文科立体几何线面角二面角专题带答案上课讲义

合集下载

专题一:立体几何中“线线角、线面角、面面角”的求法 课件

专题一:立体几何中“线线角、线面角、面面角”的求法 课件
专题一:立体几何中“线线角、 线面角、面面角”的求法
知识回顾
1. 异面直线所成角; 2. 直线与平面所成角; 3. 两平面所成角.
知识点一:线线角
关键:把空间角转化成平面角 步骤:①选点平移;
②定角; ③算角(解位线平移
知识点一:线线角
变式1. 已知四面体ABCD的各棱长均 相等,E、F分别为AB、CD的中点, 求AC与EF所成角的大小.
定义:以二面角的棱上任意一点为端点,
在两个面内分别作垂直于棱的两条射线,这两条 射线所成的角叫做二面角的平面角.
B
l
O
A
知识点三:面面角
方法:①定义法(点在棱上)
②三垂线法(点在一个平面内) 例3.在四面体ABCD中,平面ABD 平面BCD, ③射影法(找一个平面内对应的点 AB BD DA a, CD BD,DBC=30. 在另一个平面内的射影)
定义:过斜线AP上且斜足以外的一点P向平面引 垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平 面上的射影.平面的一条斜线和它在平面上的射影所 成的锐角,叫做这条直线和这个平面所成的角.
知识点二:线面角 关键:①找垂足 ②等体积法求高
例2.如图,设正方体ABCD A1B1C1D1的棱长为a, (1)求直线AB1与平面A1B1CD所成的角; (2)求直线AB与平面ACB1所成角的正弦值.
(1)求二面角A DC B的大小;
④垂面法(点在面外)
(2)求二面角A BC D的平面角的正切值.
⑤补形法
通过本节课的学习谈谈你的收获或感想:
作业:

专题35 空间中线线角、线面角,二面角的求法-

专题35   空间中线线角、线面角,二面角的求法-

专题35 空间中线线角、线面角、二面角的求法【高考地位】立体几何是高考数学命题的一个重点,空间中线线角、线面角的考查更是重中之重. 其求解的策略主要有两种方法:其一是一般方法,即按照“作——证——解”的顺序进行;其一是空间向量法,即建立直角坐标系进行求解. 在高考中常常以解答题出现,其试题难度属中高档题.类型一 空间中线线角的求法方法一 平移法例1正四面体ABCD 中, E F ,分别为棱AD BC ,的中点,则异面直线EF 与CD 所成的角为 A.6π B. 4π C. 3π D. 2π 【变式演练1】【2021届全国著名重点中学新高考冲刺】如图,正方体1111ABCD A B C D -,的棱长为6,点F 是棱1AA 的中点,AC 与BD 的交点为O ,点M 在棱BC 上,且2BM MC =,动点T (不同于点M )在四边形ABCD 内部及其边界上运动,且TM OF ⊥,则直线1B F 与TM 所成角的余弦值为( )A B C D .79【变式演练2】【江苏省南通市2020-2021学年高三上学期9月月考模拟测试】当动点P 在正方体1111ABCD A B C D -的棱DC 上运动时,异面直线1D P 与1BC 所成角的取值范围( )A .,64ππ⎡⎤⎢⎥⎣⎦B .,63ππ⎡⎤⎢⎥⎣⎦C .,43ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎫⎪⎢⎣⎭【变式演练3】【甘肃省白银市靖远县2020届高三高考数学(文科)第四次联考】在四面体ABCD 中,2BD AC ==,AB BC CD DA ====E ,F 分别为AD ,BC 的中点,则异面直线EF 与AC 所成的角为( )A .π6B .π4C .π3D .π2【变式演练4】【2020年浙江省名校高考押题预测卷】如图,在三棱锥S ABC -中,SA ⊥平面ABC ,4AB BC ==,90ABC ∠=︒,侧棱SB 与平面ABC 所成的角为45︒,M 为AC 的中点,N 是侧棱SC上一动点,当BMN △的面积最小时,异面直线SB 与MN 所成角的余弦值为( )A .16B .3C D .6方法二 空间向量法例2、【重庆市第三十七中学校2020-2021学年高三上学期10月月考】在长方体1111ABCD A B C D -中,E ,F ,G 分别为棱1AA ,11C D ,1DD 的中点,12AB AA AD ==,则异面直线EF 与BG 所成角的大小为( ) A .30B .60︒C .90︒D .120︒例3、【四川省泸县第四中学2020-2021学年高三上学期第一次月考】在长方体1111ABCD A B C D -中,2BC =,14AB BB ==,E ,F 分别是11A D ,CD 的中点,则异面直线1A F 与1B E 所成角的余弦值为( )A .34B .34-C D .6【变式演练5】【2021届全国著名重点中学新高考冲刺】《九章算术》是古代中国乃至东方的第一部自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 【变式演练6】【云南省云天化中学、下关一中2021届高三复习备考联合质量检测卷】如图所示,在正方体1111ABCD A B C D -中,点E 为线段AB 的中点,点F 在线段AD 上移动,异面直线1B C 与EF 所成角最小时,其余弦值为( )A .0B .12C D .1116类型二 空间中线面角的求法方法一 垂线法第一步 首先根据题意找出直线上的点到平面的射影点;第二步 然后连接其射影点与直线和平面的交点即可得出线面角; 第三步 得出结论.例3如图,四边形ABCD是矩形,1,AB AD ==E 是AD 的中点,BE 与AC 交于点F ,GF ⊥平面ABCD .(Ⅰ)求证:AF ⊥面BEG ;(Ⅰ)若AF FG =,求直线EG 与平面ABG 所成角的正弦值.【变式演练7】已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC 的中心,则1AB 与底面ABC 所成角的正弦值为( )A .13 B. C.3 D .23【变式演练8】【北京市朝阳区2020届高三年级下学期二模】如图,在五面体ABCDEF 中,面ABCD 是正方形,AD DE ⊥,4=AD ,2DE EF ==,且π3EDC ∠=.(1)求证:AD ⊥平面CDEF ;(2)求直线BD 与平面ADE 所成角的正弦值;GFEDCBA(3)设M 是CF 的中点,棱AB 上是否存在点G ,使得//MG 平面ADE ?若存在,求线段AG 的长;若不存在,说明理由.方法二 空间向量法第一步 首先建立适当的直角坐标系并写出相应点的空间直角坐标; 第二步 然后求出所求异面直线的空间直角坐标以及平面的法向量坐标;第三步 再利用a bsin a bθ→→→→⋅=即可得出结论.例4 【内蒙古赤峰市2020届高三(5月份)高考数学(理科)模拟】在四棱锥P ABCD -中,底面ABCD 为等腰梯形,//BC AD ,222AD BC CD ===,O 是AD 的中点,PO ⊥平面ABCD ,过AB 的平面交棱PC 于点E (异于点C ,P 两点),交PO 于F .(1)求证://EF 平面ABCD ;(2)若F 是PO 中点,且平面EFD 与平面ABCD 求PC 与底面ABCD 所成角的正切值.【变式演练9】【2020年浙江省名校高考仿真训练】已知三棱台111ABC A B C -的下底面ABC 是边长为2的正三角形,上地面111A B C △是边长为1的正三角形.1A 在下底面的射影为ABC 的重心,且11A B A C ⊥.(1)证明:1A B ⊥平面11ACC A ;(2)求直线1CB 与平面11ACC A 所成角的正弦值.类型三 空间二面角的求解例4【江西省部分省级示范性重点中学教科研协作体2021届高三统一联合考试】三棱锥S ABC -中,2SA BC ==,SC AB ==,SB AC ==记BC 中点为M ,SA 中点为N(1)求异面直线AM 与CN 的距离; (2)求二面角A SM C --的余弦值.【变式演练10】【2021年届国著名重点中学新高考冲刺】如图,四边形MABC 中,ABC 是等腰直角三角形,90ACB ∠=︒,MAC △是边长为2的正三角形,以AC 为折痕,将MAC △向上折叠到DAC △的位置,使D 点在平面ABC 内的射影在AB 上,再将MAC △向下折叠到EAC 的位置,使平面EAC ⊥平面ABC ,形成几何体DABCE .(1)点F 在BC 上,若//DF 平面EAC ,求点F 的位置; (2)求二面角D BC E --的余弦值. 【高考再现】1.【2020年高考山东卷4】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为 ( )A .20︒B .40︒C .50︒D .90︒2. 【2017课标II ,理10】已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A B C D 3.【2020年高考全国Ⅰ卷理数16】如图,在三棱锥P ABC -的平面展开图中,1,3,,,30AC AB AD AB AC AB AD CAE ===⊥⊥∠=︒,则cos FCB ∠=_____________.4.【2020年高考全国Ⅱ卷理数20】如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,,M N 分别为11,BC B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:1AA //MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为Ⅰ111C B A 的中心,若F C EB AO 11平面∥,且AB AO =,求直线E B 1与平面AMN A 1所成角的正弦值.5.【2020年高考江苏卷24】在三棱锥A —BCD 中,已知CB =CD BD =2,O 为BD 的中点,AO Ⅰ平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=14BC,设二面角F—DE—C的大小为θ,求sinθ的值.6.【2020年高考浙江卷19】如图,三棱台DEF—ABC中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,DC =2BC.(I)证明:EF⊥DB;(II)求DF与面DBC所成角的正弦值.7.【2020年高考山东卷20】如图,四棱锥P ABCD-的底面为正方形,PD⊥底面ABCD,设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知1PD AD==,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.【反馈练习】1.【江西省乐平市第一中学2021届高三上学期联考理科】已知正方体1111ABCD A B C D -中,点E ,F 分别是线段BC ,1BB 的中点,则异面直线DE 与1D F 所成角的余弦值为( )A B C .35 D .452.【湖南省永州市宁远、道县、东安、江华、蓝山、新田2020届高三下学期六月联考】某四棱锥的三视图如图所示,点E 在棱BC 上,且2BE EC =,则异面直线PB 与DE 所成的角的余弦值为( )A .BCD .153.【2020届河北省衡水中学高三下学期第一次模拟】如图,在棱长为3的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足12DP PB +=1B P 与直线1AD 所成角的余弦值的取值范围为( )A .10,2⎡⎤⎢⎥⎣⎦B .10,3⎡⎤⎢⎥⎣⎦C .12⎡⎢⎣⎦D .1,22⎡⎢⎣⎦4.【广西玉林市2021届高三11月教学质量监测理科】如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AD ,CC 1的中点,则异面直线A 1E 与BF 所成角的大小为( )A .6πB .4πC .3πD .2π 5.【山东省泰安市2020届高三第四轮模拟复习质量】如图,在三棱锥A —BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别为AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是( )A .58B .8C .78D .86.【福建省厦门市2020届高三毕业班(6月)第二次质量检查(文科)】如图,圆柱1OO 中,12OO =,1OA =,1OA O B ⊥,则AB 与下底面所成角的正切值为( )A .2BC .2D .127.【内蒙古赤峰市2020届高三(5月份)高考数学(理科)】若正方体1AC 的棱长为1,点P 是面11AA D D 的中心,点Q 是面1111D C B A 的对角线11B D 上一点,且//PQ 面11AA B B ,则异面直线PQ 与1CC 所成角的正弦值为__.8.【吉林省示范高中(四平一中、梅河口五中、白城一中等)2020届高三第五次模拟联考】如图,已知直三棱柱ADF BCE -,AD DF ⊥,2AD DF CD ===,M 为AB 上一点,四棱锥F AMCD -的体积与该直三棱柱的体积之比为512,则异面直线AF 与CM 所成角的余弦值为________.9.【湖北省华中师大附中2020届高三下学期高考预测联考文科】如图,AB 是圆O 的直径,点C 是圆O 上一点,PA ⊥平面ABC ,E 、F 分别是PC 、PB 边上的中点,点M 是线段AB 上任意一点,若2AP AC BC ===.(1)求异面直线AE 与BC 所成的角:(2)若三棱锥M AEF -的体积等于19,求AM BM10.【广东省湛江市2021届高三上学期高中毕业班调研测试】如图,三棱柱111ABC A B C -中,底面ABC 是边长为2的等边三角形,侧面11BCC B 为菱形,且平面11BCC B ⊥平面ABC ,160CBB ∠=︒,D 为棱1AA 的中点.(1)证明:1BC ⊥平面1DCB ;(2)求二面角11B DC C --的余弦值.11.【河南省焦作市2020—2021学年高三年级第一次模拟考试数学(理)】如图,四边形ABCD 为菱形,120ABC ∠=︒,四边形BDFE 为矩形,平面BDFE ⊥平面ABCD ,点P 在AD 上,EP BC ⊥.(1)证明:AD ⊥平面BEP ;(2)若EP 与平面ABCD 所成角为60°,求二面角C PE B --的余弦值.12.【广西南宁三中2020届高三数学(理科)考试】如图1,在直角ABC 中,90ABC ∠=︒,AC =AB =D ,E 分别为AC ,BD 的中点,连结AE 并延长交BC 于点F ,将ABD △沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示.(1)求证:AE CD ⊥;(2)求平面AEF 与平面ADC 所成锐二面角的余弦值.13.【广西柳州市2020届高三第二次模拟考试理科】已知三棱锥P ABC -的展开图如图二,其中四边形ABCD ABE △和BCF △均为正三角形,在三棱锥P ABC -中:(1)证明:平面PAC ⊥平面ABC ;(2)若M 是PA 的中点,求二面角P BC M --的余弦值.14.【浙江省“山水联盟”2020届高三下学期高考模拟】四棱锥P ABCD -,底面ABCD 为菱形,侧面PBC 为正三角形,平面PBC ⊥平面ABCD ,3ABC π∠=,点M 为AD 中点.;(1)求证:CM PB(2)若点N是线段PA上的中点,求直线MN与平面PCM所成角的正弦值.。

立体几何中二面角和线面角

立体几何中二面角和线面角

立体几何中的角度问题一、 异面直线所成的角1、如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求: (1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小。

2、如图6,已知正方体1111ABCD A B C D -的棱长为2,点E是正方形11BCC B 的中心,点F、G分别是棱111,C D AA 的中点.设点11,E G 分别是点E,G在平面11DCC D 内的正投影. (1)求以E为顶点,以四边形FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积; (2)证明:直线11FG FEE ⊥平面; (3)求异面直线11E G EA 与所成角的正弦值二、直线与平面所成夹角1、如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC ,90BAD ∠=,PA ⊥ 底面ABCD ,且2PA AD AB BC ===,M N 、分别为PC 、PB 的中点。

求CD 与平面ADMN 所成的角的正弦值。

2、长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角的正弦值。

三、二面角与二面角的平面角问题1、如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60︒,2PA PD ==,PB=2,E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值.2、如图5,AEC 是半径为a 的半圆,AC 为直径,点E 为AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足5FB FD a ==,6EF a =。

(1)证明:EB FD ⊥;(2已知点,Q R 为线段,FE FB 上的点,23FQ FE =,23FR FB =,求平面BED 与平面RQD 所成二面角的正弦值。

立体几何-空间角求法题型(线线角、线面角、二面角)

立体几何-空间角求法题型(线线角、线面角、二面角)

空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现, 也是历年来高考命题者的热点, 几乎年年必考。

空间角是线线成角、线面成角、面面成角的总称。

其取值范围分别是:0° < 90°、0°< < 90°、0° < 180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转 化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正 余弦定理)和向量法。

下面举例说明。

一、异面直线所成的角:例1如右下图,在长方体 ABCD A i BiGD i 中,已知AB 4 , AD 3, AA 2。

E 、F 分别是线段AB 、BC 上的点,且EB FB 1。

求直线EC i 与FD i 所成的角的余弦值。

思路一:本题易于建立空间直角坐标系,uuu uuu把EC i 与FD i 所成角看作向量 EC 与FD 的夹角,用向量法求 解。

思路二:平移线段C i E 让C i 与D i 重合。

转化为平面角,放到 三角形中,用几何法求解。

(图I )uuu uju umr解法一:以A 为原点,ABAD'AA 分别为x 轴、y 轴、z 轴的•••直线EC i 与FD i 所成的角的余弦值为 --- I4解法二: 延长 BA 至点 E i ,使 AE i =I ,连结 E i F 、DE i 、D i E i 、DF , 有D i C i //E i E , D i C i =E i E ,则四边形 D i E i EC i 是平行四边形。

则 E i D i //EC i 于是/ E i D i F 为直线EC i 与FD i 所成的角。

在 Rt △ BE i F 中, E i F -J E i F 2 BF 2「5 2 i 2 「‘莎。

文科立体几何线面角二面角专的题目-带答案

文科立体几何线面角二面角专的题目-带答案

连结 OB.因为 AB=BC= ,所以△ABC 为等腰直角三角形,且 OB⊥AC,OB= =2.

知,OP⊥OB.
由 OP⊥OB,OP⊥AC 知 PO⊥平面 ABC.
精彩文档
实用标准文案
(2)作 CH⊥OM,垂足为 H.又由(1)可得 OP⊥CH,所以 CH⊥平面 POM. 故 CH 的长为点 C 到平面 POM 的距离.
(2)求直线 与平面 所成角的正弦值.
9.在多面体
中,底面 是梯形,四边形 是正方形,




(1)求证:平面
平面 ;
(2)设 为线段 上一点,
,求二面角
的平面角的余弦值.
10.如图,在多面体
中,四边形 为等腰梯形,
,已知


,四边形 为直角梯形,

.
精彩文档
实用标准文案
(1)证明: 平面 ,平面
.
由已知得 .
精彩文档
取平面 的法向量
实用标准文案

,则
.
设平面 的法向量为
.


,可取

所以
.由已知得
.
所以 所以
.解得 (舍去), .
.又
,所以
.
所以 与平面 所成角的正弦值为 . 点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空 间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”, 求出平面的法向量;第四,破“应用公式关”. 2.解: (1)因为 AP=CP=AC=4,O 为 AC 的中点,所以 OP⊥AC,且 OP= .
中,
(1)证明: 平面 ;

(完整word版)线面角、二面角专题复习(学生版)

(完整word版)线面角、二面角专题复习(学生版)

线面角与二面角专题复习编辑\审核:黄志平说明红色为必做题(课堂上展示的) ,其它题可选做,练手感。

一、线面角1、如图,四棱锥S ABCD 中,AB//CD, BC CD,侧面SAB为等边三角形,AB BC 2,C D SD 1(I)证明:SD 平面SAB;(n)求AB与平面SBC所成角的大小.2、如图,在组合体中,ABCD A1 B i C i D i是一个长方体,P ABCD是一个四棱锥.AB 2 , BC 3,点P 平面CC1D1D 且PD PC 罷.(I )证明:PD 平面PBC ;(n )求PA与平面ABCD所成的角的正切值;13、如图,在三棱锥P—ABC中,AB丄BC, AB= BO - PA,点O、D分别是2的中点,OP丄底面ABC.(I )求直线PA与平面PBC所成角的大小;AC PC-1CC i4、如图,棱锥 P —ABCD 的底面ABCD 是矩形,PA 丄平面ABCD, PA=AD=2, BD= 2.(I)求点 C 到平面PBD 的距离. (n)在线段 PD 上是否存在一点 正弦值为込,若存在,指出点 9 Q ,使CQ 与平面PBD 所成的角的 Q 的位置,若不存在,说明理由。

DC5、如图4,在直角梯形ABCD 中, 把^ DAC 沿对角线AC 折起后如图5所示(点D 记为点P ),点P 在平面ABC 上的正投影 E 落在线段AB 上,连接PB . (1)求直线 ABC DAB 90, CAB 30 ,BC 1,AD CD ,AC B 的大小的余弦值.C图5二、二面角 如图,四棱锥 P — ABCD 的底面为矩形,侧面 PAD 是正三角形,且侧面 PAD 丄底面ABCD(I ) 求证:平面 PAD 丄平面 PCD (I I) 当AD = AB 时,求二面角 A — PC — D 的余弦值.C7.如图5,在锥体P ABCD中,ABCD是边长为1 的棱形,且DAB 600, PA PD J2,PBE, F分别是BC,PC的中点,(1)证明:」(2 )求二面角ABCD中,底面ABCD是一直角梯形,底面ABCD ,PD与底面成30°角.PD,E为垂足,求证:BE PD ;的条件下,求异面直线AE与CD所成BAD 90,AD//BC,AB BC a ,2,AD 平面DEF ; IP AD B的余弦值.8、在四棱锥PAD 2a ,PA(1 )若AE(2 )在(1) 角的余弦值;(3)求平面PAB与平面PCD所成的锐二面角的正切值石圉3T9、如图5,在圆锥PO中,已知P0 =丿2, O O的直径的中点.(I)证明:平面POD 平面PAC;(n)求二面角B PA C的余弦值。

2024年高考数学复习培优讲义专题15---几何法求二面角,线面角(含解析)

2024年高考数学复习培优讲义专题15---几何法求二面角,线面角(含解析)

专题3-1几何法求二面角,线面角立体几何空间向量求解过程,丧失了立体几何求解的乐趣,无形中也降低了学生的空间想象能力。

这是空间向量求解的巨大优点,也是缺点,就这么共存着。

其实不建系而直接计算真的很比较锻炼空间想象的能力,方法上也更灵活一些,对于备考的中档学生来说,2种方法都要熟练掌握。

方法介绍一、定义法:交线上取点 等腰三角形共底边时作二面角步骤第一步:在交线l上取一点O第二步:在α平面内过O点作l的垂线OA第三步:在β平面内过O点作l的垂线OB∠AOB即为二面角,余弦定理求角αβl OAB二、三垂线法(先作面的垂直)—后续计算小使用情况:已知其中某个平面的垂线段第二步:过垂直B作l的垂线OB∠AOB即为二面角且△AOB为直角三角形,邻比斜三、作2次交线的垂线作二面角步骤第一步:作AO⊥l第二步:作OB⊥l连接AB,∠AOB即为二面角,余弦定理求角四、转换成线面角作二面角步骤第一步:作AO⊥l第二步:作AB⊥β(找不到垂足B的位置用等体积求AB长)连接AB,∠AOB即为二面角△AOB为直角三角形,邻比斜五、转换成线线角—计算小,也是法向量的原理提问:什么时候用?若α平面存在垂线AB,且β平面存在垂线AC则α平面与β平面的夹角等于直线AC与AB的夹角αβlOABαβlOABβαOABCαβlOAB六、投影面积法——面积比(三垂线法进阶)将cos θ=边之比∣面积之比,从一维到二维,可多角度求出两面积,最后求解如图△ABC 在平面α上的投影为△A 1BC , 则平面α与平面ABC 的夹角余弦值1cos A BCABCθ=△△即cos θ=投影原S S补充:即使交线没有画出来也可以直接用例题:一题多解2023汕头二模T20如图在正方体ABCD -A 1B 1C 1D 1中,PQ 是所在棱上的中点.1C 1CD ABA B 1αBCAA 1D(1)求平面APQ 与平面ABCD 夹角的余弦值 (2)补全截面APQ2023全国乙卷数学(理)T9——由二面角求线面角P C 1CDABA B 1P C 1DABA B 1P C 1CDABA B 1P C 1DABA B 1P C 1CDABA B 1PC 1DABA B 11.已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C AB D −−为150︒,则直线CD 与平面ABC 所成角的正切值为( )A .15B .25C .35D .252021·新高考1卷·T20——由二面角求线段长2.如图,在三棱锥A BCD −中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D −−的大小为45︒,求三棱锥A BCD −的体积.题型一 定义法1.如图,在三棱锥S—ABC 中,SC ⊥平面ABC ,点P 、M 分别是SC 和SB 的中点,设PM=AC =1,∠ACB =90°,直线AM 与直线SC 所成的角为60°.(1)求证:平面MAP ⊥平面SAC . (2)求二面角M—AC—B 的平面角的正切值;2.(湛江期末)如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,点M ,N 分别是PB ,AC 的中点,且MN ⊥A C . (1)证明:BC ⊥平面PA C .(2)若PA =4,AC =BC =22,求平面PBC 与平面AMC 夹角的余弦值.(几何法比较简单)3.如图1,在平行四边形ABCD 中,60,2,4A AD AB ∠=︒==,将ABD △沿BD 折起,使得点A 到达点P ,如图2.重点题型·归类精讲(1)证明:平面BCD⊥平面P AD;(2)当二面角D PA B−−的平面角的正切值为6时,求直线BD与平面PBC夹角的正弦值.题型二三垂线法4.(佛山期末)如图,四棱锥P-ABCD中,AB∥CD,∠BAD=90°,12PA AD AB CD===,侧面PAD⊥底面ABCD,E为PC的中点.(1)求证:BE⊥平面PCD;(2)若PA=PD,求二面角P-BC-D的余弦值.5.如图,在四棱锥P -ABCD 中,△P AD 是以AD 为斜边的等腰直角三角形,,,224,23BC AD CD AD AD CD BC PB ⊥====∥ (2023广州一模T19)(1) 求证:AD PB ⊥;(2)求平面P AB 与平面ABCD 交角的正弦值.6.如图,在三棱锥A BCD −中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为2的等边三角形,点E 在棱AD 上,2DE EA =且二面角E BC D −−的大小为60,求三棱锥A BCD −的体积.7.(2023·浙江·统考二模)如图,在三棱柱111ABCA B C 中,底面ABC ⊥平面11AA B B ,ABC 是正三角形,D 是棱BC 上一点,且3CD DB =,11A A A B =.(1)求证:111B C A D ⊥;(2)若2AB =且二面角11A BC B −−的余弦值为35,求点A 到侧面11BB C C 的距离.8.如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,ABC 和ACD 均为正三角形,4AC =,3BE =.(1)在线段AC 上是否存在点F ,使得BF ∥平面ADE ?说明理由; (2)求平面CDE 与平面ABC 所成的锐二面角的正切值.题型三 作2次交线的垂线9.在三棱锥S ABC −中,底面△ABC 为等腰直角三角形,90SAB SCB ABC ∠=∠=∠=︒. (杭州二模) (1)求证:AC ⊥SB ;(2)若AB =2,22SC =,求平面SAC 与平面SBC 夹角的余弦值.题型四 找交线10.如图,在四棱锥P -ABCD 中,底面ABCI )是平行四边形,∠ABC =120°,AB =1,BC =2,PD ⊥C D . (1)证明:AB ⊥PB ;(2)若平面PAB ⊥平面PCD ,且102PA =,求直线AC 与平面PBC 所成角的正弦值. (广东省二模T19)题型五 转换成线线角湖北省武汉市江汉区2023届高三上学期7月新起点考试11.在直三棱柱111ABC A B C −中,已知侧面11ABB A 为正方形,2BA BC ==,D ,,E F 分别为AC ,BC ,CC 1的中点,BF ⊥B 1D .(1)证明:平面B 1DE ⊥平面BCC 1B 1;(2)求平面BC 1D 与平面1B DE 夹角的余弦值六、 题型六 投影面积法12.(2022·惠州第一次调研)如图,在四棱锥P -ABCD 中,已知//AB CD ,AD ⊥CD ,BC BP =,CD =2AB=4,△ADP 是等边三角形,E 为DP 的中点.(1)证明:AE ⊥平面PCD ;(2)若2,PA =求平面PBC 与平面PAD 夹角的余弦值13.(2022深圳高二期末)如图(1),在直角梯形ABCD 中,AB //CD ,AB ⊥BC ,且12,2BC CD AB ===取AB 的中点O ,连结OD ,并将△AOD 沿着OD 翻折,翻折后23AC =M ,N 分别是线段AD ,AB 的中点,如图(2).(1)求证:AC⊥OM.(2)求平面OMN与平面OBCD夹角的余弦值.专题3-1几何法求二面角,线面角立体几何空间向量求解过程,丧失了立体几何求解的乐趣,无形中也降低了学生的空间想象能力。

复习讲义—线面角与面面角(含答案)

复习讲义—线面角与面面角(含答案)

诚西郊市崇武区沿街学校高二数学〔下〕复习讲义〔1〕线面角与面面角一、知识与方法要点:1.斜线与平面所成的角就是斜线与它在平面内的射影的夹角。

求斜线与平面所成的角关键是找到斜线在平面内的射影,即确定过斜线上一点向平面所作垂线的垂足,这时经常要用面面垂直来确定垂足的位置。

假设垂足的位置难以确定,可考虑用其它方法求出斜线上一点到平面的间隔。

2.二面角的大小用它的平面角来度量,求二面角大小的关键是找到或者者作出它的平面角(要证明)。

作二面角的平面角经常要用三垂线定理,关键是过二面角的一个面内的一点向另一个面作垂线,并确定垂足的位置。

假设二面角的平面角难以作出,可考虑用射影面积公式求二面角的大小。

3.断定两个平面垂直,关键是在一个平面内找到一条垂直于另一个平面的直线。

两个平面垂直的性质定理是:假设两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.二、例题例1.正方体ABCD-A1B1C1D1中,M为C1D1中点.(1)求证:AC1⊥平面A1BD.(2)求BM与平面A1BD成的角的正切值.解:(1)连AC,∵C1C⊥平面ABCD,∴C1C⊥BD.又AC⊥BD,∴AC1⊥BD.同理AC1⊥A1B∵A1B∩BD=B.∴AC1⊥平面A1BD .(2)设正方体的棱长为a ,连AD1,AD1交A1D 于E ,连结ME ,在△D1AC1中,ME∥AC1,∵AC1⊥平面A1BD .∴ME⊥平面A1BD .连结BE ,那么∠MBE 为BM 与平面A1BD 成的角.在Rt MEB ∆中,1322AC ME==, 22262BE a a ⎛⎫=+= ⎪ ⎪⎝⎭,∴2tan 2ME MBE BE ∠==.例2.如图,把等腰直角三角形ABC 以斜边AB 为轴旋转,使C 点挪动的间隔等于AC 时停顿,并记为点P . 〔1〕求证:面ABP⊥面ABC ;〔2〕求二面角C-BP-A 的余弦值. 证明〔1〕 由题设知AP =CP =BP .∴点P 在面ABC 的射影D 应是△ABC 的外心, 即D∈AB.∵PD⊥AB,PD ⊂面ABP , 由面面垂直的断定定理知,面ABP⊥面ABC . 〔2〕解法1 取PB 中点E ,连结CE 、DE 、CD . ∵△BCP 为正三角形,∴CE⊥BD.△BOD 为等腰直角三角形,∴DE⊥PB.∴∠CED 为二面角C-BP-A 的平面角. 又由〔1〕知,面ABP⊥面ABC ,DC⊥AB,AB =面ABP∩面ABC ,由面面垂直性质定理,得DC⊥面ABP .∴DC⊥DE.因此△CDE 为直角三角形.设1BC =,那么32CE =,12DE =,132cos 332DE CED CE ∠===. 例3.如下列图,在正三棱柱111ABC A B C -中,1E BB ∈,截面1A EC ⊥侧面1AC .(1)求证:1BE EB =;(2)假设111AA A B =,求平面1A EC 与平面111A B C所成二面角(锐角)的度数.证明:在截面A1EC 内,过E 作EG⊥A 1C ,G 是垂足,如图,∵面A 1EC⊥面AC 1,∴EG⊥侧面AC 1.取AC 的中点F ,分别连结BF 和FC ,由AB =BC 得BF⊥AC. ∵面ABC⊥侧面AC 1,∴BF⊥侧面AC 1,得BF∥EG.BF 和EG 确定一个平面,交侧面AC 1于FG . ∵BE∥侧面AC 1,∴BE∥FG,四边形BEGF 是,BE =FG .∴BE∥AA 1,∴FG∥AA 1,△AA 1C∽△FGC. 解:(2)分别延长CE 和C1B1交于点D ,连结A 1D . ∵∠B 1A 1C 1=∠B 1C 1A 1=60°,∴∠DA 1C 1=∠DA 1B 1+∠B 1A 1C 1=90°,即DA 1⊥A 1C 1. ∵CC 1⊥面A 1C 1B 1,由三垂线定理得DA 1⊥A 1C ,所以∠CA 1C 1是所求二面角的平面角.且∠A 1C 1C =90°. ∵CC 1=AA 1=A 1B 1=A 1C 1,∴∠CA 1C 1=45°,即所求二面角为45°. 说明:假设改用面积射影定理,那么还有另外的解法.三、作业: 1.平面的一条斜线a 与平面成角,直线b,且a,b 异面,那么a 与b 所成的角为〔A 〕A .有最小值,有最大值2π B .无最小值,有最大值2π。

立体几何-空间角求法题型(线线角、线面角、二面角)

立体几何-空间角求法题型(线线角、线面角、二面角)

空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现, 也是历年来高考命题者的热点, 几乎年年必考。

空间角是线线成角、线面成角、面面成角的总称。

其取值范围分别是:0° < 90°、0°< < 90°、0° < 180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转 化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正 余弦定理)和向量法。

下面举例说明。

一、异面直线所成的角:例1如右下图,在长方体 ABCD A i BiGD i 中,已知AB 4 , AD 3, AA 2。

E 、F 分别是线段AB 、BC 上的点,且EB FB 1。

求直线EC i 与FD i 所成的角的余弦值。

思路一:本题易于建立空间直角坐标系,uuu uuu把EC i 与FD i 所成角看作向量 EC 与FD 的夹角,用向量法求 解。

思路二:平移线段C i E 让C i 与D i 重合。

转化为平面角,放到 三角形中,用几何法求解。

(图I )uuu uju umr解法一:以A 为原点,ABAD'AA 分别为x 轴、y 轴、z 轴的•••直线EC i 与FD i 所成的角的余弦值为 --- I4解法二: 延长 BA 至点 E i ,使 AE i =I ,连结 E i F 、DE i 、D i E i 、DF , 有D i C i //E i E , D i C i =E i E ,则四边形 D i E i EC i 是平行四边形。

则 E i D i //EC i 于是/ E i D i F 为直线EC i 与FD i 所成的角。

在 Rt △ BE i F 中, E i F -J E i F 2 BF 2「5 2 i 2 「‘莎。

第2讲 立体几何中的空间角问题

第2讲 立体几何中的空间角问题

(2)求直线DF与平面DBC所成角的正弦值.
解 方法一 如图(2),过点O作OH⊥BD,交直线BD于点H,连接CH.
由ABC-DEF为三棱台,得DF∥CO,
所以直线DF与平面DBC所成角等于直线CO与平面DBC所成角.
由BC⊥平面BDO,得OH⊥BC,又BC∩BD=B,
故OH⊥平面DBC,
所以∠OCH为直线CO与平面DBC所成角.
(2)(2021·温州模拟)如图,点M,N分别是正四面体ABCD的棱AB,CD上 的点,设BM=x,直线MN与直线BC所成的角为θ,则 A.当ND=2CN时,θ随着x的增大而增大 B.当ND=2CN时,θ随着x的增大而减小 C.当CN=2ND时,θ随着x的增大而减小
√D.当CN=2ND时,θ随着x的增大而增大
又∵AA1∥B1B,∴BB1⊥BM. 又BM∩BC=B,BM,BC⊂平面BMC, ∴BB1⊥平面BMC, 又CM⊂平面BMC,∴BB1⊥CM.
(2)求直线BM与平面CB1M所成角的正弦值.
解 方法一 作BG⊥MB1于点G,连接CG. 由(1)知BC⊥平面AA1B1B,得到BC⊥MB1, 又BC∩BG=B,BC,BG⊂平面BCG,
MN= x2-3x+7,
所以在△MNE 中,cos θ=2
4-x x2-3x+7
=12 1+x2-9-3x5+x 7(x∈[0,3]),
令 f(x)=x2-9-3x5+x 7,
则 f′(x)=5xx22--31x8+x-782<0,
所以f(x)在定义域内单调递减,即x增大,f(x)减小,即cos θ减小,从而θ 增大,故D正确,C错误.
所以在△FNM中, cos θ=2 x25--3xx+7=21
1+x21-8-3x7+x 7(x∈[0,3]),

线线角、线面角、二面角知识点及练习

线线角、线面角、二面角知识点及练习

线线角、线面角、面面角专题一、异面直线所成的角1.已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的锐角(或直角)叫异面直线,a b 所成的角。

2.角的取值范围:090θ<≤︒;垂直时,异面直线当b a ,900=θ。

例1.如图, 在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== ,点D 为AB 的中点求异面直线1AC 与1B C 所成角的余弦值二、直线与平面所成的角1. 定义:平面的一条斜线和它在平面上的射影所成的锐角, 叫这条斜线和这个平面所成的角2.角的取值范围:︒︒≤≤900θ。

例2. 如图、四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。

(2)SC 与平面ABC 所成的角的正切值。

BMH S CA _ C _1_1_ A _1A_ C一、 二面角:1. 从一条直线出发的两个半平面所组成的图形叫做二面角。

这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

2. 二面角的取值范围:︒︒≤≤1800θ 两个平面垂直:直二面角。

3.作二面角的平面角的常用方法有六种:1.定义法 :在棱上取一点O ,然后在两个平面内分别作过棱上O 点的垂线。

2.三垂线定理法:先找到一个平面的垂线,再过垂足作棱的垂线,连结两个垂足即得二面角的平面角。

3.向量法:分别作出两个半平面的法向量,由向量夹角公式求得。

二面角就是该夹角或其补角。

二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。

例3.如图,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求 (1)二面角111D C A D --所成的角的余弦值 (2)平面AB 1E 和底面C C BB 11所成锐角的正切值.A 1D 1B 1C 1 EDBCA巩固练习1.若直线a 不平行于平面α,则下列结论成立的是( )A.α内所有的直线都与a 异面;B.α内不存在与a 平行的直线;C.α内所有的直线都与a 相交;D.直线a 与平面α有公共点.2.空间四边形ABCD 中,若AB AD AC CB CD BD =====,则AD 与BC 所成角为( )A.030B.045C.060D.090 3.正方体ABCD-A 1B 1C 1D 1中,与对角线AC 1异面的棱有( )条A.3B.4C.6D.84.如图长方体中,AB=AD=23,CC 1=2,则二面角C 1—BD —C 的大小为( ) A.300B.450C.600D.9005.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,点E 、F 分别是AB 、BD 的中点.求证:(1)直线EF ∥面ACD .(2)平面EFC ⊥平面BCD .6.如图,DC ⊥平面ABC ,EB ∥DC ,AC =BC =EB =2DC =2,∠ACB =120°,P ,Q 分别为AE ,AB 的中点.(1)证明:PQ ∥平面ACD ;(2)求AD 与平面ABE 所成角的正弦值.ABC D A 1B 1C 1D 17.如图,已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,设SA=4,AB=2,求点A到平面SBD的距离;。

最新文科立体几何线面角二面角专题-带答案

最新文科立体几何线面角二面角专题-带答案

文科立体几何线面角二面角专题学校:___________姓名:___________班级:___________考号:___________一、解答题1中,(1(2,求2中,(1)证明:(2)若点3.(2018年浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.4P,G面ABC(I AB所成角的余弦值;(II(III)求直线.5是正方形,,,.(1(2.6中,侧棱的中点.(1(2(3.7.如图,在四边形ABCD中,AB//CD,∠AB D=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF.(Ⅰ)求证:平面ADE⊥平面BDEF;(Ⅱ)若二面角的大小为60°,求CF与平面ABCD所成角的正弦值.8(1(2与平面.9.在多面体中,底面是梯形,四边形是正方(1(2.10(1(2.参考答案1.(1)见解析(2【解析】分析:(1)根据等腰三角形性质得PO垂直AC,再通过计算,根据勾股定理得PO垂直OB,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,根据方程组解出平面PAM一个法向量,利用向量数量积求出两个法向量夹角,根据二面角与法向量夹角相等或互补关系列方程,解得M坐标,再利用向量数量积求得向量PC与平面PAM法向量夹角,最后根据线面角与向量夹角互余得结果.详解:(1)因为,所以知(2由已知平法向量由已知得.(舍去)点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.2.解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP连结OB.因为AB=BC ABC为等腰直角三角形,且OB⊥AC,OB.OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC,CM ACB=45°.所以OM CH所以点C到平面POM的距离为【解析】分析:(1,欲证(2).详解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP连结OB.因为AB=BC ABC为等腰直角三角形,且OB⊥AC,OB.OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC,CM ACB=45°.所以OM CH所以点C到平面POM的距离为点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.3.(Ⅰ)见解析;(Ⅱ)【解析】分析:方法一:(Ⅰ)通过计算,根据勾股定理得再根据线面垂直的判定定理得结论,(Ⅱ)找出直线AC1与平面ABB1所成的角,再在直角三角形中求解.方法二:(Ⅰ)根据条件建立空间直角坐标系,写出各点的坐标,根据向量之积为0得出(Ⅱ)根据方程组解出平面互余关系求解.详解:方法一:,交直线是.学科.网,故方法二:(Ⅰ)如图,以AC的中点O为原点,分别以射线OB,OC为x,y轴的正半轴,建立空间直角坐标系O-xyz.由题意知各点坐标如下:的法向量.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.4(Ⅱ)见解析(Ⅲ)【解析】分析:AB,故∠AB所成的角,解三角形可得所求余弦值.ABC A1G,A1G,又A1G的中点H,连接AH,HG;取HG的中点O,连接OP PO//A1G故得∠PC1O是PC1详解:(I)AB,∴∠是异面直线AB所成的角.,G为BC的中点,∴A1G⊥B1C1,即异面直线AG与AB所成角的余炫值为(IIABC ABC,A1G,A1G,又A1G(III的中点H,连接AH,HG;取HG的中点O,连接OP∵PO//A1G,∴∠PC1O是PC1点睛:用几何法求求空间角的步骤:①作:利用定义作出所求的角,将其转化为平面角;②证:证明作出的角为所求角;③求:把这个平面角置于一个三角形中,通过解三角形求空间角;④作出结论,将问题转化为几何问题.5.(1)见解析【解析】试题分析:(1)由题意,从而问题可得证;(2轴,的法向量,结合图形,二面角.试题解析:(1,(2,点睛:此题主要考查立体几何中异面直线垂直的证明,二面角的三角函数值的求解,以及坐标法在解决立体几何问题中的应用等有关方面的知识和技能,属于中档题型,也是常考题型.坐标法在解决立体几何中的一般步骤,一是根据图形特点,建立空间直角坐标系;二是将几何中的量转化为向量,通过向量的运算;三是将运算得到的结果翻译为几何结论.6.(1)见解析(2)见解析【解析】分析:(1,再证明详解:(1)证明:连接,是平行四边形,∴(2,(3,.与直线点睛:(1)本题主要考查空间位置关系的证明和异面直线所成角的计算,意在考查学生对这些基础知识的掌握能力和空间想象转化能力.(2)求空间的角,方法一是利用几何法,.方法二是利用向量法.7.(1)见解析(2【解析】分析:(1)根据面面垂直的判定定理即可证明平面ADE⊥平面BDEF;(2)建立空间直角坐标系,利用空间向量法即可求CF与平面ABCD所成角的正弦值;也可以应用常规法,作出线面角,放在三角形当中来求解.详解:(Ⅰ)在△ABD中,∠ABD=30°,由AO2=AB2+BD2-2AB·BD cos30°,解得BD=,所以AB2+BD2=AB2,根据勾股定理得∠ADB=90°∴AD⊥BD.又因为DE⊥平面ABCD,AD ABCD,∴AD⊥DE.又因为=D,所以AD⊥平面BDEF,又AD平面ABCD,∴平面ADE⊥平面BDEF,(Ⅱ)方法一:BCD为锐角为30°的等腰三角形.过点C,交DB、AB于点G,H,则点G为点F在面ABCD上的投影.连接FG,则DE⊥平面ABCD过G I,则,即角二面角.在直角梯形BDEF中,G为BDCF与平面ABCD(Ⅱ)方法二:可知DA、DB、DE两两垂直,以D为原点,建立如图所示的空间直角坐标系D-xyz.设DE=h,则D(0,0,0),B(0,,0),C(-,-,h).,.设平面BCF的法向量为m=(x,y,z),x=,所以m=(,-1,-),取平面BDEF的法向量为n=(1,0,0),又,CF与平面ABCD则sin故直线CF与平面ABCD点睛:该题考查的是立体几何的有关问题,涉及到的知识点有面面垂直的判定,线面角的正弦值,在求解的过程中,需要把握面面垂直的判定定理的内容,要明白垂直关系直角的转化,在求线面角的有关量的时候,有两种方法,可以应用常规法,也可以应用向量法.8.(1)见解析;(2【解析】分析:(1(2面可得与平面所成角,从而得到详解:(1中,由余弦定理得,又因为.(2由(1所以直线与平面所成角的正弦值为点睛:(1)证明空间中的位置关系时要注意解题的规范性和严密性,运用定理证明时要体现出定理中的关键性词语.(2)用几何法求空间角时可分为三步,即“一找、二证、三计算”,即首先根据所求角的定义作出所求的角,并给出证明,最后利用解三角形的方法得到所求的角(或其三角函数值).9.(1)见解析;(2【解析】分析:(1)由勾股定理的逆定理可得,(2详解:(1,,(2)由(1平面,.,得.由图形知二面角为锐角,点睛:利用空间向量求二面角的注意点(1)建立空间直角坐标系时,要注意证明得到两两垂直的三条直线.然后确定出相应点的坐标,在此基础上求得平面的法向量.(2)求得两法向量的夹角的余弦值后,还要结合图形确定二面角是锐角还是钝角,然后才能得到所求二面角的余弦值.这一点在解题时容易忽视,解题时要注意.10.(1)见解析(2【解析】分析:(1)通过取AD中点M,连接CM;再根据线面垂直判定定理即可证明。

线线角、线面角,二面角(高考立体几何法宝)

线线角、线面角,二面角(高考立体几何法宝)

1A 1B 1C 1D ABCD E FG线线角、线面角、二面角的求法1.空间向量的直角坐标运算律:⑴两个非零向量与垂直的充要条件是1122330a b a b a b a b ⊥⇔++=⑵两个非零向量与平行的充要条件是a ·b =±|a ||b | 2.向量的数量积公式若a 与b 的夹角为θ(0≤θ≤π),且123(,,)a a a a =,123(,,)b b b b =,则 (1)点乘公式: a ·b =|a ||b | cos θ(2)模长公式:则212||a a a a a =⋅=++2||b b b b =⋅=+(3)夹角公式:2cos ||||a ba b a b a ⋅⋅==⋅+(4)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则2||(AB AB x ==,A B d =①两条异面直线a 、b 间夹角0,2πα⎛⎫∈ ⎪⎝⎭在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ,则cos |cos ,|AB CD θ=<>=例1 (福建卷)如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是( )A .515arccosB .4π C .510arccosD .2π(向量法,传统法)PBCA例 2 (2005年全国高考天津卷)如图,PA ⊥平面ABC ,90ACB ∠=︒且PA AC BC a ===,则异面直线PB 与AC 所成角的正切值等于_____.解:(1)向量法(2)割补法:将此多面体补成正方体'''DBCA D B C P -,PB 与AC 所成的角的大小即此正方体主对角线PB 与棱BD 所成角的大小,在Rt △PDB中,即t a n 2PDDBA DB∠==. 点评:本题是将三棱柱补成正方体'''DBCA D B C P -②直线a 与平面α所成的角0,2πθ⎛⎤∈ ⎥⎝⎦(重点讲述平行与垂直的证明)可转化成用向量→a 与平面α的法向量→n 的夹角ω表示,由向量平移得:若ππ(图);若ππ平面α的法向量→n 是向量的一个重要内容,是求直线与平面所成角、求点到平面距离的必备工具.求平面法向量的一般步骤:(1)找出(求出)平面内的两个不共线的向量的坐标111222(,,),(,,)a a b c b a b c == (2)设出平面的一个法向量为(,,)n x y z =(3)根据法向量的定义建立关于x,y,z 的方程组(0a <(4)解方程组,取其中的一组解,即得法向量。

立体几何复习专题---线面角二面角教案

立体几何复习专题---线面角二面角教案

立体几何复习专题--空间角之线面角、二面角一、课前回顾(1)在正四面体A-BCD中,异面直线AB与CD所成角的大小是_______.(2)长方体ABCD—A1B1C1D1中,若AB=BC=3,AA1=4,求异面直线B1D与BC1所成角的余弦值。

(3)如图空间四边形ABCD中,四条棱AB,BC,CD,DA及对角线AC,BD均相等,E为AD的中点,F为BC中,求直线AF和CE 所成的角的余弦值。

(4)异面直线a , b所成的角为︒60,过空间一定点P,作直线L,使L与a ,b 所成的角均为︒60,这样的直线L有条。

(5)已知三棱锥P-ABC的三条侧棱PA、PB、PC两两垂直,D是底面三角形内一点,且∠DPA=450,∠DPB=600,则∠DPC=__________。

(6)正方体的12条棱和12条面对角线中,互相异面的两条线成的角大小构成的集合是。

(7)正方体1AC中,O是底面ABCD的中心,则OA1和BD1所成角的大小为。

(8)如图正三棱柱ABC-A1B1C1中AB=2AA1,M、N分别是A1B1,A1C1的中点,则AM与CN所成角为。

A'C1AB CMN二、基础知识一、线面角1、线面角的范围:θ∈[0,π2 ].2、线面角的求法1)解决该类问题的关键是找出斜线在平面上的射影,然后将直线与平面所成的角转化为直线与直线所成的角.在某一直角三角形内求解.2)线面角的求法还可以不用做出平面角.可求出线上某点到平面的距离d,利用sinα=dAB可求.直接法:平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。

通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。

利用公式:sinθ=h/ι其中θ是斜线与平面所成的角, h是垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。

高二数学教案(线面角和二面角)(最新人教版优质教案)( 含解析 )

高二数学教案(线面角和二面角)(最新人教版优质教案)( 含解析 )

1.斜线、斜足、射影的概念斜线:与平面α相交,但不和平面α垂直,图中直线P A ;斜足:斜线和平面的交点,图中点A :线面角问题定位1求下列直线与平面所成角的大小。

答案解答根据规定,一条直线垂直于平面,它们所成的角是90°;一条直线和平面平行,或在平面内,它们所成的角是0°.原因分析线面角精准突破射影:过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面上的射影,图中斜线P A在平面α上的射影为直线AO.2.直线与平面所成的角:(1)定义:平面的一条斜线和它在平面上的射影所成的锐角,如图中∠P AO规定:一条直线垂直于平面,它们所成的角是90°;一条直线和平面平行,或在平面内,它们所成的角是0°.(2)取值范围:设直线与平面所成的角为θ,0°≤θ≤90°3.求直线与平面所成角的步骤:(1)作图:作(或找)出斜线在平面内的射影;(2)证明:证明某平面角就是斜线与平面所成的角;(3)计算:通常在垂线段、斜线和射影所组成的直角三角形中计算.常用方法:直接法(定义法)平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。

通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。

等积法(利用公式sinθ=h/l)其中θ是斜线与平面所成的角,h是垂线段的长,l是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。

2判断正误:(1)如果两条直线与一个平面所成的角相等,那么这两条直线一定平行.( )(2)如果两条直线平行,那么这两条直线与同一个面所成的角相同.( )答案(1)错误;(2)正确解答(1)不一定平行,可能是相交,平行,异面。

(2)正确.3线段AB的长等于它在平面α内的射影长的2倍,则AB所在直线与平面α所成的角为( ) A.30° B.45° C.60° D.120°答案C。

高三数学复习(文科)立体几何知识点、方法总结

高三数学复习(文科)立体几何知识点、方法总结

立体几何知识点整理(文科)一.直线和平面的三种位置关系:1. 线面平行符号表示:2. 线面相交符号表示:3. 线在面内符号表示:二.平行关系:1.线线平行:方法一:用线面平行实现。

mlmll////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法二:用面面平行实现。

mlml////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法三:用线面垂直实现。

若αα⊥⊥ml,,则ml//。

方法四:用向量方法:若向量l和向量m共线且l、m不重合,则ml//。

2.线面平行:方法一:用线线平行实现。

ααα////llmml⇒⎪⎭⎪⎬⎫⊄⊂方法二:用面面平行实现。

αββα////ll⇒⎭⎬⎫⊂方法三:用平面法向量实现。

若n为平面α的一个法向量,ln⊥且α⊄l,则α//l。

3.面面平行:方法一:用线线平行实现。

βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交mlmlmmll方法二:用线面平行实现。

βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交mlml三.垂直关系:1. 线面垂直:方法一:用线线垂直实现。

αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥lABACAABACABlACl,方法二:用面面垂直实现。

llαββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,2. 面面垂直:方法一:用线面垂直实现。

βαβα⊥⇒⎭⎬⎫⊂⊥l l方法二:计算所成二面角为直角。

3. 线线垂直:方法一:用线面垂直实现。

m l m l ⊥⇒⎭⎬⎫⊂⊥αα方法二:三垂线定理及其逆定理。

PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭方法三:用向量方法:若向量l 和向量m 的数量积为0,则m l ⊥。

三.夹角问题。

(一) 异面直线所成的角: (1) 范围:]90,0(︒︒ (2)求法: 方法一:定义法。

步骤1:平移,使它们相交,找到夹角。

步骤2:解三角形求出角。

(常用到余弦定理)余弦定理:abcb a 2cos 222-+=θ(计算结果可能是其补角)方法二:向量法。

高考数学艺体生文化课总复习第八章立体几何第5节异面直线所成的角二面角点金课件

高考数学艺体生文化课总复习第八章立体几何第5节异面直线所成的角二面角点金课件

在△ABD中,由余弦定理知BD2 22 12 2 2 1 cos 60 3,
所以BD 3,所以B1D1 3.
又AB1与AD1所成的角即为AB1与BC1所成的角 ,
5 2
5 2
2 5
.故选D.
2.过点P作二面角α-l-β的两个半平面所在的平面的垂线PA,PB.若
PA和PB成60°,则该二面角的平面角为 ( )
A.60°
B.120°
C.60°或120°
D.150°
【答案】 C 【解析】 二面角α -l -β可以是锐角或钝角.故选C.
3.(2018新课标Ⅱ卷)在长方体ABCD -A1B1C1D1中,AB=BC=1,
第八章 立体几何
第5节 异面直线所成的角、二面角
知识梳理
1.异面直线所成的角:过空间任一点作两条异面直线a,b的平
行线a',b',则a'和b'所成的锐角或直角就是异面直线a,b所成的角θ.
(其中0<θ≤
2
)
2.二面角定义:从一条直线出发的两个半平面所组成的图形叫
做二面角(如图).直线AB叫做二面角的棱,半平面α和β叫做二面角
的面.
记法:α -AB -β,在α,β内,分别取点P,Q时,可记作P -AB -Q;当棱 记为l时,可记作α -l -β或P -l -Q.
3.二面角的平面角: (1)定义:在二面角α -l -β的棱l上任取一点O,如图所示,以点O 为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则射线 OA和OB构成的∠AOB叫做二面角的平面角. (2)直二面角:平面角是直角的二面角. (3)二面角的平面角的定义是两条 “射线”的夹角,不是两条直线的夹角, 因此,二面角θ的取值范围是0°≤θ≤180°. 4.解决二面角问题的策略 清楚二面角的平面角的大小与顶点在棱上的位置无关,通常 可根据需要选择特殊点作平面角的顶点.求二面角的大小的方法 为:一作:即先作出二面角的平面角;二证:即证明所作角是二面角 的平面角;三求:即利用二面角的平面角所在的三角形算出角的 三角函数值,其中关键是“作”.

新高考数学之立体几何综合讲义第5讲 二面角(解析版)

新高考数学之立体几何综合讲义第5讲 二面角(解析版)

CA AB 0 , DB AB 0 .
CD
CA
AB
BD

2 CD
2 CA
2 AB
2 BD
2CA AB
2CA BD
2AB
BD
D.9
62 42 82 2 6 8cos120 68 ,
CD 2 17 故选: C .
5.二面角的棱上有 A 、 B 两点,直线 AC 、 BD 分别在这个二面角的两个半平面内,且都垂直于 AB .已知
1 BD AO 1 AB AD ,
2
2
AO AB AD 12 , BD 5
4
tan POA
PA AO
5 12
1. 3
5
二面角 A BD P 的正切值为 1 . 3
故选: B .
3.在平面 内,已知 AB BC ,过直线 AB , BC 分别作平面 , ,使锐二面角 AB 为 ,锐二 3
a b2 1 a2
1 a2
在 BCH 中, BC a , BH CH
4 b
,由余弦定理可得 cos
b2
4 1 a2

4
4
所以 2cos cos 2 2(cos cos2 ) 1 0 1 1 故选: C .
二.填空题(共 4 小题) 8.已知四棱锥 P ABCD 的底面是正方形, PA 平面 ABCD ,且 PA AD ,则平面 PAB 与平面 PCD 所成
62 42 82 2 6 8cos CA, BD (2 17)2 ,
cosCA,
BD
1
,即
CA,
BD
120

2
所以二面角的大小为 60 ,
故选: C .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文科立体几何线面角二面角专题学校:___________姓名:___________班级:___________考号:___________一、解答题1.如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值.2.如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且,求点到平面的距离.3.(2018年浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.4.如图,在三棱柱中,点P,G分别是,的中点,已知⊥平面ABC,==3,==2.(I)求异面直线与AB所成角的余弦值;(II)求证:⊥平面;(III)求直线与平面所成角的正弦值.5.如图,四棱锥,底面是正方形,,,,分别是,的中点.(1)求证;(2)求二面角的余弦值.6.如图,三棱柱中,侧棱底面,且各棱长均相等.,,分别为棱,,的中点.(1)证明:平面;(2)证明:平面平面;(3)求直线与直线所成角的正弦值.7.如图,在四边形ABCD中,AB//CD,∠AB D=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF.(Ⅰ)求证:平面ADE⊥平面BDEF;(Ⅱ)若二面角C BF D的大小为60°,求CF与平面ABCD所成角的正弦值.8.如图,在四棱锥中,平面,,,,点是与的交点,点在线段上,且.(1)证明:平面;(2)求直线与平面所成角的正弦值.9.在多面体中,底面是梯形,四边形是正方形,,,,,(1)求证:平面平面;(2)设为线段上一点,,求二面角的平面角的余弦值.10.如图,在多面体中,四边形为等腰梯形,,已知,,,四边形为直角梯形,,.(1)证明:平面,平面平面;(2)求三棱锥的体积.参考答案1.(1)见解析(2)【解析】分析:(1)根据等腰三角形性质得PO垂直AC,再通过计算,根据勾股定理得PO垂直OB,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,根据方程组解出平面PAM一个法向量,利用向量数量积求出两个法向量夹角,根据二面角与法向量夹角相等或互补关系列方程,解得M坐标,再利用向量数量积求得向量PC与平面PAM法向量夹角,最后根据线面角与向量夹角互余得结果.详解:(1)因为,为的中点,所以,且.连结.因为,所以为等腰直角三角形,且,.由知.由知平面.(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.由已知得取平面的法向量.设,则.设平面的法向量为.由得,可取,所以.由已知得.所以.解得(舍去),.所以.又,所以.所以与平面所成角的正弦值为.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.2.解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM=,CH==.所以点C到平面POM的距离为.【解析】分析:(1)连接,欲证平面,只需证明即可;(2)过点作,垂足为,只需论证的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM=,CH==.所以点C到平面POM的距离为.点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.3.(Ⅰ)见解析;(Ⅱ).【解析】分析:方法一:(Ⅰ)通过计算,根据勾股定理得,再根据线面垂直的判定定理得结论,(Ⅱ)找出直线AC1与平面ABB1所成的角,再在直角三角形中求解.方法二:(Ⅰ)根据条件建立空间直角坐标系,写出各点的坐标,根据向量之积为0得出,再根据线面垂直的判定定理得结论,(Ⅱ)根据方程组解出平面的一个法向量,然后利用与平面法向量的夹角的余弦公式及线面角与向量夹角的互余关系求解.详解:方法一:(Ⅰ)由得,所以.故.由,得,由得,由,得,所以,故.因此平面.(Ⅱ)如图,过点作,交直线于点,连结.由平面得平面平面,由得平面,所以是与平面所成的角.学科.网由得,所以,故.因此,直线与平面所成的角的正弦值是.方法二:(Ⅰ)如图,以AC的中点O为原点,分别以射线OB,OC为x,y轴的正半轴,建立空间直角坐标系O-xyz.由题意知各点坐标如下:因此由得.由得.所以平面.(Ⅱ)设直线与平面所成的角为.由(Ⅰ)可知设平面的法向量.由即可取.所以.因此,直线与平面所成的角的正弦值是.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.4.(Ⅰ)(Ⅱ)见解析(Ⅲ)【解析】分析:(Ⅰ)由题意得∥AB,故∠G是异面直线与AB所成的角,解三角形可得所求余弦值.(Ⅱ)在三棱柱中,由⊥平面ABC可得⊥A1G,于是⊥A1G,又A1G⊥,根据线面垂直的判定定理可得结论成立.(Ⅲ)取的中点H,连接AH,HG;取HG的中点O,连接OP,.由PO//A1G可得平面,故得∠PC1O是PC1与平面所成的角,然后解三角形可得所求.详解:(I)∵∥AB,∴∠G是异面直线与AB所成的角.∵==2,G为BC的中点,∴A1G⊥B1C1,在中,,∴,即异面直线AG与AB所成角的余炫值为.(II)在三棱柱中,∵⊥平面ABC,平面ABC,∴⊥A1G,∴⊥A1G,又A1G⊥,,∴平面.(III)解:取的中点H,连接AH,HG;取HG的中点O,连接OP,.∵PO//A1G,∴平面,∴∠PC1O是PC1与平面所成的角.由已知得,,∴∴直线与平面所成角的正弦值为.点睛:用几何法求求空间角的步骤:①作:利用定义作出所求的角,将其转化为平面角;②证:证明作出的角为所求角;③求:把这个平面角置于一个三角形中,通过解三角形求空间角;④作出结论,将问题转化为几何问题.5.(1)见解析;(2).【解析】试题分析:(1)由题意,可取中点,连接,则易知平面∥平面,由条件易证平面,则平面,又平面,根据线面垂直的定义,从而问题可得证;(2)由题意,采用坐标法进行求解,可取中点为坐标原点,过点作平行于的直线为轴,为轴,为轴,建立空间直角坐标系,分别算出平面和平面的法向量,结合图形,二面角为锐角,从而问题可得解.试题解析:(1)取中点,连结,,∵是正方形,∴,又∵,,∴,∴面,∴,又∵,,都是中点,∴,,∴面,∴;(2)建立如图空间直角坐标系,由题意得,,,,则,,,设平面的法向量为,则,即,令,则,,得,同理得平面的法向量为,∴,所以他的余弦值是.点睛:此题主要考查立体几何中异面直线垂直的证明,二面角的三角函数值的求解,以及坐标法在解决立体几何问题中的应用等有关方面的知识和技能,属于中档题型,也是常考题型.坐标法在解决立体几何中的一般步骤,一是根据图形特点,建立空间直角坐标系;二是将几何中的量转化为向量,通过向量的运算;三是将运算得到的结果翻译为几何结论. 6.(1)见解析(2)见解析(3)【解析】分析:(1)先证明,再证明平面.(2)先证明面,再证明平面平面.(3)利用异面直线所成的角的定义求直线与直线所成角的正弦值为.详解:(1)证明:连接,∵、分别是、的中点,∴,,∵三棱柱中,∴,,又为棱的中点,∴,,∴四边形是平行四边形,∴,又∵平面,平面,∴平面.(2)证明:∵是的中点,∴,又∵平面,平面,∴,又∵,∴面,又面,∴平面平面;(3)解:∵,,∴为直线与直线所成的角.设三棱柱的棱长为,则,∴,∴.即直线与直线所成角的正弦值为.点睛:(1)本题主要考查空间位置关系的证明和异面直线所成角的计算,意在考查学生对这些基础知识的掌握能力和空间想象转化能力.(2)求空间的角,方法一是利用几何法,找作证指求.方法二是利用向量法.7.(1)见解析(2)【解析】分析:(1)根据面面垂直的判定定理即可证明平面ADE⊥平面BDEF;(2)建立空间直角坐标系,利用空间向量法即可求CF与平面ABCD所成角的正弦值;也可以应用常规法,作出线面角,放在三角形当中来求解.详解:(Ⅰ)在△ABD中,∠ABD=30°,由AO2=AB2+BD2-2AB·BD cos30°,解得BD=,所以AB2+BD2=AB2,根据勾股定理得∠ADB=90°∴AD⊥BD.又因为DE⊥平面ABCD,AD平面ABCD,∴AD⊥DE.又因为BD DE=D,所以AD⊥平面BDEF,又AD平面ABCD,∴平面ADE⊥平面BDEF,(Ⅱ)方法一:如图,由已知可得,,则,则三角形BCD为锐角为30°的等腰三角形.则.过点C做,交DB、AB于点G,H,则点G为点F在面ABCD上的投影.连接FG,则,DE⊥平面ABCD,则平面.过G做于点I,则BF平面,即角为二面角C BF D的平面角,则60°.则,,则.在直角梯形BDEF中,G为BD中点,,,,设,则,,则.,则,即CF与平面ABCD所成角的正弦值为.(Ⅱ)方法二:可知DA、DB、DE两两垂直,以D为原点,建立如图所示的空间直角坐标系D-xyz.设DE=h,则D(0,0,0),B(0,,0),C(-,-,h).,.设平面BCF的法向量为m=(x,y,z),则所以取x=,所以m=(,-1,-),取平面BDEF的法向量为n=(1,0,0),由,解得,则,又,则,设CF与平面ABCD所成角为,则sin=.故直线CF与平面ABCD所成角的正弦值为点睛:该题考查的是立体几何的有关问题,涉及到的知识点有面面垂直的判定,线面角的正弦值,在求解的过程中,需要把握面面垂直的判定定理的内容,要明白垂直关系直角的转化,在求线面角的有关量的时候,有两种方法,可以应用常规法,也可以应用向量法. 8.(1)见解析;(2)【解析】分析:(1)由题意得是等边三角形,故得,于是,从而得,所以,然后根据线面平行的判定定理可得结论成立.(2)由平面可得,于是平面.又,所以直线与平面所成角即直线与平面所成角,从而得到即为所求角,然后根据解三角形可得所求.详解:(1)因为,所以垂直平分线段.又,所以.在中,由余弦定理得,所以.又,所以是等边三角形,所以,所以,又因为,所以,所以.又平面平面,所以平面.(2)因为平面,平面,所以,又,所以平面.由(1)知,所以直线与平面所成角即直线与平面所成角,故即为所求的角.在中,,所以,所以直线与平面所成角的正弦值为.点睛:(1)证明空间中的位置关系时要注意解题的规范性和严密性,运用定理证明时要体现出定理中的关键性词语.(2)用几何法求空间角时可分为三步,即“一找、二证、三计算”,即首先根据所求角的定义作出所求的角,并给出证明,最后利用解三角形的方法得到所求的角(或其三角函数值).9.(1)见解析;(2).【解析】分析:(1)由勾股定理的逆定理可得,;又由条件可得到,于是平面,可得,从而得到平面,根据面面垂直的判定定理得平面平面.(2)由题意得可得,,两两垂直,故可建立空间直角坐标系,结合题意可得点,于是可求得平面的法向量为,又是平面的一个法向量,求得后结合图形可得所求余弦值为.详解:(1)由,,,得,∴为直角三角形,且同理为直角三角形,且.又四边形是正方形,∴.又∴.在梯形中,过点作作于,故四边形是正方形,∴.在中,,∴,,∴,∴,∴.∵,,,∴平面,又平面,∴,又,∴平面,又平面,∴平面平面.(2)由(1)可得,,两两垂直,以为原点,,,所在直线为轴建立如图所示的空间直角坐标系,则.令,则,∵,∴∴点.∵平面,∴是平面的一个法向量.设平面的法向量为.则,即,可得.令,得.∴.由图形知二面角为锐角,∴二面角的平面角的余弦值为.点睛:利用空间向量求二面角的注意点(1)建立空间直角坐标系时,要注意证明得到两两垂直的三条直线.然后确定出相应点的坐标,在此基础上求得平面的法向量.(2)求得两法向量的夹角的余弦值后,还要结合图形确定二面角是锐角还是钝角,然后才能得到所求二面角的余弦值.这一点在解题时容易忽视,解题时要注意.10.(1)见解析(2)【解析】分析:(1)通过取AD中点M,连接CM,利用得到直角;再利用可得平面;再根据线面垂直判定定理即可证明。

相关文档
最新文档