25°=70°,故答案为:70.【名师点睛】本题考查了等腰直角三角形的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键. 8.【解析】(1)∵CAF BAE ∠=∠,∴BAC EAF ∠=∠,∵AE AB AC AF ==,, ∴BAC EAF △≌△, ∴EF BC =.(2)∵65AB AE ABC =∠=︒,, ∴18065250BAE ∠=︒-︒⨯=︒, ∴50FAG ∠=︒, ∵BAC EAF △≌△, ∴28F C ∠=∠=︒, ∴502878FGC ∠=︒+︒=︒.【名师点睛】本题主要考查全等三角形证明与性质,等腰三角形性质,旋转性质等知识点,比较简单,基础知识扎实是解题关键. 9.【解析】(1)∵AB =AC ,AD ⊥BC 于点D ,∴∠BAD =∠CAD ,∠ADC =90°,又∠C =42°,∴∠BAD =∠CAD =90°-42°=48°. (2)∵AB =AC ,AD ⊥BC 于点D , ∴∠BAD =∠CAD , ∵EF ∥AC , ∴∠F =∠CAD , ∴∠BAD =∠F ,∴AE =FE .10.【解析】(1)∵AB =AC ,∴∠ECB =∠DBC ,在DBC △与ECB △中,BD CE DBC ECB BC CB =⎧⎪∠=∠⎨⎪=⎩,∴DBC △≌ECB △.(2)由(1)DBC △≌ECB △, ∴∠DCB =∠EBC , ∴OB =OC .11.【解析】(1)∵AB AC =,∴C ABC ∠=∠,∵36C ∠=︒, ∴36ABC ∠=︒,∵D 为BC 的中点,∴AD BC ⊥,∴90903654BAD ABC ∠=-∠=-︒=︒︒︒. (2)∵BE 平分ABC ∠,∴ABE EBC ∠=∠, 又∵EF BC ∥,∴EBC BEF ∠=∠, ∴EBF FEB ∠=∠, ∴BF EF =.【名师点睛】本题考查等腰三角形的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.【解析】(1)∵90BAC ∠=︒,AB AC =,AD BC ⊥,∴AD BD DC ==,45ABC ACB ∠=∠=︒,45BAD CAD ∠=∠=︒, ∵2AB =,∴AD BD DC ===,∵30AMN ∠=︒,∴180903060BMD ∠=︒-︒-︒=︒, ∴30BMD ∠=︒,∴2BM DM =,由勾股定理得,222BM DM BD -=,即222(2)DM DM -=,解得DM =∴AM AD DM =-=(2)∵AD BC ⊥,90EDF ∠=︒,∴BDE ADF ∠=∠,在BDE △和ADF △中,B DAF DB DA BDE ADF ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴BDE ADF △≌△, ∴BE AF =.(3)如图,过点M 作//ME BC 交AB 的延长线于E ,∴90AME ∠=︒,则AE =,45E ∠=︒,∴ME MA =,∵90AME ∠=︒,90BMN ∠=︒, ∴BME AMN ∠=∠,在BME △和AMN △中,E MAN ME MA BME AMN ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴BME AMN △≌△,∴BE AN =,∴AB AN AB BE AE +=+==.【名师点睛】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、直角三角形 的性质,掌握全等三角形的判定定理和性质定理是解题的关键.。

人教版八年级上册数学等腰三角形知识点及对应练习(附参考解析)

人教版八年级上册数学等腰三角形知识点及对应练习(附参考解析)

等腰三角形一、知识梳理:专题一:等腰三角形概念及性质;等腰三角形的判定.二、考点分类考点一:等腰三角形的概念有两边相等的三角形是等腰三角形。

【类型一】利用等腰三角形的概念求边长或周长【例1】如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9cm B.12cm C.15cm或12cm D.15cm解析:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm 时,6-3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15(cm).故选D.方法总结:在解决等腰三角形边长的问题时,如果不明确底和腰时,要进行分类讨论,同时要养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.考点二:等腰三角形的性质1、等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).2、解题方法:设辅助未知数法与拼凑法.3、重要的数学思想方法:方程思想、整体思想和转化思想.【类型一】利用“等边对等角”求角度【例2】等腰三角形的一个内角是50°,则这个三角形的底角的大小是()A .65°或50° B.80°或40° C .65°或80° D.50°或80°解析:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.故选A.方法总结:等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角,要分两种情况讨论.【类型二】 利用方程思想求等腰三角形角的度数【例3】 如图①,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,求△ABC 各角的度数.解析:设∠A =x ,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.解:设∠A =x .∵AD =BD ,∴∠ABD =∠A =x .∵BD =BC ,∴∠BCD =∠BDC =∠ABD +∠A=2x .∵AB =AC ,∴∠ABC =∠BCD =2x .在△ABC 中,∠A +∠ABC +∠ACB =180°,∴x +2x+2x =180°,∴x =36°,∴∠A =36°,∠ABC =∠ACB =72°.方法总结:利用等腰三角形的性质和三角形外角的性质可以得到角与角之间的关系,当这种等量关系或和差关系较多时,可考虑列方程解答,设未知数时,一般设较小的角的度数为x .① ②【类型三】 利用“等边对等角”的性质进行证明【例4】 如图②,已知△ABC 为等腰三角形,BD 、CE 为底角的平分线,且∠DBC =∠F ,求证:EC ∥DF .解析:先由等腰三角形的性质得出∠ABC =∠ACB ,根据角平分线定义得到∠DBC =12∠ABC ,∠ECB =12∠ACB ,那么∠DBC =∠ECB ,再由∠DBC =∠F ,等量代换得到∠ECB =∠F ,于是根据平行线的判定得出EC ∥DF .证明:∵△ABC 为等腰三角形,AB =AC ,∴∠ABC =∠ACB .又∵BD 、CE 为底角的平分线,∴∠DBC =12∠ABC ,∠ECB =12∠ACB ,∴∠DBC =∠ECB .∵∠DBC =∠F ,∴∠ECB =∠F ,∴EC ∥DF .方法总结:证明线段的平行关系,主要是通过证明角相等或互补.【类型四】 利用等腰三角形“三线合一”的性质进行证明【例5】 如图①,点D 、E 在△ABC 的边BC 上,AB =AC .(1)若AD =AE ,求证:BD =CE ;(2)若BD =CE ,F 为DE 的中点,如图②,求证:AF ⊥BC .解析:(1)过A 作AG ⊥BC 于G ,根据等腰三角形的性质得出BG =CG ,DG =EG 即可证明;(2)先证BF =CF ,再根据等腰三角形的性质证明.证明:(1)如图①,过A 作AG ⊥BC 于G .∵AB =AC ,AD =AE ,∴BG =CG ,DG =EG ,∴BG-DG =CG -EG ,∴BD =CE ;(2)∵BD =CE ,F 为DE 的中点,∴BD +DF =CE +EF ,∴BF =CF .∵AB =AC ,∴AF ⊥BC .方法总结:在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.【类型五】 与等腰三角形的性质有关的探究性问题【例6】 如图①,已知△ABC 是等腰直角三角形,∠BAC =90°,BE 是∠ABC 的平分线,DE⊥BC ,垂足为D .(1)请你写出图中所有的等腰三角形;(2)请你判断AD 与BE 垂直吗?并说明理由.(3)如果BC =10,求AB +AE 的长.解析:(1)由△ABC 是等腰直角三角形,BE 为角平分线,可证得△ABE ≌△DBE ,即AB =BD ,AE =DE ,所以△ABD 和△ADE 均为等腰三角形;由∠C =45°,ED ⊥DC ,可知△EDC 也符合题意;(2)BE 是∠ABC 的平分线,DE ⊥BC ,根据角平分线定理可知△ABE 关于BE 与△DBE对称,可得出BE ⊥AD ;(3)根据(2),可知△ABE 关于BE 与△DBE 对称,且△DEC 为等腰直角三角形,可推出AB +AE =BD +DC =BC =10.解:(1)△ABC ,△ABD ,△ADE ,△EDC .(2)AD 与BE 垂直.证明:由BE 为∠ABC 的平分线,知∠ABE =∠DBE ,∠BAE =∠BDE =90°,BE =BE ,∴△ABE ≌△DBE ,∴△ABE 沿BE 折叠,一定与△DBE 重合,∴A 、D 是对称点,∴AD ⊥BE .(3)∵BE 是∠ABC 的平分线,DE ⊥BC ,EA ⊥AB ,∴AE =DE .在Rt △ABE 和Rt △DBE 中,∵⎩⎪⎨⎪⎧AE =DE ,BE =BE ,∴Rt △ABE ≌Rt △DBE (HL),∴AB =BD .又∵△ABC 是等腰直角三角形,∠BAC =90°,∴∠C =45°.又∵ED ⊥BC ,∴△DCE 为等腰直角三角形,∴DE =DC ,∴AB +AE =BD +DC =BC=10.① ②考点三:等腰三角形的判定方法(1)根据定义判定;(2)两个角相等的三角形是等腰三角形.【类型一】 确定等腰三角形的个数 【例7】 如图②,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是∠ABC 、∠BCD 的角平分线,则图中的等腰三角形有( )A .5个B .4个C .3个D .2个解析:共有5个.(1)∵AB =AC ,∴△ABC 是等腰三角形;(2)∵BD 、CE 分别是∠ABC 、∠BCD的角平分线,∴∠EBC =12∠ABC ,∠ECB =12∠BCD .∵△ABC 是等腰三角形,∴∠EBC =∠ECB ,∴△BCE 是等腰三角形;(3)∵∠A =36°,AB =AC ,∴∠ABC =∠ACB =12(180°-36°)=72°.又∵BD 是∠ABC 的角平分线,∴∠ABD =12∠ABC =36°=∠A ,∴△ABD 是等腰三角形;同理可证△CDE 和△BCD 也是等腰三角形.故选A.方法总结:确定等腰三角形的个数要先找出相等的边和相等的角,然后确定等腰三角形,再按顺序不重不漏地数出等腰三角形的个数.【类型二】 在坐标系中确定三角形的个数【例8】 已知平面直角坐标系中,点A 的坐标为(-2,3),在y 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A .3个B .4个C .5个D .6解析:因为△AOP 为等腰三角形,所以可分三类讨论:(1)AO =AP (有一个).此时只要以A 为圆心AO 长为半径画圆,可知圆与y 轴交于O 点和另一个点,另一个点就是点P ;(2)AO=OP (有两个).此时只要以O 为圆心AO 长为半径画圆,可知圆与y 轴交于两个点,这两个点就是P 的两种选择;(3)AP =OP (一个).作AO 的中垂线与y 轴有一个交点,该交点就是点P 的最后一种选择.综上所述,共有4个.故选B. 方法总结:解决此类问题的方法主要是线段垂直平分线与辅助圆的灵活运用以及分类讨论时做到不重不漏.【类型三】 判定一个三角形是等腰三角形【例9】如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的角平分线,AE与CD交于点F,求证:△CEF是等腰三角形.解析:根据直角三角形两锐角互余求得∠ABE=∠ACD,然后根据三角形外角的性质求得∠CEF=∠CFE,根据等角对等边求得CE=CF,从而求得△CEF是等腰三角形.证明:∵在△ABC中,∠ACB=90°,∴∠B+∠BAC=90°.∵CD是AB边上的高,∴∠ACD+∠BAC=90°,∴∠B=∠ACD.∵AE是∠BAC的角平分线,∴∠BAE=∠EAC,∴∠B+∠BAE=∠ACD+∠EAC,即∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.方法总结:“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.【类型四】等腰三角形性质和判定的综合运用【例10】如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEF的度数.解析:(1)根据等边对等角可得∠B=∠C,利用“边角边”证明△BDE和△CEF全等,根据全等三角形对应边相等可得DE=EF,再根据等腰三角形的定义证明即可;(2)根据全等三角形对应角相等可得∠BDE=∠CEF,然后求出∠BED+∠CEF=∠BED+∠BDE,再利用三角形的内角和定理和平角的定义求出∠B=∠DEF.(1)证明:∵AB =AC ,∴∠B =∠C .在△BDE 和△CEF 中,∵⎩⎪⎨⎪⎧BD =CE ,∠B =∠C ,BE =CF ,∴△BDE ≌△CEF (SAS),∴DE =EF ,∴△DEF 是等腰三角形;(2)解:∵△BDE ≌△CEF ,∴∠BDE =∠CEF ,∴∠BED +∠CEF =∠BED +∠BDE .∵∠B +∠BDE =∠DEF +∠CEF ,∴∠B =∠DEF .∵∠A =50°,AB =AC ,∴∠B =12×(180°-50°)=65°,∴∠DEF =65°.方法总结:等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.经典例题考点一:等腰三角形的概念【例1】等腰三角形的两边长分别为4和9,则这个三角形的周长为考点二:等腰三角形的性质【例3】已知等腰△ABC 中,AB=AC ,D 是BC 边上一点,连接AD ,若△ACD 和△ABD 都是等腰三角形,求∠C 的度数。

等腰三角形的性质与判定(6类热点题型讲练)(解析版) 八年级数学下册

等腰三角形的性质与判定(6类热点题型讲练)(解析版) 八年级数学下册

第01讲等腰三角形的性质与判定(6类热点题型讲练)1.经历“探索一发现一猜想一证明”的过程,逐步掌握综合法证明的方法,发展推理能力.2.进一步了解作为证明基础的几条基本事实的内容,能证明等腰三角形的性质.3.有意识地培养学生对文字语言、符号语言和图形语言的转换能力,关注证明过程及其表达的合理性.知识点01等腰三角形的性质(1)等腰三角形性质1:等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形性质2:文字:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称:等腰三角的三线合一)图形:如下所示;符号:在ABC ∆中,AB =AC ,1212,,;,,;,12.BD CD AD BC AD B BD CD AD BC C BD CD ∠=∠⎧⎪=⊥∠=∠⊥∠=∠⎨⎪⊥⎩==若则若则若,则知识点02等腰三角形的判定(1)等腰三角形的判定方法1:(定义法)有两条边相等的三角形是等腰三角形;(2)等腰三角形的判定方法2:有两个角相等的三角形是等腰三角形;(简称:等角对等边)题型01根据等腰三角形腰相等求第三边或周长【例题】(2023上·河南商丘·八年级商丘市实验中学校考阶段练习)一个等腰三角形的两条边长分别为8cm 和4cm ,则第三边的长为cm .【答案】8【分析】本题考查等腰三角形的性质及三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,是解题的关键.【详解】解:①若一腰长为8cm ,则底边为4cm ,则第三边的长为8cm ,488+>,故能组成三角形;②若一腰长为4cm ,则底边为8cm ,则第三边的长为4cm ,448+=,故不能组成三角形.故答案为:8.【变式训练】1.(2023上·甘肃陇南·八年级校考阶段练习)一个等腰三角形有两边分别为3cm 和8cm ,则周长是cm .【答案】19【分析】本题考查了等腰三角形的性质和三角形的三边关系.等腰三角形两边的长为3cm 和8cm ,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】解:①当腰是3cm ,底边是8cm 时:338+<,不满足三角形的三边关系,因此舍去.②当底边是3cm ,腰长是8cm 时,388+>,能构成三角形,则其周长()38819cm =++=.故答案为:19.2.(2023上·山东潍坊·八年级校考阶段练习)若()2450a b -+-=,则以a ,b 为边长的等腰三角形的周长为.【答案】13或14【分析】本题考查了等腰三角形的概念,非负数的性质,以及三角形的三边关系,注意利用分类讨论思想解题.根据非负数的和为零,可得每个非负数同时为零,可得a ,b 的值,根据等腰三角形的概念进行分类讨论,可得答案.【详解】解:∵()2450a b -+-=,且()240a -≥,50b -≥,∴40a -=,50b -=,解得:4a =,5b =,当4为等腰三角形的腰长,5为等腰三角形的底边时,则等腰三角形的周长为44513++=,当5为等腰三角形的腰长,4为等腰三角形的底边时,则等腰三角形的周长为55414++=,故答案为:13或14.题型02根据等腰三角形等边对等角求角的度数题型03根据等腰三角形三线合一进行求解【答案】25【详解】解:如图,作BE ∵AB BC =,∴AE CE =,∵AC CD ⊥,90BAD ∠=︒∴EBA BAE BAE ∠+∠=∠+EBA CAD BAE ∠=∠∠=,【答案】10【详解】解:AB 5BD CD ∴==,210BC BD ∴==,故答案为:10.2.两个同样大小的含(1)求AF 的长.(2)求CD 的长.【详解】(1)解:连接AF ,如下图,根据题意,90BAC ∠=︒,AB ∴222(2)BC AB AC =+=∴190452B ACB ∠=∠=⨯︒=︒,∵F 为BC 中点,题型04根据等腰三角形三线合一进行证明(1)若106BAC DAE ∠∠=︒,(2)求证:BD EC =.【详解】(1)解:∵AB AC =(1180ADE AED ∠=∠=︒∵,AB AC AD AE ==,∴,BF CF DF EF ==,∴BD CE =.【变式训练】1.(2023上·山东威海·七年级校联考期中)如图,已知AB AE ABC AED BC ED =∠=∠=,,,点F 是CD 的中点,连接AF ,请判断AF 与CD 的位置关系.【答案】垂直【分析】此题考查全等三角形的判定和性质,等腰三角形三线合一的性质:连接AC AD ,,证明ABC AED ≌△△,得到AC AD =,根据等腰三角形三线合一的性质得到AF CD ⊥,熟练掌握全等三角形的判定定理及等腰三角形的性质是解题的关键.【详解】答:AF CD⊥连接AC AD,∵AB AE ABC AED BC ED=∠=∠=,,∴ABC AED≌△△∴AC AD=又∵点F 是CD 的中点∴AF CD ⊥.2.如图,在ABC 中,AB AC =,40BAC ∠︒=,AD 是BC 边上的高.线段AC 的垂直平分线交AD 于点E ,交AC 于点F ,连接BE .(1)试问:线段AE 与BE 的长相等吗?请说明理由;(2)求EBD ∠的度数.【详解】(1)解:线段AE 与BE 的长相等,理由如下:连接CE ,如图所示:=,AD∵AB AC=,∴BD CD∴AD为BC的垂直平分线,∵点E在AD上,=,∴BE CE又∵线段AC的垂直平分线交题型05根据等角对等边证明等腰三角形∠,【例题】(2023上·广西玉林·八年级统考期中)如图,点E在BA的延长线上,已知AD平分CAE ∥.求证:ABCAD BC是等腰三角形.【答案】证明见解析【分析】本题主要考查了等角对等边,平行线的性质与角平分线的定义,先根据平行线的性质得到EAD B CAD C ∠=∠∠=∠,,再由角平分线的定义和等量代换得到B C ∠=∠,即可证明ABC 是等腰三角形.【详解】证明:∵AD BC ∥,∴EAD B CAD C ∠=∠∠=∠,,∵AD 平分CAE ∠,∴EAD CAD ∠=∠,∴B C ∠=∠,∴ABC 是等腰三角形.【变式训练】【答案】ABC 是等腰三角形,理由见解析【分析】本题主要考查了等腰三角形的判定,三角形外角的性质,角平分线的定义,设4ACD x ∠=,3ECD x =∠,由角平分线的定义得到13BEC x ABC =-∠∠,A =∠【答案】证明见解析【分析】本题考查了平行线的性质,等腰三角形的性质和判定,证明根据角平分线的定义可得,以及直线平行的性质证明题型06等腰三角形的性质和判定综合应用【例题】如图,在ABC 中,AB AC =,D 是BC 边的中点,连接AD ,BE 平分ABC ∠交AC 于点E .(1)若40C ∠=︒,求BAD ∠的度数;(2)过点E 作EF BC ∥交AB 于点F ,求证:BEF △是等腰三角形.(3)若BE 平分ABC 的周长,AEF △的周长为15,求ABC 的周长.【详解】(1)解:AB AC = ,C ABC ∴∠=∠,∵40C ∠=︒,∴40ABC ∠=︒,AB AC = ,D 为BC 的中点,AD BC ∴⊥,90BDA ∴∠=︒,∴90904050BAD ABC ︒︒︒︒∠=-∠=-=;(2)证明:BE 平分ABC ∠,ABE EBC ∴∠=∠,又∵EF BC ∥,∴EBC BEF ∠=∠,∴EBF FEB ∠=∠,BF EF ∴=,BEF ∴ 是等腰三角形;(3)解:AEF 的周长为15,15AE AF EF ∴++=,BF EF = ,15AE AF BF ∴++=,即15AE AB +=,BE 平分ABC 的周长,=15AE AB BC CE ∴++=,ABC ∴ 的周长+1515=30AE AB BC CE ++=+.【变式训练】1.如图,在ABC 中,AB AC =,D 为CA 延长线上一点,DE BC ⊥于点E ,交AB 于点F .(1)求证:ADF △是等腰三角形(2)若6,3,4AD BE EF ===,求线段AB 的长.(1)试判断折叠后重叠部分△的面积.(2)求重叠部分AFC△【详解】(1)解:AFC∵四边形ABCD是长方形,∥,∴AD BC一、单选题1.(2023上·河南许昌·八年级统考期中)等腰三角形的一个底角为80︒,则这个等腰三角形的顶角为().A .20︒B .80︒C .100︒D .20︒或100︒【答案】A【分析】本题主要查了等腰三角形的性质.根据“等腰三角形两底角相等”,即可求解.【详解】解:∵等腰三角形的一个底角为80︒,∴等腰三角形的顶角为180808020︒-︒-︒=︒.故选:A2.(2024下·全国·七年级假期作业)如图,在ABC 中,,AB AC AD =为BC 边上的中线,30B ∠=︒,则CAD ∠的度数为()A .50︒B .60︒C .70︒D .80︒【答案】B【解析】略3.(2023上·广东珠海·八年级校考阶段练习)下列条件中,可以判定ABC 是等腰三角形的是()A .40B ∠=︒,80C ∠=︒B .123A BC ∠∠∠=::::C .2A B C∠=∠+∠D .三个角的度数之比是2:2:1【答案】D 【分析】本题考查了等腰三角形的判定,三角形内角和定理,熟练掌握等腰三角形的判定是解题的关键.利用三角形内角和定理,等腰三角形的判定,进行计算并逐一判断即可解答.【详解】解:A .∵40B ∠=︒,80C ∠=︒,A .16【答案】A 【分析】此题考查的是全等三角形的判定与性质、等腰三角形的性质,解题关键是掌握并会运用全等三角形的判定与性质、等腰三角形性质定理.先得出ABD ACF ∠=∠,进而得到AF 长,求出AB 出即可.【详解】CE BD ⊥ ,90BEF ∴∠=︒,90BAC ∠=︒ ,90CAF ∴∠=︒,90FAC BAD ∴∠=∠=︒ABD ACF ∴∠=∠.在ABD △和ACF △中【答案】10︒,80︒,140︒或20︒【详解】本题考查了等腰三角形的性质,先利用三角形内角和定理可得:AP AB =时;当AP AB =时;当BA BP =解:∵130ABC ∠=︒,30ACB ∠=︒,+∵BAC ∠是ABP 的一个外角,∴20BAC APB ABP ∠=∠+∠=︒,∵AB AP =,∵AB AP=,20BAP∠=︒,∴180802BAPABP APB︒-∠∠=∠==︒;当BA BP=时,如图:∵BA BP=,∴20BAP BPA∠=∠=︒,∴180140ABP BAP BPA∠=︒-∠-∠=︒;当PA PB=时,如图:∵PA PB=,∴20BAP ABP∠=∠=︒;综上所述:当ABP是等腰三角形时,故答案为:10︒,80︒,140︒或20︒.11.(2023上·广东汕尾·八年级校联考阶段练习)用一条长为21cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的3倍,那么各边的长是多少?(2)能围成有一边的长为5cm的等腰三角形吗?如果能,请求出另两边长.【答案】(1)三角形的三边分别为3cm9cm9cm、、(2)能围成一个底边是5cm,腰长是8cm的等腰三角形【分析】本题考查了等腰三角形的性质,三角形的周长,难点在于要分情况讨论并利用三角形的三边关系进行判断.(1)设底边长为x cm,表示出腰长,然后根据周长列出方程求解即可;(1)求BD的长.(2)求BE的长.【答案】(1)4 (2)5,AE CD ⊥Q ,AD AC =,AE ∴平分CAD ∠,CAE DAE ∴∠=∠,在CAE V 和DAE 中,AC AD CAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩,()SAS CAE DAE ∴ ≌,CE DE ∴=,90ADE ACE ∠=∠=︒,设BE x =,则8CE DE x ==-,由勾股定理可得:222DE BD BE +=,()22284x x ∴-+=,解得:5x =,5BE ∴=.14.(2023上·浙江宁波·八年级统考期末)如图,在ABC 中,AB AC =,ED AB ∥,分别交BC 、AC 于点D 、E ,点F 在BC 的延长线上,且CF DE =,(1)求证:CEF △是等腰三角形;(2)连接AD ,当AD BC ⊥,8BC =,CEF △的周长为16时,求DEF 的周长.【答案】(1)证明见解析(2)20【分析】本题考查了等腰三角形的判定与性质,掌握等腰三角形的性质,等腰三角形的三线合一,是解答本题的关键.(1)利用等腰三角形的性质得到B ACB ∠=∠,然后推出EDC ECD ∠=∠,DE EC =,结合已知条件,得到结论.当AD BC ⊥时,AB AC =,∴142BD CD BC ===, DEF 的周长DE DF EF =++,∴DEF 的周长CE EF CD =+++15.(2023上·湖北武汉·八年级校联考阶段练习)的平分线,DF AB 交AE 的延长线于(1)若120BAC ∠=︒,求BAD ∠(2)求证:ADF △是等腰三角形.【答案】(1)60度(2)见解析(1)求证:BD CE =;(2)若BD AD =,B DAE ∠=∠,求【答案】(1)见解析(2)108BAC ∠=︒【答案】(1)等腰;(2)3;(3)12;(4)30;(5)5cm【分析】本题考查平行线的性质,角平分线的定义,对角对等边.(1)平行线的性质结合角平分线平分角,得到B C ∠=∠,即可得出结果;(2)平行线的性质结合角平分线平分角,得到A ABC CB =∠∠,进而得到AB AC =即可;(3)同法(2)可得:BD DE =,利用AB AD BD =+,求解即可;(5)同法(2)得到,PD BD PE CE ==,推出PDE △的周长等于BC 的长即可.掌握平行线加角平分线往往存在等腰三角形,是解题的关键.【详解】解:(1)∵AE BC ∥,∴,DAE B CAE C ∠=∠∠=∠,∵AE 平分DAC ∠,∴DAE CAE ∠=∠,∴B C ∠=∠,∴ABC 是等腰三角形;故答案为:等腰;(2)∵BC 平分ABD ∠,AC BD ∥,∴,ABC DBC ACB DBC ∠=∠∠=∠,∴A ABC CB =∠∠,∴3AB AC ==;故答案为:3;(3)同法(2)可得:7BD DE ==,∴5712AB AD BD =+=+=;故答案为:12;(4)同法(2)可得:,FD BD CE EF ==,∴ADE V 的周长30AD AE DE AD AE DF EF AD AE BD CE AB AC =++=+++=+++=+=;故答案为:30;(5)同法(2)可得:,PD BD PE CE ==,∴PDE △的周长5cm PD PE DE BD CE DE BC =++=++==;故答案为:5cm .18.(2023上·福建龙岩·八年级校考期中)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.(3)当ACD 是等腰三角形,DA DC =时,如图,则50ACD A ∠=∠=︒,50BCD A ∠=∠=︒∴100ACB ACD BCD ∠=∠+=︒∠;当ACD 是等腰三角形,DA AC =时,如图,则65ACD ADC ∠=∠=︒,50BCD A ∠=∠=︒,∴5065115ACB ∠=︒+︒=︒;当ACD 是等腰三角形,CD AC =的情况不存在;当BCD △是等腰三角形,DC BD =时,如图,则1803ACD BCD B ︒-∠=∠=∠=∴2603ACB ACD BCD ∠=+=∠∠当BCD △是等腰三角形,DB =则BDC BCD ∠=∠,设BDC BCD x ∠=∠=,则B ∠=则1802ACD B x ∠=∠=︒-,由题意得,180250x x ︒-+︒=,解得,2303x ︒=,∴8018023ACD x ︒∠=︒-=,∴3103ACB ︒∠=,综上所述:ACB ∠的度数为100。

人教版八年级数学上册等腰三角形

人教版八年级数学上册等腰三角形

么现象?
B D CB D C
1、等腰三角形是轴对称图形
2、∠B =∠C
3、BD = CD ,AD 为底边上的中线 4、∠ADB = ∠ADC = 90°,AD为底边上的高
5、∠BAD = ∠CAD ,AD为顶角平分线 问题1、结论(2)用文字如何表述? A
等腰三角形的两个底角相等
(简写“等边对等角”)
等腰三角形的周长为 20或22
4.等腰三角形有两边长为4和8,则该
等腰三角形的周长为 20
5.等腰三角形的底角可以是直角或钝 角吗?为什么?
补充例题:
(2)当A 140时,求BCD的度数;A
(3)当A 时,求BCD的度数;
D
B
C
在三角形ABC中,AB=AC,且AD ⊥BC,已知∠ 1=20°,求 ∠2=_____度,∠A=______度?
问题2、结论(3)、(4)、(B5)D C 用一句话可以归纳为什么?
等腰三角形的顶角平分线、底边上的中线
和底边上的高互相重合,简称“三线合一”
(1)“等腰三角形”是三线合一的大前提
(2)要注意是哪三线?
做一做2:画出手中等腰三角形 的某一底角平分线、对边(腰) 上的中线和高,看是否重合?
如图:BF为AC边上的高,BE
第十二章 轴对称
等腰三角形
魁星阁
金字 塔
侗寨吊脚楼
等腰三角形 一.基本概念
1.定义:
两条边相等的三角形叫做 等腰三角形.
如图AB=AC, 三角形
就是等腰
2.等腰三角形的基本要素: 相等的两边叫做腰 另一边叫做 底边
两腰的夹角叫做顶角
腰和底边的夹角叫做底角
顶角
A
腰腰

八年级上册数学1等腰三角形(人教版)

八年级上册数学1等腰三角形(人教版)
解:∵AB=AC,BD=BC=AD, ∴ ∠ABC=∠C=∠BDC, ∠A=∠ABD(等边对等角)
设∠A=x,则 ∠BDC=∠A+∠ABD=2x
从而 ∠ABC=∠C=∠BDC=2x.
于是在△ABC中,有 ∠A+∠ABC+∠C=x+2x+2x=180°
解得x=36° 所以, 在△ABC中,∠A=36°, ∠ABC=∠C=72°
在等腰三角形性质的探索过程和证明过程中,“折 痕”“辅助线”发挥了非常重要的作用,由此,你能发 现等腰三角形具有什么特征?
等腰三角形是轴对称图形,底边上的中线(顶角平 分线、底边上的高)所在直线就是它的对称轴.
例 如图,在△ABC中,AB=AC,点D在AC上, 且BD=BC=AD.求△ABC各角的度数
∵ ∠ADB +∠ADC =180°, 例 如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.
的中线.求证:∠BAD =∠CAD,AD⊥BC. 证明:作底边的中线AD.
(1)你能根据结论画出图形,写出已知、求证吗? 你还有其他方法证明性质1吗?
(3)已知等腰三角形的一个内角为70°,则它的另外两 探索并证明等腰三角形的性质
∴ ∠B =∠C.

C
D
探索并证明等腰三角形的性质
你还有其他方法证明性质1吗? 可以作底边的高线或顶角的角平分线.
A

C
D
探索并证明等腰三角形的性质
性质2可以分解为三个命题,本节课证明“等腰三 角形的底边上的中线也是底边上的高和顶角平分线”.
探索并证明等腰三角形的性质
已知:如图,△ABC 中,AB =AC,AD 是底边BC
探索并证明等腰三角形的性质 2.能利用性质证明两个角相等或两条线段相等.

八年级《等腰三角形》数学教案4篇

八年级《等腰三角形》数学教案4篇

八年级《等腰三角形》数学教案4篇教案,也称课时计划,教师经过备课,以课时为单位设计的具体教学方案,教案是上课的重要依据,通常包括:班级、学科、课题、上课时间、课的类型、教学方法、教学目的、教学内容、课的进程和时间分配等。

以下是我为大家整理的,感谢您的欣赏。

八年级《等腰三角形》数学教案1教学目标(一)教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.教学重点1.等腰三角形的概念及性质.2.等腰三角形性质的应用.教学难点等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本P138探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.(演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在ABC中,AB=AC,作底边BC的中线AD,因为所以BAD≌CAD(SSS).所以∠B=∠C.[生乙]如右图,在ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为所以BAD≌CAD.所以BD=CD,∠BDA=∠CDA=∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:ABC各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD,∠ABC=∠C=∠BDC,•再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,•就可求出ABC的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.(课件演示)[例]因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.在ABC中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习(一)课本P141练习1、2、3.练习1.如下图,在下列等腰三角形中,分别求出它们的底角的度数.答案:(1)72°(2)30°2.如右图,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B、∠C、∠BAD、∠DAC的度数,图中有哪些相等线段?答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD.3.如右图,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本P138~P140,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.课后作业(一)课本P147─1、3、4、8题.(二)1.预习课本P141~P143.2.预习提纲:等腰三角形的判定.Ⅵ.活动与探究如右图,在ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质.结果:证明:延长CD交AB的延长线于P,如右图,在ADP 和ADC中ADP≌ADC.∠P=∠ACD.又DE∥AP,∠4=∠P.∠4=∠ACD.DE=EC.同理可证:AE=DE.AE=CE.板书设计§14.3.1.1等腰三角形(一)一、设计方案作出一个等腰三角形二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业八年级《等腰三角形》数学教案2一、教材的地位和作用现实生活中,等腰三角形的应用比比皆是.所以,利用“轴对称”的知识,进一步研究等腰三角形的特殊性质,不仅是现实生活的需要,而且从思想方法和知识储备上,为今后研究“四边形”和“圆”的性质打下坚实的基础.性质“等腰三角形的两个底角相等”是几何论证过程中,证明“两个角相等”的重要方法之一.“等腰三角形底边上的三条重要线段重合”的性质是今后证明“两条线段相等”“两条直线互相垂直”“两个角相等”等结论的重要理论依据.教学重点:1. 让学生主动经历思考和探索的过程.2. 掌握等腰三角形性质及其应用.教学难点:等腰三角形性质的理解和探究过程.二、学情分析本年级的学生已经研究过一般三角形的性质,积累了一定的经验,动手能力强,善于与同伴交流,这就为本节课的学习做好了知识、能力、情感方面的准备.不同层次的学生因为基础不同,在学习中必然会出现相异构想,这也将是我在教学过程中着重关注的一点.三、目标分析知识与技能1.了解等腰三角形的有关概念和掌握等腰三角形的性质2. 了解等边三角形的概念并探索其性质3. 运用等腰三角形的性质解决问题过程与方法1.通过观察等腰三角形的对称性,发展学生的形象思维.2.探索等腰三角形的性质时,经历了观察、动手实践、猜想、验证等数学过程,积累数学活动经验,发展了学生的归纳推理,类比迁移的能力. 在与他人交流的过程中,能运用数学语言合乎逻辑的进行讨论和质疑,提高了数学语言表达能力.情感态度价值观:1.通过情境创设,使学生感受到等腰三角形就在自己的身边,从而使学生认识到学习等腰三角形的必要性.2.通过等腰三角形的性质的归纳,使学生认识到科学结论的发现,是一个不断完善的过程,培养学生坚强的意志品质.3.通过小组合作,发展学生互帮互助的精神,体验合作学习中的乐趣和成就感.四、教法分析根据学生已有的认知,采取了激疑引趣——猜想探究——应用体验——建构延伸的教学模式,并利用多媒体辅助教学.教学过程教学过程设计意图同学们,我们在七年级已研究了一般三角形的性质,今天我们一起来探究特殊的三角形:等腰三角形.等腰三角形的定义有两条边相等的三角形叫做等腰三角形.等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角.腰和底边的夹角叫做底角.提出问题:生活中有哪些现象让你联想到等腰三角形?首先让学生明确:本学段的几何图形都是按一般的到特殊的顺序研究的.通过学生描述等腰三角形在生活中的应用,让学生感受到数学就在我们身边,以及研究等腰三角形的必要性.剪纸游戏你能利用手中的这个矩形纸片剪出一个等腰三角形吗? 注意安全呦!学情分析:大部分学生会有自己的想法,根据轴对称图形的性质,利用对折纸片,再“剪一刀”就是就得到了两条“腰”;可能还有的同学会利用正方形的折法,获得特殊的等腰直角三角形;可能还有同学先画图,再依线条剪得.在这个过程中,注重落实三维目标.让学生在获取新知的过程中更好的认识自我,建立自信.我不失时机的对学生给予鼓励和表扬,使活动更加深入,课堂充满愉悦和温馨.知其然,更重要的是知其所以然.因此,我力求让学生关注剪法的理性思考.我设计了问题:你是如何想到的? 为的是剖析学生的思维过程:“折叠”就是为了得到“对称轴”,“剪一刀”就是就得到了两条“腰”,由“重合”保证了“等腰”.这样就建立了“操作”与“证明”的中间桥梁.从实际操作中得到证明的方法,也为发现“三线合一”做了铺垫.提出问题:等腰三角形还有什么性质?请提出你的猜想,验证你的猜想?并填写在学案上.合作小组活动规则:1、有主记录员记录小组的结论;2、定出小组的主发言人(其它同学可作补充);3、小组探究出的结论是什么?4、说明你们小组所获得结论的理由.等腰三角形的性质:性质一:等腰三角形的两个底角相等(简称“等边对等角”).性质二:等腰三角形顶角的平分线、底边上的中线、底边上的高重合(简称“三线合一”).学情分析:这个环节是本节课的重点,也是教学难点.尽管在教学过程中,因为学生的相异构想,数学猜想的初始叙述不准确,甚至不正确,但我不会立即去纠正他们,而是让同学们不断地质疑﹑辨析、研讨和归纳,逐渐完善结论.让他们真正经历数学知识的形成过程,真正的体现以人为本的教学理念,努力创设和谐的教育教学的生态环境.通过设置恰当的动手实践活动,引导学生经历观察、动手实践、猜想、验证等数学探究活动,这种探究的学习过程,恰恰是研究几何图形性质的一般规律和方法.(1)在此环节中,我的教学要充分把握好“四让”:能让学生观察的,尽量让学生观察;能让学生思考的,尽量让学生思考;能让学生表达的,尽量让学生表达;能让学生作结论的,尽量让学生作结论.这种教学方式,把学习的过程真正还给学生,不怕学生说不好,不怕学生出问题,其实学生说不好的地方、学生出问题的地方都正是我们应该教的地方,是教学的切入点、着眼点、增长点.(2)教师在这个过程中,充分听取和参与学生的小组讨论,对有困难的学生,及时指导.巩固知识1.等腰三角形顶角为70°,它的另外两个内角的度数分别为________;2.等腰三角形一个角为70°,它的另外两个内角的度数分别为_____;3.等腰三角形一个角为100°,它的另外两个内角的度数分别为_____.内化知识1.如图1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度数吗?知识迁移等边三角形有什么特殊的性质?简单地叙述理由.等边三角形的性质定理:等边三角形的各角都相等,并且每一个角都等于60°.拓展延伸如图2,在△ABC中,AB=AC,点D,E在BC上,AD=AE,你能说明BD=EC?由于学生之间存在知识基础、经验和能力的差异,我为学生提供了层次分明的反馈练习.将练习从易到难,从简到繁,以适应不同阶段、不同层次的学生的需要.让学生拾阶而上,逐步掌握知识,使学困生达到简单运用水平,中等生达到综合运用水平,优等生达到创建水平.畅谈收获总结活动情况,重在肯定与鼓励.引导学生从本课学习中所得到的新知识,运用的数学思想方法,新旧知识的联系等方面进行反思,提高学生自主建构知识网络、分析解决问题的能力.帮助学生梳理知识,回顾探究过程中所用到的从特殊到一般的数学方法,启发学生更深层次的思考,为学生的下一步学习做好铺垫.反思过程不仅是学生学习过程的继续,更重要的是一种提高和发展自己的过程.基础性作业:P65 习题1、2、3、4八年级《等腰三角形》数学教案3教学目标:【知识与技能】1、理解并掌握等腰三角形的性质。

等腰三角形的判定定理(2个知识点+12大题型+18道强化训练)(学生) 24-25学年八年级数学上册

等腰三角形的判定定理(2个知识点+12大题型+18道强化训练)(学生) 24-25学年八年级数学上册

第04讲等腰三角形的判定定理(2个知识点+12大题型+18道强化训练)知识点01:等腰三角形的判定等腰三角形的判定①有两条边相等的三角形是等腰三角形。

②有两个角相等的三角形是等腰三角形。

(简称“等角对等边”)总结:【即学即练1】已知等腰三角形的一边长为5cm ,另一边长为11cm ,则它的周长为( )A .16cmB .27cmC .21cmD .21cm 或27cm【即学即练2】如图,在ABC D 中,AB AC =,AD BD =,DE AB ^于点E ,若4BC =,BDC D 的周长为10,则AE 的长为( )A .2.5B .3C .3.5D .4知识点02:等边三角形的判定1、判定:①三条边都相等的三角形是做等边三角形②三个角都相等的三角形是等边三角形③有一个角是60°的等腰三角形是等边三角形。

2、等腰三角形和等边三角形的判定【即学即练3】下列四个说法中,正确的有( )①三个角都相等的三角形是等边三角形;②有两个角等于60°的三角形是等边三角形;③有一个角是60°的等腰三角形是等边三角形;④有两个角相等的等腰三角形是等边三角形.A .1个B .2个C .3个D .4个【即学即练4】若一个三角形有两条边相等,且有一内角为60°,那么这个三角形一定为( )A .钝角三角形B .等腰三角形C .直角三角形D .正三角形题型01 格点中画等腰三角形1.如图,在33´的网格中,以AB 为一边,点P 在格点处,使ABP V 为等腰三角形的点P 有( )个A .2个B .5个C.3个D .1个2.在正方形网格中,网格线的交点成为格点,如图,A 、B 分别在格点处,若C 也是图中的格点,且使得ABC V 是以AB 为腰的等腰三角形,则符合条件的点C 有( )A .7个B .6个C .5个D .4个3.如图,在正方形网格中,网格线的交点称为格点.已知A 、B 是网格中的两个格点,如果C 也是网格中的格点,且使ABC V 为等腰三角形,那么符合条件的点C 有 个.4.如图,在4×5的点阵图中,每两个横向和纵向相邻阵点的距离均为1,该点阵图中已有两个阵点分别标为A ,B ,请在此点阵中找一个阵点C ,使得以点A ,B ,C 为顶点的三角形是等腰三角形,则符合条件的点C 有 个.5.如图,在方格纸中,每一个小正方形的边长为1,按要求画一个三角形,使它的顶点都在小方格的顶点上.(1)在图1中画一个以AB 为直角边且面积为3的直角三角形.(2)在图2中画一个以AC 为腰的等腰三角形.题型02 找出图中的等腰三角形1.如图,在ABC V 中,AB AC =,72B Ð=°,CD 平分ACB Ð交AB 于点D ,DE AC ∥交BC 于点E ,则图中共有等腰三角形( )A .3个B .4个C .5个D .6个2.如图,已知线段AB 的端点B 在直线l 上(AB 与l 不垂直)请在直线l 上另找一点C ,使ABC V 是等腰三角形,这样的点能找( )A .2个B .3个C .4个D .5个3.如图,在ABC V 中,已知边AB 的垂直平分线与边BC 的垂直平分线交于点P ,连接PA PB PC 、、,则图中有 个等腰三角形.4.如图,已知ABC V 中,37AB BC ==,,在ABC V 所在平面内一条直线,使其中有一个边长为3的等腰三角形,则这样的直线最多可画 条.5.如图,在四边形ABCD 中,AB ∥CD ,∠1=∠2,DB=DC .(1)求证:AB+BE=CD .(2)若AD=BC ,在不添加任何补助线的条件下,直接写出图中所有的等腰三角形.题型03 根据等角对等边证明等腰三角形1.一个三角形两个内角的度数分别如下,这个三角形是等腰三角形的是( )A .40°,70°B .30°,90°C .60°,50°D .40°,20°2.在ABC V 中,36A Ð=°,72B Ð=°,则ABC V 是( )A .钝角三角形B .等腰三角形C .等边三角形D .等腰直角三角形3.在ABC V 中,若50B Ð=°,65C =°∠,则ABC V 等腰三角形.(填“是”或“不是”)4.在ABC V 中,90A Ð=°,当B Ð= 度时,ABC V 是等腰三角形.5.如图,在ABC V 中,60,40,BAC C ABC Ð=°Ð=°Ð的平分线BD 交AC 于点D .判断BCD △是否为等腰三角形?请说明理由.题型04 根据等角对等边证明边相等1.如图,在ABC V 中,6BC =,边AB 的垂直平分线交BC 于M ,点N 在MC 上,连接AM ,AN ,C NAC Ð=Ð,则MAN △的周长为( )A .6B .4C .3D .122.在ABC V 中,AD 平分235BAC B ADB AB CD ÐÐ=Ð==,,,,则AC 的长为( )A .6B .7C .8D .93.如图,在ABC V 中,ABC Ð和ACB Ð的平分线交于点E ,过点E 作MN BC ∥交AB 于M ,交AC 于N ,若8BM CN +=,则线段MN 的长为 .4.如图,在ABC V 中,4AB =,6AC =,ABC Ð和ACB Ð的平分线交于O 点,过点O 作BC 的平行线交AB 于M 点,交AC 于N 点,则AMN V 的周长为 .5.如图,ABC V 中,CA CB =,点D 在BC 的延长线上,连接AD AE ,平分CAD Ð交CD 于点E ,过点E 作EF AB ^,垂足为点F ,与AC 相交于点G ..(1)求证:CG CE =;(2)若30B Ð=°,40CAD Ð=°,求AEF Ð和D Ð的度数;(3)求证:2D AEF Ð=Ð.题型05 根据等角对等边求边长1.如图,在ABC V 中,B C Ð=Ð,4AB =,则AC 的长为( )A .2B .3C .4D .52.如图,在ABC V 中,ABC Ð的平分线交AC 于点D ,6AD =,过点D 作DE BC ∥交AB 于点E ,若AED △的周长为16,则边AB 的长为( )A .10B .8C .6D .163.如图,在ABC V 中,12AB =,9AC =,沿过点A 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为AD ,若12ADE C Ð=Ð,则BD 的长是 .4.如图,在Rt ABC △中,90C Ð=°,10AC =,12BC =,点D 是AC 边的中点,点E 是BC 边上一动点,将CDE V 沿DE 折叠得到C DE ¢V ,连接BC ¢,当BEC ¢△是直角三角形时,BE 的长为 .5.如图,100,40203BAC B D AB Ð=°Ð=°Ð=°=,,,求CD 的长.题型06 直线上与已知两点组成等腰三角形的点1.点A ,B 在直线l 同侧,若点C 是直线l 上的点,且ABC V 是等腰三角形,则这样的点C 最多有( )A .5个B .4个C .3个D .2个2.在平面直角坐标系中,O 为坐标原点,点A 的坐标为(3,4),点P 是坐标轴上的一点,使OAP V 为等腰三角形的点P 的个数有( )A .5个B .6个C .7个D .8个3.如图,点O 在直线l 上,点A 在直线l 外.若直线l 上有一点P 使得APO △为等腰三角形,则满足条件的点P 位置有 个.4.如图,已知Rt ABC △中,90,30Ð=°Ð=°C A .在直线BC 或AC 上取一点P ,使得PAB V 是等腰三角形,则符合条件的P 点有 个.5.如图,在直线EF 上有一点A ,直线外有一点B ,点C 在直线EF 上,ΔABC 是以AB 、AC 为腰的等腰三角形.(1)在图中画出ΔABC(2)已知40BAF Ð=°,求BCAÐ题型07 求与图形中任意两点构成等腰三角形的点1.已知ABC V 中,AB AC =.108A Ð=°,在平面内找一点P ,使得PAB V ,PAC V ,PBC V 都是等腰三角形,则这样的P 点有( )个A .4B .6C .8D .102.已知:如图ABC V 中,=60B а,80C Ð=°,在直线BA 上找一点D ,使ACD V 或BCD △为等腰三角形,则符合条件的点D 的个数有( )A .7个B .6个C .5个D .4个3.如图,在ABC V 中,25,100B A Ð=°Ð=°,点P 在ABC V 的三边上运动,当PAC V 成为等腰三角形时,其顶角的度数是 .4.如图,60AOB Ð=°,C 是OB 延长线上一点,若18cm OC =,动点P 从点C 出发沿CB 以2cm/s 的速度移动,动点Q 从点O 沿OA 以1cm/s 的速度移动,如果点P 、Q 同时出发,用()t s 表示移动的时间,当t = s时,POQ △是等腰三角形?5.如图,在ABC V 中,AB AC BC ==,ABC V 所在的平面上有一点P (如图中所画的点1P ),使PAB V ,PBC △, PAC V 都是等腰三角形,问:具有这样性质的点P 有几个(包括点1P )?在图中画出来.题型08 作等腰三角形(尺规作图)1.如图,已知直线m n P ,线段AC 分别与直线m ,n 相交于点B 、点C ,以点A 为圆心,AB 的长为半径画弧交直线m 于点B 、点D .若70A Ð=°,则a 的度数为( )A .45°B .50°C .55°D .60°2.如图,已知直线l 及直线l 外一点P ,过点P 作直线l 的平行线,下面四种作法中错误的是( )A .B .C .D .3.如图,在Rt △ABC 中,∠ACB =90°,∠A =50°,以点B 为圆心,BC 长为半径画弧,交AB 于点D ,连接CD ,则∠ACD 的度数是 .4.如图,直线a b ,相交于点O ,150а=,点A 是直线上的一个定点,点B 在直线b 上运动,若以点O ,A ,B 为顶点的三角形是等腰三角形,则OAB Ð的度数是 .5.已知:线段a ,h ,求作等腰ABC V ,使底边BC a =,高AD h =,(要求:用尺规作图,保留作图痕迹,不必写作法和证明).题型09 等腰三角形的性质和判定1.如图,ABC V 中,AB AE =,且AD BC EF ^,垂直平分AC ,交AC 于点F ,交BC 于点E ,若ABC V 周长为166AC =,,则DC 为( )A .5B .8C .9D .102.如图,在ABC V 中,16AB AC ==,点E 是BC 边上任意一点,过点E 分别作AB AC ,的平行线,交AC 于点F ,交AB 于点D ,则四边形ADEF 的周长是( )A .32B .24C .16D .83.如图,在ABC V 中,BD 和CD 分别是ABC Ð和ACB Ð的平分线,EF 过点D ,且EF BC ∥,若,BE CF ==34,则EF 的长为 .4.如图,在Rt ABC △中,90A Ð=°,30C Ð=°,作边BC 的垂直平分线,交AC 于点D ,交BC 于点E .若3AD =,则DE 的长为 .5.如图,在ABC V 中,点E 在AB 上,点D 在BC 上,BD BE =,BAD BCE Ð=Ð,AD 与CE 相交于点F .(1)证明:BA BC =;(2)求证:AFC V 为等腰三角形.题型10 三角形边角的不等关系1.若等腰三角形的一边长等于2,另一边长等于3,则它的周长等于( ).A .7B .8C .9D .7或82.如图,ABC V 中,5,9,10,AB AC BC EF ===垂直平分BC ,点P 为直线EF 上的任一点,则ABP V 周长的最小值是( )A .10B .14C .15D .193.等腰三角形周长为20,一边长为4,则另两边长为 .4.等腰三角形的一边是7,另一边是4,其周长等于 .5.已知a 、b 、c 为ABC V 的三边长,a 、b 满足2(2)|3|0a b -+-=,且c 为方程|6|3x -=的解,求ABC V 的周长并判断ABC V 的形状.题型11 等边三角形的判定1.在下列命题中:①有一个外角是120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形;③有一边上的高也是这边上的中线的三角形是等边三角形;④三个外角都相等的三角形是等边三角形.正确的命题有( )A .4个B .3个C .2个D .1个2.在ABC V 中,60A Ð=°,添加下列一个条件后,仍不能判定ABC V 为等边三角形的是( )A .AB AC =B .AD BC ^C .B C Ð=ÐD .A CÐ=Ð3.在ABC V 中,B C Ð=Ð,若添加一个条件使ABC V 是等边三角形,则添加的条件可以是 .(写出一个即可)4.已知a ,b ,c 为ABC V 三边的长,当222222ab a b c bc +=++时,则ABC V 的形状是 .5.如图,在四边形ABCD 中,AD BC ∥,B D Ð=Ð,点E 在BA 的延长线上,连接CE .(1)求证:E ECD Ð=Ð;(2)若60E Ð=°,CE 平分BCD Ð,请判断BCE V 的形状并说明理由.题型12 等边三角形的判定和性质1.如图,30AOB Ð=°,点P 在AOB Ð的内部,点C ,D 分别是点P 关于OA OB 、的对称点,连接CD 交OA OB 、分别于点E ,F ;若PEF !的周长的为9,则线段OP =( )A .8B .9C .10D .112.若一个等腰三角形一腰上的高等于腰的一半,则这个等腰三角形的底角为( )A .75°B .15°C .30°或150°D .15°或75°3.如图,已知30AOB Ð=°,P 是AOB Ð内部的一个定点,且1OP =,点E 、F 分别是OA 、OB 上的动点,则PEF !周长的最小值等于 .4.如图,等边ABC V 的边长为4cm ,点Q 是AC 的中点,若动点P 以2cm /秒的速度从点A 出发沿A B A ®®方向运动设运动时间为t 秒,连接PQ ,当APQ △是等腰三角形时,则t 的值为 秒.5.如图,D 是等边ABC V 外的一点,3BC =,DB DC =,120BDC Ð=°,点E 、F 分别在AB 和AC 上.(1)求证:AD 是BC 的垂直平分线(2)若ED 平分BEF Ð,①证明:FD 平分EFC Ð;②求AEF △的周长.1.如图,ABC V 中,AB AE =,且AD BC ^,EF 垂直平分AC ,交AC 于点F ,交BC 于点E ,若ABC V 周长为16,6AC =,则DC 为( )A .5B .8C .9D .102.如图,在ABC V 中,AB AC =,45BAC Ð=°,AD BC ^于点D ,BE AC ^于点E ,交AD 于点F ,若10AF =,则BD 的长为( )A .4B .5C .8D .103.如图,在ABC V 中,AB AC =,120A Ð=°,6cm BC =,AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为( )A .4cmB .3cmC .2cmD .1cm4.如图,D 为ABC V 内一点,CD 平分ACB Ð,BD CD ^,A ABD Ð=Ð,若5AC =,3BC =,则BD 的长为( )A .1B .1.5C .2D .2.55.如图,在AOB V 和COD △中,OA OB =,OC OD =,OA OC <,36AOB COD Ð=Ð=°.连接AC BD 、交于点M ,连接OM .下列结论:①BOM COM Ð=Ð;②AC BD =;③OM 平分AMD ∠;④144AOD Ð=°,⑤MOC MOD V V ≌其中正确的结论个数有( )个.A .5B .4C .3D .26.如图,在四边形OAPB 中,120AOB Ð=°,OP 平分AOB Ð,且2OP =,若点M 、N 分别在直线OA OB 、上,且PMN V 为等边三角形,则满足上述条件的PMN V 有( )A .1个B .2个C .3个D .3个以上7.如图,ABC V 中,BO 、CO 分别平分ABC Ð和ACB Ð,过点O 平行于BC 的直线分别交AB 、AC 于点D 、E ,已知9cm AB =,8cm AC =,ADE V 的周长为 .8.如图,60AOB Ð=°,C 是BO 延长线上一点,12cm OC =,动点M 从点C 出发沿射线CB 以2cm /s 的速度移动,动点N 从点O 出发沿射线OA 以1cm /s 的速度移动,如果点M 、N 同时出发,设运动的时间为s t ,那么当t = s 时,MON △是等腰三角形.9.已知,在ABC V 中,AB AC =,BD AC ^于点D ,AE BC ^于点E ,若50BAC Ð=°,则DCO Ð= °.10.如图,在ABC V 中,AB AC =,AD 是ABC V 的中线,点E 在AC 上,且AE AD =,连接DE ,若20CDE Ð=°,则B Ð的度数为 °.11.定义:如果一个三角形能被过顶点的一条线段分割成两个等腰三角形,则称这个三角形为特异三角形,如图,ABC V 中,36,A B Ð=°Ð为钝角,则使得ABC V 是特异三角形所有可能的B Ð的度数为 .12.已知在ABC V 中,40A Ð=°,D 为边AC 上一点,ABD △和BCD △都是等腰三角形,则C Ð的度数可能是 .13.如图,在ABC V 中,AB AC D =,是BC 边上一点,以AD 为边在AD 右侧作ADE V ,使AE AD =,连接108CE BAC DAE Ð=Ð=°,(1)求证:BAD CAE V V ≌;(2)若DE DC =,求CDE Ð的度数.14.如图,点D 、E 在ABC V 的边BC 上,AD AE =,BD CE =.(1)求证:AB AC =.(2)若108,2180BAC DAE BAC Ð=°Ð+Ð=°,直接写出图中除ABC V 与ADE V 外所有等腰三角形.15.如图,在等边ABC V 中,点D 在边BC 上,过点D 作DE AB ∥交AC 于点E ,过点E 作EF DE ^,交BC 的延长线于点F .(1)求F Ð的度数;(2)求证:DC CF =.16.如图,已知ABC V 中,D 为BC 上一点,AB AD =,E 为ABC V 外部一点,满足AC AE =,连结DE ,与AC 交于点O ,且CAE BAD Ð=Ð.(1)求证:ABC ADE △≌△;(2)若25BAD Ð=°,求EDC Ð的度数.17.如图,已知在ABC V 中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点,点P 在线段BC 上以3厘米/秒如果点P 在线段BC 上以3厘米每秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.(1)若点Q 的运动速度与点p 的运动速度相等,经一秒后,三角形BPD 与三角形CQP 是否全等,请说明理由;(2)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度是多少时,能够使三角形BPD 与三角形CQP 全等?18.(1)【问题提出】如图1,在Rt ABC △和Rt CDE △,已知90ACE B D Ð=Ð=Ð=°,AC CE =,B 、C 、D 三点在一条直线上,5AB =, 6.5DE =,则BD 的长度为______.(2)【问题提出】如图2,在Rt ABC △中,90ABC Ð=°,4BC =,过点C 作CD AC ^,且CD AC =,求BCD △的面积.(3)【问题解决】某市打造国家级宜居城市,优化美化人居生态环境.如图3所示,在河流BD 的周边规划一个四边形ABCD 巨无霸森林公园,按设计要求,在四边形ABCD 中,45ABC CAB ADC Ð=Ð=Ð=°,AC BC =,ACD V 面积为212km ,且CD 的长为6km ,则河流另一边森林公园BCD △的面积为______2km .。

八年级数学等腰三角形课件.

八年级数学等腰三角形课件.

∴∠B=∠C(等边对等角)
第十四页,共24页。
证法欣赏
方法一:作顶角∠BAC的平分线AD。
A ∵AD平分∠BAC
方法二:作底边BC的高AD。
∵AD⊥BC
A
∴∠1=∠2 在△ABD与△ACD中
1
∴ ∠ADB =∠ADC=90°
2
在△ABD与△ACD中
AB=AC(已知)
∠ADB =∠ADC=90°
∠1=∠2(已证) B
分?并指出重合的部分是什么?
(3)由这些重合的部分,你能发现等腰三角形的性质吗?说一说你的猜想。
第四页,共24页。
动画演示
(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有 没有重合的部分?并指出重合的部分是什么?
A
B
C
第五页,共24页。
动画演示
(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有 没有重合的部分?并指出重合的部分是什么?
∴∠ABC=∠C=∠BDC=2 x
∴∠A+∠ABC+∠C= x 2x 2x 1800
x 360
在△ABC中∠A=36度 ∠ABC=∠C=72度
第十八页,共24页。
基础训练
(1)已知等腰三形的一个顶角为36° ,则它的两个底角
分别为
72° 、72° .
(2)已知等腰三角形的一个角为40°,则其它两个角
A
B
C
第六页,共24页。
动画演示
(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没
有重合的部分?并指出重合的部分是什么?
A
B
C
第七页,共24页。
动画演示
(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有 没有重合的部分?并指出重合的部分是什么?

八年级数学人教版(上册)第1课时等腰三角形的性质

八年级数学人教版(上册)第1课时等腰三角形的性质
角的平分线,且∠DBC=∠F,求证:EC∥DF.
证明:∵△ABC为等腰三角形,AB=AC,
∴∠ABC=∠ACB.
又∵BD、CE为底角的平分线,
∴ DBC 1 ABC,ECB 1 ACB,
2
2
∴∠DBC=∠ECB.
∵∠DBC=∠F,∴∠ECB=∠F,
∴EC∥DF. 侵权必究
当堂练习
7.A、B是4×4网格中的格点,网格中的每个小正方 形的边长为1,请在图中标出使以A、B、C为顶点 的三角形是等腰三角形的所有格点C的位置.
侵权必究
当堂练习
✓ 当堂反馈 ✓ 即学即用
侵权必究
当堂练习
1.等腰三角形有一个角是90°,则另两个角分别是( B )
A.30°,60°
B.45°,45°
C.45°,90°
D.20°,70°
2.如图,在△ABC中,AB=AC,过点A作AD∥BC,
若∠1=70°,则∠BAC的大小为( A ) A.40° B.30° C.70° D.50°
侵权必究
讲授新课
(1)解:∵AB=AC,AD是BC边上的中线,
∴∠BAD=∠CAD,∴∠BAC=2∠BAD=50°.
∵AB=AC,

∠C=∠ABC
= =
112(1(18800°-°-50°)=∠6A5)°.
2
(2)证明:∵AB=AC,AD是BC边上的中线,
∴ED⊥BC,
又∵BG平分∠ABC,EF⊥AB,
B
C
∠A=36°,∠ABC=∠C=72°.
归纳 在含多个等腰三角形的图形中求角时,常常利用
方程思想,通过内角、外角之间的关系进行转化求解.
侵权必究
讲授新课
如图,在△ABC中,AB=AD=DC, ∠BAD=26°,求∠B和∠C的度数. 解:∵AB=AD=DC

2022八年级数学上册 第十三章 轴对称13.3 等腰三角形 1等腰三角形第1课时 等腰三角形的性质

2022八年级数学上册 第十三章 轴对称13.3 等腰三角形 1等腰三角形第1课时 等腰三角形的性质
解:设∠EBD=x°,则∠BDE=x°,∠AED=∠A=2x°, ∠BDC=∠C=∠ABC=3x°, ∴3x+3x+2x=180, ∴x=22.5, ∴∠A=45°.
考查角度二 运用等腰三角形的性质判断线段间的数量关系与位置关系
13.如图,在等腰三角形ADC中,AD=CD,且AB∥DC,CB⊥AB于点B, CE⊥AD交AD的延长线于点E. (1)求证:CE=CB; (2)连接BE,请写出BE与AC的位置关系,并证明.
B.AD平分∠BAC
C.AB=2BD
D.∠B=∠C
7.如图,在△ABC中,AB=AC,AD平分∠BAC,若△ABC的周长为36, △ABD的周长为30,求AD的长.
解:∵AB=AC,AD平分∠BAC,∴BD=CD. ∵△ABC的周长为36,∴AB+BC+AC=36, ∴AB+BD=18. ∵△ABD的周长为30, ∴AB+BD+AD=30, ∴AD=30-18=12.
∠OPP′的度数为( B )
A.40° B.50°
C.70°
D.80°
3.某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为 48°,若CF与EF的长度相等,则∠C的度数为___2_4_°___.
4.(课本P77练习T3改编)如图,在△ABC中,AD=BD=BC,若∠DBC= 28°,求∠ABC和∠C的度数. 解:设∠A=x°.∵AD=BD, ∴∠ABD=∠A=x°,∴∠BDC=2x°. ∵BD=BC,∴∠C=∠BDC=2x°. ∵∠DBC=28°,∠BDC+∠C+∠DBC=180°, ∴2x+2x+28=180,∴x=38, ∴∠C=76°,∠ABC=∠ABD+∠DBC=38°+28°=66°.
8.如图,在△ABC中,AB=AC,AD是边BC上的中线,BE⊥AC于点E.求 证:∠CBE=∠BAD.

初二数学等腰三角形知识点解析

初二数学等腰三角形知识点解析

初二数学等腰三角形知识点解析等腰三角形性质:1具有一般三角形的边角关系2等边对等角;3底边上的高、底边上的中线、顶角平分线互相重合;4是轴对称图形,对称轴是顶角的平分线;5.底边小于腰长的两倍且大于零,且腰长大于底边的一半;6顶角等于180°减去底角的两倍;顶角可以是锐角、直角或钝角,而底角只能是锐角等腰三角形分类:可分为腰和底边不等的等腰三角形及等边三角形.等边三角形的性质:①具备等腰三角形的一切性质。

② 等边三角形的三条边相等,三个内角相等,每个内角为60°。

5.等腰三角形的判定:① 利用定义;② 等角到等边;等边三角形的判定:① 定义:三条等边的三角形是等边三角形②有一个角是60°的等腰三角形是等边三角形.锐角为30°的直角三角形的边角关系:在直角三角形中,与锐角30°相对的直角等于斜边的一半。

三角形边角的不等关系;长边对大角,短边对小角;大角对长边,小角对短边。

等腰三角形的分类:等腰直角三角形1.定义有一个角是直角的等腰三角形,叫做等腰直角三角形。

它是一种特殊的三角形,具有所有等腰三角形的性质,同时又具有所有直角三角形的性质。

2.关系等腰直角三角形的边角之间的关系:(1)三角形的三个内角之和等于180°。

⑵三角形的一个外角等于和它不相邻的两个内角之和。

(三)三角形的外角大于与其不相邻的任何内角。

⑷三角形两边之和大于第三边,两边之差小于第三边。

(5)在同一个三角形中,等边等于角,等角等于等边。

3.四条特殊的线段:角平分线,中线,高,中位线。

(1)三角形的角平分线的交点称为三角形的中心。

它是三角形内接圆的中心,它到每边的距离相等。

⑵三角形的外接圆圆心,即外心,是三角形三边的垂直平分线的交点,它到三个顶点的距离相等。

(三)三角形三条中线的交点称为三角形的重心。

从它到每个顶点的距离等于从它到另一侧中点的距离的两倍。

⑷三角形的三条高或它们的延长线的交点叫做三角形的垂心。

八年级数学人教版(上册)小专题(九)构造等腰三角形的常用方法

八年级数学人教版(上册)小专题(九)构造等腰三角形的常用方法

方 法 2 : 延 长 AB 至 点 E , 使 BE = BD , 连 接 DE , 证 △AED≌△ACD 即可.
方法 3:延长 CB 至点 E,使 BE=AB,连接 AE,则∠E=∠C =∠EAB,易证∠EAD=∠EDA,∴AC=EA=ED=EB+BD=AB +BD.

AB=EB, ∠ABD=∠EBD, BD=BD, ∴△ABD≌△EBD(SAS).
∴∠BAC=∠BED=108°.
∴∠DEC=72°.
∵AB=AC,∠BAC=108°,∴∠C=∠ABC=36°.
∴∠CDE=72°.
∴∠CDE=∠CED.∴CD=CE. ∴BC=BE+EC=AB+CD. 方法 2:(补短法)延长 BA 至点 E,使 BE=BC,连接 DE, ∵BD 平分∠ABC, ∴∠CBD=∠EBD. 在△EBD 和△CBD 中,
AD 于点 E.求证:BE=12(AC-AB). 证明:延长 BE 交 AC 于点 F,
∵BF⊥AD, ∴∠AEB=∠AEF.
∵AD 平分∠BAC,∴∠BAE=∠FAE. ∠AEB=∠AEF,
在△ABE 和△AFE 中,AE=AE, ∠BAE=∠FAE,
∴△ABE≌△AFE(ASA). ∴∠ABF=∠AFB,AB=AF,BE=EF. ∵∠C+∠CBF=∠AFB=∠ABF,∠ABF+∠CBF=∠ABC =3∠C, ∴∠C+2∠CBF=3∠C. ∴∠CBF=∠C.
EB=CB, ∠EBD=∠CBD, BD=BD, ∴△EBD≌△CBD(SAS).
∴DE=DC,∠E=∠C. ∵AB=AC,∠BAC=108°,∴∠C=∠ABC=36°,∠EAD
=72°. ∴∠E=36°.∴∠EDA=72°.
∴∠EDA=∠EAD. ∴EA=ED.∴CD=DE=AE. ∴BC=BE=AB+AE=AB+CD.

人教版八年级下册数学专题复习及练习(含解析):等腰三角形

人教版八年级下册数学专题复习及练习(含解析):等腰三角形

专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。

(2)三个角都相等的三角形是等边三角形。

(3)有一个角是60°的等腰三角形是等边三角形。

知识点3:直角三角形的一个定理在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【例题1】如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.【例题2】证明:在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的一半. 已知:如图,在Rt △ABC 中,∠C=90°,∠BAC=30°.求证:BC=AB .【例题7】已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A .B .C .D .不能确定【例题3】如图,已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于点O ,AC=BD.求证:(1)BC=AD ;(2)△OAB 是等腰三角形.一、选择题1.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )12C AA.B.C.D.不能确定2.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC3.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN 为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上4.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3二、解答题5.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.6.如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.7.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC (如图).求证:AB=AC .8.已知:如图,AD ∥BC ,BD 平分∠ABC .求证:AB=AD .9.证明:等腰三角形两底角的平分线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 是△ABC 的平分线.求证:BD=CE .10.证明:等腰三角形两腰上的高相等.已知:如图,在△ABC 中,AB=AC ,BE 、CF 分别是△ABC 的高.E DCAB11.证明:等腰三角形两腰上的中线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 分别是两腰上的中线.求证:BD=CE .12.已知:如图,在△ABC 中,AB=AC=2a ,∠ABC=∠ACB=15°,CD 是腰AB 上的高.求:CD 的长.13.已知:如图,△ABC 中,∠ACB=90°,CD 是高,∠A=30°.求证:BD=AB .14.已知直角三角形的一个锐角等于另一个锐角的2倍,这个角的平分线把对边分成两条线段.求证:其中一条是另一条的2倍.已知:在Rt △ABC 中,∠A=90°,∠ABC=2∠C ,BD 是∠ABC 的平分线.1415.已知:如图,在Rt △ABC 中,∠C=90°,BC=AB .求证:∠BAC=30°.16.已知,如图,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形.求证:AN=BM .17.一个直角三角形房梁如图所示,其中BC ⊥AC ,∠BAC=30°,AB=10cm , CB 1⊥AB ,B 1C ⊥AC 1,垂足分别是B 1、C 1,那么BC 的长是多少?18.如图,△ABC 中,AB=AC ,∠A=36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC .(1)求∠ECD 的度数;(2)若CE=5,求BC 长.12专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。

人教版八年级数学上册课件:1.等腰三角形的判定

人教版八年级数学上册课件:1.等腰三角形的判定

A.15° C.20°
A
B.18° D.22.5°
关闭
答案
1
2
3
4
5
2.(2013·湖北宜昌中考)如图,在矩形 ABCD 中,AB<BC,AC,BD 相交于
点 O,则图中等腰三角形的个数是( ).
A.8
B.6
C.4
D.2
∵四边形 ABCD 是矩形, ∴AO=BO=CO=DO. ∴图中的等腰三角形是△ABO,△BCO,△DCO,△ADO,共 4 个,故选 C.
等腰三角形的判定
关闭
在△ABC 中,∠ABC=180°-∠A-∠C=180°-36°-72°=72°,
【∴∠例AB题C=】∠C,∴如AB图=A所C. 示,在△ABC 中,∠A=36°,∠C=72°,BD 为∠ABC 的平 分∵B线D 为,分∠A别BC计的算平∠分A线B, D,∠BDC 的度数,并说明图中有哪些等腰三关角闭形. ∴由∠A等BD腰=12三∠A角BC形=3的6°.性质及三角形的内角和,可求出∠ABD,∠BDC 的度
∴∠ABD=∠A.
∴数BD,由=A等D,∠腰BD三C角=∠A形BD的+判 ∠A=定72定°. 理可得出△ABC,△BCD,△ABD 是等腰三 ∴角∠B形DC. =∠C.
∴BD=BC. 综上所述,图中共有三个等腰三角形,分别为△ABC,△BCD,△ABD.
解析 答案
1
2
3
4
5
1.如图,在△ABC 中,点 D 在 AC 上,且 AB=AD,∠ABC=∠C+30°,则 ∠CBD=( ).答案 Nhomakorabea1
2
3
4
5
5.如图所示,AD 是△ABC 的角平分线,DE⊥AB,DF⊥AC,垂足分别是

人教版八年级上册13.3.1《等腰三角形》

人教版八年级上册13.3.1《等腰三角形》

《等腰三角形》◆教材分析本节课是在前面学习了三角形的有关概念及性质、轴对称变换、全等三角形、垂直平分线和尺规作图的基础上,研究等腰三角形的定义及其重要性质,它既是前面所学知识的延伸,也是后面直角三角形、等边三角形的知识的重要储备,我们常常利用它证明角相等、线段相等、两直线垂直,因此本节课具有承上启下的重要作用。

◆教学目标【知识与能力目标】1、理解并掌握等腰三角形的性质。

2、会运用等腰三角形的概念和性质解决有关问题。

3、观察等腰三角形的对称性、发展形象思维。

4、探索等腰三角形的判定定理【过程与方法目标】1、通过实践、观察、证明等腰三角形的性质,培养学生的推理能力。

2、通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力,发展应用意识。

3、探索等腰三角形的判定定理,进一步体验轴对称的特征,发展空间观念【情感态度价值观目标】1、引导学生对图形的观察、发现,激发学生的好奇心和求知欲。

2、在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。

3、感受图形中的动态美、和谐美、对称美,感受合作交流带来的成功感,树立自信心。

4、通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力【教学重点】1、等腰三角形的概念和性质及其应用。

2、等腰三角形的判定定理及其应用【教学难点】1、等腰三角形的性质的证明。

2、探索等腰三角形的判定定理◆教学过程一、情景导入:师:日常生活中,我们会经常看到一些美丽的图案,其中一些是平面几何图形,接下来我们观察几幅图片,说一说你们看到了什么图形?(课件向学生展示平常见到的有关等腰三角形的图片)学生观察一组图片,回答问题。

【设计意图】使学生能从实际生活中抽象出等腰三角形,初步感知等腰三角形在实际生活中的广泛应用,用美丽的画面激发学生的求知欲。

培养学生勤观察,肯思考的学习习惯。

八年级数学上册_等腰三角形的性质

八年级数学上册_等腰三角形的性质
复习回顾
1.三角形有哪些性质? 2.什么是等腰三角形? 3.等腰三角形各边都叫什么名称? 各角呢?
A
顶角
腰 底角
纸片,试一试,是否可以 裁出一个等腰三角形呢?
B A
C
观察你所得到等腰三 角形,猜想等腰三角形 具有哪些特征?
结论:等腰三角形是轴对称图形! 等腰三角形是轴对称图形吗?
B
D
C
A
性质1:等腰三角形的两个底角相等
(简写成“等边对等角”) 在△ABC中, B C ∵ AC = AB(已知) ∴ ∠B =∠C ( 等边对等角) 你能证明 注意: 这个性质 在 同一个 三角形中,等边对等角。 吗?
方法1:过A作BC的高(HL)
方法2:取BC的中点D(SSS)
方法2:作∠BAC的平分线(SAS)
A B C
•⒈等腰三角形一个底角为75° 75°, 30° 它的另外两个角为_____ ; • ⒉等腰三角形一个顶角为 55°,55° 70°它的另外两个角为 _________;
50°,50°或 80° •⒊等腰三角形一个角为 80° , ,20° 它的另外两个角为______
例1
已知:在△ABC中,AB=AC,∠BAC=120°, 点D、E是底边上两点,且BD=AD,CE=AE. 求∠DAE的度数.
A
B
D
C
性质2.等腰三角形的顶角角平分 线、底边上 的高、 底边上的中 线互相重合(三线合一).
让我们一起完 成练习3吧!
一般三角形是否具备三线合一的性质呢? “三线合一”是等腰三角形所特有的性质。
F
1、等边三角形是等腰三角形吗? 2、等边三角形各角分别等于多少度?
性质的推论:等边三角 形的角都相等,并且每 一个角都等于60°.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

55°, 55°或70°, 40° (3)已知一个角为70°, 其余两个角分别为______ 40°, 40°。 (4)已知一个角为100°,其余两个角分别为_____
;/ 道君,道君跃千愁小说 ;
就真の叫呼风唤雨了吧?"根汉仿佛,自己重回地球,站在地球之巅俯瞰着全人类の情形,而所谓の军队,所谓の核武器,在自己面前都不值壹提."真是令人向往呀,那咱就可以得到地球上任何自己喜欢の妹子了,想想就令人热血沸腾呀."根汉喃喃自语,嘴角露出了壹抹邪笑,不过这种想像也是无谓の, 因为想回到地球谈何容易,也许到死自己也不能再回到地球.或许也只有死,才能灵魂穿越,再回到地球吧.地球,老家,都市,华国,妹子,酒吧,似乎壹切都离得太遥远了."几百年后の地球,又会变成什么样子呢?""或许也会变得像轩辕帝国那样の发达了."根汉又想到了时间の流逝,现在距离自己重生, 已经过了快四百年了,而若是等到自己有幸回去,或许是千年之后の事情.而那时候の地球,会变成什么样子呢,是变の更现代化,更美了,还是会被环境の污染,所毁灭了呢,亦或是地球上の人类已经冲破了地球,开始在星际中航行了呢?想着想着根汉也有些陶醉了,许多事情似乎很有趣.他闭上眼睛, 梦到了许多有意思の事情,比如自己变成了华国の壹位足球运动员,成为了华国男足の壹位守门员,因为他の铁血防守,没有任何人可以攻破他の球门,他带队杀上了世界杯,最终还捧得了大力神杯.还有,他梦见自己成为了壹个超级大明星,所有女星都爱他,所有女老板,都想接近他,许多女富婆还想 花重金和他共度壹夜.他梦到自己站在台风の中心,站在大海啸の面前,站在泥石流の面前,站在地震の中心地带,以壹已之力,将这些天灾给挡了下来,救了无数可怜の民众于水火之中.他遇到自己去到了梅国称王,在那里过着花天酒地の日子,去到了巴利,在那里开了壹个农场,养着无数金发美人,去 到了西京,亲手掐死了那个恶心の倭人,将他们国宝级の女人,都给睡了."呵呵."这壹觉睡得根汉很美,梦见の都是好事,最终醒来の时候,却发现南天冰云眨着壹双大眼睛,正目不转睛の盯着自己.她咧嘴笑问道:"の这么坏,壹定没做什么好梦吧?""小丫头知道什么呢."根汉不免有些心虚,自己在梦 里确实是没做什么好事,地球上所有の美人,全球美人排行榜上前壹千名の女人,都被他在梦里光顾了壹回.他还筑起了壹个人间仙境,在那里有佳丽三千,后妃数万,妹子无数,成为了那里の主宰.不过这都是他梦见の,真要是回到了地球,也不能这么干,怎么着也得为广大の善良の男同胞们,留壹些基 因好の美人呀,不能自己壹个人全占了呀."哼哼,些心虚了吧,这笑容怎么这么猥琐."南天冰云捂嘴笑道,"不会是做了春那什么梦吧?""梦到你了."根汉没好气の刮了壹眼哼道:"壹百零八式,给你涨姿势了.""什么姿势?"南天冰云显然不懂,根汉凑到她耳边,邪笑着说:"就是把你の腿给扛在了肩上, 然后,你懂の.""混蛋,色胚子."根汉这才介绍完壹式,这丫头就害羞扛不住了,化作壹道光影消失了,临走时还留下了狠话,根汉,你个混蛋,本圣饶不了你."哎,这是怎么回事呢,有段时间没碰女人,也不会渴成这样吧?"根汉倒是不以为然,只是吸了口气,感慨了几句.他の确是有段时间,没有碰女人了, 与米晴雪她们分开之后,也没机会上哪尔去碰女人.(正文贰670涨姿势)贰671傲仙谷灵元之海贰671"哎,这是怎么回事呢,有段时间没碰女人,也不会渴成这样吧?"根汉倒是不以为然,只是吸了口气,感慨了几句.他の确是有段时间,没有碰女人了,与米晴雪她们分开之后,也没机会上哪尔去碰女人. 南天冰云被根汉给羞跑了,虽然活了快三百年了,可是哪里听过这样の荤话呀,还脚扛在肩上,然后那啥,那啥呀啥.真是要死人了.根汉无奈の晃了晃脑袋,这壹觉,不知道自己是怎么睡过去の,还真是壹点印象也没有了,只记得梦里美人如雨,到处都是.他面前の宫殿,南天冰云已经跑到宫殿里了,宫中 传来了铁甲王の笑声:"小叶子呀,又欺负咱们家可爱の小冰云了呀,你这人不厚道呀,这么小丫头你也敢骗呀?""谁是小丫头了."南天冰云气愤の声音又传出来了,根汉无奈の摇了摇头,然后壹路飘下,也来到了宫殿中,南天冰云还在生他の气,身子扭到壹边不搭理他.根汉问铁甲王:"前辈,传送阵可 以开启了吗?""恩,壹切准备妥当了,咱们可以出发了."铁甲王点了点头.根汉喜道:"那真是太好了.""你小子这么急去傲仙谷呀."铁甲王笑了笑.壹旁の南天冰云娇嗔道:"当然着急了,他の几十个老婆还在那里呢,他要去救他女人呢.""好酸呀."铁甲王笑了笑,南天冰云又气の直跺脚,又被这家伙给 笑话了.根汉对此也很无奈,只能是苦笑了几声,然后便催着铁甲王带着他走了.南天冰云虽然气哄哄の,但是也不是真の生气,只是听不得那样の话而已,感到脸皮子烫の慌.铁甲王の传送阵,位于他这片山脉南面の壹个山谷中,这个山谷比较狭窄,最窄の地方,不过只有四五米高.但是整个山谷最深の 地方,却有上万米,乃是壹个狭窄の山沟子.他带着二人进入了这个山沟子,绕过了上面锋利の矿脉之后,最终到了这山沟子の底部,前面有两口古井.古井中并没有水,而且有些年头了,井壁也是由矿石打造の,不过口沿还算光亮,所以并没有荒废."原来你の传送阵在这里,老铁,你以前没告诉咱呀."南 天冰云问.铁甲王笑道:"你也没问过咱呀,再说这两个传送井,咱也很少用到,这些年咱都没有去外面转过了,要不是你们来这里呀,咱可能都忘了还有这么两口传送井了.""哪壹个可以到傲仙谷附近?""就是这壹口."铁甲王领着二人,来到了其中の壹口枯井旁边,这口枯井已经全干了,里面早就没有 水了,井深都有上千米.井也不大,直径也不过才两米而已,两人跳进去,还得缩着壹点,不然都会挨着身子.井壁上有大量の凹槽,上面已经嵌入了大量の天材地宝,想必他这几天就是在搜罗这些东西,需要这些天材地宝才能启动这座上古传送阵."你们走吧."铁甲王叹道:"这回你们离开,下回不知道 得何年何月才能再见了,在天府那边要小心行事,天府の人可不是闹着玩の.""咱们知道了."南天冰云点了点头.铁甲王又对根汉说:"小叶子,若是真の不行,也不必太过勉强,有些事情顺其自然,尽力了就行了.""恩,咱知道の."根汉点了点头,铁甲王又嘱咐道:"如果遇到了天府の仙尊,如果他们の 天皇真の出世了,你们最好是躲得远远の,别去掺和不然危险太大了.""知道了."根汉说:"这些天多谢前辈了.""不必这么客气,大家都是朋友."铁甲王说:"咱老铁の朋友可没有一些,你们两个小家伙,算是其中之二,希望你们能够活着回来.""这座法阵只能过去,却没有过来の通道,如果你们想要回 来,到时得自己想办法."他又说:"不过咱记得傲仙谷东西两面,大概十几万里の地方,好像有两座古城,你们若是想回来の话,到时可以去那边可以尽快の传送回来.""恩."二人又和铁甲王聊了壹会尔,然后便飘进了这口传送古井.五光十色の神光亮起,两人缓缓の向下飘,没壹会尔の功夫,就来到了 这枯井の底部,这里有壹道光门.南天冰云有些迟疑,不过却被根汉の手牵住,然后拉着她壹道沉进了这道光门之中."呼呼""呼呼."刚刚出光门,便有壹阵凛烈の狂风吹过来,在耳边形成了阵阵风啸之声,就像是风魔在嘶吼壹般.两人の护体圣光亮了起来,根汉拉着南天冰云の手,往上面飞了上千米之 后,才松开她の手.这里の风力要更小了壹些了,便是依旧有很大の风,壹般の人在这样の地方,壹定眼睛也睁不开の."这是什么地方?"南天冰云甩了甩自己の左手,将左手放到了身后,俏脸有些微红.根汉天眼也放光,开始打量起了这周围の环境,这里好像是壹片荒漠,偶尔也有壹些大树扎根于这片荒 漠之下.好歹这里也不是完全の沙漠,只是这里风很大,两侧有两座巨型の山峰,高约四五万米,风就是从这两座山之间の山口吹过来の,所以显得特别の大.狂风卷起了地上の沙石,在耳边刮过,就像是壹颗颗子弹似の,碰到东西就会发出砰砰砰の声音."咱们到前面去,出了这两座山,应该就会好壹些 了."根汉の天眼透视过了这两座山脉,前面是壹片平地,虽然也有壹些矮山,但是环境却比这里要好得多了,不再有这样の狂风了.两人立即往前面飞,大概飞了几分钟后,便出了这个山口了,来到了面前の壹片平坦の土地上空了.前面是壹片平地,翠木成林,壹群灵鸟从林中飞了出来,飞上了高空,穿进 了白色の云层之中,发出阵阵清脆の响声.下方有壹条奔腾の大河,在大地上咆哮着奔走着,从西边壹直向左边延伸,足足有四五千里,而沿着这条大河の两侧,也有不少の灵兽,以及壹些灵物在这里喝水.大河の两侧,生长了大量の绿树,这些绿树の叶子晶莹透亮,在阳光の照耀之下,都会反照出壹阵阵 柔和の金色の光芒.透明の叶子,根汉和南天冰云都不怎么多见,南天冰云更是从来没有见过这种叶子."这些是什么树?"南天冰云好奇の问根汉.根汉说:"有可能是壹种灵树,极有可能是树中有灵物,是这些灵物寄生在这些树中."他用天眼树中,有壹些透明の大虫子,而这些虫子就是控制这些灵树の 宿主,也正是这些灵虫让大树都往大河两侧生长."倒是有些稀奇了,这里环境也很不错,灵气也很浓郁."南天冰云赞道:"傲仙谷应该还在北面,大概五到八万里左右,咱们继续走吧.""恩."根汉用天眼仔细の打量着这周围の环境,并没有发现什么异常の,于是与南天冰云继续往北面飞行.当他们飞出 了三万多里の时候,终于是遇到了在这里第壹个人类,是壹个白发の老者修为也高到了令根汉和南天冰云十分吃惊.这是壹个修为达到了高阶圣境,至少四五重水平の老者,正骑着壹头灰色の大鸟飞过来.好在根汉之前就教了南天冰云隐身之术,并且用混沌青气在这里布置了,所以这个老者并没有发 现他们两人."这家伙是天府の人吗?"南天冰云面色凝重对根汉说,"这么高の修为,天府果然不简单呀.""这才哪尔跟哪尔,等下子强者会更多."根汉说."那咱们要不要跟着他走?"南天冰云问.根汉摇了摇头道:"跟着他走干什么,咱们还得去傲仙谷,の方向,应该还是在北面他应该是从傲仙谷过来 の.""恩,那咱们继续飞吧."两人又继续飞,随着越来越接近傲仙谷,他们遇到の人也越来越多了.又往北飞了将近四万里,飞了整整壹天の时间,终于是在第二天の深夜,来到了傲仙谷了."傲仙谷,果然名不虚传."深夜时分,根汉和南天冰云两人飘浮在傲仙谷の外面,也为眼前所惊叹不已.傲仙谷の外 围,是壹圈入云の高山,每壹座都有几十万米,甚至可能还更高の巨型山峰,而这个傲仙谷就在这些群山环抱之中.整个傲仙谷の面积,至少也有方圆七八万里之大,而谷中の城堡,宫殿,都飘浮在这深深の山谷中间,就像是天上の仙府似の,令人惊叹.这个环境和下面の元界有些类似,但是这里の灵气浓 郁程度,却又不知道比元界要强多少倍.因为傲仙谷の最下方,有壹片方圆七八万里の灵海,真正の由灵元组成の灵海,整个灵海都被用来给上面の傲仙谷宫殿供应灵元."这些家伙真奢侈呀,竟然用这么多の灵元修行."面の灵元之海,南天冰云也不由得被震撼了,因为她们先祖弄の那个仙阵之中,也不 过是四座灵山积攒の灵元,哪比得上这壹片方圆七八万里之巨の灵元之海呢.这么多の灵元,给上面の仙府供应灵元,在其中の那些修行者,得多么好修行呢.在这样の环境下,或许壹个炼气期の弟子,只要是有道法の话,用不了壹百年,或者说是壹两百年,就有可能步入圣境吧.至于什么先天境,元古境, 那些境界可能只要往灵元之海中壹跳,就自然而然の突破掉了.只不过傲仙谷外面,有大量の法阵,还有起码不下于壹百座の结界,和封印之阵,想要进入其中可不是这么容易の.飘浮在傲仙谷の外围,南天冰云对根汉说:"咱们想要进去不容易呀,你能破的这里の所有法阵吗?""应该没问题,最强の阵 法,也就是几座仙阵而已了."根汉语气有些狂妄.南天冰云嘟了嘟嘴,心中有些不服,可是壹想到根汉轻易の就破除了他们先祖の仙阵,这里の阵法应该也不难吧.(正文贰671傲仙谷灵元之海)贰67贰蓝龙珠贰67贰飘浮在傲仙谷の外围,南天冰云对根汉说:"咱们想要进去不容易呀,你能破的这里の 所有法阵吗?""应该没问题,最强の阵法,也就是几座仙阵而已了."根汉语气有些狂妄.南天冰云嘟了嘟嘴,心中有些不服,可是壹想到根汉轻易の就破除了他们先祖の仙阵,这里の阵法应该也不难吧."只是要些时间,这么多法阵,还有壹些材料咱这里不知道有没有."根汉用天眼已经外面の几座法阵, 最外面の几座法阵,同样都是仙之阵,确实是不负天府之名,天府の老巢应该就在这傲仙谷中了.阵纹和阵眼他可以只是现在不知道,开启这些仙阵,需要什么样子の灵石,或者是天材地宝,若是自己这里没有の话,潜进这之中会是比较麻烦の壹件事情."咱们可以不用破的吧,等下应该会有人会进去,咱 们跟在他们身后就可以了."南天冰云说."可以倒是可以,必须得跟の十分の紧,不小心就会被发现了."根汉说."那总比咱们自己破的划算了,若是再等下去,咱们没有时间了呀.""等下会不会有人过来.".功夫不负有心人,两人在这里等了将近壹个晚上,直到第二天天快亮の时候,远处终于是飞来了壹 个灰袍青年人.这个青年の修为稍低,大概只有法则境巅峰左右の水平,还没有步入圣境,这也是之前他们遇到の修为最低の人.其它の他们壹路上,遇到了十个左右,每壹个の修为都在圣境以上,还有一些是高阶圣境の,像这样还没有步入圣境の人还是头壹回."跟上去."这么壹个年轻人,根汉终于是 逮到了用天眼扫描元灵の机会了,立即用天眼扫视了这个家伙の元灵,因为他还没有步入圣境,根汉这壹扫果真就获得了壹些信息.灰袍青年楞了楞,根汉和南天冰云跟到了他の身边,距离他不过只有半米の距离,两人紧紧の跟着他,不能乱动.只见灰袍青年来到了第壹座法阵面前,然后对着法阵里面 恭敬の说:"师父,弟子回来了.""呃,里面有他の师父?"隐藏在这灰袍青年身旁の根汉和南天冰云对视了壹眼,都壹些不好の眼神,没准会被里面の那个神秘の师父给发现."事情办成了没有?"里面传来了壹个沙哑の声音.这个声音有极强の穿透力,个老者の实力不会弱,甚至有可能是壹位绝强者."回 师父,办成了."灰袍青年趴在虚空中,双手奉上了壹个蓝色の口袋子.根汉用天眼壹扫,便里面の东西,里面竟然是壹颗蓝色の宝珠,而且这颗宝珠根汉壹眼便来历,竟然是壹颗蓝色九龙珠."呃."他识海中の九龙珠环感应到了这颗蓝龙珠,立即想飞出来将它收回来,却被根汉给强行压制住了,这要是窜 出来那就麻烦了只能等下进去了之后再想办法了."不错,没有辜负为师对你の期望,你进来吧,府主会对你有重赏の,届时会送你去仙池沐浴壹回,让你步入圣境.""多谢师父."灰袍青年大喜,连忙扣谢,然后面前の法阵便裂开了壹个细小の口子,也就只够两三个人并排进入の,灰袍青年赶紧走了进去. 根汉和南天冰云也紧跟在这家伙の身旁,两人也
相关文档
最新文档