分式复习ppt课件

合集下载

分式-复习课件-(共34张PPT)

分式-复习课件-(共34张PPT)

x2
1 x2
2
9
变: 已知 x2 – 3x+1=0 ,求 x2+
x
x
的1x2值. 的1x2 值.
变:已知 x+ 1=3 ,求
x
x2 /x2 的值. x4+x2+1 /x2
1
x2
1 x2
1
两个分式相乘,把分子相乘的积作为积的分子, 把分母相乘的积作为积的分母。
用符号语言表达: a c ac b d bd
27xy2
-2(a-b)2 -8(b-a)3
关键找出分子和 分母的公因式
m2+4m+4
(3)
m2 - 4
关键找出分母的
2.通分
最简公分母
(1) x 与 y (2)
6a2b
9ab2c
a-1
6
a2+2a+1 与 a2-1
约分与通分的依据都是: 分式的基本性质
整体代入法化简思想:
【【例例11】】已已知知::1x
a0 1
an
1
an
(a 0)
(1)(3)3 1 (3)3
1 27
(2)(3a)2 b2 (a2b2 )3 解:原式= 32 a2b2 a6b6
6、用科学记数法表示:
例: 0.00065 6.5104
(1) 0.000030
3.0 105
7、约分
:
例(1)
6x2y 12 xy 2
(2) x 1 2x 1 3x 2 x 1 1 x x 1
复习回顾一:
1.解分式方程的思路是:
分式 方程
去分母
整式 方程
2.解分式方程的一般步骤

七年级数学下册第五章分式复习课课件新版浙教版ppt

七年级数学下册第五章分式复习课课件新版浙教版ppt
【解析】 设 A4 薄型纸每页的质量为 x(g),则 A4 厚型纸每页的质 量为(x+0.8)g. 由题意,得x+4000.8=16x0·2, 解得 x=3.2. 经检验,x=3.2 是原方程的根,且符合题意. 答:A4 薄型纸每页的质量为 3.2 g.
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
【例 1】 若分式xx2+-11的值为零,则 x 的值为
()
A. 0
B. 1
C. -1
D. ±1
【解析】 根据分式的值为 0 的条件列出关于 x 的不等式
组,求出 x 的值即可.
∵分式xx2+-11的值为零, x2-1=0,
∴x+1≠0, 解得 x=让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
的基本性质.
【正解】
原式=2131xx+-yy××66=32xx+-66yy.
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
易错点2 颠倒运算顺序
【典例 2】 计算:1-1 a÷(3-a)·13--aa. 【错解】 原式=1-1 a÷(1-a)=(1-1a)2. 【析错】 乘除是同一级运算,除在前应先做除,上述错 解颠倒了运算顺序,致使结果出现错误. 【正解】 原式=1-1 a·3-1 a·13--aa=(3-1a)2.
m+3-m+3 (m+3)(m-3)

-2 (m-3)
·
(m+3)(m-3) 6

-m+3 3.
当 m=0 时,原式=-m+3 3=-0+3 3=-1. 【答案】 原式=-m+3 3=-1

第十五章+分式 复习课件 2024—2025学年人教版八年级数学上册

第十五章+分式 复习课件 2024—2025学年人教版八年级数学上册
[答案] ,
5.计算 的结果是( ) .
B
A. B. C. D.
6.化简 的结果是( ) .
A
A. B. C. D.
7.已知 , , ,则 , , 的大小关系是( ) .
B
A. B. C. D.
8.若把分式 中 和 的值都扩大为原来的2倍,则分式的值( ) .
2.下列关于 的方程是分式方程的是( ) .
C
A. B. C. D.
3.计算: ( ) .
D
A. B. C.5 D.
4.石墨烯是目前世界上最薄的纳米材料,其理论厚度仅有 .这个数用科学记数法表示正确的是( ) .
C
A. B. C. D.
18.先化简,再求值: ,其中 .
解:原式 ,当 时,原式
19.刘峰和李明相约周末去科技馆看展览,根据他们的谈话内容,试求李明乘公交车、刘峰骑自行车每小时各行多少千米?
刘峰:我查好地图了,你看看._
李明:好的,我家门口的公交车站,正好有一趟到科技馆那站停的车,我坐明天8:30的车.
刘峰:从地图上看,我家到科技馆的距离比你家近 ,我就骑自行车去了.
考点2 变式
(2022·贺州)解方程: .
解:方程两边乘 ,得 ,解得 .检验:当 时, , 不是原方程的解,原方程无解.
考点3 分式方程的实际应用
例3 (2021·山西)太原武宿国际机场简称“太原机场”,是山西省开通的首条定期国际客运航线.游客从太原某景区乘车到太原机场,有两条路线可供选择,路线一:走迎宾路经太榆路全程是 ,但交通比较拥堵;路线二:走太原环城高速全程是 ,平均速度是路线一的 倍,因此到达太原机场的时间比走路线一少用 .求走路线一到达太原机场需要多长时间.

第三章整理《分式》(复习)ppt课件

第三章整理《分式》(复习)ppt课件

顺水速=静水速+水流速 逆水速=静水速-水流速
设是水流速为xkm/ h
则 水 为 20 + x)km/ h 顺 速 (
逆 速 (20 - x)km/ h 水 为
72 48 = 20 + x 20 − x
A.扩大3倍 B.扩大9倍C.扩大4倍D.不变 扩大3 扩大9 扩大4
3、 填空: x ( x − y ) = ( x − 2
y)
x + xy
x+y
例1:化简求值 :
a−2 a −1 a−4 ( 2 − 2 )÷ a + 2a a + 4a + 4 a + 2 2 其中a满足:a + 2a − 1 = 0
1. 若分式
A、 A、x≠-1 C、x≠2 、
若有意义, 应满足( 若有意义,则x应满足( B ) 应满足
B、 ≠-1且 B、x ≠-1且x ≠2 D、x ≠-1或x ≠2 、 或
x −4 ( x + 1)( x − 2)
若值为0, 应满足( 若值为 ,则x应满足( B ) 应满足
A、x=2 、 C、 、
1km
中点 18km }
xkm / h
甲 A
乙 B
甲走了总共20km 甲走了总共
设 乙的速度 xkm / h 则 甲的速度( x + 0.5)km / h
20 18 = x + 0.5 x
1、一项工程,若甲队单独做,恰好在规定的日期 、一项工程,若甲队单独做, 完成,若乙队单独做要超过规定日期3天完成 天完成; 完成,若乙队单独做要超过规定日期 天完成;现 在先由甲、乙合做2天 在先由甲、乙合做 天,剩下的工程再由乙队单独 也刚好在规定日期完成, 做,也刚好在规定日期完成,问规定的日期是多 少天? 少天? 1 甲每天的工作量 x 设 天 甲x

分式复习1

分式复习1

其中A叫做分子,B叫做分母.
分式及其相关概念 强化训练:
1.下列各式中,哪些是分式?
m m 1 2 5 a b xy (1) , , x , , , 8 a 3 x6 2 A 5x 2y
2 2
注意:分式
中,分母 B 中一定要有字
5 a 1 ( 2) , ,a a b
2
母。 温馨提示:
B
分式
A
x 1 无意义的条件
{ B≠0
.
(2)
若分式
3x 6 2x 1 B.
的值为 0,则() X 1 2 C. X 1 2 D. X 2
c
A. X -2
本章知识网络
分 2、分式的基本性质 式
3、分式的运算 4、分式方程

1、分式概念 ⑴分式有意义的条件 ⑵分式的值的情况讨论
(2)若值为0,则x应满足( B )
A、x=2 C、 x
2
B、x =-2 D、x =-1或x =2
2
a b ab A 计算 的结果是() a b a A. a -b b B. ab b C. a -b a D. ab a
x+3 2-x 3 10.学完分式运算后,老师出了一道题“化简: + ”. x+2 x2-4 x+3x-2 x-2 x2+x-6-x-2 x2-8 小明的做法是:原式= - 2 = = 2 ; 2 2 x -4 x -4 x -4 x -4 小亮的做法是:原式=(x+3)(x-2)+(2-x)=x2+x-6+2-x=x2-4; x+3 x-2 x+3 1 x+3-1 小芳的做法是:原式= - = - = =1. x+2 x+2x-2 x+2 x+2 x+2 其中正确的是( ) A.小明 B.小亮 C.小芳 D.没有正确的

八年级数学上册第二章分式与分式方程复习课件(30张PPT)

八年级数学上册第二章分式与分式方程复习课件(30张PPT)
解这个方程得:x=30
经检验:x=30 是原方程的解, 所以 1.5x=45 答:实际有 45 人参加了植树活动。
评注:1、分式方程解应用题应相应地增加检验的过程。 2、要注意灵活设未知数。
列方程解应用题:
例4、甲、乙两人分别从相距36千米的 A、B两地同时相向而行,甲从A地出 发到1千米时发现有一物品遗忘在A地 ,立即返回,取过物品后又立即从A地 向B地行进,这样两人恰好在A、B两 地中点处相遇,又知甲比乙每小时多 走0.5千米,求甲、乙两人的速度。
一、分式的概念:
x2 4 1. 若分式 (x 1)(x 2)
若有意义,则x应满足( B )
A、x≠-1 C、x≠2
B、x ≠-1且x ≠2 D、x ≠-1或x ≠2
若值为0,则x应满足( B )
A、x=2
B、x =-2
C、 x 2 D、x =-1或x =2
二、分式的基本性质
1.若把分式 2x 的yx 和y 都扩大两倍,则分式的值( ) B 3x y
(3)
m2+4m+4
m2 - 4
7.通分
(1) x 与 y
6a2b
9ab2c
a-1
(2) a2+2a+1 与
6 a2-1
计算: 8 9
10
算一算
11、解方程
(1) 2 1 x2 x
(2) x 1 1 3 x2 2x
12、列方程,解应用题: 甲、乙两城间的铁路路程为1600千米,经过技
术改造,列车实施了提速,提速后比提速前速度增 加20千米/时,列车从甲城到乙城行驶时间减少了4 小时,这条铁路在现有条件下安全行驶速度不得超 过140千米/时.请你用学过的数学知识说明在这条 铁路的现有的条件下列车还可以提速.

第15章分式小结与复习课件(共34张PPT)

第15章分式小结与复习课件(共34张PPT)
解:最简公分母为(x+2)(x﹣2),去分母得(x﹣2)2﹣(x+2)(x﹣2)=16,整理得﹣4x+8=16,解得x=﹣2,经检验x=﹣2是增根,故原分式方程无解.
【例5】 从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;
解析:(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的1.3倍,两数相乘即可;
解:(1)根据题意得400×1.3=520(千米).答:普通列车的行驶路程是520千米;
(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.
3.分式的加减法则:
(1)同分母分式的加减法则:
(2)异分母分式的加减法则:
4.分式的混合运算:
先算乘方,再算乘除,最后算加减,有括号的先算括号里面的.
计算结果要化为最简分式或整式.
3.分式方程的应用
列分式方程解应用题的一般步骤
(1)审清题意;(2)设未知数; (3)找相等关系;(4)列出方程;(5)解这个分式方程;(6)验根(包括两方面 :是否是分式方程的根; 是否符合题意);(7)答.
解析:设普通列车的平均速度是x千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可.
解:设普通列车的平均速度是x千米/时,则高铁的平均速度是2.5x千米/时,根据题意得
解得x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时).
分式方程的应用
步骤
一审二设三找四列五解六检七答,尤其不要忘了验根

第3节分式-中考数学一轮知识复习PPT课件

第3节分式-中考数学一轮知识复习PPT课件

3.通分:
(1)定义:把几个异分母的分式化为同___分__母__分式的过程叫做 分式的通分.通分的关键是确定各分母的_最__简__公___分__母__.
(2)确定最简公分母的方法: ①取各分母系数的最小公倍数,作为最简公分母的系数;取 各分母所有因式的最高次幂的积,作为最简公分母的因式. ②若分母是多项式,则应先把各个分母分解因式,再确定最 简公分母. 温馨提示
2.分式有、无意义和值为 0 的条件: 条件
分式AB 有意义
__B__≠_0__
分式AB 无意义
__B_=__0__
分式AB 的值为 0
__A_=__0__且 B≠0
3.最简分式:分子与分母没有_公__因__式__的分式.
分式的基本性质
1.基本性质:分式的分子与分母都_乘__或___除__以___同一个不等
B.缩小 10 倍
C.是原来的23
D.不变
☞命题点3 分式的运算 A
1 x+1
8.(2020·随州)x2-2 4
1 ÷x2-2x
的计
算结果为( B )
A.x+x 2
B.x+2x2
C.x-2x2
2 Dx(x+2)
☞命题点4 分式的化简及求值(8年7考)
9.(2018·广东 18 题 6 分)先化简,再求值:
6.(2020·花都区一模)计算:x+x 1 +x+1 1 =___1__.
7.(12020·黄冈)计算:x2-y y2 ÷1-x+x y 的结果 是_____x_-__y____.
8.(2020·东莞一模)先化简:1+a2-1 1
a ÷a-1

请在-1,0,1,2,3 当中选一个合适的数代入求值.
3

分式方程复习课件

分式方程复习课件

1.分式方程x-2 1=21的解是(
A.3
B.4
C.5
答案:C
) D.无解
2.某车间加工 120 个零件后,采用了新工艺,工效是原来的 1.5 倍,这 样加工同样多的零件就少用 1 小时,采用前每小时加工多少个零件?若设
120 120
采用新工艺前每小时加工 x 个零件,则根据题意可列方程为__x__-_1_._5_x_=_1_. 34答..案解解:方方x程程=::-xx12+-xx 11+-12=xx-2x2x-+11.=0. 答案:x1=12,x2=2
【答案】A
8.(2011·沈阳)小明乘出租车去体育场,有两条路线可供选择 :路线一的全程是25千米,但交通比较拥堵;路线二的全程是30千米 ,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少
用10 分钟到达.若设走路线一时的平均车速为x千米/时,则根据题意
,得( )
【答案】A
二、填空题(每小题4分,共28分)
程的解.
(2)由(x-1)(x+2)=0 得增根可能是 x=1 或 x=-2,把方程两边
都乘(x-1)(x+2)得 x(x+2)-(x-1)·(x+2)=m,当 x=1 时,得 m=
3;当 x=-2 时,得 m=0,此时方程变为x-x 1-1=0,即 x=x-1,此
时方程无解,故 m=0 舍去,∴当 m=3 时, 原方程有增根 x=1.
5.为了提高产品的附加值,某公司计划将研发生产的1 200件新产品 进行精加工后再投放市场.现在甲、乙两个工厂都具备加工能力,公司派 出相关人员分别到这两间工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产 品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍. 根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品? 答案:甲工厂每天加工40件产品,乙工厂每天加工60件产品

《分式方程复习》课件

《分式方程复习》课件
详细描述
在金融和经济领域,分式方程可以用来描述和预测市场行为、投资回报和成本效益分析等。在交通领 域,分式方程可以用来解决交通流量和路线规划问题。在工程领域,分式方程可以用来描述机械运动 、热传导和电路等问题。
04 分式方程的解题 技巧
转化思想
总结词
转化思想是将复杂问题转化为简单问 题,将未知问题转化为已知问题的一 种解题策略。
详细描述
分式方程与整式方程的主要区别在于分母中是否含有未知数。分式方程的分母中 含有未知数,而整式方程的分母中不含有未知数。此外,分式方程的解法通常需 要更多的技巧和注意事项,例如需要处理分母为零的情法
01
02
03
04
直接求解法
通过对方程进行化简,直接求 出方程的解。
详细描述
在解分式方程时,通过对方程进行适 当的变形和转化,可以将分式方程转 化为整式方程或更容易解决的形式, 从而简化解题过程。
整体思想
总结词
整体思想是从整体角度出发,将 问题看作一个整体,从而简化问 题的一种解题策略。
详细描述
在解分式方程时,可以将方程中 的某些项看作一个整体,通过对 方程进行整体变形和运算,从而 简化解题过程。
代数方法
总结词
代数方法是利用代数性质和定理,对方 程进行变形和求解的一种解题策略。
VS
详细描述
在解分式方程时,可以利用代数性质和定 理,如乘法分配律、合并同类项等,对方 程进行变形和简化,从而找到方程的解。
05 分式方程的易错 点分析
概念理解不清
总结词
概念理解不清晰
详细描述
分式方程的基本概念和定义是解题的基础,如果对分式方程的概念理解不清晰,会导致 解题思路出现偏差,甚至无法正确列出方程。

分式中考经典总复习课件

分式中考经典总复习课件

状元备课
)
--
=-1
+
-
-
D.
=
+
+
B.
解析:应用分式的基本性质时,要注意“都”与“同”这两个字的含义,
-
-(-) -
,
=
=- .
避免犯只乘分子或只乘分母的错误.D项中 +
+
+
答案:D
规律方法探究
命题点1
命题点2
命题点3
命题点 3
【例 3】
命题点4
分式的约分与通分
0.
考点二
分式的基本性质
分式的分子与分母同乘(或除以)一个不等于零的整式,分式的

×
÷
值不变.用式子表示是: = × , = ÷(其中 M 是不等于 0 的整
式).
基础自主导学
考点梳理
状元备课
自主测试
考点三 分式的约分与通分
1.约分
分式约分:利用分式的基本性质,约去分式的分子、分母中的
答案:C
状元备课
规律方法探究
命题点1
命题点2
命题点3
命题点4
3+5
5
1
无意义,则当

=0
-1
3-2 2-
变式训练若分式
3+5
解析:由
无意义,可得 x=1,
-1
5
1
5
1


=0,得

=0,
3-2 2-
3-2 2-1
5
1

=
,
3-2
2-1
所以 5(2m-1)=3m-2.

分式中考总复习原创课件

分式中考总复习原创课件
2.下列分式中不是最简分式的是( )
C
全体实数
x≠2
x≠±2
4.计算:(1) (2)
3.计算:
x-2
a4b4
解:原式
解:原式
解:原式
(3)
5.已知 ,当x=________时,A=0; 当x=________时,A无意义.
解:(1) (2)由已知,得x=1或2, 但x不能取1,所以x=2. 当x=2时, .
8.已知 求 的值.
解:由已知,得y-x=4xy,x-y=-4xy.原式=另解:原式=
第一章 数与式第3课 分式
1.分式的有关概念: (1)如果A,B分别是整式,并且B中含有________, 那么式子 叫做分式. (2)当B________时,分式 (A,B分别是整式)有意义.
2.分式的基本性质: 分式的分子与分母乘(或除以)同一个________的整式, 分式的值__________.用式子表示为 或 (C≠____),其中A,B,C均为整式.
【变式2】计算:
解:原式
【考点3】分式的化简求值
【例3】先化简,再求值:在0,1,2,这三个数中选一个合适的代入求值.
解:
根据分式的意义,x≠0,x≠2,所以x取1,当x=1时,原式= .
【变式3】已知 ( ),求 的值
-2
2
提示:先化简原式= ,当A=0时,分子x+2=0.解得x=-2.当A无意义时,分母x-2=0,解得x=2.
6.计算:(1)
解:原式
解:原式
(2)
7.已知(1)化简A;(2)当x满足不等式1≤x<3,且x为整数时,求A的值.
字母,B≠ 0
3.分式的运算: (1)加、减 同分母; (2)乘、除 化简.

八下苏教版第十章-分式--小结与复习-课件

八下苏教版第十章-分式--小结与复习-课件
x 3 2x 6
解: 若分式方程有增根,则增根必须使2x-6=0, 所以增根为x=3.原方程可化为2(x-1)=m2, 把x=3代入得m=±2.
考点五 分式方程的实际应用
例5 某商店第一次用600元购进2B铅笔若干支,第二次又用600元 购进该款铅笔,但这次每支的进价是第一次进价的 5倍,购进数
4
(1) 1 1 0;(2) x 4 2 3 .
x 1 x 1
x 1 x 1
【解析】两分式方程去分母转化为整式方程,求出整式方程的
解得到x的值,经检验即可确定出分式方程的解.
解: (1)去分母得x+1+x﹣1=0,解得x=0,
经检验x=0是分式方程的解;
(2)去分母得x﹣4=2x+2﹣3,解得x=﹣3,
针对训练
8.若ab=1,求
1
1 a
2
1 1 b2
的值.
解:
∵ab=1,∴原式=
11 ab a2 ab b2
11 a(a b) b(a b)
a b 1. ab(a b)
课堂小结
分式的定义及有意义的条件等 分式
分式的运算及化简求值
分式方程的定义
分 式
分式方程
分式方程的解法 及增根求值问题
的解,又要检验所求得的解是否符合实际意义; (7)答: 写出答案.
考点讲练
考点一 分式的值为0,有、无意义
例1 如果分式 x2 1 的值为0,那么x的值为
x 1
1
.
【解析】根据分式值为0的条件: 分子为0而分母不为0,列 出关于x的方程,求出x的值,并检验当x的取值时分式的分 母的对应值是否为零.由题意可得: x2-1=0, 解得x=±1.当 x=-1时,x+1=0;当x=1时,x+1 ≠0.

八年级数学下册第八章分式复习课件(PPT)

八年级数学下册第八章分式复习课件(PPT)
2
2 2m 2 x a1 b 2 a 2 m x 1 ab 4. 化简: (2) 2 5.计算:(1) x 1 m b 4 2am 2b 2 x a 1



a ( a b)
2(a b) 2 m a (m 2)( m 2)
1 例1. 在函数 y 中,自变量x的取值范围是(A) x2 A. x 2 B. x 2 C. x≤2 D. ≥—2 x
列分式方程解应用题
列分式方程解应用题的一般步骤
1、审题 ; 2、设未知数;
3、找出能表示题目全部含意的相等关 系,列出分式方程; 4、解分式方程;
5、验根:先检验是否有增根,再 检查是否合符题意;
6、写出答案。
常见题型及相等关系
1、行程问题 :
基本量之间的关系:
路程=速度 X 速度,即s=vt
解:设规定日期为x天,根据题意得
4 x 1 x x6
解得 x=12, 经检验,x=12是原方程的解。 答:规定日期是12天。
小结
列分式方程解应用题的一般步骤
1、审题 ; 2、设未知数;
3、找出能表示题目全部含意的相等关 系,列出分式方程; 4、解分式方程;
5、验根:先检验是否有增根,再 检查是否合符题意;
想一想
x y 探究:⑴当x、y满足什么条件时,分式 的值为0. x 1
解:x y 0且x 1 0 所以x y且x 1, y 1
分式方程
100 60 20 v 20 v
像这样,分母里含有未知数的方程叫 做分式方程.
解分式方程的思路是:
分式 方程
去分母
3.
4.
x 2 (2) 1 x 1 3x 3

分式的复习课件

分式的复习课件

特点
方程中可能包含有多个分 式,未知数的个数多于一 个,形式较为复杂。
示例
$frac{x}{2} + frac{y}{3} = frac{5}{2}$
分式方程的解法
方法一:去分母法 方法三:分子有理化法
方法二:换元法 方法四:通分法
04
CATALOGUE
分式在实际生活中的应用
物理中的应用
量度单位换算
工程学中的应用
在工程学中,分式用于表示各种物 理量之间的关系,例如机械传动中 的力和扭矩的关系等。
05
CATALOGUE
分式的易错点与难点解析
易错点解析
分母为零
分母不能为零,否则分式无意义 。学生在计算过程中常常忽略这
一点,导致答案错误。
混淆分式与整式
分式和整式的概念容易混淆,学 生在解题时常常将分式误认为是
分式的性质
总结词
分式具有一些基本的性质,这些性质是理解分式运算和化简 的基础。
详细描述
分式的性质包括分式的分子和分母可以同时乘以或除以同一 个非零整式,分式的值不变;分式的加减法则是通过通分后 ,再进行加减运算;分式的乘法则是直接将分子相乘,分母 相乘;分式的除法则是转化为乘法运算。
分式的约分与通分
分式的加减法
总结词:掌握分式加减法的基本规则和 技巧
$frac{a}{b} - frac{c}{d} = frac{adbc}{bd}$
$frac{a}{b} + frac{c}{b} = frac{a+c}{b}$
详细描述:分式的加减法需要统一分母 ,然后对分子进行加减运算。如果分母 相同,则直接对分子进行加减运算。
感谢观看
frac{ad+bc-ef}{bd}$

分式总复习上课课件

分式总复习上课课件

(2) (4)
x2 1 x2 1 ( x 1)( x 1) ( x 1)( x 1) 2 x 1 2 x 1 x 2x 1 x 1 ( x 1)
分式的乘除法其实 就是约分的过程
你能完成下列计算吗?
0
1 1 () 1 3.14 3 ( ) 2
有意义, 则B≠0
A 分式 B
x 1
A 0 B 0
1 变式3:分式 x 1 的值可以为0吗?


1 变式1:当 _____ x 1 时, x - 1 的值为正数.
1 正 正”或“负”)数. 变式2:分式 x 1 值为___(“
x2 x2 变式3:若 2 值为负数,则 x满足________ x 1 1 变式4:若 x为整数,且 x - 1为整数,求 x 的值.

2a (a 2) a2 (a 2)(a 2) (a 2)(a 2)
答案必须是最简分 式
1 a2
学过分式运算后,老师出了一道题“化简 小明的做法是:
x3 2 x 2 x2 x 4

小亮的做法是:
小芳的做法是:
x3 2 x 2 x2 x 4 ( x 3)( x 2) x 2 2 2 x 4 x 4 x2 x 6 x 2 x2 4 x2 8 2 x 4




x 2 1 x是不等式组 1 4 若 ,则原式的值又是多少? 其中 的整数解,求式子的值 原式的值能否等于 . 在x 0 , ,2 三个数中选一个合适的 ,代入求值 . . 再选取一个你喜欢的数 , 代入求值 . 1?说明理由 2( x 1) 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)(xyx2)x22xyy2·xy
xy CHENLI
x2 10
(1) x1 2x1 x1 1x
(2) x1 2x1 x1 x2
(3) xx2112xx11
CHENLI
11
例1:化简求值
(aa2 22aa2
a1 )a4 4a4 a2
其中a满足:a2 2a10
CHENLI
12
解分式方程的思路是:
32x2kx 1 x3 x3
CHENLI
18
列方程解应用题:
例4、甲、乙两人分别从相距36千米的 A、B两地同时相向而行,甲从A地出 发到1千米时发现有一物品遗忘在A地 ,立即返回,取过物品后又立即从A地 向B地行进,这样两人恰好在A、B两 地中点处相遇,又知甲比乙每小时多 走0.5千米,求甲、乙两人的速度。
例:解方程 xx 1 1x2411
解:方程两边都乘以 (x+1) ( x – 1 ) , 约去分母,得
( x + 1 )2-4 = x2-1 解这个整式方程,得
x=1 经检验得:分母 x -1 =O
∴原方程无解.
CHENLI
14
解下列方程:
1、 5 7 x x2
2、
x2411
x1 x1
23 6
人生能有几回搏, 今日不搏待何时
CHENLI
1
本章知识网络
1、分式概念 ⑴分式有意义的条件
⑵分式的值的情况讨论
分 2、分式的基本性质 分式的约分

分式的通分
3、分式的运算 分式的乘除法运算
分式的加减法运算
4、分式方程 分式方程的解法步骤
分CHE式NLI 方程的应用
2
1、形如
A B
的式子叫做分式,其中A、B是整式,B中必须
1.若把分式 2 x 的y x 和y 都扩大两倍,则分式的值( ) B 3x y
A.扩大2倍 B不变 C缩小2倍 D.缩小2倍
2.若 把 分 式xy 中 的 x和 y的 值 都 扩 大 3倍 , xy
则 分 式 的 值
(A)
A.扩大3倍 B.扩大9倍C.扩大4倍D.不变
3、
填空:
x(xy) x2 xy
含有字母。对于任意一个分式,分母都不能为零。
2、分式的加减法则:
1 a b a b
cc c
3、分式的乘除法则:
2 a c ad bc
b d bd
1 b d bd
a c ac
2 b d b c bc
a c a d ad
CHENLI
3
试一试
分式的定义
例1、下列各有理式中,哪些是分式?哪些是整式?
分式 方程
去分母
整式 方程
解分式方程的一般步骤
1、 在方程的两边都乘以最简公分母,约去分母, 化成整式方程.
2、解这个整式方程.
3、 把整式方程的解代入最简公分母,如果最简 公分母的值不为0,则整式方程的解是原分式方程的 解;否则,这个解不是原分式方程的解,必须舍去.
4、写出原方程的根. CHENLI 一化二解三检验 13
1 m 3x 1
12x24
3x,2,2y,3(ab)6 ,,, x2
整式 m 2有 ,1 3(a: b),1 6,2
分式1有 ,: 3x ,x24 3x 2y x2
CHENLIຫໍສະໝຸດ 4例2:当 m 取何值时,分式 m 2 9有意义?
值为零?
m 3
解:由 m – 3 ≠0,得 m≠3。所以当 m≠3 时, 分式有意义;
(x y )
xy
CHENLI
8
分式的加减
例3、计算:
xxyxxyx2y2xy
xy x
y2
解: x xyx2xy
(xy)x (y) x2 y2 x(xy) x(xy) x(xy)
x2 y2 x2 y2 x2 xy
0
CHENLI
9
(1)2m2n 5p2q5mnp 3pq2 4mn2 3q
(2) 16a2 a4a2 a28a16 2a8a2
CHENLI
19
1、一项工程,若甲队单独做,恰好在规定的 日期完成,若乙队单独做要超过规定日期3天 完成;现在先由甲、乙合做2天,剩下的工程 再由乙队单独做,也刚好在规定日期完成, 问规定的日期是多少天?
2、一游艇在静水中每小时航行20千米,顺 水航行72千米的时间恰好等于逆水航行48千 米的时间,求水流的速度。
由 m2 – 9 =0,得 m=±3。而当 m=3 时,分母 m – 3 =0,分式没有意义,故应舍去, 所以当 m= - 3时,分式的值为零。
分式有无意义与什么有关?
分式有无意义只与分母有关
CHENLI
5
一、练习:
x2 4
1. 若分式
( x 1)( x 2)
若有意义,则x应满足( B )
A、x≠-1 C、x≠2
CHENLI
20
CHENLI
21
3、
x1 x1 CHENLI x21
15
例2.如果整数A、B满足等式
求A与B的值。
CHENLI
16
例3、如果下列关于x的方程 有增根,求a的值。
a 112x x4 4x
CHENLI
17
1、如果下列关于x的方程有正数解,
x4 3 m 求m的取值范围; x5 x5
2、如果关于x的方程无解,求k的值,
B、x ≠-1且x ≠2 D、x ≠-1或x ≠2
若值为0,则x应满足( B )
A、x=2 C、x=-1
B、x =-2 D、x =-1或x =2
CHENLI
6
2.当x <-2 时,分式 X2+1 的值是负数. X+2
3.当x ≥7
时,分式
X-7 X2+1
的值是非负数.
CHENLI
7
二、分式的基本性质
相关文档
最新文档