分数应用题,工程问题

合集下载

分数应用题典型应用9

分数应用题典型应用9

分数应用题典型应用——工程问题1.加工一批零件,独做需50天完成,乙独做需75天完成。

现两人合做,中途乙因事外出,结果用40天才完成。

乙单独做了多少天?2.一件工作,师徒合作3天完成了全部工作的60%。

师傅外出开会停工3天后继续与徒弟合作。

已知师傅效率是徒弟的2倍,那么到完成这件工作时共用了多少天?3.一项工程,甲乙两队合做12天完成,乙丙两队合做20天完成,甲丙两队合做5天完成。

如果三队合做几天可以完成?4.一项工程,甲乙丙三队合做要6天完成,甲乙合做要9天完成,三队合做,丙队中途因特殊任务调出3天,完成任务时,丙队做了多少天?5.一辆汽车从甲城开往乙城6小时到达,返回时加快了速度,每小时比原来多行8千米,结果只用了5小时。

求甲城到乙城的路程有多少千米?6.甲乙合做5小时,可以完成一项工作,现在甲先工作2小时,再由乙工作4小时,可以完成这项工作的5/7。

乙单独完成这项工作需要几小时?7.一项工作,甲单独做用10天完成,乙单独做用15天完成,合作中甲休息了5天,完成这项工作共需多少天?8.一部书稿,甲单独打字需6小时完成,乙需8小时完成,两人合打2小时,乙比甲少打20页,这部书稿共有多少页?9.一项工程,甲队独做要1/4小时,已队要1/5小时,两队合做要几小时完成?10.一件工程,甲乙合做20天完成,已知甲乙两队工作效率比是5:4,甲做了15天,乙做了10天,甲乙各完成了这件工程的几分之几?11.一件工作队,甲单独做8小时完成,甲做了2小时后,乙再加入合做4小时才完成任务,求乙单独做完这件工作需几小时?12.一项工程,甲乙合做4天可完成,乙丙合做6天可完成,甲丙合做8天可完成。

三人合做几天可以完成?13.修一条公路甲队单独修20天完成,乙队单独修30天完成,现在两队合修若干天后,余下的由乙队单独修10天完成。

两队合修了多少天?14.一项工程,甲乙合做6天完成,合做4天后甲队调走,剩下的乙又做了4天,单独做各要几天完成?15.甲乙两辆汽车同时从AB两地相对而行,2小时相遇,相遇时所行路程比是5:4,行完全程各用几小时?16.加工一批零件,单独做,甲要20小时,乙要30小时,二人合做,完成任务时甲比乙多做了36个。

分数应用题七种类型公式

分数应用题七种类型公式

分数应用题七种类型公式(一)求一个数是另一个数的几分之几(或百分之几)公式:比较量÷标准量 = 分率(百分率)(二)求一个数比另一个数多(或少)几分之几(或百分之几)1. 多几分之几(或百分之几)公式:(大数 - 小数)÷小数=分率(百分率)2. 少几分之几(或百分之几)公式:(大数 - 小数)÷大数 = 分率(百分率)(三)求一个数的几分之几(或百分之几)是多少。

公式:这个数×分率(百分率)= 部分量。

(四)已知一个数的几分之几(或百分之几)是多少,求这个数。

公式:部分量÷分率(百分率)= 这个数。

(五)求比一个数多(或少)几分之几(或百分之几)的数是多少。

1. 多几分之几(或百分之几)公式:这个数×(1 + 分率(百分率))= 所求数。

2. 少几分之几(或百分之几)公式:这个数×(1 - 分率(百分率))= 所求数。

(六)已知比一个数多(或少)几分之几(或百分之几)的数是多少,求这个数。

1. 多几分之几(或百分之几)公式:已知数÷(1+分率(百分率))= 这个数。

2. 少几分之几(或百分之几)公式:已知数÷(1 - 分率(百分率))= 这个数。

(七)工程问题。

公式:工作效率×工作时间 = 工作总量;工作总量÷工作时间 = 工作效率;工作总量÷工作效率 = 工作时间。

二、20题带解析。

(一)求一个数是另一个数的几分之几(或百分之几)类型。

1. 题目:五年级有学生40人,六年级有学生50人,五年级学生人数是六年级的几分之几?- 解析:根据公式比较量÷标准量 = 分率,五年级学生人数是比较量,六年级学生人数是标准量。

所以40÷50 = 4/5。

2. 题目:学校植树120棵,成活了100棵,成活的棵数是植树总数的百分之几?- 解析:成活的棵数是比较量,植树总数是标准量。

六年级分数和百分数应用题25道及答案

六年级分数和百分数应用题25道及答案

六年级分数和百分数应用题25道及答案1、一项工程甲乙合做6天完成,乙独做10天完成,甲独做要几天完成?2、一项工作,甲5小时先完成4分之1,乙6小时又完成剩下任务的一半,最后余下的工作有甲乙合作,还需要多长时间能完成?多少人?定时完成,还需求做30-12=18天需要增加24-18=6人4、甲乙两人加工一批零件,甲先加工 1.5小时,乙再加工,完成任务时,甲完成这批零件的八分之五.已知甲乙的共效比是3:2.问:甲单独加工完成着批零件需多少小时?甲乙工效比=3:2也就是工作量之比=3:25、一项工程,甲、乙、丙三人协作需求13天,如果丙苏息2天,乙要多做4天,大概由甲、乙合作多做1天.问:这项工程由甲单独做需求多少天?丙做2天,乙要做4天也就是说并做1天乙要做2天那末丙13天的工作量乙要2×13=26天完成乙做4天相当于甲乙协作1天也就是乙做3天即是甲做1天设甲单独完成需求a天那末乙单独做需求3a天丙单独做需求3a/2天根据题意a=26甲单独做需要26天算术法:丙做13天相当于乙做26天所以甲单独完成需求13+13=26天甲三天做165-75=90套7、甲、乙两人出产一批零件,甲、乙工作效力的比是2:1,两人共同出产了3天后,剩下的由乙单独生产2天就全部完成了生产任务,这时甲比乙多生产了14个零件,这批零件共有多少个?将乙的工作效率看作单位1 那么甲的工作效率为2乙2天完成1×2=2乙一共生产1×(3+2)=5甲一共出产2×3=6所以乙的工作效率=14/(6-5)=14个/天甲的工作效率=14×2=28个/天一共有零件28×3+14×5=154个或者设甲乙的工作效率分别为2a个/天,a个/天2a×3-(3+2)a=146a-5a=14a=14一共有零件28×3+14×5=154个8、一个工程工程,乙单独完成工程的工夫是甲队的2倍;甲乙两队协作完成工程需求20天;甲队每天工作费用为1000元,乙每天为550元,从以上信息,从节约资金角度,公司应选择哪个?应付工程队费用多少?甲乙的工作工夫比=1:2那末甲乙的工作效力比=2:1甲单独完成需要1000×30=元乙单独完成需要550×60=元甲乙合作完成需要(1000+550)×20=元很明显甲单独完成需要的钱数最少选择甲,需要付元工程费.9、一批零件,甲乙两人合做5.5天可以逾额完成这批零件的0.1,目前先由甲做2天,后由后由甲乙合作两天,最后再由乙接着做4天完成任务,这批零件如果由乙单独做几天可以完成?将全部零件看作单位1 整个过程是甲工作2+2=4天乙工作2+4=6天10、有一项工程要在规定日期内完成,如果甲工程队单独做正好如期完成,如果乙工程队单独做就要跨越5天赋干完成.现由甲、乙两队协作3天,余下的工程由乙队单独做正好按期完成,问划定日期是多少天?甲做3天相当于乙做5天甲乙的工作效力之比=5:3那么甲乙完成时间之比=3:5规定时间=12.5-5=7.5天11、一项工程,甲队单独做20天完成,乙队单独做30天完成,现在乙队先做5天后,剩下的由甲、乙两队协作,还需求多少天完成?12、一项工程甲独完成要10天,乙独做需15天,丙队要20天,3队一同干,甲队因事走了,结果共用了六天,甲队实际干了多少天?12、加工一个零件,甲需要4小时,乙需要2.5小时,丙需要5小时.现在有187个零件需要加工。

小学数学植树问题、行程问题、工程问题、鸡兔同笼和分数应用题

小学数学植树问题、行程问题、工程问题、鸡兔同笼和分数应用题

小学数学植树问题、行程问题、工程问题、鸡兔同笼和分数应用题一、植树问题:1、两端都栽植树棵树=总距离÷树间距+1数间距=总距离÷(植树棵树-1)总距离=树间距×(植树棵树-1)2、两端都不栽植树棵树=总距离÷树间距-1数间距=总距离÷(植树棵树+1)总距离=树间距×(植树棵树+1)3、一段栽另一段不栽或是在封闭的线路上植树(沿着长方形、圆形或其它封闭的线路植树,首尾相接)。

植树棵树=总距离÷树间距数间距=总距离÷植树棵树总距离=树间距×植树棵树二、行程问题路程=速度×时间速度=路程÷时间时间=路程÷速度总路程=(甲的速度+乙的速度)×相遇时间相遇时间=总路程÷(甲的速度+乙的速度)甲的速度=总路程÷相遇时间-乙的速度乙的速度=总路程÷相遇时间-甲的速度三、工程问题合做时间=1÷(甲独做时间1+ 乙独做时间1)例:一项工程,甲队独做10天能完成,如果乙队独做15天能完成,现在由甲乙两队合做几天能完成?1÷(101+151)甲独做时间=1÷(合做时间1-乙独做时间1)乙独做时间=1÷(合做时间1-甲独做时间1)例:一项工程,由甲乙两队合做6天完成,如果甲队独做10天能完成,现在乙队独做几天能完成?1÷(61-101)四、鸡兔同笼:(1)、鸡的只数=(头的只数×每只兔的脚数-脚的只数)÷(每只兔的脚数-每只鸡的脚数)(2)、兔的只数=(脚的只数-头的只数×每只鸡的脚数)÷(每只兔的脚数-每只鸡的脚数)(3)答对题数=(最后的得分+答题数×扣分)÷(加分+扣分)(4)答错题数=(答题数×加分-最后得分)÷(加分+扣分)五、各类型分数应用题1、求一个数是另一个数的几分之几(百分之几或几倍)。

奥赛班工程问题及分数应用题

奥赛班工程问题及分数应用题

奥赛班工程及分数应用题1、一项工程,甲队单独施工要用20天,乙队单独施工要用30天。

如果两 队合作,每天完成这项工程的几分之几?几天可以做完?2、加工一批零件,甲单独做6小时完成,乙单独做9小时完成。

(1)甲单独做,每小时完成这批零件的几分之几?乙单独做,每小时完成这批零件的几分之几? (2)甲、乙合做,每小时完成这批零件的几分之几? (3)甲、乙合做,几小时可以完成任务?3、加工一批零件,由一个人单独做,甲要12小时,乙要10小时,丙要15小时。

(1)如果由甲、乙两 人合做,多少小时可以完成? (2)如果由乙、丙两 人合做,多少小时可以完成? (3)如果由甲、乙、丙三人合做,多少小时可以完成?4、一堆货物,甲车单独运,4小时可以运完;乙车单独运。

6小时可以运完。

现在由甲、乙两车合运这堆货物的65,需要多少小时?5、(1)两列火车同时从相距600千米的两城相对开出。

一列火车每小时行60 千米,另一列火车每小时行75千米,经过几小时两 车可以相遇? (2)两 列火车同时从甲 乙两城相对开出。

一列火车从甲城开往乙城城10小时,另一列火车从乙城开往甲城需要8小时,经过几小时两车可以相遇?6、张红抄写一份稿件,需要5小时抄完。

这份稿件已由别人抄写了31,剩下的交给张红抄,还要用几小时才能抄完? 7、(1)客车、货车同时从相距300千米的甲 乙两地相对开出,客车每小时行50 千米,货车每小时行60千米,经过几个小时相遇?(2)客车、货车分别从相距600千米的甲乙两地相对开出,货车平均每小时行65千米,客车的速度是货车的1311。

两车开出后几小时相遇?(3)客车、货车分别从相距300千米的甲 乙两地相对开出,客车行完全程要6小时,货车行完全程要5小时,经过几个小时两车才能相遇?(4)客车、货车分别甲 乙两地相对开出,客车行完全程要5小时,经过几个小时两车才能相遇?(5)甲乙两地相距216千米。

货车行完全程要6小时,客船每小时走全程的91,现在两船同时从两港相对开出,经过几小时相遇?12(1)一个水池可装水120立方米,水池里有甲 乙两个水管。

分数除法应用题例7工程问题

分数除法应用题例7工程问题

②“1.5+1”求的是什么? (两队合修1天的长度。)
18km
18km
18km
1.5km
1km
(1.5+1)km
18÷12=1.5(km) 18÷18=1(km) 18÷(1.5+1)= (天)
5
36
①“30÷12= ”求的是什么? (一队1天修的长度。) “30÷18= ”求的又是什么? (二队1天修的长度)
20
1
30
1
2.某水库遭遇暴雨,水位已经超过警戒线,急需泄洪。这个水库有两个泄洪口。只打开A口,8小时可以完成任务,只打开B口,6小时可以完成任务。如果两个泄洪口同时打开,几小时可以完成任务?
1.甲车从A城市到B城市要行驶2小时,乙车从B城市到A城市要行驶3小时。两车同时分别从A城市和 B城市出发,几小时后相遇?
2
5
3
5
分析与解答
问题:
预设2:
30km
30km
30km
km
km
( ) km
30÷12= (km) 30÷18= (km) 30÷( + )= (天)
2
5
3
5
2
5
3
5
5
36
②“ + ”求的是什么? (两队合修1天的长度。)
2
5
3
5
分析与解答
问题:
18
1
12
1
36
5
5
36
求的是什么? 呢?
(一队1天修完这条路的几分之几; 二队1天修完这条路的几分之几。)
12
1
18
1
③“ + ”求的是什么?
12
1
181ຫໍສະໝຸດ 分析与解答问题:② 为什么我们假设这条路的长度不同,但最终的结果是相同的呢?

小学数学植树问题、行程问题、工程问题、鸡兔同笼和分数应用题

小学数学植树问题、行程问题、工程问题、鸡兔同笼和分数应用题

小学数学植树问题、行程问题、工程问题、鸡兔同笼和分数应用题一、植树问题: 1、两端都栽植树棵树=总距离÷树间距+1 数间距=总距离÷(植树棵树-1) 总距离=树间距×(植树棵树-1) 2、两端都不栽植树棵树=总距离÷树间距-1 数间距=总距离÷(植树棵树+1) 总距离=树间距×(植树棵树+1)3、一段栽另一段不栽或是在封闭的线路上植树(沿着长方形、圆形或其它封闭的线路植树,首尾相接)。

植树棵树=总距离÷树间距 数间距=总距离÷植树棵树 总距离=树间距×植树棵树二、行程问题路程=速度×时间 速度=路程÷时间 时间=路程÷速度总路程=(甲的速度+乙的速度)×相遇时间 相遇时间=总路程÷(甲的速度+乙的速度) 甲的速度=总路程÷相遇时间-乙的速度 乙的速度=总路程÷相遇时间-甲的速度三、工程问题 合做时间=1÷(甲独做时间1+ 乙独做时间1)例:一项工程,甲队独做10天能完成,假如乙队独做15天能完成,现在由甲乙两队合做几天能完成?1÷(101+ 151 ) 甲独做时间=1÷(合做时间1-乙独做时间1)乙独做时间=1÷(合做时间1-甲独做时间1)例:一项工程,由甲乙两队合做6天完成,假如甲队独做10天能完成,现在乙队独做几天能完成?1÷(61- 101 ) 四、鸡兔同笼:(1)、鸡的只数=(头的只数×每只兔的脚数-脚的只数)÷(每只兔的脚数-每只鸡的脚数)(2)、兔的只数=(脚的只数-头的只数×每只鸡的脚数)÷(每只兔的脚数-每只鸡的脚数)(3)答对题数=(最后的得分+答题数×扣分)÷(加分+扣分)(4)答错题数=(答题数×加分-最后得分)÷(加分+扣分)五、各类型分数应用题1、求一个数是另一个数的几分之几(百分之几或几倍)。

六年级分数除法工程问题应用题

六年级分数除法工程问题应用题

六年级分数除法工程问题应用题一、题目。

1. 一项工程,甲队单独做要10天完成,乙队单独做要15天完成。

两队合作多少天可以完成这项工程?解析:把这项工程的工作量看作单位“1”,甲队的工作效率就是1÷10=(1)/(10),乙队的工作效率就是1÷15=(1)/(15)。

两队合作的工作效率为(1)/(10)+(1)/(15)=(3 +2)/(30)=(1)/(6),根据工作时间 = 工作量÷工作效率,可得1÷(1)/(6)=6(天)。

2. 修一条路,甲单独修12天可完成,乙单独修18天可完成。

如果甲、乙两队合修,多少天能修完这条路的(5)/(6)?解析:甲的工作效率为1÷12=(1)/(12),乙的工作效率为1÷18=(1)/(18),两队合作的工作效率为(1)/(12)+(1)/(18)=(3+2)/(36)=(5)/(36)。

工作量是(5)/(6),工作时间=(5)/(6)÷(5)/(36)=(5)/(6)×(36)/(5)= 6(天)。

3. 一项工程,甲单独做20天完成,乙单独做30天完成。

甲、乙合作了几天后,乙因事请假,甲继续做,从开工到完成任务共用了16天。

乙请假多少天?解析:甲的工作效率(1)/(20),甲16天完成的工作量为(1)/(20)×16=(4)/(5),那么乙完成的工作量为1-(4)/(5)=(1)/(5),乙的工作效率为(1)/(30),乙工作的时间为(1)/(5)÷(1)/(30)=6(天),乙请假的天数为16 - 6=10(天)。

4. 一件工作,甲单独做15小时完成,乙单独做10小时完成。

现在先由甲单独做5小时,余下的由甲乙一起做。

余下的部分需要几小时完成?解析:甲的工作效率为(1)/(15),甲先做5小时的工作量为(1)/(15)×5=(1)/(3),剩下的工作量为1-(1)/(3)=(2)/(3),甲乙合作的工作效率为(1)/(15)+(1)/(10)=(2 +3)/(30)=(1)/(6),所以余下部分需要的时间为(2)/(3)÷(1)/(6)=4(小时)。

六年级分数除法解决问题应用题

六年级分数除法解决问题应用题

六年级分数除法解决问题应用题一、工程问题类。

1. 一项工程,甲队单独做需要10天完成,甲队的工作效率是多少?如果乙队单独做需要15天完成,乙队的工作效率是多少?两队合作需要多少天完成这项工程?解析:把这项工程的工作量看作单位“1”。

根据工作效率 = 工作量÷工作时间,甲队单独做需要10天完成,甲队的工作效率是1÷10=(1)/(10);乙队单独做需要15天完成,乙队的工作效率是1÷15=(1)/(15)。

两队合作的工作效率是(1)/(10)+(1)/(15)=(3 + 2)/(30)=(1)/(6),再根据工作时间 = 工作量÷工作效率,两队合作完成这项工程需要1÷(1)/(6)=6天。

2. 修一条路,甲工程队每天修这条路的(1)/(20),乙工程队每天修这条路的(1)/(30),两队合修,多少天能修完?解析:把这条路的工作量看作单位“1”。

两队合作的工作效率为(1)/(20)+(1)/(30)=(3+2)/(60)=(1)/(12)。

根据工作时间 = 工作量÷工作效率,修完这条路需要1÷(1)/(12)=12天。

二、已知一个数的几分之几是多少,求这个数的问题。

3. 小明看一本故事书,已经看了45页,正好是这本书的(3)/(5),这本书有多少页?解析:已知看的页数45页是这本书的(3)/(5),根据“这本书的页数×(3)/(5)=45页”,求这本书的页数,用除法计算,即45÷(3)/(5)=45×(5)/(3)=75页。

4. 学校美术小组有25人,美术小组的人数是航模小组人数的(5)/(7),航模小组有多少人?解析:已知美术小组人数是航模小组人数的(5)/(7),即航模小组人数×(5)/(7)=25人。

求航模小组人数用除法,25÷(5)/(7)=25×(7)/(5)=35人。

小六分数工程问题应用题

小六分数工程问题应用题

1、一项工程,甲队每天完成工程的1/4,乙队每天完成工程的1/5,若两队合作,一天完成工程的几分之几?2、一项工程,甲队每天完成工程的1/4,乙队每天完成工程的1/5,若两队合作,几天完工?3、一项工程,甲乙两队合作一天完成工程的1/4,甲每天完成工程的1/7,若乙单独做几天做完?4、一项工程,甲独做5天完工,乙独做7天完工,若两队合作,一天完成工程的几分之几?5、一项工程,甲独做10天完工,乙独做7天完工,若两队合作,3天完成工程的几分之几?6、一项工程,甲独做15天完工,乙独做20天完工,若两队合作,几天完工?7、有一项工程,甲队单独做需要10天,甲、乙两队合做需要4天,乙单独做需要几天8、一袋米,甲乙丙三人一起吃,8天吃完,甲一人24天吃完,乙一人36天吃完,问丙一人几天吃完?9、一项工程由甲工程队修建需要20天,由乙工程队修建需要30天,甲乙两队合作多少天才能完成工程的四分之三?10、有一件工作,小华做需3天,小芳做需4天,小梅做需5天,如果三人合做,几天完成?11、车站有一批货物用甲汽车用10小时运完,用乙汽车15小时可以运完,若两辆汽车同时运4小时,还剩这批货物的几分之几没有运完?12、师徒合作加工一批零件,5小时可加工这批零件的一半,如徒弟单独加工25小时完成,师傅单独加工这批零件需要几小时?13、一项工程甲独做4小时完成这项工作的1/2,乙独做8小时完成这项工程的4/5,如果甲乙合作多少时间完成这项工程?14、一项工程,甲独做5天完工,乙独做7天完工,甲先修3天,剩下的两队合修,还需几天完工?15、一项工程,甲独做15天完工,乙独做20天完工,先合修5天,剩下的乙队独修,还需几天完工?16、有一项工程,若甲队单独做需要10天,若甲、乙两队合做需要4天,先合修1天,剩下的由甲独做,还需几天完工?17、一项工程,若甲乙两队合作9天完工,若甲独做20天完工,先两队合修2天,剩下的由乙独做,还需几天?18、有一批货,甲乙两辆汽车合运6小时运完,甲汽车单独运10小时运完,先由两车合运2小时,剩下由乙汽车运还要几小时19、一项工程,甲队独做60天完成,乙队独做40天完成,现先由甲队独做2天后,乙队又独做3天,剩下两队合作。

小学六年级数学工程问题经典例题解析

小学六年级数学工程问题经典例题解析
5、甲乙二人植树,单独植完这批树甲比乙所需要的时间多1/3,如果二人一起干,完成任务时乙比甲多植树36棵,这批树一共多少棵?
6、一项工程,甲单独做需要12小时完成,乙单独做需要18小时完成,若甲先做1小时,然后乙接着做1小时,再由甲接着做1小时,…,两人如此交替工作,问完成任务时,共用了多少小时?
小学六年级数学工程问题经典例题解析Байду номын сангаас
工程问题,是小升初常考的知识点,奥数网小编将工程问题知识点及经典例题解析整理如下。
知识要点
1、分数工程应用题,一般没有具体的工作总量,工作总量常用单位“1”表示,用1/工作时间表示各单位的工作效率。工作效率与完成工作总量所需时间互为倒数。
2、解工程问题的应用题,一般都是围绕寻找工作效率的问题进行。
3、工作效率、工作时间、工作总量是工程问题的三个基本量,解题时要注意对应关系。
经典例题解析
1、一项工程,甲乙两队合作需12天完成,乙丙两队合作需15天完成,甲丙两队合作需20天完成,如果由甲乙丙三队合作需几天完成?
2、师徒二人合作生产一批零件,6天可以完成任务,师傅先做5天后,因事外出,由徒弟接着做3天,共完成任务的7/10,如果每人单独做这批零件各需几天?
3、一件工作甲先做6小时,乙接着做12小时可以完成,甲先做8小时,乙接着做6小时也可以完成,如果甲做3小时后由乙接着做,还需要多少小时完成?
4、蓄水池有一条进水管和一排水管,要灌满一池水,单开进水管需要5小时,排光一池水,单开排水管需3小时。现在池内有半池水,如果按进水、排水、进水、排水……的顺序轮流各开1小时,问:多上时间后水池的水刚好排完?(精确到分钟)

小升初小学数学分数问题应用题专题练习《工程问题》答案详解

小升初小学数学分数问题应用题专题练习《工程问题》答案详解

分数问题—专题练习《工程问题》一.选择题1.(2019•株洲模拟)王师傅计划加工一批零件,如果实际工作时效率比计划提高20%,那么可提前1小时完成任务;如果王师傅要想比计划提前2小时完成任务,那么王师傅的工作效率就要比计划提高( ) A .40%B .50%C .60%D .70%【分析】从开始提高20%,那么工作效率是原来的6120%5+=,工作时间与工作效率成反比例,工作时间是原来的56,工作时间提前了16,它对应的时间是1小时,由此求出原来用的时间;如果王师傅要想比计划提前2小时完成任务,可以求出现在的工作时间和工作效率,对比计划的效率即可求出现在比计划提高了多少.【解答】解:6120%5+=因为工作总量一定,工作效率与工作时间成反比,所以工作时间变为原来的56计划用的时间:51(1)66÷-=(小时)现在的时间:624-=(小时) 现在的工作效率:1144÷= 计划的工作效率:1166÷=111()100%50%466-÷⨯= 所以工作效率比计划提高了50%. 故选:B .2.(2019•防城港模拟)一件工作,甲独做12小时可以完成,现在甲、乙合做3小时后,甲因事外出,剩下的工作乙又用了154小时完成,如果这件工作全部由乙做,需要( )小时可完成.A .10B .11C .8D .9【分析】甲单独做需要12小时完成,则甲每小时完成总工作量的112,甲乙合作3小时,则甲完成了全部的1312⨯,乙完成了全部的11312-⨯,又这一过程中乙始终在工作,工作了1354+小时,所以乙单独完成需11(35)(13)412+÷-⨯小时.【解答】解:11 (35)(13)412 +÷-⨯18.25(1)4=÷-38.254=÷11=(小时)答:如果这件工作全部由乙做,需要11小时.故选:B.3.(2019•株洲模拟)在一次学校义务劳动中,安排20人挖土,28人抬土.据观察发现1人挖出的土,需2人才能及时抬走,那么应从挖土人员中抽调()人到抬土队伍中来.A.2人B.4人C.6人D.8人【分析】设x人去挖土,则有(48)x-人运土,正好能使挖出的土及时运走可列方程求解.【解答】解:设x人去挖土,248x x=-248x x+=16x=20164-=(人)答:应从挖土人员中抽调4人到抬土队伍中来.故选:B.4.(2018•溧阳市)甲、乙两个工程队修一段120米的公路,如果甲工程队单独修,18天可以完成;乙工程队单独修,15天可以完成.甲、乙两个工程队合修,每天一共完成这项工程的()A.111815+B.1201201815+C.5665+【分析】把这项工程的工作量看成单位“1”,甲工程队单独修,18天可以完成,那么甲每天可以完成这项工程的118,乙工程队单独修,15天可以完成,乙每天完成这项工程的115,把它们相加即可求出两队合修每天一共完成这项工程的几分之几.【解答】解:1111 181590 +=答:每天一共完成这项工程的11 90.故选:A.5.(2018•成都)加工一批零件,前一半时间加工的零件个数和后一半时间加工的个数之比是3:2,则加工前一半零件所需的时间是加工后一半零件所需时间的( ) A .57B .23 C .112D .无法确定【分析】运用赋值法,令零件总数是10个,共用时间是2分钟,那么第一分钟加工了6个,第二分钟加工了4个;前6个零件用1分钟,那么一共零件就用16分钟,由此求出前5个零件用的时间,用2分钟减去前5个零件用的时间就是后5个零件用的时间;然后用前5个零件用的时间除以后5个零件用的时间即可. 【解答】解:令零件总数是10个,共用时间是2分钟; 325+=;第1分钟加工零件数:31065⨯=(个),每个零件用时16分钟; 15566⨯=(分钟); 55(2)66÷-, 5766=÷, 57=;答:加工前一半零件所需的时间是加工后一半零件所需时间的57.故选:A . 二.填空题6.(2019•上街区)加工西服要三道工序,专做第一、二、三工序的工人毎小时分别能完成西服30套、24套、20套,现有90名工人,要使每天三道工序完成的套数相同,每道工序人数分别是 24名 、 、 名.【分析】要使每天三道工序完成的套数相同,30235=⨯⨯,242223=⨯⨯⨯,20225=⨯⨯,那么30、24和20的最小公倍数是22235120⨯⨯⨯⨯=,然后用这个最小公倍数分别除以30、24、20,求出每道工序的人数比,然后再根据按比分配的方法进行解答.【解答】解:30235=⨯⨯,242223=⨯⨯⨯,20225=⨯⨯; 那么30、24和20的最小公倍数是22235120⨯⨯⨯⨯=; 120304÷= 120245÷=120206÷=要使每天三道工序完成的套数相同,那么第一、二、三工序的人数比是4:5:6;第一道工序的人数是:49024456⨯=++(名) 第二道工序的人数是:59030456⨯=++(名) 第三道工序的人数是:69036456⨯=++(名)答:第一、二、三道工序人数分别是24名、30名、36名. 故答案为:24名、30名、36.7.(2019•湖南模拟)一项工程,甲乙合作每小时完成全工程的16,如果甲先做4小时,乙再做3小时,还剩工程的25没完成.那么如果甲单独做,几小时能完成任务? 【分析】由题意,甲先做4小时,乙再做3小时,可以看作是甲乙合作3小时后甲又做了1小时,完成了工程的2(1)5-,由此用21(1)356--⨯可求得甲的工作效率,由要求甲单独做几小时能完成任务,根据“工作量÷工作效率=工作时间”列式解答即可. 【解答】解:211[(1)3]56÷--⨯ 311[(]52=÷- 1110=÷10=(小时)答:如果甲单独做,10小时能完成任务.8.(2019•宁波)粗蜡烛和细蜡烛长短一样.粗蜡烛可以点5小时,细蜡烛可以点4小时.同时点燃这两支蜡烛,点了一段时间后,粗蜡烛长是细蜡烛长的2倍.问这两支蜡烛点了103时间? 【分析】本题的等量关系为:剩余的粗蜡烛长度2=⨯剩余的细蜡烛长度,由此可列出方程. 【解答】解:设这两支蜡烛已点燃了x 小时,由题意得: 1112(1)54x x -=⨯-, 1111125222x x x x -+=-+,31210x +=,3112110x +-=-,3110x =,103x =. 答:这两支蜡烛已点燃了103小时. 故答案为:103.9.(2019•郑州)一项工程,甲、乙两人合做8天完成,乙、丙两人合做9天完成,丙、甲两人合做18天完成,那么丙一个人来做,完成这项工作需要 48 天.【分析】要求丙一个人来做完成这项工作需要的天数,就要求出丙的工作效率,根据题意,丙的工作效率的2倍为111()9188+-,则丙的工作效率为1111()2918848+-÷=;则丙一个人来做,完成这项工作需要1148÷,计算解决问题.【解答】解:111()29188+-÷ 1224=÷148= 114848÷=(天)答:丙一个人来做,完成这项工作需要48天. 故答案为:48.10.(2018•东莞市模拟)一项工程,甲队单独做10天完成,已知甲队2天的工作量等于乙队3天的工作量,那么两队合作 6 天能完成.【分析】把这项工程看作单位“1”,甲队单独做要10天,甲1天的工作量为110,已知甲队2天的工作量等于乙队3天的工作量,所以乙1天的工作量为12310⨯÷,再用单位“1”除以两队的工作效率和,即可得两队合作几时小天可以完成这项工程. 【解答】解:111(23)1010÷⨯÷+ 116=÷6=(天)答:两队合作 6天能完成.故答案为:6.11.(2017•长沙)一个蓄水池有两根进水管和一根放水管,单开一根进水管20分钟能放满一池水,单开一根放水管15分钟能放完一池水,现在满满一池水,先开一根进水管和放水管,当水池还剩下水13时,然后再打开另外一根进水管,15分钟后关闭放水管,直到水池重新放满水,则这个过程中共用时 2363分钟.【分析】将满满一池水看作单位“1”,一根进水管的工作效率是120,一根排水管的工作效率是115,根据题意,先开一根进水管和放水管,计算“当水池还剩下水13时”的时间,“然后再打开另外一根进水管,15分钟后关闭放水管”计算出注入水池的水量,再计算“直到水池重新放满水”用的时间,则可以求出这个过程中共用时的时间. 【解答】解:111()31520÷- 11360=÷ 20=(分钟)111(1)(2)1532015--⨯-⨯ 2132=- 16=则15分钟后池内还差16才能注满, 11(2)620÷⨯ 11610=÷ 53=(分钟) 520153++2363=(分钟)答则这个过程中共用时2363分钟.答案为:236312.(2019•长沙)在A 地植树1000棵,B 地植树1250棵,甲、乙、丙每天分别能植树28、32、30棵,甲在A 地,乙在B 地,丙在A 与B 两地之间来回帮忙,同时开始,同时结束,丙在A 地植树 300 棵. 【分析】先求出甲、乙、丙三人每天植树多少棵(三人每天的工作效率和),再求出A 、B 两块地一共植树多少棵(工作量),根据工作时间(三人合作的时间)=工作量÷工作效率和,求出一共需要多少天完成,然后用A 地植树的棵数减去甲25天植树的棵数就是丙在A 地植树的棵数,据此列式解答. 【解答】解:28323090++=(棵), (10001250)90+÷ 225090=÷ 25=(天), 10002825-⨯ 100700=- 300=(棵),答:丙在A 地植树300棵. 故答案为:300.13.(2019春•海淀区月考)长度相等,粗细不同的两枝蜡烛,其中的一枝可燃3小时,另一枝可燃4小时.将这两枝蜡烛同时点燃,当余下的长度中,一枝是另一枝的3倍时,蜡烛点燃了83小时. 【分析】根据题意,两枝蜡烛燃烧的时间和燃烧的长度成正比例关系,所以设蜡烛点燃了x 小时,比例为:11(1):(1)1:334x x --=,解得:83x =. 【解答】解:设时间为x 小时,则有 11(1):(1)1:334x x --=1314x x-=- 324x =83x =答:蜡烛点燃了83小时. 故答案为:83.14.(2019•江西模拟)一项工程,如果甲先做5天,那么乙接着做20天可完成;如果甲先做20天,那么乙接着做8天可完成;如果甲、乙合做,那么 1133天可以完成.【分析】两种情况下得到甲做15天与乙做12天的工作量一样多,用除法计算出甲做1天相当于乙做的分率,这样把第一种情况下甲做的5天代换成乙需要做的天数,再加上20就是乙独做完成的天数,然后计算出甲独做完成的天数,用工作总量除以工作效率和即可求出合做的工作时间.【解答】解:20515-=(天),20812-=(天),甲做15天与乙做12天做的一样多, 412155÷=,甲做1天相当于乙45天做的一样多,乙一个人做需要:4520245÷+=(天), 甲独做需要424305÷=(天)合做: 111()2430÷+3140=÷1133=(天)故答案为:1133.15.(2018•东莞市)一项工程如由甲、乙合作需要8天完成,现由甲先做3天,乙再做5天,才完成工程的716,那么由乙单独做需 32 天完成. 【分析】把这项工程看成单位“1”,甲乙合作的工作效率是18,由甲先做3天,乙再做5天,可以看成甲乙合作了3天,乙再做2天,所以先用合作的工作效率乘3,求出合作3天的工作量,再用716减去合作3天的工作量,即可求出乙2天的工作量,再除以2即可求出乙的工作效率,进而求出乙独做需要的时间. 【解答】解:713168-⨯ 73168=- 116=11(2)16÷÷ 1132=÷32=(天)答:由乙单独做需 32天完成. 故答案为:32.16.(2018•广州)一艘轮船从长江三峡大坝到上海要4个昼夜,而从上海到三峡大坝逆流而上需要6个昼夜.如果从三峡大坝放一个漂流瓶顺水漂到上海要 24 昼夜.【分析】从题中可知从长江三峡大坝到上海是顺流,从上海到三峡大坝是逆流,从而可以得出水的流速,从而得出答案.【解答】解:设轮船的速度为x ,水流为y ,三峡大坝到上海的距离为m , 因为4mx y =+,6m x y =-,所以4()6()x y x y +=-, 可得5x y =, 又4mx y =+, 所以24my =.答:从三峡大坝放一个漂流瓶顺水漂到上海要24昼夜.17.(2017•长沙)一项工程,甲单独做要12小时,乙单独做要15小时,如果按照甲、乙、甲、乙的顺序每小时轮换一次地轮流工作,完成这项工作一共需要 1134小时.【分析】由题意知,把某项工作的工作总量看作单位“1”,乙的工效是115,甲的工效是112,“按照甲,乙,甲,乙,⋯的顺序轮流工作,每次1时”,那么甲乙各做1小时,即2个小时,则完成113151220+=,3216203÷=(小时)后,即6个循环后(即12个小时),则完成3962010⨯=,还剩下9111010-=,由甲、乙来完成,求得甲、乙再做的时间,再加上12小时即是完成这项工作共需要的时间. 【解答】解:113151220+=3216203÷=(小时)3962010⨯=9111010-=111()101215-÷ 116015=÷ 14=116211344⨯++=(小时)答:完成这项工作要1134小时.故答案为:1134. 三.应用题18.(2019秋•嘉陵区期末)某绿化工程,有3个工程队施工.单独完成,甲队要10天,乙队要12天,丙队要15天.若让甲、乙两队先合作2天,余下的由丙队单独做,丙队还要几天才能完工?【分析】由题意可知,用假设工作总量为“1”的方法解工程问题的公式:1÷工作时间=单位时间内完成工作总量的几分之几; 单独完成,甲队要10天,乙队要12天,丙队要15天则他们的工作效率分别是110、112、115,甲、乙两队先合作2天完成总工程的1111()2101230+⨯=,所以余下111913030-=,余下的由丙队单独做根据工作总量÷工效=工时可知1911930152÷=. 【解答】解:1111()2101230+⨯=, 111913030-=,1911930152÷=(天) 答:丙队还要192天才能完工.19.(2019秋•永州期末)一项工程,甲队单独完成需要20天,乙队单独完成需要12天.现在乙队先工作几天,剩下的由甲队单独完成.工作中各自的工作效率不变,全工程前后一共用了14天,共得劳务费2万元.如果按各自的工作量计算,甲、乙各获得多少万元?【分析】将这项工程当做单位“1”,则甲队每天完成这项工程的120,乙队每天完成这项工程的112,设甲队做了x 天,则乙队做了(14)x -天,由此可得方程:11(14)12012x x +-=,解此方程求出甲、乙各工作的天数,进一步求出甲、乙的工作量,进一步即可求解.【解答】解:设甲队做了x 天,则乙队做了(14)x -天,依题意有: 11(14)12012x x +-=35(14)60x x +-= 370560x x +-= 537060x x -=- 210x = 5x = 111520204x =⨯= 11242⨯=(万元) 112122-=(万元)答:甲获得12万元,乙获得112万元.20.(2019•郑州)甲乙两个打字员打印一批文件,如果单独打印,甲打字员需20小时,乙打字员需30小时,二人合打完成任务的34时,甲比乙多打了72页,求二人各打多少页? 【分析】把这份文件的工作量看成单位“1”,甲的工作效率就是120,乙的工作效率就是130,它们的和就是合作的工作效率,用合作的工作量34除以合作的工作效率,求出两人的工作时间,再用甲乙的工作效率分别乘工作时间,求出甲乙各打了总页数的几分之几,再求出甲比乙多打了总页数的几分之几,它对应的数量是72页,再根据分数除法的意义求出总页数,最后用总页数分别乘两人打字占总人数的分率,即可求出二人各打多少页. 【解答】解:311()42030÷+ 31412=÷9=(小时)1992020⨯= 1393010⨯= 9372()2010÷-37220=÷480=(页)948021620⨯=(页) 348014410⨯=(页)答:甲打了216页,乙打了144页.21.(2019春•湘潭月考)甲、乙、丙三人合修一条麻石路,甲、乙合修6天完成麻石路的13,乙、丙合修2天修好余下部分的14,剩下的部分三人又合修了5天才完成,共得到劳务费1800元.若按各人完成工作量的多少来分配劳务费,甲、乙、丙三人各应得劳务费多、少元?【分析】把总工作量看作单位“1”.根据“工作效率=工作量÷工作时间”,甲、乙合修6天完成麻石路的13,则甲、乙的工作效率之和为163÷;乙、丙合修2天修好余下部分的14,则乙、丙的工作效率之和为11(1)234-⨯÷.甲、乙、丙三人的工作效率之和为11(1)(1)534-⨯-÷.由此得出甲、乙、丙的工作效率,根据分数乘法的意义,用总劳务费分别乘甲、乙、丙的工作效率就是甲、乙、丙应得的劳务费. 【解答】解:甲、乙工作效率之和为: 116318÷=乙、丙的工作效率之和为: 11(1)234-⨯÷ 21234=⨯÷ 112=甲、乙、丙的工作效率之和为: 11(1)(1)534-⨯-÷ 23534=⨯÷ 110=甲的劳务费为: 111800()(65)1012⨯-⨯+118001160=⨯⨯330=(元)丙的劳务费为: 111800()(25)1018⨯-⨯+ 21800745=⨯⨯ 560=(元)乙的劳务费为:1800330560910--=(元)答:甲得劳务费330元,乙得劳务费560元,丙得劳务费910元.22.(2019春•武汉月考)修一段地铁,如果单独完成,甲工程队要10天,乙工程队要15天,丙工程队要30天.现在三个工程队共同工作,甲中途调走,结果比三个工程队合作多用了1天完成.甲工作了几天? 【分析】把总工作量看作单位“1”,三个工程队共同工作需要1111()5101530÷++=(天);根据“甲中途调走,结果比三个工程队合作多用了1天完成”可知完成这项工程实际用了6天.因此甲完成的工作量是1121()615305-+⨯=;最后根据工作时间=工作量÷工作效率,求出修这条路甲队工作了几天即可. 【解答】解:1111()5101530÷++=(天) 516+=(天)111[1()6]153010-+⨯÷31[1]510=-÷21510=÷4=(天)答:甲工作了4天.23.(2019秋•东莞市期末)一批货物由甲、乙两个人搬运,需8天完成,现在甲先搬8天,然后乙再搬4天,这时还剩13没有搬.乙单独搬运需要几天?【分析】甲先搬8天,然后乙再搬4天,可以看成甲乙合作了4天后,甲又干了4天;把这批货物的总量看成单位“1”,合作的工作效率就是18,用18乘4求出合作的工作量,再用一个完成了12133-=,用23减去合作完成的工作量就是甲4天的工作量,再除以4,即可求出甲的工作效率,进而求出乙的工作效率,再用1除以乙的工作效率即可求出乙单独搬运需要几天.【解答】解:11(14)(84)38--⨯÷-21()432=-÷146=÷124=111()824÷-1112=÷12=(天)答:乙单独搬运需要12天.24.(2019春•济南月考)某工厂加工一批零件,甲、乙、丙三人合作加工需要15天完成.由于机械故障,丙停止加工1天,乙就要多做3天,或者由甲、乙合作1天.问:加工这批零件由甲单独完成需要多少天?【分析】丙1天的工作量,相当乙3天的工作量,则丙的工作效率是乙的工作效率的3(倍),甲、乙合作1天,与乙做3天一样,也就是甲做1天,相当于乙做2天,甲的工作效率是乙的工作效率的2倍.则甲的工作效率是三人效率的12(321)3÷++=,他们共同做15天的工作量,由甲单独完成,甲需要15345⨯=(天)【解答】解:丙的工作效率是乙的工作效率的3倍,甲的工作效率是乙的工作效率的312-=倍,则甲的工作效率是三人效率的12(321)3÷++=,由甲单独完成,甲需要115453÷=(天).答:这项工程由甲独做,需要45天.25.(2019春•成都月考)一部书稿,甲单独打字需60天完成,乙单独打字需50天完成.已知甲每周日休息,乙每周六、周日休息.如果两人合作,从2018年4月23日(周一)开始打字,那么几月几日可以完成这部书稿?【分析】把书稿的字数看作单位“1”,乙每周六、周日休息,那么两人合作时,一星期就合作5天,先求出两人合作5天完成书稿字数占总字数的分率,再求出甲1天完成书稿字数占总字数的分率,进而求出两人一周完成工作量,然后依据工作时间=工作总量÷工作效率,求出完成任务需要的时间,最后用现在的日期加需要的时间(注意需要减去开始的一天以及最后一天)即可解答. 【解答】解:111111()5560506030060+⨯+=⨯+1116060=+ 15=,117115÷⨯-- 5711=⨯-- 3511=-- 341=- 33=(天)2018年4月23日33+天2018=年5月26日 答:5月26日可以完成这部书稿.26.(2019•辽宁模拟)一份稿件,甲独自打字需要6小时,乙单独打字需要10小时.现在甲单独打字若干小时后,因有事离开,由乙接着打完.从一开始打字到打完这份稿件共用了7小时,甲打字用了多少小时? 【分析】将工作总量看作单位“1”,可以求出甲、乙的工作效率,假设全是乙打的,求出对应的工作总量,再与总的工作量作比较,得到与实际相差的工作总量,再除以甲乙两人的工作效率差就可求出甲的工作时间. 【解答】解:1166÷=111010÷=1771010⨯= 7311010-=11161015-= 314.51015÷=(小时)答:甲打字用了4.5小时.27.(2019•海淀区模拟)一项工作,甲、乙合干12天完成.如果让甲先干8天,余下的由乙单独干要18天完成.这项工程由乙单独干需要几天完成?【分析】把这项工作看作单位“1”,甲、乙合干12天完成,甲、乙每天的工作效率和是112,如果让甲先干8天,余下的由乙单独干要18天完成.可以看作甲、乙合作8天,乙单独干(188)-天完成,由此可以求出乙每天的工作效率,然后根据工作时间=工作量÷工作效率,据此列式解答. 【解答】解:1(18)(188)12-⨯÷-2(1)103=-÷ 1103=÷11310=⨯ 130=; 113030÷=(天);答:这项工程由乙单独干需要30天完成. 四.解答题28.(2019•宁波模拟)容积为250升的水箱上装有两根进水管甲、乙和一根排水管丙.如图所示,先由甲管单独向水箱内注水,再由甲、乙两根进水管同时向水箱内注水,注满后,关闭甲、乙两根水管,最后由丙管将水箱内的水排完. (1)水箱内原有水 50 升. (2)乙管每分钟向水箱内注水 升.(3)如果注满水后,只关闭乙管.甲管和丙管同时打开,几分钟可以把水箱中的水全部排完?【分析】(1)根据折线统计图,时间为0分时,水箱内的水为50升,说明水箱内原有水50升;(2)先由甲管单独向水箱内注水,从0分到10分,这10分钟的时间,水箱内的水由50升上升的100升,说明10分钟的时间,甲管向水箱内注入50升的水,求甲的速度为:50105÷=(升/分);从10分到25分,再由甲、乙两根进水管同时向水箱内注水,直至注满250升,共注水250100150-=(升),用时:251015-=(分),所以,甲乙速度的和为:1501510÷=(升/分).所以乙的速度为:1055-=(升/分); (3)根据丙放水所用时间为30255-=(分钟),求丙的速度为:250550÷=(升/分).注满水,甲、丙同开,排完水所用时间为:50250(505)9÷-=(分钟). 【解答】解:(1)由图可知水箱内原有50升水.(2)甲的速度:50105÷=(升/分) 甲乙注水量:250100150-=(升) 甲乙所注水时间:251015-=(分) 甲乙速度和:1501510÷=(升/分) 乙的速度:1055-=(升/分) 答:乙管每分钟向水箱内注水 5升.(3)丙放水时间:30255-=(分钟) 丙的速度:250550÷=(升/分)注满水,甲、丙同开,排完水所用时间为: 250(505)÷- 25045=÷509=(分钟)答:若只有乙管注水,509分钟注满水箱. 故答案为:50;5;509.29.(2019春•北京月考)我们规定两人轮流做一个工程是指,第一个人先做一个小时,第二个人做一个小时,然后再由第一个人做一个小时,然后又由第二个人做一个小时,如此反复,做完为止.如果甲、乙轮流做一个工程需要9.8小时,而乙、甲轮流做同样的工程只需要9.6小时,那乙单独做这个工程需要多少小时?【分析】依题意可知,两次做每人所花时间为:甲乙轮流做一个工程,甲工作了5小时,乙工作了4.8小时;乙甲轮流工作时,乙工作了5小时,甲工作了4.6小时.由此可知甲工作0.4小时相当于乙工作 0.2小时,推出甲工作5小时相当于乙工作2.5小时,故求出乙单独做此工程需要的时间,解决问题.【解答】解:甲乙轮流做一个工程,甲工作了5小时,乙工作了4.8小时;乙甲轮流工作时,乙工作了5小时,甲工作了4.6小时.所以甲做0.4小时完成的工程等于乙做0.2小时,乙的效率是甲的0.40.22÷=(倍), 甲做5小时完成的任务乙只要2.5小时就能完成. 所以乙单独完成这个工程要:2.5 4.87.3+=(小时). 答:乙单独做这个工程需要7.3小时.30.(2019•上街区)甲、乙、丙三人共同完成一项工作,5天完成了全部工作的13,然后甲休息了3天,乙休息了2天,丙没有休息.如果甲一天的工作量是丙一天工作量的3倍,乙一天的工作量是丙一天的工作量的2倍,那么从这项工作开始算起一共用了多少天完成?【分析】由于甲一天的工作量是丙一天工作量的3倍,乙一天的工作量是丙一天工作量的2倍,所以可以把丙一天工作量看作1份,那么甲一天的工作量是3份,乙一天的工作量是2份.甲、乙、丙三人一天的工作量是1326++=份. 甲、乙、丙三人5天的工作量是6530⨯=份,完成了全部工程的13,全部工程是130903÷=份. 已知甲、乙、丙的工作量及总工作量,由此根据他们每人所干的天数解答即可.【解答】解:将丙一天工作量看作1份,那么甲一天的工作量是3份,乙一天的工作量是2份. 三人一天干的工作量为:1326++=(份), 则总作工量为:165903⨯÷=(份);甲乙丙如果全程合作的话需要:90615÷=(天)完成. 甲休息了3天,乙休息了2天,在这5天中,甲乙少干了: 332213⨯+⨯=(份),这13份甲、乙、丙三人合作得干113626÷=(天).所以这项工作从开始算起需要111521766+=(天)完成. 答:那么从这项工作开始算起一共用了1176天完成.31.(2018•长沙)一项工程,乙单独做20天完成.如果第一天甲做,第二天乙做,这样交替做也恰好用整数天完成;如果第一天乙做,第二天甲做,这样交替做结果比上次交替做要多半天才能完成.这项工程由甲单独做需要几天可以完成?【分析】根据两种轮流交替做的情况可得出:当甲先做时,用的时间就少,而乙先做时,用的时间就多.据此可得第一种情况甲乙的工作顺序是:甲,乙,甲,乙⋯甲(最后一天是甲做的,若是乙做的,则第二种情况不会出现多做半天的时间);而第二种情况甲乙的工作顺序就是:乙,甲,乙,甲⋯乙,甲,12乙,把两种情况对照可得:甲一天的工作效率=乙一天的工作效率+甲半天工作效率,即甲半天工作效率=乙一天工作效率,也就是说甲的工作效率是乙工作效率的2倍,把这项工程的量看作单位“1”,先表示出乙的工作效率,再求出甲的工作效率,最后根据工作时间=工作总量÷工作效率即可解答.【解答】解:依据分析可得甲的工作效率是乙工作效率的2倍11(2)20÷⨯1110=÷10=(天)答:这项工程由甲单独做需要10天可以完成.32.(2018•东莞市模拟)单独完成某项工程,甲需要9小时,乙需要12小时,如果按照甲、乙、甲、乙⋯的顺序轮流工作,每次工作1小时,那么完成这项工作需要多少小时?【分析】把某项工作的工作总量看作单位“1”,甲的工效是19,乙的工作效率是112,“按照甲,乙,甲,乙,⋯的顺序轮流工作,每次1时”,那么甲乙各做1小时,即2个小时,则完成11791236+=,5个循环后(即10个小时),则完成73553636⨯=,还剩,35113636-=,由甲来完成,求得甲再做的时间,再加上10小时即是完成这项工作共需要的时间.【解答】解:111 [1()5]9129 -+⨯÷71[15]369=-⨯÷351(1)369=-÷11369=÷0.25=(小时)甲、乙轮流做共需要:100.2510.25+=(小时)答:完成这项工作需要10.25小时.33.(2018•东莞市)甲、乙两项工程分别由一、二队来完成,在晴天,一队完成甲工程需要12天,二队完成乙工程需要15天;在雨天,一队的工作效率要下降40%,二队的工作效率要下降10%,结果两队同时开工同时完成这项工程,那么,在施工的日子里,雨天有多少天?。

分数应用题大全及问题详解

分数应用题大全及问题详解

分数应用题大全及问题详解1.光明畜牧场养了900头肉牛和一些奶牛,奶牛比肉牛多25%,那么奶牛有多少头?解:奶牛的数量是肉牛数量的125%,即900×1.25=1125头。

2.一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米?行1千米路程要耗油多少千克?解:每行1千米需要耗油4/5÷8=1/10千克,平均每千克汽油可行10千米。

行1千米需要耗油1/10千克。

3.一辆摩托车1/2小时行30千米,那么他每小时行多少千米?他行1千米需要多少小时?解:这辆摩托车每小时行60千米,行1千米需要1/60小时。

4.电视机降价200元,比原来便宜了2/11,现在这种电视机的价格是多少钱?解:原来这种电视机的价格是2200元,现在的价格是2000元。

5.一块长方形地,长60米,宽是长的2/5,这块地的面积是多少平方米?解:这块地的宽是60×2/5=24米,面积是60×24=1440平方米。

6.水果店在两天内卖完一批水果,第一天卖出水果总重量的3/5,比第二天多卖了30千克,这批水果共有多少千克?解:第一天卖出的水果重量是总重量的3/5,第二天卖出的水果重量是总重量的2/5,相差1/5,即30÷1/5=150千克。

这批水果总重量是150÷3×5=250千克。

7.甲、乙两厂去年分别完成计划任务的112%和110%,共生产食品4000吨,比原来两厂计划之和超产400吨,甲厂原来的生产任务是多少吨?解:设甲厂原来的生产任务是x吨,则乙厂原来的生产任务是3600-x吨。

根据题意,得到1.12x+1.1(3600-x)=4000+400,解方程可得x=2000,甲厂原来的生产任务是2000吨。

8.植树节,初三年级170名学生去参加义务植树活动,如果男生平均一天能挖树坑3个,女生平均一天能种树7棵,正好使每个树坑种上一棵树,问该年级的男女各有多少人?解:设男生有x人,女生有170-x人。

分数应用题(工程问题复习)

分数应用题(工程问题复习)

⑵一台织布机3小时织布60米, 每小时织每小时织布20米
⑶一台织布机每小时织布20 米,织布60米要多少小时?
工作总量÷工作效率=工作时间
60 ÷20=3(小时)
答:织布60米要3小时。
初探新知
⑴一项工程,5天完成,平均每 天完成几分之几 ?
这道题的工作总量是多少? 工作时间呢? 怎样表示工作效率?
1 ⑵ 一项工程,每天完成 2 几天可以完成?

这道题的工作总量是多少? 工作效率? 怎样表示工作时间呢?
尝 试 探 究
⑴甲、乙两队合修一段路。 甲队单独修10天完成,乙队单独 修15天完成。两队合修几天完成 1 这条路的 4 ?
1 ÷( 1 1 ) + 4 10 15
作业:
5、一袋米,甲、乙、 丙三人一起吃,8天吃完, 甲一人24天吃完,乙一人 36天吃完,问丙一人几天 吃完?
作业:
6、一个水池上有两个进 水管,单开甲管,10小时可把 空池注满,单开乙管,15小时 可把空池注满。现先开甲管, 2小时后把乙管也打开,再过 几小时池内蓄有3/4的水?(原 是空池)
巩固发展
做一批零件,一个人单独做, 甲要12小时,乙要10小时,丙要 5小时。
要合作完成这批零件有几种选 择做法呢?
做一批零件,一个人单独做, 甲要12小时,乙要10小时,丙要 5小时。 (1)可以由甲乙两人合做。 (2)可以由乙丙两人合做。 (3)可以由甲丙两人合做。 (4)可以由甲乙丙三人合做。 请你任选一种合作方式,算出他 们完成这批零件需要几小时?
作业:
1、一批零件,甲单独做要6 天,乙单独做要8天,两队合作 需要几天?
作业:
2、车站有一批水果90千克, 甲车15小时可以运完;乙车 10 小时可以运完。两车同时运,几小 时可以运完?

分数应用题

分数应用题
13.甲、乙街自评6小时可以完成一项工作,现由甲先做2小时,再由乙做4小时,刚好完成这项工程的50%,若乙单独完成这项工作需要多少小时?
14.某电子厂生产一批计算器,原计划每天生产400只30天完成任务,引进技术后,前3天可以完成15%,照这样计算,几天可以完成任务?
15.一项工程,甲独做需要小时完成,乙独做所需的时间比甲少,丙独做所需的时间比甲多小时,若甲、乙、丙三人合做,多少小时可以完成这项工程?
变式:意见工作,若单独完成,甲需19小时,乙需25小时,丙需20小时。现由三人共同完成,中途因故停工几个小时,结果6小时才将工作完成。问甲停工几小时?
36.一项工程,甲独做5天完成这项工程的,乙独做12天完成,现在先由两人合作2天,剩下的工程由乙完成,还要多少天完成?
37.甲、乙两人合做一项工程,共用6天完成,甲、乙两人完成的工作量的比是3:2,甲、乙单独完成这项工程各需多少天?
21.一项工程,甲、乙合做48天完成,如果甲独做63天后,乙再独做28天完成,现由甲独做42天后,乙还要做多少天完成?
22.有两个工程队完成一项工程,甲队每工作6天休息1天,单独做需要76天完工;乙队每工作5天休息2天,单独做需要89完工,照这样计算,两队合作,从2008年11月29日开始动工,到2009年几月几日才能完工?
10.某车间加工一批零件,原计划15天完成,由于更新设备,每天比原计划多参加工160个零件,只用9天做完成了任务,这批零件有多少个?
11.某工程,甲、乙、丙单独做需要10天、15天、20天才完成,现三人合作,中途甲先休息1天,乙再休息3天,而丙一直工作到工程完成为止。完成任务时一共用了多少天?
12.甲、乙两个工程队合作一项工程,10天完成总任务的,已知甲乙两个工程队工作效率的比是2:3,这项工程由乙单独做,几天可以完成?

第五讲分数应用题之工程问题

第五讲分数应用题之工程问题

第五讲分数应用题之工程问题工程问题,究其本质是运用分数应用题的量率对应关系,即用对应分率表示工作总量与工作效率,这种方法可以称作是一种“工程习惯〞,这一类问题称之为“工程问题〞。

有的情况下,工程问题并不表现为两个工程队在“修路筑桥、开挖河渠〞,甚至会表现为“行程问题〞、“经济价格问题〞等等。

我们可以这样认为,工程问题不仅指一种题型,更是一种解题方法。

教学目标1.回忆工程问题的根本数量关系与一般解法;2.精讲工程问题的常见解题方法:一、解题关键是把“一项工程〞看成一个单位,抓住数量关系:工作效率×工作时间=工作总量,来解答。

二、要善于利用常见的数学思想方法,如假设法、转化法、代换法等。

工作的先后顺序可以改变〔假设〕;要善于抓住工作效率之间的关系,并适当将它转化为工作时间和工作量之间的关系,这样的转化和代换,往往能化难为易。

三、一些稍复杂的分数应用题、流水行程问题,其实质也是工程问题,要善于抓住问题的本质特征,把它看作工程问题来解决。

专题回忆【例1】★★〔小学数学冬令营竞赛试题〕一项工程,甲单独做20天完成,乙单独做30天完成。

甲、乙合作了几天后,乙因事请假,甲继续做,从开工到完成任务共用了16天。

乙请假多少天?【例2】★★★搬运一个仓库的货物,甲需10小时,乙需12小时,丙需15小时。

有同样的仓库A和B ,甲在A仓库,乙在B仓库同时开场搬运货物,丙开场帮甲搬运,中途又转向帮乙搬运,最后同时搬完两个仓库的货物。

丙帮助甲、乙各搬运了几小时?【例3】★★★〔北京市第六届“迎春杯〞决赛试题〕一项工程,甲单独做要12小时完成,乙单独做要18小时完成.假设甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时,……,两人如此交替工作,请问:完成任务时,共用了多少小时?专题精讲一、代换法关键是将单干与合作的实际情况,根据需要等量代换成新的条件。

【例4】★★★一池水,甲、乙两管同时开,5小时灌满,乙、丙两管同时开,4小时灌满。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.分数应用题解体步骤
1.找到含有分率的语句
2.列对应关系(的几分之几“的”字前面的量是“1”的量)
3.列式计算(“1”的量已知,用乘法;“1”的量未知,用除法)
3,梨树有几棵?
例如:果园里有桃树1800棵,是梨树的
4
对应关系“1”——梨树?棵
3——桃树1800棵
4
3
列式:1800÷
4
二.工程问题解题思路
把所有工作量看作“1”
工作时间=工作量÷工作效率
工作效率=工作量÷工作时间
工作量=工作效率×工作时间
练习:
1、工程问题中把工作总量看作(),如完成这项工程需要10天,那么每天完成这项工程的(),7天完成这项工程的()。

1,完成这项工程需要()天。

2、如果每天完成一项工程的
8
3、完成一件工作,甲单独做要10天,乙单独做要15天,两人合作
()天可以完成;两人合作1天,可以完成这件工作的();如果合作4天可以完成这件工作的(),还剩()没有完成,剩下的工作由甲单独做,还要()天。

4、一件工作,甲、乙合作6小时完成,甲单独做15小时完成,如果由乙单独做()天可以做完。

1,甲每小5、用电脑录入一本书稿,甲单独录3小时完成工作量的
6
1,乙每时完成这本书稿的();乙单独录6小时完成工作量的
4
小时完成这本书稿的(),两人同时录,()小时录完。

相关文档
最新文档