简单的线性规划教学设计
简单的线性计划教案
简单的线性计划教案●教学目标(一)教学知识点1.线性计划问题,线性计划的意义.2.线性约束条件、线性目标函数、可行解、可行域、最优解等大体概念.3.线性计划问题的图解方式.(二)能力训练要求1.了解简单的线性计划问题.2.了解线性计划的意义.3.会用图解法解决简单的线性计划问题.(三)德育渗透目标让学生树立数形结合思想.●教学重点用图解法解决简单的线性计划问题.●教学难点准确求得线性计划问题的最优解.●教学方式讲练结合法教师可结合一些典型例题进行讲解,学生再通过练习来掌握用图解法解决一些较简单的线性计划问题.●教具预备多媒体课件(或幻灯片)内容:讲义P60图7—23记作§ A进程:先别离作出x=1,x-4y+3=0,3x+5y-25=0三条直线,再找出不等式组所表示的平面区域(即三直线所围成的封锁区域).再作直线l0:2x+y=0.然后,作一组与直线的平行的直线:l:2x+y=t,t∈R(或平行移动直线l0),从而观察t值的转变.●教学进程Ⅰ.课题导入上节课,咱们一路探讨了二元一次不等式表示平面区域,下面,咱们再来探讨一下如何应用其解决一些问题.Ⅱ.教学新课第一,请同窗们来看如此一个问题.设z =2x +y ,式中变量x 、y 知足下列条件⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x求z 的最大值和最小值.分析:从变量x 、y 所知足的条件来看,变量x 、y 所知足的每一个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域.(打出投影片§ A)[师](结合投影片或借助多媒体课件)从图上可看出,点(0,0)不在以上公共区域内,当x =0,y =0时,z =2x +y =0. 点(0,0)在直线l 0:2x +y =0上.作一组与直线l 0平行的直线(或平行移动直线l 0)l :2x +y =t ,t ∈R .可知,当t 在l 0的右上方时,直线l 上的点(x ,y )知足2x +y >0,即t >0.而且,直线l 往右平移时,t 随之增大.(引导学生一路观察此规律)在通过不等式组所表示的公共区域内的点且平行于l 的直线中,以通过点A (5,2)的直线l 2所对应的t 最大,以通过点B (1,1)的直线l 1所对应的t 最小.所以:z m ax =2×5+2=12,z m in =2×1+3=3.诸如上述问题中,不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,咱们把它称为目标函数.由于z =2x +y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除用一次不等式表示外,也可用一次方程表示.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性计划问题.例如:咱们适才研究的就是求线性目标函数z =2x +y 在线性约束条件下的最大值和最小值的问题,即为线性计划问题.那么,知足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部份表示的三角形区域.其中可行解(5,2)和(1,1)别离使目标函数取得最大值和最小值,它们都叫做那个问题的最优解.Ⅲ.课堂练习[师]请同窗们结合讲义P 64练习1来掌握图解法解决简单的线性计划问题.(1)求z =2x +y 的最大值,使式中的x 、y 知足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y解:不等式组表示的平面区域如图所示:当x =0,y =0时,z =2x +y =0点(0,0)在直线l 0:2x +y =0上.作一组与直线l 0平行的直线l :2x +y =t ,t ∈R .可知,在通过不等式组所表示的公共区域内的点且平行于l的直线中,以通过点A (2,-1)的直线所对应的t 最大.所以z m ax =2×2-1=3.(2)求z =3x +5y 的最大值和最小值,使式中的x 、y 知足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x解:不等式组所表示的平面区域如图所示:从图示可知,直线3x +5y =t 在通过不等式组所表示的公共区域内的点时,以通过点(-2,-1)的直线所对应的t 最小,以通过点(817,89)的直线所对应的t 最大. 所以z m in =3×(-2)+5×(-1)=-11. z m ax =3×89+5×817=14. Ⅳ.课时小结通过本节学习,要掌握用图解法解决简单的线性计划问题的大体步骤:1.第一,要按照线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值.Ⅴ.课后作业(一)讲义P 65习题(二)1.预习内容:讲义P 61~64.2.预习提纲:如何用线性计划的方式解决一些简单的实际问题.课 题有关概念 复习回顾约束条件 二元一次不等式表示平面区域 线性约束条件目标函数线性目标函数 例题讲解 课时小结线性规划问题 图解法解决线性规划问题的基本步骤 可行域最优解。
简单的线性规划教学设计
简单的线性规划教学设计简介:线性规划是运筹学中的一种数学优化方法,通过构建数学模型,以线性函数为目标函数及约束条件,寻找最优解决方案。
本教学设计旨在向学生介绍线性规划的基本概念、模型构建和求解方法,培养学生的数学思维和问题解决能力。
一、教学目标:1. 理解线性规划的基本概念和原理;2. 掌握线性规划模型的构建方法;3. 学会使用单纯形法求解线性规划问题。
二、教学内容:1. 线性规划的基本概念:1.1 优化问题和目标函数;1.2 约束条件;1.3 解的定义和存在性。
2. 线性规划模型的构建方法:2.1 变量设定和定义;2.2 目标函数的确定;2.3 约束条件的建立。
3. 单纯形法的基本原理和步骤:3.1 基变量和非基变量的定义;3.2 初始基可行解的求解;3.3 单纯形表的构建;3.4 单纯形表的优化和迭代。
三、教学过程:1. 导入(5分钟):通过引入一个生活实例,例如购买不同食材制作蛋糕的问题,让学生意识到优化问题的存在性和实际应用。
2. 概念讲解(15分钟):介绍线性规划的基本概念,包括优化问题和目标函数、约束条件以及解的定义和存在性。
通过具体例子,让学生理解各个概念的含义和关系。
3. 模型构建(20分钟):以一个简单的生产问题为例,引导学生设定变量、定义目标函数和建立约束条件。
让学生通过思考和实践,掌握线性规划模型的构建方法。
4. 单纯形法介绍(15分钟):简要介绍单纯形法的基本原理和步骤,包括基变量和非基变量的定义、初始基可行解的求解、单纯形表的构建以及优化和迭代的过程。
5. 求解实例演示(20分钟):随堂演示一个具体的线性规划问题,运用单纯形法进行求解。
过程中,详细解释每一步的计算和判断,让学生了解单纯形法的具体应用过程。
6. 练习与讨论(20分钟):给学生几个简单的线性规划问题,让他们在小组内进行讨论和尝试求解。
鼓励学生主动思考和提问,解决问题中的难点和疑惑。
7. 总结与拓展(5分钟):对本节课的内容进行总结,并展示线性规划在实际问题中的更广泛应用。
人教版高中必修5(B版)3.5.2简单的线性规划教学设计
人教版高中必修5(B版)3.5.2简单的线性规划教学设计一、教学目标1.了解线性规划的基本概念和常用格式。
2.学会使用图形法解决线性规划问题。
3.培养学生的分析问题和解决问题的能力。
二、教学内容1.线性规划的定义和特点。
2.线性规划的常用格式。
3.线性规划的图形法。
三、教学方法本节课程采用多种教学法相结合的方式。
1.讲解法。
通过教师讲解线性规划的定义和特点,以及线性规划的常用格式等基础知识,为学生打下知识基础。
2.实例法。
通过具体实例的讲解,引导学生理解线性规划的概念和解题方法,激发学生的兴趣和主动学习的能力。
3.演示法。
通过图解问题解决过程,浅显易懂地引导学生掌握线性规划的图形解法。
4.讨论法。
通过小组讨论,培养学生的思维能力,促进学生合作学习,提高解决问题的效率。
5.练习法。
通过针对性的练习,巩固学生对于线性规划图形法的掌握和运用。
四、教学重难点本节课程的教学重点是线性规划的图形解法。
同时,本节课程的难点是线性规划问题的实际应用。
五、教学过程5.1 课前预习要求学生自行阅读教材3.5.2节的内容,了解线性规划的基本概念和常用格式。
5.2 概念阐述1.讲解线性规划的定义和特点。
2.讲解线性规划的常用格式。
5.3 实例讲解以某公司如何利润最大化为例,以图形法进行解答。
具体步骤为:1.确定自变量和因变量。
2.确定约束条件。
3.确定最大值或最小值目标,即目标函数。
4.作出约束条件的图形,并找出目标函数在图形内的可行域。
5.在可行域内确定目标函数的最大值或最小值。
6.求解最优解的坐标。
5.4 练习对学生进行线性规划图形法的练习,巩固学生对线性规划的掌握和运用。
5.5 课堂总结对本节课的重点、难点及易错点进行总结,并对学生提供一些解题的思路和方法,对学生进行线性规划知识的巩固和深化。
六、教学评价1.学生知识掌握情况的评价。
2.学生思维和解题能力的评价。
3.学生合作学习能力的评价。
七、教学建议本节课的重点是线性规划的图形解法,教师在讲解时应采用图解的方式,注重实例的讲解,帮助学生更好地理解和掌握知识。
高中数学简单线性规划教案
高中数学简单线性规划教案
目标:学生能够理解和应用简单线性规划概念,解决实际问题
一、引入
1. 引导学生回顾线性规划的基本概念:目标函数、约束条件等。
2. 引导学生思考以下问题:什么是线性规划?线性规划在生活中有哪些应用?
二、知识点讲解
1. 线性规划的定义:将问题转化为目标函数和约束条件的最优化问题。
2. 线性规划的基本步骤:确定目标函数、列出约束条件、求解最优解等。
3. 简单线性规划的例子:例如生产某种产品时的最优生产数量、销售某种商品时的最大利润等。
三、练习与应用
1. 让学生通过实际例子练习简单线性规划的求解过程。
2. 给学生一个生活中的实际问题,让他们尝试用线性规划方法解决。
四、总结与反思
1. 总结本节课所学的内容,强调线性规划的重要性和应用价值。
2. 让学生思考如何将线性规划应用到更复杂的实际问题中,并鼓励他们多做练习。
五、作业
1. 布置相关练习题和应用题作为作业,巩固本节课所学的知识。
2. 提醒学生在做作业时要注意思考问题的建模和求解方法。
六、拓展
1. 可以邀请专业人士或相关领域的学者给学生讲解线性规划在实际中的应用和发展趋势。
2. 可以组织学生参加线性规划竞赛或实践活动,增强他们的动手能力和实际应用能力。
简单的线性规划教学设计
简单的线性规划教学设计教学目标:1.了解线性规划的概念和基本思想;2.能够通过建立数学模型,解决简单的线性规划问题;3.能够运用线性规划方法进行决策和优化。
教学重点:1.线性规划的概念和基本思想;2.线性规划的数学模型建立;3.线性规划的解法和应用。
教学准备:1.教材《线性规划》;2. PowerPoint 简介线性规划的概念和基本思想;3.实例练习题和答案;4.计算器。
教学过程:Step 1:导入导入线性规划的概念和基本思想,解释线性规划在实际生活中的应用,例如生产计划、投资决策、资源分配等等。
Step 2:讲解线性规划的基本概念通过 PowerPoint 展示线性规划的定义和基本特点,包括决策变量、目标函数、约束条件等。
帮助学生了解线性规划的基本结构。
Step 3:建立线性规划模型通过实例进行演示,分步骤引导学生建立线性规划数学模型。
首先将实际问题转化为决策变量、目标函数和约束条件,然后对这些元素进行量化,建立数学表达式。
Step 4:解决线性规划问题介绍线性规划的解法,包括图解法和单纯形法。
通过实例进行演示,分析不同解法的优缺点,并引导学生理解解的意义和应用。
Step 5:练习和讨论提供一些简单的线性规划练习题,让学生进行练习并讨论解法。
鼓励学生之间的互动和思维碰撞,帮助他们更好地理解和应用线性规划方法。
Step 6:拓展应用介绍线性规划在实际应用中的一些拓展,例如混合整数规划、多目标规划等。
帮助学生了解不同规划方法的适用范围和应用场景。
Step 7:总结与评价对本节课的内容进行总结,复习要点,并进行课堂评价,检查学生对线性规划的理解程度和应用能力。
Step 8:课后延伸布置线性规划的作业,要求学生通过建立数学模型,解决一个实际问题,并鼓励他们在日常生活中寻找和应用线性规划的机会和场景。
教学评价和建议:1.引导学生将线性规划的概念和基本思想与实际问题相结合,加深他们对线性规划的认识和兴趣;2.注重实例分析和练习,帮助学生通过实际操作加深对线性规划的理解和应用;3.鼓励学生积极思考和讨论,培养他们的问题解决能力和团队合作精神;4.提供相关资源和案例,让学生在课后深入学习和进一步拓展应用。
简单的线性规划教案
简单的线性规划教案教案标题:简单的线性规划教案教学目标:1. 了解线性规划的基本概念和特点。
2. 理解线性规划问题的求解过程。
3. 能够利用线性规划方法解决简单的实际问题。
所需材料:1. 铅笔、纸张、计算器。
2. 多个线性规划问题的案例。
教学步骤:引入阶段:1. 引导学生思考:什么是线性规划?线性规划有哪些应用场景?2. 提出教学目标,并解释线性规划的定义和特点。
探究阶段:3. 解释线性约束条件和目标函数的概念。
4. 利用一个简单的例子说明线性规划问题的形式和表示方法。
5. 引导学生分析并列出问题的线性约束条件和目标函数。
实践阶段:6. 将学生分成小组,每个小组选择一个实际问题,并将其转化为线性规划问题。
7. 指导学生列出问题的线性约束条件和目标函数。
8. 引导学生运用计算器或手动计算,求解其线性规划问题。
9. 学生分享并讨论解决过程和结果。
巩固阶段:10. 提供更多复杂的线性规划问题案例,让学生独立尝试解答,并讨论解决策略和结果。
11. 简要总结线性规划的基本原理和步骤。
拓展阶段:12. 引导学生思考更高级的线性规划问题,如带有整数约束或非线性目标函数的问题。
13. 推荐相关参考书籍和网上学习资源供学生深入学习。
评估方式:1. 在实践阶段,观察学生的合作和参与情况。
2. 收集学生独立解答的线性规划问题的答案,并进行评估。
教学反思:根据学生的反馈和评估结果,适时调整教学步骤和内容,确保学生能够理解和应用线性规划的基本原理。
简单的线性规划(教案)
§3.3.2简单的线性规划(教案)---一节校际公开课的设计,实施,反思【教学目标】1.知识与技能:掌握线性规划问题的图解法,培养学生数形结合水平,并能应用它解决一些简单的实际问题;2.过程与方法:经历从实际问题中抽象出简单的线性规划问题的过程,学会用数学语言去表达实际问题,通过经历图解法解决问题的过程掌握图解法;3.情态与价值:通过对现实中优化问题的解决,让学生体会数学知识在解决资源分配,生产安排,人力布局等方面的强大作用.培养学生的理性精神。
【教学重点】利用图解法求得线性规划问题的最优解;【教学难点】把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解。
【教学流程】【教学过程】一.复习引入:1.二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域(虚线表示区域不包括边界直线)代点确定,通常代如下几点(0,0),(1,0),(0,1)2.二元一次不等式组表示的几何意义是什么?二.问题情景:例 一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4t 硝酸盐18t ;生产1车皮乙种肥料需要的主要原料是磷酸盐1t,硝酸盐15t,现库存磷酸盐10t 、硝酸盐66t .若生产1车皮甲种肥料,产生的利润为10 000元;生产1车皮乙种肥料,产生的利润为5 000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润? 三 建立模型解:设x,y 分别为计划生产甲乙两种混合肥料的车皮数,设利润为Z,于是满足以下条件:41018156600x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩(1) Z=x+0.5y (2)四 分析Z 随x 和y 的变化是如何变化:把(2)式等价变形为y=-2x+2Z,联系前面学过的一次函数:y=kx+b 可知,b=2Z,又因为一次函数的图象是直线如下图从图中分析可知:当直线与y 轴交点越向上时,b 的值越大,越向下是时,b 的值越小.取z=0,z=1,z=2等等可得到一系列平行直线得到的结论是:y=-2x+z表示一簇直线,z 的值随着直线y=-2x平行移动时与y 轴交点不同而变化,所以我们能够由(1)确定的区域内在平行移动直线y=-2x就可找到z 的最大值点和最小值点五 解决问题 1.在直角坐标系中可表示成如图的平面区域(阴影部分)通过平移参照直线可知使目标函数最大值点在M(2,2)所以Zmax=3万元 2 问题变式 在(1)的约束条件下,求目标函数Z=5x+y,Z=x+2y,Z=4x+y 的最大值3.随堂练习y=-2xy=-2x+1y=-2x+4Z=x+2yy=-2x+zZ=5x+yZ=4x+y1、求y x z -=的最大值、最小值,使x 、y 满足条件⎪⎩⎪⎨⎧≥≥≤+002y x y x2、设y x z +=2,式中变量x 、y 满足 ⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x六 形成一般规律解决线性规划问题的一般方法: ⑴ 建立约束条件和目标函数 ⑵ 画出可行域与参照直线 ⑶ 平行移动参考直线寻找最值点 ⑷ 求交点和最值结论1线性目标函数的最大值、最小值一般在可行域的顶点处取得.结论2线性目标函数的最大值、最小值也可能在可行域的边界上取得,即满足条件的最优解有无数多个.现摘录如下(1)对于一次函数y=kx+b 中当交点在y 轴上越高时b 值越大,但是在有些线性规划问题中,并不一定是交点越高,z 的值越大,有时能够相反,这点未给学生交待清楚,造成学生误认为只要交点越高,z 就越大的理解(2)在作图不是很严格情况下出现不确定最值点在何处时,最好是把各个交点代入检验以确保答案准确,要教给学会防止出错的方法,不能仅依赖作图来找答案 (3)开始阶段要着重向学生强调作图规范和准确以给学生做好示范,强调图解法就是靠准确作图找到最优点 八 教学反思(1) 在教学设计中,我考虑到湖北省必修教材教学顺是14523的顺序,不是12345的顺序,这样就给线性规划教学带来一定的困难,因为斜率未学,导致不能用斜率和截距知识来说明目标函数的变化趋势.所以只能从前面学过的一次函数角度来突破,从教学实际看,学生基本听懂了目标函数的变化趋势.(2) 考虑到本节课的重点是建模和解模两个环节,所以在建模开始时着重强调了列表法分析题中各个数据,对于初学线性规划问题的学生来讲,养成用表格方法去分析,对以后解题有很大作用(3)在解决了基本问题后设置了3个变式,用来强调目标函数最值点取决于目标函数系数和可行域的形状,特别是对于无穷解的设计,以为学生以后解题做好铺垫.。
示范教案一(74简单的线性规划)第一课时
课题:7.4简单的线性规划(一)教学目的:1 •使学生了解二元一次不等式表示平面区域;2•了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;3•了解线性规划问题的图解法,并能应用它解决一些简单的实际问题-4 •培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力-5.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新-教学重点:二元一次不等式表示平面区域.教学难点:把实际问题转化为线性规划问题,并给出解答.授课类型:新授课-课时安排:1课时-教具:多媒体、实物投影仪-一、复习引入:通过前几节的学习,我们知道,在平面直角坐标系中,以二元一次方程x y 1 0的解为坐标的点的集合{(x,y)| x y 1 0}是经过点(0, 1)和(1, 0)的一条直线I,那么,以二元一次不等式(即含有两个未知数,且未知数最高次数都是1的不等式)的解为坐标的点的集合{(x,y)I x y 1 0}是什么图形呢?二、讲解新课:在平面直角坐标系中,所有的点被直线x y 1 0分成三类:(1)在直线x y 1 0 上;(2)在直线x y 1 0的左下方的平面区域内;(3)在直线x y 1 0的右上方的平面区域内即:对于任意一个点(x, y),把它的坐标代入x y 1,可得到一个实数,或等于0,或大于0,或小于0.若x+y-1=0,则点(x,y)在直线I上.我们猜想:对直线I右上方的点(x, y), x y 1 0成立;对直线I左下方的点(x,y), x y 1v 0成立.我们的猜想是否正确呢?下面我们来讨论一下不妨,在直线x y 1=0上任取一点P(x0, y0),过点P作平行于x轴的直线y=y。
,在此直线上点P右侧的任意一点(x, y),都有x > X。
, y = y o,所以,x+y> X o + y°, x y 1 > X o + y o-i=o,即x y 1> 0.再过点P作平行于y轴的直线x=x o,在此直线上点P上侧的任意一点(x, y),都有x=x°,y> y°.所以,x+y > X o+y°, x y 1> x°+ y o-1=O,即x y 1 > 0.因为点P (x0, y0)是直线x y 1 =0上的任意点,所以对于直线x y 1=0右上方的任意点(x,y), x y 1 > 0都成立.同理,对于直线x y 1 =0左下方的任意点(x, y), x y 1 v 0 都成立.如图所示:所以,在平面直角坐标系中,以二元一次不等式x y 1 > 0的解为坐标的点的集合{(x, y )|x y 1 > 0}是在直线x y 1 =0右上方的平面区域-如图所示:那么,在平面直角坐标系中,以二元一次不等式x y 1 v 0的解为坐标的点的集合{(x, y)| x y 1 v 0}是在直线x y 1 =0 左下方的平面区域.总之,二元一次不等式Ax+By+C> 0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组x ty-1=0成的平面区域•(虚线表示区域不包括边界直线)由于对在直线Ax+By+C=0同一侧的所有点(x, y),把它的坐标(x, y)代入Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x o, y o),从Ax o+B^+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域• (特殊地,当C M 0时,常把原点作为此特殊点)- 三、讲解范例:例1画出不等式2 x +y-6 v 0表示的平面区域.解:先画直线2x+y-6=0 (画成虚线)•取原点(0, 0),代入2x+y-6, T 2X 0+0-6=-6 v 0,原点在2 x +y-6 v 0表示的平面区域内,不等式2 x +y-6 v 0表示的区域如图:x y 5 0例2画出不等式组x y 0表示的平面区域分析:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分- 解:不等式x-y+5>0表示直线x-y+5=0上及右下方的点的集合,x +y> 0表示直线x+y=0上及右上方的点的集合,x< 3表示直线x=3上及左方的点的集合.不等式组表示平面区域即为x+y=05 5B(-2'2)x-y+5=0A(3,8)x=3图示的三角形区域:四、课堂练习:1.画出不等式—X+2y—4v 0表示的平面区域.解:先画直线—x +2y—4=0(画成虚线),取原点(0, 0),代入—x + 2y—4,因为0 + 2 X 0 — 4 v 0,所以,原点在—x +2y —4v 0表示的平面区域内,不等式一x + 2y—4v 0表示的区域如图所示.x y 02•画出不等式组y 3x 5表示的平面区域C(3,-3)选题意图:考查不等式组表示的平面区域的画法右下方的点的集合,y w 3表示在直线y=3上及其下方的点的集合,x < 5表示X y 6 o 直线x =5左方的点的集合,所以不等式组X y o 表示的平面区域如图y 3X 5所示说明:不等式组表示的区域应注意其边界线的虚实-3•已知直线I 的方程为Ax+By+C =0, M i (x i ,y i )、M 2(x 2,y 2)为直线|异侧的任意 两点,M i 、M 3(x 3,y 3)为直线I 同侧的任意两点,求证:(1) Ax 什By i +C 与 Ax 2+By 2+C 异号; (2) Ax i +By i +C 与 Ax 3+By 3+C 同号.证明:⑴因M i 、M 2在I 异侧,故I 必交线段M i M 2于点M o .设M o 分M i M 2所成的比为入,则分点M o 的坐标为x ix 2y i y 2A(」2) + B ( * 2)+ C = o ,ii从而得 Ax i + By i + C + 入(AX 2+ By 2 + C )= o.解出入,得Ax i By i C Ax 2 By 2 CT M o 为M i M 2的内分点,故 入>o.• • Ax i + By i + C 与 A X 2+ By 2+ C 异号.(2) •/ M 3、M i 在I 同侧,而 M i 、M 2在I 异侧,故 M 3、M 2在I 异侧,利用 (i)得 AX 3+ By 3 + C 与 AX 2+ By 2 + C 异号,又・ Ax i + By i + C 与 Ax 2 + By 2+ C 异号, • Ax i + By i + C 与 Axs + By ?+ C 同号- 五、 小结 :“二元一次不等式表示平面区域” :(i ) Ax +By +C >o 表示直线Ax +By +C =o 的某一侧的平面区域不包括边界的直线;(2) Ax +By +C 》o 所表示的平面区域包括边界直线 Ax +By +C =o - 六、 课后作业:- 七、 板书设计(略)- 八、 课后记:-X ix o =iX 2 竺代入I 的方程得。
简单的线性规划说课教案
课题:简单的线性规划一、教材分析:1、教材的地位与作用:线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用。
本节内容是在学习了不等式、直线方程的基础上,利用不等式和直线方程的有关知识展开的,它是对二元一次不等式的深化和再认识、再理解。
通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。
2、教学重点与难点:重点:画可行域;在可行域内,用图解法准确求得线性规划问题的最优解。
难点:在可行域内,用图解法准确求得线性规划问题的最优解。
二、目标分析:在新课标让学生经历“学数学、做数学、用数学”的理念指导下,本节课的教学目标分设为知识目标、能力目标和情感目标。
知识目标:1、了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和最优解等概念;2、理解线性规划问题的图解法;3、会利用图解法求线性目标函数的最优解.能力目标:1、在应用图解法解题的过程中培养学生的观察能力、理解能力。
2、在变式训练的过程中,培养学生的分析能力、探索能力。
3、在对具体事例的感性认识上升到对线性规划的理性认识过程中,培养学生运用数形结合思想解题的能力和化归能力。
情感目标:1、让学生体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用,品尝学习数学的乐趣。
2、让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神;3、让学生学会用运动观点观察事物,了解事物之间从一般到特殊、从特殊到一般的辨证关系,渗透辩证唯物主义认识论的思想。
三、过程分析:数学教学是数学活动的教学。
因此,我将整个教学过程分为以下六个教学环节:1、创设情境,提出问题;2、分析问题,形成概念;3、反思过程,提炼方法;4、变式演练,深入探究;5、运用新知,解决问题;6、归纳总结,巩固提高。
1、创设情境,提出问题:在课堂教学的开始,我以一组生动的动画(配图片)描述出在神奇的数学王国里,有一种算法广泛应用于工农业、军事、交通运输、决策管理与规划等领域,应用它已节约了亿万财富,还被列为20世纪对科学发展和工程实践影响最大的十大算法之一。
简单的线性规划教案Id_10425
《简单的线性规划》教案四川省隆昌幼儿师范学校张向龙一、教学内容:高中数学第二册(上)7.4.2线性规划二、教材地位简单的线性规划是在学习了直线方程的基础上安排的内容,本节课是在学习了二元一次不等式(组)所表示的平面区域上承前启后的一节课。
线性规划是以数学知识为工具来研究在一定条件下,如何运用最少的资源,来取最大值的数学分支,它体现了数学的工具性、应用性,渗透化归、数形结合的数学思想,能培养学生通过运用数学知识解决实际问题的能力。
三、教学目标:1、知识目标:线性规划的意义及有关概念。
掌握重点:线性规划的图解法;突破难点:如何寻找线性规划问题中的最优解。
2、能力目标:培养学生的数学模型能力;培养学生运用几何知识解决代数问题的能力。
3、情感目标:在学习的过程中,要解决一个新新问题,应充分联系已有的知识,展开联想,深入分析问题本身的条件。
四、教学方法:探究合作讨论,讲练结合。
五、教学过程;(一)、复习旧知识;引入新知识。
1、画出下列不等式表示的平面区域y<x○1 x-y+1≤0 ○2 x+2y≤4Y≥-22、上一节课,我们学习和研究了二元一次不等式(组)表示平面区域的知识,其实,它在现实生活中有着非常广泛的应用,这一节,我们尝试运用它来解决身边的数学问题。
(二)创设问题情境,探索新知识。
1、问题:某工厂用A,B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1小时,每生产一件乙产品使用4个B配件耗时2小时,该厂每天最多可以从配件厂获得16个A配件和12个B配件,按每天工作8小时计算,该厂所有可能的日生产安排是什么?你能将它变成一个数学问题吗?你能运用所学的知识解决它吗?学生阅读后,尝试解答,教师个别点拔。
师:题目中有甲、乙两种产品,分别对应有A、B两种配件,亦即有“两个元”;题目中有关键词“最多”,还暗含每天工作时间“不超过8小时”我们应选择什么样的数学模型。
生1:有不等式组,(上黑板板书,并讲解思路),设甲乙两种产品分别生产x、y件,由题设可把问题转化成下面的不等式组。
线性规划教案精选全文
可编辑修改精选全文完整版线性规划教案【线性规划教案】一、教学目标1. 了解线性规划的基本概念和应用领域;2. 掌握线性规划的数学模型的建立方法;3. 学会使用线性规划的求解方法,解决实际问题;4. 培养学生的逻辑思维能力和问题解决能力。
二、教学内容1. 线性规划的基本概念a. 线性规划的定义和特点;b. 线性规划的应用领域。
2. 线性规划的数学模型a. 决策变量的定义和约束条件的建立;b. 目标函数的确定。
3. 线性规划的求解方法a. 图形法求解;b. 单纯形法求解。
4. 实际问题的线性规划建模和求解a. 生产计划问题;b. 运输问题;c. 投资组合问题。
三、教学过程1. 线性规划的基本概念a. 引入线性规划的背景和定义,让学生了解线性规划的基本概念;b. 通过实例,介绍线性规划在生产、运输、投资等领域的应用。
2. 线性规划的数学模型a. 介绍决策变量的概念和约束条件的建立方法,让学生掌握数学模型的建立过程;b. 解释目标函数的概念和确定方法,让学生理解目标函数在线性规划中的作用。
3. 线性规划的求解方法a. 详细介绍图形法的步骤和求解过程,通过实例演示图形法的应用;b. 详细介绍单纯形法的步骤和求解过程,通过实例演示单纯形法的应用。
4. 实际问题的线性规划建模和求解a. 通过实际生产计划问题,引导学生进行线性规划建模和求解;b. 通过实际运输问题,引导学生进行线性规划建模和求解;c. 通过实际投资组合问题,引导学生进行线性规划建模和求解。
四、教学方法1. 讲授法:通过讲解线性规划的基本概念、数学模型和求解方法,让学生掌握相关知识;2. 实例演示法:通过实际问题的演示,让学生理解线性规划在实际问题中的应用;3. 讨论交流法:引导学生参与讨论,共同解决线性规划问题,培养学生的合作和交流能力;4. 练习和作业:布置练习和作业,巩固学生的知识和能力。
五、教学评价1. 学生课堂表现:观察学生的听讲和参与情况,评价学生的学习态度和积极性;2. 学生作业完成情况:检查学生的练习和作业完成情况,评价学生的掌握程度;3. 学生实际问题求解能力:通过实际问题的求解,评价学生的问题解决能力和应用能力。
简单的线性规划教学教案
简单的线性规划教学教案教学目标:1.理解线性规划的概念和应用。
2.学会构建线性规划模型。
3.掌握常用的线性规划求解方法。
教学重点:1.线性规划的基本概念和原理。
2.如何根据实际问题构建线性规划模型。
3.线性规划的常用求解方法。
教学难点:1.如何确定线性规划模型的约束条件。
2.如何进行线性规划问题的求解。
教学准备:1.教师准备PPT、教学案例和练习题。
2.学生准备纸笔和计算器。
教学过程:一、导入(10分钟)1.引入线性规划的概念,简单介绍线性规划的应用背景和目标。
2.提问:你知道线性规划吗?它有什么应用领域?二、概念讲解(20分钟)1.讲解线性规划的基本定义和特点。
解释什么是线性规划问题,以及如何区分线性规划和非线性规划。
2.介绍线性规划的基本假设和约束条件。
三、模型构建(30分钟)1.通过实际案例,讲解线性规划的模型构建过程。
2.以一个简单的生产问题为例,引导学生如何根据给定的条件构建线性规划模型。
3.引导学生讨论和思考,如何确定目标函数和约束条件。
四、线性规划问题的求解方法(30分钟)1.介绍线性规划问题的常用求解方法,包括图形法、单纯形法等。
2.以图形法为例,演示如何利用图形法求解线性规划问题。
3.引导学生通过练习题熟练掌握线性规划问题的求解方法。
五、案例分析(20分钟)1.给出一个较为复杂的线性规划问题,引导学生分组进行讨论和求解。
2.学生展示解题过程和结果,并进行讨论和总结。
六、总结与拓展(10分钟)1.整理本节课的主要内容,进行总结。
2.引导学生扩展拓展线性规划的应用领域。
教学延伸:1.鼓励学生通过实际案例进行线性规划模型的构建和求解。
2.将线性规划与其他数学知识结合,如代数、数学建模等。
教学反思:1.这节课应该增加更多的实例分析,帮助学生更好地理解线性规划的构建和求解过程。
2.可以设计更多的练习题,帮助学生巩固所学知识。
简单的线性规划(精选13篇)
简单的线性规划(精选13篇)简单的线性规划篇1教学目标(1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域;(2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;(3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;(5)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.教学建议一、知识结构教科书首先通过一个具体问题,介绍了二元一次不等式表示平面区域.再通过一个具体实例,介绍了线性规化问题及有关的几个基本概念及一种基本解法-图解法,并利用几道例题说明线性规化在实际中的应用.二、重点、难点分析本小节的重点是二元一次不等式(组)表示平面的区域.对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生、抽象的概念,按高二学生现有的知识和认知水平难以透彻理解,因此学习二元一次不等式(组)表示平面的区域分为两个大的层次:(1)二元一次不等式表示平面区域.首先通过建立新旧知识的联系,自然地给出概念.明确二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域不包含边界直线(画成虚线).其次再扩大到所表示的平面区域是包含边界直线且要把边界直线画成实线.(2)二元一次不等式组表示平面区域.在理解二元一次不等式表示平面区域含义的基础上,画不等式组所表示的平面区域,找出各个不等式所表示的平面区域的公共部分.这是学生对代数问题等价转化为几何问题以及数学建模方法解决实际问题的基础.难点是把实际问题转化为线性规划问题,并给出解答.对许多学生来说,从抽象到的化归并不比从具体到抽象遇到的问题少,学生解数学应用题的最常见困难是不会将实际问题提炼成数学问题,即不会建模.所以把实际问题转化为线性规划问题作为本节的难点,并紧紧围绕如何引导学生根据实际问题中的已知条件,找出约束条件和目标函数,然后利用图解法求出最优解作为突破这个难点的关键.对学生而言解决应用问题的障碍主要有三类:①不能正确理解题意,弄清各元素之间的关系;②不能分清问题的主次关系,因而抓不住问题的本质,无法建立数学模型;③孤立地考虑单个的问题情景,不能多方联想,形成正迁移.针对这些障碍以及题目本身文字过长等因素,将本课设计为计算机辅助教学,从而将实际问题鲜活直观地展现在学生面前,以利于理解;分析完题后,能够抓住问题的本质特征,从而将实际问题抽象概括为线性规划问题.另外,利用计算机可以较快地帮助学生掌握寻找整点最优解的方法.三、教法建议(1)对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生的概念,不象二元一次方程表示直线那样已早有所知,为使学生对这一概念的引进不感到突然,应建立新旧知识的联系,以便自然地给出概念(2)建议将本节新课讲授分为五步(思考、尝试、猜想、证明、归纳)来进行,目的是为了分散难点,层层递进,突出重点,只要学生对旧知识掌握较好,完全有可能由学生主动去探求新知,得出结论.(3)要举几个典型例题,特别是似是而非的例子,对理解二元一次不等式(组)表示的平面区域的含义是十分必要的.(4)建议通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,这对培养学生观察、联想、猜测、归纳等数学能力是大有益处的.(5)对作业、思考题、研究性题的建议:①作业主要训练学生规范的解题步骤和作图能力;②思考题主要供学有余力的学生课后完成;③研究性题综合性较大,主要用于拓宽学生的思维.(6)若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解(近似解),应作适当的调整,其方法应以与线性目标函数的直线的距离为依据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近似解附近寻找.如果可行域中的整点数目很少,采用逐个试验法也可.(7)在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.线性规划教学设计方案(一)教学目标使学生了解并会作二元一次不等式和不等式组表示的区域.重点难点了解二元一次不等式表示平面区域.教学过程【引入新课】我们知道一元一次不等式和一元二次不等式的解集都表示直线上的点集,那么在平面坐标系中,二元一次不等式的解集的意义是什么呢?【二元一次不等式表示的平面区域】1.先分析一个具体的例子我们知道,在平面直角坐标系中,以二元一次方程的解为坐标的点的集合是经过点(0,1)和(1,0)的一条直线l(如图)那么,以二元一次不等式(即含有两个未知数,且未知数的最高次数都是1的不等式)的解为坐标的点的集合是什么图形呢?在平面直角坐标系中,所有点被直线l分三类:①在l上;②在l 的右上方的平面区域;③在l的左下方的平面区域(如图)取集合A的点(1,1)、(1,2)、(2,2)等,我们发现这些点都在l的右上方的平面区域,而点(0,0)、(-1,-1)等等不属于A,它们满足不等式,这些点却在l的左下方的平面区域.由此我们猜想,对直线l右上方的任意点成立;对直线l左下方的任意点成立,下面我们证明这个事实.在直线上任取一点,过点P作垂直于y轴的直线,在此直线上点P右侧的任意一点,都有∴于是所以因为点,是L上的任意点,所以,对于直线右上方的任意点,都成立同理,对于直线左下方的任意点,都成立所以,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集点.是直线右上方的平面区域(如图)类似地,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集合是直线左下方的平面区域.2.二元一次不等式和表示平面域.(1)结论:二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域.把直线画成虚线以表示区域不包括边界直线,若画不等式就表示的面区域时,此区域包括边界直线,则把边界直线画成实线.(2)判断方法:由于对在直线同一侧的所有点,把它的坐标代入,所得的实数的符号都相同,故只需在这条直线的某一侧取一个特殊点,以的正负情况便可判断表示这一直线哪一侧的平面区域,特殊地,当时,常把原点作为此特殊点.【应用举例】例1 画出不等式表示的平面区域解;先画直线(画线虚线)取原点(0,0),代入,∴∴原点在不等式表示的平面区域内,不等式表示的平面区域如图阴影部分.例2 画出不等式组表示的平面区域分析:在不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.解:不等式表示直线上及右上方的平面区域,表示直线上及右上方的平面区域,上及左上方的平面区域,所以原不等式表示的平面区域如图中的阴影部分.课堂练习作出下列二元一次不等式或不等式组表示的平面区域.(1)(2)(3)(4)(5)总结提炼1.二元一次不等式表示的平面区域.2.二元一次不等式表示哪个平面区域的判断方法.3.二元一次不等式组表示的平面区域.布置作业1.不等式表示的区域在的().A.右上方B.右下方C.左上方D.左下方2.不等式表示的平面区域是().3.不等式组表示的平面区域是().4.直线右上方的平面区域可用不等式表示.5.不等式组表示的平面区域内的整点坐标是 .6.画出表示的区域.答案:1.B2.D3.B4.5.(-1,-1)6.简单的线性规划篇2教学目标(1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域;(2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;(3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;(5)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.教学建议一、知识结构教科书首先通过一个具体问题,介绍了二元一次不等式表示平面区域.再通过一个具体实例,介绍了线性规化问题及有关的几个基本概念及一种基本解法-图解法,并利用几道例题说明线性规化在实际中的应用.二、重点、难点分析本小节的重点是二元一次不等式(组)表示平面的区域.对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生、抽象的概念,按高二学生现有的知识和认知水平难以透彻理解,因此学习二元一次不等式(组)表示平面的区域分为两个大的层次:(1)二元一次不等式表示平面区域.首先通过建立新旧知识的联系,自然地给出概念.明确二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域不包含边界直线(画成虚线).其次再扩大到所表示的平面区域是包含边界直线且要把边界直线画成实线.(2)二元一次不等式组表示平面区域.在理解二元一次不等式表示平面区域含义的基础上,画不等式组所表示的平面区域,找出各个不等式所表示的平面区域的公共部分.这是学生对代数问题等价转化为几何问题以及数学建模方法解决实际问题的基础.难点是把实际问题转化为线性规划问题,并给出解答.对许多学生来说,从抽象到的化归并不比从具体到抽象遇到的问题少,学生解数学应用题的最常见困难是不会将实际问题提炼成数学问题,即不会建模.所以把实际问题转化为线性规划问题作为本节的难点,并紧紧围绕如何引导学生根据实际问题中的已知条件,找出约束条件和目标函数,然后利用图解法求出最优解作为突破这个难点的关键.对学生而言解决应用问题的障碍主要有三类:①不能正确理解题意,弄清各元素之间的关系;②不能分清问题的主次关系,因而抓不住问题的本质,无法建立数学模型;③孤立地考虑单个的问题情景,不能多方联想,形成正迁移.针对这些障碍以及题目本身文字过长等因素,将本课设计为计算机辅助教学,从而将实际问题鲜活直观地展现在学生面前,以利于理解;分析完题后,能够抓住问题的本质特征,从而将实际问题抽象概括为线性规划问题.另外,利用计算机可以较快地帮助学生掌握寻找整点最优解的方法.三、教法建议(1)对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生的概念,不象二元一次方程表示直线那样已早有所知,为使学生对这一概念的引进不感到突然,应建立新旧知识的联系,以便自然地给出概念(2)建议将本节新课讲授分为五步(思考、尝试、猜想、证明、归纳)来进行,目的是为了分散难点,层层递进,突出重点,只要学生对旧知识掌握较好,完全有可能由学生主动去探求新知,得出结论.(3)要举几个典型例题,特别是似是而非的例子,对理解二元一次不等式(组)表示的平面区域的含义是十分必要的.(4)建议通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,这对培养学生观察、联想、猜测、归纳等数学能力是大有益处的.(5)对作业、思考题、研究性题的建议:①作业主要训练学生规范的解题步骤和作图能力;②思考题主要供学有余力的学生课后完成;③研究性题综合性较大,主要用于拓宽学生的思维.(6)若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解(近似解),应作适当的调整,其方法应以与线性目标函数的直线的距离为依据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近似解附近寻找.如果可行域中的整点数目很少,采用逐个试验法也可.(7)在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.线性规划方案(一)教学目标使学生了解并会作二元一次不等式和不等式组表示的区域.重点难点了解二元一次不等式表示平面区域.教学过程【引入新课】我们知道一元一次不等式和一元二次不等式的解集都表示直线上的点集,那么在平面坐标系中,二元一次不等式的解集的意义是什么呢?【二元一次不等式表示的平面区域】1.先分析一个具体的例子我们知道,在平面直角坐标系中,以二元一次方程的解为坐标的点的集合是经过点(0,1)和(1,0)的一条直线l(如图)那么,以二元一次不等式(即含有两个未知数,且未知数的最高次数都是1的不等式)的解为坐标的点的集合是什么图形呢?在平面直角坐标系中,所有点被直线l分三类:①在l上;②在l 的右上方的平面区域;③在l的左下方的平面区域(如图)取集合A的点(1,1)、(1,2)、(2,2)等,我们发现这些点都在l的右上方的平面区域,而点(0,0)、(-1,-1)等等不属于A,它们满足不等式,这些点却在l的左下方的平面区域.由此我们猜想,对直线l右上方的任意点成立;对直线l左下方的任意点成立,下面我们证明这个事实.在直线上任取一点,过点P作垂直于y轴的直线,在此直线上点P右侧的任意一点,都有∴于是所以因为点,是L上的任意点,所以,对于直线右上方的任意点,都成立同理,对于直线左下方的任意点,都成立所以,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集点.是直线右上方的平面区域(如图)类似地,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集合是直线左下方的平面区域.2.二元一次不等式和表示平面域.(1)结论:二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域.把直线画成虚线以表示区域不包括边界直线,若画不等式就表示的面区域时,此区域包括边界直线,则把边界直线画成实线.(2)判断方法:由于对在直线同一侧的所有点,把它的坐标代入,所得的实数的符号都相同,故只需在这条直线的某一侧取一个特殊点,以的正负情况便可判断表示这一直线哪一侧的平面区域,特殊地,当时,常把原点作为此特殊点.【应用举例】例1 画出不等式表示的平面区域解;先画直线(画线虚线)取原点(0,0),代入,∴∴原点在不等式表示的平面区域内,不等式表示的平面区域如图阴影部分.例2 画出不等式组表示的平面区域分析:在不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.解:不等式表示直线上及右上方的平面区域,表示直线上及右上方的平面区域,上及左上方的平面区域,所以原不等式表示的平面区域如图中的阴影部分.课堂练习作出下列二元一次不等式或不等式组表示的平面区域.(1)(2)(3)(4)(5)总结提炼1.二元一次不等式表示的平面区域.2.二元一次不等式表示哪个平面区域的判断方法.3.二元一次不等式组表示的平面区域.布置作业1.不等式表示的区域在的().A.右上方B.右下方C.左上方D.左下方2.不等式表示的平面区域是().3.不等式组表示的平面区域是().4.直线右上方的平面区域可用不等式表示.5.不等式组表示的平面区域内的整点坐标是 .6.画出表示的区域.答案:1.B2.D3.B4.5.(-1,-1)6.简单的线性规划篇3线性规划教学设计方案(二)教学目标巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值.重点难点理解二元一次不等式表示平面区域是教学重点.如何扰实际问题转化为线性规划问题,并给出解答是教学难点.教学步骤【新课引入】我们知道,二元一次不等式和二元一次不等式组都表示平面区域,在这里开始,教学又翻开了新的一页,在今后的学习中,我们可以逐步看到它的运用.【线性规划】先讨论下面的问题设,式中变量x、y满足下列条件①求z的最大值和最小值.我们先画出不等式组①表示的平面区域,如图中内部且包括边界.点(0,0)不在这个三角形区域内,当时,,点(0,0)在直线上.作一组和平等的直线可知,当l在的右上方时,直线l上的点满足 .即,而且l往右平移时,t随之增大,在经过不等式组①表示的三角形区域内的点且平行于l的直线中,以经过点A(5,2)的直线l,所对应的t最大,以经过点的直线,所对应的t最小,所以在上述问题中,不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称线性约束条件.是欲达到最大值或最小值所涉及的变量x、y的解析式,叫做目标函数,由于又是x、y的解析式,所以又叫线性目标函数,上述问题就是求线性目标函数在线性约束条件①下的最大值和最小值问题.线性约束条件除了用一次不等式表示外,有时也有一次方程表示.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题,满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域,在上述问题中,可行域就是阴影部分表示的三角形区域,其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.【应用举例】例1 解下列线性规划问题:求的最大值和最小值,使式中的x、y满足约束条件解:先作出可行域,见图中表示的区域,且求得 .作出直线,再将直线平移,当的平行线过B点时,可使达到最小值,当的平行线过C点时,可使达到最大值.通过这个例子讲清楚线性规划的步骤,即:第一步:在平面直角坐标系中作出可行域;第二步:在可行域内找出最优解所对应的点;第三步:解方程的最优解,从而求出目标函数的最大值或最小值.例2 解线性规划问题:求的最大值,使式中的x、y满足约束条件.解:作出可行域,见图,五边形OABCD表示的平面区域.作出直线将它平移至点B,显然,点B的坐标是可行域中的最优解,它使达到最大值,解方程组得点B的坐标为(9,2).∴这个例题可在教师的指导下,由学生解出.在此例中,若目标函数设为,约束条件不变,则z的最大值在点C(3,6)处取得.事实上,可行域内最优解对应的点在何处,与目标函数所确定的直线的斜率有关.就这个例子而言,当的斜率为负数时,即时,若(直线的斜率)时,线段BC上所有点都是使z取得最大值(如本例);当时,点C 处使z取得最大值(比如:时),若,可请同学思考.随堂练习1.求的最小值,使式中的满足约束条件2.求的最大值,使式中满足约束条件答案:1. 时, .2. 时, .总结提炼1.线性规划的概念.2.线性规划的问题解法.布置作业1.求的最大值,使式中的满足条件2.求的最小值,使满足下列条件答案:1.2.在可行域内整点中,点(5,2)使z最小,探究活动利润的线性规划[问题]某企业1997年的利润为5万元,1998年的利润为7万元,1999年的利润为81元,请你根据以上信息拟定两个不同的利润增长直线方程,从而预2001年企业的利润,请问你帮该企业预测的利润是多少万?[分析]首先应考虑在平面直角坐标系中如何描述题中信息:“1997年的利润为5万元,1998年的利润为7万元,1999年的利润为8万元”,在确定这三点坐标后,如何运用这三点坐标,是仅用其中的两点,还是三点信息的综合运用,运用时要注意有其合理性、思考的方向可以考虑将通过特殊点的直线、平行某个线段的直线、与某些点距离最小的直线作为预测直线等等.建立平面直角坐标系,设1997年的利润为5万元对应的点为(0,5),1998年的利润为7万元及1999年的利润为8万元分别对应点(1,7)和(2,8),那么①若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为13万元.②若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为11万元.③若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为10万元.④若将过及线段的中点的直线作为预测直线,其方程为:,这样预测2001年的利润为11.667万元.⑤若将过及的重心(注:为3年的年平均利润)的直线作为预测直线,其方程为:,这样预测2001年的利润为11.667万元.⑥若将过及的重心的直线作为预测直线,其方程为:,这样预测2001年的利润为10.667万元.⑦若将过且以线段的斜率为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为9万元.⑧若将过且以线段的斜率为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为11.5万元.⑨若将过点且以线段的斜率为斜率的直线,作为预测直线,则预测直线的方程为;,这样预测2001年的利润为12万元.⑩若将过且以线段的斜率与线段的斜率的平均数为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为12万元.如此这样,还有其他方案,在此不—一列举.[思考](1)第⑤种方案与第④种方案的结果完全一致,这是为什么?(2)第⑦种方案中,的现实意义是什么?(3)根据以上的基本解题思路,请你思考新的方案.如方案⑥中,过的重心,找出以为斜率的直线中与两点的距离的平方和最小的直线作为预测直线.(4)根据以上结论及你自己的答案估计一下利润的范围,你预测的利润频率出现最多的是哪一个值?你认为将你预测的结论作怎样的处理,使之得到的利润预测更为有效?如果不要求用线性预测,你能得出什么结果?简单的线性规划篇4线性规划教学设计方案(二)教学目标巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值.。
简单的线性规划 说课稿 教案 教学设计
简单线性规划问题一、教学目标:1.理解线性目标函数、线性约束条件、线性规划问题、可行解、可行域、最优解的概念;2.能从实际情境中抽象出一些简单的二元线性规划问题;3.掌握简单的二元线性规划问题的解法.二、教学重点:简单的二元线性规划问题的解法及步骤.三、教学过程:1.创设情境某工厂用A,B两种配件生产甲,乙两种产品,每生产一件甲种产品使用4个A配件耗时1h,每生产一件乙种产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8小时计算,若生产1件甲种产品获利2万元,生产1 件乙种产品获利3万元,采用哪种生产安排利润最大?为理解题意,可以将已知数据整理成下表:将上述问题转化为数学问题为:●如何解决这个问题?2.建构数学一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。
满足线性约束条件的解()y x ,叫做可行解。
由所有可行解组成的集合叫做可行域。
使目标函数取得最值的可行解叫做最优解。
3.数学应用1.解决问题:求利润z=2x+3y 的最大值.2841641200.x y x y x y +≤⎧⎪≤⎪⎪≤⎨⎪≥⎪≥⎪⎩,,,, 2.设y x z 53+=,式中变量y x ,满足条件⎪⎪⎩⎪⎪⎨⎧≥>≥+≥+.001710732y x y x y x ,,,,求z 的最小值.3.某公司的仓库A 存有货物12吨,仓库B 存有货物8吨。
现按7吨、8吨和5吨把货物分别调运给甲、乙、丙三个商店,从仓库A 运货物到商店甲、乙、丙,每吨货物的运费分别为8元、6元、9元;从仓库B 运货物到商店甲、乙、丙,每吨货物的运费分别为3元、4元、5元。
则应如何安排调运方案,才能使得从两个仓库运货物到三个商店的总运费最少? 【练习】课本练习的1、2、3、4、54.回顾小结。
线性规划教学设计方案(五篇)
线性规划教学设计方案(五篇)第一篇:线性规划教学设计方案线性规划教学设计方案教学目标使学生了解并会作二元一次不等式和不等式组表示的区域.重点难点了解二元一次不等式表示平面区域.教学过程【引入新课】我们知道一元一次不等式和一元二次不等式的解集都表示直线上的点集,那么在平面坐标系中,二元一次不等式的解集的意义是什么呢?【二元一次不等式表示的平面区域】1.先分析一个具体的例子在平面直角坐标系中,所有的点被直线x+y-1=0分成三类:(1)在直线x+y-1=0上;{(x,y)/x+y-1=o}(2)在直线x+y-1=0的左下方的平面区域内;{(x,y)/}(3)在直线x+y-1=0的右上方的平面区域内.{(x,y)/}点(1,1)、(1,2)、(2,2)等x+y-1>0 点(0,0)、(-1,-1)等x+y-1<0 猜想。
在直线x+y-1=0的右上方的平面区域内.{(x,y)x+y-1>0}在直线x+y-1=0的左下方的平面区域内;{(x,y)x+y-1<0}证明:在此直线右侧任意一点P(x,y)过点P作平行于x轴的直线交直线x+y-1=0点P0(x0,y0)都有x>x0,y=y0,所以,x+y>x0+y0,x+y-1>x0+y0-1=0, 即x+y-1>0.同理,对于直线x+y-1=0左下方的任意点(x,y),x+y-1<0都成立.所以,在平面直角坐标系中,以二元一次不等式x+y-1>0的解为坐标的点的集点.{(x,y)x+y-1>0}是直线x+y-1=0右上方的平面区域(如图)类似地,在平面直角坐标系中,以二元一次不等式x+y-1<0的解为坐标的点的集合{(x,y)x+y-1<0}是直线x+y-1=0左下方的平面区域.2.二元一次不等式ax+by+c>0和ax+by+c<0表示平面域.(1)结论:二元一次不等式ax+by+c>0在平面直角坐标系中表示直线ax+by+c=0某一侧所有点组成的平面区域.把直线画成虚线以表示区域不包括边界直线,若画不等式ax+by+c≥0就表示的面区域时,此区域包括边界直线,则把边界直线画成实线.(2)判断方法:由于对在直线ax+by+c=0同一侧的所有点(x,y),把它的坐标所得的实数的符号都相同,故只需在这条直线的某一侧取一个特殊(x,y)代入ax+by+c,点(x0,y0),以a0x+b0y+c的正负情况便可判断ax+by+c>0表示这一直线哪一侧的平面区域,特殊地,当c≠0时,常把原点作为此特殊点.【应用举例】例1 画出不等式2x+y-6<0表示的平面区域解;先画直线2x+y-6=0(画线虚线)取原点(0,0),代入2x+y-6,∴2x+y-6<0∴原点在不等式2x+y-6<0表示的平面区域内,不等式2x+y-6<0表示的平面区域如图阴影部分.例2 画出不等式组⎧x-y+5≥0⎪⎨x+y≥0⎪x≤3⎩表示的平面区域分析:在不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.解:不等式x-y+5≥0表示直线x-y+5=0上及右上方的平面区域,x+y≥0表示直线x+y=0上及右上方的平面区域,x≤3上及左上方的平面区域,所以原不等式表示的平面区域如图中的阴影部分.课堂练习作出下列二元一次不等式或不等式组表示的平面区域.(1)x-y+1<0(2)2x+3y-6>0(3)2x+5y-10>0(4)4x-3y-12<0⎧x+y-1>0(5)⎨x-y>0⎩1.如图所示的平面区域所对应的不等式是().A.3x+2y-6<0.B.3x+2y-6≤0C.3x+2y-6>0.D.3x+2y-6≥02.不等式组⎨⎧x+3y+6≥0⎩x-y+2<0表示的平面区域是().⎧x<0⎪3.不等式组⎨y<0表示的平面区域内的整点坐标是.⎪4x+3y+8>0⎩思考:画出(x+2y-1)(x-y+3)>0表示的区域.总结提炼1.二元一次不等式表示的平面区域.2.二元一次不等式表示哪个平面区域的判断方法.3.二元一次不等式组表示的平面区域.布置作业第二篇:简单的线性规划教学反思《简单的线性规划》教学反思桐城五中杨柳线性规划是《运筹学》中的基本组成部分,是通过数形结合方法来解决日常生活实践中的最优化问题的一种数学模型,体现了数形结合的数学思想,具有很强的现实意义。
简单的线性规划教学设计
《简单的线性规划》教学设计一、内容和内容解析线性规划主要用于解决生活、生产中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。
涉及更多个变量的线性规划问题不能用初等方法解决。
本节课为该单元的第3课时,主要内容是线性规划的相关概念和简单的线性规划问题的解法.重点是如何根据实际问题准确建立目标函数,并依据目标函数的几何含义运用数形结合方法求出最优解。
与其它部分知识的联系,表现在:二、目标和目标解析本课时的目标是:1•了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等相关概念.了解线性规划模型的特征:一组决策变量5・刃表示一个方案;约束条件是一次不等式组;目标函数是线性的,求目标函数的最大值或最小值.熟悉线性约束条件(不等式组)的几何表征是平面区域(可行域)•体会可行域与可行解、可行域与最优解、可行解与最优解的关系.2•掌握实际优化问题建立线性规划模型并运用数形结合方法进行求解的基本思想和步骤.会从实际优化问题中抽象、识别出线性规划模型•能理解目标函数的几何表征(一族平行直线)•能依据目标函数的几何意义,运用数形结合方法求出最优解和线性目标函数的最大(小)值,其基本步骤为建、画、移、求、答.3•培养学生数形结合的能力.对模型中z的最小值的求解,通过对式子疋二h +弘的变形,变为2z z2V = —— x-l-————3利用数形结合思想,把?看作斜率为3的平行直线系在y轴上的截距.平移直线■' 1 '1,使其与y轴的交点最高,观察图象直线经过M(4, 2),得出最优解x = 4,y = 2.三、教学问题诊断分析线性规划问题的难点表现在三个方面:一是将实际问题抽象为线性规划模型;二是线性约束条件和线性目标函数的几何表征;三是线性规划最优解的探求.其中第一个难点通过第1课时已基本克服;第二个难点线性约束条件的几何意义也在第2课时基本解决,本节将继续巩固;第三个难点的解决必须在二元一次不等式(组)表示平面区域的基础上,继续利用数形结合的思想方法把目标函数直观化、可视化,以图解的形式解决之.将决策变量x,y以有序实数对(x,y)的形式反映,沟通问题与平面直角坐标系的联系,一个有序实数对就是一个决策方案.借助线性目标函数的几何意义准确理解线性目标函数在y轴上的截距与z的最值之间的关系;以数学语言表述运用数形结合得到求解线性规划问题的过程。
简单线性规划教学设计
《简单的线性规划》教学设计教材分析本节是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》中3.3.2《简单的线性规划问题》的第二课时。
主要内容是利用图解法解决简单的线性规划问题。
线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
线性规划教学安排在不等式和直线方程的结合点上,是培养学生熟练运用转化能力和数形结合能力的重要内容。
本节内容蕴含了丰富的数学思想、方法,突出体现了优化思想、数形结合思想和化归思想。
学情分析本节是在学生已经学习了函数、映射、不等式、直线方程的基础上,利用相关知识展开的,是对上述内容的深化和再认识。
学生在第一节课已初步学习利用表格将文字长、数据多的应用问题中的数据进行整理,设未知数,列出线性约束条件。
本节课一方面要引导学生经历数据整理过程,准确列出约束条件,分析数据,写出线性目标函数,尝试运用该模型解决实际问题。
另一方面要针对不同形式的目标函数探求不同的数学模型,在数学问题解决的全过程中加深对简单线性规划问题数学模型的理解和运用。
通过本节教学能使学生加深体会运用已有的认知结构探求新知的方法。
这将使学生在以后的学习数学的过程中遇到困难想办法,数形结合进行数学转化,从而培养学生的数学素养,提升学生的数学应用能力。
目标分析知识目标:1、了解线性规划的意义,线性约束条件、目标函数、可行域、可行解和最优解等概念;2、理解线性规划问题的图解法;3、会利用图解法求目标函数的最优解。
能力目标:1、在应用图解法解题的过程中培养观察能力、理解能力、运用数形结合思想解决线性规划问题的能力。
2、在变式训练的过程中,培养分析能力、探索能力。
3、在对具体事例的感性认识上升到对线性规划的理性认识过程中,培养化归能力。
情感目标:1、体验数学来源于生活,服务于生活,品尝学习数学的乐趣。
2、体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神。
初级线性计划教案模板范文
课时:2课时教学目标:1. 让学生理解线性规划的概念和基本原理。
2. 培养学生运用线性规划解决实际问题的能力。
3. 培养学生的逻辑思维和团队协作能力。
教学重点:1. 线性规划的概念和基本原理。
2. 线性规划的建模和解法。
教学难点:1. 线性规划建模的技巧。
2. 线性规划求解方法的选择。
教学过程:第一课时一、导入1. 引入实际问题:某工厂生产两种产品,需要确定生产方案以最大化利润。
2. 提出问题:如何利用线性规划解决这个问题?二、讲授新课1. 线性规划的概念- 定义:线性规划是研究线性约束条件下,线性目标函数的优化问题。
- 特点:目标函数和约束条件都是线性的。
2. 线性规划的建模- 确定决策变量:找出影响问题的关键因素,将其表示为决策变量。
- 建立目标函数:根据实际问题,确定要优化的目标,将其表示为目标函数。
- 建立约束条件:根据实际问题,确定限制条件,将其表示为约束条件。
3. 线性规划的求解- 单纯形法:适用于线性规划问题。
- 求解步骤:1. 将线性规划问题转化为标准形式。
2. 选择初始基本可行解。
3. 进行迭代计算,逐步改进解。
4. 判断是否达到最优解,若达到,则输出最优解;否则,继续迭代。
三、课堂练习1. 给出实际问题,让学生尝试建立线性规划模型。
2. 让学生运用单纯形法求解线性规划问题。
四、课堂小结1. 总结本节课所学内容,强调线性规划的概念、建模和求解方法。
2. 强调线性规划在实际问题中的应用。
第二课时一、复习导入1. 回顾上一节课所学内容,提问学生线性规划的概念、建模和求解方法。
2. 引入新问题:如何利用线性规划解决多约束条件下的实际问题?二、讲授新课1. 多约束条件下的线性规划- 定义:多约束条件下的线性规划是指在多个线性约束条件下,线性目标函数的优化问题。
- 特点:约束条件较多,求解难度较大。
2. 多约束条件下的线性规划求解方法- 改进单纯形法:适用于多约束条件下的线性规划问题。
- 求解步骤:1. 将线性规划问题转化为标准形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单的线性规划教学设计
简单的线性规划教学设计
线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
下面是店铺为你带来的简单的线性规划教学设计,欢迎阅读。
一、教学内容分析
线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它能解决科学研究、工程设计、经济管理等许多方面的实际问题.
简单的线性规划(涉及两个变量)关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成.突出体现了优化的思想.
二、学生学情分析
本节课学生在学习了不等式、直线方程的基础上,又通过实例,理解了平面区域的意义,并会画出平面区域,还能初步用数学关系式表示简单的二元线性规划的限制条件,将实际问题转化为数学问题. 从数学知识上看,问题涉及多个已知数据、多个字母变量,多个不等关系,从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日,这都成了学生学习的困难.
三、设计思想
本课以学生为主体,应用“数形结合”的思想方法,培养学生的学会分析问题、解决问题的能力。
四、教学目标
1.知识与技能:
(1)了解线性规划的意义及线性约束条件、线性目标函数、可行解、可行域、最优解等概念;能根据条件建立线性目标函数;
(2)了解线性规划问题的图解法,并会用图解法求线性目标函数的最大值、最小值.
2.过程与方法:培养学生观察、联想以及作图的能力,渗透化归数形结合的数学思想.
3.情感、态度与价值观:
进一步培养学生学习应用数学的意识及思维的创新性.
五、教学重点与难点
重点:线性规划问题的图解法.
难点:图解法及寻求线性规划问题的最优解.
六、学法
对例题的处理可让学生思考,然后师生共同对解题思路进行概括,使学生更深刻地领会和掌握解题的方法。
七、教学设计
(一)自主学习
1. 二元一次不等式(组)表示的平面区域的画法.(由学生回答)
如:画出不等式组表示的平面区域.
2.设,式中变量满足条件,求的最大值和最小值.
问题:能否用不等式的知识来解决以上问题?(否)
那么,能不能用二元一次不等式表示的平面区域来求解呢?怎样求解?
(二)知识解析
在上述引例中,不等式组是一组对变量的约束条件,这组约束条件都是关于的一次不等式,所以又称为线性约束条件。
是要求最大值或最小值所涉及的变量的解析式,叫目标函数。
又由于是的一次解析式,所以又叫线性目标函数.
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。
满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。
在上述问题中,可行域就是阴影部分表示的三角形区域。
其中可行解和分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.
(三)合作探究
例1.设,式中满足条件,求的最大值和最小值.
说明:
1.线性目标函数的最大值、最小值一般在可行域的顶点处取得;
2.线性目标函数的最大值、最小值也可在可行域的边界上取得,即满足条件的最优解有无数多个。
例2.设满足约束条件组,求的最大值和最小值.
说明:
1.目标函数中y的系数为负数时,上下平移和y的系数是正数的刚好相反
2. 可行域的`边界问题
【变式训练1】在例1的条件下求z=2x+3y-12的最大值和最小值;
【变式训练2】在例2的条件下求z=2x-4y的最大值和最小值
(四)随堂练习:课本第103页的练习。
(及时检验学生利用图解法解线性规划问题的情况)
练习目的:会用数形结合思想,将求的最大值转化为直线与平面区域有公共点时,在区域内找一个点M,使直线经过点M时在y轴上的截距最小的问题,为节省时间,教师可预先画好平面区域,让学生把精力集中到求最优解的解决方案上。
(五)课时小结:
1.线性规划问题的有关概念;
2.求最优解的一般步骤
(1)画线性约束条件所确定的平面区域;
(2)取目标函数z=0,过原点作相应的直线;
(3)平移该直线,观察确定区域内最优解的位置;
(4)解有关方程组求出最优解,代入目标函数得最值.
(七)布置作业:课本第103页练习1第3,4小题
课本第105页练习2
【简单的线性规划教学设计】。