《高中数学》必会基础练习题《导数》
高中数学导数练习题
高中数学导数练习题一、基础题1. 求函数 $f(x) = x^3 3x$ 的导数。
2. 求函数 $f(x) = \sqrt{1+x^2}$ 的导数。
3. 求函数 $f(x) = \frac{1}{x^2}$ 的导数。
4. 求函数 $f(x) = \ln(x^2 + 1)$ 的导数。
5. 求函数 $f(x) = e^{2x}$ 的导数。
二、应用题1. 已知函数 $f(x) = ax^2 + bx + c$,求 $f'(x)$ 并说明其几何意义。
2. 某物体做直线运动,其位移 $s$ 与时间 $t$ 的关系为 $s =t^2 2t + 1$,求物体在 $t=2$ 时的瞬时速度。
3. 已知函数 $f(x) = \frac{1}{\sqrt{x}}$,求曲线在$x=4$ 处的切线方程。
4. 求函数 $f(x) = \sin(x)$ 在区间 $[0, \pi]$ 上的最大值和最小值。
5. 已知函数 $f(x) = \ln(x 1)$,求 $f(x)$ 的单调区间。
三、综合题1. 设函数 $f(x) = (x^2 1)^3$,求 $f'(x)$。
2. 已知函数 $f(x) = \frac{2x + 3}{x 1}$,求 $f'(x)$。
3. 求函数 $f(x) = \sqrt{1 + \sqrt{1 + x^2}}$ 的导数。
4. 已知函数 $f(x) = e^{x^2}$,求曲线在 $x=0$ 处的切线方程。
5. 设函数 $f(x) = \ln(\sin^2 x)$,求 $f'(x)$。
四、拓展题1. 已知函数 $f(x) = \frac{1}{x^2 + 1}$,求 $f''(x)$。
2. 设函数 $f(x) = (x^3 + 1)^4$,求 $f'''(x)$。
3. 已知函数 $f(x) = \arctan(x)$,求 $f'(x)$。
高中数学专题练习《导数的概念及其几何意义》含详细解析
5.1.2 导数的概念及其几何意义基础过关练题组一 导数的定义及其应用1.函数y=f(x)的自变量x 由x 0变化到x 0+Δx 时,函数值的改变量Δy 为( )A.f(x 0+Δx)B.f(x 0)+ΔxC.f(x 0)·ΔxD.f(x 0+Δx)-f(x 0)2.函数f(x)在x=x 0处的导数可表示为( )A.f'(x 0)=limΔx→0f (x 0+Δx )-f (x 0)ΔxB.f'(x 0)=lim Δx→0[f(x 0+Δx)-f(x 0)]C.f'(x 0)=f(x 0+Δx)-f(x 0)D.f'(x 0)=f (x 0+Δx )-f (x 0)Δx3.已知函数f(x)=ax+4,若f'(1)=2,则a= .4.如图是函数y=f(x)的图象.(1)函数f(x)在区间[-1,1]上的平均变化率为 ; (2)函数f(x)在区间[0,2]上的平均变化率为 . 5.求函数y=x 2+1在x=0处的导数.题组二 导数的几何意义及其应用6.函数y=f(x)在x=x0处的导数f'(x0)的几何意义是( )A.在点(x0,f(x0))处与y=f(x)的图象只有一个交点的直线的斜率B.过点(x0,f(x0))的切线的斜率C.点(x0,f(x0))与点(0,0)的连线的斜率D.函数y=f(x)的图象在点(x0,f(x0))处的切线的斜率7.某司机看见前方50m处有行人横穿马路,这时司机开始紧急刹车,在刹车的过程中,汽车的速度v是关于刹车时间t的函数,其图象可能是( )8.已知函数f(x)在R上有导函数,且f(x)的图象如图所示,则下列不等式正确的是( )A.f'(a)<f'(b)<f'(c)B.f'(b)<f'(c)<f'(a)C.f'(a)<f'(c)<f'(b)D.f'(c)<f'(a)<f'(b)9.如图,函数y=f(x)的图象在P点处的切线方程是y=-x+8,若点P的横坐标是5,则f(5)+f'(5)=( )B.1C.2D.0A.12题组三 求曲线的切线方程10.若曲线f(x)=x2+ax+b在点(1,1)处的切线方程为3x-y-2=0,则( )A.a=-1,b=1B.a=1,b=-1C.a=-2,b=1D.a=2,b=-111.函数f(x)=x3+x-2的图象在点P处的切线平行于直线y=4x-1,则P点的坐标为( )A.(1,0)B.(2,8)C.(1,0)或(-1,-4)D.(2,8)或(-1,-4)12.若点A(2,1)在曲线y=f(x)上,且f'(2)=-2,则曲线y=f(x)在点A处的切线方程是 .13.(2020广东实验中学高二上期末)与直线2x-y+4=0平行且与抛物线y=x2相切的直线方程是 .14.试求过点M(1,1)且与曲线y=x3+1相切的直线方程.能力提升练题组一 导数的定义及其应用1.(2020浙江宁波中学高二下期中测试,)甲、乙两厂污水的排放量W与时间t的关系如图所示,则治污效果较好的是( )A.甲厂B.乙厂C.两厂一样D.不确定2.(2020河南新乡高二上期末,)若f'(2)=3,则lim Δx→0f (2+2Δx )-f (2)Δx= . 3.()服用某种药物后,人体血液中药物的质量浓度f(x)(单位:μg/mL)与时间t(单位:min)的函数关系式是y=f(t),假设函数y=f(t)在t=10和t=100处的导数分别为f'(10)=1.5和f'(100)=-0.6,试解释它们的实际意义.题组二 导数的几何意义及其应用4.(2020黑龙江佳木斯一中高二上期末,)函数f(x)的图象如图所示,则下列数值排序正确的是( )A.0<f'(2)<f'(3)<f(3)-f(2)B.0<f'(3)<f(3)-f(2)<f'(2)C.0<f'(3)<f'(2)<f(3)-f(2)D.0<f(3)-f(2)<f'(2)<f'(3)5.()已知函数f(x)和g(x)在区间[a,b]上的图象如图所示,则下列说法正确的是( )A.f(x)在a到b之间的平均变化率大于g(x)在a到b之间的平均变化率B.f(x)在a到b之间的平均变化率小于g(x)在a到b之间的平均变化率C.对于任意x0∈(a,b),函数f(x)在x=x0处的瞬时变化率总大于函数g(x)在x=x0处的瞬时变化率D.存在x0∈(a,b),使得函数f(x)在x=x0处的瞬时变化率小于函数g(x)在x=x0处的瞬时变化率6.(多选)()已知函数f(x)的定义域为R,其导函数f'(x)的图象如图所示,则对于任意x1,x2∈R(x1≠x2),下列结论正确的是( )A.(x1-x2)[f(x1)-f(x2)]<0B.(x1-x2)[f(x1)-f(x2)]>0>f(x1)+f(x2)2<f(x1)+f(x2)2题组三 求曲线的切线方程7.(2020浙江金华一中高二下期中,)已知f(x)=x2+2x+3,P为曲线C:y=f(x)上的点,且曲线C在点P处的切线的倾斜角的取值范围为,则点P的横坐标的取值范围为( )A.-∞,-B.[-1,0]C.[0,1]D.-1,+∞28.(2020浙江丽水高二下期末,)已知过点P(-1,1)的直线m交x轴于点A,若抛物线y=x2上有一点B,使得PA⊥PB,且AB是抛物线y=x2的切线,则直线m的方程为 .,过9.(2020福建厦门二中高二上期中,)已知曲线y=f(x)=x2,y=g(x)=1x两条曲线的交点作两条曲线的切线,求两切线与x轴围成的三角形的面积.(请用导数的定义求切线的斜率,否则只得结论分)答案全解全析基础过关练1.D 分别写出x=x 0和x=x 0+Δx 时对应的函数值f(x 0)和f(x 0+Δx),两函数值相减就得到了函数值的改变量,所以Δy=f(x 0+Δx)-f(x 0).2.A 由导数的定义知A 正确.3.答案 2解析 由题意得,Δy=f(1+Δx)-f(1)=a(1+Δx)+4-a-4=aΔx,∴lim Δx→0ΔyΔx =a,∴f'(1)=a=2.4.答案 (1)12 (2)34解析 (1)函数f(x)在区间[-1,1]上的平均变化率为f (1)-f (-1)1―(―1)=2―12=12.(2)由函数f(x)的图象知,,-1≤x ≤1,<x ≤3,所以函数f(x)在区间[0,2]上的平均变化率为f (2)-f (0)2―0=3―322=34.5.解析 Δy=(0+Δx )2+1-0+1=(Δx )2+1―1(Δx )2+1+1=(Δx )2(Δx )2+1+1,∴ΔyΔx =Δx (Δx )2+1+1,∴y'x=0=lim Δx→0ΔyΔx =lim Δx→0Δx (Δx )2+1+1=0.6.D f'(x 0)的几何意义是函数y=f(x)的图象在点(x 0,f(x 0))处的切线的斜率.7.A 在刹车过程中,汽车速度呈下降趋势,排除选项C,D;由于是紧急刹车,所以汽车开始时速度下降非常快,图象较陡,排除选项B,故选A.8.A 由题意可知,f'(a),f'(b),f'(c)分别是函数f(x)在x=a 、x=b 和x=c 处切线的斜率,则有f'(a)<0<f'(b)<f'(c),故选A.9.C ∵函数y=f(x)的图象在x=5处的切线方程是y=-x+8,∴f'(5)=-1,又f(5)=-5+8=3,∴f(5)+f'(5)=3-1=2.故选C.10.B 由题意得,f'(1)=lim Δx→0ΔyΔx=lim Δx→0(1+Δx )2+a(1+Δx )+b -1-a -bΔx =lim Δx→0(Δx )2+2Δx +aΔxΔx =2+a.∵曲线f(x)=x 2+ax+b 在点(1,1)处的切线方程为3x-y-2=0,∴2+a=3,解得a=1.又∵点(1,1)在曲线y=x 2+ax+b 上,∴1+a+b=1,解得b=-1,∴a=1,b=-1.故选B.11.C f'(x)=lim Δx→0ΔyΔx=lim Δx→0(x +Δx )3+(x +Δx )-2-x 3-x +2Δx=3x 2+1.设P(x 0,y 0),则f'(x 0)=3x 20+1=4,所以x 0=±1,当x 0=1时,f(x 0)=0,当x 0=-1时,f(x 0)=-4,因此P 点的坐标为(1,0)或(-1,-4).12.答案 2x+y-5=0解析 由题意知,切线的斜率k=-2.∴在点A(2,1)处的切线方程为y-1=-2(x-2),即2x+y-5=0.13.答案 2x-y-1=0解析 设切点坐标为(x 0,y 0),y=f(x)=x 2,则由题意可得,切线斜率f'(x 0)=limΔx→0f (x 0+Δx )-f (x 0)Δx=2x 0=2,所以x 0=1,则y 0=1,所以切点坐标为(1,1),故所求的直线方程为y-1=2(x-1),即2x-y-1=0.14.解析 Δy Δx =(x +Δx )3+1―x 3-1Δx =3x (Δx )2+3x 2Δx +(Δx )3Δx=3xΔx+3x 2+(Δx)2,则lim Δx→0ΔyΔx =3x 2,因此y'=3x 2.设过点M(1,1)的直线与曲线y=x 3+1相切于点P(x 0,x 30+1),根据导数的几何意义知曲线在点P 处的切线的斜率为k=3x 20①,过点M 和点P 的切线的斜率k=x 30+1―1x 0-1②,由①-②得3x 20=x 30x 0-1,解得x 0=0或x 0=32,所以k=0或k=274,因此过点M(1,1)且与曲线y=x 3+1相切的直线有两条,方程分别为y-1=274(x-1)和y=1,即27x-4y-23=0和y=1.能力提升练1.B 在t 0处,虽然有W 甲(t 0)=W 乙(t 0),但W 甲(t 0-Δt)<W 乙(t 0-Δt),所以在相同时间Δt 内,甲厂比乙厂的平均治污率小,所以乙厂治污效果较好.2.答案 6解析 limΔx→0f (2+2Δx )-f (2)Δx=2lim Δx→0f (2+2Δx )-f (2)2Δx =2f'(2)=6.3.解析 f'(10)=1.5表示服药后10 min 时,血液中药物的质量浓度上升的速度为1.5 μg/(mL ·min).也就是说,如果保持这一速度,每经过1 min,血液中药物的质量浓度将上升1.5 μg/mL. f'(100)=-0.6表示服药后100 min 时,血液中药物的质量浓度下降的速度为0.6 μg/(mL ·min).也就是说,如果保持这一速度,每经过1 min,血液中药物的质量浓度将下降0.6 μg/mL.4.B 如图所示, f'(2)是函数f(x)的图象在x=2(即点A)处切线的斜率k 1, f'(3)是函数f(x)的图象在x=3(即点B)处切线的斜率k 2,f (3)-f (2)3―2=f(3)-f(2)=k AB 是割线AB 的斜率.由图象知0<k 2<k AB <k 1,即0<f'(3)<f(3)-f(2)<f'(2).故选B.5.D ∵f(x)在a 到b 之间的平均变化率是f (b )-f (a )b -a,g(x)在a 到b 之间的平均变化率是g (b )-g (a )b -a ,f(b)=g(b),f(a)=g(a),∴f (b )-f (a )b -a=g (b )-g (a )b -a,∴A 、B 错误;易知函数f(x)在x=x 0处的瞬时变化率是函数f(x)在x=x 0处的导数,即函数f(x)在该点处的切线的斜率,同理函数g(x)在x=x 0处的瞬时变化率是函数g(x)在该点处的导数,即函数g(x)在该点处的切线的斜率,由题中图象知C 错误,D 正确.故选D.6.AD 由题中图象可知,导函数f'(x)的图象在x 轴下方,即f'(x)<0,且其绝对值越来越小,因此过函数f(x)图象上任一点的切线的斜率为负,并且从左到右切线的倾斜角是越来越大的钝角,由此可得f(x)的大致图象如图所示.A 选项表示x 1-x 2与f(x 1)-f(x 2)异号,即f(x)图象的割线斜率f (x 1)-f(x 2)x 1-x 2为负,故A 正确;B 选项表示x 1-x 2与f(x 1)-f(x 2)同号,即f(x) 图象的割线斜率f (x 1)-f(x 2)x 1-x 2为正,故B 不正确表示x 1+x 22对应的函数值,即图中点B 的纵坐标,f (x 1)+f(x 2)2表示当x=x 1和x=x 2时所对应的函数值的平均值,即图中点A 的纵坐标,显然有<f (x 1)+f(x 2)2,故C 不正确,D 正确.故选AD.7.D 设点P 的横坐标为x 0,则点P 处的切线倾斜角α与x 0的关系为tan α=f'(x 0)=lim Δx→0f (x 0+Δx )-f (x 0)Δx =2x 0+2.∵α,∴tan α∈[1,+∞),∴2x 0+2≥1,即x 0≥-12,∴点P 的横坐标的取值范围为-12,+∞.8.答案 x-y+2=0或x+3y-2=0解析 令y=f(x)=x 2,设B(t,t 2),则k AB =lim Δx→0f (t +Δx )-f (t )Δx =2t,则直线AB 的方程为y=2tx-t 2.当t=0时,符合题意,此时A(-2,0),∴直线m 的方程为x-y+2=0.当t ≠0时,0,PA=+1,―1,PB =(t+1,t 2-1),∵PA ⊥PB,∴PA ·PB =0,+1(t+1)-(t 2-1)=0,解得t=4或t=-1(B,P重合,舍去),此时A(2,0),∴直线m 的方程为x+3y-2=0.综上,直线m 的方程为x-y+2=0或x+3y-2=0.9.解析 由y =x 2,y =1x,得x =1,y =1,故两条曲线的交点坐标为(1,1).两条曲线切线的斜率分别为f'(1)=lim Δx→0f (Δx +1)―f (1)Δx =lim Δx→0(Δx +1)2-12Δx =lim Δx→0(Δx+2)=2,g'(1)=lim Δx→0g (Δx +1)―g (1)Δx =lim Δx→01Δx +1-11Δx=lim Δx→0-所以两条切线的方程分别为y-1=2(x-1),y-1=-(x-1),即y=2x-1与y=-x+2,两条切线与x,0,(2,0),所以两切线与x轴围成的三角形的面积为12×1×|2―12|=34.。
高中数学函数与导数练习题及参考答案
高中数学函数与导数练习题及参考答案一、选择题(每小题3分,共30分)1. 设函数f(x)=2x^3-3x^2+4x-1,则f'(x)的值为:A. 6x^2-6x+4B. 6x^2-3x+4C. 6x^2-6x-4D. 6x^2-3x-42. 已知函数f(x)=e^(2x)-x,下列说法正确的是:A. f(x)的定义域为RB. f(x)的值域为RC. 对任意x∈R,f(x)≥0D. f(x)在R上递增3. 函数f(x)=log(2x+1)的定义域为:A. x>1/2B. x≥1/2C. x>1D. x≥-1/24. 函数f(x)=(x-2)^2-1的图像对称于:A. x轴B. y轴C. 原点D. 直线x=25. 函数f(x)=x^3+3x^2-x+2的最小值为:A. -∞B. -4C. 1D. 66. 函数f(x)=log_a(x^2-4)的定义域为:A. x>2B. x<-2C. x>2或x<-2D. x>07. 设函数f(x)=(x+1)e^x,则f'(x)=:A. (x+2)e^xB. xe^xC. (x+1)e^x+e^xD. (x+1)e^x+18. 函数y=2^(x^2)的图像在y轴的左侧为:A. 上拋曲线B. 下落曲线C. 开口向上的曲线D. 开口向下的曲线9. 函数f(x)=√(x-1)的定义域为:A. x>1B. x≥1C. x>0D. x≥010. 设函数f(x)=x^3-3x^2+2,则f''(x)的值为:A. 6x-6B. 6x-2C. 6x-3D. 6x-4二、计算题(每小题5分,共40分)1. 计算函数f(x)=e^(2x)-3x在x=1处的导数f'(1)的值。
解答:f'(x)=2e^(2x)-3f'(1)=2e^2-32. 已知函数y=log_a(x^2-4),求f(x)在x=0处的导数f'(0)。
求导练习题带答案
求导练习题带答案求导是微积分中的一项基本技能,它可以帮助我们理解函数的变化率以及找到函数的极值点。
以下是一些求导的练习题及其答案,适合初学者练习。
练习题1:求函数 f(x) = x^3 的导数。
解:根据幂函数的求导法则,对于函数 f(x) = x^n,其导数为 f'(x) = n * x^(n-1)。
因此,对于 f(x) = x^3,我们有 f'(x) = 3 *x^(3-1) = 3x^2。
练习题2:求函数 g(x) = sin(x) 的导数。
解:根据三角函数的求导法则,sin(x) 的导数是 cos(x)。
所以,g'(x) = cos(x)。
练习题3:求函数 h(x) = 2x^2 + 3x - 1 的导数。
解:根据多项式的求导法则,我们可以分别对每一项求导,然后将结果相加。
对于 h(x) = 2x^2 + 3x - 1,我们有 h'(x) = 2 * 2x^(2-1) + 3 * 1x^(1-1) - 0 = 4x + 3。
练习题4:求函数 k(x) = (x^2 - 1)^3 的导数。
解:这里我们使用链式法则和幂函数的求导法则。
首先,设 u = x^2- 1,那么 k(x) = u^3。
u 的导数是 u' = 2x,而 u^3 的导数是3u^2。
应用链式法则,我们得到 k'(x) = 3u^2 * u' = 3(x^2 - 1)^2 * 2x = 6x(x^2 - 1)。
练习题5:求函数 m(x) = e^x 的导数。
解:根据指数函数的求导法则,e^x 的导数是它自身。
所以,m'(x) = e^x。
练习题6:求函数 n(x) = ln(x) 的导数。
解:自然对数函数 ln(x) 的导数是 1/x。
因此,n'(x) = 1/x。
练习题7:求函数 p(x) = (3x - 2)^5 的导数。
解:使用链式法则和幂函数的求导法则。
(必考题)高中数学高中数学选修2-2第三章《导数应用》测试题(答案解析)(2)
一、选择题1.函数()[)(](),00,sin xf x x x xππ=∈--的图象大致是( )A .B .C .D .2.已知函数()x f x e ex a =-+与1()ln g x x x=+的图象上存在关于x 轴对称的点,则a 的取值范围是( ) A .(,]e -∞-B .(,1] -∞-C .[1,) -+∞D .[,)e3.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( ) A .()1,+∞ B .[)3,+∞C .(],1-∞D .(],3-∞4.已知函数322()f x =x ax bx a +++在1x =处的极值为10,则a b -=( ). A .6-B .15-C .15D .6-或155.若函数()22ln 45f x x x bx =+++的图象上的任意一点的切线斜率都大于0,则b 的取值范围是( ) A .(),8-∞- B .()8,-+∞ C .(),8-∞ D .()8,+∞6.若函数()()sin xf x e x a =+在区间,22ππ⎛⎫- ⎪⎝⎭上单调递增,则实数a 的取值范围是()A .)+∞ B .[)1,+∞C .()1,+∞D .()+∞7.已知函数2()ln(1)22x x f x x -=-++,则使不等式(1)(2)f x f x +<成立的x 的取值范围是( )A .(1)(1,)-∞-⋃+∞,B .(1,+)∞C .1(,)(1,+)3-∞-⋃∞D .(,2)(1,)-∞-+∞8.已知定义在R 上的可导函数()f x 的导函数为'()f x ,满足()'()f x f x >,且(0)1f =,则不等式()x e f x >(e 为自然对数的底数)的解集为( )A .(1,)-+∞B .(0,)+∞C .(1,)+∞D .(,0)-∞9.设函数()f x 在R 上存在导数()f x ',对任意的x ∈R ,有()()2f x f x x +-=,且在[)0,+∞上有()f x x '>.若()()222f k f k k --≥-,则k 的取值范围是( )A .(],0-∞B .(],1-∞C .1,22⎡⎤⎢⎥⎣⎦D .50,2⎡⎤⎢⎥⎣⎦10.内接于半径为R 的球且体积最大的圆柱体的高为( )A .3R B .3R C .2R D .2R 11.设函数()'f x 是函数()()f x x R ∈的导函数,当0x ≠时,3()()0f x f x x'+<,则函数31()()g x f x x =-的零点个数为( ) A .3 B .2 C .1D .012.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( ) A .2eB .eC .1D .12二、填空题13.函数()f x 定义在0,2π⎛⎫⎪⎝⎭上,26f π⎛⎫=⎪⎝⎭,其导函数是()f x ',且()()cos sinx f x x f x '⋅<⋅恒成立,则不等式()22sinx f x >的解集为_____________.14.如图,有一块半径为2的半圆形钢板,计划裁剪成等腰梯形ABCD 的形状,它的下底AB 是圆O 的直径,上底C 、D 的端点在圆周上,则所裁剪出的等腰梯形面积最大值为_______________.15.已知函数()ln 1f x x x =--,()ln g x x =,()()F x f g x =⎡⎤⎣⎦,()()G x g f x =⎡⎤⎣⎦,给出以下四个命题:(1)()y F x =是偶函数;(2)()y G x =是偶函数;(3)()y F x =的最小值为0;(4)()y G x =有两个零点;其中真命题的是______.16.已知函数()2xe f x ax x=-,()0,x ∈+∞,当21x x >时,不等式()()12210f x f x x x -<恒成立,则实数a 的取值范围为________. 17.已知函数()321213f x x x ax =+-+,若函数()f x 在()2,2-上有极值,则实数a 的取值范围为______. 18.函数()ln xf x x=在(),1a a +上单调递增,则实数a 的取值范围为______. 19.已知在正四棱锥P ABCD -中,4PA =,则当该正四棱锥的体积最大时,它的高h 等于______.20.已知()2sin cos f x x x x x =++,则不等式()()1lg lg 22f x f x f ⎛⎫+ ⎪⎝⎭>的解集为______.三、解答题21.已知函数()cos x f x e x x =-,()(sin 1)g x x x =-. (1)讨论()f x 在区间(,0)2π-上的单调性;(2)判断()()f x g x -在区间[,]22ππ-上零点的个数,并给出证明. 22.已知函数()()3exf x xx a =-+,a R ∈.(1)当2a =-时,求()f x 在[]1,2-上的最大值和最小值; (2)若()f x 在()1,+∞上单调,求a 的取值范围.23.已知函数432()f x ax x bx =++(),a b ∈R ,()()()g x f x f x '=+是偶函数. (1)求函数()g x 的极值以及对应的极值点. (2)若函数43221()()(1)4h x f x x c x x cx c =++--++,且()h x 在[]2,5上单调递增,求实数c 的取值范围. 24.设函数()()21xf x ea x =-+.(1)讨论()f x 的单调性;(2)若()0f x >对x ∈R 恒成立,求a 的取值范围.25.已知函数21(),()ln 2f x xg x a x ==. (1)若曲线()()y f x g x =-在2x =处的切线与直线370x y +-=垂直,求实数a 的值;(2)若[]1,e 上存在一点x ,使得()()()()00001f xg x g x f x ''+<-'成立,求实数a 的取值范围.26.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I 内的地块形状为矩形ABCD ,大棚II 内的地块形状为CDP ,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP 的面积,并确定sin θ的取值范围;(2)若大棚I 内种植甲种蔬菜,大棚II 内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先判断函数的奇偶性,再利用导数研究函数的单调性即可得解; 【详解】 解:因为()[)(](),00,sin xf x x x xππ=∈--,定义域关于原点对称,又()()()sin sin x x f x f x x x x x --===----,所以()[)(](),00,sin x f x x x xππ=∈--为偶函数,函数图象关于y 轴对称,所以排除A 、D ; ()()()()()22sin sin cos sin sin sin x x x x x xx x xf x x x x x ''----'==--令()cos sin g x x x x =-,则()sin g x x x '=-,所以当(]0,x π∈时()0g x '≤,所以()cos sin g x x x x =-在(]0,x π∈上单调递减,又()00g =,所以()0g x <在(]0,x π∈上恒成立,所以()0f x '<在(]0,x π∈上恒成立,即函数()sin xf x x x=-在(]0,π上单调递减,故排除C ,故选:B 【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.2.B解析:B 【分析】根据题中条件,得到方程1ln xa e ex x x ⎛⎫=--++⎪⎝⎭有解,令1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭,则a 的取值范围是()(0)y h x x =>的值域,对函数()h x 求导,判定其单调性,研究其值域,即可得出结果. 【详解】函数()x f x e ex a =-+与1()ln g x x x=+的图象上存在关于x 轴对称的点, 即方程1ln 0xe ex a x x -+++=有解,即方程1ln x a e ex x x ⎛⎫=--++ ⎪⎝⎭有解,令1()ln xh x e ex x x ⎛⎫=--++ ⎪⎝⎭,则a 的取值范围是()(0)y h x x =>的值域, 因为()22111()xx x h x e e e e x x x -⎛⎫⎡⎤'=--+-=--+ ⎪⎢⎥⎝⎭⎣⎦, 所以当1x =时,()0h x '=; 当01x <<时,0x e e -<,210x x -<,所以()21()0xx h x e e x -⎡⎤'=--+>⎢⎥⎣⎦,则函数1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭单调递增;当1x >时,0x e e ->,210x x ->,所以()21()0xx h x e e x -⎡⎤'=--+<⎢⎥⎣⎦,则函数1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭单调递减;所以max ()(1)1h x h ==-, 画出函数()h x 的大致图像如下,由图像可得,()(],1h x ∈-∞-, 所以a 的取值范围(],1-∞-. 故选:B. 【点睛】本题主要考查导数的方法研究方程根的问题,考查函数与方程的应用,将问题转化为两函数交点的问题是解题的关键,属于常考题型.3.B解析:B 【分析】根据'()0f x ≤在(1,1)-上恒成立求解. 【详解】∵3()f x x ax =-,∴2'()3f x x a =-.又函数()f x 在()1,1-上单调递减,∴2'()30f x x a =-≤在(1,1)-上恒成立,即23a x ≥在(1,1)-上恒成立.∵当(1,1)x ∈-时,3033x ≤<,∴3a ≥. 所以实数a 的取值范围是[3,)+∞. 故选:B . 【点睛】本题考查根据导函数研究函数的单调性,以及不等式的恒成立问题,注意当'()0()f x x D <∈时,则函数()f x 在区间D 上单调递减;而当函数()f x 在区间D 上单调递减时,则有'()0f x ≤在区间D 上恒成立.解题时要注意不等式是否含有等号,属于中档题.4.C解析:C 【分析】由题,可得(1)0(1)10f f '=⎧⎨=⎩,通过求方程组的解,即可得到本题答案,记得要检验.【详解】因为322()f x =x ax bx a +++,所以2()32f x x ax b '=++,由题,得(1)0(1)10f f '=⎧⎨=⎩,即2320110a b a b a ++=⎧⎨+++=⎩,解得411a b =⎧⎨=-⎩或33a b =-⎧⎨=⎩,因为当3,3a b =-=时,2()3(1)0f x x '=-≥恒成立,()f x 在R 上递增,无极值,故舍去,所以4(11)15a b -=--=.故选:C 【点睛】本题主要考查含参函数的极值问题,得到两组解后检验,是解决此题的关键.5.B解析:B 【分析】对函数()f x 求导,得到()f x ',然后根据题意得到()0f x '>恒成立,得到 【详解】因为函数()22ln 45f x x x bx =+++,定义域()0,∞+所以()28f x x b x'=++, 因为()f x 图象上的任意一点的切线斜率都大于0, 所以()280f x x b x'=++>对任意的()0,x ∈+∞恒成立, 所以28b x x>--, 设()28g x x x=--,则()max b g x > ()228g x x'=- 令()0g x '=,得到12x =,舍去负根, 所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增, 当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0g x '<,()g x 单调递减, 所以12x =时,()g x 取最大值,为()max 182g x g ⎛⎫==- ⎪⎝⎭,所以8b >-,故选B. 【点睛】本题考查利用导数求函数图像切线的斜率,不等式恒成立,利用导数研究函数的单调性、极值、最值,属于中档题.6.B解析:B 【分析】将问题转化为()0f x '≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立;根据导函数解析式可知问题可进一步转化04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫-⎪⎝⎭上恒成立;利用正弦型函数值域求法可求得(14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭,则只需10a -+≥即可,解不等式求得结果. 【详解】由题意得:()()sin cos 4xx x f x ex a e x e x a π⎫⎛⎫'=++=++ ⎪⎪⎝⎭⎭()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增 ()0f x '∴≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立又0x e >04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫- ⎪⎝⎭上恒成立 当,22x ππ⎛⎫∈- ⎪⎝⎭时,3,444πππ⎛⎫+∈- ⎪⎝⎭xsin 4x π⎛⎤⎛⎫∴+∈ ⎥ ⎪ ⎝⎭⎝⎦(14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭10a ∴-+≥,解得:[)1,a ∈+∞ 本题正确选项:B 【点睛】本题考查根据函数在一段区间内的单调性求解参数范围问题,涉及到正弦型函数值域的求解问题;本题解题关键是能够将问题转化为导函数在区间内恒大于等于零的问题,从而利用三角函数的最值来求得结果.7.D解析:D 【分析】先判断函数的奇偶性和单调性,由此列不等式组,解不等式组求得x 的取值范围. 【详解】由210x ->解得1x <-或1x >,故函数的定义域为{|1x x <-或}1x >,且()()f x f x -=,所以函数()f x 为偶函数,且当1x >时,令22x x y -=+,'1412ln 2ln 2022x x x x y -⎛⎫=-=⨯> ⎪⎝⎭,所以22x x y -=+在1x >时递增,根据复合函数单调性可知()2ln 1y x =-在1x >时递增,所以函数()f x 在1x >时递增,故在1x <-时递减.由(1)(2)f x f x +<可知121121x x x x ⎧+<⎪+>⎨⎪>⎩,解得(,2)(1,)x -∞-∈+∞.故选D. 【点睛】本小题主要考查函数的单调性和奇偶性,考查利用导数判断函数的单调性,考查函数不等式的解法,属于中档题.8.B解析:B 【解析】令()()()()()0,(0)1x xf x f x f xg x g x g e e-=∴=<'=' 所以()xe f x >()1(0)0g x g x ⇒=⇒ ,选B.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e =,()()0f x f x '+<构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等9.B解析:B 【分析】构造函数()()212g x f x x =-,可得()g x 在[)0,+∞上单调递增,利用奇偶性的定义知()g x 是奇函数,进而求解不等式即可.【详解】由题意当0x ≥时,()f x x '>,构造函数()()212g x f x x =-, 则()()'0g x f x x '=->,得()g x 在[)0,+∞上单调递增, 又由条件()()2f x f x x +-=得()()0g x g x +-=.所以()g x 是奇函数,又()g x 在[)0,+∞上单调递增且()00g =,所以()g x 在R 上单调递增,由()()222f k f k k --≥-,得()()20k g k g --≥,即()()2g k g k -≥, 根据函数()g x 在R 上单调递增,可得2k k -≥,解得1k ≤. 故选:B 【点睛】本题考查导数在函数单调性中的应用,考查函数的奇偶性,属于中档题.10.A解析:A 【分析】根据圆柱的高,底面半径以及球半径之间的关系,建立圆柱的高与圆柱体积之间的函数关系,利用导数求体积取得最大值时对应的自变量即可. 【详解】根据题意,设圆柱底面半径为r ,圆柱的高为h ,作出示意图如下所示:显然满足2224h r R =-, 故圆柱的体积()23214h r h h R h πππ=⨯=-+, 故可得()223,(02)4V h h R h R ππ<'=-+<, 令()0V h '>,解得230h <<,故此时()V h 单调递增, 令()0V h '<232h R <<,故此时()V h 单调递减. 故()23max V h V ⎫=⎪⎪⎝⎭. 即当23h =时,圆柱的体积最大. 故选:A .【点睛】 本题考查圆柱的外接球以及利用导数求体积的最大值,属综合中档题.11.D解析:D【分析】构造函数3()()1F x x f x =-,可得出3()()F x g x x=,利用导数研究函数()y F x =的单调性,得出该函数的最大值为负数,从而可判断出函数()y F x =无零点,从而得出函数3()()F x g x x =的零点个数. 【详解】设3()()1F x x f x =-,则3233()()()3()()f x F x x f x x f x x f x x '''⎡⎤=+=+⎢⎥⎣⎦. 当0x ≠时,3()()0f x f x x'+<, 当0x >时,30x >,故()0F x '<,所以,函数()y F x =在(0,)+∞上单调递减; 当0x <时,30x <,故()0F x '>,所以,函数()y F x =在(,0)-∞上单调递增. 所以max ()(0)10F x F ==-<,所以,函数()y F x =没有零点, 故331()()()F x g x f x x x=-=也没有零点. 故选:D .【点睛】本题考查函数零点个数的判断, 解题的关键就是要结合导数不等式构造新函数,并利用导数分析函数的单调性与最值,必要时借助零点存在定理进行判断,考查分析问题和解决问题的能力,属于中档题. 12.C解析:C【分析】整理所给的不等式,构造新函数,结合导函数研究函数的单调性,即可求得结果.【详解】解:由已知可得,211212ln ln x x x x x x -<-,两边同时除以12x x , 则121221ln ln 11x x x x x x -<-,化简有1212ln 1ln 1x x x x ++<, 而120x x <<,构造函数()ln 1x f x x+=,()2ln x f x x -'=, 令()0f x '>,则01x <<;令()0f x '<,则1x > ,所以函数()f x 在()0,1上为增函数,在()1,+∞上为减函数, 由1212ln 1ln 1x x x x ++<对于120x x a <<<恒成立, 即()f x 在()0,a 为增函数,则01a <≤,故a 的最大值为1.故选:C.【点睛】本题考查导数研究函数的单调性,考查分析问题能力,属于中档题.二、填空题13.【分析】构造函数再利用函数的单调性解不等式即可【详解】解:构造函数则当时在单调递增不等式即即故不等式的解集为故答案为:【点睛】关键点点睛:本题解题的关键是根据题目的特点构造一个适当的函数利用它的单调 解析:,62ππ⎛⎫ ⎪⎝⎭【分析】构造函数()()sin f x g x x =,再利用函数的单调性解不等式即可. 【详解】解:()()cos sin f x x f x x '<()()sin cos 0f x x x f x '∴->,构造函数()()sin f x g x x =, 则()()()2sin cos f x x f x x g x sin x '-'=, 当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>, ()g x ∴在0,2π⎛⎫ ⎪⎝⎭单调递增, ∴不等式()f x x >,即()61sin sin 26f f x x ππ⎛⎫ ⎪⎝⎭>== 即()6xg g π⎛>⎫ ⎪⎝⎭, 26x ππ∴<< 故不等式的解集为,62ππ⎛⎫⎪⎝⎭. 故答案为:,62ππ⎛⎫⎪⎝⎭. 【点睛】 关键点点睛:本题解题的关键是根据题目的特点,构造一个适当的函数,利用它的单调性进行解题.14.【分析】连过作垂足为设则则等腰梯形的面积令利用导数求其最值【详解】连过作垂足为如图:设则所以等腰梯形的面积令单调递增单调递减所以时取得极大值也是最大值即的最大值故答案为:【点睛】本题考查了函数的实际 解析:33 【分析】连OC ,过C 作CE OB ⊥,垂足为E ,设(02),OE x x CE y =<<=,则224x y +=,则等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+3(2)(2)x x =+-,令3()(2)(2),02h x x x x =+-<<,利用导数求其最值.【详解】连OC ,过C 作CE OB ⊥,垂足为E ,如图:设,OE x CE y ==,则224x y +=,所以等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+2(2)4x x =+-3(2)(2),02x x x =+-<<令3()(2)(2),02h x x x x =+-<<232()3(2)(2)(2)4(1)(2)h x x x x x x '=+--+=-+,(0,1),()0,()x h x h x ∈'>单调递增,(1,2),()0,()x h x h x ∈'<单调递减,所以1x =时,()h x 取得极大值,也是最大值,max ()(1)27h x h ==,即S 的最大值33故答案为:33【点睛】本题考查了函数的实际应用,运用导数求最值时解题的关键,属于中档题.15.(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)(2)的正误;利用导数与复合函数法求得函数的最小值可判断(3)的正误;利用复合函数法与导数求得函数的零点个数可判断(4)的正误综合可得出结论 解析:(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)、(2)的正误;利用导数与复合函数法求得函数()y F x =的最小值,可判断(3)的正误;利用复合函数法与导数求得函数()y G x =的零点个数,可判断(4)的正误.综合可得出结论.【详解】对于命题(1),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,即1x >,解得1x <-或1x >,所以,函数()y F x =的定义域为()(),11,-∞-⋃+∞,定义域关于原点对称,()()ln ln g x x x g x -=-==,则()()()()F x f g x f g x F x ⎡⎤⎡⎤-=-==⎣⎦⎣⎦, 所以,函数()y F x =为偶函数,命题(1)正确;对于命题(2),对于函数()()G x g f x ⎡⎤=⎣⎦,()ln 10f x x x =--≠,()111x f x x x'-=-=,令()0f x '=,得1x =,且函数()y f x =的定义域为()0,+∞,当01x <<时,()0f x '<,此时函数()y f x =单调递减;当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()min 10f x f ==,则函数()()G x g f x ⎡⎤=⎣⎦的定义域为()()0,11,⋃+∞,定义域不关于原点对称,所以,函数()y G x =是非奇非偶函数,命题(2)错误;对于命题(3),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,由(2)知,函数()y f x =的最小值为0,则函数()y F x =的最小值为0,命题(3)正确;对于命题(4),令()()0G x g f x ⎡⎤==⎣⎦,可得()1f x =,则()1f x =或()1f x =-, 由(2)知,()()10f x f ≥=,所以方程()1f x =-无解;令()()1ln 2h x f x x x =-=--,由(2)可知,函数()y h x =在()0,1上单调递减,在()1,+∞上单调递增, 22110h e e⎛⎫=> ⎪⎝⎭,()110h =-<,()42ln422ln20h =-=->, 由零点存在定理可知,函数()y h x =在区间21,1e ⎛⎫ ⎪⎝⎭和()1,4上各有一个零点, 所以,方程()1f x =有两个实根,即函数()y G x =有两个零点,命题(4)正确. 故答案为:(1)(3)(4).【点睛】本题考查函数奇偶性的判断,复合函数最值以及零点个数的判断,考查分析问题和解决问题的能力,属于中等题.16.【分析】由当时不等式恒成立变形得到当时不等式恒成立即在上是增函数然后由在上是恒成立求解【详解】因为当时不等式恒成立即当时不等式恒成立所以在上是增函数所以在上是恒成立即在上是恒成立令所以当时当时所以当 解析:2,12e ⎛⎤-∞ ⎥⎝⎦ 【分析】由当21x x >时,不等式()()12210f x f x x x -<恒成立,变形得到当21x x >时,不等式()()1122x f x x f x <恒成立,即()()g x xf x =,在()0,x ∈+∞上是增函数,然后由()0g x '≥,在()0,x ∈+∞上是恒成立求解.【详解】因为当21x x >时,不等式()()12210f x f x x x -<恒成立,即当21x x >时,不等式()()1122x f x x f x <恒成立,所以()()g x xf x =,在()0,x ∈+∞上是增函数,所以()230x g x e ax '=-≥,在()0,x ∈+∞上是恒成立, 即23xe a x≤,在()0,x ∈+∞上是恒成立, 令2()3xe h x x=, 所以()32()3x e x h x x-'=, 当02x <<时,()0h x '<,当2x >时,()0h x '>,所以当2x =时,()h x 取得最小值,最小值为212e , 所以实数a 的取值范围为2,12e ⎛⎤-∞ ⎥⎝⎦. 故答案为:2,12e ⎛⎤-∞ ⎥⎝⎦. 【点睛】本题主要考查导数与函数的单调性,还考查了转化化归的思想和运算求解的能力,属于中档题.17.【分析】求出函数的导数利用函数的极值点转化列出不等式求解即可【详解】解:可得导函数的对称轴为x =﹣1f (x )在(﹣22)上有极值可得或可得或解得故答案为:【点睛】本题考查函数的导数的应用函数的极值的 解析:1,42⎛⎫- ⎪⎝⎭【分析】求出函数的导数,利用函数的极值点,转化列出不等式求解即可.【详解】解:()321213f x x x ax =+-+, 可得()'222f x x x a =+-,导函数的对称轴为x =﹣1,f (x )在(﹣2,2)上有极值,可得(2)0(1)0f f >⎧⎨-<''⎩或(2)0(1)0f f ->⎧⎨-<''⎩, 可得44201220a a +->⎧⎨--<⎩或44201220a a -->⎧⎨--<⎩, 解得1,42a ⎛⎫∈- ⎪⎝⎭. 故答案为:1,42⎛⎫-⎪⎝⎭. 【点睛】本题考查函数的导数的应用,函数的极值的求法,考查转化思想以及计算能力. 18.【分析】先求出得到在上单调递增要使得在上单调递增则从而得到答案【详解】由函数有由得得所以在上单调递增在上单调递减又函数在上单调递增则则解得:故答案为:【点睛】本题考查函数在某区间上的单调性求参数的范 解析:[]0,1e -【分析】先求出()21ln x f x x-'=,得到()f x 在()0e ,上单调递增,要使得在(),1a a +上单调递增,则()(),10a a e +⊆,,从而得到答案.【详解】由函数()ln x f x x =有()()2ln 1ln 0x x f x x x x -'==> 由()0f x '>得0x e <<,()0f x '<得x e >.所以()f x 在()0e ,上单调递增,在(),e +∞上单调递减,又函数()ln x f x x =在(),1a a +上单调递增,则()(),10a a e +⊆, 则01a a e≥⎧⎨+≤⎩ ,解得:01a e ≤≤-.故答案为:[]0,1e -【点睛】本题考查函数在某区间上的单调性,求参数的范围,属于基础题.19.【分析】设正四棱锥的底面边长为即可由表示出和的等量关系进而表示出正四棱锥的体积利用导函数判断单调性由单调性即可求得最值并求得取最值时的高的值【详解】设正四棱锥的底面边长为因为所以即所以正四棱锥的体积【分析】设正四棱锥P ABCD -的底面边长为a ,即可由4PA =表示出a 和h 的等量关系,进而表示出正四棱锥P ABCD -的体积.利用导函数,判断单调性,由单调性即可求得最值,并求得取最值时的高h 的值.【详解】设正四棱锥P ABCD -的底面边长为a ,因为4PA =,所以22162a h +=, 即22322a h =-,所以正四棱锥P ABCD -的体积()2313220333V a h h h h ==->, 可得232'23V h =-,令'0V =,解得h =当03h <<,可得'0V >,可知V 在03h <<内单调递增,当h >'0V <,可知V 在h >所以当h =P ABCD -的体积取得最大值,即16322313V ⎛⎫-⨯ =⎪⎝⎭=【点睛】本题考查了正四棱锥的性质与应用,四棱锥的体积公式,利用导数求函数的最值及取最值时的自变量,属于中档题.20.【分析】先判断函数为偶函数再利用导数判断函数在递增从而将不等式转化为进一步可得不等式解对数不等式即可得答案【详解】的定义域为且即有即为偶函数;又时则在递增不等式即为即有可得即有即或解得或则解集为故答 解析:()10,100,100⎛⎫+∞ ⎪⎝⎭【分析】先判断函数为偶函数,再利用导数判断函数在0x >递增,从而将不等式转化为()()lg 2f x f >,进一步可得不等式lg 2x >,解对数不等式即可得答案.【详解】()2sin cos f x x x x x =++的定义域为R ,且()()()()()22sin cos sin cos f x x x x x x x x x -=--+-+-=++, 即有()()f x f x -=,即()f x 为偶函数;又0x >时,()()sin cos sin 22cos 0f x x x x x x x x '=+-+=+>,则()f x 在0x >递增,不等式()()1lg lg 22f x f x f ⎛⎫+ ⎪⎝⎭>, 即为()()()lg lg 22f x f x f +->, 即有()()lg 2f x f >, 可得()()lg 2f x f >, 即有lg 2x >,即lg 2x >或lg 2x <-,解得100x >或10100x <<, 则解集为()10,100,100⎛⎫+∞ ⎪⎝⎭. 故答案为:()10,100,100⎛⎫+∞ ⎪⎝⎭.【点睛】 本题考查函数奇偶性、单调性的综合运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意偶函数(||)()f x f x =这一性质的应用.三、解答题21.(1)()f x 在(,0)2π-上单调递减;(2)有且仅有2个零点. 证明见解析.【分析】(1)求出函数的导数,根据导函数的单调性判断即可;(2)令()()()cos sin x F x f x g x e x x x =-=-,求出函数的导数,通过讨论x 的范围,求出函数的单调区间,从而求出函数的零点个数即可证明结论成立.【详解】(1)()cos sin 1cos()14x x x f x e x e x x π⎛⎫=--=+- ⎪⎝⎭',()cos sin 44x x f x x x ππ⎛⎫⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭'⎭⎝'⎝⎭ 2cos()2sin 2x x e x e x π=+=-.(,0)2x π∈-,sin 0x ∴<,()0f x ''∴>,所以()'f x 在(,0)2π-上单调递增,()(0)0f x f ''<=, ()f x ∴在(,0)2π-上单调递减.(2)()()f x g x -在区间[,]22ππ-上有且仅有2个零点. 证明:令()()()cos sin x F x f x g x e x x x =-=-,所以()()()cos sin cos sin x F x ex x x x x '=--+, ①当,02x ⎡⎤∈-⎢⎥⎣⎦π时, 因为()()cos sin 0,cos sin 0x x x x x ->-+>,()()0,F x F x '∴>在02π⎡⎤-⎢⎥⎣⎦,单调递增, 又()010,022F F ππ⎛⎫=>-=-< ⎪⎝⎭. ()F x ∴在02π⎡⎤-⎢⎥⎣⎦,上有一个零点; ②当0,4x π⎛⎤∈ ⎥⎝⎦时,cos sin 0,0x x x e x ≥>>>,()cos sin sin sin sin ()0x x x F x e x x x e x x x x e x ∴=-≥-=->恒成立.()F x ∴在04π⎛⎤ ⎥⎝⎦,上无零点;③当,42x ππ⎛⎤∈ ⎥⎝⎦时, 0cos sin x x <<, ()()()cos sin cos sin 0x F x e x x x x x '∴=--+<,()F x ∴在42ππ⎛⎤ ⎥⎝⎦,上单调递减;又40,022424F F e πππππ⎫⎛⎫⎛⎫=-<=->⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()F x ∴在42ππ⎛⎤ ⎥⎝⎦,上必存在一个零点; 综上,()()f x g x -在区间[,]22ππ-上有且仅有2个零点. 【点睛】方法点睛:利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性.22.(1)最大值为24e ,最小值为2e -;(2)[)2,-+∞.【分析】(1)2a =-代入()f x ,对函数求导,利用导数正负确定单调性即可;(2)先利用极限思想进行估值x →+∞时()0f x '>,来确定()f x 在()1,+∞上单增,()0f x '≥,再对32310x x a x -++-≥分离参数,研究值得分布即得结果.【详解】(1)()()3231x f x e x x a x '=-++-当2a =-时,()()()()()3233311x x f x e x x x e x x x '=+--=+-+∴()f x '在()3,1--和()1,+∞上为正,在(),3-∞-和()1,1-上为负,∴()f x 在()3,1--和()1,+∞上单增,在(),3-∞-和()1,1-上单减,有()21f e-=-,()224f e =,()12f e =-,故()f x 在[]1,2-上的最大值为24e ,最小值为2e -;(2)由()()3231x f x e x x x a '=+-+-知,当x →+∞时,()0f x '>,若()f x 在()1,+∞上单调则只能是单增,∴()0f x '≥在()1,+∞恒成立,即32310x x a x -++-≥∴3231a x x x ≥--++,令()3231g x x x x =--++,1x >,则()23610g x x x '=--+<,∴()g x 在()1,+∞递减,()()12g x g <=-,∴[)2,a ∈-+∞.【点睛】(1)利用导数研究函数()f x 的最值的步骤:①写定义域,对函数()f x 求导()'f x ;②在定义域内,解不等式()0f x '>和()0f x '<得到单调性;③利用单调性判断极值点,比较极值和端点值得到最值即可.(2)函数()f x 在区间I 上递增,则()0f x '≥恒成立;函数()f x 在区间I 上递减,则()0f x '≤恒成立.(3)解决恒成立问题的常用方法:①数形结合法;②分离参数法;③构造函数法.23.(1)函数()g x的一个极大值点为,对应的极大值为9,另一个极大值点为9;函数()g x 极小值点为0,对应的极小值为0;(2)4,13⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)求出()g x 的表达式,结合函数的奇偶性即可求出140a b ⎧=-⎪⎨⎪=⎩,从而可确定()g x 的解析式,求出导数即可求出函数的极值点和极值.(2)结合第一问可得()h x 的解析式,从而可求出2()32h x cx x c '=-+,由()h x 的单调性可得213c x x ≥+在[]2,5上恒成立,设()13m x x x =+,利用导数求出()m x 在[]2,5上的最小值,从而可求出实数c 的取值范围.【详解】解:(1)∵432()f x ax x bx =++,∴32()432f x ax x bx '=++,∴432()()()(41)(3)2g x f x f x ax a x b x bx '=+=+++++,因为()g x 为偶函数,∴41020a b +=⎧⎨=⎩,解得140a b ⎧=-⎪⎨⎪=⎩,∴431()4f x x x =-+,则421()34g x x x =-+,∴3()6(g x x x x x x '=-+=-,由()0g x '>,解得x <或0x <<()0g x '<,解得>x0x <<; ∴()g x在(,-∞,(单调递增;在(),)+∞单调递减.∴函数()g x的一个极大值点为(9g =,9g =; 函数()g x 极小值点为0,对应的极小值为()00g =.(2)由(1)知431()4f x x x =-+,∴43221()()(1)4h x f x x c x x cx c =++--++322cx x cx c =-++,∴2()32h x cx x c '=-+,因为函数()h x 在[]2,5上单调递增,∴2320cx x c -+≥在[]2,5上恒成立,即 2221313x c x x x≥=++在[]2,5上恒成立,设()13m x x x =+,令()22213130x m x x x -'=-==,解得[]2,5x =, 当[]2,5x ∈时,()0m x '>,所以()13m x x x=+在[]2,5上单调递增, 则()()1322m x m ≥=,所以24=13132c ≥. 【点睛】方法点睛:已知奇偶性求函数解析式时,常用方法有:一、结合奇偶性的定义,若已知偶函数,则()()f x f x -=,若已知奇函数,则()()f x f x -=-,从而可求出函数解析式;二、由奇偶性的性质,即偶函数加偶函数结果也是偶函数,奇函数加奇函数结果也是奇函数. 24.(1)当0a ≤时,()f x 在R 上单调递增;当0a >时,在1ln ,22a ⎛⎫+∞⎪⎝⎭上单调递增,在1,ln22a ⎛⎫-∞ ⎪⎝⎭上单调递减;(2)20,e ⎡⎫⎪⎢⎣⎭. 【分析】(1)分别在0a ≤和0a >两种情况下,根据()f x '的正负可确定()f x 的单调性;(2)根据(1)的结论可确定0a <不合题意;当0a =时,根据指数函数值域可知满足题意;当0a >时,令()min 0f x >,由此构造不等式求得结果.【详解】(1)由题意得:()22xf x e a '=-, 当0a ≤时,()0f x '>,()f x ∴在R 上单调递增;当0a >时,令()0f x '=得:1ln 22a x =. 当1ln 22a x <时,()0f x '<,()f x ∴在1,ln 22a ⎛⎫-∞ ⎪⎝⎭上单调递减; 当1ln 22a x >时,()0f x '>,()f x ∴在1ln ,22a ⎛⎫+∞ ⎪⎝⎭上单调递增. 综上所述:当0a ≤时,()f x 在R 上单调递增;当0a >时,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭上单调递增,在1,ln 22a ⎛⎫-∞ ⎪⎝⎭上单调递减. (2)由(1)可知:当0a <时,()f x 在R 上单调递增,当x →-∞时,20x e →,()1a x +→+∞,此时()0f x <,不合题意;当0a =时,2()0x f x e =>恒成立,满足题意.当0a >时,()f x 在1ln 22a x =处取最小值,且1ln ln 22222a a a a f ⎛⎫=-- ⎪⎝⎭, 令ln 0222a a a -->,解得:20a e <<,此时()0f x >恒成立. 综上所述:a 的取值范围为20,e ⎡⎫⎪⎢⎣⎭. 【点睛】本题考查导数在研究函数中的应用,涉及到利用导数讨论含参数函数的单调性、恒成立问题的求解;求解恒成立问题的关键是能够通过分类讨论,将问题转化为函数最小值大于零的问题,由此构造不等式求得结果.25.(1)2a =-(2)21(,2),1e e ⎛⎫+-∞-+∞ ⎪-⎝⎭【分析】(1)将(),()f x g x 的解析式代入曲线()()y f x g x =-,根据导数几何意义及垂直直线的斜率关系即可求得a 的值;(2)将0x 代入导函数(),()f x g x '',并代入不等式中化简变形,构造函数1()ln a m x x a x x+=-+,求得()m x '并令()0m x '=,对a 分类讨论即可确定满足题意的a 的取值范围.【详解】(1)由21()()ln 2y f x g x x a x =-=-, 得()a y x x x'=-.在2x =处的切线斜率为22a -, 直线370x y +-=的斜率为13-, 由垂直直线的斜率关系可知232a -=, 解得2a =-.(2)21(),()ln 2f x xg x a x ==, 则(),()a f x x g x x '='=, 不等式()()()()00001f x g x g x f x ''+<-'等价于00001ln a x a x x x +<-. 整理得0001ln 0a x a x x +-+<. 构造函数1()ln a m x x a x x +=-+, 由题意知,在[]1,e 上存在一点0x ,使得()00m x <.22221(1)(1)(1)()1a a x ax a x a x m x x x x x+--+--+'=--==. 因为0x >,所以10x +>,令0mx '=(),得1x a =+. ①当11a +≤,即0a ≤时,()m x 在[]1,e 上单调递增.只需()120m a =+<,解得2a <-.②当11a e <+≤即01a e <≤-时,()m x 在1x a =+处取最小值.令(1)1ln(1)10m a a a a +=+-++<即11ln(1)a a a ++<+, 可得11ln(1)(*)a a a++<+. 令1t a =+,即1t e <≤,不等式(*)可化为1ln 1t t t +<-: 因为1t e <≤,所以不等式左端大于1,右端小于等于1,所以不等式不能成立. ③当1a e +>,即1a e >-时,()m x 在[]1,e 上单调递减, 只需1()0a m e e a e +=-+<,解得211e a >e +-.综上所述,实数的取值范围是21(,2),1e e ⎛⎫+-∞-+∞ ⎪-⎝⎭. 【点睛】本题考查了导数的几何意义及由垂直关系求参数,导函数在解不等式中的应用,构造函数法分析函数的单调性、最值的综合应用,属于中档题.26.(1)()8004cos cos sin θθθ+, ()1600cos cos ,sin θθθ- 1,14⎡⎫⎪⎢⎣⎭;(2)6π. 【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定sin θ的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10.过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ,故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ),△CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0),则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ)=8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2),则()()()()222'sin sin 2sin 1211f cos sin sin sin θθθθθθθθ=--=-+-=--+. 令()'=0f θ,得θ=π6, 当θ∈(θ0,π6)时,()'>0f θ,所以f (θ)为增函数; 当θ∈(π6,π2)时,()'<0f θ,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.。
高二数学导数练习题及答案
高二数学导数练习题及答案导数是高中数学中的重要概念之一,它在数学和实际问题中具有广泛的应用。
为了帮助高二学生巩固导数的知识和提高解题能力,本文为大家准备了一些高二数学导数练习题及答案。
希望通过这些练习题的训练,同学们能够更好地理解导数的概念和运用。
练习题一:1. 求函数 f(x) = 2x^3 - 3x^2 + 4x - 1 在点 x = 2 处的导数。
2. 已知函数 f(x) = x^2 + 3x,求函数 f(x) = x^2 + 3x 的导函数。
3. 求函数 f(x) = (x + 1)(x - 2)(x + 3) 在点 x = -1 处的导数。
答案一:1. 函数 f(x) = 2x^3 - 3x^2 + 4x - 1 的导数为:f'(x) = 6x^2 - 6x + 4。
2. 函数 f(x) = x^2 + 3x 的导函数为:f'(x) = 2x + 3。
3. 函数 f(x) = (x + 1)(x - 2)(x + 3) 在点 x = -1 处的导数为:f'(-1) = 0。
练习题二:1. 求函数 f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1 的极值点及极值。
2. 已知函数 f(x) = x^3 - 6x^2 + 9x + 2,求函数 f(x) = x^3 - 6x^2 + 9x+ 2 的拐点。
3. 求函数 f(x) = x^3 - 3x 在其定义域内的极值点。
答案二:1. 函数 f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1 的极值点为 x = 1/2,极值为 f(1/2) = 47/16。
2. 函数 f(x) = x^3 - 6x^2 + 9x + 2 的拐点为 x = 2。
3. 函数 f(x) = x^3 - 3x 在其定义域内的极值点为 x = 1。
练习题三:1. 求函数 f(x) = e^x 的导数。
2. 已知函数 f(x) = ln(x),求函数 f(x) = ln(x) 的导函数。
高中数学《导数的概念及其运算》练习题
§3.1 导数的概念及运算1.下列求导运算正确的是( )A.⎝⎛⎭⎫x +1x ′=1+1x 2 B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 2.(2021·安徽江南十校联考)曲线f (x )=1-2ln x x在点P (1,f (1))处的切线l 的方程为( ) A .x +y -2=0 B .2x +y -3=0 C .3x +y +2=0 D .3x +y -4=03.(2020·广元模拟)已知函数f (x )=14x 2+cos x ,则其导函数f ′(x )的图象大致是( )4.设点P 是曲线y =x 3-3x +23上的任意一点,则曲线在点P 处切线的倾斜角α的取值范围为( ) A.⎣⎡⎦⎤0,π2∪⎣⎡⎭⎫5π6,π B.⎣⎡⎭⎫2π3,π C.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π D.⎝⎛⎦⎤π2,5π6 5.(多选)已知函数f (x )的图象如图,f ′(x )是f (x )的导函数,则下列结论正确的是( )A .f ′(3)>f ′(2)B .f ′(3)<f ′(2)C .f (3)-f (2)>f ′(3)D .f (3)-f (2)<f ′(2)6.(多选)已知函数f (x )及其导函数f ′(x ),若存在x 0使得f (x 0)=f ′(x 0),则称x 0是f (x )的一个“巧值点”.下列选项中有“巧值点”的函数是( )A .f (x )=x 2B .f (x )=e -xC .f (x )=ln xD .f (x )=tan x7.已知函数y =f (x )的图象在x =2处的切线方程是y =3x +1,则f (2)+f ′(2)= .8.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = . 9.我国魏晋时期的科学家刘徽创立了“割圆术”,实施“以直代曲”的近似计算,用正n 边形进行“内外夹逼”的办法求出了圆周率π的精度较高的近似值,这是我国最优秀的传统科学文化之一.借用“以直代曲”的近似计算方法,在切点附近,可以用函数图象的切线近似代替在切点附近的曲线来近似计算.设f (x )=ln(1+x ),则曲线y =f (x )在点(0,0)处的切线方程为________,用此结论计算ln 2 022-ln 2 021≈________.10.(2021·山东省实验中学四校联考)曲线y =x 2-ln x 上的点到直线x -y -2=0的最短距离是 .11.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值;(2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围.12.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.13.(2020·青岛模拟)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x14.已知函数f (x )=x +a 2x,若曲线y =f (x )存在两条过(1,0)点的切线,则a 的取值范围是 .15.已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为 . 16.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C . (1)求在曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.§3.2 导数与函数的单调性课时精练1.函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )2.下列函数中,在(0,+∞)上单调递增的是( )A .f (x )=sin 2xB .g (x )=x 3-xC .h (x )=x e xD .m (x )=-x +ln x3.(2020·甘肃静宁一中模拟)已知函数f (x )=x 2+a x ,若函数f (x )在[2,+∞)上单调递增,则实数a 的取值范围为( )A .(-∞,8)B .(-∞,16]C .(-∞,-8)∪(8,+∞)D .(-∞,-16]∪[16,+∞)4.已知函数f (x )=sin x +cos x -2x ,a =f (-π),b =f (2e ),c =f (ln 2),则a ,b ,c 的大小关系是( )A .a >c >bB .a >b >cC .b >a >cD .c >b >a5.(多选)若函数f (x )=ax 3+3x 2-x +1恰好有三个单调区间,则实数a 的取值可以是( )A .-3B .-1C .0D .26.(多选)若函数 g (x )=e x f (x )(e =2.718…,e 为自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数不具有M 性质的为( )A .f (x )=1xB .f (x )=x 2+1C .f (x )=sin xD .f (x )=x7.函数y =2ln x -3x 2的单调递增区间为________.8.若函数f (x )=ln x +e x -sin x ,则不等式f (x -1)≤f (1)的解集为________.9.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎡⎭⎫23,+∞上存在单调递增区间,则a 的取值范围是________. 10.(2020·济南质检)若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是________.11.函数f (x )=(x 2+ax +b )e -x ,若f (x )在点(0,f (0))处的切线方程为6x -y -5=0.(1)求a ,b 的值;(2)求函数f (x )的单调区间.12.讨论函数f (x )=(a -1)ln x +ax 2+1的单调性.13.(多选)若0<x 1<x 2<1,则( )A .x 1+ln x 2>x 2+ln x 1B .x 1+ln x 2<x 2+ln x 1C .1221e e x x x x >D .1221e e x xx x < 14.已知函数f (x )(x ∈R )满足f (1)=1,f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为____________.15.已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝⎛⎭⎫ln 1x <2f (1)的解集为________. 16.已知函数f (x )=a ln x -ax -3(a ∈R ).(1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎡⎦⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求实数m 的取值范围.§3.3 导数与函数的极值、最值课时精练1.函数f (x )=(x 2-1)2+2的极值点是( )A .x =1B .x =-1C .x =1或-1或0D .x =02.函数y =x e x 在[0,2]上的最大值是( ) A.1e B.2e 2 C .0 D.12e3.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( )A .2B .-52C .3+ln 2D .-2+2ln 24.已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22等于( )A.23B.43C.83D.1635.(多选)函数y =f (x )的导函数f ′(x )的图象如图所示,则以下命题错误的是( )A .-3是函数y =f (x )的极值点B .-1是函数y =f (x )的最小值点C .y =f (x )在区间(-3,1)上单调递增D .y =f (x )在x =0处切线的斜率小于零6.(多选)(2021·烟台模拟)已知函数f (x )=x 2+x -1e x,则下列结论正确的是( ) A .函数f (x )存在两个不同的零点B .函数f (x )既存在极大值又存在极小值C .当-e<k ≤0时,方程f (x )=k 有且只有两个实根D .若x ∈[t ,+∞)时,f (x )max =5e2,则t 的最小值为2 7.函数f (x )=2x -ln x 的最小值为________.8.若函数f (x )=x 3-2cx 2+x 有两个极值点,则实数c 的取值范围为______________.9.已知函数f (x )=sin x -13x ,x ∈[0,π],cos x 0=13,x 0∈[0,π]. ①f (x )的最大值为f (x 0); ②f (x )的最小值为f (x 0);③f (x )在[0,x 0]上是减函数; ④f (x 0)为f (x )的极大值.那么上面命题中真命题的序号是________.10.已知不等式e x -1≥kx +ln x 对于任意的x ∈(0,+∞)恒成立,则k 的最大值为________.11.已知函数f (x )=ln x -ax (a ∈R ).(1)当a =12时,求f (x )的极值; (2)讨论函数f (x )在定义域内极值点的个数.12.已知函数f (x )=x ln x .(1)求函数f (x )的极值点;(2)设函数g (x )=f (x )-a (x -1),其中a ∈R ,求函数g (x )在区间(0,e]上的最小值(其中e 为自然对数的底数).13.已知函数f (x )=x +2sin x ,x ∈[0,2π],则f (x )的值域为( )A.⎣⎡⎦⎤4π3-3,2π3+3 B.⎣⎡⎦⎤0,4π3-3 C.⎣⎡⎦⎤2π3+3,2π D .[0,2π]14.(2020·邢台模拟)若函数f (x )=12x 2+(a -1)x -a ln x 存在唯一的极值,且此极值不小于1,则实数a 的取值范围为________.15.已知函数f (x )=x ln x +m e x (e 为自然对数的底数)有两个极值点,则实数m 的取值范围是__________.16.(2019·全国Ⅲ)已知函数f (x )=2x 3-ax 2+2.(1)讨论f (x )的单调性;(2)当0<a <3时,记f (x )在区间[0,1]的最大值为M ,最小值为m ,求M -m 的取值范围.高考专题突破一 高考中的导数综合问题第1课时 利用导数研究恒(能)成立问题1.设函数f (x )=ln x +a x(a 为常数).(1)讨论函数f (x )的单调性; (2)不等式f (x )≥1在x ∈(0,1]上恒成立,求实数a 的取值范围.2.已知函数f (x )=x ln x (x >0).(1)求函数f (x )的极值;(2)若存在x ∈(0,+∞),使得f (x )≤-x 2+mx -32成立,求实数m 的最小值.3.已知函数f (x )=x 2+(a +1)x -ln x ,g (x )=x 2+x +2a +1.(1)若f (x )在(1,+∞)上单调递增,求实数a 的取值范围;(2)当x ∈[1,e]时,f (x )<g (x )恒成立,求实数a 的取值范围.4.已知函数f (x )=x -(a +1)ln x -a x (a ∈R ),g (x )=12x 2+e x -x e x . (1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)成立,求a 的取值范围.5.(2020·衡水中学检测)设函数f (x )=1-a 2x 2+ax -ln x (a ∈R ). (1)当a =1时,求函数f (x )的极值;(2)若对任意a ∈(4,5)及任意x 1,x 2∈[1,2],恒有a -12m +ln 2>|f (x 1)-f (x 2)|成立,求实数m 的取值范围.第2课时利用导函数研究函数的零点1.已知函数f(x)=e x(ax+1),曲线y=f(x)在x=1处的切线方程为y=bx-e.(1)求a,b的值;(2)若函数g(x)=f(x)-3e x-m有两个零点,求实数m的取值范围.2.已知f(x)=ax2(a∈R),g(x)=2ln x.(1)讨论函数F(x)=f(x)-g(x)的单调性;(2)若方程f(x)=g(x)在区间[1,e]上有两个不相等的解,求a的取值范围.3.已知函数f(x)=e x+ax-a(a∈R且a≠0).(1)若函数f(x)在x=0处取得极值,求实数a的值,并求此时f(x)在[-2,1]上的最大值;(2)若函数f(x)不存在零点,求实数a的取值范围.4.(2020·潍坊检测)已知函数f(x)=ln x-x2+ax,a∈R.(1)证明:ln x≤x-1;(2)若a≥1,讨论函数f(x)的零点个数.5.已知函数f(x)=e x+1-kx-2k(其中e是自然对数的底数,k∈R).(1)讨论函数f(x)的单调性;(2)当函数f(x)有两个零点x1,x2时,证明x1+x2>-2.第3课时利用导数证明不等式1.(2021·莆田模拟)已知函数f(x)=x e x-1-ax+1,曲线y=f(x)在点(2,f(2))处的切线l的斜率为3e-2.(1)求a的值及切线l的方程;(2)证明:f(x)≥0.2.(2021·沧州七校联考)设a为实数,函数f(x)=e x-2x+2a,x∈R.(1)求f(x)的单调区间与极值;(2)求证:当a>ln 2-1且x>0时,e x>x2-2ax+1.3.已知函数f(x)=eln x-ax(a∈R).(1)讨论f(x)的单调性;(2)当a=e时,证明:xf(x)-e x+2e x≤0.4.已知函数f (x )=ln x -ax (a ∈R ).(1)讨论函数f (x )在(0,+∞)上的单调性;(2)证明:e x -e 2ln x >0恒成立.5.(2018·全国Ⅰ)已知函数f (x )=1x-x +a ln x . (1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2.。
导数基础练习题
导数基础练习题1.与直线2x-y+4=的平行的抛物线y=x的切线方程是A。
2x-y+3=B。
2x-y-3=C。
2x-y+1=D。
2x-y-1=2.函数y=(x+1)(x-1)在x=1处的导数等于A。
1B。
2C。
33.过抛物线y=x上的点M(-π/4,11/4)的切线的倾斜角为A。
π/24B。
3π/42C。
3π/144.函数y=1+3x-x^2有()A。
极小值-1,极大值1 B。
极小值-2,极大值3 C。
极小值-2,极大值2 D。
极小值-1,极大值35.已知f(x)=x,则f'(3)等于A。
2B。
6C。
1D。
96.f(x)=的导数是A。
1B。
不存在C。
2x7.y=3x^2的导数是A。
3x^2B。
x^2/11C。
-2/3x^38.曲线y=x^n在x=2处的导数是12,则n等于A。
1B。
2C。
3D。
49.若f(x)=3x,则f'(1)等于A。
-3B。
3C。
1D。
610.y=x^2的斜率等于2的切线方程是A。
2x-y+1=B。
2x-y+1=或2x-y-1=C。
2x-y-1=D。
2x-y=11.在曲线y=x^2上的切线的倾斜角为π/4的点是A。
(0,0)B。
(2,4)C。
(11/24,11/16)D。
(11/16,11/24)12.已知f(x)=x-5+3sinx,则f'(x)等于A。
-5x-6-3cosxB。
x-6+3cosxC。
-5x-6+3cosxD。
x-6-3cosx13.函数y=cos^-2x的导数是A。
-2cosxsinxB。
sin2xcos^-4xC。
-2cos^2xD。
-2sin^2x14.设y=f(sinx)是可导函数,则y'等于A。
f'(sinx)B。
f'(sinx)cosxC。
f'(sinx)sinxD。
f'(cosx)cosx15.函数y=4(2-x+3x^2)的导数是A。
8(2-x+3x^2)B。
2(-1+6x)^2C。
《高中数学》必会基础练习题--《导数》
《高中数学》必会基础练习题--《导数》-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN《数学》必会基础题型——《导数》【知识点】1.导数公式:'0C = '1()n n x nx -= '(sin )cos x x = '(cos )sin x x =-'()x x e e = '()ln x x a a a = '1(ln )x x = '1(log )ln a x x a= 2.运算法则:'''()u v u v +=+ '''()u v u v -=- '''()uv u v uv =+3.3.复合函数的求导法则:(整体代换)例如:已知2()3sin (2)3f x x π=+,求'()f x 。
4.导数的物理意义:位移的导数是速度,速度的导数是加速度。
5.导数的几何意义:导数就是切线斜率。
6.用导数求单调区间、极值、最值、零点个数:对于给定区间[,]a b 内,若'()0f x >,则()f x 在[,]a b 内是增函数;若'()0f x <,则()f x 在[,]a b 内是减函数。
【题型一】求函数的导数 (1)ln x y x = (2)2sin(3)4y x π=- (3)2(1)x y e x =- (4)3235y x x =-- (5)231x x y x -=+ (6)2211()y x x x x=++ 【题型二】导数的物理意义的应用1.已知物体的运动方程为223s t t=+(t 是时间,s 是位移),则物体在时刻2t =时的速度为 。
【题型三】导数与切线方程(导数的几何意义的应用)2.曲线32y x x =+-在点(2,8)A 处的切线方程是 。
3.若(1,)B m 是32y x x =+-上的点,则曲线在点B 处的切线方程是 。
导数练习题(含答案)
导数概念及其几何意义、导数的运算一、选择题:1 已知32()32f x ax x =++,若(1)4f '-=,则a 的值等于A193B103C163D1332 已知直线1y kx =+与曲线3y x ax b =++切于点(1,3),则b 的值为 A3B-3C 5D -53 函数2y x a a =+2()(x-)的导数为 A222()x a -B223()x a +C223()x a -D 222()x a +4 曲线313y x x =+在点4(1,)3处的切线与坐标轴围成的三角形的面积为 A19B 29C 13D 235 已知二次函数2y ax bx c =++的导数为(),(0)0f x f ''>,对于任意实数x ,有()0f x ≥,则(1)(0)f f '的最小值为 A3B52C 2 D326 已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为 A 2()(1)3(1)f x x x =-+- B()2(1)f x x =-C2()2(1)f x x =-D ()1f x x =-7 下列求导数运算正确的是 A 211()1x x x'+=+B21(log )ln 2x x '=C3(3)3log x x e '=⋅D 2(cos )2sin x x x x '=-8 曲线32153y x x =-+在1x =处的切线的倾斜角为 A6π B 34π C 4π D 3π9 曲线3231y x x =-+在点(1,1)-处的切线方程为 A34y x =-B32y x =-+C43y x =-+ D 45y x =-10 设函数sin cos y x x x =+的图像上的点(,)x y 处的切线斜率为k ,若()k g x =,则函数()k g x =的图像大致为11 一质点的运动方程为253s t =-,则在一段时间[1,1]t +∆内相应的平均速度为 A36t ∆+B36t -∆+C36t ∆- D 36t -∆-12 曲线()ln(21)f x x =-上的点到直线230x y -+=的最短距离是ABCD 013 过曲线32y x x =+-上的点0P 的切线平行于直线41y x =-,则切点0P 的坐标为 A (0,1)(1,0)-或B(1,4)(1,0)--或C(1,4)(0,2)---或D (2,8)(1,0)或14 点P 在曲线323y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是 A[0,]2πB3[0,)[,)24πππ C 3[,)4ππ D 3(,]24ππ二、填空题15 设()y f x =是二次函数,方程()0f x =有两个相等实根,且()22f x x '=+,则()y f x =的表达式是______________16 函数2sin x y x=的导数为_________________________________17 已知函数()y f x =的图像在点(1,(1))M f 处的切线方程是122y x =+,则(1)(1)f f '+=_________ 18 已知直线y kx =与曲线ln y x =有公共点,则k 的最大值为___________________________ 三、解答题19 求下列函数的导数(1)1sin 1cos x y x-=+ (2) 52sin x x y x +=(3) y = (4) tan y x x =⋅ 20 已知曲线21:C y x =与22:(2)C y x =--,直线l 与12,C C 都相切,求直线l 的方程21 设函数()bf x ax x=-,曲线()y f x =在点(2,(2))f 处的切线方程为74120x y --= (1)求()f x 的解析式(2)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值。
导数经典练习题及答案
1.设函数f(x)在0x 处可导,则xx f x x f x ∆-∆-→∆)()(lim000等于A .)('0x fB .)('0x f -C .0'()f x -D .0'()f x -- 2.若13)()2(lim000=∆-∆+→∆x x f x x f x ,则)('0x f 等于 A .32 B .23C .3D .23.若函数f(x)的导数为f ′(x)=-sinx ,则函数图像在点(4,f (4))处的切线的倾斜角为A .90°B .0°C .锐角D .钝角 4.对任意x ,有34)('x x f =,f(1)=-1,则此函数为A .4)(x x f =B .2)(4-=x x fC .1)(4+=x x fD .2)(4+=x x f 5.设f(x)在0x 处可导,下列式子中与)('0x f 相等的是 (1)x x x f x f x ∆∆--→∆2)2()(lim000; (2)x x x f x x f x ∆∆--∆+→∆)()(lim 000;(3)x x x f x x f x ∆∆+-∆+→∆)()2(lim000(4)x x x f x x f x ∆∆--∆+→∆)2()(lim 000.A .(1)(2)B .(1)(3)C .(2)(3)D .(1)(2)(3)(4) 6.若函数f(x)在点0x 处的导数存在,则它所对应的曲线在点))(,(00x f x 处的切线方程是___. 7.已知曲线xx y 1+=,则==1|'x y _____________.8.设3)('0-=x f ,则=---→hh x f h x f h )3()(lim000_____________.9.在抛物线2x y =上依次取两点,它们的横坐标分别为11=x ,32=x ,若抛物线上过点P的切线与过这两点的割线平行,则P点的坐标为_____________.10.曲线3)(x x f =在点A 处的切线的斜率为3,求该曲线在A 点处的切线方程.11.在抛物线2x y =上求一点P ,使过点P 的切线和直线3x-y+1=0的夹角为4π.12.判断函数⎩⎨⎧<-≥=)0()0()(x x x x x f 在x=0处是否可导.13.求经过点(2,0)且与曲线xy 1相切的直线方程.同步练习X030131.函数y =f (x )在x =x 0处可导是它在x =x 0处连续的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.在曲线y =2x 2-1的图象上取一点(1,1)及邻近一点(1+Δx ,1+Δy ),则xy∆∆ 等于 A .4Δx +2Δx 2 B .4+2Δx C .4Δx +Δx 2D .4+Δx3.若曲线y =f (x )在点(x 0,f (x 0))处的切线方程为2x +y -1=0,则A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在4.已知命题p :函数y =f (x )的导函数是常数函数;命题q :函数y =f (x )是一次函数,则命题p 是命题q 的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设函数f (x )在x 0处可导,则0lim→h hh x f h x )()(00--+等于A .f ′(x 0)B .0C .2f ′(x 0)D .-2f ′(x 0)6.设f (x )=x (1+|x |),则f ′(0)等于A .0B .1C .-1D .不存在7.若曲线上每一点处的切线都平行于x 轴,则此曲线的函数必是___________. 8.曲线y =x 3在点P (2,8)处的切线方程是___________.9.曲线f (x )=x 2+3x 在点A (2,10)处的切线斜率k =___________. 10.两曲线y =x 2+1与y =3-x 2在交点处的两切线的夹角为___________. 11.设f (x )在点x 处可导,a 、b 为常数,则lim→∆x xx b x f x a x f ∆∆--∆+)()(=___________.12.已知函数f (x )=⎩⎨⎧>+≤++012x b ax x x x ,试确定a 、b 的值,使f (x )在x =0处可导.13.设f (x )=)()2)(1()()2)(1(n x x x n x x x +⋅⋅⋅++-⋅⋅⋅--,求f ′(1).14.利用导数的定义求函数y =|x |(x ≠0)的导数.同步练习X030211.物体运动方程为s=41t4-3,则t=5时的瞬时速率为A.5 m/s B.25 m/s C.125 m/s D.625 m/s 2.曲线y=x n(n∈N)在点P(2,)22n处切线斜率为20,那么n为A.7 B.6 C.5 D.43.函数f(x)=xxx的导数是A.81x(x>0) B.-887x(x>0)C.8781x(x>0) D.881x(x>0)4.f(x)与g(x)是定义在R上的两个可导函数,若f(x),g(x)满足f′(x)=g′(x),则f(x)与g(x)满足A.f(x)=g(x)B.f(x)-g(x)为常数函数C.f(x)=g(x)=0 D.f(x)+g(x)为常数函数5.两车在十字路口相遇后,又沿不同方向继续前进,已知A车向北行驶,速率为30 km/h,B车向东行驶,速率为40 km/h,那么A、B两车间直线距离的增加速率为A.50 km/h B.60 km/h C.80 km/h D.65 km/h6.细杆AB长为20 cm,AM段的质量与A到M的距离平方成正比,当AM=2 cm时,AM段质量为8 g,那么,当AM=x时,M处的细杆线密度ρ(x)为A.2x B.4x C.3x D.5x7.曲线y =x 4的斜率等于4的切线的方程是___________.8.设l 1为曲线y 1=sin x 在点(0,0)处的切线,l 2为曲线y 2=cos x 在点(2π,0)处的切线,则l 1与l 2的夹角为___________. 9.过曲线y =cos x 上的点(21,6π)且与过这点的切线垂直的直线方程为_____________.10.在曲线y =sin x (0<x <π)上取一点M ,使过M 点的切线与直线y =x 23平行,则M 点的坐标为___________.11.质点P 在半径为r 的圆周上逆时针做匀角速率运动,角速率为1 r a d/s ,设A 为起点,那么t 时刻点P 在x 轴上射影点M 的速率为___________.12.求证:双曲线xy=a2上任一点处的切线与两坐标轴构成的三角形面积等于常数.13.路灯距地平面为8 m,一个身高为1.6 m的人以84 m/min的速率在地面上行走,从路灯在地平面上射影点C,沿某直线离开路灯,求人影长度的变化速率v.14.已知直线x+2y-4=0与抛物线y2=4x相交于A、B两点,O是坐标原点,试在抛物线的弧上求一点P,使△PAB面积最大.同步练习 X030311.若f (x )=sin α-cos x ,则f ′(α)等于A .sin αB .cos αC .sin α+cos αD .2sin α2.f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值等于A .319B .316 C .313D .3103.函数y =x sin x 的导数为A .y ′=2x sin x +x cos xB .y ′=xx 2sin +x cos xC .y ′=xx sin +x cos xD .y ′=xx sin -x cos x4.函数y =x 2cos x 的导数为A .y ′=2x cos x -x 2sin xB .y ′=2x cos x +x 2sin xC .y ′=x 2cos x -2x sin xD .y ′=x cos x -x 2sin x5.若y =(2x 2-3)(x 2-4),则y ’= .6. 若y =3cosx -4sinx ,则y ’= .7.与直线2x -6y +1=0垂直,且与曲线y =x 3+3x 2-1相切的直线方程是______. 8.质点运动方程是s =t 2(1+sin t ),则当t =2时,瞬时速度为___________.9.求曲线y=x3+x2-1在点P(-1,-1)处的切线方程. 10.用求导的方法求和:1+2x+3x2+…+nx n-1(x≠1).11.水以20米3/分的速度流入一圆锥形容器,设容器深30米,上底直径12米,试求当水深10米时,水面上升的速度.同步练习 X030321.函数y =22xax +(a >0)的导数为0,那么x 等于A .aB .±aC .-aD .a 22.函数y =xxsin 的导数为 A .y ′=2sin cos xxx x + B .y ′=2sin cos xxx x - C .y ′=2cos sin xxx x - D .y ′=2cos sin xxx x + 3.若21,2xy x +=-则y ’= .4.若423335,x x y x -+-=则y ’= . 5.若1cos ,1cos xy x+=-则y ’= .6.已知f (x )=354337xx x x ++,则f ′(x )=___________.7.已知f (x )=xx++-1111,则f ′(x )=___________.8.已知f (x )=xx2cos 12sin +,则f ′(x )=___________.1相切的直线的方程.9.求过点(2,0)且与曲线y=x10.质点的运动方程是23,s t=+求质点在时刻t=4时的速度.t同步练习 X030411.函数y =2)13(1-x 的导数是 A .3)13(6-x B .2)13(6-x C .-3)13(6-x D .-2)13(6-x2.已知y =21sin2x +sin x ,那么y ′是A .仅有最小值的奇函数B .既有最大值,又有最小值的偶函数C .仅有最大值的偶函数D .非奇非偶函数 3.函数y =sin 3(3x +4π)的导数为 A .3sin 2(3x +4π)cos (3x +4π) B .9sin 2(3x +4π)cos (3x +4π)C .9sin 2(3x +4π)D .-9sin 2(3x +4π)cos (3x +4π)4.若y=(sinx-cosx 3),则y ’= .5. 若y=2cos 1x +,则y ’= .6. 若y=sin 3(4x+3),则y ’= .7.函数y =(1+sin3x )3是由___________两个函数复合而成. 8.曲线y =sin3x 在点P (3π,0)处切线的斜率为___________.9.求曲线2211(2,)(3)4y M x x =-在处的切线方程.10. 求曲线sin 2(,0)y x M π=在处的切线方程.11.已知函数y =(x )是可导的周期函数,试求证其导函数y =f ′(x )也为周期函数.同步练习 X030421.函数y =cos (sin x )的导数为A .-[sin (sin x )]cos xB .-sin (sin x )C .[sin (sin x )]cos xD .sin (cos x )2.函数y =cos2x +sin x 的导数为A .-2sin2x +xx2cos B .2sin2x +xx 2cosC .-2sin2x +xx 2sin D .2sin2x -xx 2cos3.过曲线y =11+x 上点P (1,21)且与过P 点的切线夹角最大的直线的方程为 A .2y -8x +7=0 B .2y +8x +7=0 C .2y +8x -9=0D .2y -8x +9=04.函数y =x sin (2x -2π)cos (2x +2π)的导数是______________. 5.函数y =)32cos(π-x 的导数为______________.6.函数y =cos 3x 1的导数是___________.7.已知曲线y=2400x + +53(100-x) (0100≤≤x ) 在点M 处有水平切线,8.若可导函数f (x )是奇函数,求证:其导函数f ′(x )是偶函数.9.用求导方法证明:21C 2C n n +…+n n n C =n ·2n -1.同步练习 X030511.函数y =ln (3-2x -x 2)的导数为A .32+x B .2231x x -- C .32222-++x x xD .32222-+-x x x2.函数y =lncos2x 的导数为A .-tan2xB .-2tan2xC .2tan xD .2tan2x3.函数y =x ln 的导数为A .2x x lnB .xx ln 2C .xx ln 1 D .xx ln 214.在曲线y =59++x x 的切线中,经过原点的切线为________________. 5.函数y =log 3cos x 的导数为___________. 6.函数y =x 2lnx 的导数为 . 7. 函数y =ln (lnx )的导数为 . 8. 函数y =lg (1+cosx )的导数为 .9. 求函数y =ln 22132x x +-的导数.10. 求函数y =12.求函数y =ln (21x +-x )的导数.同步练习 X030521.下列求导数运算正确的是A .(x +x 1)′=1+21xB .(log 2x )′=2ln 1xC .(3x )′=3x log 3eD .(x 2cos x )′=-2x sin x 2.函数y =xxa 22-(a >0且a ≠1),那么y ′为A .xxa 22-ln aB .2(ln a )xx a 22-C .2(x -1)xx a22-·ln aD .(x -1)xx a22-ln a3.函数y =sin32x 的导数为A .2(cos32x )·32x ·ln3B .(ln3)·32x ·cos32xC .cos32xD .32x ·cos32x4.设y =xx ee 2)12(+,则y ′=___________. 5.函数y =x22的导数为y ′=___________.6.曲线y =e x -e ln x 在点(e ,1)处的切线方程为___________.7.求函数y=e 2x lnx 的导数.8.求函数y =x x (x >0)的导数.9.设函数f (x )满足:af (x )+bf (x 1)=xc(其中a 、b 、c 均为常数,且|a |≠|b |),试求f ′(x ).同步练习 x030611.若f (x )在[a ,b ]上连续,在(a ,b )内可导,且x ∈(a ,b )时,f ′(x )>0,又f (a )<0,则A .f (x )在[a ,b ]上单调递增,且f (b )>0B .f (x )在[a ,b ]上单调递增,且f (b )<0C .f (x )在[a ,b ]上单调递减,且f (b )<0D .f (x )在[a ,b ]上单调递增,但f (b )的符号无法判断 2.函数y =3x -x 3的单调增区间是A .(0,+∞)B .(-∞,-1)C .(-1,1)D .(1,+∞) 3.三次函数y =f (x )=ax 3+x 在x ∈(-∞,+∞)内是增函数,则A .a >0B .a <0C .a =1D .a =314.f (x )=x +x2(x >0)的单调减区间是A .(2,+∞)B .(0,2)C .(2,+∞)D .(0,2) 5.函数y =sin x cos 2x 在(0,2π)上的减区间为 A .(0,arctan 22) B .(arctan2,22π) C .(0,2π)D .(arctan 2,21π)6.函数y =x ln x 在区间(0,1)上是A .单调增函数B .单调减函数C .在(0,e 1)上是减函数,在(e1,1)上是增函数D .在(0,e 1)上是增函数,在(e1,1)上是减函数7.函数f (x )=cos 2x 的单调减区间是___________. 8.函数y =2x +sin x 的增区间为___________.9.函数y =232+-x x x的增区间是___________. 10.函数y =xxln 的减区间是___________.11.已知0<x <2π,则tan x 与x +33x 的大小关系是tan x _____x +33x .12.已知函数f(x)=kx3-3(k+1)x2-k2+1(k>0).若f(x)的单调递减1.区间是(0,4). (1)求k的值;(2)当k<x时,求证:2x>3-x 13.试证方程sin x=x只有一个实根.14.三次函数f(x)=x3-3bx+3b在[1,2]内恒为正值,求b的取值范围.同步练习 X030711.下列说法正确的是A .当f ′(x 0)=0时,则f (x 0)为f (x )的极大值B .当f ′(x 0)=0时,则f (x 0)为f (x )的极小值C .当f ′(x 0)=0时,则f (x 0)为f (x )的极值D .当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=02.下列四个函数,在x =0处取得极值的函数是①y =x 3 ②y =x 2+1 ③y =|x | ④y =2xA .①②B .②③C .③④D .①③ 3.函数y =216xx 的极大值为 A .3 B .4 C .2 D .54.函数y =x 3-3x 的极大值为m ,极小值为n ,则m +n 为A .0B .1C .2D .45.y =ln 2x +2ln x +2的极小值为A .e -1B .0C .-1D .1 6.y =2x 3-3x 2+a 的极大值为6,那么a 等于A .6B .0C .5D .17.函数f (x )=x 3-3x 2+7的极大值为___________.8.曲线y =3x 5-5x 3共有___________个极值.9.函数y =-x 3+48x -3的极大值为___________;极小值为___________.10.函数f (x )=x -3223x 的极大值是___________,极小值是___________. 11.若函数y =x 3+ax 2+bx +27在x =-1时有极大值,在x =3时有极小值,则a =___________,b =___________.12.已知函数f(x)=x3+ax2+bx+c,当x=-1时,取得极大值7;当x=3时,取得极小值.求这个极小值及a、b、c的值.a+b有极小值2,求a、b应满足的条件.13.函数f(x)=x+x1时,f(x)的极小14.设y=f(x)为三次函数,且图象关于原点对称,当x=2值为-1,求函数的解析式.同步练习 X030811.下列结论正确的是A .在区间[a ,b]上,函数的极大值就是最大值B .在区间[a ,b]上,函数的极小值就是最小值C .在区间[a ,b]上,函数的最大值、最小值在x=a 和x=b 时到达D .在区间[a ,b]上连续的函数f(x)在[a ,b]上必有最大值和最小值2.函数14)(2+-=x x x f 在[1,5]上的最大值和最小值是A .f(1),f(3)B .f(3),f(5)C .f(1),f(5)D .f(5),f(2)3.函数f(x)=2x-cosx 在(-∞,+∞)上A .是增函数B .是减函数C .有最大值D .有最小值4.函数a ax x x f --=3)(3在(0,1)内有最小值,则a 的取值范围是A .0<a<1B .a<1C .a>0D .21<a 5.若函数x x a x f 3sin 31sin )(+=在3π=x 处有最值,那么a 等于 A .2 B .1 C .332 D .0 6.函数5224+-=x x y ,x ∈[-2,2]的最大值和最小值分别为A .13,-4B .13,4C .-13,-4D .-13,47.函数x xe y =的最小值为________________.8.函数f(x)=sinx+cosx 在]2,2[ππ-∈x 时函数的最大值,最小值分别是___. 9.体积为V 的正三棱柱,底面边长为___________时,正三棱柱的表面积最小.10.函数21)(x x x f -+=的最大值为__________,最小值为____________。
(完整)高中数学导数基础练习题
导数基础练习题20170305一、选择题1.曲线y =2x 2−x 在点(0,0)处的切线方程为( )A. x +y +2=0B. x −y +2=0C. x −y =0D. x +y =0 2.“a ≤0”是“函数f(x)=ax +lnx 存在极值”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 3.设曲线2y x =上任一点(,)x y 处的切线的斜率为()g x ,则函数()()cos h x g x x =的部分图像可以为( )4.已知函数f(x)=(ex−1−1)(x −1),则( )A. 当x <0,有极大值为2−4eB. 当x <0,有极小值为2−4eC. 当x >0,有极大值为0D. 当x >0,有极小值为05.已知函数()f x 是奇函数,当0x <时,()()ln 2f x x x x =-++,则曲线()y f x =在1x =处的切线方程为( )A .23y x =+B .23y x =-C .23y x =-+D .23y x =-- 6.如果函数()y f x =的图象如图,那么导函数()y f x '=的图象可能是( )7.已知()f x 是定义在()0,+∞上的函数,()()f x f x '是的导函数,且总有()()f x xf x '>,则不等式()()1f x xf >的解集为A. (),0-∞B. ()0,1C. ()0,+∞D.(1,+∞)8.已知函数()f x 是偶函数,当0x >时,()()21ln f x x x =-,则曲线()y f x =在点()()1,1f --处的切线的斜率为( )A.2-B.1-C.1D.2 9.在下面的四个图象中,其中一个图象是函f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R )的导函数y =f ′(x )的图象,则f (-1)等于( ).A二、填空题10.定义在R 上的偶函数f(x)满足:当x <0时,f(x)=xx−1,则曲线y =f(x)在点(2,f(2))处的切线的斜率为__________. 11,(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜恒成立,则实数a 的取值范围是 . 12.设函数f(x)=x 3−3x +1,x ∈[−2,2]的最大值为M ,最小值为m ,则M +m =__________.13.在平面直角坐标系xoy 中,若曲线y =ax 2+bx (a,b 为常数)过点P(2,−5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b = .14.过函数 ()32325f x x x x =-++图像上一个动点作函数的切线,则切线倾斜角的取值范围是 __________. 15,若0'()1f x =,则 16.已知定义域为R 的奇函数()y f x =的导函数为()'y f x =,当0x ≠时,,则 a b c ,,的大小关系是 .17,直线l 与函数()(),f x g x 的图像都相切于点(1,0).(1)求直线l 的方程及函数()g x 的解析式;(2)若()()()h x f x g x '=-(其中()g x '是()g x 的导函数),求函数()h x 的极大值. 18.已知函数f(x)=x 2−2x ,g(x)=ax −1,若∀x 1∈[−1,2],∃x 2∈[−1,2],使得f(x 1)=g(x 219 (1)若3x =是()f x 的极值点,求()f x 的极大值; (2)求a 的范围,使得()1f x ≥恒成立.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
高中数学专题练习《导数的四则运算法则》含详细解析
5.2.2导数的四则运算法则基础过关练题组一导数的四则运算法则1.函数f(x)=x 2x+3的导数f'(x)=()A.x 2+6xx+3B.-2x(x+3)2C.x2+6x(x+3)2D.3x2+6x(x+3)22.函数y=x2cos x的导数为()A.y'=2xcos x-x2sin xB.y'=2xcos x+x2sin xC.y'=x2cos x-2xsin xD.y'=xcos x-x2sin x3.已知f(x)=x2+e x,则f'(0)=()A.0B.-4 C.-2 D.14.对于函数f(x)=e xx2+ln x-2kx,若f'(1)=1,则实数k等于()A.e2B.e3C.-e2D.-e35.(2020浙江宁波余姚中学高二下月考)设f(x)与g(x)是定义在R上的两个可导函数,若f(x),g(x)满足f'(x)=g'(x),则f(x)与g(x)满足() A.f(x)=g(x) B.f(x)=g(x)=0C.y=f(x)-g(x)为常数函数D.y=f(x)+g(x)为常数函数6.若函数f(x)=x 2e x,则f'(x)=.7.已知函数f(x),g(x)满足f(5)=5,f'(5)=3,g(5)=4,g'(5)=1,若h(x)=f(x)+2g(x),则h'(5)=.8.求下列函数的导数.(1)y=x-2+x2;(2)y=3x e x-2x+e;(3)y=lnxx2+1;(4)y=x2-4sin x2cos x2.题组二求导法则的综合应用9.已知函数f(x)=f'(1)+xln x,则f(e)=()A.1+eB.eC.2+eD.310.已知定义在R上的函数f(x)=e x+x2-x+sin x,则曲线y=f(x)在点(0,f(0))处的切线方程为()A.y=3x-2B.y=x+1C.y=2x-1D.y=-2x+311.(2020浙江嘉兴高三上期末)设曲线y=x+1x-2在点(1,-2)处的切线与直线ax+by+c=0(b≠0)垂直,则ab=()A.13B.-13C.3D.-312.(2020河北保定高二上期末)设曲线f(x)=ae x-ln x(a≠0)在x=1处的切线为l,则l在y轴上的截距为()A.1B.2C.aeD.ae-113.若质子的运动方程为s=tsin t,其中s的单位为m,t的单位为s,则质子在t=2s时的瞬时速度为m/s.14.曲线y=x3+3x2+6x-10的所有切线中,斜率最小的切线方程为.15.(2020江西南昌三中高二下期中)已知函数f(x)=x-2ln x,求曲线y=f(x)在点A(1,f(1))处的切线方程.能力提升练题组导数的四则运算法则及其应用1.()设函数f(x)=sinθ3x3+√3cosθ2x2+tanθ,其中θ∈[0,5π12],则导数f'(1)的取值范围是()A.[-2,2]B.[√2,√3]C.[√3,2]D.[√2,2]2.(2020湖南长沙长郡中学高二上期末,)下面四个图象中,有一个是函数f(x)=13x3+ax2+(a2-1)x+1(a∈R)的导函数y=f'(x)的图象,则f(-1)=()A.13B.-23C.73D.-13或533.(2019河北衡水中学高三二调,)已知f'(x)是函数f(x)的导函数,且对任意的实数x都有f'(x)=e x(2x-2)+f(x)(e是自然对数的底数),f(0)=1,则(易错)A.f(x)=e x(x+1)B.f(x)=e x(x-1)C.f(x)=e x(x+1)2D.f(x)=e x(x-1)24.()设函数f(x)=xsin x+cos x的图象在点(t,f(t))处切线的斜率为g(t),则函数y=g(t)图象的一部分可以是()5.(多选)()给出定义:若函数f(x)在D上可导,即f'(x)存在,且导函数f'(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f″(x)=(f'(x))',若f″(x)<0在D上恒成立,则称f(x)在D上为凸函数.以下四个函数在(0,π)上不是凸函数的是()2A.f(x)=sin x-cos xB.f(x)=ln x-2xC.f(x)=-x3+2x-1D.f(x)=xe x6.()对于三次函数f(x)=ax3+bx2+cx+d(a≠0),现给出定义:设f'(x)是函数f(x)的导数,f″(x)是f'(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数f(x)=ax3+bx2+cx+d(a≠0)的“拐点”.经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=2x3-3x2+1,则g(1100)+g(2100)+…+g(99100)=.7.(2020湖南长沙长郡中学高二上期末,)已知函数f(x)=13x3-2x2+3x(x∈R)的图象为曲线C.(1)求曲线C上任意一点的切线的斜率的取值范围;(2)若在曲线C上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.8.()已知直线x+2y-4=0与抛物线y2=4x相交于A,B两点,O是坐标原点,试在抛物线的AOB⏜上求一点P,使△ABP的面积最大.9.()已知函数f(x)(x∈(0,+∞))的导函数为f'(x),且满足xf'(x)-2f(x)=x3e x,f(1)=e-1,求f(x)在点(2,f(2))处的切线方程.答案全解全析基础过关练1.C f'(x)=(x 2)'(x+3)−x2(x+3)′(x+3)2=2x(x+3)−x 2(x+3)2=2x2+6x-x2(x+3)2=x2+6x(x+3)2.故选C.2.A对函数y=x2cos x求导,得y'=2xcos x+x2·(-sin x)=2xcos x-x2sin x.故选A.3.D由题意,得f'(x)=2x+e x,则f'(0)=1,故选D.4.A因为f'(x)=e x(x-2)x3+1x+2kx2,所以f'(1)=-e+1+2k=1,解得k=e2,故选A.5.C取f(x)=x,g(x)=x+1,满足f'(x)=g'(x),可以验证A、B、D错误;由f'(x)=g'(x),得f'(x)-g'(x)=0,即[f(x)-g(x)]'=0,所以f(x)-g(x)=c(c为常数),C 正确.故选C.6.答案2x-x 2e x解析f'(x)=2xe x-x2e x(e x)2=2x-x2e x.7.答案516解析由题意得,h'(x)=f'(x)g(x)-[f(x)+2]g'(x)[g(x)]2,由f(5)=5,f'(5)=3,g(5)=4,g'(5)=1,得h'(5)=f'(5)g(5)-[f(5)+2]g'(5)[g(5)]2=3×4−(5+2)×142=516.8.解析(1)y'=2x-2x-3. (2)y'=(ln3+1)·(3e)x-2x ln2.(3)y'=x 2+1−2x 2lnx x(x 2+1)2.(4)∵y=x 2-4sin x2cos x 2=x 2-2sin x,∴y'=2x-2cos x.9.A ∵f'(x)=ln x+1,∴f'(1)=ln 1+1=1,则f(x)=1+xln x,∴f(e)=1+eln e=1+e.10.B ∵f'(x)=e x +2x-1+cos x,∴切线的斜率k=f'(0)=1,又f(0)=1,∴切线方程为y=x+1. 11.B 依题意得y'=x -2-(x+1)(x -2)2=-3(x -2)2,则y'x=1=-3,由于曲线y=x+1x -2在点(1,-2)处的切线与直线ax+by+c=0(b ≠0)垂直,所以(-3)·(-ab)=-1,解得a b=-13.故选B.12.A 因为函数f(x)=ae x -ln x(a ≠0), 所以f'(x)=ae x -1x ,将x=1代入,得k=ae-1,又f(1)=ae,所以曲线f(x)在x=1处的切线l 的方程为y-ae=(ae-1)(x-1), 整理得y=(ae-1)x+1,令x=0,得y=1. 所以l 在y 轴上的截距为1.故选A. 13.答案 sin 2+2cos 2解析 ∵s'=(tsin t)'=sin t+tcos t, ∴所求瞬时速度为(sin 2+2cos 2)m/s. 14.答案 3x-y-11=0解析 ∵y'=3x 2+6x+6=3(x 2+2x+2) =3(x+1)2+3≥3,∴当x=-1时,y'最小,即此时切线的斜率最小,此时切点为(-1,-14), ∴切线方程为y+14=3(x+1), 即3x-y-11=0.15.解析 ∵函数f(x)=x-2ln x 的导函数为f'(x)=1-2x ,∴曲线y=f(x)在点A(1,f(1))处的切线斜率为f'(1)=1-2=-1,又f(1)=1,∴曲线y=f(x)在点A(1,f(1))处的切线方程为y-1=-(x-1),即x+y-2=0.能力提升练1.D f'(x)=sin θ·x 2+√3cos θ·x, ∴f'(1)=sin θ+√3cos θ=2sin (θ+π3),∵θ∈[0,5π12],∴θ+π3∈[π3,3π4],∴sin (θ+π3)∈[√22,1],∴f'(1)=2sin (θ+π3)∈[√2,2].故选D.2.D 因为f'(x)=x 2+2ax+a 2-1,所以y=f'(x)的图象开口向上,排除②④.若y=f'(x)的图象为①,则a=0,f(-1)=53;若y=f'(x)的图象为③,则a 2-1=0,得a=±1.又对称轴x=-a>0,所以a=-1,所以f(-1)=-13.3.D 由f'(x)=e x (2x-2)+f(x), 得f'(x)-f(x)e x =2x-2,即[f(x)e x]'=2x-2,所以f(x)e x=x 2-2x+c(c 为常数),所以f(x)=(x 2-2x+c)e x , 又因为f(0)=1,所以c=1,所以函数f(x)的解析式是f(x)=e x (x-1)2.故选D.易错警示 已知原函数可求出唯一的导函数,已知导数求原函数,则结论不唯一,如本题中由y'=2x-2可以得到y=x 2-2x+c(c 为常数),解题时容易将c 遗漏导致解题错误. 4.A 由f(x)=xsin x+cos x,可得f'(x)=sin x+xcos x-sin x=xcos x. 则g(t)=f'(t)=tcos t,易知函数g(t)是奇函数,排除选项B,D; 当t ∈(0,π2)时,g(t)>0,排除选项C.故选A.5.AD 对于A,f'(x)=cos x+sin x, f″(x)=-sin x+cos x,当x ∈(0,π4)时,f″(x)>0,故f(x)=sin x-cos x 不是凸函数;对于B,f'(x)=1x-2,f″(x)=-1x2<0,故f(x)=ln x-2x 是凸函数; 对于C,f'(x)=-3x 2+2,f″(x)=-6x,当x ∈(0,π2)时,f″(x)<0,故f(x)=-x 3+2x-1是凸函数;对于D,f'(x)=(x+1)e x ,f″(x)=(x+2)e x ,当x ∈(0,π2)时,f″(x)>0,故f(x)=xe x 不是凸函数.故选AD.6.答案992解析 依题意得,g'(x)=6x 2-6x,g″(x)=12x -6,令g″(x)=0,解得x=12, ∵g (12)=12,∴函数g(x)的对称中心为(12,12),则g(1-x)+g(x)=1,∵1100+99100=2100+98100=…=49100+51100=1,∴g (1100)+g (99100)=g (2100)+g (98100)=…=g (49100)+g (51100)=1,∴g (1100)+g (2100)+…+g (99100) =[g (1100)+g (99100)]+[g (2100)+g (98100)] +…+[g (49100)+g (51100)]+g (12) =49+12=992.7.解析 (1)由题意得f'(x)=x 2-4x+3,则f'(x)=(x-2)2-1≥-1,即曲线C 上任意一点的切线的斜率的取值范围是[-1,+∞).(2)设曲线C 的其中一条切线的斜率为k,则由条件和(1)中结论可知, {k ≥−1,-1k ≥−1,解得-1≤k<0或k ≥1,故由-1≤x 2-4x+3<0或x 2-4x+3≥1,得x ∈(-∞,2-√2]∪(1,3)∪[2+√2,+∞).8.解析 因为|AB|为定值,所以要使△PAB 的面积最大,只要点P 到AB 的距离最大即可,即点P 是抛物线的切线中平行于AB 的切线的切点,设P(x,y).由题图知,点P 在x 轴下方的图象上,所以y=-2√x ,所以y'=-√x . 因为k AB =-12,所以-√x =-12,解得x=4.由y=-2√x ,得y=-4, 所以点P 的坐标为(4,-4).9.解析 ∵xf'(x)-2f(x)=x 3e x ,x ∈(0,+∞),∴xf'(x)-2f(x)x 3=e x . 令g(x)=f(x)x 2,则g'(x)=xf'(x)-2f(x)x 3=e x , ∴g(x)=f(x)x 2=e x +c(c 为常数),∴f(x)=x 2(e x +c).又f(1)=e+c=e-1,∴c=-1.∴f(x)=x 2(e x -1),∴f'(x)=2x(e x -1)+x 2e x =(x 2+2x)e x -2x,∴f'(2)=8e 2-4.又f(2)=4(e 2-1),∴所求切线方程为y-4(e 2-1)=(8e 2-4)·(x-2),即y=(8e 2-4)x-12e 2+4.。
高中数学导数训练题含答案
导数训练一、单选题(共33题;共66分)1.曲线在处的切线方程是()A. B. C. D.2.若,则等于()A. 0B. 1C. 3D.3.下列各式正确的是()A. (a为常数)B.C.D.4.函数+e的导函数是()A. B. C. D.5.曲线在点处的切线方程为()A. B. C. D.6.曲线在点(1,1)处的切线方程为()A. B. C. D.7.函数的导函数()A. B. C. D.8.某运动物体的位移(单位:米)关于时间(单位:秒)的函数关系式为,则该物体在秒时的瞬时速度为()A. 1米/秒B. 2米/秒C. 3米/秒D. 4米/秒9.f′(x)是函数f(x)=x3+2x+1的导函数,则f′(-1)的值为()A. 0B. 3C. 4D. -10.函数的导数为()A. B. C. D.11.设函数,若,则等于()A. B. C. D.12.已知曲线y=2x2上一点A(2,8),则在点A处的切线斜率为( ).A. 4B. 16C. 8D. 213.曲线在处的切线的斜率为()A. -1B.C.D. 114.下列求导运算的正确是()A. 为常数B.C.D.15.已知曲线的一条切线的斜率为2,则切点的横坐标为( )A. 1B. ln2C. 2D. e16.一物体做直线运动,其位移(单位: )与时间(单位: )的关系是,则该物体在时的瞬时速度是()A. B. C. D.17.函数的单调增区间是()A. B. C. D.18.已知函数的值为()A. B. C. D.19.已知函数,则()A. B. C. D.20.函数= 的极值点为( )A. B. C. 或 D.21.已知函数,直线过点且与曲线相切,则切点的横坐标为( )A. B. 1 C. 2 D.22.函数在点处切线方程为()A. B. C. D.23.若有极大值和极小值,则的取值范围是()A. B. C. D.24.函数的导数为()A. =2B. =C. =2D. =25.设,若,则()A. B. C. D.26.函数的单调递减区间为()A. B. C. D.27.曲线在点处的切线方程是A. B. C. D.28.已知函数,则函数的图象在处的切线方程为()A. B. C. D.29.一物体在力F(x)=2x+3(x的单位:m,F的单位:N)的作用下,沿着与力F相同的方向,从x=1运动到x=4处,求力F(x)所做的功.()A. 24B. 25C. 26D. 2730.函数的单调递减区间是()A. B. C. D.31.已知函数,则其导数()A. B. C. D.32.曲线在处的切线倾斜角是()A. B. C. D.33.已知函数,且,则的值为()A. B. C. D.二、填空题(共10题;共11分)34.函数的单调递增区间是________.35.已知函数为的导函数,则的值为________.36.已知函数,则函数的图像在点处的切线方程为________.37.函数在处的切线方程是,则________.38.设函数可导,若,则________.39.已知函数的导函数为,若,则的值为________.40.若函数,则的值为________.41.已知,则________.42.已知函数( 为常数),若为的一个极值点,则________.________.43.曲线在点处的切线方程为________.三、解答题(共7题;共55分)44.已知函数,当时,有极大值3.(1)求该函数的解析式;(2)求该函数的解析式;(3)求函数的单调区间.(4)求函数的单调区间.45.如果函数f(x)= (a>0)在x=±1时有极值,极大值为4,极小值为0,试求函数f(x)的解析式.46.已知函数.(I)若曲线在点处的切线方程为,求的值;(II)若,求的单调区间.47.已知(1)判断单调性(2)判断单调性(3)当时,求的最大值和最小值(4)当时,求的最大值和最小值48.已知函数,求曲线在点处的切线方程;49.已知在与时都取得极值.(1)求的值;(2)求的值;(3)若,求的单调区间和极值。
高中数学导数练习题(分类练习)讲义
导数专题经典例题剖析考点一:求导公式。
1 3例1. f (x)是f(x) x 2x 1的导函数,贝y f(-1)的值是 _______________________________3解析:f' x =x22,所以f' -1 =1^3答案:3考点二:导数的几何意义。
1例2.已知函数y = f(x)的图象在点M (1, f (1)处的切线方程是y x 2,则2f(1) f (1> _______________ 。
1 」1解析:因为k ,所以f' 1 ,由切线过点M(1, f (1)),可得点M的纵坐标为2 25 5-,所以f 1;=—,所以f 1 • f' 1 A32 2答案:33 2例3.曲线y二x -2x -4x 2在点(1,-3)处的切线方程是___________________ 。
解析:y' = 3x2-4x-4,•点(1,-3)处切线的斜率为k=3-4-4 =「5,所以设切线方程为y二_5x b,将点(1, -3)带入切线方程可得 b = 2,所以,过曲线上点(1, - 3) 处的切线方程为:5x,y-2=0答案:5x y -2 =0点评:以上两小题均是对导数的几何意义的考查。
考点三:导数的几何意义的应用。
例4•已知曲线C : y =x3 -3x2 2x ,直线l : y =kx,且直线l与曲线C相切于点x0, y0 x0 = 0,求直线l的方程及切点坐标。
解析:;直线过原点,则k 0 X Q = 0 。
由点x 0,y 0在曲线C 上,则 Xy 0 = X Q 3 _ 3X Q 2 2X Q , 西=X Q 2 -3X Q 2。
又 y' = 3x 2 _ 6x 2 , 在X Q-。
所以,直线l 的方程为yx ,切点坐标是 44、 、 1直线I 的方程为y - - — x , 4本小题考查导数几何意义的应用。
解决此类问题时应注意“切点既在曲线上又在 切线上”这个条件的应用。
高中数学导数专题常考练习题
高中数学导数专题常考练习题高考数学中,导数是一个常考的题型。
下面介绍几道典型的导数题目。
1.已知函数$f(x)$的导函数$f'(x)$满足以下条件:①当$f'(x)>0$时,$x2$;②当$f'(x)<0$时,$-1<x<2$;③当$f'(x)=0$时,$x=-1$或$x=2$。
则函数$f(x)$的大致图象是什么?2.已知直线$2x-y+1=0$与曲线$y=ae^{x}$相切(其中$e$为自然对数的底数),则实数$a$的值是多少?3.已知函数$f(x)=ax+(1-a)x^3$是奇函数,则曲线$y=f(x)$在$x=1$处的切线的倾斜角为多少?4.已知函数$f(x)=x+ax+bx^2+a$在$x=1$处的极值为10,则数对$(a,b)$为什么?5.函数$f(x)=x^3-4x^2+mx$在$[0,3]$上的最大值为4,则$m$的值为多少?6.已知函数$f(x)=x-mx^3+4x^2-3$在区间$[1,2]$上是增函数,则实数$m$的取值范围为什么?7.已知偶函数$f(x)(x\neq0)$的导函数为$f'(x)$,且满足$f(1)=0$。
当$x>0$时,$xf'(x)0$成立的$x$的取值范围是什么?8.已知曲线$y=x+\ln x$在点$(1,1)$处的切线与曲线$y=ax^2+(a+2)x+1$相切,则$a$等于多少?9.若函数$f(x)=x^3+x^2-3$在区间$(a,a+5)$上存在最小值,则实数$a$的取值范围是什么?10.已知$f'(x)$是函数$f(x)$的导函数,$f(1)=e$,$x\in\mathbb{R}$,且$2f(x)-f'(x)>0$。
则不等式$f(x)<e^{2x}-1$的解集是什么?11.已知函数 $f(x)=2x^3-ax^2+b$,讨论 $f(x)$ 的单调性。
(必考题)高中数学高中数学选修2-2第三章《导数应用》测试(含答案解析)
一、选择题1.已知函数()()11332cos 1x x x f x --+=+--,则()()0.52310.5log 9log 2f f f -⎛⎫ ⎪⎝⎭、、的大小关系( ) A .()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭B .0.5321(log )(0.5)(log 9)2f f f ->>C .0.5321(0.5)(log )(log 9)2f f f ->>D .0.5231(log 9)(0.5)(log )2f f f ->>2.已知函数2()1(0)f x ax x a =-+≠,若任意1x ,2[1x ∈,)+∞且12x x ≠都有1212()()1f x f x x x ->-,则实数a 的取值范围( )A .[1,)+∞B .(0,1]C .[2,)+∞D .(0,)+∞3.已知定义域为R 的偶函数()f x ,其导函数为fx ,对任意[)0,x ∈+∞,均满足:()()2xf x f x >-'.若()()2g x x f x =,则不等式()()21g x g x <-的解集是( )A .(),1-∞-B .1,3⎛⎫-∞ ⎪⎝⎭C .11,3⎛⎫- ⎪⎝⎭D .()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭4.定义域为R 的连续可导函数()f x 满足()()xf x f x e '-=,且()00f =,若方程()()21016m f x f x ++=⎡⎤⎣⎦有四个根,则m 的取值范围是( ) A .2416e e m -<<B .42em <<C .216e m e >-D .2e m >5.直线()0x a a =>分别与曲线21y x =+,ln y x x =+相交于A ,B 两点,则AB的最小值为() A .1B .2C D 6.若函数1()ln f x x a x =-+在区间(1,)e 上存在零点,则常数a 的取值范围为( ) A .01a <<B .11a e<< C .111a e-<< D .111a e+<< 7.函数y =x 3+x 的递增区间是( )A .(0,+∞)B .(-∞,1)C .(-∞,+∞)D .(1,+∞)8.内接于半径为R 的球且体积最大的圆柱体的高为( ) ABCD9.奇函数()f x 满足0x ≥时,()cos 0f x x '+<,且()3,2f π=-则不等式()cos 22f x x π+>--的解集为( )A .(,0)-∞B .(,)π-∞-C .(,)2π-∞-D .(,)π-∞10.已知f (x )=-x 3-ax 在(-∞,-1]上递减,且g (x )=2x-ax在区间(1,2]上既有最大值又有最小值,则a 的取值范围是( ) A .2a >-B .3a -≤C .32a -≤<-D .32a --≤≤11.已知0a >,函数()225,0,2,0,x a x f x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()2f x a x =-恰有2个互异的实数解,则a 的取值范围为( )A .14a <<B .24a <<C .48a <<D .28a <<12.已知函数()3242xx f x x x e e=-+-,其中e 是自然对数的底数,若()()2210f a f a +--≤,则实数a 的取值范围为( )A .1,12⎡⎤-⎢⎥⎣⎦B .11,2⎡⎤-⎢⎥⎣⎦C .[]2,1-D .[]1,2-二、填空题13.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )+xf '(x )>0,且f (3)=0,则不等式xf (x )>0的解集是_____.14.若函数()()2212ln 1f x ax a x x =+---只有一个零点,则实数a 的取值范围是______.15.已知函数()f x 是定义在(0,)+∞上的单调函数,()f x '是()f x 的导函数,且对任意的(0,)x ∈+∞都有2(())2f f x x -=,若函数()()2()3F x xf x f x '=--的一个零点0(,1)x m m ∈+,则整数m 的值是__________.16.已知函数()()2ln 2f x x x g x x x a ==-++,,若∀x 1,x 2∈(0,+∞),f (x 1)≥g(x 2)恒成立,则实数a 的取值范围为__________17.已知函数32()1f x x ax x =+++在区间21,33⎛⎫-- ⎪⎝⎭内是减函数,则实数a 的取值范围是________.18.设函数()'f x 是偶函数()(0)f x x ≠的导函数,(1)0f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是__________.19.已知函数()1ln f x x a x x=-+,存在不相等的常数m ,n ,使得()()''0f m f n ==,且10,m e ⎛⎤∈ ⎥⎝⎦,则()()f m f n -的最小值为____________.20.设函数()2()1xf x x e =-,当0x ≥时,()1(0)f x ax a ≤+>恒成立,则a 的取值范围是________.三、解答题21.设函数3222ln 11(),()28a x x f x g x x x x +==-+. (1)若曲线()y f x =在点(1,(1))f 处的切线与30x y -+=垂直,求函数()f x 的解析式;(2)如果对于任意的1213,[,]22x x ∈,都有112()()x f x g x ⋅≥成立,试求实数a 的取值范围.22.设函数()ln 1x f x x+=, (1)求曲线()y f x =在点()(),e f e 处的切线方程;(2)当1≥x 时,不等式()()211a x f x x x--≥恒成立,求a 的取值范围. 23.已知函数()2xf x eax b =-+(0a >,b R ∈,其中e 为自然对数的底数).(1)求函数()f x 的单调递增区间;(2)若函数()f x 有两个不同的零点12,x x ,当a b =时,求实数a 的取值范围.24.已知函数22()ln a f x a x x x=⋅++(0a ≠).(1)若曲线()y f x =在点(1,(1))f 处的切线与直线20x y -=垂直,求实数a 的值;(2)讨论函数()f x 的单调性;(3)当(,0)a ∈-∞时,记函数()f x 的最小值为()g a ,求证:21()2g a e ≤. 25.已知函数321()12f x x x ax =-++. (1)当2a =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(2)若函数()f x 在1x =处有极小值,求函数()f x 在区间32,2⎡⎤-⎢⎥⎣⎦上的最大值.26.已知函数ln xy x=(0x >). (1)求这个函数的单调区间;(2)求这个函数在区间21,e e⎡⎤⎢⎥⎣⎦的最大值与最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先设函数()(1)332cos x x g x f x x -=+=+-,判断函数是偶函数,利用导数判断函数的单调性,根据平移关系,可判断函数()y f x =的对称性和单调性,再将2log 9,0.50.5-,以及31log 2转化在同一个单调区间,根据单调性比较大小. 【详解】令()(1)332cos x x g x f x x -=+=+-,()()g x g x -=,所以()g x 是偶函数; ()ln3(33)2sin x x g x x -'=-+,当(0,)x π∈时,()0g x '>,()g x 在(0,)π上是增函数, 将()g x 图像向右平移一个单位得到()f x 图像, 所以()f x 关于直线1x =对称,且在(1,1)π+单调递增. ∵23log 94<<,0.50.5-=()3312log 2log 22,32-=+∈, ∴0.52314log 92log 0.512->>->>, ∴()()0.5231log 92log 0.52f f f -⎛⎫>-> ⎪⎝⎭, 又∵()f x 关于直线1x =对称,∴3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,∴()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭. 故选:A【点睛】思路点睛:本题是一道函数单调性,奇偶性,对称性,判断大小的习题,本题所给函数()()11332cos 1x x x f x --+=+--,看似很复杂,但仔细观察就会发现,通过换元后可判断函数()1y f x =+是偶函数,本题的难点是判断函数的单调性,关键点是能利用对称性,转化3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.2.A解析:A 【分析】求出函数的导数,通过讨论a 的范围,得到关于a 的不等式,解出即可. 【详解】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,等价于()'211f x ax =-≥,1x 时恒成立, 0a时,()'0f x <,不合题意,0a >时,只需211ax -,即1ax在[1,)+∞恒成立, 故max 1()1a x=,故a 的范围是[1,)+∞, 故选:A 【点睛】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,由此考虑利用导数进行求解.3.C解析:C 【解析】试题分析:[)0,x ∈+∞时()()()()()22(2)0g x xf x x f x x f x xf x =+='+'>',而()()2g x x f x =也为偶函数,所以()()()()21212121321013g x g x g x g x x x x x x <-⇔<-⇔<-⇔+-<⇔-<<,选C.考点:利用函数性质解不等式【方法点睛】利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e =,()()0f x f x '+<构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等4.A解析:A 【分析】构造函数()()xf x x b e =+,根据()00f =求出0b =,利用导数判断函数的单调性,作出其大致图像,令()t f x =,只需21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭,利用二次函数根的分布即可求解. 【详解】由()()()()()()()()221x xxxxx x f x e f x e f x f x e e f x e ef x e '-'-=-=⇒'=⇒,则()()()()1xx xf x f x x b x x b e e e f ⎡⎤=⇒=+=+⎢⎥⎣⎦⇒, 由()000f b =⇒=,则()xf x e x =⋅.由()()1xf x e x '=+,当()1,x ∈-+∞,()0f x '>,()f x 单调递增;当(),1x ∈-∞-,()0f x '<,()f x 单调递减,当x →-∞,()0f x <,x →+∞,()0f x >,如图所示:令()t f x =,则21016mt t ++=,由已知可得 21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭,令()2116g t mt t =++,由12121001016t t m m t t m ⎧+=-<⎪⎪⇒>⎨⎪⋅=>⎪⎩, 则()21000,41601102g e e g m e em ⎧⎛⎫-> ⎪⎪⎝⎭⎪⎛⎫⎪>⇒∈-⎨⎪∆>⎝⎭⎪⎪-<-<⎪⎩. 故选:A 【点睛】本题考查了构造函数判断函数的单调性、根据方程根的个数求参数的取值范围,考查了二次函数根的分布,此题综合性比较强,属于中档题.5.B解析:B 【分析】设A (a ,2 a+1),B (a ,a+lna ),求出|AB |,利用导数求出|AB |的最小值. 【详解】设A (a ,2a+1),B (a ,a+lna ),∴|AB |=211a a lna a lna +-+=+-(), 令y 1x lnx =+-,则y ′=11x-, ∴函数在(0,1)上单调递减,在(1,+∞)上单调递增, ∴x =1时,函数y 的最小值为20>,∴|AB |=2111a a lna a lna a lna +-+=+-=+-(),其最小值为2.故选B . 【点睛】本题考查导数知识的运用,考查学生分析解决问题的能力及转化思想,利用求导得到函数的单调性进而求得最值是关键.6.C解析:C 【分析】先利用导数判断出函数()f x 在区间()1,e 上为增函数,再解不等式(1)ln110f a =-+<,1()ln 0f e e a e=-+>,即得解.【详解】由题得211()0f x x x '=+>在区间()1,e 上恒成立, 所以函数1()ln f x x a x=-+在区间()1,e 上为增函数, 所以(1)ln110f a =-+<,1()ln 0f e e a e=-+>, 可得111a e-<<. 故选:C. 【点睛】本题主要考查利用导数研究函数的单调性和零点,意在考查学生对这些知识的理解掌握水平.7.C解析:C 【解析】y ′=3x 2+1>0对于任何实数都恒成立.8.A解析:A 【分析】根据圆柱的高,底面半径以及球半径之间的关系,建立圆柱的高与圆柱体积之间的函数关系,利用导数求体积取得最大值时对应的自变量即可. 【详解】根据题意,设圆柱底面半径为r ,圆柱的高为h ,作出示意图如下所示:显然满足2224h r R =-,故圆柱的体积()23214h r h h R h πππ=⨯=-+,故可得()223,(02)4V h h R h R ππ<'=-+<,令()0V h '>,解得0h <<,故此时()V h 单调递增,令()0V h '<2h R <<,故此时()V h 单调递减.故()maxV h V ⎫=⎪⎪⎝⎭.即当3h R =时,圆柱的体积最大. 故选:A . 【点睛】本题考查圆柱的外接球以及利用导数求体积的最大值,属综合中档题.9.A解析:A 【分析】构造函数()()sin h x f x x =+,根据其单调性,求解目标不等式即可. 【详解】不妨令()()sin h x f x x =+,因为()()cos 0h x f x x =+'<'在[)0,+∞恒成立, 即()h x 在[)0,+∞单调递减;又()f x 是奇函数,sin y x =是奇函数, 故()h x 是奇函数,且()h x 是R 上的单调减函数.由()3,2f π=-故可得22h π⎛⎫=- ⎪⎝⎭,又()cos 22f x x π+>--,即22h x h ππ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭, 故22x ππ+<,则0x <.故选:A . 【点睛】本题考查构造函数法,涉及利用导数研究函数单调性以及利用单调性解不等式,属综合中档题.10.C解析:C 【分析】利用()f x 导数小于等于零恒成立,求出a 的范围,再由()2'2ag x x x =+在(]1,2上有零点,求出a 的范围,综合两种情况可得结果. 【详解】因为函数()3f x x ax =--在(],1-∞-上单调递减,所以()2'30f x x a =--≤对于一切(],1x ∈-∞-恒成立,得23,3x a a -≤∴≥-, 又因为()2ag x x x=-在区间(]1,2上既有最大值,又有最小值, 所以,可知()2'2ag x x x =+在(]1,2上有零点, 也就是极值点,即有解220ax x+=,在(]1,2上解得32a x =-, 可得82,32a a -≤<-∴-≤<-,故选C. 【点睛】本题主要考查“分离常数”在解题中的应用以及利用单调性求参数的范围,属于中档题. 利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间[],a b 上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围. 11.D解析:D 【分析】根据分段函数,看成函数()f x 与直线()2y a x =-的交点问题,分0x =,0x ≤,0x >讨论求解.【详解】当0x =时,()502f a =,对于直线()2y a x =-,2y a =,因为0a >,所以无交点; 当0x ≤时,()2f x x '=,令2x a =-,解得 2ax =-,要使方程()()2f x a x =-恰有2个互异的实数解,则252222a a a a ⎛⎫⎛⎫-+<+ ⎪ ⎪⎝⎭⎝⎭,解得 2a >;当0x >时,()2f x x '=-,令2x a -=-,解得 2ax =,因为0x ≤时,方程()()2f x a x =-恰有2个互异的实数解,则0x >时,无交点, 则2222a a a ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,解得 8a <,综上:a 的取值范围为28a <<故选:D 【点睛】关键点点睛:本题关键是由0a >和直线()2y a x =-过定点()2,0,确定方程()()2f x a x =-恰有2个互异的实数解只有一种情况:当0x ≤时,方程恰有2个互异的实数解,当0x >时,方程无实数解.12.A解析:A 【分析】先求得函数()f x 是R 上的奇函数,把不等式转化为()22(1)f a f a ≤+,再利用导数求得函数的单调性,在把不等式转化为221a a ≤+,即可求解. 【详解】由题意,函数32()42xxf x x x e e =-+-的定义域为R , 又由3322()42e (42)()e x xx xf x x x x x e f x e -=-++-=--+-=-, 所以()f x 是R 上的奇函数,又因为2222()3423430x x f x x e x x e '=-++≥-+=≥, 当且仅当0x =时取等号,所以()f x 在其定义域R 上的单调递增函数,因为()22(1)0f a f a +--≤,可得()22(1)(1)f a f a f a ≤---=+,所以221a a ≤+,解得112a ≤≤, 故实数a 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.故选:A 【点睛】利用函数的基本性质求解与函数有关的不等式的方法及策略: 1、求解函数不等式的依据是函数的单调性的定义. 具体步骤:①将函数不等式转化为12()()f x f x >的形式;②根据函数()f x 的单调性去掉对应法则“f ”转化为形如:“12x x >”或“12x x <”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.二、填空题13.(﹣∞﹣3)∪(3+∞)【分析】令当x >0时可得x ∈(0+∞)上函数单调递增由可得由函数是定义在R 上的奇函数可得函数是定义在R 上的偶函数进而得出不等式的解集【详解】解:令当x >0时∴x ∈(0+∞)上解析:(﹣∞,﹣3)∪(3,+∞) 【分析】令()()g x xf x =,()()()g x f x xf x ''+=,当x >0时,()()0f x xf x '+>,可得x ∈(0,+∞)上,函数()g x 单调递增.由()30f =,可得()30g =.由函数()f x 是定义在R 上的奇函数,可得函数()g x 是定义在R 上的偶函数.进而得出不等式的解集. 【详解】解:令()()g x xf x =,()()()g x f x xf x ''+= 当x >0时,()()0f x xf x '+>∴x ∈(0,+∞)上,函数()g x 单调递增.()30f =,∴()30g =.∵函数()f x 是定义在R 上的奇函数, ∴函数()g x 是定义在R 上的偶函数. 由()()03g x g >=,即()()3g x g >, ∴|x |>3,解得x >3,或x <﹣3.∴不等式()0xf x >的解集是()(),33-,-∞⋃+∞. 故答案为:()(),33-,-∞⋃+∞. 【点睛】本题考查了利用导数研究函数的单调性、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于中档题.14.或【分析】首先求出函数的导函数当时可得在定义域上单调递减再根据零点存在性定理可得在上存在唯一的零点当时由导数可得函数的单调性及最小值为令利用导数说明的单调性即可求出参数的值;【详解】解:因为定义域为解析:0a ≤或1a = 【分析】首先求出函数的导函数,当0a ≤时,可得()f x 在定义域上单调递减,再根据零点存在性定理可得()f x 在()0,1上存在唯一的零点,当0a >时,由导数可得函数()f x 的单调性及最小值为()min 1112ln f x f a a a ⎛⎫==+-⎪⎝⎭,令()112ln g a a a =+-,()0,a ∈+∞利用导数说明()g a 的单调性,即可求出参数a 的值; 【详解】解:因为()()2212ln 1f x ax a x x =+---,定义域为()0,∞+,所以()()()()()222122112221ax a x ax x f x ax a x x x+---+'=+--== 当0a ≤时,()0f x '<恒成立,即()f x 在定义域上单调递减,()()1310f a =-<,当0x +→时,20ax →,()210a x -→,2ln x -→+∞,所以()f x →+∞,所以()f x 在()0,1上存在唯一的零点,满足条件; 当0a >时,令()()()2110ax x f x x -+'=>,解得1x a >即函数在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,令()()()2110ax x f x x-+'=<,解得10x a <<即函数在10,a ⎛⎫⎪⎝⎭上单调递减,则()f x 在1x a =取值极小值即最小值,()min 1112ln f x f a a a ⎛⎫==+- ⎪⎝⎭, 令()112ln g a a a =+-,()0,a ∈+∞,则()2221210a g a a a a +'=+=>恒成立,即()112ln g a a a=+-在定义域上单调递增,且()112ln110g =+-=, 所以要使函数()()2212ln 1f x ax a x x =+---只有一个零点,则()min 1112ln 0f x f a a a ⎛⎫==+-= ⎪⎝⎭,解得1a =,综上可得0a ≤或1a =; 故答案为:0a ≤或1a = 【点睛】本题考查利用导数研究函数的零点问题,考查分类讨论思想,属于中档题.15.2【分析】先通过已知求出得到再利用导数研究得到函数在内没有零点函数的零点在内即得的值【详解】因为函数是定义在上的单调函数且对任意的都有所以是一个定值设所以所以或(舍去)所以所以所以所以函数在是增函数解析:2 【分析】先通过已知求出2()=+1,f x x 得到3()33F x x x =--,再利用导数研究得到函数()F x 在(0,1)内没有零点,函数()F x 的零点在(2,3)内,即得m 的值.【详解】因为函数()f x 是定义在(0,)+∞上的单调函数,且对任意的(0,)x ∈+∞都有2(())2f f x x -=,所以2()f x x -是一个定值,设2()f x x t -=, 所以2()=+f x x t ,()2f t =所以2()=+2,1f t t t t =∴=或2t =-(舍去). 所以2()=+1,()2f x x f x x '=,所以23()(1)22333F x x x x x x =+-⨯-=--, 所以2()33=3(1)(1)F x x x x '=-+-,所以函数()F x 在(1,)+∞是增函数,在(0,1)是减函数,因为(0)30,(1)50F F =-<=-<,所以函数()F x 在(0,1)内没有零点.因为(2)86310,(3)2712150F F =--=-<=-=>,函数()F x 在(1,)+∞是增函数, 所以函数()F x 的零点在(2,3)内, 所以2m =. 故答案为:2 【点睛】本题主要考查函数的单调性的应用,考查利用导数求函数的单调区间,考查利用导数研究零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.16.【分析】求导后即可求得根据二次函数的性质可得再由恒成立问题的解决方法可得即可得解【详解】求导得则当时函数单调递减;当时函数单调递增;所以;函数为开口向下对称轴为的二次函数所以当时;由题意可知即故答案解析:11a e≤--【分析】求导后即可求得()()11f x f ee --≥=-,根据二次函数的性质可得()()11g x g a ≤=+,再由恒成立问题的解决方法可得11a e -+≤-,即可得解. 【详解】求导得()ln 1f x x '=+,则当()10,x e -∈时,()0f x '<,函数()f x 单调递减;当()1,x e -∈+∞时,()0f x '>,函数()f x 单调递增;所以()()11f x f e e--≥=-;函数()22g x x x a =-++为开口向下,对称轴为1x =的二次函数,所以当()0,x ∈+∞时,()()11g x g a ≤=+; 由题意可知11a e -+≤-即11a e -≤--. 故答案为:11a e -≤--. 【点睛】本题考查了利用导数解决不等式恒成立问题,考查了推理能力,属于中档题.17.【分析】求导得转化条件为在区间内恒成立令求导后求得即可得解【详解】函数在区间内是减函数在区间内恒成立即在区间内恒成立令则当时单调递减;当时单调递增;又故答案为:【点睛】本题考查了导数的综合应用考查了 解析:2a ≥【分析】求导得2()321f x x ax '=++,转化条件为1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,求导后求得()max 2g x =即可得解. 【详解】32()1f x x ax x =+++,∴2()321f x x ax '=++,函数()f x 在区间21,33⎛⎫-- ⎪⎝⎭内是减函数, ∴()0f x '≤在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,即1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,则()2221312232x x x x g -++='=-,∴当2,3x ⎛∈- ⎝⎭时,()0g x '<,()g x 单调递减;当13x ⎛⎫∈- ⎪ ⎪⎝⎭时,()0g x '>,()g x 单调递增;又2734g ⎛⎫-= ⎪⎝⎭,123g ⎛⎫-= ⎪⎝⎭,∴()2g x <,∴2a ≥.故答案为:2a ≥. 【点睛】本题考查了导数的综合应用,考查了运算求解能力与推理能力,属于中档题.18.【分析】构造函数讨论单调性和奇偶性结合特殊值即可求解【详解】设函数是偶函数所以函数是奇函数且当时即当时单调递减所以当时当时是偶函数所以当时当时所以使得成立的的取值范围是故答案为:【点睛】此题考查利用解析:()()1,00,1-⋃【分析】 构造函数()()f x F x x=,讨论单调性和奇偶性,结合特殊值即可求解. 【详解】 设函数()()f x F x x =,()f x 是偶函数,()()()()f x f x F x F x x x--=-=-=-, 所以函数()F x 是奇函数,且()()()()1110,10F f f F ==-=-=, 当0x >时,()2()()0xf x f x F x x'-'=<, 即当0x >时,()F x 单调递减,()01F =, 所以当01x <<时,()()0f x F x x=>,()0f x >, 当1x >时,()()0f x F x x=<,()0f x <, ()f x 是偶函数,所以当10x -<<时,()0f x >,当1x <-时,()0f x <,所以使得()0f x >成立的x 的取值范围是()()1,00,1-⋃. 故答案为:()()1,00,1-⋃ 【点睛】此题考查利用导函数讨论函数的单调性解决不等式相关问题,关键在于准确构造函数,需要在平常的学习中多做积累,常见的函数构造方法.19.【分析】求出由已知可得为的两根求出关系并将用表示从而把表示为关于的函数设为利用的单调性即可求解【详解】因为的定义域为令即因为存在使得且即在上有两个不相等的实数根且所以∴令则当时恒成立所以在上单调递减解析:4e【分析】求出()f x ',由已知可得,m n 为()0f x '=的两根,求出,,m n a 关系,并将,n a 用m 表示,从而把()()f m f n -表示为关于m 的函数设为()h m ,利用()h m 的单调性,即可求解. 【详解】 因为()1ln f x x a x x=-+的定义域为()0,∞+, ()22211'1a x ax x x xf x ++=++=, 令()'0f x =,即210x ax ++=,()0,x ∈+∞,因为存在m ,n ,使得()()''0f m f n ==,且10,m e⎛⎤∈ ⎥⎝⎦,即210x ax ++=在()0,x ∈+∞上有两个不相等的实数根m ,n , 且m n a +=-,1⋅=m n ,所以1n m =,1a m m=--, ∴()()11111ln ln f m f m m m m m m m m m m n ⎛⎫⎛⎫=-+---+--- ⎪ ⎪-⎝⎭⎝⎭ 11l 2n m m m m m ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦=,令()112ln h m m m m m m ⎡⎤⎛⎫=--+- ⎪⎢⎥⎝⎭⎣⎦, 则()()()22211121ln l 'n m m m m h m m m -+⎛⎫=-=⎪⎝⎭, 当10,m e⎛⎤∈ ⎥⎝⎦时,()'0h m <恒成立, 所以()h m 在10,m e ⎛⎤∈ ⎥⎝⎦上单调递减,∴()min 14h m h e e ⎛⎫== ⎪⎝⎭,即()()f m f n -的最小值为4e. 故答案为:4e. 【点睛】本题考查最值问题、根与系数关系、函数的单调性,应用导数是解题的关键,意在考查逻辑推理、计算求解能力,属于中档题.20.【分析】求得在处的切线的斜率结合图像求得的取值范围【详解】函数对于一次函数令解得(负根舍去)所以在上递增在上递减画出的图像如下图所示由图可知要使当时恒成立只需大于或等于在处切线的斜率而所以故答案为: 解析:[1,)+∞【分析】求得()f x 在0x =处的切线的斜率,结合图像,求得a 的取值范围. 【详解】函数()2()1xf x x e =-,()01f =.对于一次函数()()10g x ax a =+>,()01g =.()()'221,0x f x xx e x =--+⋅≥,令'0f x,解得01x (负根舍去),所以()f x 在()00,x 上递增,在()0,x +∞上递减,画出()f x 的图像如下图所示.由图可知,要使当0x ≥时,()1(0)f x ax a ≤+>恒成立,只需a 大于或等于()f x 在0x =处切线的斜率.而()'01f=,所以1a ≥.故答案为:[1,)+∞【点睛】本小题主要考查利用导数求解不等式恒成立问题,考查数形结合的数学思想方法,属于中档题.三、解答题21.(1)21ln ()x x f x x+=;(2)12a ≥. 【分析】 (1)求导3ln 4()x x x a f x x --'=,由已知得(1)1f '=-,求出12a =得解(2)求导2()34g x x x '=-得到()g x 在(12)32, 上的最大值为1()12g = 转化11()1,x f x ⋅≥ 得到1112ln a x x x ≥-在113[,]22x ∈恒成立.构造函数1111()ln ,h x x x x =-求得1()h x 的最大值为(1)1h =,得解【详解】 (1)3ln 4()x x x af x x --'=,∵曲线()y f x =在点(1,(1))f 处的切线与30x y -+=垂直,∴(1)1f '=-, 12a ∴=.21ln ()x x f x x +∴= (2)2()34g x x x '=-,∴14(,)23x ∈,()0g x '<,43(,)32x ∈,()0g x '>,∴()g x 在14(,)23上递减,在43(,)32上递增, ∴()g x 在14(,)23上的最大值为131()1,()224g g ==较大者,即()1g x ≤, ∵对于任意的113[,]22x ∈,都有112()()x f x g x ⋅≥成立, ∴11()1,x f x ⋅≥ 1112ln 1,a x x x +∴≥ 即对任意的111113(,),2ln 22x a x x x ∈≥-成立. 令1111()ln ,h x x x x =-,11()ln h x x '=-,∴11(,1)2x ∈,1()0h x '>,13(1,)2x ∈,1()0h x '<,∴1()h x 在1(,1)2上递增,在3(1,)2上递减,1()h x 的最大值为(1)1h =, ∴21a ≥,12a ≥. 【点睛】本题考查函数导数几何意义及利用导数研究函数最值及不等式恒成立求参数范围.属于基础题.22.(1)230x e y e +-=(2)(,0]-∞ 【详解】试题分析:(1)先求函数导数,再根据导数几何意义得切线斜率为()'f e ,最后根据点斜式求切线方程(2)构造函数()()2ln 1g x x a x =--,利用导数并按0a ≤,10<2a <,12a ≥进行分类讨论,通过函数的单调性以及最值进行与0比较,可得结果. 试题(1)根据题意可得,()2f e e=, ()2ln 'xf x x -=,所以()22ln 1'e f e e e -==-,即21k e=-, 所以在点()(),e f e 处的切线方程为()221y x e e e-=--,即230x e y e +-=. (2)根据题意可得,()()()221ln 110a x x a x f x x x x-----=≥在1≥x 恒成立,令()()2ln 1g x x a x =--,()1x ≥,所以()12g x ax x-'=, 当0a ≤时,()0g x '>,所以函数()y g x =在[)1,+∞上是单调递增, 所以()()10g x g ≥=, 所以不等式()()21a x f x x->成立,即0a ≤符合题意;当0a >时,令120ax x-=,解得x =1=,解得12a =,当10<2a <1,所以()g x '在⎛ ⎝上()0g x '>,在+⎫∞⎪⎪⎭上()0g x '<,所以函数()y g x =在⎛ ⎝上单调递增,在+⎫∞⎪⎪⎭上单调递减,21111ln 1ln g a a a a a a a ⎛⎫⎛⎫⎛⎫=--=--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令()1ln h a a a a =--+,()222111'10a a h a a a a-+=-++=>恒成立,则()h a 在10,2⎛⎫ ⎪⎝⎭单调递增 所以()1111ln 2ln2202222h a h ⎛⎫<=--+=+-<⎪⎝⎭, 所以存在10g a ⎛⎫< ⎪⎝⎭, 所以102a <<不符合题意;②当12a ≥1≤ ()0g x '≤在[)1,+∞上恒成立,所以函数()y g x =在[)1,+∞上是单调递减,所以()()10g x g ≤= 显然12a ≥不符合题意; 综上所述,a 的取值范围为{}|0a a ≤ 23.(1)1ln ,22a ⎛⎫+∞⎪⎝⎭(2)32a e >【分析】(1)直接求出函数的导函数,令()0f x '>,解不等式即可;(2)由题意容易知道2102222a ln a a a f ln e ln a ⎛⎫=-+< ⎪⎝⎭,解出即可求得实数a 的取值范围; 【详解】解:(1)因为()2x f x e ax b =-+所以()()220x f x e a a '=->,令()0f x '>,得1ln 22a x >,∴函数()f x 的单调递增区间为1ln ,22a ⎛⎫+∞ ⎪⎝⎭(2)由(1)知,函数()f x 在1,ln 22a ⎛⎫-∞ ⎪⎝⎭递减,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭递增, ∴x →-∞时,()f x →+∞;x →+∞,()f x →+∞,∵函数()f x 有两个零点12,x x ,∴1ln 022a f ⎛⎫< ⎪⎝⎭,又a b =, ∴ln 21ln ln 02222a a a a f e a ⎛⎫=-+< ⎪⎝⎭, 即ln 0222a a a a -+< 所以3ln02a -< 所以32a e >【点睛】本题考查利用导数研究函数的单调性及最值问题,考查导数中零点问题,考查转化思想及运算求解能力,属于中档题.24.(1)1a =-或32a =;(2)答案不唯一,具体见解析;(3)证明见解析. 【分析】(1)利用导数几何意义列方程解得结果;(2)先求导函数,再根据a 的正负分类讨论,对应确定导函数符号,进而确定单调性; (3)根据(2)单调性确定()g a 解析式,再利用导数求()g a 最大值,即证得结果.【详解】(1)()f x 的定义域为(0,)+∞,222()1a a f x x x =-+', 根据题意有(1)2f '=-,则2230a a --=,解得1a =-或32a =; (2)22222222()(2)()1a a x ax a x a x a f x x x x x+--+=-'+==,①当0a >时,∵0x >,由()0f x '>得()(2)0x a x a -+>,解得x a >,由()0f x '<得()(2)0x a x a -+<,解得0x a <<,∴()f x 在(,)a +∞上单调递增,在(0,)a 上单调递减,②当0a <时,∵0x >,由()0f x '>得()(2)0x a x a -+>,解得2x a >-, 由()0f x '<得()(2)0x a x a -+<,解得02x a <<-,∴()f x 在(2,)a -+∞上单调递增,在(0,2)a -上单调递减,(3)证明:由(2)知,当(,0)a ∈-∞时()f x 的最小值为(2)-f a , 即22()(2)ln(2)2ln(2)32a g a f a a a a a a a a=-=⋅-+-=⋅---, 2()ln(2)3ln(2)22g a a a a a -=-+⋅=-'---,令()0g a '=,得212a e =-, 当21(,)2a e ∈-∞-时()0g a '>,当21(,0)2a e ∈-时()0g a '<, 则212a e =-是()g a 在(,0)-∞上的唯一极值点,且是极大值点, 从而也是()g a 的最大值点, ∴22222max 11111()()ln[2()]3()22222g a g e e e e e =-=-⋅-⨯--⨯-=, ∴当(,0)a ∈-∞时,21()2g a e ≤恒成立. 【点睛】本题考查导数几何意义、利用导数求单调性、利用导数求函数最值与证不等式,考查综合分析求解与论证能力,属中档题.25.(1)210x y -+=;(2)4927. 【分析】(1)利用导数的几何意义求切线的斜率,再利用点斜式方程即可求出切线方程。
高中数学《导数》大题基础
1、设函数11ln )(--+-=x a ax x x f (1)当210<<a 时,讨论)(x f 的单调区间,(2)当31=a 时,设12522)(--=bx x x g 且对],0(1e x ∈∀,]1,0[2∈∃x ,使得)()(21x g x f ≥成立,求实数b 的取值范围2、32()ln ,()3a f x x x g x x x x=+=-- (1)若存在12,[0,2]x x ∈使得12()()g x g x M -≥成立,求满足上述条件的最大整数M ;(2)如果任意1,[,2]2s t ∈,都有()()f s g t ≥恒成立,求实数a 的取值范围。
3、函数x x e e x f --=)((1)求)(x f '的取值范围,(2)若对所有的0≥x ,都有ax x f ≥)(,求实数a 的取值范围。
4、设函数1()(0ln f x x x x=>且1)x ≠ (1)求()f x 的单调区间;(2)对1(0,1),2a x x x ∀∈>恒成立,求实数m 的取值范围5、已知函数1ln )(++=x x b a x f 在点))1(,1(f 处的切线方程为2=+y x (1)求a ,b 的值,(2)若xm x f <)(恒成立,求求实数m 的取值范围。
6、已知函数21()2ln (2),2f x x a x a x a R =-+-∈ (1)当0a ≤时,讨论()f x 的单调性;(2)是否存在实数a ,对任意12,0+x x ∈∞(,)且12x x ≠有2121()()f x f x a x x ->-恒成立?若存在,求实数a 的取值范围。
7、函数()x f x e =(1)直线1y kx =+与()f x 反函数图像相切,求k 值;(2)设0x >,讨论曲线()y f x =与2(0)y mx m =>公共点个数;(3)设a b <,比较()()2f a f b +与()()f b f a b a--的大小,并证明。
高中数学导数练习题附答案
高中数学导数练习题附答案一、解答题 1.已知函数()()2ln 0f x a x ax a =+-> (1)求()f x 的最大值(2)若()0f x ≤恒成立,求a 的值 2.已知函数()()1ln 0f x a x x a x=-+>.(1)当1≥x 时,()0f x ≤恒成立,求实数a 的取值范围;(2)当1a =时,()()21g x xf x x =+-,方程()g x m =的根为1x 、2x ,且21x x >,求证:211e x x m ->+.3.已知函数()21si cos n 2f x x x a x x =-++.(1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围. 4.已知函数()1e x axf x a=-+,0a ≠. (1)当1a =时,①求曲线()y f x =在0x =处的切线方程; ②求证:()f x 在(0,)+∞上有唯一极大值点; (2)若()f x 没有零点,求a 的取值范围. 5.已知函数()()32131.3f x x a x x =-++ (1)若1a =,求函数()f x 的单调区间; (2)证明:函数()2y f x a =-至多有一个零点. 6.已知函数21()(1)ln 2f x x ax a x =-+-,(2) 2.f '= (1)求a 的值;(2)求函数()f x 的极小值.7.已知函数()()2231ln 2f x x a a x a a x =-+-+. (1)若1a =,求()f x 在[]1,2上的值域; (2)若20a a -≠,讨论()f x 的单调性. 8.已知函数()1ln xf x x +=.(1)求()f x 在1x =处的切线方程; (2)当e x ≥时,不等式()ekf x x ≥+恒成立,求实数k 的取值范围; 9.已知函数e ()(1)1xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当1a =时,()2f x ≥恒成立,求b 的值.10.已知函数()()e 11xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当20e <≤a ,且2x >时,()()ln 1f x b a x ⎡>-⎣]恒成立,求b 的取值范围.【参考答案】一、解答题1.(1)22ln 2ln 2a a --+ (2)2a = 【解析】 【分析】(1)求导求解单调性即可求出最值;(2)要使()0f x ≤成立必须()22ln 2ln 20a a a ϕ=--+≤,求单调性求解即可. (1)因为()()2ln 0f x a x ax a =+->,所以()()20axf x a x-'=>, 由()0f x '>得20x a <<;()0f x '<得2x a>;所以()f x 在20,a⎛⎫⎪⎝⎭上单调递增,在2,a ⎛⎫+∞ ⎪⎝⎭上单调递减,故()222ln 2ln 2max f x f a a a ⎛⎫==--+ ⎪⎝⎭,即()()22ln 2ln 20a a a a ϕ=--+>.(2)要使()0f x ≤成立必须()22ln 2ln 20a a a ϕ=--+≤, 因为()2a a aϕ-'=,所以当02a <<,()0a ϕ'<;当2a >时,()0a ϕ'>.所以()a ϕ在()0,2上单调递减,在()2,+∞上单调递增. 所以()()20min a ϕϕ==,所以满足条件的a 只有2,即2a =. 【点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式; (3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用. 2.(1)02a <≤ (2)证明见解析 【解析】 【分析】(1)分析可知1≥x ,()()01f x f ≤=,分02a <≤、2a >两种情况讨论,利用导数分析函数()f x 在[)1,+∞上的单调性,验证()()1f x f ≤对任意的1≥x 是否恒成立,由此可求得实数a 的取值范围;(2)利用导数分析函数()g x 的单调性,可得出12101x x e<<<<,证明出31x x >,证明出当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--,可得出()241e 1x x m >=+-,结合不等式的性质可证得结论成立. (1)解:因为()()1ln 0f x a x x a x =-+>,则()222111a x ax f x x x x -+-'=--=,且()10f =,由题意可知,对任意的1≥x ,()()01f x f ≤=, 设21y x ax =-+-,则24a ∆=-,(ⅰ)当02a <≤时,0∆≤,()0f x '≤恒成立且()f x '不恒为零,()f x 在[)1,+∞上是减函数,又因为()10f =,所以()0f x ≤恒成立;(ⅱ)当2a >时,0∆>,方程210x ax -+-=的根为1x =,2x =又因为121=x x ,所以121x x .由()0f x '>得1x ≤<()0f x '<,得x所以()f x 在⎡⎢⎢⎣⎭上是增函数,在⎫+∞⎪⎪⎝⎭上是减函数, 因为()10f =,所以()0f x ≤不恒成立. 综上所述,02a <≤. (2)证明:当1a =时,()()21ln g x xf x x x x =+-=,()1ln g x x '=+,由()0g x '<,可得10e x <<,由()0g x '>,可得1ex >,所以()g x 在10,e ⎛⎫⎪⎝⎭上是减函数,在1,e ⎛⎫+∞ ⎪⎝⎭上是增函数,则()min 11e e g x g ⎛⎫==- ⎪⎝⎭,当01x <<时,()ln 0g x x x =<,所以,12101x x e <<<<,且10em -<<, 当10,ex ⎛⎫∈ ⎪⎝⎭时,ln 1x <-,所以ln x x x <-,即()g x x <-.设直线y x =-与y m =的交点的横坐标为3x ,则3111ln x m x x x =-=->,下面证明当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--, 设()()()111ln 1ln e 1e 1e 1h x x x x x x x ⎡⎤=--=-+⎢⎥---⎣⎦, 令()()11ln e 1e 1p x x x =-+--,则()()()()22e 1111e 1e 1x p x x x x --'=-=--, 当11ee 1x <<-时,()0p x '<,当11e 1x <<-时,()0p x '>, 所以()p x 在11,e e 1⎛⎫ ⎪-⎝⎭上是减函数,在1,1e 1⎛⎫⎪-⎝⎭上是增函数, 又因为10e p ⎛⎫= ⎪⎝⎭,()10p =,所以当11ex <<时,()0p x <,()0h x <,故当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--. 设直线()111e y x =--与y m =的交点的横坐标为4x ,则41e 1x m -=-,可得()41e 1x m =+-,如下图所示:则()241e 1x x m >=+-,所以21431e x x x x m ->-=+,得证. 【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论; (3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数. 3.(1)10y +=; (2)[)1,+∞. 【解析】 【分析】(1)将1a =-代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件可以将问题转化为恒成立问题,进而转化为求函数的最值问题,利用导数法求函数的最值即可求解. (1)当1a =-时,()2cos 1sin 2f x x x x x =--+()2cos 10000sin 012f =⨯--+=-,所以切点为0,1,()1sin cos x f x x x '=-++,∴(0)01sin 0cos00f '=-++=,所以曲线()y f x =在点()()0,0f 处的切线的斜率为(0)0k f '==, 所以曲线()y f x =在点0,1处的切线的斜率切线方程为()()100y x --=⨯-,即10y +=.(2)由()21si cos n 2f x x x a x x =-++,得()s 1co i s n f x x a x x '=--+因为函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,可得()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 设()()1c s os in g x f x x a x x '==--+,则()cos 1sin g x a x x '=--. 因为si (n 0)001cos00g a =--+=, 所以使()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 则至少满足()00g '≤,即10a -≤,解得1a ≥. 下证明当1a ≥时,()0f x '≤恒成立, 因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以sin 0x ≥, 因为1a ≥,所以()sin 1cos f x x x x '≤--+.记s ()cos n 1i h x x x x =--+,则π()1sin 14cos h x x x x ⎛⎫'=-=+ ⎝-⎪⎭. 当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<; 当π3π,24x ⎛⎫∈ ⎪⎝⎭时,()0h x '>. 所以函数()h x 在π0,2⎡⎫⎪⎢⎣⎭上单调递减,在π3π,24⎛⎤ ⎥⎝⎦上单调递增.因为ππ(),h h ⎛⎫==- ⎪⎝⎭33001044, 所以()h x 在3π0,4⎡⎤⎢⎥⎣⎦上的最大值为(0)0h =. 即()()1sin cos 0f x h x x x x '≤=--+≤在3π0,4⎡⎤⎢⎥⎣⎦上恒成立. 所以a 的取值范围为[)1,+∞. 4.(1)①112y x =-;②证明见解析 (2){}()210,e -⋃【解析】 【分析】(1)①利用导数求出切线的斜率,直接求出切线方程;②令()e 1e x xg x x =+-,利用导数判断出()g x 在(0,)+∞上有唯一零点0x ,利用列表法证明出()f x 在(0,)+∞上有唯一极大值点;(2)令()e xh x a ax =+-.对a 分类讨论:①0a <,得到当1a =-时,()f x 无零点;②0a >,()f x 无零点,符合题意. (1)若1a =,则()1e 1x xf x =-+,()2e 1e (e 1)x x x x f x +-=+'.①在0x =处,()()21110211f '+==+,(0)1f =-. 所以曲线()y f x =在0x =处的切线方程为112y x =-.②令()e 1e x xg x x =+-,()e x g x x '=-,在区间(0,)+∞上,()0g x '<,则()g x 在区间(0,)+∞上是减函数.又(1)10,g =>()22e 10,g =-+<,所以()g x 在(0,)+∞上有唯一零点0x . 列表得:0(2)()e e x x ax af x a--=+,令()e x h x a ax =+-,则()e xh x a '=-.①若0a <,则()0h x '>,()h x 在R 上是增函数.因为11e 10a h a a ⎛⎫⎛⎫=-+< ⎪ ⎪⎝⎭⎝⎭,()1 e > 0h =,所以()h x 恰有一个零点0x . 令0e 0x a +=,得0ln()x a =-.代入0()0h x =,得()ln 0a a a a -+--=, 解得1a =-.所以当1a =-时,()h x 的唯一零点为0,此时()f x 无零点,符合题意. ②若0a >,此时()f x 的定义域为R .当ln x a <时,()0h x '<,()h x 在区间(,ln )a -∞上是减函数; 当ln x a >时,()0h x '>,()h x 在区间(ln ,+)a ∞上是增函数. 所以min ()(ln )2ln h x h a a a a ==-. 又()010h a =+>,由题意,当2ln 0a a a ->,即20e a <<时,()f x 无零点,符合题意. 综上,a 的取值范围是{}()210,e -⋃.【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围.5.(1)()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减 (2)证明见解析 【解析】 【分析】(1)直接求导后判断单调性即可;(2)先变形得到323033x a x x -=++,构造函数,求导后说明单调性即可证明. (1)当1a =时,()()321313f x x x x =-++,2()23f x x x '=--. 令()0f x '=,解得1x =-或3x =,当()(),13,x ∞∞∈--⋃+时,()0f x '>;当(1,3)x ∈-时,()0f x '<, 故()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减.(2)()321()2333y f x a x a x x =-=-++,由于2330x x ++>,所以()20f x a -=等价于3230.33x a x x -=++设()32333x g x a x x =-++, 则()g x '()()222269033x x x xx ++=++,当且仅当0x =或3x =-时,()0g x '=,所以()g x 在(,)-∞+∞上单调递增,故()g x 至多有一个零点,从而()2y f x a =-至多有一个零点. 6.(1)1- (2)极小值32【解析】 【分析】(1)求导函数,结合(2)2f '=解方程即可;(2)令()0f x '=进而分析单调性,即可求出极值. (1)由题意可得()1a f x x a x '-=-+,故()12222a f a -'=-+=, 1.a ∴=- (2)由(1)得21()2ln 2f x x x x =+-,所以()()210f x x x x'=+->,令()210f x x x'=+-=,解得1x =,因为 当(0,1)x ∈时,()0f x '<,当(1,)x ∈+∞时,()0f x '>,所以函数()y f x =在(0,1)上单调递减,在(1,)+∞上单调递增, 所以当1x =时,函数()f x 取得极小值()312f =.7.(1)5,3ln 22⎡⎤--+⎢⎥⎣⎦;(2)答案见解析. 【解析】 【分析】(1)代入a =1,求f (x )导数,根据导数判断f (x )在[1,2]上的单调性即可求其值域;(2)根据a 的范围,分类讨论f (x )导数的正负即可求f (x )的单调性. (1)a =1,则()2121ln ,02f x x x x x =--+>,()22121(1)20x x x f x x x x x-+-=-+='=,∴()f x 在()0,∞+单调递增,∴f (x )在[]1,2单调递增,∴()()()51,2,3ln 22f x f f ⎡⎤⎡⎤∈=--+⎣⎦⎢⎥⎣⎦, 即f (x )在[1,2]上值域为5,3ln 22⎡⎤--+⎢⎥⎣⎦;(2)()()()()()223232,0x a a x ax a x a a f x x a a x x x x'-++--=-++==>,()10f x x a '=⇒=,22x a =, 200a a a -≠⇒≠且1a ≠,①当1a >时,21a a >>,0x a <<或2x a >时,()0f x '>,()f x 单调递增,2a x a <<时,()0f x '<,()f x 单调递减;②当01a <<时,201a a <<<,20x a <<或x a >时,()0f x '>,()f x 单调递增,2a x a <<时,()0f x '<,()f x 单调递减;③当0a <时,20a a >>,20x a <<时,()0f x '<,()f x 单调递减,2x a >,()0f x '>,()f x 单调递增;综上,当0a <时,f (x )在()20,a 单调递减,在()2,a +∞单调递增;当01a <<时,f (x )在()20,a ,(),a +∞单调递增,在()2,a a 单调递减;当1a >时,f (x )在()0,a ,()2,a +∞单调递增,在()2,a a 单调递减.8.(1)1y = (2)(],4∞- 【解析】 【分析】(1)利用导数的几何意义直接求解即可; (2)分离变量可得()()()e 1ln x x k g x x++≤=,利用导数可求得()()e 4g x g ≥=,由此可得k 的取值范围. (1)()2211ln ln x xf x x x--'==-,()10f '∴=,又()11f =, ()f x ∴在1x =处的切线方程为1y =;(2)当e x ≥时,由()e k f x x ≥+得:()()()()e 1ln e x x k x f x x++≤+=, 令()()()e 1ln x x g x x++=,则()2eln x xg x x -'=, 令()eln h x x x =-,则()ee1x h x xx-'=-=, ∴当e x ≥时,()0h x '≥,()h x ∴在[)e,+∞上单调递增,()()e e elne 0h x h ∴≥=-=,()0g x '∴≥,()g x ∴在[)e,+∞上单调递增,()()()2e 1ln e e 4eg x g +∴≥==, 4k ∴≤,即实数k 的取值范围为(],4∞-.【点睛】方法点睛:本题考查导数的几何意义、利用导数解决函数中的恒成立问题;解决恒成立问题的基本思路是采用分离变量的方式,将问题转化为变量与函数最值之间关系,即由()a f x ≥得()max a f x ≥;由()a f x ≤得()min a f x ≤.9.(1)25y x =+(2)0b =【解析】【分析】(1)利用切点和斜率求得切线方程.(2)由()2f x ≥恒成立构造函数()()2g x f x =-,对b 进行分类讨论,结合()'g x 研究()g x 的最小值,由此求得b 的值.(1) 当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=-又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为()520y x -=-, 即25y x =+.(2)当1a =时,令函数()()()2e 11x g x f x b x =-=+--, 则()2f x ≥恒成立等价于()0g x ≥恒成立.又()e 1,x g x b '=+-.当1b ≥时,()e 10,x g x b '=+->,g (x )在R 上单调递增,显然不合题意; 当1b <时,令()e 10,x g x b '=+-<,得ln(1)x b <-.令()e 10x g x b '=+->,得()ln 1x b >-,所以函数g (x )在(,ln(1))b -∞-上单调递减,在(ln(1),)b -+∞上单调递增, 所以当ln(1)x b =-时,函数g (x )取得最小值.又因为()00g =,所以0x =为g (x )的最小值点.所以ln(1)0b -=,解得0b =.10.(1)25y x =+(2)[1,)-+∞【解析】【分析】(1)求出()'f x ,然后算出(0),(0)f f '即可;(2)由条件可得e (ln )1ln(1)xb x a x b x a+->-+-恒成立,构造函数()ln (1)h x x b x x =+>,则原不等式等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立,然后可证明2e 1e 10xx x x a--+≥-+>,然后得()h x 在()1,+∞上单调递增,然后即可求解. (1) 当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=-又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为25y x =+.(2)()()ln 1f x b a x ⎡>-⎣恒成立,即e 1ln(1)ln x bx x b x b a a +-+>-+恒成立. 等价于e (ln )1ln(1)xb x a x b x a+->-+-恒成立. 构造函数()ln (1)h x x b x x =+>,则e e ln 1ln(1)x xb x b x a a+>-+-在(2,)x ∈+∞上恒成立等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立. 因为20e <≤a ,所以2e e ,xx a -≥ 令函数2()e 1(2)x H x x x -=-+>,则2()e 1x H x -'=-,显然()H x '是增函数, 则()(2)0,()H x H H x ''>=在()2,+∞上单调递增,所以()()20H x H >=, 故2e 1e 10xx x x a--+≥-+>,从而可得()h x 在()1,+∞上单调递增, 所以当()1,x ∈+∞时,()10bh x x'=+≥恒成立. 所以b x ≥-,所以1b ≥-,即b 的取值范围是[-1,+∞)【点睛】关键点睛:解答本题第二问的关键是将原不等式变形,构造出函数()ln (1)h x x b x x =+>,属于函数的同构类型,解答的关键是观察不等式的特点,变成同一函数在两个变量处的取值.。
导数大题经典练习及答案
导数大题专题训练1.已知f(x)=xlnx-ax,g(x)=-x2-2,(Ⅰ)对一切x∈(0,+∞),f(x)≥g(x)恒成立,求实数a的取值范围;(Ⅱ)当a=-1时,求函数f(x)在[m,m+3](m>0)上的最值;(Ⅲ)证明:对一切x∈(0,+∞),都有lnx+1>成立.2、已知函数.(Ⅰ)若曲线y=f (x)在点P(1,f (1))处的切线与直线y=x+2垂直,求函数y=f (x)的单调区间;(Ⅱ)若对于都有f (x)>2(a―1)成立,试求a的取值范围;(Ⅲ)记g (x)=f (x)+x―b(b∈R).当a=1时,函数g (x)在区间[e―1,e]上有两个零点,求实数b的取值范围.3.设函数f (x)=lnx+(x-a)2,a∈R.(Ⅰ)若a=0,求函数f (x)在[1,e]上的最小值;(Ⅱ)若函数f (x)在上存在单调递增区间,试求实数a的取值范围;(Ⅲ)求函数f (x)的极值点.4、已知函数.(Ⅰ)若曲线在和处的切线互相平行,求的值;(Ⅱ)求的单调区间;(Ⅲ)设,若对任意,均存在,使得,求的取值范围.5、已知函数(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;(Ⅱ)若对于任意成立,试求a的取值范围;(Ⅲ)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)在区间上有两个零点,求实数b的取值范围.6、已知函数.(1)若函数在区间(其中)上存在极值,求实数a的取值范围;(2)如果当时,不等式恒成立,求实数k的取值范围.1.解:(Ⅰ)对一切恒成立,即恒成立.也就是在恒成立;令,则,在上,在上,因此,在处取极小值,也是最小值,即,所以.(Ⅱ)当,,由得.①当时,在上,在上因此,在处取得极小值,也是最小值. .由于因此,②当,,因此上单调递增,所以,……9分(Ⅲ)证明:问题等价于证明由(Ⅱ)知时,的最小值是,当且仅当时取得,设,则,易知,当且仅当时取到,但从而可知对一切,都有成立.2、解:(Ⅰ)直线y=x+2的斜率为1.函数f (x)的定义域为(0,+∞),因为,所以,所以a=1.所以. .由解得x>0;由解得0<x<2. 所以f (x)的单调增区间是(2,+∞),单调减区间是(0,2)(Ⅱ),由解得;由解得.所以f (x)在区间上单调递增,在区间上单调递减.所以当时,函数f (x)取得最小值,. 因为对于都有成立,所以即可. 则.由解得.所以a的取值范围是.(Ⅲ)依题得,则.由解得x>1;由解得0<x<1.所以函数在区间(0,1)为减函数,在区间(1,+∞)为增函数.又因为函数在区间[e-1,e]上有两个零点,所以.解得.所以b的取值范围是.3.解:(Ⅰ)f (x)的定义域为(0,+∞). 因为,所以f (x)在[1,e]上是增函数,当x=1时,f (x)取得最小值f (1)=1.所以f (x)在[1,e]上的最小值为1.(Ⅱ)解法一:设g (x)=2x2―2ax+1,依题意,在区间上存在子区间使得不等式g (x)>0成立. 注意到抛物线g (x)=2x2―2ax+1开口向上,所以只要g (2)>0,或即可由g (2)>0,即8―4a+1>0,得,由,即,得,所以,所以实数a的取值范围是.解法二:,依题意得,在区间上存在子区间使不等式2x2―2ax+1>0成立.又因为x>0,所以.设,所以2a小于函数g (x)在区间的最大值.又因为,由解得;由解得.所以函数g (x)在区间上递增,在区间上递减.所以函数g (x)在,或x=2处取得最大值.又,,所以,所以实数a的取值范围是.(Ⅲ)因为,令h (x)=2x2―2ax+1①显然,当a≤0时,在(0,+∞)上h (x)>0恒成立,f (x)>0,此时函数f (x)没有极值点;②当a>0时,(i)当Δ≤0,即时,在(0,+∞)上h (x)≥0恒成立,这时f (x)≥0,此时,函数f (x)没有极值点;(ii)当Δ>0时,即时,易知,当时,h (x)<0,这时f (x)<0;当或时,h (x)>0,这时f (x)>0;所以,当时,是函数f (x)的极大值点;是函数f (x)的极小值点.综上,当时,函数f (x)没有极值点;当时,是函数f (x)的极大值点;是函数f (x)的极小值点.4.解:. (Ⅰ),解得.(Ⅱ).①当时,,,在区间上,;在区间上,故的单调递增区间是,单调递减区间是.②当时,,在区间和上,;在区间上,故的单调递增区间是和,单调递减区间是.③当时,,故的单调递增区间是.④当时,,在区间和上,;在区间上,故的单调递增区间是和,单调递减区间是.(Ⅲ)由已知,在上有.由已知,,由(Ⅱ)可知,①当时,在上单调递增,故,所以,,解得,故.②当时,在上单调递增,在上单调递减,故.由可知,,,所以,,,综上所述,.5、解:(Ⅰ)直线y=x+2的斜率为1,函数f(x)的定义域为因为,所以,所以a=1,所以由解得x>2 ;由解得0<x<2所以f(x)得单调增区间是,单调减区间是(Ⅱ),由解得由解得所以f(x)在区间上单调递增,在区间上单调递减所以当时,函数f(x)取得最小值因为对于任意成立,所以即可则,由解得;所以a得取值范围是(Ⅲ)依题意得,则由解得x>1,由解得0<x<1所以函数g(x)在区间上有两个零点,所以解得所以b得取值范围是6、解:(1)因为,,则,当时,;当时,.∴在上单调递增;在上单调递减,∴函数在处取得极大值.………3分∵函数在区间(其中)上存在极值,∴解得.(2)不等式,即为,记∴,…9分令,则,∵,∴,∴在上递增,∴,从而,故在上也单调递增,∴,∴.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学》必会基础题型——《导数》
【知识点】1.导数公式:'
C
'
1
()
n n x nx
'
(sin )
cos x x '
(cos )
sin x x
'
()x x
e e '
()
ln x x
a a a '
1(ln )
x x
'
1(log )
ln a x x a
2.运算法则:'
'
'
()
u
v u
v
'
'
'
()
u v u
v
'
'
'
()
uv u v
uv
'
'
'
2
()u
u v uv
v
v
3.复合函数的求导法则:(整体代换)例如:已知2
()3sin (2)3f x x ,求'
()f x 。
解:'
'
()
32sin(2)[sin(2)]
3
3
f x x x
'
6sin(2)cos(2)(2)
3
3
3
x
x
x
6sin(2)cos(2)212sin(2)cos(2)
3
3
3
3
x
x
x
x
26sin(4)
3
x
4.导数的物理意义:位移的导数是速度,速度的导数是加速度。
5.导数的几何意义:导数就是切线斜率。
6.用导数求单调区间、极值、最值、零点个数:对于给定区间[,]a b 内,若'
()0f x ,
则()f x 在[,]a b 内是增函数;若'
()0f x ,则()f x 在[,]a b 内是减函数。
【题型一】求函数的导数
(1)ln x
y x (2)
2sin(3)4
y x
(3)2
(1)x y e x
(4)3
235y
x
x (5)2
31
x
x
y
x (6)
2
2
11()
y x x
x
x
【题型二】导数的物理意义的应用
1.一杯90C 红茶置于25C 的房间里,它的温度会不断下降,设温度T 与时间t 的
关系是函数()T f t ,则'
()f t 符号为。
'
(3)2f 的实际意义
是。
2.已知物体的运动方程为2
2
3s
t
t
(t 是时间,s 是位移),则物体在时刻2t 时
的速度为。
【题型三】导数与切线方程(导数的几何意义的应用)3.曲线3
2y
x
x 在点(2,8)A 处的切线方程是。
4.若(1,)B m 是3
2y x
x 上的点,则曲线在点B 处的切线方程是。
5.若3
2y x
x 在P 处的切线平行于直线71y
x ,则点P 的坐标是。
6.若2
3ln 4x
y x 的一条切线垂直于直线20x
y m ,则切点坐标为。
7.函数12
ax
y
的图象与直线x y
相切, 则a。
8.已知曲线1
1x y x 在(3,2)处的切线与0ax y
m
垂直,则a。
9.已知直线y x
m 与曲线3
2
1y
x
x
相切,求切点P 的坐标及参数m 的值。
10.若曲线)(x h y 在点(,()a h a )处切线方程为01
2y
x ,那么()A .0)('
a h B. 0)('
a h C. 0)
('
a h D. )('
a h 的符号不定
11.曲线4632
3
x
x x
y 的所有切线中, 斜率最小的切线的方程是。
12.求曲线3
2
31y
x
x
过点(1,1)和(2,5)的切线方程。
【易错题】
【题型四】导数与单调区间13.函数13)(2
3
x
x
x f 的减区间为。
14.函数)0,0(x
n
e x y
x
n
的单调递增区间为。
15.判断函数cos sin y x x x 在下面哪个区间内是增函数()
A.3(
,)2
2
B.
(
,
)22 C.
(,2) D.(0,)
16.已知函数3
2
321y x
x
在区间(,0)m 上为减函数, 则m 的取值范围是。
【题型五】导数与极值、最值17.函数3
125y
x
x 在x 时取得极大值,在x 时取得极小值。
18.函数3
2
()23f x x
x 在[1,1]上的最大值是,与最小值是。
19.函数)0(x
x x
y 的最大值为。
20.函数93)(2
3
x ax
x
x f 在3x 时取得极值, 则a。
21.已知a a x x x f (62)(2
3为常数)在]2,2[上有最大值是
3, 那么]2,2[在
上的最小值是。
22.已知函数322
x x
y 在区间[,2]a 上的最大值为
15
4
, 则a 。
23.函数2,
2,2sin x
x x
y 的最大值是
,最小值是。
24.若1)2(33)
(2
3
x
a
ax x
x f 既有极大值又有极小值,求
a 的取值范围。
【题型六】导数与零点,恒成立问题
零点定理:若函数()f x 在区间[,]a b 上满足()()0f a f b ,则()f x 在区间[,]a b 上
是至少有一个零点。
(即()0f x 在区间[,]a b 上是至少有一个解)25.判断函数2()
log (2)
f x x
x 在[1,3]上是否存在零点?26.已知[1,3]x ,且1442
3
4
x x x a 恒成立,则a 的最大值为。
27.证明ln x
x (0)x
恒成立。
练习:证明x
e
x (0)x 恒成立
28.已知函数3
2
1()22
f x x
x x c ,若对于[1,2]x ,不等式2
()f x c 恒成立,
求c 的取值范围。
29.若函数3
()
3f x x
x
a 有3个不同的零点,求实数a 的取值范围。
30.是否存在实数m ,使得函数2
()8f x x
x 与()
6ln g x x
m 的图像有且只有
三个不同的交点?若存在求出
m 的范围,若不存在说明理由。
【题型七】综合应用题31.已知1x 是函数1)1(3)
(2
3
nx x
m mx
x f (0)m
的一个极值点,
(1)求m 与n 的关系式; (2)求)(x f 的单调区间; (3) 当[1,1]x 时,
函数)(x f y
的图象上任意一点的切线斜率恒大于m 3, 求m 的取值范围。
32.已知某工厂生产x 件产品的成本为x
c 200250002
40
1x 元,
(1)要使平均成本最低,应生产多少件产品?
(2)若产品以每件500元售出,要使利润最大,应生产多少件产品?。