2006-2010年专升本高等数学真题
06年专升本高数真题答案
共 7 页,第 1 页2006年河南省普通高等学校选拔优秀专科生进入本科阶段学习考试高等数学 答案及解析一、单项选择题(每小题2分,共计60分)1.答案:B【解析】:.B x x ⇒≤-≤-⇒≤≤1121102.答案:A【解析】: .01ln )1ln()1ln()()(22==+++-+=-+x x x x x f x f A ⇒3. 答案:C【解析】: .1sin lim20-=-→xxx x C ⇒4.答案:B 【解析】:.B nnn n n n n ⇒=+=+∞→∞→2]sin 32[lim sin 32lim 5.答案:B【解析】:.B a a a ae xe xf ax x ax x x ⇒=⇒+===-=→→→1122lim 1lim)(lim 202006. 答案:C 【解析】:x x f f f x f x x f x f x x )1()1()1()21(lim)1()21(lim00--+-+=--+→→ C f xf x f x f x f x x ⇒'=---+-+=→→)1(3)1()1(lim 2)1()21(lim2007. 答案:A【解析】: .A y x x x y ⇒==⇒=⇒='5,24220008.答案:D【解析】: .D t tt t dx dy ⇒-=-=2sin sin 2229.答案:B 【解析】:.B xy x y x x yn n n ⇒=⇒+=⇒=--1ln 1ln )()1()2( 10.答案:A【解析】:.A y y y x x x x x x x x y x x x ⇒∞=-==⇒++-+=++--=-→-→±∞→2122lim ,4lim ,1lim )2)(1()3)(1(233211.答案:C【解析】:由罗尔中值定理条件:连续、可导及端点的函数值相等.C ⇒12.答案:C 【解析】:.C e y e y x x⇒>=''<-='--0,013.答案:D 【解析】:.D C e F e d e f dx e f e x x x x x⇒+-=-=⎰⎰-----)()()()(14.答案:B共 7 页,第 2 页【解析】:.B C ex f e x f e x f x x x⇒+=⇒='⇒=-'++)1(21)1(212)()()12(15.答案:B【解析】:是常数,所以.⎰ba xdx arcsin B xdx dx d ba⇒=⎰0arcsin 16.答案:C 【解析】:.C x dx x ⇒-==++∞∞+⎰)21arctan 4(412arctan 4141112π17.答案:D【解析】:由定积分的几何意义可得D 的面积为.⎰-badx x g x f |)()(|D ⇒18.答案:B【解析】:.B n n n ⇒=⇒=+-⇒-⊥30943}3,43{}3,,1{19.答案:B【解析】: .B x f x x f x ⇒='⇒=1)1,()1,(20.答案:A【解析】:令xy e F yz F xyz ez y x F z z x z-='-='⇒-=222,),,(.A z x z xy xyz yz xy e yz x z z ⇒-=-=-=∂∂⇒)12(22221.答案:A【解析】:222x ydx xdy dy x xydx dz -++= .A dy dx dx dy dy dx dzy x ⇒+=-++=⇒==221122.答案:A【解析】:,6)0,0(),(062,06222-=∂∂⇒=⇒=-=∂∂=-=∂∂x zy x y x y z x y x z 是极大值.⇒=∂∂∂-=∂∂2,6222y x zy z A ⇒23.答案:A【解析】:有二重积分的几何意义知:区域D 的面积为.=⎰⎰Ddxdy πA ⇒24.答案:B【解析】:积分区域},0|),{(}0,0|),{(a x y a y y x x y a x y x D ≤≤≤≤=≤≤≤≤=.B ⇒25.答案:D【解析】:在极坐标下积分区域可表示为:,在直角坐标系下边界方程为}sin 20,20|),{(θπθθ≤≤≤≤=r r D ,积分区域为右半圆域y y x 222=+D⇒26.答案:D【解析】:: 从1变到0,.L ,1⎩⎨⎧-==x y xx x ⎰⎰⇒-=+=-+012)(D dx dx dy dx y x L 27.答案:C共 7 页,第 3 页【解析】:收敛.⇒<22sin n n ππ∑∞=π12sinn n C ⇒28. 答案:A 【解析】:在收敛,则在绝对收敛,即级数绝对收敛.∑∞=0n nnx a2-=x 1-=x ∑∞=-0)1(n n n a A ⇒29. 答案:C【解析】:dx xxdy y y ydx x ydy x sin cos sin cos 0sin cos cos sin -=⇒=+ .C C y x C x y xxd y y d ⇒=⇒=+⇒-=⇒sin sin ln sin ln sin ln sin sin sin sin 30.答案:C【解析】:-1不是微分方程的特征根,为一次多项式,可设 .x xe b ax y -+=*)(C ⇒二、填空题(每小题2分,共30分)31.答案:1【解析】:.1)(sin 1|sin |=⇒≤x f x 32.答案:123【解析】:=++=++--=--+→→→)31(1lim )31)(2()2(lim 231lim2222x x x x x x x x x x x x .123341==33.答案:dx x 2412+【解析】: .dx x dy 2412+=34.答案:5,4==b a 【解析】:.b a b a b ax x x f -+-=-=+-⇒++='12,02323)(25,4==⇒b a 35.答案:)1,1(-【解析】: .)1,1(),(0662632-=⇒=-=''⇒+-='y x x y x x y 36.答案:2【解析】:.2)1()1()()(=-=⇒=-g f C C x g x f 2)()(=-⇒x g x f 37.答案:323π【解析】:.3202sin )sin (3023232π=+=+=+⎰⎰⎰⎰πππ-ππ-ππ-dx x xdx dx x dx x x 38.答案:32-e 【解析】: .⎰⎰⎰⎰--=--=+=====-201110012132)()1(e dx e dx x dt t f dx x f xt x共 7 页,第 4 页39.答案:3π【解析】: .3,21663||||,cos π>=⇒<==⋅>=<b a b a b a b a 40.答案:x y z 222=+【解析】:把中的换成,即得所求曲面方程.x y 22=2y 22y z +x y z 222=+41.答案:y x cos 21+【解析】:.⇒+=∂∂y x y xzsin 2y x y x z cos 212+=∂∂∂42.答案:32-【解析】: .⎰⎰⎰⎰⎰-=-=-=--Ddx x dy x y dx dxdy x y 102101122322)()(43.答案:∑∞=+∞-∞∈-02),(,!1)1(n nnx x n 【解析】: .∑∞=⇒=0!n n xn x e ∑∑∞=∞=-+∞-∞∈-=-==0022),(,!1)1(!)()(2n n n n n xx x n n x e x f 44.答案:21ln(x+)22(≤<-x 【解析】:,∑∑∑∞=∞=-+∞=+++=-=+-=+-0111011)21ln()2()1(1)2()1(2)1()1(n n n n n n n n n n x n x n x n x .)22(≤<-x 45.答案:032=-'-''y y y 【解析】:x xe C eC y 321+=-0323,1221=--⇒=-=⇒λλλλ .032=-'-''⇒y y y 三、计算题(每小题5分,共40分)46.计算 .xx e x xx 2sin 1lim 3202-→--【解析】: 20300420320161lim 3222lim 81lim 2sin 1lim2222xe x xe x x e x xx e x x x x x x x x x -=+-=--=---→-→-→-→ .161lim 161322lim 220000-=-=-=-→-→x x x x e x xe 47.求函数的导数.xx x y 2sin 2)3(+=dxdy 【解析】:取对数得 :,)3ln(2sin ln 2x x x y +=两边对求导得:x x xx x x x x y y 2sin 332)3ln(2cos 2122++++='共 7 页,第 5 页所以]2sin 332)3ln(2cos 2[)3(222sin 2x xx x x x x x x y x+++++='.x x x x x x x x x x x 2sin )32()3()3ln(2cos )3(212sin 222sin 2+++++=-48.求不定积分.⎰-dx xx 224【解析】:⎰⎰⎰====⎰-==-=π<<π-dt t tdt tdt t tdx x x tx t )2cos 1(2sin 4cos 2cos 2sin 4422sin 22222.C x x x C t t x C t t +--=+-=+-=242arcsin 2cos sin 22arcsin 22sin 2249.计算定积分.⎰--+102)2()1ln(dx x x 【解析】:⎰⎰⎰+---+=-+=-+101010102)1)(2(12)1ln(21)1ln()2()1ln(dx x x x x x d x dx x x .⎰=-=+-+=++--=10102ln 312ln 322ln 12ln 312ln )1121(312ln x x dx x x 50.设 ,其中皆可微,求.),()2(xy x g y x f z ++=),(),(v u g t f yz x z ∂∂∂∂,【解析】:xv v g x u u g x y x y x f x z ∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂)2()2(),(),()2(2xy x g y xy x g y x f v u'+'++'=.=∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂yvv g y u u g y y x y x f y z )2()2(),()2(xy x g x y x f v '++'51.计算二重积分,⎰⎰=Dydxdy xI 2其中由所围成.D 12,===x x y x y 及【解析】:积分区域如图06-1所示,可表示为:.x y x x 2,10≤≤≤≤所以 ⎰⎰⎰⎰==10222xxDydyx dx ydxdy xI .10310323)2(1051042122====⎰⎰x dx x y dx x xx 52.求幂级数的收敛区间(不考虑区间端点的情况).nn nx n ∑∞=--+0)1()3(1【解析】: 令,级数化为 ,这是不缺项的标准的幂级数.t x =-1nn nt n ∑∞=-+0)3(1xx因为 ,313)3(11)3(1lim 1)3(1)3(1limlim 11=--+-=+⋅-+-+==∞→+∞→+∞→nn n n nn nn n n n a a ρ故级数的收敛半径,即级数收敛区间为(-3,3).nn nt n ∑∞=-+0)3(131==ρR 对级数有,即.nn nx n ∑∞=--+0)1()3(1313<-<-x 42<<-x 故所求级数的收敛区间为.),(42-53.求微分方程 通解.0)12(2=+-+dy x xy dy x 【解析】:微分方程可化为 ,这是一阶线性微分方程,它对应的齐0)12(2=+-+dx x xy dy x 212xx y x y -=+'次线性微分方程通解为.02=+'y x y 2xCy =设非齐次线性微分方程的通解为,则,代入方程得2)(x x C y =3)(2)(x x C x C x y -'='.C x x x C x x C +-=⇒-='2)(1)(2故所求方程的通解为.2211xCx y +-=四、应用题(每小题7分,共计14分)54.某公司的甲、乙两厂生产同一种产品,月产量分别为千件;甲厂月生产成本是(千y x ,5221+-=x x C 元),乙厂月生产成本是(千元).若要求该产品每月总产量为8千件,并使总成本最小,求甲、3222++=y y C 乙两厂最优产量和相应最小成本.【解析】:由题意可知:总成本,8222221++-+=+=y x y x C C C 约束条件为.8=+y x 问题转化为在条件下求总成本的最小值 .8=+y x C 把代入目标函数得 的整数).8=+y x 0(882022>+-=x x x C 则,令得唯一驻点为,此时有.204-='x C 0='C 5=x 04>=''C 故 是唯一极值点且为极小值,即最小值点.此时有.5=x 38,3==C y 所以 甲、乙两厂最优产量分别为5千件和3千件,最低成本为38千元.55.由曲线和轴所围成一平面图形,求此平面图形绕轴旋转一周所成的旋转体的体积.)2)(1(--=x x y x y 【解析】:平面图形如图06-2所示,此立体可看作X 型区域绕轴旋转一周而得到。
2010“专升本”《高数》试题及答案
《高等数学》试卷一、单项选择题(每题2分,共计60分,在每小题的备选答案中选出一个正确答案,并将其代码写在题干后面的括号内。
不选、错选或多选者,该题无分)1.已知函数)12(-x f 的定义域为]1,0[ ,则)(x f 的定义域为 ( )A. ]1,21[ B. ]1,1[- C. ]1,0[ D. ]2,1[-解:B x x ⇒≤-≤-⇒≤≤112110.2.)1lg()(2x x x f -+=在),(+∞-∞是 ( ) A .奇函数 B. 偶函数 C.非奇非偶函数 D. 既奇又偶函数 解:01lg )1lg()1lg()()(22==+++-+=-+x x x x x f x f A ⇒. 3. 当0→x 时,x x s i n 2-是x的 ( ) A. 高阶无穷小 B. 低阶无穷小 C. 同阶非等价无穷小 D. 等价无穷小 解: 1sin lim20-=-→x x x x , C ⇒. 4.=+∞→nn n n sin 32lim ( )A. ∞B. 2C. 3D. 5 解:B n n n n n n n ⇒=+=+∞→∞→2]sin 32[lim sin 32lim . 5.设函数⎪⎩⎪⎨⎧=+≠-=0,10,1)(2x a x x e x f ax 在0=x 处连续,则 =a ( ) A. 0 B. 1 C. 2 D. 3 解:B a a a ae x e x f ax x ax x x ⇒=⇒+===-=→→→1122lim 1lim)(lim 20200. 6. 设函数)(x f 在1=x 可导 ,则=--+→xx f x f x )1()21(lim0 ( ) A. )1(f ' B. )1(2f ' C. )1(3f ' D. -)1(f '解:x x f f f x f x x f x f x x )1()1()1()21(lim )1()21(lim 00--+-+=--+→→ C f x f x f x f x f x x ⇒'=---+-+=→→)1(3)1()1(lim 2)1()21(lim200 7. 若曲线12+=x y 上点M 处的切线与直线14+=x y 平行,则M 的坐标( )A. (2,5)B. (-2,5)C. (1,2)D.(-1,2) 解: A y x x x y ⇒==⇒=⇒='5,5422000.8.设⎪⎩⎪⎨⎧==⎰202cos sin ty du u x t ,则=dx dy ( ) A. 2t B. t 2 C.-2t D. t 2-解: D t tt t dx dy ⇒-=-=2sin sin 222. 9.已知x x x f n ln )()2(=-,则=)()(x f n ( )A.211x+ B. x 1C. x lnD. x x ln 解:B x x f x x f x x x f n n n ⇒=⇒+=⇒=--1)(ln 1)(ln )()()1()2(.10.233222++--=x x x x y 有 ( )A. 一条垂直渐近线,一条水平渐近线B. 两条垂直渐近线,一条水平渐近线C. 一条垂直渐近线,两条水平渐近线D. 两条垂直渐近线,两条水平渐近线解:A y y y x x x x x x x x y x x x ⇒∞=-==⇒++-+=++--=-→-→∞→2122lim ,4lim ,2lim )2)(1()3)(1(2332 . 11.在下列给定的区间满足罗尔中值定理的是 ( )A. ]2,0[|,1|-=x yB. ]2,0[,)1(132-=x yC.]2,1[,232+-=x x y D . ]1,0[,arcsin x x y = 解: 由罗尔中值定理 条件:连续、可导及端点的函数值相等C ⇒12. 函数x e y -=在区间),(+∞-∞为 ( )A. 单增且凹B. 单增且凸C. 单减且凹D. 单减且凸解: C e y e y x x ⇒>=''<-='--0,0.13.⎰+=C x F dx x f )()(曲线 ,则⎰=--dx e f e xx )( ( ) A.C e F e x x ++--)( B. C e F e x x +---)(C. C e F x +-)(D. C e F x +--)(解:D C e F e d e f dx e f e xx x x x ⇒+-=-=⎰⎰-----)()()()(.14. 设函数x e x f =-')12( ,则 =)(x f ( )A. C e x +-1221 B. C e x +-)1(212 C. C e x ++1221 D. C e x ++)1(212解:D C e x f e x f e x f x x x ⇒+=⇒='⇒=-'++)1(21)1(212)()()12(. 15. =⎰b axdx dx darctan ( )A.x arctanB. 0C. a b arctan arctan -D. a b arctan arctan + 解:⎰b a xdx arctan 是常数,所以 B xdx dx d ba ⇒=⎰0arctan .16.下列广义积分收敛的为 ( ) A. ⎰+∞1dx e x B. ⎰+∞11dx x C. ⎰+∞+1241dx x D. ⎰+∞1cos xdx 解:C x dx x ⇒-==++∞∞+⎰)21arctan 4(412arctan 4141112π. 17.设区域D 由)(),(,),(,x g y x f y a b b x a x ==>==所围成,则区域D 的面积为() A. ⎰-b a dx x g x f )]()([ B. ⎰-b a dx x g x f )]()([ C. ⎰-b adx x f x g )]()([ D. ⎰-b adx x g x f |)()(|解:由定积分的几何意义可得D 的面积为 ⎰-badx x g x f |)()(|D ⇒.18. 若直线32311-=+=-z n y x 与平面01343=++-z y x 平行,则常数=n ()A. 2B. 3C. 4D. 5 解: B n n n ⇒=⇒=+-⇒-⊥30943}3,43{}3,,1{.19.设y xy x y x f arcsin)1(),(-+=,则偏导数)1,(x f x '为 ( ) A.2 B.1 C.-1 D.-2 解: B x f x x f x ⇒='⇒=1)1,()1,(. 20. 方程02=-xyz e z 确定函数),(y x f z = ,则x z ∂∂ = ( )A. )12(-z x zB. )12(+z x zC. )12(-z x yD. )12(+z x y解: 令⇒-='-='⇒-=xy e F yz F xyz e z y x F z z x z 222,),,( A z x zxy xyz yz xy e yz x z z ⇒-=-=-=∂∂⇒)12(222 21.设函数xy y x z +=2,则===11y x dz ( )A. dy dx 2+B. dy dx 2-C. dy dx +2D. dy dx -2 解:222x ydx xdy dy x xydx dz -++= A dy dx dx dy dy dx dz y x ⇒+=-++=⇒==2211.22.函数2033222+--=y x xy z 在定义域上 ( )A.有极大值,无极小值B. 无极大值,有极小值C.有极大值,有极小值D. 无极大值,无极小值解:,6)0,0(),(062,06222-=∂∂⇒=⇒=-=∂∂=-=∂∂x z y x y x y z x y x z⇒=∂∂∂-=∂∂2,6222y x zy z 是极大值A ⇒. 23由012222=+--+y x y x 围成的闭区域D ,则=⎰⎰Ddxdy ( )A. πB. 2πC.4πD. 16π解:有二重积分的几何意义知:=⎰⎰Ddxdy 区域D 的面积为π.24累次积分⎰⎰>axa dy y x f dx 0)0(),(交换后为( )A. ⎰⎰a x dx y x f dy 0),( B. ⎰⎰a aydx y x f dy 0),(C. ⎰⎰a a dx y x f dy 0),( D. ⎰⎰a yadx y x f dy 0),(解: 积分区域},0|),{(}0,0|),{(a x y a y y x x y a x y x D ≤≤≤≤=≤≤≤≤=B ⇒.25.二重积分⎰⎰20sin 20)sin ,cos (πθθθθrdr r r f d 在直角坐标系下积分区域可表示为( )A. ,222y y x ≤+B. ,222≤+y xC. ,222x y x ≤+D. 220y y x -≤≤ 解:在极坐标下积分区域可表示为:}sin 20,20|),{(θπθθ≤≤≤≤=r r D ,在直角坐标系下边界方程为y y x 222=+,积分区域为右半圆域D ⇒26.设L 为直线1=+y x 坐标从点)0,1(A 到)1,0(B 的有向线段,则⎰-+L dy dx y x )( ( ) A. 2 B.1 C. -1 D. -2解:L :,1⎩⎨⎧-==x y xx x 从1变到0 ,⎰⎰⇒-=+=-+012)(D dx dx dy dx y x L . 27.下列级数绝对收敛的是 ( )A .∑∞=1sin n n πB .∑∞=-1sin )1(n n n π C . ∑∞=-12sin )1(n n n π D . ∑∞=0cos n n π解: ⇒<22sin n n ππC n n ⇒∑∞=12sin π. 28. 设幂级数n n n n a x a (0∑∞=为常数 ,2,1,0=n ),在 2-=x 处收敛,则∑∞=-0)1(n n na ( )A. 绝对收敛B. 条件收敛C. 发散D. 敛散性不确定解:∑∞=0n nn x a 在2-=x 收敛,则在1-=x 绝对收敛,即级数∑∞=-0)1(n n n a 绝对收敛A ⇒.29. 微分方程0sin cos cos sin =+ydx x ydy x 的通解为 ( ) A.C y x =sin cos B. C y x =cos sin C. C y x =sin sin D. C y x =cos cos 解:dx x x dy y y ydx x ydy x sin cos sin cos 0sin cos cos sin -=⇒=+ C C x y x x d y y d ⇒=+⇒-=⇒ln sin ln sin ln sin sin sin sin . 30.微分方程x xe y y y -=-'+''2,特解用特定系数法可设为 ( ) A.x e b ax x y -+=*)( B. x e b ax x y -+=*)(2 C. x e b ax y -+=*)( D. x axe y -=* 解:-1不是微分方程的特征根,x 为一次多项式,可设x e b ax y -+=*)( C ⇒.二、填空题(每题2分,共30分) 31.设 ,1||,01||,1)(⎩⎨⎧>≤=x x x f ,则=)(sin x f _________ 解:1)(sin 1}sin |=⇒≤x f x .32.若=--+→x x x x 231lim 22=_____________ 解:=++=++--=--+→→→)31(1lim )31)(2()2(lim 231lim 2222x x x x x x x x x x x x 123341==. 33.已知x y 2arctan =,则=dy __________ 解:dx xdy 2412+= . 34.函数 bx x a x x f ++=23)(,在1-=x 处取得极值-2,则_______,==b a . 解:b a b a b ax x x f -+-=-=+-⇒++='12,02323)(2.5,4==⇒b a .35.曲线12323-+-=x x x y 的拐点为 __________解:)1,1(),(0662632-=⇒=-=''⇒+-='y x x y x x y .36.设)(),(x g x f 是可微函数,且为某函数的原函数,有1)1(,3)1(==g f 则=-)()(x g x f _________解:2)1()1()()(=-=⇒=-g f C C x g x f 2)()(=-⇒x g x f .37.⎰-=+ππ)sin (32x x _________解:3202sin )sin (023232ππππππππ=+=+=+⎰⎰⎰⎰---x xdx dx x x x . 38.设⎪⎩⎪⎨⎧<≥=0,0,)(2x x x e x f x ,则 ⎰=-20)1(dx x f __________解:⎰⎰⎰⎰--=--=+==-201110012132)()1(e dx e dx x dt t f dx x f x t x .39. 已知 }1,1,2{},2,1,1{-==b a,则向量a 与b 的夹角为=__________解:3,21663||||,cos π>=⇒<==⋅>=<b a b a b a b a.40.空间曲线⎩⎨⎧==022z xy 绕x 轴旋转所得到的曲面方程为 _________.解:把x y 22=中的2y 换成22y z +即得所求曲面方程x y z 222=+.41. 函数y x x z sin 22+=,则 =∂∂∂yx z2_________解: ⇒+=∂∂y x x x z sin 22y x yx z cos 22==∂∂∂ . 42.设区域}11,10|),{(≤≤-≤≤=y x y x D ,则___)(2⎰⎰=-Ddxdy xy . 解:⎰⎰⎰⎰⎰-=-=-=--Ddx x dy x y dx dxdy x y 102101122322)()( .43. 函数2)(x e x f -=在0=x 处的展开成幂级数为________________解: ∑∞=⇒=0!n n xn x e ∑∑∞=∞=-+∞-∞∈-=-==0022),(,!1)1(!)()(2n n n n n x x x n n x e x f .44.幂级数∑∞=+++-0112)1()1(n n n nn x 的和函数为 _________ 解:∑∑∑∞=∞=-+∞=+++=-=+-=+-0111011)21ln()2()1(1)2()1(2)1()1(n n nn n n n n n nx n x n x n x .45.通解为x x e C e C y 321+=-的二阶线性齐次常系数微分方程为_________解:x x e C e C y 321+=-0323,1221=--⇒=-=⇒λλλλ032=-'-''⇒y y y .三、计算题(每小题5分,共40分)46. x x e x xx 2sin 1lim 3202-→-- 解:20300420320161lim 3222lim 81lim 2sin 1lim2222x e x xe x x ex xx e x x x x x x x x x -=+-=--=---→-→-→-→ 161lim 161322lim220000-=-=-=-→-→x x x x e x xe . 47.设x x x y 2sin 2)3(+=, 求dxdy解:取对数得 :)3ln(2sin ln 2x x x y +=,两边对x 求导得:xx x x x x x y y 3322sin )3ln(2cos 2122++++='所以]3322sin )3ln(2cos 2[)3(222sin 2xx x x x x x x x y x +++++=' xx x x x x x x x x x 2sin )32()3()3ln(2cos )3(212sin 222sin 2+++++=-.48.求 ⎰-dx x x 224解:⎰⎰⎰⎰-===-=dt t tdt tdt t tdx x x tx )2cos 1(2sin 4cos 2cos 2sin 4422sin 222C x x x C t t x C t t +--=+-=+-=242arcsin 2cos sin 22arcsin 22sin 2249.求⎰--+102)2()1ln(dx x x解:⎰⎰⎰+---+=-+=-+101010102)1)(2(12)1ln(21)1ln()2()1ln(dx x x x x x d x dx x x⎰=-=+-+=++--=10102ln 312ln 322ln 12ln 312ln )1121(312ln x x dx x x ..50.设),()2(xy x g y x f z ++= ,其中),(),(v u g t f 是可微函数,求 yzx z ∂∂∂∂,解:xv v g x u u g x y x y x f x z ∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂)2()2( ),(),()2(2xy x g y xy x g y x f v u'+'++'==∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂y vv g y u u g y y x y x f y z )2()2(),()2(xy x g x y x f v '++'. 51.计算积分⎰⎰=Dydxdy x I 2 ,其中:D 由直线1,2,===x x y x y 所围成的闭区域.解:积分区域如图所示,可表示为:x y x x 2,10≤≤≤≤.所以 ⎰⎰⎰⎰==1222xx Dydy x dx ydxdy x I10310323)2(10510421022====⎰⎰x dx x y dx x xx52.求幂级数nn nx ∑∞=--+0)1()3(11的收敛区间(不考虑端点). 解: 令t x =-1,级数化为 n n nt ∑∞=-+0)3(11,这是不缺项的标准的幂级数. 因为 313)3(11)3(1lim )3(1)3(1lim lim 11=--+-=-+-+==∞→+∞→+∞→nnn n n n n n n a a ρ,故级数nn nt ∑∞=-+0)3(11的收敛半径31==ρR ,即级数收敛区间为(-3,3). 对级数nn nx ∑∞=--+0)1()3(11有313<-<-x ,即42<<-x . 故所求级数的收敛区间为),(42-.53.求微分方程 0)12(2=+-+dy x xy dy x 通解.解:微分方程0)12(2=+-+dx x xy dy x 可化为 212xxy x y -=+',这是一阶线性微分方程,它对应的齐次线性微分方程02=+'y x y 通解为2xCy =.设非齐次线性微分方程的通解为2)(x x C y =,则3)(2)(xx C x C x y -'=',代入方程得C x x x C x x C +-=⇒-='2)(1)(2.故所求方程的通解为2211xCx y +-=.四、应用题(每题7分,共计14分)54.某公司甲乙两厂生产一种产品,甲乙两厂月产量分别为y x ,千件;甲厂月产量成本为5221+-=x x C ,乙厂月产量成本为3222++=y y C ;要使月产量为8千件,且总成本最小,求甲乙两厂最优产量和最低成本?解:由题意可知:总成本8222221++-+=+=y x y x C C C ,约束条件为8=+y x .问题转化为在8=+y x 条件下求总成本C 的最小值 . 由8=+y x 得x y -=8,代入得目标函数为0(882022>+-=x x x C 的整数).则204-='x C ,令0='C 得唯一驻点为5=x ,此时有04>=''C . 故5=x 使C 得到极小唯一极值点,即最小值点.此时有38,3==C y . 所以 甲乙两厂最优产量分别为5千件和3千件,最低成本为38成本单位. 55.求曲线)2)(1(--=x x y 和x 轴所围成图形绕y 轴旋转一周所得的体积. 解:平面图形如下图所示:此立体可看作x 区域绕y利用体积公式⎰=ba y dx x f x V |)(|2π.显然,抛物线与x 两交点分别为(1,0);(2平面图形在x 轴的下方.故⎰⎰---==21)2)(1(2|)(|2x x x dx x f x V ba y ππ2)4(2)23(2212342123πππ=+--=+--=⎰x x x dx x x x .xx五、证明题(6分)56设)(x f 在],[a a -上连续,且>a ,求证⎰⎰--+=aaadx x f x f dx x f 0)]()([)(.并计算⎰--+441cos ππdx e xx .证明:因为⎰⎰⎰--+=aaaadx x f dx x f dx x f 0)()()(,而⎰⎰⎰⎰-=-=--=-=-0)()()()()(aaa tx a dx x f dt t f t d t f dx x f ,故⎰⎰⎰⎰⎰-+=+=--aaa aa adx x f dx x f dx x f dx x f dx x f 0)()()()()( 即有⎰⎰--+=aaadx x f x f dx x f 0)]()([)(.利用上述公式有dx e e e x dx e x e x dx e x x x x x x x ⎰⎰⎰⎥⎦⎤⎢⎣⎡+++=+-++=+---404044111cos ]1)cos(1cos [1cos ππππ 22sin cos 4040===⎰ππx dx x .说明:由于时间紧,个别题目语言叙述与试卷有点不近相同,没有进行认真检查,考生仅作参考.河南省“专升本”考试《高等数学》辅导专家葛云飞提供.。
近十年江苏省专转本高等数学试题分类整理
江苏省普通高校“专转本”统一考试高等数学专转本高数试卷结构知识分类与历年真题●函数、极限和连续●一元函数微分学●一元函数积分学●向量代数与空间解析几何●多元函数微积分●无穷级数●常微分方程时间排序与参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案江苏省普通高校“专转本”统一考试高等数学试卷结构全卷满分150分一、单选题(本大题共6小题,每小题4分,满分24分) 二、填空题(本大题共6小题,每小题4分,满分24分) 三、解答题(本大题共8小题,每小题8分,满分64分) 四、综合题(本大题共2小题,每小题10分,满分20分) 五、证明题(本大题共2小题,每小题9分,满分18分)知识分类与历年真题一、函数、极限和连续(一)函数(0401)[](]333,0()0,2xx f x x x ⎧∈-⎪=⎨-∈⎪⎩是()A.有界函数B.奇函数C.偶函数D.周期函数(0801)设函数)(x f 在),(+∞-∞上有定义,下列函数中必为奇函数的是()A.()y f x =-B.)(43x f x y = C.()y f x =-- D.)()(x f x f y -+=(二)极限(0402)当0→x 时,x x sin 2-是关于x 的()A.高阶无穷小B.同阶无穷小C.低阶无穷小D.等价无穷小(0407)设xx x x f ⎪⎭⎫⎝⎛++=32)(,则=∞→)(lim x f x .(0601)若012lim 2x x f x →⎛⎫ ⎪⎝⎭=,则0lim 3x xx f →=⎛⎫ ⎪⎝⎭() A.21 B.2C.3D.31 (0607)已知0→x 时,(1cos )a x ⋅-与x x sin 是等价无穷小,则=a .(0613)计算311lim1x x x →--. (0701)若0(2)lim2x f x x→=,则1lim 2x xf x →∞⎛⎫= ⎪⎝⎭( ) A.41B.21 C.2D.4(0702)已知当0→x 时,)1ln(22x x +是x n sin 的高阶无穷小,而x n sin 又是x cos 1-的高阶无穷小,则正整数=n ( ) A.1B.2C.3D.4(0813)求极限:32lim xx x x →∞-⎛⎫⎪⎝⎭. (0901)已知22lim32x x ax bx →++=-,则常数b a ,的取值分别为( ) A.2,1-=-=b a B.0,2=-=b a C.0,1=-=b a D.1,2-=-=b a(0907)已知lim 2xx x x C →∞⎛⎫= ⎪-⎝⎭,则常数=C . (1001)设当0x →时,()sin f x x x =-与()ng x ax =是等价无穷小,则常数,a n 的值为 ( )A.1,36a n == B.1,33a n == C.1,412a n == D.1,46a n ==(1007) 1lim 1xx x x →∞+⎛⎫= ⎪-⎝⎭. (1101)当0→x 时,函数1)(--=x e x f x是函数2)(x x g =的( ) A.高阶无穷小 B.低阶无穷小C.同阶无穷小 D.等价无穷小(1107)已知22lim kxx x e x →∞-⎛⎫= ⎪⎝⎭,则=k _________. (1201)极限1sin 3lim 2sin x x x x x →∞⎛⎫+= ⎪⎝⎭( ) A.0B.2C.3D.5(1301)当0x →时,函数()ln(1)f x x x =+-是函数2()g x x =的( ) A.高阶无穷小B.低阶无穷小C.同阶无穷小D.等价无穷小(1310)设10lim xx a x e a x →+⎛⎫=⎪-⎝⎭,则常数a =. (三)连续(0413)求函数xxx f sin )(=的间断点,并判断其类型. (0501)0=x 是xx x f 1sin)(=的( ) A.可去间断点B.跳跃间断点C.第二类间断点D.连续点(0513)设()2sin 0()0f x xx F x xa x +⎧≠⎪=⎨⎪=⎩在R 内连续,并满足0)0(=f ,(0)6f '=,求a . (0602)函数21sin 0()00x x f x xx ⎧≠⎪=⎨⎪=⎩在0x =处( ) A.连续但不可导 B.连续且可导 C.不连续也不可导 D.可导但不连续(0608)若A x f x x =→)(lim 0,且)(x f 在0x x =处有定义,则当=A 时,)(x f 在0x x =处连续.(0707)设函数1(1)0()20x kx x f x x ⎧⎪+≠=⎨⎪=⎩,在点0=x 处连续,则常数=k .(0807)设函数21()(1)x f x x x -=-,则其第一类间断点为.(0808)设函数0()tan 30a x x f x x x x+≥⎧⎪=⎨<⎪⎩在点0=x 处连续,则a =.(0902)已知函数423)(22-+-=x x x x f ,则2=x 为)(x f 的( )A.跳跃间断点B.可去间断点C.无穷间断点D.震荡间断点(1123)设210arctan ()1010sin 2ax axe x ax x x xf x x e x x ⎧---<⎪⎪⎪==⎨⎪-⎪>⎪⎩,问常数为何值时:(1)0=x 是函数)(x f 的连续点? (2)0=x 是函数)(x f 的可去间断点? (3)0=x 是函数)(x f 的跳跃间断点? (1202)设()2(2)sin ()4x xf x x x -⋅=⋅-,则函数)(x f 的第一类间断点的个数为( ) A.0B.1C.2D.3(1207)要使函数()1()12xf x x =-在点0=x 处连续,则需补充定义(0)f =_________.(1303)设sin 20()011xx x f x x x x ⎧<⎪⎪=⎨⎪>⎪+-⎩,这点0x =是函数()f x 的( )A.跳跃间断点B.可去间断点C.无穷间断点D.连续点(1307)设1sin0()0x x f x xa x ⎧≠⎪=⎨⎪=⎩在点0x =处连续,则常数a =. 二、一元函数微分学(一) 导数与微分(0403)直线L 与x 轴平行且与曲线x e x y -=相切,则切点的坐标是( ) A.()1,1 B.()1,1- C.()0,1- D.()0,1 (0409)设()(1)(2)()f x x x x x n =+++,N n ∈,则=)0('f .(0415)设函数)(x y y =由方程1=-yxe y 所确定,求22d d x yx=的值.(0502)若2=x 是函数1ln 2y x ax ⎛⎫=-+ ⎪⎝⎭的可导极值点,则常数=a ( ) A.1-B.21C.21- D.1 (0514)设函数)(x y y =由方程cos sin cos x t y t t t =⎧⎨=-⎩所确定,求d d y x 、22d d yx .(0614)若函数)(x y y =是由参数方程2ln (1)arctan x t y t t⎧=+⎨=-⎩所确定,求d d y x 、22d d yx .(0708)若直线m x y +=5是曲线232++=x x y 的一条切线,则常数=m .(0714)设函数)(x y y =由方程xy e e yx=-确定,求d d x yx=、22d d x y x =.(0802)设函数)(x f 可导,则下列式子中正确的是( )A.0(0)()lim(0)x f f x f x →-'=- B.000(2)()lim ()x f x x f x f x x→+-'=C.0000()()lim()x f x x f x x f x x ∆→+∆--∆'=∆ D.0000()()lim 2()x f x x f x x f x x∆→-∆-+∆'=∆ (0814)设函数)(x y y =由参数方程sin 1cos x t t y t =-⎧⎨=-⎩(2t n π≠,n Z ∈)所决定,求d d y x 、22d d y x .(0903)设函数00()1sin 0x f x x x x α≤⎧⎪=⎨>⎪⎩在点0=x 处可导,则常数α的取值范围为( ) A.10<<αB.10≤<αC.1>αD.1≥α(0914)设函数)(x y y =由参数方程2ln (1)23x t y t t =+⎧⎨=+-⎩所确定,d d y x 、22d d yx . (0923)已知函数0()10x e x f x x x -⎧<=⎨+≥⎩,证明函数)(x f 在点0=x 处连续但不可导.(1008).若(0)1f '=,则0()()limx f x f x x→--=.(1014)设函数()y y x =由方程2x yy ex ++=所确定,求d d y x 、22d d y x . (1022)设()0()1x x f x xx ϕ⎧≠⎪=⎨⎪=⎩,其中函数()x ϕ在0x =处具有二阶连续导数,且(0)0ϕ=,(0)1ϕ'=,证明:函数()f x 在0x =处连续且可导.(1102)设函数)(x f 在点0x 处可导,且4)()(lim000=+--→hh x f h x f h ,则=')(0x f ( )A.4-B.2-C.2D.4(1110)设函数x y arctan =,则1d x y==_____________.(1114)设函数)(x y y =由参数方程⎪⎩⎪⎨⎧=++=22ty e tt x y 所确定,求d d y x . (1208)设函数()22221xy x x x e =⋅+++,则=)0()7(y ________.(1209)设xy x =(0x >),则函数y 的微分=dy ___________.(1214)设函数)(x y y =由参数方程⎪⎩⎪⎨⎧+=-=tt y tt x ln 212所确定,求d d y x 、22d d y x . (1304)设1y f x ⎛⎫= ⎪⎝⎭,其中f 具有二阶导数,则22d d y x =( )A.231121f f x x x x ⎛⎫⎛⎫'''-+ ⎪ ⎪⎝⎭⎝⎭ B.231121f f x x x x ⎛⎫⎛⎫'''+ ⎪ ⎪⎝⎭⎝⎭ C.231121f f x x x x ⎛⎫⎛⎫'''--⎪ ⎪⎝⎭⎝⎭D.231121f f x x x x ⎛⎫⎛⎫'''-⎪ ⎪⎝⎭⎝⎭(1306)已知函数()f x 在点1x =处连续,且21()1lim 12x f x x →=-,则曲线()f x 在点()1,()f x 处切线方程为( )A.1y x =-B.22y x =-C.33y x =-D.44y x =-(1309)设函数由参数方程2211x t y t ⎧=+⎨=-⎩所确定,则221d d t yx ==.(二)中值定理及导数的应用(0423)甲、乙二城位于一直线形河流的同一侧,甲城位于岸边,乙城离河岸40公里,乙城在河岸的垂足与甲城相距50公里,两城计划在河岸上合建一个污水处理厂,已知从污水处理厂到甲乙二城铺设排污管道的费用分别为每公里500、700元.问污水处理厂建在何处,才能使铺设排污管道的费用最省?(0507)02limsin x x x e e xx x-→--=-. (0508)函数x x f ln )(=在区间[]1,e 上满足拉格郎日中值定理的=ξ. (0521)证明方程:0133=+-x x 在[]1,1-上有且仅有一根.(0603)下列函数在[]1,1-上满足罗尔定理条件的是( ) A.xe y =B.1y x =+C.21x y -= D.xy 11-= (0621)证明:当2x ≤时,332x x -≤.(0703)设函数()(1)(2)(3)f x x x x x =---,则方程()0f x '=的实根个数为( ) A.1B.2C.3D.4(0713)求极限01lim tan x x e x x x→--.(0722)设函数9)(23-++=cx bx ax x f 具有如下性质:(1)在点1-=x 的左侧临近单调减少; (2)在点1-=x 的右侧临近单调增加; (3)其图形在点(1,2)的两侧凹凸性发生改变. 试确定a ,b ,c 的值.(0724)求证:当0>x 时,22(1)ln (1)x x x -⋅≥-.(0809)已知曲线543223++-=x x x y ,则其拐点为. (0821)求曲线1y x=(0x >)的切线,使其在两坐标轴上的截距之和最小,并求此最小值. (0823)设函数)(x f 在闭区间[]0,2a (0a >)上连续,且)()2()0(a f a f f ≠=,证明:在开区间(0,)a 上至少存在一点ξ,使得()()f f a ξξ=+. (0824)对任意实数x ,证明不等式:(1)1x x e -⋅≤. (0904)曲线221(1)x y x +=-的渐近线的条数为( ) A.1B.2C.3D.4(0913)求极限30lim sin x x x x→-.(0921)已知函数13)(3+-=x x x f ,试求: (1)函数)(x f 的单调区间与极值; (2)曲线)(x f y =的凹凸区间与拐点;(3)函数)(x f 在闭区间[2,3]-上的最大值与最小值.(0924)证明:当12x <<时,24ln 23x x x x >+-.(1002)曲线223456x x y x x -+=-+的渐近线共有 ( )A.1条B.2条C.3条D.4条 (1006)设3()3f x x x =-,则在区间(0,1)内 ( )A.函数()f x 单调增加且其图形是凹的B.函数()f x 单调增加且其图形是凸的C.函数()f x 单调减少且其图形是凹的D.函数()f x 单调减少且其图形是凸的 (1013)求极限2|011lim tan x x x x →⎛⎫-⎪⎝⎭.(1021)证明:当1x >时,121122x e x ->+. (1103)若点(1,2)-是曲线23bx ax y -=的拐点,则( ) A.3,1==b a B.1,3-=-=b a C.3,1-=-=b a D.6,4==b a(1113)求极限()()22limln 1xx x eex -→-+.(1121)证明:方程()2ln 12x x ⋅+=有且仅有一个小于2的正实根.(1122)证明:当0>x 时,x x201120102011≥+. (1203)设232152)(xx x f -=,则函数)(x f ( )A.只有一个最大值B.只有一个极小值C.既有极大值又有极小值D.没有极值(1213)求极限()2302cos 2lim ln 1x x x x x →+-+. (1223)证明:当10<<x 时,361arcsin x x x +>. (1302)曲线22232x xy x x +=-+的渐近线共有( )A.1条B.2条C.3条D.4条(1313)求极限01lim ln (1)x x e x x →⎡⎤-⎢⎥+⎣⎦.(1323)证明:当1x >时,2(1ln )21x x +<-.三、一元函数积分学(一)不定积分(0410)求不定积分32arcsin d 1x x x=-⎰.(0416)设)(x f 的一个原函数为xe x,计算(2)d x f x x '⎰.(0503)若()d ()f x x F x C =+⎰,则sin (cos )d x f x x =⎰( )A.C x F +)(sinB.C x F +-)(sinC.C F +(cos)D.C x F +-)(cos(0515)计算3tan sec d x x x ⎰.(0522)设函数)(x f y =的图形上有一拐点(2,4)P ,在拐点处的切线斜率为3-,又知该函数的二阶导数6y x a ''=+,求)(x f .(0604)已知2()d x f x x e C =+⎰,则()d f x x '-=⎰( )A.C ex+-22B.C e x +-221 C.C e x +--22 D.C e x +--221(0615)计算1ln d xx x+⎰. (0622)已知曲线)(x f y =过原点且在点),(y x 处的切线斜率等于y x +2,求此曲线方程. (0704)设函数)(x f 的一个原函数为x 2sin ,则(2)d f x x '=⎰( )A.C x +4cosB.C x +4cos 21C.C x +4cos 2D.C x +4sin(0715)求不定积分2d xx e x -⎰.(0810)设函数)(x f 的导数为x cos ,且21)0(=f ,则不定积分()d f x x =⎰. (0815)求不定积分3d 1x x x +⎰. (0905)设()ln (31)F x x =+是函数)(x f 的一个原函数,则(21)d f x x '+=⎰( )A.C x ++461 B.C x ++463 C.C x ++8121 D.C x ++8123(0915)求不定积分sin21d x x +⎰.(1015)求不定积分arctan d x x x ⎰.(1115)设)(x f 的一个原函数为x x sin 2,求不定积分()d f x x x⎰. (1215)求不定积分sin 2d x x x ⎰. (1315)求不定积分sin 2d x x x ⎰.(二)定积分(0404)2228R y x =+设所围的面积为S ,则222208d R R x x -⎰的值为( )A.SB.4S C.2SD.S 2 (0421)证明:0(sin )d (sin )d 2x f x x f x x πππ=⎰⎰,并利用此式求20sin d 1cos xxx xπ+⎰.(0509)1211d 1x x xπ-+=+⎰.(0516)计算10arctan d x x ⎰.(0609)设)(x f 在[]0,1上有连续的导数且(1)2f =,10()d 3f x x =⎰,则1()d x f x x '=⎰.(0616)计算220cos d x x x π⎰.(0709)定积分()223241cos d x x x x --+⎰的值为.(0716)计算定积分212221d x x x-⎰. (0811)定积分1212sin d 1xx x -++⎰的值为.(0816)求定积分10d xe x ⎰.(0916)求定积分:212d 2x x x-⎰.(1009)定积分31211d 1x x x -++⎰的值为. (1016)计算定积分403d 21x x x ++⎰. (1111)定积分()32221sin d xx x ππ-+⋅⎰的值为____________.(1116)计算定积分3d 11x xx ++⎰ . (1216)计算定积分21d 21xx x -⎰.(1316)计算定积分22d 24x x+-⎰.(1324)设函数()f x 在[,]a b 上连续,证明:[]2()d ()()d a b b aaf x x f x f a b x x +=++-⎰⎰.(三)变限积分与广义积分(0417)计算广义积分2d 1xx x +∞⋅-⎰.(0422)设函数)(x f 可导,且满足方程20()d 1()x t f t t x f x =++⎰,求)(x f .(0705)设221()sin d x f x t t =⎰,则()f x '=( )A.4sin x B.2sin 2x x C.2cos 2x x D.4sin 2x x (0803)设函数)(x f 122sin d xt t t =⎰,则()f x '等于( )A.x x 2sin 42B.x x 2sin 82C.x x 2sin 42- D.x x 2sin 82-(0908)设函数20()d x t x te t ϕ=⎰,则()x ϕ'=.(1003)设函数22()cos d t xx e t t Φ=⎰,则函数()x Φ的导数()x 'Φ等于( )A.222cos x xe x B.222cos x xe x - C.2cos xxe x - D.22cos x e x -(1108)设函数2()ln (1)d x x t t Φ=+⎰ ,则=Φ'')1(____________.(1211)设反常积分1d 2x ae x +∞-=⎰,则常数=a ______. (1222)已知定义在(),-∞+∞上的可导函数)(x f 满足方程31()4()d 3xx f x f t t x -=-⎰,试求:(1)函数()f x 的表达式; (2)函数)(x f 的单调区间与极值; (3)曲线()y f x =的凹凸区间与拐点.(1224)设0()d 0()(0)0x g t t x f x g x ⎧≠⎪=⎨⎪=⎩⎰,其中函数)(x g 在(,)-∞+∞上连续,且3cos 1)(lim 0=-→xx g x .证明:函数)(x f 在0=x 处可导,且1(0)2f '=. (1322)已知251320()95d x F x t t t ⎛⎫=- ⎪⎝⎭⎰是()f x 的一个原函数,求曲线()y f x =的凹凸区间、拐点. (四)定积分的几何应用(0523)已知曲边三角形由x y 22=、0=x 、1=y 所围成,求:(1)曲边三角形的面积;(2)曲边三角形绕x 轴旋转一周的旋转体体积.(0623)已知一平面图形由抛物线2x y =、82+-=x y 围成.(1)求此平面图形的面积;(2)求此平面图形绕y 轴旋转一周所得的旋转体的体积.(0721)设平面图形由曲线21x y -=(0≥x )及两坐标轴围成.(1)求该平面图形绕x 轴旋转所形成的旋转体的体积;(2)求常数a 的值,使直线a y =将该平面图形分成面积相等的两部分.(0822)设平面图形由曲线2x y =,22x y =与直线1=x 所围成.(1)求该平面图形绕x 轴旋转一周所得的旋转体的体积;(2)求常数a ,使直线a x =将该平面图形分成面积相等的两部分.(0922)设1D 是由抛物线22x y =和直线x a =,0y =所围成的平面封闭区域,2D 是由抛物线22x y =和直线x a =,2x =及0=y 所围成的平面封闭区域,其中20<<a .试求:(1)1D 绕y 轴旋转所成的旋转体的体积1V ,以及2D 绕x 轴旋转所成的旋转体的体积2V ; (2)求常数a 的值,使得1D 的面积与2D 的面积相等.(1023)设由抛物线2y x =(0x ≥),直线2y a =(01a <<)与y 轴所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为1()V a ,由抛物线2y x =(0x ≥),直线2y a =(01a <<)与直线1x =所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为2()V a ,另12()()()V a V a V a =+,试求常数a 的值,使()V a 取得最小值.(1024)设函数()f x 满足方程()()2xf x f x e '+=,且(0)2f =,记由曲线'()()f x y f x =与直线1y =,x t =(0t >)及y 轴所围平面图形的面积为()A t ,试求lim ()t A t →+∞. (1124)设函数)(x f 满足微分方程()2()(1)x f x f x a x '-=-+(其中a 为正常数),且1)1(=f ,由曲线()y f x =(1x ≤)与直线1x =,0y =所围成的平面图形记为D .已知D 的面积为32. (1)求函数)(x f 的表达式;(2)求平面图形D 绕x 轴旋转一周所形成的旋转体的体积x V ; (3)求平面图形D 绕y 轴旋转一周所形成的旋转体的体积y V .(1221)在抛物线2y x =(0x >)上求一点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平面图形的面积为32,并求该平面图形绕x 轴旋转一周所形成的旋转体的体积. (1321)设平面图形D 是由曲线2x y =,y x =-与直线1y =所围成,试求:(1)平面图形D 的面积;(2)平面图形D 绕x 轴旋转一周所形成的旋转体的体积.四、向量代数与空间解析几何(一)向量代数(0510)设向量{}3,4,2=-a 、{}2,1,k =b ;a 、b 互相垂直,则=k . (0610)设1=a ,⊥a b ,则()⋅+=a a b . (0710)已知a 、b 均为单位向量,且12⋅=a b ,则以a 、b 为邻边的平行四边形面积为. (0804)设向量(1,2,3)=a ,(3,2,4)=b ,则⨯a b 等于( ) A.(2,5,4)B.(2,5,4)-- C.(2,5,4)- D.(2,5,4)--(0909)已知向量{}1,0,1=-a ,{}1,2,1=-b ,则+a b 与a 的夹角为. (1010)设{}1,2,3=a ,{}2,5,k=b ,若a 与b 垂直,则常数k =.(1109)若1=a ,4=b ,2⋅=a b ,则⨯=a b ____________.(1210)设向量a 、b 互相垂直,且3=a ,2=b ,则2+=a b ________. (1308)已知空间三点(1,1,1)A ,(2,3,4)B ,(3,4,5)C ,则ABC ∆的面积为.(二)平面与直线(0518)求过点(3,1,2)A -且通过直线L :43521x y z-+==的平面方程. (0619)求过点(3,1,2)M -且与二平面07=-+-z y x 、0634=-+-z y x 都平行的直线方程.(0719)求过点(1,2,3)且垂直于直线20210x y z x y z +++=⎧⎨-++=⎩的平面方程.(0817)设平面∏经过点(2,0,0)A ,(0,3,0)B ,(0,0,5)C ,求经过点(1,2,1)P 且与平面∏垂直的直线方程. (0917)求通过直线12213-=-=z y x 且垂直于平面02=+++z y x 的平面方程. (1017)求通过点(1,1,1),且与直线23253x ty t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线的方程.(1117)求通过x 轴与直线132zy x ==的平面方程. (1217)已知平面∏通过(1,2,3)M 与x 轴,求通过(1,1,1)N 且与平面∏平行,又与x 轴垂直的直线方程.(1318)已知直线10330x y z x y z -+-=⎧⎨--+=⎩在平面∏上,又知直线23132x ty t z t=-⎧⎪=+⎨⎪=+⎩与平面∏平行,求平面∏的方程.五、多元函数微积分(一)多元函数微分学(0418)设(,)z f x y xy =-,且具有二阶连续的偏导数,求x z ∂∂、yx z∂∂∂2.(0505)设yx y x u arctan ),(=,22(,)lnv x y x y =+,则下列等式成立的是( )A.y v x u ∂∂=∂∂ B.x v x u ∂∂=∂∂ C.x v y u ∂∂=∂∂ D.yvy u ∂∂=∂∂(0517)已知函数2(sin ,)z f x y =,其中),(v u f 有二阶连续偏导数,求x z ∂∂、yx z∂∂∂2.(0611)设x e u xysin =,=∂∂xu. (0620)设2(,)z x f x xy =⋅其中(,)f u v 的二阶偏导数存在,求y z ∂∂、xy z∂∂∂2.(0711)设yxz =,则全微分d z =.(0717)设(23,)z f x y xy =+其中f 具有二阶连续偏导数,求yx z∂∂∂2.(0805)函数xyz ln=在点(2,2)处的全微分d z 为( ) A.11d d 22x y -+ B.11d d 22x y + C.11d d 22x y - D.11d d 22x y --(0818)设函数,y z f x y x ⎛⎫=+ ⎪⎝⎭,其中)(x f 具有二阶连续偏导数,求y x z ∂∂∂2.(0910)设函数(,)z z x y =由方程12=+yz xz 所确定,则xz∂∂=. (0919)设函数(sin ,)z f x xy =,其中)(x f 具有二阶连续偏导数,求yx z∂∂∂2.(1011)设函数2ln4z x y =+,则10d x y z===.(1018)设()2,xz y f xy e =⋅,其中函数f 具有二阶连续偏导数,求2zx y∂∂∂.(1104)设),(y x f z =为由方程8333=+-x yz z 所确定的函数,则=∂∂==00y x yz ( )A.21-B.21C.2-D.2(1118)设)(y x y xf z ,=,其中函数f 具有二阶连续偏导数,求yx z∂∂∂2.(1204)设3ln 2z x y=+在点()1,1处的全微分为 ( )A.d 3d x y -B.d 3d x y +C.1d 3d 2x y +D.1d 3d 2x y -(1218)设函数22(,)()z f x xy x y ϕ=++,其中函数f 具有二阶连续偏导数,函数()x ϕ具有二阶连续导数,求yx z∂∂∂2.(1314)设函数(,)z z x y =由方程3331z xy z +-=所确定,求d z 及22zx∂∂.(1317)设()223,x yz fx e+=,其中函数f 具有二阶连续偏导数,求2zy x ∂∂∂.(二)二重积分(0411)交换二次积分的次序2120d (,)d x x x f x y y -=⎰⎰.(0419)计算二重积分sin d d Dy x y y ⎰⎰,其中D 由曲线x y =及x y =2所围成. (0504)设区域D 是xoy 平面上以点(1,1)A 、(1,1)B -、(1,1)C --为顶点的三角形区域,区域1D 是D 在第一象限的部分,则(cos sin )d d Dxy x y x y +=⎰⎰( )A.⎰⎰1)sin (cos 2D dxdy y x B.⎰⎰12D xydxdyC.⎰⎰+1)sin cos (4D dxdy y x xyD.0(0511)交换二次积分的次序20111d (,)d x x x f x y y --+=⎰⎰;(0524)设)(x f 为连续函数,且1)2(=f ,1()d ()d uuyF u y f x x =⎰⎰(1u >). (1)交换)(u F 的积分次序; (2)求(2)F '.(0606)设对一切x 有(,)(,)f x y f x y -=-,22{(,)|1,0}D x y x y y =+≤≥,=1D 22{(,)|1,0,0}x y x y x y +≤≥≥,则(,)d d Df x y x y =⎰⎰( )A. 0B.1(,)d d D f x y x y ⎰⎰ C.21(,)d d D f x y x y ⎰⎰ D.41(,)d d D f x y x y ⎰⎰(0612)D 为以点(0,0)O 、(1,0)A 、(0,2)B 为顶点的三角形区域,d d Dx y =⎰⎰.(0624)设⎪⎩⎪⎨⎧=≠=⎰⎰00)(1)(t a t dxdy x f t t g tD ,其中t D 是由t x =、t y =以及坐标轴围成的正方形区域,函数)(x f 连续.(1)求a 的值使得)(t g 连续;(2)求)('t g .(0720)计算二重积分22d d Dx y x y +⎰⎰,其中{}22(,)|2,0D x y x y x y =+≤≥.(0723)设0>>a b ,证明:()232d ()d ()d b b b x y xx a ayay f x e x ee f x x ++⋅=-⎰⎰⎰.(0819)计算二重积分2d d Dx x y ⎰⎰,其中D 是由曲线xy 1=,直线y x =,2x =及0=y 所围成的平面区域.(0918)计算二重积分d Dy σ⎰⎰,其中22{(,)02,2,2}D x y x x y x y =≤≤≤≤+≥.(1005)二次积分1101d (,)d y y f x y x +⎰⎰交换积分次序后得 ( ) A.1101d (,)d x x f x y y +⎰⎰B.2110d (,)d x x f x y y -⎰⎰C.2111d (,)d x x f x y y -⎰⎰D.2111(,)d x dx f x y y -⎰⎰(1019)计算d d Dx x y ⎰⎰,其中D 是由曲线21x y =-,直线y x =及x 轴所围成的闭区域.(1105)若(,)d d Df x y x y ⎰⎰可转化为二次积分1201d (,)d y y f x y x +⎰⎰ ,则积分域D 可表示为( ) A.{}(,)01,11x y x x y ≤≤-≤≤ B.{}(,)12,11x y x x y ≤≤-≤≤ C.{}(,)01,10x y x x y ≤≤-≤≤ D.{}(,)12,01x y x y x ≤≤≤≤- (1119)计算二重积分d d Dy x y ⎰⎰,其中D 是由曲线22y x =-,直线x y -=及y 轴所围成的平面闭区域. (1205)二次积分dx y x f dy y),(11⎰⎰ 在极坐标系下可化为( )A.sec 40d (cos ,sin )d f πθθρθρθρ⎰⎰ B.sec 40d (cos ,sin )d f πθθρθρθρρ⎰⎰C.sec 24d (cos ,sin )d f πθπθρθρθρ⎰⎰ D.sec 24d (cos ,sin )d f πθπθρθρθρρ⎰⎰(1220)计算二重积分d d Dy x y ⎰⎰,其中D 是由曲线1y x =-,直线2xy =及x 轴所围成的平面闭区域.(1320)计算二重积分d d Dx x y ⎰⎰,其中D 是由曲线24y x =-(0x >)与三条直线y x =,3x =,0y =所围成的平面闭区域.六、无穷级数(一)数项级数(0506)正项级数(1)∑∞=1n nu、(2)∑∞=13n nu,则下列说法正确的是( )A.若(1)发散、则(2)必发散B.若(2)收敛、则(1)必收敛C.若(1)发散、则(2)不确定D.(1)、(2)敛散性相同(0605)设∑∞=1n nu为正项级数,如下说法正确的是( )A.若0lim 0=→n n u ,则∑∞=1n n u 必收敛 B.若l u u nn n =+∞→1lim )0(∞≤≤l ,则∑∞=1n n u 必收敛C.若∑∞=1n nu收敛,则∑∞=12n nu必定收敛 D.若∑∞=-1)1(n n nu 收敛,则∑∞=1n n u 必定收敛(0706)下列级数收敛的是( )A.∑∞=122n n n B.∑∞=+11n n n C.∑∞=-+1)1(1n n n D.∑∞=-1)1(n n n(0906)设α为非零常数,则数项级数∑∞=+12n n n α() A.条件收敛B.绝对收敛C.发散D.敛散性与α有关(1004)下列级数收敛的是( )A.11n nn ∞=+∑ B.2121n n n n ∞=++∑ C.11(1)n n n ∞=+-∑ D.212n n n ∞=∑(1206)下列级数中条件收敛的是( )A.1(1)21nn nn ∞=-+∑B.13(1)2nn n ∞=⎛⎫- ⎪⎝⎭∑C.21(1)nn n ∞=-∑ D.1(1)nn n ∞=-∑(1305)下列级数中收敛的是( )A.211n n n∞=+∑ B.11nn n n ∞=⎛⎫ ⎪+⎝⎭∑ C.1!2n n n ∞=∑ D.13n n n ∞=∑(二)幂级数(0412)幂级数∑∞=-12)1(n nnx 的收敛区间为. (0420)把函数21)(+=x x f 展开为2-x 的幂级数,并写出它的收敛区间. (0512)幂级数1(21)nn n x∞=-∑的收敛区间为.(0519)把函数222)(xx x x f --=展开为x 的幂级数,并写出它的收敛区间. (0618)将函数()ln (1)f x x x =+展开为x 的幂函数(要求指出收敛区间).(0812)幂函数12nnn x n ∞=⋅∑的收敛域为. (0911)若幂函数21n nn a x n∞=∑(0a >)的收敛半径为21,则常数=a .(1012)幂级数0(1)n nn x n ∞=-∑的收敛域为.(1106)若x x f +=21)(的幂级数展开式为0()n n n f x a x ∞==∑(22x -<<),则系数=n a ( )A.n 21B.121+nC.(1)2n n- D.1(1)2nn +- (1112)幂级数01nn x n ∞=+∑的收敛域为___________. (1212)幂级数1(1)(3)3n nnn x n ∞=--⋅∑的收敛域为____________. (1312)幂级数12n nn x n∞=∑的收敛域为. 七、常微分方程(一)一阶微分方程(0520)求微分方程0'=-+xe y xy 满足1x ye ==的特解.(0617)求微分方程22x y xy y '=-的通解. (0718)求微分方程22007xy y x '-=满足初始条件12008x y ==的特解.(0820)求微分方程22xy y x '=+的通解.(0912)微分方程2(1)d (2)d 0x y x y x y +--=的通解为. (1311)微分方程d d y x yx x+=的通解为. (二)二阶线性微分方程(0406)微分方程232x y y y xe '''-+=的特解*y 的形式应为( ) A.xAxe 2 B.x e B Ax 2)(+C.xeAx 22 D.x e B Ax x 2)(+(0712)设x x e C e C y 3221+=为某二阶常系数齐次线性微分方程的通解,则该微分方程为. (0806)微分方程321y y y '''++=的通解为( )A.1221++=--x x e c e c yB.21221++=--x xe c e c y C.1221++=-x x e c e c yD.21221++=-xx ec e c y (0920)求微分方程y y x ''-=的通解. (1020)已知函数xy e =和2xy e-=是二阶常系数齐次线性微分方程0y py qy '''++=的两个解,试确定常数p 、q 的值,并求微分方程xy py qy e '''++=的通解.(1120)已知函数(1)xy x e =+⋅是一阶线性微分方程2()y y f x '+=的解,求二阶常系数线性微分方程)(23x f y y y =+'+''的通解.(1219)已知函数)(x f 的一个原函数为xxe ,求微分方程)(44x f y y y =+'+''的通解. (1319)已知函数()y f x =是一阶微分方程d d yy x=满足初始条件(0)1y =的特解,求二阶常系数非齐次线性微分方程32()y y y f x '''-+=的通解.时间排序与参考答案20XX 年高等数学真题参考答案1、A .2、B .3、C .4、B .5、A .6、D .7、1-e .8、32241-+==-z y x .9、!n .10、C x +4arcsin 41. 11、12201d (,)d d (,)d yy y f x y x y f x y x -+⎰⎰⎰⎰.12、()3,1-.13、解:间断点为πk x =(Z k ∈),当0=x 时,1sin lim)(lim 00==→→xxx f x x ,为可去间断点;当πk x =(0≠k ,Z k ∈)时,∞=→xxx sin lim0,为第二类间断点.14、解:原式0430(tan sin )d tan sin limlim312xx x t t tx xx x →→--==⎰233001tan (1cos )12lim lim 121224x x x x x x x x →→⋅-===. 15、解:0=x 代入原方程得1)0(=y ,对原方程求导得0''=--y xe e y y y ,对上式求导并将0=x 、1=y 代入,解得:22''e y =.16、解:因为)(x f 的一个原函数为x ex ,所以2')1()(x e x x e x f xx -=⎪⎪⎭⎫ ⎝⎛=, 原式11(2)d(2)d (2)22xf x x x f x '==⎰⎰11(2)(2)d 22x f x f x x =-⎰222211(21)1(2)(2)d(2)24884x x x x x e e x x f x f x x C e C x x x--=-=-+=+⎰. 17、解:原式2111122d d 22arctan (1)12t x t tt t t t t π+∞=∞-+∞+===++⎰⎰.18、解:12zf f y x∂''=+⋅∂; []21112221221112222(1)(1)()zf f x f y f f x f x y f xy f f x y∂''''''''''''''''=⋅-+⋅++⋅-+⋅=-+-⋅+⋅+∂∂. 19、解:原式21100sin sin d d d d (1)sin d y y Dyy x y y x y y y y y ===-⎰⎰⎰⎰⎰ 1100(1)cos cos d 1sin1y y y y =--=-⎰.20、解:01111(2)()(1)24244414n n nn x f x x x ∞=-==⋅=--+-+∑)62(<<-x . 21、证:00(sin )d ()[sin ()]d ()(sin )d t xx f x xt f t t t f t I t πππππππ=-=---=-⎰⎰⎰(sin )d (sin )d (sin )d f x x x f x x f x x I πππππ=-=-⎰⎰⎰解得:0(sin )d (sin )d 2f x x f x x I x πππ==⎰⎰, 原命题证毕.222000sin sin d d arctan (cos )1cos 21cos 24x x x x x x x x ππππππ⋅==-=++⎰⎰. 22、解:等式两边求导得()2()x f x x f x '=+,即()()2f x x f x x '-=-,且(0)1f =-,x p -=,x q 2-=,而2()d 2x x xe e --⎰=,由公式求得通解:222222()2d 2x x x f x e xq x C C e -⎡⎤⎛⎫=-+=+⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎰, 将初始条件(0)1f =-代入通解,解得:3-=C ,故22()23x f x e =-.23、解:设污水厂建在河岸离甲城x 公里处,则22()50070040(50)M x x x =++-(500≤≤x ),由2212(50)5007000240(50)x M x -'=+⨯⨯=+-解得:650050-=x (公里),唯一驻点,即为所求.20XX 年高等数学真题参考答案1、A .2、C .3、D .4、A .5、A .6、C .7、2.8、1-e .9、2π.10、5. 11、2111d (,)d y y y f x y x ---⎰⎰.12、(1,1)-.13、解:因为)(x F 在0=x 处连续,所以)0()(lim 0F x F x =→,'00()2sin ()(0)lim ()limlim 2(0)28x x x f x x f x f F x f x x→→→+-==+=+=, 解得:a F =)0(,故8=a .14、解:d d cos cos sin d d d sin d yy t t t t t t x x t t-+===--,22d ()csc d (cos )y t t x t '-=='. 15、解:原式22tan tan sec d (sec 1)d(sec )x x x xx x =⋅-⎰⎰积进去231sec d(sec )d(sec )sec sec 3x x x x x C =-=-+⎰⎰.16、解:原式211120002d 1d(1)arctan 1421x x x x x x x π+=--++⎰⎰积进去 ()12011ln 1ln 24242x ππ⎡⎤=-+=-⎣⎦.17、解:1cos z x f x ∂'=⋅∂,()21212cos 22cos zx f y y x f x y∂''''=⋅⋅=⋅∂∂. 18、解:直线L 的方向向量{}5,2,1=s ,过点()4,3,0B -,{}1,4,2AB =-;所求平面的法向量{}5218,9,22142AB =⨯==---i j kn s ,点法式为8(3)9(1)22(2)0x y z ----+=,即592298=--z y x .19、解:2222101111(1)()13216313212n nn n x x x x f x x x x x x ∞+=⎡⎤-⎛⎫=+=⋅+⋅=+⋅ ⎪⎢⎥+--⎝⎭⎣⎦+∑, 收敛域为:11<<-x .20、解:1x e y y x x '+⋅=,即1p x =,x e q x =,而1d 1x x e x-⎰=;故通解为1d xx e e C y x x C x x x ⎛⎫+=+=⎪⎝⎭⎰. 把初始条件1x ye ==解得:0=C ;故所求特解为:xe y x=.21、证:令13)(3+-=x x x f ,[]1,1x ∈-,且(1)30f -=>,(1)10f =-<,(1)(1)0f f -⋅<;由连续函数零点定理知:)(x f 在(1,1)-内至少有一实根;对于()1,1x ∈-恒有()22()33310f x x x '=-=-<,即)(x f 在(1,1)-内单调递减,故方程0133=+-x x 在[]1,1-上有且仅有一根; 原命题获证.22、解:设所求函数为)(x f y =,则有4)2(=f ,(2)3f '=-,(2)0f ''=;由()6f x x a ''=+和(2)0f ''=解得:12-=a ,即()612f x x ''=-,故21()312f x x x C '=-+,由(2)3f '=-解得:91=C ,故22396C x x x y ++-=,由(2)4f =解得:22=C ; 所求函数为:29623++-=x x x y .23、解:(1)112300111d 266S y y y ===⎰;(如图1所示) (2)()()112222012d 4x V x x x x πππ=-=-=⎰.24、解:积分区域D 为:u y ≤≤1,u x y ≤≤;(1)111()()d d ()d (1)()d u xuDF u f x x f x y x f x x σ===-⎰⎰⎰⎰⎰;(2)()(1)()F u u f u '=-,(2)(21)(2)(2)1F f f '=-==.20XX 年高等数学真题参考答案1、C .2、B .3、C .4、C .5、C .6、A .7、2. 8、)(0x f . 9、1-. 10、1.11、(sin cos )xy e y x x +. 12、1.13、解:原式322131lim 21341==--→x xx . 14、解:2211d 12d 21t t y y t t t x x t -'+==='+,2222d 1d d 122d 41t y x y t t x x t t '⎛⎫ ⎪+⎝⎭==='+. 15、解:原式3221ln d(1ln )(1ln )3x x x C =++=++⎰.16、解:原式()2222220d(sin )sin 2sin d x x x xx x πππ=-⎰⎰积进去222220sin 2sin d 2d(cos )4x xx x xx x ππππ-+⎰⎰积进去导出来yOS1x12y x=图1222202cos 2cos d 244x x x x ππππ=+-=-⎰.17、解:方程变形为2y y y x x ⎛⎫'=- ⎪⎝⎭,即得到了形如d d y y f x x ⎛⎫= ⎪⎝⎭齐次方程;令y u x =,则d d d d y u u x x x =+,代入得:2d d ux u x=-,分离变量得:211d d u x u x -=; 两边积分,得:211d d u x u x -=⎰⎰,1ln x C u =+,故ln xy x C=+. 18、解:令()ln (1)g x x =+,则(0)0g =;由于01()(1)1n n n g x x x ∞='==-+∑((]1,1x ∈-), 所以010(1)((1))d x n n n g x n x g t t ∞+='=+=-∑⎰((]1,1x ∈-),故 20(1)()1n n n f x x n ∞+=-=+∑,收敛域为:11x -<≤.19、解:由题意知:{}11,1,1=-n ,{}24,3,1=-n ;{}12311232,3,1431=⨯=-=++=-i j ks n n i j k ,故所求直线方程的对称式方程为:123123+=-=-z y x . 20、解:22z x f x ∂'=∂,2'2'''''3''2''22122221222(2)22z x f x f x f y x f x f x y f y x∂=+⋅+⋅=++∂∂. 21、证:令33)(x x x f -=,[]2,2x ∈-,由2()330f x x '=-=解得驻点:1±=x ,比较以下函数值的大小:(1)2f -=-,(1)2f =,(2)2f =-,(2)2f -=;所以2min -=f ,2max =f ,故2)(2≤≤-x f ,即332x x -≤,原命题获证.22、解:0)0(=y ,2y x y '=+,通解为:xCe x y +--=)22(;将0)0(=y 代入通解解得:2=C ,故所求特解为:xe x y 222+--=.23、解:(1)()2222648d 3S xx x -=--=⎰;(2)()()224804d 8d 16y V y y y y πππ=+-=⎰⎰.24、解:()d d d ()d ()d tt t tD f x x y x f x y t f x x ==⎰⎰⎰⎰⎰,0()d 0()0t f x x t g t a t ⎧≠⎪=⎨⎪=⎩⎰; (1)00lim ()lim()d 0t t t g t f x x →→==⎰,由)(t g 的连续性可知:0)(lim )0(0===→t g g a t ;(2)当0≠t 时,()()g t f t '=,当0=t 时,0000()d ()(0)(0)limlim lim ()(0)hh h h f x x g h g g f h f h h→→→-'====⎰; 综上,()()g t f t '=.20XX 年高等数学真题参考答案1、B .2、C .3、C .4、A .5、D .6、D .7、2ln .8、1.9、π2. 10、23.11、21d d xx y y y-. 12、06'5''=+-y y y . 13、解:212lim 21lim 1lim tan 1lim00200==-=--=--→→→→x x x x x x x x e x e x x e x x x e . 14、解:当0=x 时,0=y ;在方程xy e e yx=-两边对x 求导得:''xye e y y x y -⋅=+⋅,故d 'd x yy e y y x e x-==+; 将0=x ,0=y 代入解得:d 1d x x yy x=='==.在方程''x ye e y y x y -⋅=+⋅两边再次对x 求导得:()2'2x y y e e y e y y x y '''''-⋅-⋅=+⋅将0=x ,0=y ,01x y ='=代入解得:2200d 2d x x yy x==''==-.15、解:原式()()222d d x x x xe x e e x ---⎡⎤-=--⎣⎦⎰⎰积进去22d x x x e xe x ---+⎰导出来。
2010年河南专升本高数真题+答案解析
2010年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学一、选择题 (每小题2 分,共60 分)1.设函数()f x 的定义域为区间(1,1]-,则函数(1)f x e -的定义域为( )A .[]2,2-B .(1,1]-C .(2,0]-D .(0,2]【答案】D【解析】由题意得,()f x 的定义域为(1,1]-,则在(1)f x e -中,1(1,1]x -∈-,即02x <≤,故选D .2.若()()f x x R ∈为奇函数,则下列函数为偶函数的是( ) A .[]331(),1,1y x x x -∈- B .3()tan ,(,)y xf x x x ππ=+∈-C .[]3sin (),1,1y x x f x x =-∈-D .[]25()sin ,,x y f x e x x ππ=∈-【答案】D【解析】()f x 为奇函数,对于选项D ,22()55()sin ()()sin x x f x e x f x e x ---=,故选D .3.当0x →时,21x e -是sin3x 的( ) A .低阶无穷小 B .高阶无穷小C .等价无穷小D .同阶非等价无穷小【答案】D【解析】200122lim lim sin333x x x e x x x →→-==,从而21x e -是sin3x 的同阶非等价无穷小,故选D .4.设函数2511sin ,0(),0xx x x f x e x ⎧>⎪=⎨⎪<⎩,则0x =是()f x 的( )A .可去间断点B .跳跃间断点C .连续点D .第二类间断点【解析】2501lim sin 0x x x+→=,10lim 0x x e -→=,00lim ()lim ()x x f x f x +-→→=,从而0x =是()f x 的可去间断点,故选A .5.下列方程在区间(0,1)内至少有一个实根的为( ) A .20x += B .sin 1x π=-C .32520x x +-=D .21arctan 0x x ++=【答案】C【解析】对于选项C ,构造函数32()52f x x x =+-,(0)20f =-<,(1)40f =>,由零点定理得,()0f x =在(0,1)上至少存在一个实根,故选C .6.函数()f x 在点0x x =处可导,且0()1f x '=-,则000()(3)lim2x f x f x h h→-+=( )A .23 B .23-C .32-D .32【答案】D 【解析】0000000()(3)(3)()333limlim ()23222x x f x f x h f x h f x f x h h →→-++-⎛⎫'=⋅-=-= ⎪⎝⎭,故选D .7.曲线ln y x x =平行于直线10x y -+=的切线方程是( ) A .1y x =- B .(1)y x =-+C .1y x =-+D .(ln 1)(1)y x x =+-【答案】A【解析】ln 1y x '=+,又直线10x y -+=的斜率1k =,令1y '=得1x =,0y =,从而与直线平行的切线方程为01y x -=-,即1y x =-,故选A .8.设函数212sin 5y x π=-,则y '=( )A .22cos51x π-- B .21x-C 21x-D .22cos 551x π-【解析】(2212sin 51y x xπ''⎛⎫'=--= ⎪⎝⎭-B .9.若函数()f x 满足2()2sin df x x x dx =-,则()f x =( )A .2cos xB .2cos xC +C .2sin x C +D .2cos x C -+【答案】B【解析】2()2sin df x x x dx =-,则2222()(2sin )sin cos f x x x dx x dx x C =-=-=+⎰⎰,故选B . 10.sin(12)b xa d e x dx dx--=⎰( )A .sin(12)x e x --B .sin(12)x e x dx --C .sin(12)x e x C --+D .0【答案】D【解析】sin(12)bx a e x dx --⎰为一常数,从而sin(12)0b xa d e x dx dx--=⎰,故选D .11.若()()f x f x -=,在区间(0,)+∞内,()0f x '>,()0f x ''>,则()f x 在区间(,0)-∞内( ) A .()0,()0f x f x '''<< B .()0,()0f x f x '''>>C .()0,()0f x f x '''><D .()0,()0f x f x '''<>【答案】D【解析】()()f x f x -=,则()f x 为偶函数,又在(0,)+∞上,()0f x '>,()0f x ''>,所以在(,0)-∞上()0f x '<,()0f x ''>,故选D .12.若函数()f x 在区间(,)a b 内连续,在点0x x =处不可导,0(,)x a b ∈,则( ) A .0x 是()f x 的极大值点 B .0x 是()f x 的极小值点C .0x 不是()f x 的极值点D .0x 可能是()f x 的极值点【答案】D【解析】由判断极值的方法知,0x 可能是()f x 的极值点,故选D .13.曲线x y xe -=的拐点为( )A .1x =B .2x =C .222,e ⎛⎫ ⎪⎝⎭D .11,e ⎛⎫ ⎪⎝⎭【答案】C【解析】(1)x y x e -'=-,(2)x y x e -''=-,令0y ''=,得2x =,22y e=.当2x >时,0y ''>,2x <,0y ''<,所以曲线的拐点为222,e ⎛⎫⎪⎝⎭,故选C .14.曲线2arctan 5xy x=( ) A .仅有水平渐近线 B .仅有垂直渐近线C .既有水平渐近线,又有垂直渐近线D .既无水平渐近线,又无垂直渐近线【答案】A 【解析】002arctan 22limlim 555x x x x x x →→==,所以曲线没有垂直渐近线;2arctan lim 05x xx→∞=,所以0y =为曲线的水平渐近线,故选A .15.若cos x 是()f x 的一个原函数,则()df x =⎰( )A .sin x C -+B .sin xC +C .cos x C -+D .cos x C +【答案】A【解析】令()cos F x x =,则()()sin f x F x x '==-,所以()(sin )sin df x d x x C =-=-+⎰⎰,故选A .16.设曲线()y f x =过点(0,1),且在该曲线上任意一点(,)x y 处切线的斜率为x x e +,则()f x =( )A .22x x e -B .22x x e +C .2x x e +D .2x x e -【答案】B【解析】由题意得xy x e '=+,则2()2xx x y x e dx e C =+=++⎰,又因为曲线过点(0,1),有0C =,从而2()2x x y f x e ==+,故选B .17. 24sin 1x xdx x ππ-=+⎰( )A .2B .0C .1D .1-【答案】B【解析】24sin 1x xx +为奇函数,积分区间关于原点对称,从而24sin 01x x dx xππ-=+⎰.18.设()f x 是连续函数,则20()x f t dt ⎰是( )A .()f x 的一个原函数B .()f x 的全体原函数C .22()xf x 的一个原函数D .22()xf x 的全体原函数【答案】C【解析】220()2()x f t dt xf x '⎛⎫= ⎪⎝⎭⎰,由原函数的定义可知,它是22()xf x 的一个原函数,故选C .19.下列广义积分收敛的是( )A .1x+∞⎰B .2ln exdx x+∞⎰C .21ln edx x x+∞⎰D .21exdx x +∞+⎰【答案】C 【解析】22111ln 011ln ln ln eee dx d x x x x x+∞+∞+∞==-=+=⎰⎰,故选C .20.微分方程422()0x y y x y '''+-=的阶数是( )A .1B .2C .3D .4【答案】B【解析】由微分方程的概念知,阶数为方程中的最高阶导数的阶数,故选B .21.已知向量{}5,,2x =-a 和{},6,4y =b 平行,则x 和y 的值分别为( )A .4,5-B .3,10--C .4,10--D .10,3--【答案】B【解析】向量a 与b 平行,所以5264x y -==,得3x =-,10y =-,故选B .22.平面1x y z ++=与平面2x y z +-=的位置关系是( )A .重合B .平行C .垂直D .相交但不垂直【答案】D【解析】两平面的法向量分别为1(1,1,1)=n ,2(1,1,1)=-n ,而111111=≠-,从而两平面不平行,又121⋅=n n ,从而两平面不垂直但相交,故选D .23.下列方程在空间直角坐标系中表示的曲面为柱面的是( )A .221y z +=B .22z x y =+C .222z x y =+D .22z x y =-【答案】A【解析】由柱面方程的特点可知,221y z +=表示圆柱面,故选A .24.关于函数222222,0(,)0,0xyx y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩,下列表述错误的是( )A .(,)f x y 在点(0,0)处连续B .(0,0)0f =C .(0,0)0y f '=D .(,)f x y 在点(0,0)处不可微【答案】A【解析】令y kx =,则222222000lim lim (1)1x x y kx xy kx kx y k x k →→=→==+++.当k 取不同值时,极限值不同,因此2200limx y xyx y →→+不存在,所以在点(0,0)处不连续,故选A .25.设函数ln()x z x y y =-,则zy∂=∂( ) A .()x y x y -B .2ln()x x y y --C .ln()()x y xy y x y -+- D .2ln()()x x y xy y x y ---- 【答案】D 【解析】221ln()ln()(1)()z x x x x y xx y y y y x y y y x y ∂-=--+⋅⋅-=--∂--.26.累次积分222202(,)x x x x dx f x y dy --⎰写成另一种次序的积分是( )A .10(,)yydy f x y dx -⎰⎰B .222202(,)y y y y dy f x y dx ---⎰C .221111(,)y y dy f x y dx ----⎰D .22111111(,)y y dy f x y dx +----⎰⎰【答案】D【解析】由题意知,02x ≤≤,2222x x y x x -≤≤-11y -≤≤,221111y x y -≤-,所以交换积分次序后为22111111(,)y y dy f x y dx +----⎰⎰.27.设{}(,)2,2D x y x y =≤≤,则Ddxdy =⎰⎰( )A .2B .16C .12D .4【答案】B【解析】222216Ddxdy dx dy --==⎰⎰⎰⎰,故选B .28.若幂级数0nn n a x ∞=∑的收敛半径为R ,则幂级数20(2)n n n a x ∞=-∑的收敛区间为( )A .(,)R RB .(2,2)R R -+C .(,)R R -D .(2,2)R R【答案】D【解析】令2(2)t x =-,则0n n n a t ∞=∑的收敛半径为R ,即R t R -<<,则2(2)x R -<,即22R x R <<D .29.下列级数绝对收敛的是( )A .1(1)nn n∞=-∑B .213(1)2nnn n ∞=-∑C .11(1)21nn n n ∞=+--∑D .21(1)21nn n ∞=--∑【答案】B【解析】对选项B ,21133(1)24nn nn n n ∞∞==⎛⎫-= ⎪⎝⎭∑∑,级数收敛,从而原级数绝对收敛,故选B .30.若幂级数0(3)n n n a x ∞=-∑在点1x =处发散,在点5x =收敛,则在点0x =,2x =,4x =,6x =中使该级数发散的点的个数有( )A .0 个B .1个C .2个D .3个【答案】C【解析】由幂级数发散、收敛性质及收敛区间的讨论可得,在这4个点中发散点的个数有两个,即0x =,6x =,故选C .二、填空题 (每空 2分,共 20分)31.设(32)f x -的定义域为(3,4]-,则()f x 的定义域为________. 【答案】[5,9)-【解析】(32)f x -的定义域为(3,4]-,即34x -<≤,所以5329x -≤-<,即()f x 的定义域为[5,9)-.32.极限lim (23)x x x x +-=________.【答案】52【解析】55lim (23)limlim2232311x x x x x x x x x x x+-===++-++-.33.设函数()(1)(2)(3)(4)f x x x x x =++--,则(4)()f x =________. 【答案】24【解析】(4)()4!24f x ==.34.设参数方程22131x t y t =+⎧⎨=-⎩所确定的函数为()y y x =,则22d ydx =________. 【答案】32【解析】632dydy t dt t dx dx dt===,22(3)322d dy d y t dt dx dx dx dt ⎛⎫ ⎪'⎝⎭===.35.(ln 1)x dx +=⎰________. 【答案】ln x x C +【解析】1(ln 1)ln ln ln x dx xdx dx x x x dx x x x C x+=+=-⋅+=+⎰⎰⎰⎰.36.点(3,2,1)-到平面10x y z ++-=的距离是________. 3【解析】321131113d +--===++.37.函数(1)x z y =+在点(1,1)处的全微分dz =________. 【答案】2ln 2dx dy + 【解析】(1)ln(1)x zy y x∂=++∂,1(1)x z x y y -∂=+∂,(1,1)(1,1)2ln 2z z dz dx dy dx dy xy ⎛⎫∂∂=+=+ ⎪∂∂⎝⎭.‘38.设L 为三个顶点分别为(0,0),(1,0)和(0,1)的三角形边界,L 的方向为逆时针方向,则2322()(3)Lxy y dx x y xy dy -+-=⎰________.【答案】0 【解析】223P xy y y ∂=-∂,223Qxy y x∂=-∂,P Q y x ∂∂=∂∂,由格林公式得,该曲线积分为0.39.已知微分方程x y ay e '+=的一个特解为x y xe =,则a =________. 【答案】1-【解析】将x y xe =代入微分方程得x x x x e xe axe e ++=,即1a =-.40.级数03!nn n ∞=∑的和为________.【答案】3e【解析】23012!3!!!n n xn x x x x e x n n ∞==++++++=∑,故303!nn e n ∞==∑.三、计算题 (每小题5 分,共45 分)41.求极限2040sin (1)sin lim 1cos x x x tdt e x x x →⎡⎤-⎢⎥-⎢⎥-⎢⎥⎣⎦⎰. 【答案】32【解析】220044000sin sin (1)sin (1)sin lim lim lim 1cos 1cos x x x x x x x tdt tdt e x e x x x x x →→→⎡⎤--⎢⎥-=-⎢⎥--⎢⎥⎣⎦⎰⎰ 230022sin 13lim lim 214222x x x x x x x x→→⋅=-=-=.42.设由方程22y e xy e -=确定的函数为()y y x =,求0x dy dx=.【答案】24e -【解析】方程两边同时关于x 求导,得220y e y y xy y ''⋅--⋅=,当0x =时,2y =,代入得 204x dy e dx-==.43.求不定积分21x xe +.32(1)213x x e e C ++ 【解析】令1x t e =+21x e t =-,2ln(1)x t =-,则221tdx dt t =-,于是 2222332(1)222(22)2(1)211331xx x x t t dt t dt t t C e e C t t e -=⋅=-=-+=++-+⎰⎰.44.求定积分220(2)x x x dx +-⎰.【答案】22π+【解析】22222000(2)221(1)(1)x x x dx xdx x x dx x d x -=+-=----⎰⎰⎰⎰令1t x =-,则122220111(1)(1)11122x d x t dt t dt ππ-----=-=--=-⋅⋅=-⎰⎰⎰,故220(2)22x x x dx π-=+⎰.45.求过点(1,2,5)-且与直线2133x y z x y -+=⎧⎨-=⎩平行的直线方程.【答案】125315x y z --+==- 【解析】由题意得,两平面的法向量分别为1(2,1,1)=-n ,2(1,3,0)=-n ,所以该直线的方向向量为12211(3,1,5)130=⨯=-=--i j ks n n ,又直线过点(1,2,5)-,故该直线的方程为125315x y z --+==-.46.求函数22(,)328f x y x y xy x =+-+的极值. 【答案】24-【解析】228x f x y =-+,62y f y x =-,令00x y f f =⎧⎪⎨=⎪⎩,得驻点为62x y =-⎧⎨=-⎩,又2xx f =,2xy f =-,6yy f =,对于驻点(6,2)--,280B AC -=-<,20A =>, 故函数在点(6,2)--处取得极小值(6,2)24f --=-.47.将23()21xf x x x =+-展开成x 的幂级数.【答案】011()(1)222n n n n f x x x ∞=⎛⎫⎡⎤=-+-<< ⎪⎣⎦⎝⎭∑ 【解析】2311()21112x f x x x x x ==-+-+-, 其中01(1)(11)1n n n x x x ∞==--<<+∑,00111(2)21222n n nn n x x x x ∞∞==⎛⎫==-<< ⎪-⎝⎭∑∑,故00011()(1)2(1)222nnnnn n n n n n f x x x x x ∞∞∞===⎛⎫⎡⎤=-+=-+-<< ⎪⎣⎦⎝⎭∑∑∑.48.计算二重积分22Dx y d σ+,其中D 是由圆223x y +=所围成的闭区域.【答案】3π【解析】用极坐标计算,{}(,)03,02D r r θθπ=≤≤≤≤,于是232220323Dx y d d rdr d ππσθθπ+=⋅==⎰.49.求微分方程960y y y '''-+=的通解. 【答案】1312()x y C C x e =+(12,C C 是任意常数)【解析】对应的特征方程为29610r r -+=,特征根为1213r r ==,因此所给方程的通解为1312()x y C C x e =+(12,C C 是任意常数).四、应用题 (每小题8 分,共 16 分)50.要做一个容积为V 的圆柱形带盖容器,问它的高与底面半径的比值是多少时用料最省? 【答案】当2hr=时,用料最省 【解析】设该容器的高为h ,底面半径为r ,则该容器的容积2V r h π=,即2Vh r π=, 该带盖容器的用料222222V S r rh r r πππ=+=+,则224V S r rπ'=-, 令0S '=,解得唯一驻点32V r π=,故当32Vr πS 取值最小,此时 323322V h V V V r r r r ππππ===⋅=.51.平面图形D 由曲线2y x =直线2y x =-及x 轴所围成.求: (1)D 的面积;(2)D 绕x 轴旋转形成的旋转体的体积. 【答案】(1)56 (2)815π 【解析】(1)由题意可得,此平面区域D 如图所示,则1312200125(2)2236S y y dy y y y ⎡⎤⎡=-=--=⎢⎥⎣⎣⎦⎰. (2)平面D 绕x 轴旋转形成的旋转体的体积为124251322101118(2)245315x V x dx x dx x x x x πππππ⎛⎫=+-=+-+=⎪⎝⎭⎰⎰.五、证明题 (9 分)52.设函数()f x 在闭区间[]0,1上连续,在开区间(0,1)内可导,且(0)0f =,(1)2f =. 证明:在(0,1)内至少存在一点ξ,使得()21f ξξ'=+.【解析】构造函数2()()F x f x x =-,由题意可知()F x 在[]0,1上满足拉格朗日中值定理的条件,故在(0,1)内至少存在一点ξ,使得(1)(0)()10F F F ξ-'=-,代入得,()()21F f ξξξ''=-=,即()21f ξξ'=+.。
2010年江苏省专转本高等数学真题答案
2010年江苏省普通高校“专转本”统一考试高等数学参考答案1、A2、C3、B4、D5、D6、C7、2e8、2 9、2π 10、4-11、2dx dy + 12、(1,1]- 13、2200cos 1cos sin lim()lim sin sin x x x x x x x x x x x→→-=-= 200cos sin cos cos 1lim lim 2sin cos 3cos sin 3x x x x x x x x x x x x x →→---===-++ 14、(1)2x y y e y +''++=,21x yx y e y e++-'=+, 23(1)(1)(2)(1)9(1)(1)x y x y x y x y x yx y x y e y e e e y e y e e +++++++''-++--+-''==++ 15、222arctan arctan arctan 222x x x xd x x d ==-⎰⎰ 2222arctan 22(1)1arctan arctan 222x x x x x x d x C x x -+-+==+⎰16、设t x =+12,则当0=x 时,1t =;当4x =时,3t =. 于是有 原式23331115128(5).2233t t tdt t t +==+=⎰ 17、解:已知直线方向向量为{}11,2,3s →=,平面法向量为{}2,0,1n →=-,于是所求直线方向向量为{}12,7,4s s n →→→=⨯=--,所以直线方程为: 111274x y z ---==--18、解:设u xy =,x v e =,则2(,)z y f u v =. 所以 3212x z y f e y f x∂''=+∂,223211122132x x z y f xy f e yf xe y f x y ∂''''''=+++∂∂ 19、解:令cos ,sin ,0 1.0.4x r y r r πθθθ==≤≤≤≤12400cos D xdxdy d r dr πθθ==⎰⎰⎰⎰20、解:对应齐次方程的特征方程的特征根为12r =-,12=r ,1,2p q ==-由于12=r 为特征根,故设原方程特解为*x y Axe =,则*'x x y Ae Axe =+,*''2x x y Ae Axe =+.于是有:22x x x x x x Ae Axe Ae Axe Axe e +++-=,得13A =即有特解*13x y xe = 故原方程的通解为*2121.3x x x y y y C eC e xe -=+=++ 21、证明:令1211()22x f x e x -=--,则1()x f x e x -'=-,1()1x f x e -''=-, 因为1x >,所以()0f x ''>,所以()f x '单调递增,则()(1)0f x f ''>=,则()f x 单调递增 所以()(1)0f x f >=,得证。
2006年专升本高等数学考试题
2006年专升本考试题及参考答案一.单项选择题(10分)1.()'()()( ).R f x f x f x 在上连续的函数的导函数的图形如图,则极值有.A 一个极大值二个极小值;B.二个极小值一个极大值;C.二个极小值二个极大值;D.三个极小值一个极大值.-22.(),()=x f x e f x 的一个原函数是则2222.; .2; .4; .4.------x x x x A e B e C e D e 12(1)3. 3-∞=-⋅∑n nn x n 级数的收敛区间是(). .(2,4); .(3,3); .(1,5); .(4,2).----A B C D4.'3( ).+=xy y 方程的通解是3.3; .; .3; . 3.=+=+=--=-C A y B y C x xC CC yD y x x1111112223333332222225.,222( ).222====a b c a b c D a b c k B a b c a b c a b c 若则 .2; .2; .8; .8.--A k B k C k D k二.填空题(15分)2sin 21,01.(),( );,0⎧+-≠⎪==⎨⎪=⎩ax x e x f x R a xa x 在上连续则2.ln 1 =+=y x x y 曲线与直线垂直的切线是();2-23.(-( );=⎰x 定积分4.()-=x f x e 的幂级数展开式是( ); 105.()[0,1],()3,=⎰f x f x dx 在上连续且则11()()( ).=⎰⎰xdx f x f y dy三.计算下列各题(30分)22201cos 1.lim ; 2.;sin -→-⎰xx x xe dx x x 203.;4."'20;49+∞=+-=++⎰dxI y y y x x45.=a b b b a bD b b a6. ?sin . ,,ln(),===-u v z e u xy v x y 四已知二元函数,.(8)∂∂∂∂z zx y求分 . ()()||,()lim ()0,().(7)ϕϕϕ→=-===x af x x x a x x a x f x x a 五已知在的某个邻域内连续,且试讨论在的可导性分,2,2,==x y x y 3六.求y=x 所围图形分别绕轴旋转所得立体体积.(10分).(6),:,2 2σ=+===⎰⎰DI x y d D y x y xx 七计算其中由和围成.(10分)()[0,],(0,),()0,:(0,),()'()0.(10)ξξξξ=∃∈+=f x a a f a a f f 八.已知在闭区间上连续在开区间内可导求证使分。
高职升本《高等数学》历年试题(2006-2013)
2006年天津市高等院校“高职升本科”招生统一考试高等数学本试卷分第I 卷(选择题)和第Ⅱ卷两部分。
共 150分。
考试时间120分钟。
第I 卷(选择题共40分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上,并 将本人考试用条形码贴在答题卡的贴条形码处。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动, 用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的无效。
3.考试结束,监考人将本试卷和答题卡一并收回。
一、选择题:本大题共10小题,每小题4分,共40分。
1.下列说法正确的是A .函数 y = x ln( x 2+1- x )的定义域为区间(-∞,0]B .函数 y = e xx -1+1在区间(-∞,+∞)内是偶函数e C .当n → ∞时, 12 + n 22 + ........nn 2是无穷小量 nD .当 x → +∞时, y = e xsinx 不是无穷大量f(x 0 + 2h) - f(x 0) =2.设 f (x )在点A . -2x 0的某领域可导, f (x 0)为极大值,则lim hh →0B .0C .1D .23.设奇函数 f (x )在区间 (-∞,+∞)内二阶可导,若当 x > 0时, f '(x ) > 0且f ''(x ) > 0,则当 x < 0时, y = f (x )A .单调增加,且曲线是凸的C .单调减少,且曲线是凸的 B .单调增加,且曲线是凹的D .单调减少,且曲线是凹的⎰ f (x )dx =f (x ),则4.若 f (x ) = e -2x + x limx →0B .- 1 e -2x + CA .- 2e -2x + C 2D .- 1 x + 1e -2 x 2 + C 2 2C .- 1 e -2x + 2x 2+ C24 2⎰ ⎰ f (x )dx = sin 2,则 xf (x 2)dx =5.若11D . sin 22A. sin 2 B .2sin 2 C sin 2.21+∞6.若广义积分⎰ dx 收敛,则k 的取值范围为 x ln xkeA .k ≥ 27.若向量a ,b 的模分别为| a |= 2,| b |= 2且B .k > 0C .k >1D .k > 2a ⋅b = 2⨯ ,则| a b |=C .- 2A .2B . 2D .18.平面3x - 2y = 0 A .过Z 轴B .平行于XOY 坐标面 D .平行于Y 轴C .平行于X 轴9.若 f (1,1) = -1为 f (x , y ) = ax 3 + by 3+ cxy 的极值,则常数a,b,c 的值分别为 A .1,-1,-1 B .1,1,-3 C .-1,-1,-3 D .-1,-1,310.微分方程 y ''- 4y '+5y = 0的通解为A . y = e x(C 1cosx + C 2sinx )B . y = e x(C 1cos 2x + C 2sin 2x )C . y = e 2x (C 1cosx + C 2sinx )D . y = e 2x (C 1cos 2x + C 2sin 2x )2006年天津市高等院校“高职升本科”招生统一考试高等数学第Ⅱ卷 (选择题 共110分)二三题号得分总分(17)(18)(19)(20)(21)(22)(23)(24)注意事项:1.答第Ⅱ卷前,考生须将密封线内的项目填写清楚。
2006年江苏专转本高等数学真题
2006年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共6小题,每小题4分,满分24分)1、若21)2(li m=→x x f x ,则=→)3(limx f xx ( ) A 、21 B 、2 C 、3D 、31 2、函数⎪⎩⎪⎨⎧=≠=001sin )(2x x xx x f 在=x 处( )A 、连续但不可导B 、连续且可导C 、不连续也不可导D 、可导但不连续 3、下列函数在[]1,1-上满足罗尔定理条件的是( ) A 、xe y = B 、x y +=1C 、21x y -= D 、xy 11-= 4、已知C e dx x f x +=⎰2)(,则=-⎰dx x f )('( )A 、C ex+-22B 、C e x +-221 C 、C e x +--22D 、C e x +--2215、设∑∞=1n nu为正项级数,如下说法正确的是 ( )A 、如果0lim 0=→n n u ,则∑∞=1n n u 必收敛 B 、如果l u u nn n =+∞→1lim )0(∞≤≤l ,则∑∞=1n n u 必收敛 C 、如果∑∞=1n nu收敛,则∑∞=12n nu必定收敛 D 、如果∑∞=-1)1(n n nu 收敛,则∑∞=1n n u 必定收敛6、设对一切x 有),(),(y x f y x f -=-,}0,1|),{(22≥≤+=y y x y x D ,=1D }0,0,1|),{(22≥≥≤+y x y x y x ,则⎰⎰=D dxdy y x f ),(( )A 、0B 、⎰⎰1),(D dxdy y x f C 、2⎰⎰1),(D dxdy y x f D 、4⎰⎰1),(D dxdy y x f二、填空题(本大题共6小题,每小题4分,满分24分)7、已知0→x 时,)cos 1(x a -与x x sin 是等级无穷小,则=a 8、若A x f x x =→)(lim 0,且)(x f 在0x x =处有定义,则当=A 时,)(x f 在0x x =处连续.9、设)(x f 在[]1,0上有连续的导数且2)1(=f ,⎰=13)(dx x f ,则⎰=1')(dx x xf10、设1=a ,b a ⊥,则=+⋅)(b a a11、设x e u xysin =,=∂∂xu12、=⎰⎰Ddxdy . 其中D 为以点)0,0(O 、)0,1(A 、)2,0(B 为顶点的三角形区域.三、解答题(本大题共8小题,每小题8分,满分64分)13、计算11lim31--→x x x .14、若函数)(x y y =是由参数方程⎩⎨⎧-=+=tt y t x arctan )1ln(2所确定,求dx dy 、22dx yd . 15、计算⎰+dx x xln 1. 16、计算dx x x ⎰202cos π.17、求微分方程2'2y xy y x -=的通解.18、将函数)1ln()(x x x f +=展开为x 的幂函数(要求指出收敛区间).19、求过点)2,1,3(-M 且与二平面07=-+-z y x 、0634=-+-z y x 都平行的直线方程.20、设),(2xy x xf z =其中),(v u f 的二阶偏导数存在,求y z ∂∂、xy z∂∂∂2.四、证明题(本题满分8分).21、证明:当2≤x 时,233≤-x x .五、综合题(本大题共3小题,每小题10分,满分30分)22、已知曲线)(x f y =过原点且在点),(y x 处的切线斜率等于y x +2,求此曲线方程.23、已知一平面图形由抛物线2x y =、82+-=x y 围成. (1)求此平面图形的面积;(2)求此平面图形绕y 轴旋转一周所得的旋转体的体积.24、设⎪⎩⎪⎨⎧=≠=⎰⎰00)(1)(t a t dxdy x f t t g tD ,其中t D 是由t x =、t y =以及坐标轴围成的正方形区域,函数)(x f 连续. (1)求a 的值使得)(t g 连续; (2)求)('t g .2006年江苏省普通高校“专转本”统一考试高等数学参考答案1、C2、B3、C4、C5、C6、A7、28、)(0x f9、1- 10、111、)cos sin (x x y e xy + 12、113、原式322131lim 21341==--→x xx 14、21211122''t t t t x y dx dy t t =++-==,t t t t x dx dy dx y d t 411221)(22''22+=+== 15、原式C x x d x ++=++=⎰23)ln 1(32)ln 1(ln 116、原式x d x dx x x xx x d x cos 24sin 2sin sin 20220202202⎰⎰⎰+=-==πππππ24cos 2cos 24220202-=-+=⎰ππππxdx x x17、方程变形为2'⎪⎭⎫⎝⎛-=x y x y y ,令x y p =则''xp p y +=,代入得:2'p xp -=,分离变量得:dx x dp p ⎰⎰=-112,故C x p +=ln 1,C x x y +=ln . 18、令)1ln()(x x g +=,0)0(=g ,200'1)1()1()(+∞=∞=∑∑+-=-=n n n n nnx n dx x x g ,故201)1()(+∞=∑+-=n n n x n x f ,11<<-x .19、{}1,1,11-n 、{}1,3,42-n ,k j i kj in n l ++=--=⨯=3213411321直线方程为123123+=-=-z y x .20、'22f x y z =∂∂,''222''213'2''22''212'2222)2(2yf x f x xf y f x f x xf x y z ++=⋅+⋅+=∂∂∂. 21、令33)(x x x f -=,[]2,2-∈x ,033)(2'=-=x x f ,1±=x ,2)1(-=-f ,2)1(=f , 2)2(-=f ,2)2(=-f ;所以2min -=f ,2max =f ,故2)(2≤≤-x f ,即233≤-x x .22、y x y +=2',0)0(=y通解为x Ce x y +--=)22(,由0)0(=y 得2=C ,故x e x y 222+--=. 23、(1)364)8(2222=--=⎰-dx x x S (2)πππ16)8()(28424=-+=⎰⎰dy y dy y V24、dx x f t dy x f dx dxdy x f tttD t⎰⎰⎰⎰⎰==0)()()(⎪⎩⎪⎨⎧=≠=⎰00)()(0t at x f t g t(1)0)(lim)(lim 000==⎰→→dx x f t g tt t ,由)(t g 的连续性可知0)(lim )0(0===→t g g a t(2)当0≠t 时,)()('t f t g =,当0=t 时,)0()(lim )(lim )0()(lim)0(0000'f h f hdx x f h g h g g h hh h ===-=→→→⎰ 综上,)()('t f t g =.。
2006年河南专升本高数真题及答案.doc
2006年河南省普通高等学校 选拔优秀专科生进入本科阶段学习考试《高等数学》试卷一、单项选择题(每小题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,并将其代码写在题 干后面的括号内。
不选、错选或多选者,该题无分.1.已知函数)12(-x f 的定义域为]1,0[ ,则)(x f 的定义域为 ( )A. ]1,21[ B. ]1,1[- C. ]1,0[ D. ]2,1[-解:B x x ⇒≤-≤-⇒≤≤112110.2.函数)1ln(2x x y -+=)(+∞<<-∞x 是 ( ) A .奇函数 B. 偶函数 C.非奇非偶函数 D. 既奇又偶函数解:01ln )1ln()1ln()()(22==+++-+=-+x x x x x f x f A ⇒. 3. 当0→x 时,x x sin 2-是x 的 ( ) A. 高阶无穷小 B. 低阶无穷小 C. 同阶非等价无穷小 D. 等价无穷小解: 1sin lim 20-=-→xxx x C ⇒.4.极限=+∞→nnn n sin 32lim( )A. ∞B. 2C. 3D. 5解:B nnn n n n n ⇒=+=+∞→∞→2]sin 32[lim sin 32lim .5.设函数⎪⎩⎪⎨⎧=+≠-=0,10,1)(2x a x x e x f ax ,在0=x 处连续,则 常数=a ( )A. 0B. 1C. 2D. 3解:B a a a ae xe xf ax x ax x x ⇒=⇒+===-=→→→1122lim 1lim)(lim 20200. 6. 设函数)(x f 在点1=x 处可导 ,则=--+→xx f x f x )1()21(lim 0( ) A. )1(f ' B. )1(2f ' C. )1(3f ' D. -)1(f '解:xx f f f x f x x f x f x x )1()1()1()21(lim )1()21(lim 00--+-+=--+→→C f xf x f x f x f x x ⇒'=---+-+=→→)1(3)1()1(lim 2)1()21(lim2007. 若曲线12+=x y 上点M 处的切线与直线14+=x y 平行,则点M 的坐标( )A. (2,5)B. (-2,5)C. (1,2)D.(-1,2) 解: A y x x x y ⇒==⇒=⇒='5,2422000.8.设⎪⎩⎪⎨⎧==⎰202cos sin ty du u x t ,则=dxdy( )A. 2tB. t 2C.-2tD. t 2-解: D t tt t dx dy ⇒-=-=2sin sin 222. 9.设2(ln )2(>=-n x x y n ,为正整数),则=)(n y ( )A.x n x ln )(+B. x 1C.1)!2()1(---n n x n D. 0解:B xy x y x x y n n n ⇒=⇒+=⇒=--1ln 1ln )()1()2(.10.曲线233222++--=x x x x y ( )A. 有一条水平渐近线,一条垂直渐近线B. 有一条水平渐近线,两条垂直渐近线C. 有两条水平渐近线,一条垂直渐近线,D. 有两条水平渐近线,两条垂直渐近线解:A y y y x x x x x x x x y x x x ⇒∞=-==⇒++-+=++--=-→-→±∞→2122lim ,4lim ,1lim )2)(1()3)(1(2332. 11.下列函数在给定的区间上满足罗尔定理的条件是 ( )A. ]2,0[|,1|-=x yB. ]2,0[,)1(132-=x yC.]2,1[,232+-=x x y D . ]1,0[,arcsin x x y =解:由罗尔中值定理条件:连续、可导及端点的函数值相等C ⇒. 12. 函数x e y -=在区间),(+∞-∞内 ( )A. 单调递增且图像是凹的曲线B. 单调递增且图像是凸的曲线C. 单调递减且图像是凹的曲线D. 单调递减且图像是凸的曲线 解: C e y e y x x ⇒>=''<-='--0,0.13.若⎰+=C x F dx x f )()(,则⎰=--dx e f e x x )( ( ) A.C e F e x x ++--)( B. C e F x +-)( C. C e F e x x +---)( D. C e F x +--)( 解:D C e F e d e f dx e f e x x x x x ⇒+-=-=⎰⎰-----)()()()(.14. 设)(x f 为可导函数,且x e x f =-')12( ,则 =)(x f ( )A. C e x +-1221 B. C ex ++)1(212 C. C e x ++1221 D. C e x +-)1(212 解:B C e x f ex f e x f x x x⇒+=⇒='⇒=-'++)1(21)1(212)()()12(. 15. 导数=⎰batdt dx d arcsin ( )A.x arcsinB. 0C. a b arcsin arcsin -D. 211x-解:⎰b a xdx arcsin 是常数,所以 B xdx dx d ba⇒=⎰0arcsin .16.下列广义积分收敛的是 ( )A. ⎰+∞1dx e xB. ⎰+∞11dx xC. ⎰+∞+1241dx xD. ⎰+∞1cos xdx 解:C x dx x⇒-==++∞∞+⎰)21arctan 4(412arctan 4141112π. 17.设区域D 由)(),(,),(,x g y x f y a b b x a x ==>==所围成,则区域D 的面积为 ( )A. ⎰-ba dx x g x f )]()([ B.⎰-ba dx x g x f )]()([C. ⎰-b adx x f x g )]()([ D. ⎰-b adx x g x f |)()(| 解:由定积分的几何意义可得D 的面积为 ⎰-badx x g x f |)()(|D ⇒.18. 若直线32311-=+=-z n y x 与平面01343=++-z y x 平行,则常数=n ()A. 2B. 3C. 4D. 5 解: B n n n ⇒=⇒=+-⇒-⊥30943}3,43{}3,,1{.19.设yxy x y x f arcsin)1(),(-+=,则偏导数)1,(x f x '为 ( ) A.2 B.1 C.-1 D.-2 解: B x f x x f x ⇒='⇒=1)1,()1,(.20. 设方程02=-xyz e z 确定了函数),(y x f z = ,则xz∂∂ = ( )A. )12(-z x zB. )12(+z x zC. )12(-z x yD. )12(+z x y解: 令xy e F yz F xyz e z y x F z z x z -='-='⇒-=222,),,(A z x z xy xyz yz xy e yz x z z ⇒-=-=-=∂∂⇒)12(222. 21.设函数xyy x z +=2 ,则===11y x dz ( )A. dy dx 2+B. dy dx 2-C. dy dx +2D. dy dx -2解:222x ydxxdy dy x xydx dz -++=A dy dx dx dy dy dx dz y x ⇒+=-++=⇒==2211.22.函数2033222+--=y x xy z 在定义域上内 ( ) A.有极大值,无极小值 B. 无极大值,有极小值 C.有极大值,有极小值 D. 无极大值,无极小值解:,6)0,0(),(062,06222-=∂∂⇒=⇒=-=∂∂=-=∂∂xz y x y x y z x y x z ⇒=∂∂∂-=∂∂2,6222y x zyz 是极大值A ⇒. 23设D 为圆周由012222=+--+y x y x 围成的闭区域 ,则=⎰⎰Ddxdy( )A. πB. 2πC.4πD. 16π解:有二重积分的几何意义知:=⎰⎰Ddxdy 区域D 的面积为π.24.交换二次积分⎰⎰>axa dy y x f dx 00(),(,常数)的积分次序后可化为( )A. ⎰⎰aydx y x f dy 00),( B. ⎰⎰a aydx y x f dy 0),(C. ⎰⎰a a dx y x f dy 0),( D. ⎰⎰a yadx y x f dy 0),(解: 积分区域},0|),{(}0,0|),{(a x y a y y x x y a x y x D ≤≤≤≤=≤≤≤≤= B ⇒.25.若二重积分⎰⎰⎰⎰=20sin 20)sin ,cos (),(πθθθθrdr r r f d dxdy y x f D,则积分区域D为()A. x y x 222≤+B. 222≤+y xC. y y x 222≤+D. 220y y x -≤≤解:在极坐标下积分区域可表示为:}sin 20,20|),{(θπθθ≤≤≤≤=r r D ,在直角坐标系下边界方程为y y x 222=+,积分区域为右半圆域D ⇒26.设L 为直线1=+y x 上从点)0,1(A 到)1,0(B 的直线段,则=-+⎰Ldy dx y x )(( )A. 2B.1C. -1D. -2解:L :,1⎩⎨⎧-==x y xx x 从1变到0,⎰⎰⇒-=+=-+012)(D dx dx dy dx y x L .27.下列级数中,绝对收敛的是 ( )A .∑∞=1sinn nπ B .∑∞=-1sin)1(n n nπC .∑∞=-12sin)1(n nn πD .∑∞=1cos n n π解: ⇒<22sinn n ππ∑∞=π12sinn n 收敛C ⇒. 28. 设幂级数n n n n a x a (0∑∞=为常数Λ,2,1,0=n ),在点2-=x 处收敛,则∑∞=-0)1(n n na( )A. 绝对收敛B. 条件收敛C. 发散D. 敛散性不确定解:∑∞=0n nn x a 在2-=x 收敛,则在1-=x 绝对收敛,即级数∑∞=-0)1(n n n a 绝对收敛A ⇒.29. 微分方程0sin cos cos sin =+ydx x ydy x 的通解为 ( ) A. C y x =cos sin B. C y x =sin cosC. C y x =sin sinD. C y x =cos cos解:dx xxdy y y ydx x ydy x sin cos sin cos 0sin cos cos sin -=⇒=+C C y x C x y xx d y y d ⇒=⇒=+⇒-=⇒sin sin ln sin ln sin ln sin sin sin sin .30.微分方程x xe y y y -=-'+''2的特解用特定系数法可设为 ( )A. x e b ax x y -+=*)(B. x e b ax x y -+=*)(2C. x e b ax y -+=*)(D. x axe y -=*解:-1不是微分方程的特征根,x 为一次多项式,可设x e b ax y -+=*)( C ⇒.二、填空题(每小题2分,共30分)31.设函数,1||,01||,1)(⎩⎨⎧>≤=x x x f 则=)(sin x f _________.解:1)(sin 1|sin |=⇒≤x f x .32.=--+→xx x x 231lim22=_____________.解:=++=++--=--+→→→)31(1lim )31)(2()2(lim 231lim 2222x x x x x x x x x x x x 123341==. 33.设函数x y 2arctan =,则=dy __________.解:dx xdy 2412+= . 34.设函数bx ax x x f ++=23)(在1-=x 处取得极小值-2,则常数b a 和分别为___________.解:b a b a b ax x x f -+-=-=+-⇒++='12,02323)(25,4==⇒b a .35.曲线12323-+-=x x x y 的拐点为 __________.解:)1,1(),(0662632-=⇒=-=''⇒+-='y x x y x x y .36.设函数)(),(x g x f 均可微,且同为某函数的原函数,有1)1(,3)1(==g f 则=-)()(x g x f _________.解:2)1()1()()(=-=⇒=-g f C C x g x f 2)()(=-⇒x g x f .37.⎰-=+ππdx x x )sin (32 _________.解:3202sin )sin (323232π=+=+=+⎰⎰⎰⎰πππ-ππ-ππ-dx x xdx dx x dx x x .38.设函数⎪⎩⎪⎨⎧<≥=0,0,)(2x x x e x f x ,则 ⎰=-20)1(dx x f __________.解:⎰⎰⎰⎰--=--=+=====-201110012132)()1(e dx e dx x dt t f dx x f x t x .39. 向量}1,1,2{}2,1,1{-==b a ρρ与向量的夹角为__________.解:3,21663||||,cos π>=⇒<==⋅>=<b a b a b a b a ρρρρρρρρ .40.曲线⎩⎨⎧==022z xy L :绕x 轴旋转一周所形成的旋转曲面方程为 _________. 解:把x y 22=中的2y 换成22y z +,即得所求曲面方程x y z 222=+.41.设函数y x xy z sin 2+= ,则=∂∂∂yx z2_________. 解:⇒+=∂∂y x y xzsin 2y x y x z cos 212+=∂∂∂. 42.设区域}11,10|),{(≤≤-≤≤=y x y x D ,则________)(2⎰⎰=-Ddxdy x y .。
2010级专升本高等数学考试试题
x
1
3 2x ) = x
(B)
。
(A) 0 6.
e2
。
(C)
e4
(D)
e6
3 0
2 x dx
5 2
(B) 1
(A) 7. 设
(C)
3 2
(D) 2 。 (D) log 2 2 cos x
f ( x) x , f ( x) 2cos x ( x 0), 则函数 ( x) 是
5 5
(A)当 f ( x0 ) 0 时,则函数 f ( x ) 在 x 0 处具取得极大值。 (B)当 f ( x0 ) 0 时,则函数 f ( x ) 在 x 0 处具取得极小值。 (C)当 f ( x 0 ) 0 时,则函数 f ( x ) 在 x 0 处具取得极大值。 (D)当 f ( x 0 ) 0 时,则函数 f ( x ) 在 x 0 处具取得极小值。
5
(B)曲线 y ( x 5) 3 2 x 1 在( , 5)上是凸的 (C)曲线 y ( x 5) 3 2 x 1 在(5,)上是凹的 (D)曲线 y ( x 5) 3 2 x 1 的 拐点是(5, 11) 26.函数 f ( x ) 在 a, b 上连续, 在 ( a, b) 内可导, a x1 x2 b ,则至少存在一点 ,有 (A) f (b) f (a) f ( )(b a), (a, b) (B) f ( x 2 ) f ( x1 ) f ( )( x 2 x1 ), (a, b) (C) f ( x 2 ) f ( x1 ) f ( )(b a), ( x1 , x 2 ) (D) f (b) f (a) f ( )( x 2 x1 ), ( x1 , x 2 ) 27. 设 函 数 f ( x ) 在 x 0 处 具 有 二 阶 导 数 f ( x0 ) , 且 f ( x 0 ) 0 , 下 列 各 式 正 确 的 有 。 。
【专升本】2010年高等数学(二)及参考答案
绝密★启用前2010年成人高等学校专升本招生全国统一考试高等数学(二)答案必须答在答题卡上指定的位置,答在试卷上无效。
一、选择题:1-10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的,将近选项前的字母填涂在答题卡相应题号的信息点上。
1.A、 B.0 C. D.—2.设函数,则′=A、2B、1C、D、−3.设函数,则′=A.2B.-2C.D.-4.下列在区间(0,+)内单调减少的是A.y=xB.y=C.y=D.y=5.dx=A.-+CB.+CC.+CD.+C6.曲线y=1-与x轴所围成的平面图形的面积S=A.2B.C.1D.7.已知=dt,则′=A. B.+1 C. D.8.设函数z=,则│A.0B.C.1D.29.设函数z=,则=A.-B.C.D.10.袋中有8个乒乓球,其中5个白色球,3个黄色球,从中一次任取2个乒乓球,则取出2个球均为白色球的概率为A. B. C. D.二、填空题:11-20小题,每小题4分,共40分,把答案写在答题卡相应题号后。
11、12、当0时,与是等价无穷小量,则13、设函数在点处的极限存在,则a=14、曲线y=+3+1的拐点坐标为15、设函数y=,则=16、设曲线y=ax在x=0处的切线斜率为2,则a=17、=18、=19、=20、函数z=2的驻点坐标为三、解答题:21-28题,共70分。
解答应写出推理、演算步骤,并将其写在答题卡相应题号后。
21、(本题满分8分)计算 .22、(本题满分8分)设y=,求 .23、(本题满分8分)计算。
24、(本题满分8分)计算。
25、(本题满分8分)(1)求常数a .(2)求X的数学期望EX和方差DX.26、(本题满分10分)在半径为R的半圆内作一内接矩形,其中的一边在直径上,另外两个顶点在圆周上(如图所示).当矩形的长和宽各位多少时,矩形面积最大?最大值是多少?27、(本题满分10分)证明:当x1时,x1.28、(本题满分10分)求二元函数,=++xy,在条件x+2y=4下的极值.绝密★启用前2010年成人高等学校专升本招生全国统一考试高等数学(二)一、选择题:每小题4分,共40分.1. A2. C3. B4. D5. A6. B7. C8.D9.A 10.B二、填空题:每小题4分,共40分.11. 0 12. 113.1 14.15.16. 217.+ C 18. e 119.20.三、解答题:共70分.21.解:=6分= . 8分22.解:y′=′2分= . 6分所以 = y′=8分23.解:=6分=+ C 8分24.解:设 = t,则 =2t . 2分当x=0时,t=0;当x=1时,t=1 . 3分则 =2=2=2t25.解:(1)因为0.2 + 0.1 + 0.3 + a = 1,所以a=0.4 . 3分(2)EX=00.2=1.9 5分 DX=0.2+++0.4=1.29 8分26.解:如图,设x轴通过半圆的直径,y轴垂直且平分直径 .设OA=x,则AB= .矩形面积S=2x . 2分S′=2 -=2 . 6分令S′=0,得x=R (舍去负值). 8分由于只有一个驻点,根据实际问题,x=R必为所求.则AB=R.所以,当矩形的长为R,宽为R时,矩形面积最大,且最大值S= . 8分27.解:设= x-1-,2分则′=1- .当 x1时,′0,则单调上升 .所以当x1时,= 0. 6分即 x-1-0 ,得 x6分28.解:设F,, =,= . 4分令,①,②,③8分由①与②消去得x=0,代入③得y = 2 .所以函数,的极值为4 . 10分。
2006年河南专升本高数真题(带答案)
2006年河南专升本⾼数真题(带答案)2006年河南省普通⾼等学校选拔优秀专科⽣进⼊本科阶段学习考试《⾼等数学》试卷⼀、单项选择题(每⼩题2分,共计60分)在每⼩题的四个备选答案中选出⼀个正确答案,并将其代码写在题⼲后⾯的括号内。
不选、错选或多选者,该题⽆分. 1.已知函数)12(-x f 的定义域为]1,0[ ,则)(x f 的定义域为() A. ]1,2 1[ B. ]1,1[- C. ]1,0[ D. ]2,1[-解:B x x ?≤-≤-?≤≤112110.2.函数)1l n (2x x y -+=)(+∞<<-∞x 是()A .奇函数 B. 偶函数 C.⾮奇⾮偶函数 D. 既奇⼜偶函数解:01ln )1ln()1ln()()(22==+++-+=-+x x x x x f x f A ?.3. 当0→x 时,x x s i n 2-是x 的() A. ⾼阶⽆穷⼩ B. 低阶⽆穷⼩ C. 同阶⾮等价⽆穷⼩ D. 等价⽆穷⼩解: 1sin lim20-=-→xxx x C ?. 4.极限=+∞→nnn n s 32li()A. ∞B. 2C. 3D. 5解:B nnn n n n n ?=+=+∞→∞→2]sin 32[lim sin 32lim.5.设函数??)(2x a x x e x f ax ,在0=x 处连续,则常数=a ()A. 0B. 1C. 2D. 3解:B a a a ae xe xf ax x ax x x ?=?+===-=→→→1122lim 1lim)(lim 20200. 6. 设函数)(x f 在点1=x 处可导,则=--+→xx f x f x )1()21(lim0 ()A. )1(f 'B. )1(2f 'C. )1(3f 'D. -)1(f ' 解:xx f f f x f x x f x f x x )1()1()1()21(lim )1()21(lim00--+-+=--+→→C f xf x f x f x f x x ?'=---+-+=→→)1(3)1()1(lim 2)1()21(lim200 7. 若曲线12+=x y 上点M 处的切线与直线14+=x y 平⾏,则点M 的坐标()A. (2,5)B. (-2,5)C. (1,2)D.(-1,2)解: A y x x x y ?==?=?='5,2422000.8.设==02cos sin ty duu x t ,则=dxdy()A. 2t B. t 2 C.-2t D. t 2-解: D t tt t dx dy ?-=-=2sin sin 222. 9.设2(ln )2(>=-n x x y n ,为正整数),则=)(n y ()A.x n x ln )(+B.x 1 C.1)!2()1(---n n xn D. 0 解:B xy x y x x yn n n ?=?+=?=--1ln 1ln )()1()2(. 10.曲线233222++--=x x x x y ()A. 有⼀条⽔平渐近线,⼀条垂直渐近线B. 有⼀条⽔平渐近线,两条垂直渐近线C. 有两条⽔平渐近线,⼀条垂直渐近线,A y y y x x x x x x x x y x x x ?∞=-==?++-+=++--=-→-→±∞→2122lim ,4lim ,1lim )2)(1()3)(1(2332.11.下列函数在给定的区间上满⾜罗尔定理的条件是() A.]2,0[|,1|-=x y B. ]2,0[,)1(132-=x yC.]2,1[,232+-=x x y D . ]1,0[,arcsin x x y =解:由罗尔中值定理条件:连续、可导及端点的函数值相等C ?.12. 函数xey -=在区间),(+∞-∞内()A. 单调递增且图像是凹的曲线B. 单调递增且图像是凸的曲线C. 单调递减且图像是凹的曲线D. 单调递减且图像是凸的曲线解: C e y e y x x>=''<-='--0,0.13.若+=C x F dx x f )()(,则?=--dx e f e xx)( ()A.C e F e x x ++--)(B. C e F x +-)(C. C e F e x x +---)(D. C e F x +--)(解:D C e F e d e f dx e f e x x x x x ?+-=-=?-----)()()()(.14. 设)(x f 为可导函数,且x e x f =-')12( ,则 =)(x f ()A. C e x +-1222 C. C e x ++1221 D. C e x +-)1(212 解:B C ex f e x f e x f x x x+=='=-'++)1(21)1(212)()()12(.15. 导数=?ba tdt dxd arcsin () A.x arcsin B. 0 C. a b arcsin arcsin - D. 2 11x-解:?b a xdx arcsin 是常数,所以B xdx dx d ba=0arcsin . 16.下列⼴义积分收敛的是() A.+∞1dx e xB. ?+∞11dx x C. ?+∞+1241dx x D. ?+∞1cos xdx解:C x dx xarctan 4(412arctan 4141112π. 17.设区域D 由)(),(,),(,x g y x f y a b b x a x ==>==所围成,则区域D 的⾯积为()A.-b adx x g x f )]()([ B. ?-badx x g x f )]()([C.-badx x f x g )]()([ D. ?-badx x g x f |)()(|解:由定积分的⼏何意义可得D 的⾯积为 ?-badx x g x f |)()(|D ?.18. 若直线32311-=+=-z n y x 与平⾯01343=++-z y x 平⾏,则常数=n()A. 2B. 3C. 4D. 5解: B n n n ?=?=+-?-⊥30943}3,43{}3,,1{. 19.设yx y x y x f arcsin)1(),(-+=,则偏导数C.-1D.-2 解: B x f x x f x ?='?=1)1,()1,(.20. 设⽅程02=-xyz e z确定了函数),(y x f z = ,则x z= ()A. )12(-z x zB. )12(+z x zC. )12(-z x yD. )12(+z x y解:令xy e F yz F xyz e z y x F z z x z -='-='?-=222,),,(A z x z xy xyz yz xy e yz x z z ?-=-=-=)12(222. 21.设函数x y y x z +=2 ,则===11y x dz () A. dy dx 2+ B. dy dx 2- C. dy dx +2 D. dy dx -2解:222xydxxdy dy x xydx dz -++= A dy dx dx dy dy dx dz y x ?+=-++=?==2211.22.函数2033222+--=y x xy z 在定义域上内()A.有极⼤值,⽆极⼩值B. ⽆极⼤值,有极⼩值C.有极⼤值,有极⼩值D. ⽆极⼤值,⽆极⼩值解:,6)0,0(),(062,06222-==?=-=??=-=??x z y x y x y z x y x z=-=2,6222y x zy z 是极⼤值A ?.23设D 为圆周由01222A. πB. 2πC.4πD. 16π解:有⼆重积分的⼏何意义知:=??Ddxdy 区域D 的⾯积为π. 24.交换⼆次积分??>a xa dy y x f dx 000(),(,常数)的积分次序后可化为() A. ??a y dx y x f dy 0 ),( B. ??a a ydx y x f dy 0),(C.aa dx y x f dy 0),( D. ??a yadx y x f dy 0),(解:积分区域},0|),{(}0,0|),{(a x y a y y x x y a x y x D ≤≤≤≤=≤≤≤≤=B ?.25.若⼆重积分=20sin 20)sin ,cos (),(πθθθθrdr r r f d dxdy y x f D,则积分区域D 为()A. x y x 222≤+B. 222≤+y xC. y y x 222≤+D. 220y y x -≤≤解标下积分区域可表⽰为:}s i n 20,20|),{(θπθθ≤≤≤≤=r r D ,在直⾓坐标系下边界⽅程为y y x 222=+,积分区域为右半圆域D ?26.设L 为直线1=+y x 上从点)0,1(A 到)1,0(B 的直线段,则=-+?Ldy dx y x )(()A. 2B.1C. -1D. -2 解:L:-==x y xxx从1变到0,-=+=-+012)(D dx dx dy dx y x L .27.下列级数中,绝对收敛的是()A .∑∞=1sin n n πB .∑∞=-1sin)1(n nnπC .∑∞=-12sin)1(n nn πcos n n π解: ?<22sinn n ππ∑∞=π12sinn n收敛C ?. 28. 设幂级数n n n na x a(0∑∞=为常数 ,2,1,0=n ),在点2-=x 处收敛,则∑∞=-0)1(n n na()A. 绝对收敛B. 条件收敛C. 发散D. 敛散性不确定解:∑∞=0n n在2-=x 收敛,则在1-=x 绝对收敛,即级数∑∞=-0)1(n n n a 绝对收敛A ?.29. 微分⽅程0s i n c o s co s s i n =+y d x x y d y x 的通解为() A. C y x =cos sin B. C y x =sin cos C. C y x =sin sin D. C y x =cos cos 解:dx x xdy y y ydx x ydy x sin cos sin cos 0sin cos cos sin -=?=+C C y x C x y xxd y y d ?=?=+?-=?sin sin ln sin ln sin ln sin sin sin sin . 30.微分⽅程xxe y y y -=-'+''2的特解⽤特定系数法可设为()A. xeb ax x y -+=*)( B. xeb ax x y -+=*)(2C. xe b ax y -+=*)( D. xaxe y -=*解:-1不是微分⽅程的特征根,x 为⼀次多项式,可设xe b ax y -+=*)( C ?.⼆、填空题(每⼩题2分,共30分)31.设函数,1||,01||,1)(>≤=x x x f 则=)(sin x f _________.解:1)(sin 1|sin |=?≤x f x .32.=--+→xx x x 231lim22=_____________.=++=++--=--+→→→)31(1lim )31)(2()2(lim 231lim2222x x x x x x x x x x x x 123341==.33.设函数x y 2arctan =,则=dy __________.解:dx xdy 2412+= . 34.设函数bx ax x x f ++=23)(在1-=x 处取得极⼩值-2,则常数ba 和分别为___________.解:b a b a b ax x x f -+-=-=+-?++='12,02323)(25,4==?b a .35.曲线12323-+-=x x x y 的拐点为 __________.解:)1,1(),(0662632-=?=-=''?+-='y x x y x x y .36.设函数)(),(x g x f 均可微,且同为某函数的原函数,有1)1(,3)1(==g f 则=-)()(x g x f _________.解:2)1()1()()(=-=?=-g f C C x g x f 2)()(=-?x g x f .37.-=+ππdx x x )sin (32 _________.解:3202sin )sin (302323π=+=+=+πππ-ππ-ππ-dx x xdx dx x dx x x .38.设函数<≥=0,0,)(2x x x e x f x,则 ?=-20)1(dx x f __________.解:--=--=+=====-201110012132)()1(e dx e dx x dt t f dx x f xt x .39. 向量}1,1,2{}2,1,1{-==b a与向量的夹⾓为__________.解:3,21663||||,cos π>=?<==?>=40.曲线??==022z xy L :绕x 轴旋转⼀周所形成的旋转曲⾯⽅程为 _________.解:把x y 22=中的2y 换成22y z +,即得所求曲⾯⽅程x y z 222=+.41.设函数y x xy z sin 2+= ,则 =yx z2_________.解: ?+=??y x y x z sin 2y x yx z cos 212+=. 42.设区域}11,10|),{(≤≤-≤≤=y x y x D ,则___)(2=-Ddxdy x y . 解:-=-=-=--Ddx x dy x y dx dxdy x y 102101122322)()( . 43. 函数2)(x e x f -=在00=x 处展开的幂级数是________________. 解:∑∞=?=0!n n xn x e ∑∑∞=∞=-+∞-∞∈-=-==0022),(,!1)1(!)()(2n n n n n x x x n n x e x f .44.幂级数∑∞=+++-0112)1()1(n n n nn x 的和函数为 _________.解:∑∑∑∞=∞=-+∞=+++=-=+-=+-0111011)21l n)2()1(1)2()1(2)1()1(n n n n n n n n n nx n x n x n x,)22(≤<-x .45.通解为xxe C e C y 321+=-(21C C 、为任意常数)的⼆阶线性常系数齐次微分⽅程为_________.解:x xe C e C y 321+=-0323,1221=--?=-=?λλλλ032=-'-''?y y y .三、计算题(每⼩题5分,共40分)46.计算 xx ex x x 2sin 1lim 3202-→--. 解:20300420320161lim 3222lim 81lim 2sin 1lim 2222x e x xe x x e x xx ex x x x x x x x x -=+-=--=---→-→-→-→ 161lim 161322lim22000-=-=-=-→-→x x x x e x xe . 47.求函数xx x y 2sin 2)3(+=的导数dx dy .解:取对数得:)3ln(2sin ln 2x x x y +=,两边对x 求导得:x xx x x x x y y 2sin 332)3ln(2cos 2122++++=' 所以]2sin 332)3ln(2cos 2[)3(222sin 2x xx x x x x x x y x+++++=' xx x x x x x x x x x 2sin )32()3()3ln(2cos )3(212sin 222sin 2+++++=-.48.求不定积分 ?-dx x x 224.:====?-==-=π<<π-dt t tdt tdt t tdx x x t x t )2cos 1(2sin 4cos 2cos 2sin 4422sin 22222Cx x x C t t x C t t +--=+-=+-=242arcsin 2cos sin 22arcsin 22sin 22.49.计算定积分--+102)2()1ln(dx x x .解:+---+=-+=-+101010102)1)(2(12)1ln(21)1ln()2()1ln(dx x x x x x d x dx x x=-=+-+=++--=10102ln 312ln 322ln 12ln 312ln )1121(312ln x x dx x x .50.设),()2(xy x g y x f z ++= ,其中),(),(v u g t f 皆可微,求yz x z ,. 解:xv v g x u u g x y x y x f x z ++?+?+'=??)2()2( ),(),()2(2xy x g y xy x g y x f v u '+'++'==++?+?+'=??yvv g y u u g y y x y x f y z )2()2(),()2(xy x g x y x f v'++'.51.计算⼆重积分??=ydxdy x I 2,其中D 由12,===x x y x y 及所围成.解:积分区域如图06-1所⽰,可表⽰为:x y x x 2,10≤≤≤≤. 所以 == 1222xx Dydy x dx ydxdy x I 10310323)2(1051042122====??x dx x y dx x xx .52.求幂级数nn nx n ∑∞=--+0)1()3(1解:令t x =-1,级数化为 nn nt n ∑∞=-+0)3(1,这是不缺项的标准的幂级数. 因为 313)3(11)3(1lim 1)3(1)3(1lim lim 11=--+-=+?-+-+==∞→+∞→+∞→nnn n n n n n n n n a a ρ,故级数nn nt n ∑∞3(1的收敛半径31==ρR ,即级数收敛区间为(-3,3). 对级数nn nx n ∑∞=--+0)1()3(1有313<-<-x ,即42<<-x . 故所求级数的收敛区间为),(42-. 53.求微分⽅程 0)12(2=+-+dy x xy dy x 通解.解:微分⽅程0)12(2=+-+dx x xy dy x 可化为 212xx y x y -=+',这是⼀阶线性微分⽅程,它对应的齐次线性微分⽅程02=+'y x y 通解为2xC y =. 2)(x x C y =,则3)(2)(x x C x C x y -'=',代⼊C x x x C +-=?2)(2. 2211xCx y +-=.四、应⽤题(每⼩题7分,共计14分)54. 某公司的甲、⼄两⼚⽣产同⼀种产品,⽉产量分别为y x ,千件;甲⼚⽉⽣产成本是5221+-=x x C (千元),⼄⼚⽉⽣产成本是3222++=y y C (千元).若要求该产品每⽉总产量为8千件,并使总成本最⼩,求甲、⼄两⼚最优产量和相应最⼩成本.解:由题意可知:总成本8222221++-+=+=y x y x C C C ,约束条件为8=+y x . 问题转化为在8=+y x 条件下求总成本C 的最⼩值 .把8=+y x 代⼊⽬标函数得 0(882022>+-=x x x C 的整数).则204-='x C ,令0='C 得唯⼀驻点为5=x ,此时有04>=''C . 故 5=x 是唯⼀极值点且为极⼩值,即最⼩值点.此时有38,3==C y . 所以甲、⼄两⼚最优产量分别为5千件和3千件,最低成本为38千元. 55.由曲线)2)(1(--=x x y 和x 轴所围成⼀平⾯图形,求此平⾯图形绕y 轴旋转⼀周所成的旋转体的体积.解:平⾯图形如图06-2所⽰,此⽴体可看作X 型区域绕y 轴旋转⼀周⽽得到。
2006-2010年江苏省专转本高数真题集
2006年—2010年江苏省专转本真题1、 计算11lim31--→x x x (32) 2、 已知)21()21(lim ,2)2(lim==∞→→x xf x x f x x 则 3、 求极限xx xx 3)2(lim -∞→ (6-e ) 4、求极限xx x x sin lim 30-→ (6)5、已知32lim22=-++→x bax x x ,则常数a,b 的值为( A ) A 、a=-1,b=-2 B 、a=-2,b=0 C 、a=-1,b=0 D 、a=-2,b=-16、设2)(lim =-∞→xx cx x ,常数c= ln2 。
7、计算xx x x )11(lim -+∞→ (2e ) 8、设当x →0时,函数f(x)=x-sinx 与g(x)=a n是等价无穷小,则常数a,n 的值为( A ) A.4,61.4,121.3,31.3,61========n a D n a C n a B n a 9、设423)(22-+-=x x x x f ,则x=2是f(x)的( B )A 、跳跃型间断点B 、可去间断点C 、无穷型间断点D 、振荡型间断点 10、若,)(lim 0A x f x =→且f(x)在x=x 0处有定义,则当A= f(x 0) 时f(x)在x 0处连续。
11、 设函数f(x)=⎪⎩⎪⎨⎧=≠+020)1(1x x kx x 在点x=0处连续,求常数k. (ln2)12、 函数)1(1)(2--=x x x x f 的第一类间断点是 x=113、 函数f(x)=⎪⎩⎪⎨⎧>≤+03tan 0x xx x x a 在x=0处连续,则a = 3 .14、设f(x)在[0,2a]上连续,且f(0)=f(2a)≠f(a),证明在[0,a]上至少存在一点ξ,使f(ξ)=f(ξ+a). (令φ(x )=f(x)-f(x+a))15、 设y=f(x)由参数方程x=ln(1+t 2) , y = t-arctant 确定,求22,dx yd dx dy ( ,2t t t 412+)16、 设函数y=y(x)由方程xy e e yx=-确定,求220,==x x dx y d dxdy(1,-2)17、 函数f(x)是可导函数,下列各式中正确的是( A )18、函数y=y(x)由方程x=t-sint,y=1-cost 所确定,求22,dx y d dx dy ( 2cott , 2sin 414t -)19、设函数⎪⎩⎪⎨⎧>≤=01sin 00)(x x x x x f α在x=0处可导,则常数α的取值范围是( C ) A 、0<α<1 B 、0<α≤1 C 、α>1 D 、α≥120、设函数y=y(x)由参数方程⎩⎨⎧-+=+=32)1ln(2t t y t x 确定,求22,dx yd dx dy (2)1(2t +,2)1(4t +) 21、设⎪⎩⎪⎨⎧=≠=010)()(x x xx x f ϕ其中φ(x)在x=0处具有二阶连续导数,且φ(0)=0,φ/(0)=1,证明:函数f(x)在x=0处连续且可导。
2010年专升本《高等数学》试卷
2010年福建省高职高专升本科入学考试 高等数学 试卷一、单项选择题(本大题共10小题,每小题3分,共30分)1. 函数2sin(1)()1x f x x ,()x 是( )A. 有界函数B. 奇函数C. 偶函数D. 周期函数 2. 函数2()f x x 与()g x x 表示同一函数,则他们的定义域是( ) A. (,0] B. [0,) C.(,) D. (0,)3. 设函数()g x 在 xa 连续而()()()f x x a g x ,则'()f a =( )A. 0B. '()g a C. ()g a D. ()f a 4. 设163()351f x xxx ,则17(1)f ( )A. 17!B. 16!C. 15!D. 0 5. 0x是函数22()xxf x e 的( )A. 零点B. 驻点C. 极值点D. 非极值点 6. 设2(),x xf x dx e C 则()f x =( ) A. 2x xeB. 2x xeC.22x eD. 22x e7. 2(cos )b ad x dx =( )(其中a ,b 为常数) A. 2sin x dx B. 2cos x dx C. 0 D.22cos x x dx8. 广义积分21xxe dx e ( )A. πB. 2πC. 4π D. 0 9. 直线 211:113x y z L 与平面 :5670x yz 的位置关系是 ( )A. L π在上B. LC. L π与平行D.L π与相交,但不垂直10. 微分方程'23'()30x y y y x 的阶数是( )A. 1B. 2C. 3D. 4二、填空题(本大题共10小题,每小题4分,共40分) 11. 函数2ln(1)y x 的反函数是 12. 320355lim sin 53x x x x x= 13. 曲线cos yx 上点132π(,)处的法线的斜率等于14. 若()f x 在0x x 处可导,且000()(7)lim3hf x f x h h,则'0()f x =15. 函数()arctan [0,1]f x x 在上使拉格朗日中值定理结论成立的ξ是16. 曲线x yxe 的拐点是 17. 设()F x 为可微函数,则()dF x18. 定积分42xdx 19. 微分方程'2(1)yx y 的通解是20. 设向量{1,3,2}a与向量{2,6,},b 则λ=三、计算题(本大题共8小题,每小题7分,共56分) 21. 设函数0()310xke xf x x x在x=0处连续,试求常数k22. 计算极值0ln()limcos xt xte dtx x23. 求由方程ln 2xyey所确定的隐函数()y y x 的一阶导数dydx24. 求由参数方程cos sin xty t 所确定的函数()y y x 的二阶导数2d ydx25. 求不定积分2arctan x xdx ⎰26. 求定积分231(1)dx x x27. 求微分方程'23xy y x ++的通解。
2006年普通专升本高等数学真题
2006年普通高等学校选拔 优秀专科生进入本科阶段考试试题高等数学一、单项选择题(每小题2分,共60分)在每小题的四个备选答案中选出一个正确答案,并将其代码写在题干后面的括号内。
不选、错选或多选者,该题不得分。
1.已知f(2x-1)的定义域为[0,1],则f(x)的定义域为( )。
A.[21,1] B.[-1,1] C.[0,1] D.[-1,2]2.函数y=ln(21x+-x)(-∞<x<+∞)是( )。
A.奇函数B.偶函数C.非奇非偶函数D.即奇又偶函数 3.当x →0时,x 2-sinx 是x 的( )。
A.高阶无穷小 B.低阶无穷小 C.同阶但非等价无穷小 D.等价无穷小 4.极限∞→n limnnsin 3n 2+=( )。
A.∞B.2C.3D.5 5.设函数f(x)=⎪⎩⎪⎨⎧=+≠-0,10,12x a x xe ax 在x=0处连续,则常数a=( )。
A. 0B. 1C. 2D. 3 6.设函数f(x)在点x=1出可导,则xx f x f n )1()21(lim--+∞→=( )。
A.)1('fB. )1(2'f C. )1(3'f D. )1('f - 7.若曲线y=x 2+1上点M 处的切线与直线y=4x+1平行,则点M 的坐标为( ) A.(2,5) B.(-2,5) C.(1,2) D.(-1,2)8.设⎪⎩⎪⎨⎧==⎰22cos sin ty du u x t,则dxdy =( )。
A.t 2B.2tC.-t 2D.-2t 9.设y(n-2)=xlnx(n>2,为正整数),则y(n)=( )。
A.(x+n)lnxB.x1C.1)!2()1(---n nxn D.010.曲线233222++--=x xx x y( )。
A.有一条水平渐近线,一条垂直渐近线。
B.有一条水平渐近线,两条垂直渐近线。
C.有两条水平渐近线,一条垂直渐近线。
2010年山东省专升本高等数学试题
2010年山东省专升本高等数学试题2010年山东省专升本高等数学试题进教育网,全有求山东省专升本高等数学历年试题、真题各科类统考科目为政治、英语和一门专业基础课。
1.文史类:政治、英语、大学语文。
2.艺术类:政治、英语、艺术概论。
3.理工类:政治、英语、高等数学(一)。
4.经济管理类:政治、英语、高等数学(二)。
5.法学类:政治、英语、民法。
6.教育学类:政治、英语、教育理论。
7.农学类:政治、英语、生态学基础。
8.医学类:政治、英语、医学综合。
9.体育类:政治、英语、教育理论。
10.中医药类:政治、英语、大学语文。
江西农业大学历年专升本高等数学试题农大的网站上就有最近2年的下载,也可以去专升本的论坛上找。
高等数学试题lim(x→0)(1/x^2-(cotx)^2)=lim(x→0)[(cotx)^2-x^2]/x^2(cotx)^2=lim(x→0)[(cosx)^2-x^2sinx^2]/[x^2cosx^2]=lim(x→0)[-x^2+(1+x^2)cosx^2]/[x^2cosx^2]=+∞lim(x→1) (1-x)(tan(πx/2)=lim(x→1)(1-x)/cot(πx/2)=lim(x→1)(1-x)'/cot(πx/2)'=lim(x→1) (-1)/[(π/2)/-(sinπx/2)^2]=2/π跪求采纳,日子不好过啊咐润祷迅径夜苹怜邮键灼背耙锦摇己拘碾馅词微伙钠已祟奶轨遂山东大学高等数学试题答案自己做,好好复习,相信自己一定可以的谁有山东省专升本数学的历年试题这个基本上在网上找不到,你可以去书店买,曾经在山东师范大学的门口见到卖这个的。
网上有的话,是不是收费的,我不接得了。
你上山东专升本网站上查检视看。
山东专升本高等数学用哪本书好一些肯定是首推同济大学的高等数学课本,专升本还是蛮简单的,好好准备,高等数学根据大纲看这本就够了,不考的就不用看了,会课后题就可以了求山东2010校内专升本(学分互认)高等数学考试大纲各个书的内容都一样,没必要为了专业课再去买书了,你就用你学校的书就行了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006年真题一、单项选择题(每小题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,并将其代码写在题干后面的括号内。
不选、错选或多选者,该题无分.1.已知函数)12(-x f 的定义域为]1,0[ ,则)(x f 的定义域为 ( ) A. ]1,21[ B. ]1,1[- C. ]1,0[ D. ]2,1[-2.函数)1ln(2x x y -+=)(+∞<<-∞x 是 ( ) A .奇函数 B. 偶函数 C.非奇非偶函数 D. 既奇又偶函数3. 当0→x 时,x x sin 2-是x 的 ( ) A. 高阶无穷小 B. 低阶无穷小 C. 同阶非等价无穷小 D. 等价无穷小 4.极限=+∞→nnn n sin 32lim( )A. ∞B. 2C. 3D. 55.设函数⎪⎩⎪⎨⎧=+≠-=0,10,1)(2x a x x e x f ax ,在0=x 处连续,则 常数=a ( )A. 0B. 1C. 2D. 36. 设函数)(x f 在点1=x 处可导 ,则=--+→xx f x f x )1()21(lim0 ( )A. )1(f 'B. )1(2f 'C. )1(3f 'D. -)1(f '7. 若曲线12+=x y 上点M 处的切线与直线14+=x y 平行,则点M 的坐标( )A. (2,5)B. (-2,5)C. (1,2)D.(-1,2)8.设⎪⎩⎪⎨⎧==⎰202cos sin t y du u x t ,则=dx dy ( )A. 2tB. t 2C.-2t D. t 2-9.设2(ln )2(>=-n x x yn ,为正整数),则=)(n y ( ) A.x n x ln )(+ B. x 1 C.1)!2()1(---n n xn D. 0 10.曲线233222++--=x x x x y ( )A. 有一条水平渐近线,一条垂直渐近线B. 有一条水平渐近线,两条垂直渐近线C. 有两条水平渐近线,一条垂直渐近线,D. 有两条水平渐近线,两条垂直渐近线11.下列函数在给定的区间上满足罗尔定理的条件是 ( ) A.]2,0[|,1|-=x y B. ]2,0[,)1(132-=x yC.]2,1[,232+-=x x y D . ]1,0[,arcsin x x y =12. 函数xe y -=在区间),(+∞-∞内 ( )A. 单调递增且图像是凹的曲线B. 单调递增且图像是凸的曲线C. 单调递减且图像是凹的曲线D. 单调递减且图像是凸的曲线 13.若⎰+=C x F dx x f )()(,则⎰=--dx e f e x x )( ( )A.C e F ex x++--)( B. C e F x +-)( C. C e F ex x+---)( D. C e F x +--)(14. 设)(x f 为可导函数,且xe xf =-')12( ,则 =)(x f ( )A. C e x +-1221 B. C ex ++)1(212 C. C e x ++1221 D. C e x +-)1(212 15. 导数=⎰ba tdt dxd arcsin ( ) A.x arcsin B. 0 C. a b arcsin arcsin - D.211x-16.下列广义积分收敛的是 ( )A.⎰+∞1dx e x B. ⎰+∞11dx x C. ⎰+∞+1241dx xD. ⎰+∞1cos xdx 17.设区域D 由)(),(,),(,x g y x f y a b b x a x ==>==所围成,则区域D 的面积为 ( )A.⎰-b adx x g x f )]()([ B. ⎰-badx x g x f )]()([C. ⎰-b adx x f x g )]()([ D. ⎰-badx x g x f |)()(|18. 若直线32311-=+=-z n y x 与平面01343=++-z y x 平行,则常数=n ( )A. 2B. 3C. 4D. 5 19.设yxy x y x f arcsin)1(),(-+=,则偏导数)1,(x f x '为 ( ) A.2 B.1 C.-1 D.-220. 设方程02=-xyz ez确定了函数),(y x f z = ,则xz∂∂ = ( ) A. )12(-z x z B. )12(+z x z C. )12(-z x y D. )12(+z x y21.设函数xy y x z +=2,则===11y x dz ( )A. dy dx 2+B. dy dx 2-C. dy dx +2D. dy dx -222.函数2033222+--=y x xy z 在定义域上内 ( )A.有极大值,无极小值B. 无极大值,有极小值C.有极大值,有极小值D. 无极大值,无极小值 23设D 为圆周由012222=+--+y x y x 围成的闭区域 ,则=⎰⎰Ddxdy ( )A. πB. 2πC.4πD. 16π 24.交换二次积分⎰⎰>axa dy y x f dx 00(),(,常数)的积分次序后可化为 ( )A. ⎰⎰ay dx y x f dy 0),( B. ⎰⎰a aydx y x f dy 0),(C.⎰⎰aa dx y x f dy 0),( D. ⎰⎰a yadx y x f dy 0),(25.若二重积分⎰⎰⎰⎰=20sin 20)sin ,cos (),(πθθθθrdr r r f d dxdy y x f D,则积分区域D 为( )A. x y x 222≤+B. 222≤+y xC. y y x 222≤+ D. 220y y x -≤≤26.设L 为直线1=+y x 上从点)0,1(A 到)1,0(B 的直线段,则=-+⎰Ldy dx y x )(( )A. 2B.1C. -1D. -227.下列级数中,绝对收敛的是 ( )A .∑∞=1sinn nπB .∑∞=-1sin)1(n n nπC .∑∞=-12sin)1(n nn πD .∑∞=1cos n n π28. 设幂级数n n nna x a(0∑∞=为常数 ,2,1,0=n ),在点2-=x 处收敛,则∑∞=-0)1(n n na( )A. 绝对收敛B. 条件收敛C. 发散D. 敛散性不确定29. 微分方程0sin cos cos sin =+ydx x ydy x 的通解为 ( ) A. C y x =cos sin B. C y x =sin cos C. C y x =sin sin D. C y x =cos cos 30.微分方程xxe y y y -=-'+''2的特解用特定系数法可设为 ( )A. x eb ax x y -+=*)( B. xeb ax x y -+=*)(2C. xe b ax y -+=*)( D. xaxe y -=*二、填空题(每小题2分,共30分)31.设函数,1||,01||,1)(⎩⎨⎧>≤=x x x f 则=)(sin x f _________.32.=--+→xx x x 231lim22=_____________. 33.设函数x y 2arctan =,则=dy __________.34.设函数bx ax x x f ++=23)(在1-=x 处取得极小值-2,则常数b a 和分别为___________.35.曲线12323-+-=x x x y 的拐点为 __________.36.设函数)(),(x g x f 均可微,且同为某函数的原函数,有1)1(,3)1(==g f 则=-)()(x g x f _________.37.⎰-=+ππdx x x)sin (32_________.38.设函数⎪⎩⎪⎨⎧<≥=0,0,)(2x x x e x f x ,则 ⎰=-20)1(dx x f __________.39. 向量}1,1,2{}2,1,1{-==b a与向量的夹角为__________.40.曲线⎩⎨⎧==022z xy L :绕x 轴旋转一周所形成的旋转曲面方程为 _________. 41.设函数y x xy z sin 2+= ,则=∂∂∂yx z 2_________. 42.设区域}11,10|),{(≤≤-≤≤=y x y x D ,则________)(2⎰⎰=-Ddxdy xy .43. 函数2)(x e x f -=在00=x 处展开的幂级数是________________.44.幂级数∑∞=+++-0112)1()1(n n n nn x 的和函数为 _________. 45.通解为xx e C e C y 321+=-(21C C 、为任意常数)的二阶线性常系数齐次微分方程为_________.三、计算题(每小题5分,共40分) 46.计算 xx ex x x 2sin 1lim3202-→--. 47.求函数xx x y 2sin 2)3(+=的导数dxdy. 48.求不定积分⎰-dx x x 224.49.计算定积分⎰--+102)2()1ln(dx x x . 50.设),()2(xy x g y x f z ++= ,其中),(),(v u g t f 皆可微,求yzx z ∂∂∂∂,. 51.计算二重积分⎰⎰=Dydxdy xI 2,其中D 由12,===x x y x y 及所围成.52.求幂级数n n nx n∑∞=--+0)1()3(1的收敛区间(不考虑区间端点的情况). 53.求微分方程 0)12(2=+-+dy x xy dy x 通解. 四、应用题(每小题7分,共计14分)54. 某公司的甲、乙两厂生产同一种产品,月产量分别为y x ,千件;甲厂月生产成本是5221+-=x x C (千元),乙厂月生产成本是3222++=y y C (千元).若要求该产品每月总产量为8千件,并使总成本最小,求甲、乙两厂最优产量和相应最小成本.55.由曲线)2)(1(--=x x y 和x 轴所围成一平面图形,求此平面图形绕y 轴旋转一周所成的旋转体的体积.五、证明题(6分)56.设)(x f 在],[a a -(0>a ,为常数)上连续, 证明:⎰⎰--+=aaadx x f x f dx x f 0)]()([)(.并计算⎰--+441cos ππdx e xx .2007年真题一. 单项选择题(每题2分,共计50分)在每小题的备选答案中选出一个正确答案,并将其代码写在题干后面的括号内.不选、错选或多选者,该题无分.1.集合}5,4,3{的所有子集共有 ( ) A. 5 B. 6 C. 7 D. 82.函数x x x f -+-=3)1arcsin()(的定义域为 ( ) A. ]3,0[ B. ]2,0[ C. ]3,2[ D. ]3,1[3. 当0→x 时,与x 不等价的无穷小量是 ( ) A.x 2 B.x sin C.1-xe D.)1ln(x + 4.当0=x 是函数xx f 1arctan)(= 的 ( ) A.连续点 B. 可去间断点 C.跳跃间断点 D. 第二类间断点 5. 设)(x f 在1=x 处可导,且1)1(='f ,则hh f h f h )1()21(lim+--→的值为( )A.-1B. -2C. -3D.-46.若函数)(x f 在区间),(b a 内有0)(,0)(<''>'x f x f ,则在区间),(b a 内,)(x f 图形 ( )A .单调递减且为凸的B .单调递增且为凸的C .单调递减且为凹的D .单调递增且为凹的 7.曲线31x y +=的拐点是 ( ) A. )1,0( B. )0,1( C. )0,0( D. )1,1(8.曲线2232)(x x x f -=的水平渐近线是 ( ) A. 32=y B. 32-=y C. 31=y D. 31-=y9. =⎰→42tan limx tdt x x ( )A. 0B.21C.2D. 1 10.若函数)(x f 是)(x g 的原函数,则下列等式正确的是 ( )A.⎰+=C x g dx x f )()( B. ⎰+=C x f dx x g )()( C.⎰+='C x f dx x g )()( D. ⎰+='C x g dx x f )()( 11.⎰=-dx x )31cos( ( )A.C x +--)31sin(31B. C x +-)31sin(31C. C x +--)31sin(D. C x +-)31sin(312. 设⎰--=xdt t t y 0)3)(1(,则=')0(y ( )A.-3B.-1C.1D.313. 下列广义积分收敛的是 ( ) A.⎰+∞1x dx B. ⎰+∞1x dx C.⎰+∞1xx dxD.⎰10xx dx14. 对不定积分⎰dx x x 22cos sin 1,下列计算结果错误是 ( )A. C x x +-cot tanB. C xx +-tan 1tanC. C x x +-tan cotD. C x +-2cot15. 函数2x y =在区间]3,1[的平均值为 ( )A. 326B. 313 C. 8 D. 416. 过Oz 轴及点)4,2,3(-的平面方程为 ( ) A. 023=+y x B. 02=+z y C. 032=+y x D. 02=+z x17. 双曲线⎪⎩⎪⎨⎧==-014322y z x 绕z 轴旋转所成的曲面方程为 ( ) A.143222=-+z y x B. 143222=+-z y x C.143)(22=-+z y x D. 14)(322=+-z y x 18.=+-→→xy xy y x 93lim 00 ( ) A. 61 B. 61- C.0 D. 极限不存在 19.若yx z =,则=∂∂)1,(e y z ( )A.e1B. 1C. eD. 0 20. 方程 132=-xz y z 所确定的隐函数为),(y x f z =,则=∂∂xz ( )A. xz y z 322-B. y xz z 232-C. xz y z 32-D. yxz z 23-21. 设C 为抛物线2x y =上从)0,0(到)1,1( 的一段弧,则⎰=+Cdy x xydx 22( ) A.-1 B.0 C.1 D.222.下列正项级数收敛的是 ( )A. ∑∞=+2131n n B. ∑∞=2ln 1n n nC. ∑∞=22)(ln 1n n nD. ∑∞=21n nnn 23.幂级数∑∞=++01)1(31n nn x 的收敛区间为 ( ) A.)1,1(- B.)3,3(- C. )4,2(- D.)2,4(- 24. 微分x ey y y xcos 23-=+'+''特解形式应设为=*y ( )A. x Ce xcos B. )sin cos (21x C x C ex+-C. )sin cos (21x C x C xe x +-D. )sin cos (212x C x C ex x+-25.设函数)(x f y =是微分方程xe y y 2='+''的解,且0)(0='xf ,则)(x f 在0x 处( )A.取极小值B. 取极大值C.不取极值D. 取最大值 二、填空题(每题2分,共30分)26.设52)(+=x x f ,则=-]1)([x f f _________.27.=∞→!2lim n nn ____________. 28.若函数⎪⎩⎪⎨⎧≥+<=02203)(4x ax x e x f x ,,在0=x 处连续,则=a ____________. 29.已知曲线22-+=x x y 上点M 处的切线平行于直线15-=x y ,则点M 的坐标为 ________30.设12)(-=x e x f ,则 =)0()2007(f_________ 31.设⎩⎨⎧+-=+=12132t t y t x ,则==1t dx dy__________ 32. 若函数bx ax x f +=2)(在1=x 处取得极值2,则=a ______,=b _____33. ='⎰dx x f x f )()( _________ 34.⎰=-121dx x _________ 35.向量k j i a -+=43的模=||a________36. 已知平面1π:0752=+-+z y x 与平面2π:01334=+++mz y x 垂直,则=m ______37.设22),(y x xy y x f +=+,则=),(y x f ________38.已知=I ⎰⎰-21220),(y ydx y x f dy ,交换积分次序后,则=I _______39.若级数∑∞=11n n u 收敛,则级数∑∞=+⎪⎪⎭⎫ ⎝⎛-1111n n n u u 的和为 _______ 40.微分方程02=+'-''y y y 的通解为________三、判断题(每小题2分,共10分)你认为正确的在题后括号内划“√”,反之划“×”. 41.若数列{}n x 单调,则{}n x 必收敛. ( ) 42.若函数)(x f 在区间[]b a ,上连续,在),(b a 内可导,且)()(b f a f ≠,则一定不存在),(b a ∈ξ,使0)(=ξ'f . ( )43.1sin sin lim cos 1cos 1lim sin sin lim -=-=+-======+-∞→∞→∞→xxx x x x x x x x x 由洛比达法则. ( )44.2ln 23102ln 02≤-≤⎰-dx e x . ( ) 45.函数),(y x f 在点),(y x P 处可微是),(y x f 在),(y x P 处连续的充分条件.( )四、计算题(每小题5分,共40分) 46.求xx xsin 0lim +→.47.求函数3211x x x y +-⋅=的导数dx dy. 48.求不定积分⎰++dx x e x)]1ln([2.49.计算定积分dx x ⎰π+02cos 22 .50.设)3,sin (2y x y e f z x =,且),(v u f 为可微函数,求dz . 51.计算⎰⎰Ddxdy x 2,其中D 为圆环区域:4122≤+≤y x.52.将242xx-展开为x 的幂级数,并写出收敛区间. 53.求微分方程0)2(22=--+dx x xy y dy x 的通解.五、应用题(每题7分,共计14分)54. 某工厂欲建造一个无盖的长方题污水处理池,设计该池容积为V 立方米,底面造价每平方米a 元,侧面造价每平方米b 元,问长、宽、高各为多少米时,才能使污水处理池的造价最低?55. 设平面图形D 由曲线xe y =,直线e y =及y 轴所围成.求: (1)平面图形D 的面积;(2) 平面图形D 绕y 轴旋转一周所成的旋转体的体积. 六、证明题(6分)56.若)(x f '在],[b a 上连续,则存在两个常数m 与M ,对于满足b x x a ≤<≤21的任意两点21,x x ,证明恒有)()()()(121212x x M x f x f x x m -≤-≤-.2008年真题一. 单项选择题(每题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,并将其代码写在题干后面的括号内.不选、错选或多选者,该题不得分. 1. 函数2)1ln()(++-=x x x f 的定义域为 ( ) A. ]1,2[-- B. ]1,2[- C. )1,2[- D. )1,2(-2. =⎪⎭⎫ ⎝⎛π--π→3sin cos 21lim3x xx ( ) A.1 B. 0 C. 2 D.33. 点0=x 是函数131311+-=xxy 的 ( )A.连续点B. 跳跃间断点C.可去间断点D. 第二类间断点 4.下列极限存在的为 ( )A.xx e +∞→lim B. x x x 2sin lim 0→ C.xx 1cos lim 0+→ D.32lim 2-++∞→x x x5. 当0→x 时,)1ln(2x +是比x cos 1-的( )A .低阶无穷小B .高阶无穷小C .等阶无穷小 D.同阶但不等价无穷小6.设函数⎪⎪⎩⎪⎪⎨⎧>≤≤--<+++=0,arctan 01,11,11sin )1(1)(x x x x x x x f ,则)(x f ( )A .在1-=x 处连续,在0=x 处不连续B .在0=x 处连续,在1-=x 处不连续C .在1-=x ,0,处均连续D .在1-=x ,0,处均不连续 7.过曲线xe x y +=arctan 上的点(0,1)处的法线方程为 ( ) A. 012=+-y x B. 022=+-y x C. 012=--y x D. 022=-+y x8.设函数)(x f 在0=x 处可导,)(3)0()(x x f x f α+-=且0)(lim 0=α→xx x ,则=')0(f( )A. -1B.1C. -3D. 39.若函数)1()(ln )(>=x x x f x,则=')(x f ( )A. 1)(ln -x x B. )ln(ln )(ln )(ln 1x x x x x +-C. )ln(ln )(ln x x xD. xx x )(ln10.设函数)(x y y =由参数方程⎪⎩⎪⎨⎧==t y tx 33sin cos 确定,则=π=422x dx y d ( )A.-2B.-1C.234-D. 234 11.下列函数中,在区间[-1,1]上满足罗尔中值定理条件的是 ( )A.xe y = B.||ln x y = C.21x y -= D.21xy =12. 曲线253-+=x x y 的拐点是 ( )A.0=xB.)2,0(-C.无拐点D. 2,0-==y x 13. 曲线|1|1-=x y ( )A. 只有水平渐进线B. 既有水平渐进线又有垂直渐进线C. 只有垂直渐进线D. 既无水平渐进线又无垂直渐进线 14.如果)(x f 的一个原函数是x x ln ,那么=''⎰dx x f x )(2 ( )A. C x +lnB. C x +2C. C x x +ln 3D. x C - 15.=+-⎰342x x dx( ) A .C x x +--13ln 21 B.C x x +--31ln 21 C. C x x +---)1ln()3ln( D. C x x +---)3ln()1ln( 16.设⎰+=1041x dxI ,则I 的取值范围为 ( )A .10≤≤I B.121≤≤I C. 40π≤≤I D.121<<I17. 下列广义积分收敛的是 ( ) A.dx x ⎰+∞13B. ⎰+∞1ln dx xxC.⎰+∞1dx xD. dx e x ⎰+∞-0 18.=-⎰-33|1|dx x ( )A.⎰-30|1|2dx x B.⎰⎰-+--3113)1()1(dx x dx xC.⎰⎰----3113)1()1(dx x dx x D. ⎰⎰-+--3113)1()1(dx x dx x19.若)(x f 可导函数,0)(>x f ,且满足⎰+-=xdt ttt f x f 022cos 1sin )(22ln )(,则=)(x f ( )A. )cos 1ln(x +B. C x ++-)cos 1ln(C. )cos 1ln(x +-D. C x ++)cos 1ln(20. 若函数)(x f 满足⎰--+=11)(211)(dx x f x x f ,则=)(x f ( )A. 31-x B. 21-x C. 21+x D. 31+x21. 若⎰=edx x f x I 023)( 则=I ( )Adx x f )(0⎰2e x B dx xf )(0⎰e xC dx x f )(210⎰2e xD dx x f )(210⎰ex22.直线19452zy x =+=+与平面5734=+-z y x 的位置关系为A. 直线与平面斜交B. 直线与平面垂直C. 直线在平面内D. 直线与平面平行 23.=-+++→→11lim222200y x y x y x ( )A. 2B.3C. 1D.不存在 24.曲面22y x z +=在点(1,2,5)处切平面方程( ) A .542=-+z y x B .524=-+z y x C .542=-+z y x D .542=+-z y x25.设函数33xy y x z -=,则=∂∂∂xy z2 ( ) A. xy 6 B. 2233y x - C. xy 6- D. 2233x y - 26.如果区域D 被分成两个子区域1D 和2D 且5),(1=⎰⎰dxdy y x f D ,1),(2=⎰⎰dxdy y x f D ,则=⎰⎰dxdy y x f D),( ( )A. 5B. 4C. 6D.1 27.如果L 是摆线⎩⎨⎧-=-=ty tt x cos 1sin 从点)0,2(πA 到点)0,0(B 的一段弧,则=-++⎰dy y y x dx xe y x xL)sin 31()3(32 ( ) A.1)21(2-π-πe B. ]1)21([22-π-πeC.]1)21([32-π-πe D. ]1)21([42-π-πe28.以通解为xCe y =(C 为任意常数)的微分方程为 ( )A. 0=+'y yB. 0=-'y yC. 1='y yD. 01=+'-y y 29. 微分方程xxe y y -='+''的特解形式应设为=*y ( )A .xeb ax x -+)( B.b ax + C.xe b ax -+)( D.xeb ax x -+)(230.下列四个级数中,发散的级数是 ( )A. ∑∞=1!1n n B. ∑∞=-1100032n n n C. ∑∞=12n n n D. ∑∞=121n n解:级数∑∞=-1100032n nn 的一般项n n 100032-的极限为05001≠,是发散的,应选B. 二、填空题(每题2分,共30分)31.A x f x x =→)(lim 0的____________条件是A x f x f x x x x ==-+→→)(lim )(lim 0.32. 函数x x y sin -=在区间)2,0(π单调 ,其曲线在区间⎪⎭⎫⎝⎛π2,0内的凹凸性为 的.33.设方程a a z y x (23222=++为常数)所确定的隐函数),(y x f z = ,则=∂∂xz_____. 34.=+⎰xdx 1 .35.⎰ππ⋅-=+33________cos 1dx x x. 36. 在空间直角坐标系中,以)042()131()140(,,,,,,,,----C B A 为顶点的ABC ∆的面积为__ .37. 方程⎪⎩⎪⎨⎧-==+214922x y x 在空间直角坐标下的图形为__________. 38.函数xy y x y x f 3),(33-+=的驻点为 . 39.若x y xy ey x z xtan2312++=-,则=∂∂)0,1(xz .40.⎰⎰ππ=440___________cos x dy yydx41.直角坐标系下的二重积分⎰⎰Ddxdy y x f ),((其中D 为环域9122≤+≤y x )化为极坐标形式为___________________________.42.以x xxe C e C y 3231--+=为通解的二阶常系数线性齐次微分方程为 .43.等比级数)0(0≠∑∞=a aqn n,当_______时级数收敛,当_______时级数发散.44.函数21)(2--=x x x f 展开为x 的幂级数为__________________45.∑∞=⎪⎭⎫ ⎝⎛-12n nn n 的敛散性为________的级数.三、计算题(每小题5分,共40分)46.求2522232lim +∞→⎪⎪⎭⎫⎝⎛-+x x x x .47. 求⎰+→23241limx x dtt t x .48.已知)21sin(ln x y -=,求dxdy. 49. 计算不定积分⎰xdx x arctan . 50.求函数)cos(y x e z x+=的全微分. 51.计算⎰⎰σDd yx2,其中D 是由1,,2===xy x y y 所围成的闭区域. 52.求微分方程xex y y sin cos -=+'满足初始条件1)0(-=y 的特解.53.求级数∑∞=+013n nn x n 的收敛半径及收敛区间(考虑区间端点). 四、应用题(每题7分,共计14分)54. 过曲线2x y =上一点)1,1(M 作切线L ,D 是由曲线2x y =,切线L 及x 轴所围成的平面图形,求(1)平面图形D 的面积;(2)该平面图形D 绕x 轴旋转一周所成的旋转体的体积.55.一块铁皮宽为24厘米,把它的两边折上去,做成一正截面为等腰梯形的槽(如下图),要使梯形的面积A 最大,求腰长x 和它对底边的倾斜角α.五、证明题(6分)56. 证明方程⎰π--=02cos 1ln dx x e x x 在区间),(3e e 内仅有一个实根.2009年真题一、选择题(每小题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,有铅笔把答题卡上对应的题目的标号涂黑。