高中数学教学设计获奖作品《简单的线性规划问题》

合集下载

高二数学人教A版必修5教学教案3-3-2简单的线性规划问题(7)

高二数学人教A版必修5教学教案3-3-2简单的线性规划问题(7)

《简单的线性规划问题》教学设计一、教学内容解析线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,是辅助人们进行科学管理的数学方法,为合理地利用有限的人力、物力、财力等资源作出最优决策。

本节的教学重点是线性规划问题的图解法。

数形结合和化归思想是研究线性约束条件下求线性目标函数的最值问题的数学理论和方法,本节课重点体现了这一数学思想,将目标函数与直线的截距、斜率、两点距离联系起来,这样就能使学生对数形结合思想的理解和应用更透彻,为以后解析几何的学习和研究奠定了基础,使学生从更深层次地理解“以形助数”的作用。

二、教学目标设置(1)知识与技能:使学生了解线性规划的意义,利用数形结合及化归的数学方法,理解并掌握非线性目标函数及非线性约束条件下目标函数的最值求法;(2)过程与方法:在实验探究的过程中,培养学生的数据分析能力、探究能力、合情推理能力;在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力;(3)情态、态度与价值观:激发学生动手操作、勇于探索的精神,培养学生发现问题、分析问题及解决问题的能力,体会数学活动充满着探索与创造。

三、教学重点难点教学重点:求非线性目标函数的最值;教学难点:能将代数问题转化为斜率或距离等几何问题;四、学情分析本节课学生在学习了简单线性规划问题的基础上,会画出平面区域,并且会计算简单线性目标函数的最值。

从数学知识上看,学生在此基础上还学习过直线的斜率,两点距离问题,直线与圆的位置关系,具备本节课所需知识要素。

从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日,这成了学生学习的困难。

五、教学方法本课以例题为载体,以学生为主体,以数学实验为手段,以问题解决为目的,激发学生动手操作、观察思考、猜想探究的兴趣。

注重引导帮助学生充分体验“从具体到一般”的抽象过程。

应用“数形结合”的思想方法,培养学生学会分析问题,解决问题的能力。

六、教学过程。

高中数学必修五《简单的线性规划问题》优秀教学设计

高中数学必修五《简单的线性规划问题》优秀教学设计

§3.3.2 简单的线性规划问题(第一课时)【学习目标】1. 复习掌握二元一次不等式(组)表示的平面区域;2. 了解线性规划的意义以及线性的约束条件、线性目标函数、可行解、可行域、最优解的概念;3. 了解线性规划问题的图解法,掌握图解法求线性目标函数的最大值、最小值。

【重点和难点】重点、难点:掌握图解法求线性目标函数的最大值、最小值。

【课堂教学】(一)复习:二元一次不等式(组)与平面区域1. 满足二元一次不等式(组)的解()y x ,可以看成直角坐标平面内点的坐标。

于是,二元一次不等式(组)的解集就可以看成直角坐标系内的点构成的集合。

2. 平面区域:二元一次不等式表示平面区域的判定方法是:以线定界(包括边界,画实线;不包括边界,画虚线),以点定域(以0>++C By Ax 为例):(1)画边界:即画出直线0=++C By Ax 。

(2)定区域:在直线0=++C By Ax 的一侧取一个特殊点()00,y x 作为测试点代入式子C By Ax ++,由C By Ax ++00的符号判定0>++C By Ax 表示的是直线0=++C By Ax 哪一侧的平面区域,当0≠C ,常选取()0,0作为测试点;当0=C ,常选取()0,1或()1,0作为测试点。

(3)求交集(公共部分):二元一次不等式组表示的平面区域是各不等式表示的平面区域的公共部分。

【温故而知新】1. 在平面直角坐标系中,若点()t A ,2-在直线042=+-y x 的上方,则t 的取值范围是___________。

2. 点()2,1与点()4,3-在直线0=++a y x 的两侧,则实数a 的取值范围是____________。

3. 画出不等式(组)⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x 表示的平面区域,并求其面积。

(二)简单的线性规划问题1. 线性规划问题中的基本概念:线性约束条件、目标函数、线性目标函数、可行解、可行域、最优解。

简单的线性规划问题

简单的线性规划问题

简单的线性规划问题(一)教案单县一中 万继昌一. 教学目标:1. 知识目标:(1)了解线性规划,可行域等概念的意义。

(2)掌握简单的线性规划问题的解法。

2. 能力目标:结合实际应用实例,概括总结出线性规划问题及解决方法,培养学生现实应用技能,分析、探索的能力。

3. 情感目标:体会数学来源于现实生活,体验数学在建设节约型社会中的作用,提高学生解决实际问题的能力。

二. 教学重点:利用图解法求得线性规划问题的最优解;三. 教学难点: 如何准确求出线性规划问题的最优解。

四. 教学方法: 启发探究式教学。

五. 教学工具: ppt 课件,实物展台等。

六. 教学过程:(一) 复习引入:(1)二元一次不等式Ax +By +C >0在平面直角坐标系 表示什么图形?直线Ax +By +C =0的某一侧所有点组成的平面区域 (2) 作出下列不等式组的所表示的平面区域 ⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x师生互动:【教师】先让学生做,画,然后点拨。

【学生】画图,总结步骤:直线定界,特殊点定域【教师】问题1:x 有无最大(小)值?问题2:y 有无最大(小)值?问题3:2x+y 有无最大(小)值?设计意图:复习回顾上节内容,为本节课学习奠定基础,同时提出问题,激发学生兴趣,引入新课。

(二)新课讲授1 引例某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4 个A配件耗时1h,每生产一件乙产品使用4个B 配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B 配件,按每天工作8 h计算,(1)该厂所有可能的日生产安排是什么?师生互动:【教师】多媒体投影引例,并提出问题引导学生思考。

1)如何设变量?请用不等式组表示问题中的限制条件。

2)画出该不等式组表示的平面区域。

【学生】按老师的问题解答:解:设甲、乙两种产品分别生产x、y件,由已知条件可得二元一次不等式组画出可行域【教师】引导学生作出不等式组表示成平面上的区域,图中的阴影部分中的整点(坐标为整数)即为所有可能的日生产安排。

人教A版高中数学必修五优秀教案示范教案简单线性规划问题

人教A版高中数学必修五优秀教案示范教案简单线性规划问题

3.3.2简单线性规划问题从容说课本节课先由师生共同分析日常生活中的实际问题来引出简单线性规划问题的一些基本概念,由二元一次不等式组的解集可以表示为直角坐标平面上的区域引出问题:在直角坐标系内,如何用二元一次不等式(组)的解集来解决直角坐标平面上的区域求解问题?再从一个具体的二元一次不等式(组)入手,来研究一元二次不等式表示的区域及确定的方法,作出其平面区域,并通过直线方程的知识得出最值.通过具体例题的分析和求解,在这些例题中设置思考项,让学生探究,层层铺设,以便让学生更深刻地理解一元二次不等式表示的区域的概念,有利于二元一次不等式(组)与平面区域的知识的巩固.“简单的线性规划”是在学生学习了直线方程的基础上,介绍直线方程的一个简单应用,这是《新大纲》对数学知识应用的重视.线性规划是利用数学为工具,来研究一定的人、财、物、时、空等资源在一定条件下,如何精打细算巧安排,用最少的资源,取得最大的经济效益.它是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,并能解决科学研究、工程设计、经营管理等许多方面的实际问题.中学所学的线性规划只是规划论中的极小一部分,但这部分内容体现了数学的工具性、应用性,同时也渗透了化归、数形结合的数学思想,为学生今后解决实际问题提供了一种重要的解题方法——数学建模法.通过这部分内容的学习,可使学生进一步了解数学在解决实际问题中的应用,培养学生学习数学的兴趣和应用数学的意识和解决实际问题的能力.依据课程标准及教材分析,二元一次不等式表示平面区域以及线性规划的有关概念比较抽象,按学生现有的知识和认知水平难以透彻理解,再加上学生对代数问题等价转化为几何问题以及数学建模方法解决实际问题有一个学习消化的过程,故本节知识内容定为了解层次.本节内容渗透了多种数学思想,是向学生进行数学思想方法教学的好教材,也是培养学生观察、作图等能力的好教材.本节内容与实际问题联系紧密,有利于培养学生学习数学的兴趣和“用数学”的意识以及解决实际问题的能力.教学重点重点是二元一次不等式(组)表示平面的区域.教学难点难点是把实际问题转化为线性规划问题,并给出解答.解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解.为突出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法将实际问题数学化、代数问题几何化.课时安排3课时三维目标一、知识与技能1.掌握线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;2.运用线性规划问题的图解法,并能应用它解决一些简单的实际问题.二、过程与方法1.培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新.三、情感态度与价值观1.通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,培养学生观察、联想、猜测、归纳等数学能力;2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.教学过程第1课时导入新课师 前面我们学习了二元一次不等式A x+B y+C >0在平面直角坐标系中的平面区域的确定方法,请同学们回忆一下. (生回答)推进新课 [合作探究]师 在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题.例如,某工厂用A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 产品耗时1小时,每生产一件乙产品使用4个B 产品耗时2小时,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8小时计算,该厂所有可能的日生产安排是什么?设甲、乙两种产品分别生产x 、y 件,应如何列式?生 由已知条件可得二元一次不等式组:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤≤≤+.0,0,124,164,82y x y x y x师 如何将上述不等式组表示成平面上的区域?生 (板演)师 对照课本98页图3.39,图中阴影部分中的整点(坐标为整数的点)就代表所有可能的日生产安排,即当点P (x,y )在上述平面区域中时,所安排的生产任务x 、y 才有意义.进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?设生产甲产品x 件,乙产品y 件时,工厂获得利润为z,则如何表示它们的关系? 生 则z=2x+3y.师 这样,上述问题就转化为:当x 、y 满足上述不等式组并且为非负整数时,z 的最大值是多少? [教师精讲]师 把z=2x+3y 变形为z x y 3132+-=,这是斜率为32-,在y 轴上的截距为31z 的直线.当z 变化时可以得到什么样的图形?在上图中表示出来.生 当z 变化时可以得到一组互相平行的直线.(板演)师 由于这些直线的斜率是确定的,因此只要给定一个点〔例如(1,2)〕,就能确定一条直线z x y 3132+-=,这说明,截距z[]3可以由平面内的一个点的坐标唯一确定.可以看到直线z x y 3132+-=与表示不等式组的区域的交点坐标满足不等式组,而且当截距3z 最大时,z 取最大值,因此,问题转化为当直线z x y 3132+-=与不等式组确定的区域有公共点时,可以在区域内找一个点P ,使直线经过P 时截距3z 最大.由图可以看出,当直线z x y 3132+-=经过直线x=4与直线x+2y-8=0的交点M (4,2)时,截距3z 最大,最大值为314.此时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元. [知识拓展]再看下面的问题:分别作出x=1,x-4y+3=0,3x+5y-25=0三条直线,先找出不等式组所表示的平面区域(即三直线所围成的封闭区域),再作直线l 0:2x+y=0.然后,作一组与直线l 0平行的直线:l:2x+y=t,t ∈R (或平行移动直线l 0),从而观察t 值的变化:t=2x+y ∈[3,12].若设t=2x+y ,式中变量x 、y 满足下列条件⎪⎩⎪⎨⎧≥≤+-≤-.1,2553,34x y x y x 求t 的最大值和最小值.分析:从变量x 、y 所满足的条件来看,变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域ABC .作一组与直线l 0平行的直线:l:2x+y=t,t ∈R (或平行移动直线l 0),从而观察t 值的变化:t=2x+y ∈[3,12].(1)从图上可看出,点(0,0)不在以上公共区域内,当x=0,y=0时,t=2x+y=0.点(0,0)在直线l 0:2x+y=0上.作一组与直线l 0平行的直线(或平行移动直线l 0)l:2x+y=t,t ∈R. 可知,当l 在l 0的右上方时,直线l 上的点(x,y)满足2x+y >0,即t >0.而且,直线l 往右平移时,t 随之增大(引导学生一起观察此规律).在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点B (5,2)的直线l 2所对应的t 最大,以经过点A (1,1)的直线l 1所对应的t 最小.所以t m a x =2×5+2=12,t min =2×1+3=3.(2)(3) [合作探究]师 诸如上述问题中,不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.t=2x+y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于t=2x+y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z=2x+y 在线性约束条件下的最大值和最小值的问题,即为线性规划问题.那么,满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.课堂小结 用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设t=0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值.布置作业1.某工厂用两种不同原料均可生产同一产品,若采用甲种原料,每吨成本1 000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本为1500元,运费400元,可得产品100千克,如果每月原料的总成本不超过6 000元,运费不超过2 000元,那么此工厂每月最多可生产多少千克产品?分析:将已知数据列成下表:甲原料(吨) 乙原料(吨) 费用限额成本1 000 1 500 6 000 运费500 400 2 000 产品90 100 解:设此工厂每月甲、乙两种原料各x 吨、y 吨,生产z 千克产品,则⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥,2000400500,600015001000,0,0y x y x y xz=90x+100y.作出以上不等式组所表示的平面区域,即可行域,如右图:由⎩⎨⎧=+=+.2045,1232y x y x 得⎪⎪⎩⎪⎪⎨⎧==.720,712y x 令90x+100y=t ,作直线:90x+100y=0,即9x+10y=0的平行线90x+100y=t ,当90x+100y=t 过点M (712,720)时,直线90x+100y=t 中的截距最大. 由此得出t 的值也最大,z m a x =90×712+100×720=440. 答:工厂每月生产440千克产品.2.某工厂家具车间造A 、B 型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A 、B 型桌子分别需要1小时和2小时,漆工油漆一张A 、B 型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A 、B 型桌子分别获利润2千元和3千元,试问工厂每天应生产A 、B 型桌子各多少张,才能获得利润最大?解:设每天生产A 型桌子x 张,B 型桌子y 张,则⎪⎩⎪⎨⎧≥≥≤+≤+.0,0,93,82y x y x y x目标函数为z=2x+3y. 作出可行域:把直线l :2x+3y=0向右上方平移至l′的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z=2x+3y 取得最大值.解方程⎩⎨⎧=+=+,93,82y x y x 得M 的坐标为(2,3). 答:每天应生产A 型桌子2张,B 型桌子3张才能获得最大利润.3.课本106页习题3.3A 组2.第2课时导入新课师 前面我们学习了目标函数、线性目标函数、线性规划问题、可行解、可行域、最优解等概念.师 同学们回忆一下用图解法解决简单的线性规划问题的基本步骤.生(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域);(2)设t=0,画出直线l 0;(3)观察、分析,平移直线l 0,从而找到最优解;(4)最后求得目标函数的最大值及最小值.推进新课师 【例1】 已知x 、y 满足不等式组⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+,0,0,2502,3002y x y x y x 试求z=300x+900y 的最大值时的整点的坐标及相应的z 的最大值.师 分析:先画出平面区域,然后在平面区域内寻找使z=300x+900y 取最大值时的整点. 解:如图所示平面区域A O BC ,点A (0,125),点B (150,0),点C 的坐标由方程组⇒⎩⎨⎧=+=+25023002y x y x ⎪⎪⎩⎪⎪⎨⎧==,3200,3350y x 得C (3350,3200), 令t=300x+900y, 即,90031t x y +-=, 欲求z=300x+900y 的最大值,即转化为求截距t[]900的最大值,从而可求t 的最大值,因直线90031t x y +-=与直线x y 31-=平行,故作x y 31-=的平行线,当过点A (0,125)时,对应的直线的截距最大,所以此时整点A 使z 取最大值,z m a x =300×0+900×125=112 500. 师 【例2】 求z=600x+300y 的最大值,使式中的x 、y 满足约束条件3x+y≤300,x+2y≤250, x≥0,y≥0的整数值.师 分析:画出约束条件表示的平面区域即可行域再解.解:可行域如图所示.四边形A O BC ,易求点A (0,126),B (100,0),由方程组⇒⎩⎨⎧=+=+25223003y x y x ⎪⎪⎩⎪⎪⎨⎧==.5191,5369y x 得点C 的坐标为(5369,5191).因题设条件要求整点(x,y)使z=600x+300y 取最大值,将点(69,91),(70,90)代入z=600x+300y ,可知当x=70,y=90时,z 取最大值为z m a x =600×70+300×900=69 000. 师 【例3】 已知x 、y 满足不等式⎪⎩⎪⎨⎧≥≥≥+≥+,0,0,12,22y x y x y x 求z=3x+y 的最小值.师 分析:可先找出可行域,平行移动直线l 0:3x+y=0找出可行解,进而求出目标函数的最小值.解:不等式x+2y≥2表示直线x+2y=2上及其右上方的点的集合;不等式2x+y≥1表示直线2x+y=1上及其右上方的点的集合.可行域如右图所示.作直线l 0:3x+y=0,作一组与直线l 0平行的直线l:3x+y=t(t ∈R).∵x 、y 是上面不等式组表示的区域内的点的坐标. 由图可知:当直线l:3x+y=t 通过P (0,1)时,t 取到最小值1,即z min=1.师 评述:简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域;(3)在可行域内求目标函数的最优解.师 课堂练习:请同学们通过完成练习来掌握图解法解决简单的线性规划问题.(1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y(2)求z=3x+5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x [教师精讲]师 (1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y解:不等式组表示的平面区域如右图所示:当x=0,y=0时,z=2x+y=0,点(0,0)在直线l 0:2x+y=0上.作一组与直线l 0平行的直线l:2x+y=t,t ∈R.可知在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (2,-1)的直线所对应的t 最大.所以z m a x =2×2-1=3.(2)求z=3x+5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x解:不等式组所表示的平面区域如右图所示.从图示可知直线3x+5y=t 在经过不等式组所表示的公共区域内的点时,以经过点(-2,-1)的直线所对应的t 最小,以经过点(89,817)的直线所对应的t 最大. 所以z min =3×(-2)+5×(-1)=-11,z m a x =3×89+5×817=14.[知识拓展]某工厂生产甲、乙两种产品.已知生产甲种产品1 t ,需耗A 种矿石10 t 、B 种矿石5 t 、煤4 t ;生产乙种产品需耗A 种矿石4 t 、B 种矿石4 t 、煤9 t.每1 t 甲种产品的利润是600元,每1 t 乙种产品的利润是1 000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过360 t 、B 种矿石不超过200 t 、煤不超过300 t ,甲、乙两种产品应各生产多少(精确到0.1 t ),能使利润总额达到最大?师 分析:将已知数据列成下表:消耗量 产品 资源甲产品(1 t ) 乙产品(1 t) 资源限额(t ) A 种矿石(t )10 4 300 B 种矿石(t)5 4 200 煤(t) 利润(元)4 9 360 600 1 000解:设生产甲、乙两种产品分别为x t 、y t ,利润总额为z 元,那么⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+;0,0,36094,20045,300410y x y x y x y x目标函数为z=600x+1 000y.作出以上不等式组所表示的平面区域,即可行域.作直线l:600x+1 000y=0,即直线:3x+5y=0,把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z=600x+1 000y 取最大值.解方程组⎩⎨⎧=+=+,36094,20045y x y x 得M 的坐标为x=29360≈12.4,y=291000≈34.4. 答:应生产甲产品约12.4 t ,乙产品34.4 t ,能使利润总额达到最大.课堂小结用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).(2)设t=0,画出直线l 0.(3)观察、分析,平移直线l 0,从而找到最优解.(4)最后求得目标函数的最大值及最小值. 以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义布置作业课本第105页习题3.3A 组3、4.第3课时导入新课师 前面我们已经学习了用图解法解决简单的线性规划问题的基本步骤以及以实际问题为背景的线性规划问题其求解的格式与步骤.这节课我们继续来看它们的实际应用问题. 推进新课师 【例5】 营养学家指出,成人良好的日常饮食应该至少提供0.075 kg 的碳水化合物,0.06 kg 的蛋白质,0.06 kg 的脂肪.1 kg 食物A 含有0.105 kg 碳水化合物,0.07 kg 蛋白质,0.14 kg 脂肪,花费28元;而1kg 食物B 含有0.105 kg 碳水化合物,0.14 kg 蛋白质,0.07 kg 脂肪,花费21元.为了满足营养学家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B 各多少克?师 分析:将已知数据列成下表:食物/kg 碳水化合物/kg 蛋白质/kg 脂肪/kgA 0.105 0.07 0.14B 0.105 0.14 0.07若设每天食用x kg 食物A ,y kg 食物B ,总成本为z ,如何列式?生 由题设条件列出约束条件①⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+0,y 0,x 0.06,0.07y 0.14x 0.06,0.14y 0.07x 0.075,0.105y 105x .0 其目标函数z=28x+21y.二元一次不等式组①等价于②⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+.0,0,6714,6147,577y x y x y x y x师 作出二元一次不等式组②所表示的平面区域,即可行域.请同学们在草稿纸上完成,再与课本上的对照.生 考虑z=28x+21y,将它变形为2834z x y +-=,这是斜率为34-、随z 变化的一族平行直线.28z 是直线在y 轴上的截距,当28z 取得最小值时,z 的值最小.当然直线与可行域相交,即在满足约束条件时目标函数z=28x+21y 取得最小值.由图可见,当直线z=28x+21y 经过可行域上的点M 时,截距z[]28最小,即z 最小. 解方程组⎩⎨⎧=+=+6714,577y x y x 得点M(71,74),因此,当71=x ,74=y 时,z=28x+21y 取最小值,最小值为16.由此可知每天食用食物A 约143克,食物B 约571克,能够满足日常饮食要求,又使花费最低,最低成本为16元.师 【例6】 在上一节课本的例题(课本95页例3)中,若根据有关部门的规定,初中每人每年可收取学费1 600元,高中每人每年可收取学费2 700元.那么开设初中班和高中班各多少个,每年收取的学费总额最多?学段 班级学生数 配备教师数 硬件建设/万元 教师年薪/万元初中 45 2 26/班 2/人高中 40 3 54/班 2/人师 由前面内容知若设开设初中班x 个,高中班y 个,收取的学费总额为z 万元, 此时,目标函数z=0.16×45x+0.27×40y,可行域如下图把z=7.2x+10.8y 变形为54532z x y +-=,得到斜率为-32-,在y 轴上截距为545z ,随z 变化的一组平行直线.由图可以看出,当直线z=7.2x+10.8y 经过可行域上的点M 时,截距545z 最大,即z 最大. 解方程组⎩⎨⎧=+=+402,30y x y x 得点M (20,10),因此,当x=20,y=10时,z=7.2x+10.8y 取最大值,最大值为252.由此可知开设20个初中班和10个高中班时,每年收取的学费总额最多,为252万元. 师 【例7】 在上一节例4中(课本96页例4),若生产1车皮甲种肥料,产生的利润为10 000元,若生产1车皮乙种肥料,产生的利润为5 000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?生 若设生产x 车皮甲种肥料,y 车皮乙种肥料,能够产生的利润z 万元.目标函数z=x+0.5y,可行域如下图:把z=x+0.5y 变形为y=-2x+2z,得到斜率为-2,在y 轴上截距为2z,随z 变化的一组平行直线.由图可以看出,当直线y=-2x+2z 经过可行域上的点M 时,截距2z 最大,即z 最大. 解方程组⎩⎨⎧=+=+104,661518y x y x 得点M(2,2),因此当x=2,y=2时,z=x+0.5y 取最大值,最大值为 3.由此可见,生产甲、乙两种肥料各2车皮,能够产生最大的利润,最大利润为3万元. [教师精讲]师 以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义. 课堂小结 用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域);(2)设t=0,画出直线l 0;(3)观察、分析,平移直线l 0,从而找到最优解;(4)最后求得目标函数的最大值及最小值. 以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义.布置作业课本第105页习题3.3 B组1、2、3板书设计第1课时简单线性规划问题图1课堂小结线性规划问题的相关概念图2第2课时简单线性规划问题例1课堂小结例3例2第3课时简单线性规划问题例5课堂小结例7例6。

省高中数学优质课 简单的线性规划问题教学设计

省高中数学优质课 简单的线性规划问题教学设计

《简 单 的 线 性 规 划 问 题》教学设计教学内容解析:本节课是北师大版高中数学教材必修5第三章《不等式》4.2《简单线性规划》第一课时的内容,本节课是高中阶段解决最值问题的一个重要方面,利用线性规划知识可重点解决以下三种最值问题:(1)z=ax+by 型;(2)z=y/x 型;(3)22y x z +=型。

线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。

简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成.教学目标:1.知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;3.情态与价值:培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力。

教学重点:用图解法解决简单的线性规划问题教学难点:准确求得线性规划问题的最优解学生学情分析:实验班中大部分学生是可以顺利接受这节课的知识的,关键是将三种最值题型的特点记清,做题时将具体问题快速转化为这三种题型,这是本节课需要解决的问题。

对高二学生来说,上一节课已初步学习利用表格将文字长、数据多的应用问题中的数据进行整理,设未知数,列出线性约束条件;本节课一方面要让学生经历数据整理过程,准确列出约束条件,还要分析数据写出线性目标函数,尝试运用该模型解决实际问题。

教学策略分析:本节课坚持“由浅入深”,“由易到难”的原则,坚持“讲练结合”,“课后巩固”的方法,将知识慢慢输入到学生的头脑中。

高中优秀教案高三数学教案:《简单的线性规划》教学设计

高中优秀教案高三数学教案:《简单的线性规划》教学设计

高三数学教案:《简单的线性规划》教学设计本文题目:高三数学教案:简洁的线性规划●学问梳理1.二元一次不等式表示平面区域在平面直角坐标系中,已知直线Ax+By+C=0,坐标平面内的点P(x0,y0).B0时,①Ax0+By0+C0,则点P(x0,y0)在直线的上方;②Ax0+By0+C0,则点P(x0,y0)在直线的下方.对于任意的二元一次不等式Ax+By+C0(或0),无论B为正值还是负值,我们都可以把y项的系数变形为正数.当B0时,①Ax+By+C0表示直线Ax+By+C=0上方的区域;②Ax+By+C0表示直线Ax+By+C=0下方的区域.2.线性规划求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满意线性约束条件的解(x,y)叫做可行解,由全部可行解组成的集合叫做可行域(相似函数的定义域);使目标函数取得最大值或最小值的可行解叫做最优解.生产实际中有很多问题都可以归结为线性规划问题.线性规划问题一般用图解法,其步骤如下:(1)依据题意,设出变量x、y;(2)找出线性约束条件;(3)确定线性目标函数z=f(x,y);(4)画出可行域(即各约束条件所示区域的公共区域);(5)利用线性目标函数作平行直线系f(x,y)=t(t为参数);(6)观查图形,找到直线f(x,y)=t在可行域上使t取得欲求最值的位置,以确定最优解,给出答案.●点击双基1.下列命题中正确的是A.点(0,0)在区域x+y0内B.点(0,0)在区域x+y+10内C.点(1,0)在区域y2x内D.点(0,1)在区域x-y+10内解析:将(0,0)代入x+y0,成立.答案:A2.(____年海淀区期末练习题)设动点坐标(x,y)满意(x-y+1)(x+y-4)0,x3,A. B. C. D.10解析:数形结合可知当x=3,y=1时,x2+y2的最小值为10.答案:D2x-y+10,x-2y-10,x+y1A.正三角形及其内部B.等腰三角形及其内部C.在第一象限内的一个无界区域D.不包含第一象限内的点的一个有界区域解析:将(0,0)代入不等式组适合C,不对;将( , )代入不等式组适合D,不对;又知2x-y+1=0与x-2y-1=0关于y=x对称且所夹顶角满意tan= = ..答案:B4.点(-2,t)在直线2x-3y+6=0的上方,则t的取值范围是________________.解析:(-2,t)在2x-3y+6=0的上方,则2(-2)-3t+60,解得t .答案:t5.不等式组表示的平面区域内的整点(横坐标和纵坐标都是整数的点)共有____________个.解析:(1,1),(1,2),(2,1),共3个.答案:3●典例剖析【例1】求不等式|x-1|+|y-1|2表示的平面区域的面积.剖析:依据条件画出所表达的区域,再依据区域的特点求其面积.解:|x-1|+|y-1|2可化为x1, x1, x1, x1,y1, y1, y1, y1,x+y 4 x-y 2 y-x 2 x+y0.其平面区域如图.面积S= 44=8.评述:画平面区域时作图要尽量精准,要留意边界.深化拓展若再求:① ;②的值域,你会做吗?答案:①(-,- ][ ,+);②[1,5].【例2】某人上午7时,乘摩托艇以匀速v n mile/h(4v20)从A港动身到距50 n mile的B港去,然后乘汽车以匀速w km/h(30w100)自B港向距300 km的C市驶去.应当在同一天下午4至9点到达C市.设乘汽车、摩托艇去所需要的时间分别是x h、y h.(1)作图表示满意上述条件的x、y范围;(2)假如已知所需的经费p=100+3(5-x)+2(8-y)(元),那么v、w分别是多少时走得最经济?此时需花费多少元?剖析:由p=100+3(5-x)+2(8-y)可知影响花费的是3x+2y的取值范围.解:(1)依题意得v= ,w= ,4v20,30w100.3x10, y . ①由于乘汽车、摩托艇所需的时间和x+y应在9至14个小时之间,即9x+y14.②因此,满意①②的点(x,y)的存在范围是图中阴影部分(包括边界).(2)∵p=100+3?(5-x)+2?(8-y),3x+2y=131-p.设131-p=k,那么当k最大时,p最小.在通过图中的阴影部分区域(包括边界)且斜率为- 的直线3x+2y=k中,使k值最大的直线必通过点(10,4),即当x=10,y=4时,p最小.此时,v=12.5,w=30,p的最小值为93元.评述:线性规划问题首先要依据实际问题列出表达约束条件的不等式.然后分析要求量的几何意义.【例3】某矿山车队有4辆载重量为10 t的甲型卡车和7辆载重量为6 t的乙型卡车,有9名驾驶员.此车队每天至少要运360 t 矿石至冶炼厂.已知甲型卡车每辆每天可来回6次,乙型卡车每辆每天可来回8次.甲型卡车每辆每天的成本费为252元,乙型卡车每辆每天的成本费为160元.问每天派出甲型车与乙型车各多少辆,车队所花成本费最低?剖析:弄清题意,明确与运输成本有关的变量的各型车的辆数,找出它们的约束条件,列出目标函数,用图解法求其整数最优解.解:设每天派出甲型车x辆、乙型车y辆,车队所花成本费为z 元,那么x+y9,106x+68x360,0x4,0y7.z=252x+160y,其中x、yN.作出不等式组所表示的平面区域,即可行域,如图.作出直线l0:252x+160y=0,把直线l向右上方平移,使其经过可行域上的整点,且使在y轴上的截距最小.观查图形,可见当直线252x+160y=t经过点(2,5)时,满意上述要求.此时,z=252x+160y取得最小值,即x=2,y=5时,zmin=2522+1605=1304.答:每天派出甲型车2辆,乙型车5辆,车队所用成本费最低.评述:用图解法解线性规划题时,求整数最优解是个难点,对作图精度要求较高,平行直线系f(x,y)=t的斜率要画准,可行域内的整点要找准,最好使用"网点法'先作出可行域中的各整点.●闯关训练夯实基础1.(x-1)2+(y-1)2=1是|x-1|+|y-1|1的__________条件.A.充分而不必要B.必要而不充分C.充分且必要D.既不充分也不必要解析:数形结合.答案:B2.(x+2y+1)(x-y+4)0表示的平面区域为解析:可转化为x+2y+10, x+2y+10,x-y+40 x-y+40.答案:B3.(____年全国卷Ⅱ,14)设x、y满意约束条件x0,xy,2x-y1,则z=3x+2y的最大值是____________.解析:如图,当x=y=1时,zmax=5.答案:5x-4y+30,3x+5y-250,x1,_________.解析:作出可行域,如图.当把z看作常数时,它表示直线y=zx 的斜率,因此,当直线y=zx过点A时,z最大;当直线y=zx过点B 时,z最小.x=1,3x+5y-25=0,得A(1, ).x-4y+3=0,3x+5y-25=0,zmax= = ,zmin= .答案:5.画出以A(3,-1)、B(-1,1)、C(1,3)为顶点的△ABC的区域(包括各边),写出该区域所表示的二元一次不等式组,并求以该区域为可行域的目标函数z=3x-2y的最大值和最小值.分析:本例含三个问题:①画指定区域;②写所画区域的代数表达式——不等式组; ③求以所写不等式组为约束条件的给定目标函数的最值.解:如图,连结点A、B、C,则直线AB、BC、CA所围成的区域为所求△ABC区域.直线AB的方程为x+2y-1=0,BC及CA的直线方程分别为x-y+2=0,2x+y-5=0.在△ABC内取一点P(1,1),分别代入x+2y-1,x-y+2,2x+y-5得x+2y-10,x-y+20,2x+y-50.因此所求区域的不等式组为x+2y-10,x-y+20,2x+y-50.作平行于直线3x-2y=0的直线系3x-2y=t(t为参数),即平移直线y= x,观查图形可知:当直线y= x- t过A(3,-1)时,纵截距- t 最小.此时t最大,tmax=33-2 (-1)=11;当直线y= x- t经过点B(-1,1)时,纵截距- t最大,此时t有最小值为tmin= 3(-1)-21=-5.因此,函数z=3x-2y在约束条件x+2y-10,x-y+20,2x+y-506.某校伙食长期以面粉和大米为主食,面食每100 g含蛋白质6个单位,含淀粉4个单位,售价0.5元,米食每100 g含蛋白质3个单位,含淀粉7个单位,售价0.4元,学校要求给同学配制盒饭,每盒盒饭至少有8个单位的蛋白质和10个单位的淀粉,问应如何配制盒饭,才既科学又费用最少?解:设每盒盒饭需要面食x(百克),米食y(百克),所需费用为S=0.5x+0.4y,且x、y满意6x+3y8,4x+7y10,x0,y0,由图可知,直线y=- x+ S过A( , )时,纵截距 S最小,即S 最小.故每盒盒饭为面食百克,米食百克时既科学又费用最少.培育力量7.配制A、B两种药剂,需要甲、乙两种原料,已知配一剂A种药需甲料3 mg,乙料5 mg;配一剂B种药需甲料5 mg,乙料4 mg.今有甲料20 mg,乙料25 mg,若A、B两种药至少各配一剂,问共有多少种配制方法?解:设A、B两种药分别配x、y剂(x、yN),则x1,y1,3x+5y20,5x+4y25.上述不等式组的解集是以直线x=1,y=1,3x+5y=20及5x+4y=25为边界所围成的区域,这个区域内的整点为(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(3,1)、(3,2)、(4,1).所以,在至少各配一剂的状况下,共有8种不同的配制方法.8.某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量特别大,有多少就能销售多少,因此该公司要依据实际状况(如资金、劳动力)确定产品的月提供量,以使得总利润满足最大.已知对这两种产品有挺直限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:资金单位产品所需资金(百元) 月资金提供量(百元)空调机洗衣机成本 30 20 300劳动力(工资) 5 10 110单位利润 6 8试问:怎样确定两种货物的月提供量,才能使总利润满足最大,最大利润是多少?解:设空调机、洗衣机的月提供量分别是x、y台,总利润是P,则P=6x+8y,由题意有30x+20y300,5x+10y110,x0,y0,x、y均为整数.由图知直线y=- x+ P过M(4,9)时,纵截距最大.这时P也取最大值Pmax=64+89=96(百元).故当月提供量为空调机4台,洗衣机9台时,可获得最大利润9600元.探究创新9.实系数方程f(x)=x2+ax+2b=0的一个根在(0,1)内,另一个根在(1,2)内,求:(1) 的值域;(2)(a-1)2+(b-2)2的值域;(3)a+b-3的值域.f(0)0f(1)0f(2)0b0,a+b+10,a+b+20.如图所示. A(-3,1)、B(-2,0)、C(-1,0).又由所要求的量的几何意义知,值域分别为(1)( ,1);(2)(8,17);(3)(-5,-4).●思悟小结简洁的线性规划在实际生产生活中应用特别广泛,主要解决的问题是:在资源的限制下,如何使用资源来完成最多的生产任务;或是给定一项任务,如何合理支配和规划,能以最少的资源来完成.如常见的任务支配问题、配料问题、下料问题、布局问题、库存问题,通常解法是将实际问题转化为数学模型,归结为线性规划,使用图解法解决.图解法解决线性规划问题时,依据约束条件画出可行域是关键的一步.一般地,可行域可以是封闭的多边形,也可以是一侧开放的非封闭平面区域.其次是画好线性目标函数对应的平行直线系,特殊是其斜率与可行域边界直线斜率的大小关系要推断精准.通常最优解在可行域的顶点(即边界线的交点)处取得,但最优整数解不肯定是顶点坐标的近似值.它应是目标函数所对应的直线平移进入可行域最先或最终经过的那一整点的坐标.●老师下载中心教学点睛线性规划是新增加的教学内容,应予以足够重视.线性规划问题中的可行域,事实上是二元一次不等式(组)表示的平面区域,是解决线性规划问题的基础,由于在直线Ax+By+C=0同一侧的全部点(x,y)实数Ax+By+C的符号相同,所以只需在此直线的某一侧任取一点(x0,y0)〔若原点不在直线上,则取原点(0,0)最简便〕,把它的坐标代入Ax+By+C=0,由其值的符号即可推断二元一次不等式Ax+By+C0(或0)表示直线的哪一侧.这是教材介绍的方法.在求线性目标函数z=ax+by的最大值或最小值时,设ax+by=t,则此直线往右(或左)平移时,t值随之增大(或减小),要会在可行域中确定最优解.解线性规划应用题步骤:(1)设出决策变量,找出线性约束条件和线性目标函数; (2)利用图象在线性约束条件下找出决策变量,使线性目标函数满足最大(或最小).拓展题例【例1】已知f(x)=px2-q且-4f(1)-1,-1f(2)5,求f(3)的范围.解:∵-4f(1)-1,-1f(2)5,p-q-1,p-q-4,4p-q5,4p-q-1.求z=9p-q的最值.p=0,q=1,zmin=-1,p=3,q=7,-1f(3)20.【例2】某汽车公司有两家装配厂,生产甲、乙两种不同型号的汽车,若A厂每小时可完成1辆甲型车和2辆乙型车;B厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和20辆乙型车,问这两家工厂各工作几小时,才能使所费的总工作时数最少?解:设A厂工作x h,B厂工作y h,总工作时数为t h,则t=x+y,且x+3y40,2x+y20,x0,y0,可行解区域如图.而符合问题的解为此区域内的格子点(纵、横坐标都是整数的点称为格子点),于是问题变为要在此可行解区域内,找出格子点(x,y),使t=x+y的值为最小.由图知当直线l:y=-x+t过Q点时,纵、横截距t最小,但由于符合题意的解必需是格子点,我们还必需看Q点是否是格子点.x+3y=40,2x+y=20,得Q(4,12)为格子点.故A厂工作4 h,B厂工作12 h,可使所费的总工作时数最少.。

高中数学第五届全国青年教师观摩与评比活动简单的线性规划问题教学设计

高中数学第五届全国青年教师观摩与评比活动简单的线性规划问题教学设计

《简单的线性规划问题》教学设计一、内容与内容解析本节课是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》中3.3.2《简单的线性规划问题》的第一课时. 主要内容是线性规划的相关概念和简单的线性规划问题的解法.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。

简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用.本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.本节教学重点:线性规划问题的图解法;寻求有实际背景的线性规划问题的最优解.二、目标和目标解析(一)教学目标1.了解约束条件、目标函数、可行解、可行域、最优解等基本概念.2. 会用图解法求线性目标函数的最大值、最小值.3.培养学生观察、联想、作图和理解实际问题的能力,渗透化归、数形结合的数学思想.4.结合教学内容培养学生学习数学的兴趣和“用数学”的意识.(二)教学目标解析x y表示一个方案;约束条件是一次不等1. 了解线性规划模型的特征:一组决策变量(,)式组;目标函数是线性的,求目标函数的最大值或最小值.熟悉线性约束条件(不等式组)的几何表征是平面区域(可行域).体会可行域与可行解、可行域与最优解、可行解与最优解的关系.2.使学生学会从实际优化问题中抽象、识别出线性规划模型.能理解目标函数的几何表征(一组平行直线).能依据目标函数的几何意义,运用数形结合方法求出最优解和线性目标函数的最大(小)值,其基本步骤为画、移、求、答.3.教学中不但要教教材,还要教教材中的蕴含的方法.在探究如何求目标函数的最值时,通过以下几方面让学生领悟数形结合思想、化归思想在数学中的应用.(1)不定方程的解与平面内点的坐标的结合,进而产生了直线的方程.(2)线性目标函数解析式与直线的斜截式方程的结合.(3)线性目标函数的函数值与直线的纵截距的结合.(4)二元一次不等式(组)的解集与可行域的结合.(5)线性目标函数在线性约束条件下的最值与直线过可行域内的点时纵截距的最值的结合.这样就能使学生对数形结合思想的理解更透彻,为以后解析几何的学习和研究奠定基础, 使学生从更深层次理解“以形助数”的作用以及具体方法.4. 在线性规划问题的探究过程中,使学生经历观察、分析、操作、归纳、概括的认知过程,培养解决运用已有知识解决新问题的能力.三、教学问题诊断分析本节课学生在学习过程中可能遇到以下疑虑和困难:(1)将实际问题抽象成线性规划问题;(2)用图解法解线性规划问题中,为什么要将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题?如何想到要这样转化?(3)数形结合思想的深入理解.为此教学中教师要千方百计地为学生创设探究情境,并作合理适度的引导,通过学生的积极主动思考,运用由特殊到一般的研究方法,借助于讨论、动手画图等形式进行深入探究.教师的引导是至关重要的,要做到既能给学生启示又能发展学生思维,让学生通过自己的探究获取直接经验.教学难点:用图解法求最优解的探索过程;数形结合思想的理解.教学关键:指导学生紧紧抓住化归、数形结合的数学思想方法找到目标函数与直线方程的关系四、教法分析新课程倡导学生积极主动、勇于探索的学习方式,课堂中应注重创设师生互动、生生互动的和谐氛围,通过学生动手实践、动脑思考等方法探究数学知识获取直接经验,进而培养学生的思维能力和应用意识等.本节课以学生为中心,以问题为载体,采用启发、引导、探究相结合的教学方法.(1)设置“问题”情境,激发学生解决问题的欲望;(2)提供“观察、探索、交流”的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取直接经验.(3)在教学中体现“重过程、重情感、重生活”的理念;(4)让学生经历“学数学、做数学、用数学”的过程.五、教学支持条件分析根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,调动学生的学习兴趣,借助信息技术工具,以“几何画板”软件为平台,将目标函数与直线方程进行转化,通过直线的平行移动的演示,观察纵坐标的变化,求出目标函数的最值.让学生学会用“数形结合”思想方法建立起代数问题和几何问题间的密切联系.六、教学过程(一) 创设情境,激发探究欲望组织学生做选盒子的游戏活动.在下图的方格中,每列(x )与每行(y )的交汇处都放有一个盒子,每次你只能选其中的一个盒子,每个盒子对应一个分值,即为你的得分,而且该分值与盒子所在的行数和列数有关,且每次的关系式在变化,你会选哪个盒子?例如: 第一次:分值=x y + (即: 列数+行数)第二次:分值=2y x - (即: 行数-列数×2)师生活动:教师组织学生做选盒子得分的游戏,学生用“运算—比较”的方法容易解决老师提出的问题.之后,给出图3,让学生在图中找目标函数2b x y =+的最大值,学生沿用上面计算的方法显然很复杂,于是学生的思维产生“结点”.引出课题,提出何为线性(即为一次的)?x y 0 1 2 3 4 5 1 2 4 3 y 01 2 3 4 5 x 1 2 4 3 图1 图2怎么规划(即求函数的最值)?是本节课的研究重点.【设计意图】数学是现实世界的反映.创设学生感兴趣的问题情境,从兴趣解决→稍有困难→有较大困难,使学生产生急于解决问题的内驱力,同时培养学生从实际问题抽象出数学模型的能力.(二)独思共议,引导探究方法引导学生由特殊到一般分析目标函数的函数值.问题1:当6b =时,求x ,y 的值.师生活动:学生通过计算找到三个点的坐标,并观察出三点共线,求出直线方程26y x =-+,教师引导学生观察6b =所对应的直线的纵截距.【设计意图】通过特殊问题,帮助学生理解问题的实质:求x ,y 的值即求不定方程的解.数形结合,将求变量x ,y 转化成求点的坐标(,)x y .观察6b =时三个盒子所在点的位置关系及直线的方程,使学生体会b 值就是直线的纵截距.问题2.在图3中,求2b x y =+的最大值.师生活动:学生在教师的引导下分组讨论,求b 的最大值.通过之前教师的引导及学生对上一节“二元一次不等式表示的平面区域”的学习,对学生的讨论结果有两种预案:预案1:学生通过由特殊到一般的分析,将目标函数2b x y =+转化成2y x b =-+,x ,yx1 45 2 3 7 9 10 11 812O 图3在取得每个可行解时,b 的取值就是直线2y x b =-+过(,)x y 这个点时的纵截距,而所有这些直线都是平行的,因此只需平移直线看纵截距的最大值即可.预案2:根据上一节“二元一次不等式(组)所表示的平面区域”的知识,学生认为b 取最大值时x 、y 的取值一定在直线26y x =-+的右上方的位置,为此就依次在这些位置上画平行于26y x =-+的直线,只要上面有点就不停的画,直至最后一点.师生活动:学生展示讨论结果,教师借助几何画板作演示、分析,渗透转化和数形结合的数学思想.并对学生的结论作出总结,先作直线2y x =-,再作平移,观察直线的纵截距.【设计意图】由特殊到一般,利用数形结合,寻求解题思路.(三)变式思考,深化探究思路1.将目标函数变成34b x y =+, 求b 的最大值.师生活动:通过学生将34b x y =+化成344b y x =-+的形式,做直线34y x =-并进行平移,观察纵截距的最大值的回答过程,教师强调解题步骤:画、作、移、求.【设计意图】规范方法并检验学生对方法的理解程度,使学生感受由直线斜率的变化引起使b 取最大值的过程中点的变化.2.将目标函数变成34b x y =-,求b 的最大值.师生活动:教师引导学生比较此题和上题的区别,学生发现平移直线时若按上题的方法找纵截距的最大值便会出现问题,通过思考、讨论,找到本题需取截距最小的原因.【设计意图】通过目标函数的不同变式,让学生熟悉求最值的方法,尤其是直线中纵截距的符号为负的情况.借助“几何画板”集中呈现目标函数的图形变化,提高课堂效率,建立精准的数形联系.(四)规范格式,应用探究成果1.例1:(习题3.3A 组第3题)电视台应某企业之约播放两套连续剧,其中,连续剧甲每次播放时间为80min ,其中广告时间为1min ,收视观众为60万;连续剧乙每次播放时间为40min ,广告时间为1min ,收视观众为20万.已知此企业与电视台达成协议,要求电视台每周至少播放6min 广告,而电视台每周只能为该企业提供不多于320min 的节目时间.如果你是电视台的制片人,电视台每周应播映两套连续剧各多少次,才能获得最高的收视率?解:设甲播放x 次,乙播放y 次,收视观众z 万人次则6020z x y =+.8040320,6,0,0.x y x y x y +≥⎧⎪+≤⎪⎨≥⎪⎪≥⎩ 用如下步骤求z 的最大值:(1)画出可行域;(2)作出直线0l :3y x =-(3)平移0l 至点A 处纵截距最大,即z 最大;(4)解方程组:80403206x y x y +=⎧⎨+=⎩ 得24x y =⎧⎨=⎩,因此max 200z =.答:甲播放2次,乙播放4次,收视观众最多为200万人次.师生活动:教师引领学生理解题意,让学生继续领会用表格形式描述数据的直观性.让学生独立建立线性规划的数学模型,并正确设出变量,找好目标函数及约束条件后自行完成此题.通过学生板演,教师规范写法,然后借助解题的过程介绍线性目标函数、线性约束条件、可行解、可行域、最优解及线性规划的数学概念.【设计意图】利用学生感兴趣的例子激发学习动机,通过一道完整的简单线性规划问题,让学生掌握解决简单线性规划问题的基本步骤,培养学生的数学建模意识.同时进一步加深对图解法的认识.2.反思例1解题过程,深入体会数形结合思想师生活动:教师引导学生纵观解题过程,体会在解题中“数”与“形”是怎样结合的,并加以总结.代数几何 线性目标函数6020z x y =+直线320z y x =-+ 线性目标函数的函数值 直线的纵截距线性约束条件(二元一次不等式(组)的解集)可行域 转化线性目标函数的最值 直线的纵截距的最值【设计意图】通过反思总结,加强对“数形结合”数学思想的认识,形成学生良好的认知结构.3.例2:(课本例2)营养学家指出,成人良好的日常饮食应该至少提供0.075kg 的碳水化合物,0.06kg 的蛋白质,0.06kg 的脂肪.1kg 食物A 含有0.105kg 的碳水化合物,0.07kg 的蛋白质,0.14kg 的脂肪,花费28元; 1kg 食物B 含有0.105kg 的碳水化合物,0.14kg 的蛋白质,0.07kg 的脂肪,花费21元.为了满足饮食要求,同时使花费最低,需要同时食用食物A 和食物B 各多少kg?师生活动:学生独自完成此题,由一位同学生展示自己的解题过程和结果.规范解题步骤和格式.解:设每天食用x kg 食物A ,y kg 食物B0.1050.1050.075,0.070.140.06,0.140.070.06,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩① 目标函数为2821z x y =+二元一次不等式组①等价于775,7146,1476,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩ 二元一次不等式组所表示的平面区域(图5),即可行域. 考虑2821z x y =+,将它变形为4321z y x =-+. 这里4321z y x =-+是斜率为43-,随z 变化的一组平行直线,21z 是直线在y 轴上的截距,当21z 取最小值时,z 的值最小.当然直线要与可行域相交,即在满足约束条件时目标函数2821z x y =+取得最小值.由图5可见,当直线2821z x y =+经过可行域上的点M 时,截距21z 最小,即z 最小.解方程组775,147 6.x y x y +=⎧⎨+=⎩ 得M 的坐标为17x =,47y =. 所以282116z x y =+=.答:每天食用食物A 为17kg ,食物B 为47kg ,能够满足日常饮食要求,又使花费最低,最低成本为16元.【设计意图】通过此题检测学生对已学知识的掌握情况,进一步培养学生的运算能力和准确作图的能力.4.反思例2的求解过程.教师通过巡视发现错解的学生,帮助学生找到错误的原因.并提出问题:有时若由于不可避免的误差带来错解,你如何解决?师生活动:由教师帮助学生分析错解的原因,并提出问题.学生意识到可以把所有可能的解都求出来,进行比较即可.【设计意图】通过反思及寻求问题答案,让学生深入思考,培养学生科学严谨的学习态度和解决问题的能力.(五) 归纳梳理,体会探究价值由学生和教师共同总结本节课所学到的知识.师生活动:先由学生总结学习的内容,教师作补充说明,尤其是本节课是如何经历的知识探究过程,如何运用化归与数形结合思想得到方法,以及如何通过数学建模解决实际问题.再有教师介绍数学是有用的,通过本节课看到了时间如何合理分配收获最大的问题,如何使消费最少保证饮食健康的问题,还有很多实际应用由学生自己查资料作为拓展作业.【设计意图】通过总结,培养学生数学交流和表达的能力,养成及时总结的良好习惯,并将所学知识纳入已有的认知结构.(六) 目标检测题 1.在线性约束条件5315153x y y x x y +≤⎧⎪≤+⎨⎪-≤⎩下,求①目标函数35z x y =+的最大值和最小值;②目标函数310z x y =-的最大值和最小值;2.某工厂用A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h ,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8h 计算,该厂所有可能的日生产安排是多少?【设计意图】检测题主要考查学生对本节课重点知识的掌握情况,检查学生能否运用所学知识解决问题的能力;拓展作业的设置是为了教会学生怎样利用资料进行数学学习,同时让学生了解网络是自主学习和拓展知识面的一个重要平台,这是本节内容的一个提高与拓展.。

高中数学新人教版A版精品教案《3.3.2 简单的线性规划问题》

高中数学新人教版A版精品教案《3.3.2 简单的线性规划问题》

一、指导思想:“新课程标准”从课程的设置、结构、课堂教学活动上做了较大的改革,提出了要“以学生的发展”为宗旨的基本理念,要求数学教学不仅使学生掌握数学的基础知识,掌握数学方法,更重要的是学会“数学地思维”,获得更高的数学素养。

本节课本着让学生经历“学数学、做数学、用数学”的过程,激发和培养学生的思维品质。

所以本节课关注以下几点:1、关注学生的认知发展,使学生在教师引导下进行“再创造”, 从而使学生主动构建自己的知识结构。

2、采用问题驱动和实践探究使学生体会知识的形成过程。

3、培养学生的数学思维,让学生在实践中、在不断克服困难和反思总结中得到思维的锻炼。

二、教学内容《简单的线性规划》内容是人教A版《必修5》,第三章、第三节简单线性规划(第2课时),是在学习了不等式性质、简单认识了直线方程的基础上展开的,它是对二元一次不等式的深化和再认识。

本课时是本节的核心内容。

内容本质是把代数式最值的问题转化为相应与直线截距相关的问题。

是在几何平台上,借助代数的“入微”分析,将抽象的问题具体化、直观化。

内容中渗透了化归、数形结合以及运动变化思想。

同时它也为以后用数形结合解决很多问题提供了思路范例。

三、学情分析首先我班是理科实验班学生,具有较好的数学基础。

学生也已初步具备的归纳总结、抽象概括等思维能力,但这些能力还需要具体、特殊的形象支撑。

具体地说:学生已经了解了不等式的性质,理解并会用“数形结合”的思想进行二元一次不等式组和平面区域间的相互转化。

但学生缺乏自觉主动地进行“数”与“形”转化的意识,再者学生还不能灵活进行代数式、方程、直线、函数间的相互转化。

四、教学目标:1了解线性规划的意义及有关概念;理解线性规划的图解法;学会利用图解法求线性目标函数的最优解。

2通过对知识的探究和实践,重点体会数形结合思想的意义和价值。

3.感受由特殊到一般、由具体到抽象的认识事物的方法,培养探索精神和严密分析问题的态度,增强学生学习数学的兴趣。

苏教版数学高一《简单的线性规划问题》 精品教学设计 江苏省溧水二中

苏教版数学高一《简单的线性规划问题》  精品教学设计  江苏省溧水二中
轮船运输费(t)
飞机运输费(t)
粮食
石油
现在要在一天内运输 吨粮食和 吨石油,需至少安排多少艘轮船和多少架飞机?
二提高题
3.若点 满足 ,求 到原点的最小距离.
4.设实数 满足不等式组 .
(1)求作此不等式组表示的平面区域;
(2)设 ,求函数 的最大值和最小值.
总 课 题
二元一次不等式组与简单的线性规划问题
总课时
第32课时
分 课 题
简单的线性规划问题(二)
分课时
第 2 课时
教学目标
能够将实际问题抽象概括为线性问题;培养应用线性规划的知识知识解决实际问题的能力.
重点难点
将实际问题抽象概括为线性规划问题并解决之.
引入新课
1.已知 满足 ,则 的最小值是__________.
例2某运输公司向某地区运送物资,每天至少运送 .该公司有 辆载重为 的 型卡车与 辆载重为 的 型卡车,有 名驾驶员.每辆卡车每天往返次数为 型车 次, 型车 次.每辆卡车每天往返的成本费 型车为 元, 型车为 元.试为该公司设计调配车辆方案,使公司花费的成本最低.
巩固练习
1.要将两种大小不同的钢板截成 三种规格,每张钢板可同时截得三种规格
2.设实数 满足 ,则 的最大值是__________.
3.已知 满足约束条件 ,则 的最大值是__________.
例题剖析
例1投资生产 产品时,每生产 需要资金 万元,需场地 ,可获利润 万元;投资生产 产品时,每生产 需资金 万元,需场地 ,可获利润 万元,现某单位可使用资金 万元,场地 ,问:应作怎样的组合投资,可使获利最大?
的小钢板块数如下表示:
钢板类型
规格类型
A规格

高中数学必修五《简单的线性规划问题》优秀教学设计

高中数学必修五《简单的线性规划问题》优秀教学设计

简单的线性规划问题学案【 知识要点】1.二元一次不等式(组)表示的平面区域确定的方法二元一次不等式(组)表示的平面区域,有三种方法判定:第一种:若用b kx y +=表示的直线将平面分成上下两部分联系:将Ax +By +C =0表示的直线转化成b kx y +=形式即是第一种.窍门:符号定方向:看y 的系数B 与不等号的方向:同号 ;异号 。

第三种:选特殊点判定(如原点),取一点坐标代入二元一次不等式(组),若成立,则平面区域包括该点,反之,则不包括.(1)一般地,二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的 .(2)由于对在直线Ax +By +C =0同一侧的所有点),(y x ,把它的坐标),(y x 代入Ax +By +C ,所得到实数的符号都 ,所以只需在此直线的某一侧取一个特殊点),(00y x ,从C By Ax ++00的 即可判断Ax +By +C >0表示直线哪一侧的平面区域.窍门:特殊点定区域:若),可取点(000≠C ;若),可取点(010=C ),或(10。

2.线性规划求目标函数在 下的最大值或 的问题,统称为 问题,满足线性约束条件的解),(y x 叫做 ,由所有可行解组成的集合叫做 .分别使目标函数),(y x f z =取得 和最小值的可行解叫做这个问题的 . 3.利用图解法解决线性规划问题的一般步骤(1) 作;作出可行域.将约束条件中的每一个不等式当作等式,作出相应的直线,并确定原不等式的区域,然后求出所有区域的交集.(2) 移:作出目标函数的等值线(等值线是指目标函数过原点的直线).(3) 求:求出最终结果.在可行域内平行移动目标函数等值线,从图中能判定问题有唯一最优解,或者是有无穷最优解,或是无最优解. 【基础练习】1.下列命题中正确的是( ) A .点(0,0)在区域x +y ≥0内 B .点(0,0)在区域x +y +1<0内 C .点(1,0)在区域y >2x 内D .点(0,1)在区域x -y +1>0内 2.不等式组表示以点A (1,4),B (-3,0),C (-2,-2)为顶点的三角形内部区域(不含边界),则不等式组应是( )A.⎩⎪⎨⎪⎧x -y +3≥02x +y +6≥02x -y +2≤0B.⎩⎪⎨⎪⎧x -y +3<02x +y +6<02x -y +2>0C.⎩⎪⎨⎪⎧x -y +3>02x +y +6>02x -y +2<0D.⎩⎪⎨⎪⎧x -y +3>02x +y +6<02x -y +2<03.(课本习题改编)点A (1,1),B (-1,b )位于直线2x -3y +4=0的同侧,则实数b 的取值范围是________.4.不等式组⎪⎩⎪⎨⎧≤+≥≥400y x y x 所表示的平面区域的面积为________.【典型例题】例1 画出不等式组⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x 表示的平面区域,并回答下列问题:(1)指出y x ,的取值范围; (2)平面区域内有多少个整点? (3)求所围平面区域的面积.例2 已知y 、x 满足(1)若y x z +=2,求z 的最值. (2)若y x z -=2,求z 的最值.(3)若22y x z +=,求z 的最值. (4)若xyz =求z 的最值.(5)若),0(>+=m y mx z 在可行域内取得最大值的最优解有无数个, 求m 的值.【拓展练习】1.已知y x 、满足,00022≥≥≤-+⎪⎩⎪⎨⎧y x y x (1)求22)1()1(-+-y x 的最值; (2)求12--x y 的取值范围。

高中数学苏教版5教案:简单的线性规划问题(1)

高中数学苏教版5教案:简单的线性规划问题(1)

简单的线性规划问题(1)【三维目标】:一、知识与技能1。

从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决;2.了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念;会根据条件建立线性目标函数3。

了解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值4。

培养学生观察、联想以及作图的能力;渗透集合、化归、数形结合、等价转化的数学思想,提高学生“建模"和解决实际问题的能力,培养学生应用数学的意识。

二、过程与方法1。

本节课是以二元一次不等式表示的平面区域的知识为基础,将实际生活问题通过数学中的线性规划问题来解决。

2.考虑到学生的知识水平和消化能力,教师可通过激励学生探究入手,讲练结合,真正体现数学的工具性。

同时,可借助计算机的直观演示可使教学更富趣味性和生动性三、情感、态度与价值观1。

结合教学内容,培养学生学习数学的兴趣和“用数学"的意识,激励学生创新2.渗透集合、数形结合、化归的数学思想,培养学生“数形结合"的应用数学的意识;激发学生的学习兴趣【教学重点与难点】:重点:线性规划的图解法难点:从实际情景中抽象出一些简单的二元线形规划问题;寻求线性规划问题的最优解【学法与教学用具】:1。

学法:通过让学生观察、讨论、辨析、画图,亲身实践,调动多感官去体验数学建模的思想;学生要学会用“数形结合”的方法建立起代数问题和几何问题间的密切联系2。

教学用具:直角板、投影仪,计算机辅助教材【授课类型】:新授课【课时安排】:1课时【教学思路】:一、创设情景,揭示课题1。

在生活、生产中,经常会遇到资源利用、人力调配、生产安排的等问题,本节课就学习此方面的应用2。

问题:在约束条件4104320x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩下,如何求目标函数2P x y=+的最大值?二、研探新知1。

基本概念对于在约束条件4104320x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩下,若2P x y=+,式中变量x、y满足上面不等式组,则不等式组叫做变量x、y的约束条件,2P x y=+叫做目标函数;又因为这里的2P x y=+是关于变量x、y的一次解析式,所以又称为线性目标函数。

人教高中数学五《简单的线性规划问题》教案

人教高中数学五《简单的线性规划问题》教案

人教高中数学五《3
三维教学目标
知识与技能:①了解线性规划的意义以及约束条件、线性目标函数、可行域、最优解等相关的差不多概念;②在巩固二元一次不等式(组)所表示的平面区域的基础上,能从实际优化问题中抽象出约束条件和目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;③把握对一些实际优化问题建立线性规划数学模型并运用图解法进行求解的差不多方法和步骤。

过程与方法:①培养学生的形象思维能力、绘图能力和探究能力;②强化数形结合的数学思想方法;③提高学生构建(不等关系)数学模型、解决简单实际优化问题的能力。

情感、态度与价值观:①在感受现实生产、生活中的各种优化、决策问题中体验应用数学的欢乐;②在运用求解线性规划问题的图解方法中,感受动态几何的魅力;③在探究性练习中,感受多角度摸索、探究问题并收成探究成果的乐趣。

教学重点及应计策略
1、教学重点:依照实际优化问题准确建立目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;
教学难点:①借助线性目标函数的几何含义准确明白得线性目标函数在y轴上的截距与z最值之间的关系;②用数学语言表述运用图解法求解线性规划问题的过程。

教学过程设计。

高中数学必修⑤332简单的线性规划问题教学设计

高中数学必修⑤332简单的线性规划问题教学设计

课题:必修⑤三维目标:1、知识与技能(1)使学生进一步了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;;(2)了解线性规划问题的图解法,并能应用它解决相关问题及一些简单的实际问题。

2、过程与方法(1)通过引导学生合作探究,将实际生活问题转化为数学中的线性规划问题来解决,提高数学建模能力。

同时,可借助计算机的直观演示可使教学更富趣味性和生动性;(2)将实际问题中错综复杂的条件列出目标函数和约束条件对学生而言既是重点又是难点,在此,教师要根据学生的认知、理解情况,引导学生自己动手建立数学模型,自我不断体验、感受、总结;同时,要给学生正确的示范,利用精确的图形并结合推理计算求解3、情态与价值观(1)培养学生数形结合、等价转化、等与不等辩证的数学思想;(2) 通过对不等式知识的进一步学习,不断培养自主学习、合作交流、善于反思、勤于总结的科学态度和锲而不舍的钻研精神,提高参与意识和合作精神;(3)通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。

体验在学习中获得成功的成就感,为远大的志向而不懈奋斗。

教学重点:(1)把实际问题转化成线性规划问题,即建立数学模型;(2)用图解法解决简单的线性规划问题。

教学难点:准确求得线性规划问题的最优解(尤其是整数解的求解思想)教具:多媒体、实物投影仪教学方法:合作探究、分层推进教学法教学过程:一、双基回眸科学导入:★前面,我们学习了二元一次不等式(组)及其表示的区域……并且体会到在实际问题中的应用前景,感受到其重要性。

下面,首先我几个概念:1.二元一次不等式.:我们把含有两个未知数,并且未知数的次数是1的不等式称为二元一次不等式.2.二元一次不等式组.:我们把由几个二元一次不等式组成的不等式组称为二元一次不等式组.3.二元一次不等式组的解集:满足二元一次不等式组的x 和y的取值构成有序数对(,)x y,所有这样的有序数对(,)x y构成的集合称为二元一次不等式组的解集.1.二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)而不等式0+CAx表示区域时则包括边界,把边界画成实By+≥线.2.二元一次不等式表示哪个平面区域的判断方法:由于对在直线Ax+By+C=0同一侧的所有点(yx,),把它的坐标(yx,)代入Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.(特殊地,当C≠0时,常把原点作为此特殊点)★在生活、生产中,经常会遇到资源利用、人力调配、生产安排的等问题,如某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8h计算,该厂所有可能的日生产安排是什么?根据我们上节课所学知识,大家不难列出相应的量的约束条件,但我们列出(或画出)后,应该要解决生产中的必需的问题,这就是我们今天要探究的问题……二、创设情境合作探究:【引领学生合作探究,通过上述问题的进一步所求总结线性规划问题】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学教学设计获奖作品《简单的线性规划问题》一、教学内容分析普通高中课程标准教科书数学5(必修)第三章第3课时这是一堂关于简单的线性规划的“问题教学”.线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它能解决科学研究、工程设计、经济管理等许多方面的实际问题.简单的线性规划(涉及两个变量)关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成.突出体现了优化的思想.教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等的概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用.二、学生学习情况分析本节课学生在学习了不等式、直线方程的基础上,又通过实例,理解了平面区域的意义,并会画出平面区域,还能初步用数学关系式表示简单的二元线性规划的限制条件,将实际问题转化为数学问题. 从数学知识上看,问题涉及多个已知数据、多个字母变量,多个不等关系,从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日,这都成了学生学习的困难.三、设计思想本课以问题为载体,以学生为主体,以数学实验为手段,以问题解决为目的,以几何画板作为平台,激发他们动手操作、观察思考、猜想探究的兴趣。

注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,“从具体到一般”的抽象思维过程,应用“数形结合”的思想方法,培养学生的学会分析问题、解决问题的能力。

四、教学目标1.了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和最优解等概念;理解线性规划问题的图解法;会利用图解法求线性目标函数的最优解.2.在实验探究的过程中,让学生体验数学活动充满着探索与创造,培养学生的数据分析能力、探索能力、合情推理能力及动手操作、勇于探索的精神;3、在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力和化归能力,体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用.五、教学重点和难点求线性目标函数的最值问题是重点;从数学思想上看,学生对为什么要将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题?以及如何想到要这样转化?存在一定疑虑及困难;教学应紧扣问题实际,通过突出知识的形成发展过程,引入数学实验来突破这一难点.六、教学过程设计(一)引入(1)情景某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h.该产每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8h计算,该厂所有可能的日生产安排是什么?请学生读题,引导阅读理解后,列表→建立数学关系式→画平面区域,学生就近既分工又合作,教师关注有多少学生写出了线性数学关系式,有多少学生画出了相应的平面区域,在巡视中并发现代表性的练习进行展示,强调这是同一事物的两种表达形式数与形.【问题情景使学生感到数学是自然的、有用的,学生已初步学会了建立线性规划模型的三个过程:列表→建立数学关系式→画平面区域,可放手让学生去做,再次经历从实际问题中抽象出数学问题的过程,教师则在数据的分析整理、表格的设计上加以指导】教师打开几何画板,作出平面区域.(2)问题师:进一步提出问题,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?学生不难列出函数关系式y2+=.xz3师:这是关于变量yx、的变化x、的一次解析式,从函数的观点看y 引起z的变化,而yx、的值都x、是区域内的动点的坐标,对于每一组y 有唯一的z值与之对应,请算出几个z的值. 填入课前发下的实验探究报告单中的第2—4列进行观察,看看你有什么发现?学生会选择比较好算的点,比如整点、边界点等.【学生思维的最近发现区是上节的相关知识,因此教师有目的引导学生利用几何直观解决问题,虽然这个过程计算比较繁琐,操作起来有难度,但是教学是一个过程,从中让学生体会科学探索的艰辛,这样引导出教科书给出的数形结合的合理性,也为引入信息技术埋下伏笔】(二)实验教师打开画板,当堂作出右图,在区域内任意取点,进行计算,请学生与自己的数据对比,继续在实验探究报告单上补充填写画板上的新数据.同提出猜想,在当前技术条件受限时不失为一个好方法】师:这有限次的实验得来的结论可靠吗?我们毕竟无法取遍所有点,因为区域内的点是无数的!况且没有计算机怎么办,数据复杂手工无法计算怎么办?因此,有必要寻找操作性强的可靠的求最优解的方法.【形成认知冲突,激发求知欲望,调整探究思路,寻找解决问题的新方法】继续观察实验报告单,聚焦每一行的点坐标和对应的度量值,比如M(3.2, 1.2)时方程是1032=+y x ,填写表中的第6—7列,引导学生先在点与直线之间建立起联系 ------点M 的坐标是方程1032=+y x 的解,那么点M 就应该在直线1032=+y x 上,反过来直线1032=+y x 经过点M ,当然也就经过平面区域,所以点M的运动就可转化为直线的平移运动。

教师拖动直线并跟踪,学生看到直线平移时可以取遍区域内的所有点!这样我们的猜想就非常合乎情理了.然后顺利过渡到直线与平面区域之间的关系.师:由于我们可以将x ,y 所满足的条件用平面区域表示了,你能否也给利润z =2x +3y 作出几何解释呢?学生很自然地联想到上面实验的结果,将等式z =2x +3y 视为关于x ,y 的一次方程,它在几何上表示直线,当z 取不同的值时可得到一族平行直线.请把你猜想1换一种说法:猜想与假设2_______________________________________________________直线z =y x 32+经过点(4,2)时,z =y x 32+取得最大值14.将直线z =y x 32+改写为332z x y +-=,这时你能把猜想2再换一种说法吗?此时水到渠成.猜想与假设3_______________________________________________________直线332z x y +-=经过点M时,在y 轴上的截距最大,此时z =y x 32+取得最大值14.最后探究出“z =y x 32+最值问题可转化为经过可行域的直线332z x y +-=在y 轴上的截距的最值问题”来解决,实现其图解的目的. 【借助计算机技术用运动变化的方法,创设实验环境,形成多元联系,展示数学关系式、平面区域、表格等各种形态的表现形式,在数、图、表的关联中进行观察、分析,从而逐步帮助学生进行有层次的猜想,也为我们的研究提供一种方向,这是新课程积极倡导的合情推理】教师介绍线性规划、线性约束条件、线性目标函数、可行解、可行域和最优解等概念.(三)探究师:在上述问题中,若生产一件甲产品获利3万元,生产一件乙产品获利2万元,又应当如何安排生产才能获得最大的利润?再换几组数据试试(课本第100页)让学生“主动”更换数据,教师借助几何画板“被动”地进行操作演示,师生继续实验 …,发现结论同样成立. 进一步发现目标函数直线的纵截距与z 的最值之间的关系,有时并不是截距越大,z 值越大.实验结论_______________________________________________________“目标函数的最值问题可转化直线z =2x +3y 与平面区域有公共点时,在区域内找一个点M ,使直线经过点M 时在y 轴上的截距最大”【从笔算到计算,从点到直线再到平面(区域),从一个函数到多个函数,从特殊到一般,从具体到抽象的认识过程,使学生经历数学知识形成、发现、发展的过程,获得问题的解决,这有助于培养学生的科学素养】(四)练习小结学生练习P104第1题.[及时检验学生利用图解法解线性规划问题的情况,练习目的:会用数形结合思想,将求y x z +=2的最大值转化为直线z x y +-=2与平面区域有公共点时,在区域内找一个点M,使直线经过点M时在y 轴上的截距最小的问题,为节省时间,教师可预先画好平面区域,让学生把精力集中到求最优解的解决方案上](五)实例展示(课本第100页例5饮食营养搭配)营养学家指出,成人良好的日常饮食至少应该提供0.075kg的碳水化合物, 0.06kg的蛋白质,0.06kg的脂肪.1kg食物A含有0.105kg的碳水化合物,0.07kg的蛋白质,0.14kg的脂肪,花费28元;而1kg食物B含有0.105kg的碳水化合物,0.14kg的蛋白质,0.07kg的脂肪,花费21元.为了满足营养学家的指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?【一是使学生认识到现实生活中存在许多简单的二元线性规划问题,二是让学生经历完整的分析研究问题、制定解决问题的策略的过程,让学生全面参与课堂教学,完善知识结构体系】这里要关注平面区域本题是开放型的,而引例是封闭型的.(六)课后伸申师:在上述线性规划问题中,线性约束条件及线性目标函数是确定的,求最优解.这是问题的一方面,另一方面(1)若要求结果为整数呢?最优解是在哪?(2)若已知有唯一(或无数)最优解时,反过来确定线性约束条件或目标函数某些字母系数的取值(范围),又如何解决呢?(七)小结求最优解的一般步骤(板书):(1)画线性约束条件所确定的平面区域;(2)取目标函数z=0,过原点作相应的直线;(3)平移该直线,观察确定区域内最优解的位置;(4)解有关方程组求出最优解,代入目标函数得最值.作业:第104页练习2,第106页习题3—4,第107页习题3. 七、教学反思为了将学生从繁琐的数字计算和画区域图中解脱出来,将精力放在对最优解的理解和突出思想方法上,可根据下列不同的情况,设计教学条件,支持教学.(1)理想的实验应该是在网络环境的支持下完成的,教学之前,老师将积件传输到学生的计算机中,学生在单机的条件下自己动手操作.(2)在学生缺乏信息技术工具的条件下,教学和作业都应避免繁琐的计算,而把注意力放在“算理”上.另外数学探究的时间长会使学生失去耐心,基本训练时间无法保证,导致当前效果不直接,教学评价难以跟进,教师宜把握尺度、控制时间,组织起有效的课堂教学,提高驾驭课堂的能力与水平.点评该教学设计从研读教材入手,精心挖掘教学内容中的实验因子,依据教师实验报告的引导,使学生自己动手操作,通过观察、发现、思考、分析、归纳提出猜想等活动,完成对最优解的意义建构,体现了新课程“倡导积极主动、勇于探索的学习方式”。

同时在教育技术平台上进行师生互动“操盘”,改变单一的教师演示的模式,通过实时的动态模拟,实现数、图、表的多元联系,这初步体现了教学过程中教师、学生、内容、媒体四要素功能的转变,激发了学生探究的兴趣,提高了他们的实验、分析、探究能力,最终获得问题的解决。

相关文档
最新文档