一元二次方程应用 利润问题

合集下载

一元二次方程实际应用之利润问题

一元二次方程实际应用之利润问题
• 老师点评:总利润=每件平均利润×总件数.设每张贺
年卡应降价x元, 则每件平均利润应是( 0.3-x)元,总
件数应是( 500+x÷0.1×100)
• 解:设每张贺年卡应降价x元
• 则 (0.3-x)(500+1000x) =120 • 解得: • 答:每张贺年卡应降价0.1元.
营销问题
• 例1 某商场销售一批名牌衬衫,平均每天可售出 20件,每件盈利40元,为了扩大销售,尽快减少 库存,商场决定采取适当的降价措施。经调查发 现,如果每件衬衫降价1元,商场平均每天可多售 出2件。(1)若商场平均每天销售这种衬衫的盈 利要达到1200元,每件衬衫应降价多少元?(2) 每天衬衫降价多少元时,商场平均每天盈利最多?
解:设这种服装的成本为x元,依题意,得: 1.4x× 80% -x=15
解得: x =125 答:这种服装的成本为125元。
一件夹克按成本价提高50%后标价,后因季 节关系按标价的8折出售,每件以60元卖出,这种 夹克每件的成本价是多少元?
解:设这种夹克的成本价为x元,依题意,得: (1+50%)x× 80%=60
(a-21)(350-10a)=450
1、某商店从厂家以每件21元的价格购进一批商品,若每 件商品售价为x元,则每天可卖出(350-10x)件,但物价局限 定每件商品加价不能超过进价的20%.商店要想每天赚400 元,需要卖出多少件商品?每件商品的售价应为多少元?
解 : 设每件商品的售价应为x元, 根据题意, 得
整理得: x2 40x 7600 0.
解这个方程, 得 x1 20, x2 380.
答 : 应多种桃树20棵或380棵.
例7 (2010南京)某批发商以每件50元的价格 购进800件T恤.第一个月以单价80元销售, 售出了200件;第二个月如果单价不变,预计 仍可售出200件,批发商为增加销售量,决定 降价销售,根据市场调查,单价每降低1元, 可多售出10件,但最低单价应高于购进的价格; 第二个月结束后,批发商将对剩余的T恤一性 清仓,清仓时单价为40元.设第二个月单价降 低x元.

一元二次方程解利润问题

一元二次方程解利润问题

一元二次方程解利润问题举例:某百货大楼服装柜在销售者发现:“某”牌童装平均每天可售出20件,每件利润40元为了迎接国庆节市场决定采取适当的降价措施,扩大销售量,增加利润。

条件:如果每件降价4元,那么平均每天多售出8件。

求:要想平均每天销售这种童装盈利1200元那么每件童装应降价多少?解:设每件童装应降价x元,则每件的利润为(40-x)元,平均每天多售出8×x/4=2x件,实际平均每天售出(2x+20)件,平均每天利润为(40-x)(2x+20)元;根据题意,可列方程:(40-x)(2x+20)=1200(40-x)(x+10)=60040x+400-x²-10x=600x²-30x+200=0(x-10)(x-20)=0x-10=0 或x-20=0x1=10 , x2=20答:要想平均每天销售这种童装盈利1200元,那么每件童装应降价10元或降价20元。

一元二次方程的应用:一、百分率变化问题增长率的问题在实际生活普遍存在,有一定的模式,若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1±x)=b。

在解题过程需要注意总量和增长后达到的量的区别,需要注意“增长了”和“增长到”的区别。

二、传播问题“传播问题”的基本特征是:以相同速度逐轮传播。

解决此类问题的关键步骤是明确每轮传播中的传染源个数,以及这一轮被传染的总数。

需要注意的是疾病传播问题和某种植物分支的区别和联系,疾病传播问题中传染源将参与下一轮传播,而树分支则是树干不参与下一次分支。

三、互送礼物和单循环比赛问题n(n≥2) 个人之间互送礼物,礼物总数=n(n-1);n(n≥2)支球队进行单循环比赛,共需要进行1/2n(n-1)场比赛。

四、商品销售利润与定价问题用一元二次方程解决的营销问题中,常用的关系式有:利润=售价-进价,单件利润×销售量=总利润。

一元二次方程与利润问题

一元二次方程与利润问题

一元二次方程的应用(利润问题)一、知识储备一、知识储备(1)利润=实际售价-成本;(2)总利润=单件利润×销售量.二、新授1. (1)某商品的进价是100元,售价是150元,则该商品的单件利润为50元.(2)某件商品的利润为5元/件,销售量为100件,则该商品总利润为500元.知识点1:直接给出单件(每斤)利润1、例:老板发现:如果每斤高档苹果盈利10元,每天可售出500斤;若每斤涨价1元,日销售量将减少20斤.若每天盈利6 000元,则每斤应涨价多少元?分析:设每斤涨价x元涨价后的单件利润涨价后的销售量涨价后的总利润列式:2、某商店热卖“好孩子”童装,平均每天可售20件,每件盈利40元.市场反馈每件童装每降价1元,平均每天就可多售出2件,要想每天在销售这种童装上盈利1 200元,同时又要使顾客得到实惠,那么每件童装应降价多少元?知识点2:间接给出单件利润或变化关系3、某商店经销一种商品,若按每件盈利2元销售,每天可售出200件,如果每件商品的售价涨价0.5元,则销售量就减少10件,问应将每件涨价多少元时,才能使每天利润为640元?4.某商店将进价为2 000元的冰箱以2 400元售出,平均每天能售出8台,这种冰箱的售价每降低25元,平均每天就能多售出2台,商场要想在这种冰箱的销售中每天盈利4 800元,设每台冰箱降价x元,由题意列方程得课堂总结:(1)关系式:(售价-成本)×销售量=总利润;(2)一般都是设涨价(或降价)x元,然后间接求定价或进货量.三、过关检测A组1、某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就减少10个,要实现每月10 000元的销售利润目标,且售价不能低于60元/个.(1)求这种台灯的定价;(2)商场应进货多少个?B组2、某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,服装店希望一个月内销售该种T恤能获得利润3 360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?C组3.某单位组织职工到“万绿湖”观光旅游,下面是领队与旅行社就收费标准的一段对话:领队:“组团去‘万绿湖’旅行每人收费是多少?”旅行社:“如果人数不超过25人,人均费用为100元.”领队:“超过25人呢?”旅行社:“如果超过25人,每增加1人,人均费用降低2元,但人均旅行费用不得低于70元.”该单位组团旅游结束后,共支付2 700元,求该单位参加旅游的人数。

一元二次方程利润问题

一元二次方程利润问题

一元二次方程利润问题1、商场每天要赚1200元利润,每件衬衫降价x元,每天能多售出2x件衬衫。

设降价后每件衬衫的售价为y元,则有:20(y-x) = 120020(y-x+2x) = 1200解得:x=2,每件衬衫应降价2元。

2、商场每天要赚2100元利润,每件衬衫降价x元,每天能多售出2x件衬衫。

设降价后每件衬衫的售价为y元,则有:30(y-x) = 210030(y-x+2x) = 2100解得:x=3,每件衬衫应降价3元。

3、商店要赚8000元利润,每卖出一个商品的利润为y-40元,每涨价1元销售量减少10个。

设售价为y元,则有:y-40)×500 = 8000y-40-x)×(500-10x) = 8000解得:x=2,售价为46元。

4、商场每天要赚1600元利润,每件衣服降价x元,每天能多售出5件衣服。

设降价后每件衣服的售价为y元,则有:20(y-x) = 160020(y-x+5x) = 1600解得:x=2,每件衣服应降价2元。

5、商场每天要赚6000元利润,每卖出一个商品的利润为y-10元,每涨价1元销售量减少20千克。

设售价为y元,则有:500(y-10) = 6000500-20x)(y-9+x) = 6000解得:x=1,每千克应涨价1元。

6、商场每月要赚元销售利润,每台灯售价上涨x元,销售量减少10个。

设售价为y元,则有:600(y-30) =600-10x)(y-x) =解得:x=1,售价为35元,应进货600个。

7、商场每天要赚1200元利润,每件童装降价x元,每天能多售出2件童装。

设降价后每件童装的售价为y元,则有:20(y-x) = 120020(y-x+2x) = 1200解得:x=2,每件童装应降价2元。

可多售出50千克。

如果经营户希望每天仍能获利400元,每千克应该降价多少元?8、某种服装每天能够销售20件,每件盈利44元。

如果每件降价1元,每天可以多售出5件。

解一元二次方程的实际应用利润问题(共6张PPT)

解一元二次方程的实际应用利润问题(共6张PPT)

调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
经调查发现,设在降一定价范x围元内,衬衫的单价每降 1 元,商场平均每天可多日售利出润2件=. 单件利润×销售数量
日利润=单件利润×销售数量
单利润 调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
薄利多销是指低价低利扩大销售的策略.
ቤተ መጻሕፍቲ ባይዱ
设每台冰箱应降价x元
原来 现在
单台利润
400
400-x
日利润=单台利润×日销售台数
台数
日利润
8
3200
4800
某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡” 的实施,商场决定采取合适的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出 4台.商场要想在这种冰箱销售中每天盈利4800元,同时又要使得百姓得到实惠,每台冰箱应降价多少 元?
解一元二次方程的实际应用利润 问题
薄利多销是指低价低利扩大销售的策略.“薄利多销”中的“薄利”就是降价,降 价就能“多销”,“多销”就能增加总收益.
“日利润=单件利润×日销售数量”,由于降价或提价,造成销售量随之变化,根 据该数量关系通常可以列一元二次方程解决有关利润的问题.
解一元二次方程的实际应用利润问题
件数
总利润
原来 为了扩大销售,增加盈利,商场决定采取适当的降价措施.
解得x1=10,x2=20 日利润=单件利润×销售数量
40
20
800
经调查发现,在一定现范围在内,衬衫的单价每4降0-1 元x,商场平均每天可2多0售+出22x件.
1200
则(40-x)(20+2x)=1200

一元二次方程的应用利润问题

一元二次方程的应用利润问题
总利润= 每台利润 ×销售量
x
每台利润
40 x 30
思考: 涨价改 销售量 变了什么?
600 10 x
总利润
(40 x 30)(600 10x)
例1: 某商场将进货价为30元的台灯以40元售出, 平均每月能售出600个.市场调研表明:当销售价 为每上涨1元时,其销售量就将减少10个.商场要 想销售利润平均每月达到10000元,每个台灯的 定价应为多少元?这时应进台灯多少个?
解 : 设每台冰箱降价x元, 根据题意, 得 x (2900 x 2500)(8 4 ) 5000. 50 2 整理得 : x 300 x 22500 0. 解这个方程, 得 x1 x2 150.
2900 x 2900 150 2750. 答 : 每台冰箱的定价应为2750元.
每台利润
x 2500
总利润
( x 2500 )(8 4
2900 x ) 50
练习1、 某种服装,平均每天可销售20件,每件盈 利44元.若每件降价1元,则每天可多售5件.如 果每天盈利1600元,应降价多少元?
等量关系是:每件服装的利润 每天售出的数量=1600 x) 元,每天 分析:若设每件服装降价x元,每件盈利(44 ______
解 : 设每件商品的售价应为 x元, 根据题意 ,得
( x 21)(350 10x) 400.
整理得: x 2 56x 775 0. 解这个方程 ,得 x1 25, x2 31.
x 31 21 1 20% 25.2, x 31 不合题意 ,平均每天能售出20 件,每件盈利40元.为了尽快减少库存,商场决定采取 降价措施.经调查发现:如果这种衬衫的售价每降低1 元时,平均每天能多售出2件.商场要想平均每天盈利 1200元,每件衬衫应降价多少元?

利润问题初中一元二次方程

利润问题初中一元二次方程

利润问题初中一元二次方程咱来唠唠初中一元二次方程里的利润问题哈。

比如说,你去卖小玩意儿,进价是每个x元,你一开始打算每个卖y元。

那每个小玩意儿的利润就是卖价减去进价,也就是(y - x)元。

假如你总共进了m个这种小玩意儿,那总利润就是单个利润乘以数量,也就是m(y - x)元。

不过呢,有时候这个卖价不是固定不变的。

比如说,你发现如果每个小玩意儿的卖价提高a元,那销售量就会减少b个。

这时候,设提高后的卖价为z元,那销售量就变成了m - (z - y)/(a)×b个。

总利润就变成了[z - x](m - (z - y)/(a)×b)元。

这时候呢,就经常会出现一元二次方程啦。

因为这个式子展开后,z的最高次是二次的。

比如说,你进了100个小玩偶,进价每个10元,原本卖15元。

发现每提价1元,就少卖5个。

设提价后的卖价是z元。

那销售量就是100 - (z - 15)/(1)×5个,总利润就是(z - 10)(100 - (z - 15)/(1)×5)元。

把这个式子展开:begin{align}(z - 10)(100 - 5(z - 15)) =(z - 10)(100 - 5z + 75) =(z - 10)(175 - 5z) =175z - 5z^2 - 1750 + 50z =- 5z^2 + 225z - 1750end{align}这就是个一元二次方程啦。

如果告诉你总利润是多少,就可以通过解这个一元二次方程来求出提价后的卖价z啦。

总之呢,利润问题里的一元二次方程就是这么个情况,你只要把进价、卖价、销售量之间的关系搞清楚,列方程就不是难事啦。

利润问题一元二次方程含答案

利润问题一元二次方程含答案

利润问题_一元二次方程含答案利润问题是一个常见的经济问题,指的是企业在销售产品或提供服务后所获得的净利润。

利润问题可以通过一元二次方程来进行求解。

下面我将详细介绍利润问题及如何用一元二次方程求解。

假设某企业销售某种产品,每个产品的售价为x元,每个产品的成本为y元,该企业预计销售量为z个产品。

那么该企业的总收入R、总成本C和总利润P可以表示为以下方程:
R = xz (总收入等于售价乘以销售量) C = yz (总成本等于成本乘以销售量) P = R - C (总利润等于总收入减去总成本)
现在我们来具体解决一个利润问题。

假设某企业销售某种产品,每个产品的售价为20元,每个产品的成本为10元,该企业预计销售量为50个产品。

我们来计算该企业的总收入、总成本和总利润。

总收入R = 20 * 50 = 1000元总成本C = 10 * 50 = 500元总利润P = 1000 - 500 = 500元
通过上述计算可得,该企业的总收入为1000元,总成本为500元,总利润为500元。

利润问题在实际生活中非常常见,企业通常会根据产品的售价和成本来计算预期的利润。

利润问题的求解可以帮助企业了解其经营状况,并根据情况做出相应的调整。

同时,利润问题也可以帮助个人了解自己的收入和支出情况,从而做出理性的消费决策。

利润问题公式初中一元二次方程

利润问题公式初中一元二次方程

利润问题公式初中一元二次方程
在初中数学中,利润问题是一种常见的应用题,涉及到成本、售价、利润、折扣等方面的概念和公式。

一般情况下,利润问题可以通过列一元二次方程来解决。

以下是一些常见的利润问题公式:
1. 利润=售出价 - 成本
2. 利润率=利润÷成本×100%
3. 折扣=实际售价÷原售价×100%
4. 涨跌金额=本金×涨跌百分比
5. 利息=本金×利率×时间
6. 税后利息=本金×利率×时间 (1-20%)
7. 营业利润=主营业务利润 + 其他业务利润 - 期间费用
对于利润问题,可以通过将成本设为未知数,列一元二次方程来解决。

例如,设应降价 x 元,此时可以多售出 2x 件衣服,售价为40-x 元,衣服数量为 202x 件。

可以列出方程:
(202x)(40-x)-1200=0
解方程可得,x 的值为 20 或 10,即应降价 20 元或 10 元。

一元二次方程-利润最大化

一元二次方程-利润最大化
种电器每件的利润为 b-a 元.
2.某种月饼,每盒进价a元,原售价b元,如果每 盒降价c元销售,则降价后这种月饼每盒的利润
为 b-a-c 元.
3.某种月饼,每盒进价a元,原售价b元,如果每 盒升价c元销售,则降价后这种月饼每盒的利润
为 b-a+c 元.
《导学》P22
例1:将单价为40元的商品按50元出售,就能卖 掉500件,已知商品每涨价1元,其销售量就减少 10个,为了赚取8000元的利润,售价应该定为 多少元?这时的进货量应是多少个?
(10上海) 销售某商品每件盈利 40 元,平均每 天可销售20件,为迎接“十.一”搞活动:每件
降价4元,则平均每天就可多售出8件.要想平均
每天销售这种商品盈利1200元,设每件应降价x 元,根据题意,所得方程为
(10烟台)商场销售某冰箱产品,如果每件进价为 2000元以2400元出售,平均每天可销售 8台,为迎 接“家电下乡”搞活动:在进货价不变的情况下, 若每台降价50元,则日售量就多售4台,要想平均 每天保证盈利4800元,那么,每台冰箱应降价多少 元?
最大利润问题
销售中的盈利情况取决于很多要素哦! 商品 进价、 售价、利润、等。
就单件商品而言,利润就是售价减去成本所得的 差额。就多起交易来说,利润就是总销售收入减 去总成本所得的差。
因此一般地, (单件商品的)每件利润=每件售价-每件进价。
(多起交易的)总利润= 每件平均利润x总件数。
1.某种电器,每件进价a元,售价b元,则销售这
(09山西)商场销售某商品每种高档水果,如果每 千克盈利 10 元,平均每天可销售 500 kg,为迎 接“十.一”搞活动:在进货价不变的情况下,若 每千克涨价1元,则日售量就减少20kg,要想平均 每天保证盈利6000元,那么,每千克应涨价多少元?

(完整版)一元二次方程应用题之利润问题

(完整版)一元二次方程应用题之利润问题

(完整版)一元二次方程应用题之利润问题问题描述:某公司生产和销售某种商品,已知该商品的定价为每件x元,每件商品的制造成本为200元,销售每件商品所需的费用为10元。

该公司希望通过调整销售价格来最大化利润。

现在需要确定一个一元二次方程,以确定的销售价格为自变量,利润为因变量。

请求解这个问题。

解决方法:设销售价格为p元,销售商品的数量为q件。

由此可得以下关系:收入 = 销售价格 ×销售数量 = p × q成本 = 制造成本 ×销售数量 = 200 × q总费用 = 成本 + 销售费用 = 200 × q + 10 × q = 210 × q利润 = 收入 - 总费用 = p × q - 210 × q = q(p - 210)根据问题描述可知,一元二次方程的自变量是销售价格p,因变量是利润。

设方程为 y = ax^2 + bx + c,其中a、b、c为待确定的系数。

由上述推导可得:y = q(p - 210)即 y = q(p - 210) = q(210 - p)将y与x对应:y表示利润,x表示销售价格p。

根据问题描述,已知a=0,b=q,c=q×210,因此方程可以写成:y = q(210 - p)这是一个一元二次方程,通过求导可以找到该方程的极值点。

方程的极值点对应的销售价格就是能够使利润最大化的价格。

因为a=0,所以只需要求二次项的系数b即可。

结论:根据上述分析,该公司应将销售价格定为210元时,利润最大化。

注意事项:本文档中所述方程为一种简化模型,只考虑了制造成本和销售费用,没有考虑其他因素对利润的影响。

在实际情况中,可能还需要考虑市场需求、竞争对手的定价等因素,并进行综合分析来确定最优销售价格。

因此,读者在实际应用中应谨慎对待该模型的结果,结合具体情况做出决策。

一元二次方程的应用利润问题

一元二次方程的应用利润问题

优化
使用求根公式解一元二次方 程,找到满足条件的最小利 润。
一元二次方程在利润问题中的局限性与 注意事项
局限性 注意事项
一元二次方程假设利润与销售量之间存在线性 关系,可能无法准确描述复杂的实际情况。
在应用一元二次方程解决利润问题时,需要严 谨地制定方程模型,考虑各种因素的影响。
总结与收尾
1 总结
一元二次方程的应用利润 问题
利润问题可以帮助我们了解如何最大化或最小化利润,通过一元二次方程来 解决这些问题。
利润问题的背景与定义
背景
利润是指企业在销售产品或提供服务后,获 得的收入与成本之间的差额。
定义
利润问题涉及计算和优化利润的数学模型和 方法。
一元二次方程的形式与解法
形式
一元二次方程的一般形式是ax²+ bx + c = 0,其 中a、b和c是常数。
1
分析现状
了解产品的成本和销售情况,找到利
建立方程
2
பைடு நூலகம்
润最大化的关键因素。
根据产品成本和销售量之间的关系,
建立一元二次方程。
3
解方程
使用求根公式解一元二次方程,得到 可能的最大利润。
实际案例2 :利润最小化
问题
我们希望在满足一定条件下, 找到能够最小化利润的解决 方案。
方案
根据特定的要求和限制条件, 建立一元二次方程。
2 收尾
利润问题涉及建立与利润相关的一元二次 方程,并使用求根公式解方程,找到最优 解。
掌握一元二次方程的应用技巧,可以帮助 我们在利润问题中做出明智的决策。
解法
使用一元二次方程的求根公式可以求得方程的解。
应用一元二次方程解决利润问题的步骤

一元二次方程的运用 利润问题

一元二次方程的运用 利润问题

二次函数的应用------利润问题复习目标:能根据实际情况建立一次函数、二次函数模型,研究、解决生活中的实际问题。

能根据自变量的取值范围确定函数的最值一、基本知识检测1、抛物线y=ax2+bx+c,当a>0时,抛物线开口向上,当x=-b/2a 时,y最小值= (4ac-b2)/4a时,当a<0,抛物线开口向下,当x=-b/2a 时,y最大值= (4ac-b2)/4a .2、利润= 售价- 进价=单件利润×销售数量=进价×利润率3、某商店购买一批单价为20元的日用品,如果以单价30元销售,那么半月内可以售出400件.据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高一元,销售量相应减少20件.如何提高销售价,才能在半月内获得最大利润?二、例题讲解一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?(3)物价部门规定,该种茶叶售价不高于180元/kg,商家要想获得较高利润,该怎样定价?此时最大利润是多少?(4)在(3)的情况下,商家每天销售获得不低于6400元的利润,该怎样确定该茶叶的售价x的取值范围?三、运用1、学案96页当堂检测第四题2、中考链接某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x 元(x≥50),一周的销售量为y件.(1)写出y与x的函数关系式.(标明x的取值范围)(2)设一周的销售利润为S,写出S与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?(3)在超市对该种商品投入不超过10 000元的情况下,使得一周销售利润达到8 000元,销售单价应定为少?四、小结1、解这类题目的一般步骤(1)列出二次函数解析式,并根据自变量的实际意义,确定自变量的取值范围(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值.2、今天我们共同探讨了哪些内容?你有什么收获?五、作业复习导引P35第7题。

一元二次方程应用题3销售利润--非常不错

一元二次方程应用题3销售利润--非常不错
销售利润
探究与思考
问题一、如果每束玫瑰盈利10元,平 均每天可售出40束.为扩大销售,经调 查发现,若每束降价1元,则平均每天 盈利 可多售出8束. 如果小新家每天要盈利 432元,那么每束玫瑰应降价多少元?
每束利润 降价1元 10 10﹣1 × 束数 = 利润 10×40 40 40﹢8×1
降价2元 10﹣2 … …
总结与提高
1:利润问题公式: 单件利润 × 件数 2:解题过程分析:
1:仔细审读找出贯穿全题的等量关系。 2:分析题中相关数量相之间关系,适当设未知数, 并用含未知数的代数式表示相关的量,从而列出方程 3:整理方程并解出方程。 4:结合题中实际意义,对方程的根取舍。 5:总结作答。
= 利润
拓展提高
解 验

检验:X2=4 是方程的解 且符合题意 答:小新家每天要盈利432元, 那么每束玫瑰应降价4元。
问题二
小新家的花圃用花盆培育玫瑰花苗 .经 过试验发现,每盆植入3株时,平均每 株盈利3元;以同样的栽培条件,每盆 每增加 1 株,平均每株盈利就减少 0.5 盈利 元.要使每盆的盈利达到 10元,并尽量 降低成本,则每盆应该植多少株?
株数 = 利润 每株利润 × 株数 利润 直接设:设每盆应该植 3 3 X株 3×3 3+1 增加 1 株3-0.5(X-3) X { }=10 3﹣0.5×1 间接设未知数 增加2株 3+2 3﹣0.5×2



增加x株
3﹣0.5x
3+x
10
回顾与思索
如果每束玫瑰盈利 10 元, 平均每天可售出 40 束 . 为扩 大销售,经调查发现,若 每束降价 1 元,则平均每天 可多售出8束.如果小新家每 天要盈利 432 元,那么每束 玫瑰应降价多少元? 小新家的花圃用花盆培育 玫瑰花苗,经过试验发现 , 每盆植入 3 株时,平均每株 盈利 3 元;以同样的栽培条 件,每盆每增加 1 株,平均 每株盈利就减少 0.5 元。要 使每盆的盈利达到 10 元, 则每盆应该植多少株?

一元二次方程的应用利润问题

一元二次方程的应用利润问题

x
销售量 总利润
x 8 4 50
每台利润
2900 x 2500
x (2900 x 2500 )(8 4 ) 50
• 例2. 新华商场销售某种冰箱,每台进价为2500元. 市场调研表明:当销售价为2900元时,平均每天能 售出8台;而当销价每降低50元时,平均每天能多 售4台.商场要想使这种冰箱的销售利润平均每天 达到5000元,每台冰箱的定价应为多少元?
总利润= 每台利润 ×销售量x每台利润40 x 30
思考: 涨价改 销售量 变了什么?
600 10 x
总利润
(40 x 30)(600 10x)
例1: 某商场将进货价为30元的台灯以40元售出, 平均每月能售出600个.市场调研表明:当销售价 为每上涨1元时,其销售量就将减少10个.商场要 想销售利润平均每月达到10000元,每个台灯的 定价应为多少元?这时应进台灯多少个?

6.某商场销售一批名牌衬衫,现在平均每天能售出20 件,每件盈利40元.为了尽快减少库存,商场决定采取 降价措施.经调查发现:如果这种衬衫的售价每降低1 元时,平均每天能多售出2件.商场要想平均每天盈利 1200元,每件衬衫应降价多少元?
解 : 设每件衬衫应降价 x元, 根据题意 ,得
(40 x)(20 2 x) 1200.
答 : 每件商品的售价应为 25元,要卖出 100件。
• 5、某商场将进货单价为40元的商品 按50元售出时,能卖出500个,经过 市场调查发现,这种商品最多只能卖 出500个,每个售价提高1元,其销 量就会减少10个。商场为了保证经常 向该商品赚得8000元的利润而又兼 顾顾客的利益,售价应定为多少?
一元二次方程的应用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程应用利润问题(1)
姓名____________ 班级___________
【例1】:某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存。

商场决定采取适当的降价措施:如果每件衬衫每降价1元,商场平均每天可多售出2件。

若商场平均每天要盈利1200元,每件衬衫应降价多少元?
【变式1】:某商场销售一种商品,每件进价60元,每件售价110元,每天可销售50件,每销售一件需要支付给商场管理费3元。

6月份该商品搞“减价促销”活动。

市场调查发现,售价每降低1元,每天销售量增加2件。

若某一天销售该商品共获利2590元,求该商品降价多少元?
【例2】:今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本。

已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元。

请解答以下问题:
(1)填空:每天可售出书_______本(用含x的代数式表示)
(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?
【变式1】:某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。

调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个。

为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?
一元二次方程--利润问题(2)
姓名____________ 班级____________
【例1】:为满足市场需求,某超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价为4元时,每天可售出500个,并且售价每上涨1元,其每天的销售量就减少100 个。

若物价部门规定该品牌粽子的售价不能超过进价的200%,则该超市将每个粽子的售价定为多少元时,才能使每天的利润为800元?
【变式1】:因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一,深圳著名旅游“网红打卡地”东部华侨城景区在2019年春节长假期间,共接待游客达20万人次,预计在2021年春节长假期间,将接待游客达28.8万人次。

(1)求东部华侨城景区2019至2021年春节长假期间接待游客人次的平均增长率.
(2)东部华侨城景区某奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯,2021 年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?
【例2】:某批发市场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出300张,每张赢利2元。

为了尽快减少库存,摊主决定采取适当的降价措施。

调查发现如果这种贺年卡每降价0.5元,那么平均每天可多售出100张。

摊主要想平均每天赢利500元,每张贺年卡应降价多少元?
【变式1】:今年我国发生了较为严重的新冠肺炎疫情,口罩供不应求,某商店恰好年前新进了一批口罩,若按每个盈利1元销售,每天可售出200个,如果每个口罩的售价上涨0.5元,则销售量就减少10个,问应将每个口罩涨价多少元时,才能让顾客得到实惠的同时每天利润为480元?
【例3】:某百货大楼服装柜在销售中发现:某童装平均每天可售出20件,每件盈利40元为了迎接“六-“儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。

经市场调查发现:如果每件童装每降价2元,那么平均每天就可多售出4件.若要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?
【变式1】:大名童装平均每天可售出20件,每件盈利40元.因新冠肺炎影响,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存。

经市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件.如果要盈利1200元,那每件降价多少元?
【综合练习1】: 中高考期间,某文具店平均每天可卖出30支2B铅笔,卖出1支铅笔的利润是1元,经调查发现,零售单价每降0.1元,每天可多卖出10支铅笔,为了使每天获取的利润更多,该文具店决定把零售单价下降x元
(1)当x为多少时,才能使该文具店每天卖2B铅笔获取的创润为40元?
(2)该文具店每天卖2B铅笔获取的利润可以达到50元吗?如果能,请求出,如果不能,请说明理由,
【综合练习2】:甲商品的进价为每件20元,商场确定其售价为每件40元
(1)若现在需进行降价促销活动,预备从原来的每件40元进行两次调价,已知该商品现价为每件32.4元,若该商品两次调价的降价率相同,求这个降价率:
(2)经调查,该商品每降价0.2元,即可多销售10件,已知甲商品售价40元时每月可销售500件,若该商场希望该商品每月能盈利10000元,且尽可能扩大销售量,则该商品在原售价的基础上应如何调整?
【综合练习3】:(2018-南山区期末)苏宁电器销售某种冰箱,每台的进货价为2 600元,调查发现,当销售价为3000元时,平均每天能售出8台;而当销售价每降低100元时,平均每天就能多售出8台。

商场要使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?
【综合练习4】:某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间正好可以住满。

每个房间每天的定价每增加10元,就会有个房间空闲,已知有游客入住的房间,宾馆每天需对每个房间支出50元的各种费用、
(1)若某天宾馆的入住量为58个房间,则该天宾馆的利润为____ 元:
(2)求宾馆每天房间入住量达到多少个时,每天的利润为11000元。

相关文档
最新文档