概率论与数理统计PPT课件第四章大数定律及中心极限定理(1)

合集下载

概率论与数理统计教程(茆诗松)第4章

概率论与数理统计教程(茆诗松)第4章

解:用 Xi=1表示第i个部件正常工作, 反之记为Xi=0. 又记Y=X1+X2+…+X100,则 E(Y)=90,Var(Y)=9.
由此得:
P{Y
85}
ห้องสมุดไป่ตู้
1
85
0.5 9
90
0.966.
13 July 2020
华东师范大学
第四章 大数定律与中心极限定理
第10页
二、给定 n 和概率,求 y
例4.4.4 有200台独立工作(工作的概率为0.7)的机床,
第6页
4.4.3 二项分布的正态近似
定理4.4.2 棣莫弗—拉普拉斯中心极限定理
设n 为服从二项分布 b(n, p) 的随机变量,则当 n
充分大时,有
lim
n
P
n
np npq
y
( y)
是林德贝格—勒维中心极限定理的特例.
13 July 2020
华东师范大学
第四章 大数定律与中心极限定理
第7页
13 July 2020
华东师范大学
第四章 大数定律与中心极限定理
第5页
例4.4.2 设 X 为一次射击中命中的环数,其分布列为
X 10 9 8 7
6
P 0.8 0.1 0.05 0.02 0.03
求100次射击中命中环数在900环到930环之间的概率.
解: 设 Xi 为第 i 次射击命中的环数,则Xi 独立同分布,
且 E(Xi) =9.62,Var(Xi) =0.82,故
P
900
100 i 1
Xi
930
930 100 9.62 100 0.82
900 100 9.62 100 0.82

大数定律与中心极限定理通用课件

大数定律与中心极限定理通用课件

01
中心极限定理
定义
中心极限定理:在大量独立同散布的 随机变量下,这些随机变量的平均值 的散布趋近于正态散布,即使这些随 机变量的散布本身并不一定是正态散 布。
中心极限定理是概率论和统计学中的 一个基本概念,它在许多领域都有广 泛的应用,如金融、生物、社会科学 等。
适用范围
中心极限定理适用于大量独立同散布的随机变量,这些随机变量的散布可以是任何散布,不一定是正 态散布。
实际应用案例
股票市场分析
总结词
股票市场分析
详细描述
大数定律和中心极限定理在股票市场分析中有着广泛的应用。股票价格的波动受到多种 因素的影响,包括市场情绪、公司事迹、宏观经济状况等。通过运用大数定律和中心极 限定理,投资者可以对股票价格进行概率分析和预测,从而做出更加理性的投资决策。
保险精算
总结词:保险精算
深化理论分析
虽然大数定律和中心极限定理已有较为完善的理论体系,但在某些特定场景下,其理论分析仍需进一步深化和完善。 例如,对于非独立同散布样本的情况,这两个定理的适用性和证明方法仍需进一步探讨和研究。
与其他理论的结合
大数定律和中心极限定理可以与其他概率论和统计学中的理论相结合,形成更为完善的理论体系。例如 ,可以与贝叶斯统计、马尔科夫链蒙特卡洛方法等理论相结合,用于解决更为复杂和实际的问题。
本课件采用了理论分析和实证研究相 结合的方法,对大数定律和中心极限 定理进行了深入探讨。通过分析大量 的实证数据,我们发现这两个定理在 许多实际场景中都得到了验证和应用 ,为相关领域的研究和实践提供了重 要的理论支持和实践指点。
未来研究方向
拓展应用领域
随着科技的发展和研究的深入,大数定律和中心极限定理的应用领域将不断拓展。例如,在人工智能和大数据领域, 这两个定理可以用于设计和优化算法,提高数据分析和预测的准确性和效率。

第四章 大数定律与中心极限定理

第四章 大数定律与中心极限定理
n→∞
则称{X 依概率收敛 依概率收敛于 则称 n}依概率收敛于X. 可记为
X n →X.
P

lim P{| X n − X |≥ ε} = 0
n→∞
二.几个常用的大数定律 几个常用的大数定律
1. 契贝晓夫大数定律 契贝晓夫大数定律 设{Xk,k=1,2,...}为两两不相关的随机变量序 为两两不相关的随机变量序 且它们的方差有界 即存在常数C>0,使 方差有界, 列,且它们的方差有界,即存在常数 ,
lim P{|
n→∞
µn
n
− p |< ε} = 1
即:µn
n
=
∑X
i= 1
i
n
→p
P
3. 辛钦大数定律
为独立同分布随机变量序列, 若{Xi,i=1.2,...}为独立同分布随机变量序列 为独立同分布随机变量序列 EXi=a <∞, i=1, 2, … 则对任意的 ε > 0,有 ∞
1 n 1 n P lim P{| ∑Xi − a |< ε} = 1,即 Yn = ∑Xi →a n→∞ n i=1 n ii=1 =1
2.德莫佛 拉普拉斯中心极限定理 德莫佛-拉普拉斯中心极限定理 德莫佛 拉普拉斯中心极限定理(De Moivre-Laplace) 设随机变量η 服从参数为n, 设随机变量ηn(n=1, 2, ...)服从参数为 p(0<p<1) 服从参数为 的二项分布, 的二项分布,则有 ηn − np L→ξ ~ N(0, 1).
§4.3. 中心极限定理 一.依分布收敛 依分布收敛
为随机变量序列, 为随机变量 为随机变量, 设{Xn}为随机变量序列,X为随机变量,其 为随机变量序列 若在F(x)的 对应的分布函数分别为F 的 对应的分布函数分别为 n(x), F(x). 若在 连续点,有 连续点, limF (x) = F(x),

概率论与数理统计完整ppt课件

概率论与数理统计完整ppt课件
化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的

大数定律及中心极限定理通用教学课件

大数定律及中心极限定理通用教学课件

VS
不同点
大数定律主要研究随机变量的算术平均值 在样本容量趋于无穷大时的性质,而中心 极限定理则研究随机变量的算术平均值在 样本容量趋于无穷大时的散布情况。
大数定律与中心极限定理的联系与区分
联系
大数定律和中心极限定理都是研究随机变量的性质和散布,它们都是概率论中的重要理论。
区分
大数定律主要研究随机变量的算术平均值在样本容量趋于无穷大时的性质,而中心极限定理则研究随机变量的算 术平均值在样本容量趋于无穷大时的散布情况。
总结词
金融风险管理中中心极限定理的应用
详细描述
中心极限定理在金融风险管理中有着广泛的 应用。通过将多个独立同散布的随机变量相 加,中心极限定理可以近似描述这些随机变 量的散布特征。在金融风险管理领域,可以 利用中心极限定理对投资组合进行优化,降
低投资组合的风险。
案例三
总结词
大数据分析中的大数定律与中心极限定理应用
社会科学等。
对未来学习的展望和建议
深入学习概率论和统计学
大数定律和中心极限定理是概率论和统计学中的基础知识,但它们的 应用范围非常广泛,需要进一步深入学习。
学习其他相关课程
除了概率论和统计学,还可以学习其他相关课程,如回归分析、时间 序列分析、多元统计分析等,以更全面地掌握数据分析的方法。
关注实际应用
详细描述
在大数据分析中,大数定律和中心极限定理可以共同发挥作用。通过收集大量数据,利 用大数定律计算出数据的统计特征,然后利用中心极限定理对数据进行近似描述。这种
方法可以应用于数据发掘、机器学习等领域,帮助我们更好地理解和分析大数据。
06
CATALOGUE
总结与展望
本课程的主要内容总结

概率论与数理统计PPT课件第四章大数定律及中心极限定理(1)

概率论与数理统计PPT课件第四章大数定律及中心极限定理(1)
分别就是该分布的数学期望和方差,
因此,正态分布完全可由它的数学期望 和方差所确定
ppt课件
16
例1 甲 、 乙 两 人 射 击 , 他 们 的 射 击 水 平 由 下 表 给 出 :
X: 甲 击 中 的 环 数 ; Y: 乙 击 中 的 环 数 ;
X
8
9
10
P
0.3 0.2 0.5
Y
8
9
10
P
0.2 0.4 0.4
(3)若随机变量X的方差Var(X)存在, 则
V a r(X )E (X 2) [E (X )]2
ppt课件
8
证明: Var(X)=E(X2)-[E(X)]2 证:Var(X)=E[X-E(X)]2
=E{X2-2XE(X)+[E(X)]2} =E(X2)-2[E(X)]2+[E(X)]2 =E(X2)-[E(X)]2

••
甲炮射击结果
••中• •• 心••••• 乙炮射击结果
乙炮
你认为哪门炮射击效果好一些呢?
因为乙炮的弹着点较集中在中心附近,
所以乙炮的射击效果好.
ppt课件
3
为此需要引进另一个数字特征, 用它来度量随机变量取值相对于其 中心的离散程度. 这个数字特征就是下面要介绍的
方差
ppt课件
4
方差的概念
ppt课件
10
(2)二项分布B(n, p)
分布列为: P (X k ) C n kp k q n k , k 0 ,1 , ,n .
已计算过:E(X)=np,又
E (X2)E [X(X1)]E X
n
k(k1)Cnkpkqnknp
k0
n

概率论与数理统计课件完整版.ppt

概率论与数理统计课件完整版.ppt
E3: 将一枚硬币抛三次,观察出现正面的情况. E4: 电话交换台一分钟内接到的呼唤次数. E5: 在一批灯泡中任取一只, 测试它的寿命.
3
随机试验:
(1) 可在相同的条件下重复试验; (2) 每次试验的结果不止一个,且能事先明确所有可能的 结果; (3) 一次试验前不能确定会出现哪个结果.
4
§2. 样本空间与随机事件
不可能事件:空集φ不包含任何样本点, 它在每次试验中 都不发生,称为不可能事件。
6
例1. 试确定试验E2中样本空间, 样本点的个数, 并给出如
下事件的元素: 事件A1=“第一次出现正面”、事件A2=“ 恰好出现一次正面”、事件A3=“至少出现一次正面”.
7
(三)事件间的关系与事件的运算
1.包含关系和相等关系:
若事件A发生必然导致事件B发生,则称件B包含事件A,记 作AB. 若A B且A B, 即A=B, 则称A与B相等.
B
A S
(1) A B
8
2.和事件:
A B { x | x A或x B}称为A与B的和事件.
即A, B中至少有一个发生, 称为A与B的和, 记A B.
可列个事件A1, A2 , 的和事件记为 Ak .
概率的古典定义:
对于古典概型, 样本空间S={1, 2, … , n}, 设事件A包
含S的 k 个样本点,则事件A的概率定义为
A中的基本事件数 k
P( A) S中的基本事件总数 n
15
古典概型概率的计算步骤:
(1) 选取适当的样本空间S, 使它满足有限等可能的要求, 且把事件A表示成S的某个子集.
k 1
3.积事件: 事件A B={x|x A 且 x B}称A与B的
积,即事件A与BA同时发生. A B 可简记为AB.

概率论与数理统计PPT课件第四章大数定律及中心极限定理(1)

概率论与数理统计PPT课件第四章大数定律及中心极限定理(1)


E ( X ) xf ( x)dx
注意:随机变量的数学期望的本质就是加权 平均数,它是一个数,不再是随机变量。
13

常见连续型分布的数学期望 (5) 区间(a,b)上的均匀分布
随机变量X的概率密度为
于是
14
(6)正态分布N(μ,σ2 ) 随机变量X的概率密度为
( y )

E ( Z ) E ( g ( X 1 , , X n ))
j1 jn
g( x
j1
, , x jn ) p j1 jn
23
随机向量函数的数学期望(续)
设X=(X1 ,…, Xn)为连续型随机向量,联合 密度函数为 f ( x1 , , xn ) Z = g(X1 ,…, Xn), 若积分
20
一种方法是,因为g(X)也是随机 变量,故应有概率分布,它的分布 可以由已知的X的分布求出. 一旦我
们知道了g(X)的分布,就可以按照 数学期望的定义把E[g(X)]计算出来.
21
使用上述方法必须先求出随机变量 函数g(X)的分布,有时是比较复杂的 .
那么是否可以不先求出g(X)的分布而 只根据X的分布直接求得E[g(X)]呢? 下面的基本公式指出,答案是肯定的.
np C p (1 p)
k 0 k n 1 k
n 1
( n 1)k
np
6
(3)泊松分布 X的所有可能取值为0,1,2,…,且
7
(4)几何分布 X的可能取值为1,2,…, 且 P(X=k)= (1-p)k-1 p, k= 1,2,….
由于
这可以由等式 两边同时对x求导数得到。
| x| 发散 但 | x | f ( x)dx dx 2 (1 x )

概率论ppt课件

概率论ppt课件
先验概率与后验概率
先验概率是指在事件产生前对某一事件产生的概率的估计, 后验概率是指在事件产生后,根据新的信息对某一事件产生 的概率的重新估计。
贝叶斯分析在实践中的应用
金融风险评估
贝叶斯分析可以用于金融风险评估,通过对历史数据的分析,猜测未来市场的 走势和风险。
医学诊断
在医学诊断中,贝叶斯分析可以用于根据患者的症状和体征,结合疾病的特点 ,对疾病进行诊断和猜测。
遍历性和安稳散布
遍历性的定义
01
如果一个马尔科夫链的任意状态在长期平均下占据相同的时间
比例,则称该马尔科夫链具有遍历性。
安稳散布的定义
02
如果一个马尔科夫链的状态概率散布不随时间变化,则称该散
布为安稳散布。
遍历性和安稳散布的关系
03
一个具有遍历性的马尔科夫链通常会有一个唯独的安稳散布,
该散布描写了马尔科夫链在长期运行下的状态概率散布。
伯努利实验
只有两种可能结果的实验 ,例如抛硬币。
二项散布
在n次伯努利实验中成功的 次数所服从的散布。
泊疏松布
在单位时间内(或单位面 积上)随机事件的次数所 服从的散布。
连续型随机变量
正态散布
一种常见的连续型随机变量,其 概率密度函数呈钟形。
指数散布
描写某随机事件的时间间隔所服从 的散布。
均匀散布
在一定区间内均匀散布的概率密度 函数。
的散布假设检验中。
强大数定律
强大数定律的定义
强大数定律是概率论中的一个强大工具,它表明在独立同散布随 机变量序列中,几乎必定有任意给定的收敛子序列。
强大数定律的证明
可以通过切比雪夫不等式和Borel-Cantelli引理等工具来证明。

§4.4大数定律与中心极限定理

§4.4大数定律与中心极限定理

中心极限定理是概率论中最著名的结果 之一,它不仅提供了计算独立随机变量之和 的近似概率的简单方法,而且有助于解释为 什么很多自然群体的经验频率呈现出钟形曲 线这一值得注意的事实.
第四章结束 !
ቤተ መጻሕፍቲ ባይዱ
解: 任一时刻使用外线的分机数为X, X~B(200,0.2)
由题意, 求最小r, 使得 P(0≤X≤r)≥0.95
令: Xk 10
第k台分机用外线 第k台分机不用外线
200
则:X Xk
由于 n 较大k,1故近似地, X~N(np,npq)=N(40,32) .
P(0≤X≤r)
Φ(r40)Φ(40)
设 X1, X2, …是独立同分布的随机
变量序列,且E(Xi)=,D(Xi)= 2 ,
i=1, 2, …,则
n
Xi n
x
lim P{i1
x}
n
n
-
1 e-t2 2dt
2
它表明, 当 n充分大时, n 个具有期望和方差 的独立同分布的 r.v 之和近似服从正态分布.
定理. (棣莫佛-拉普拉斯定理)
切比雪夫
则对任意的ε>0,
ln im P{n 1|i n1Xin 1i n1E(Xi)|}1
证明: 切比雪夫大数定律主要的数学工具是
切比雪夫不等式.
E(|1 n
ni1
Xi)1 ni n1E(Xi)
D(1 ni n1Xi)n12 i n1D(Xi)K n
二 . 中心极限定理
如果一个量是由大量相互独立的随机因素的 影响所造成,而每一个别因素在总影响中所起 的作用不大. 则这种量一般都服从或近似服从 正态分布.
在概率论中, 把无穷多随机变量和的分布收敛

华东理工大学概率论与数理统计课件第四章解读

华东理工大学概率论与数理统计课件第四章解读
1 n lim P X i 1 n n i 1
注意 辛钦大数定理成立的条件中只需 X i的数学 期望存在;而当 X i 的方差存在时,其即为切比雪夫大 数定理的直接推论. 大数定理是参数估计和假设检验的重要理论基础.
返回
例1.
k 互相独立随机变量序列,且
证: 由切比雪夫不等式:P X EX 1
1 1 P X i EX i 1 n i 1 n i 1
n n
D( X )

n
2

D( 1 X i ) n i 1
n

2
1
D( X i )
n
i 1 2 2
1
3 k 1 2 3 k 1 2
i
k 的分布
(k=1,2, …),
试证大数定理成立. 解: k 互相独立,且
1
E k 0
2 3
D k k
1 0
3 2
n
2
D( i )
1
n
1
n
2
k
1
n
nn n2
2 3
n
1 3
(n )
14 100 14 86 30 100 30
70
20 20 20 20 P e e 14! 30! 0.0387 0.0083
14
30
返回
例5 某校有4900个学生,已知每天每个学生去阅览室自修 的概率为0.1,问阅览室要准备多少座位,才能以99%的概 率保证每个去阅览室自修的学生都有座位。
解 设Xi(i=1,2,…,n)为装运的第i箱的重量,n是所求的箱数.则 X1,X2,…,Xn独立同分布, EXi=50, DXi=52=25,令 Yn X i ,

概率论与数理统计大数定律及中心极限定理

概率论与数理统计大数定律及中心极限定理

且具有相同的数学期望和方差:E( Xk ) ,
D( X k ) 2 (k 1, 2, ), 作前 n 个随机变量
的算术平均
X
1 n
n k 1
X
k
,
则对于任意正
数 有
lim P{| X
n
|
}
lim
n
P
1 n
n k 1
X
k
1.
表 达
{| X | }是一个随机事件, 等式表
式 明,当n 时这个事件的概率趋于1,
切比雪夫大数定律 伯努利大数定律 辛钦大数定律
一、问题的引入
实例 频率的稳定性
随着试验次数的增加, 事件发生的频率逐渐稳 定于某个常数. 单击图形播放/暂停 ESC键退出
启示:从实践 中人们发现 大量测量值 的算术平均 值有稳定性.
二、基本定理
定理一(切比雪夫大数定律)
切比雪夫
设随机变量 X1, X 2 , , X n , 相互独立,
的 即对于任意正数 ,当n充分大时, 不
意 义
等式 | X | 成立的概率很大.
lim P{| Xn|来自}limn
P
1 n
n k 1
Xk
1.
证明
E
1 n
n k 1
X
k
1 n
n k 1
E(Xk )
1 n
n
,
D
1 n
n k 1
Xk
1 n2
n k 1
D( Xk
)
1 n2
n
2
2
n
,
由切比雪夫不等式可得
P
1 n
n k 1
X
k

概率论与数理统计ppt课件

概率论与数理统计ppt课件

注:P( A) 0不能 A ; P( B) 1不能 B S .
2。 A1 , A2 ,...,An , Ai Aj , i j, P( P(
n n i 1
Ai ) P( Ai )
i 1
n
证:令 Ank (k 1, 2,...), Ai Aj , i j, i, j 1, 2,....

5.1 大数定律 5.2 中心极限定理

第六章 数理统计的基本概念
• • 6.1 总体和样本 6.2 常用的分布
4
第七章 参数估计
• • • 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计
第八章 假设检验
• • • • • • • 8.1 8.2 8.3 8.4 8.5 8.6 8.7 假设检验 正态总体均值的假设检验 正态总体方差的假设检验 置信区间与假设检验之间的关系 样本容量的选取 分布拟合检验 秩和检验
A B 2 A=B B A
B A
S
例: 记A={明天天晴},B={明天无雨} B A
记A={至少有10人候车},B={至少有5人候车} B
A
一枚硬币抛两次,A={第一次是正面},B={至少有一次正面}
BA
13


事件的运算
A与B的和事件,记为 A B
8
§1 随机试验
确定性现象
自然界与社会Βιβλιοθήκη 活中的两类现象不确定性现象
确定性现象:结果确定 不确定性现象:结果不确定

例:
向上抛出的物体会掉落到地上 ——确定 ——不确定 明天天气状况 ——不确定 买了彩票会中奖

概率论与数理统计PPT课件第四,五章习题课(大数定律及中心极限定理)

概率论与数理统计PPT课件第四,五章习题课(大数定律及中心极限定理)
2
N(0,4 )有EY=0, DY=16,又由
1 XY=- 有Cov(X,Y)= XY DXDY=-6。 2 1 1 1 (1)EZ= EX- EY= , 3 2 3 1 1 11 DZ= DX + DY-2 Cov(X,Y) =7。 9 4 32
16
1 1 (2) Cov(X,Z)=Cov(X, X- Y) 3 2 1 1 = DX- Cov(X,Y) =6, 3 2 Cov( X , Z ) 2 7 XZ . 7 DXDZ (3) X与Z不独立。因为 XZ 0。
P(X=k)P(A|X=k)
k=0 N
N
k 1 N = P(X=k) kP(X=k) N N k=0 k=0 1 n EX = 。 N N
10
8.袋中有N个球,其中白球数X是随机变量,且知 2 其数学期望E(X)=n,(n N), 方差 D(X)= 。 今从 袋中一次摸两球 ,求这两球恰有一白球的概率。 解:设A为摸到的两球中恰有一白球。
求常数a, 。
5

解:由


f ( x)dx 1 可知 :
1 x 2 2
2
1 2a e 2 2


a dx

a e dx 2a 1, 0
x
又由 EX


xf ( x)dx 1
1 x 2 2
22
2
密度函数 fZ(x)=2(1-F(x))f(x)=2

b-x
b-a
b a
2
I(a x b)。 dx
Emin( , )= xf Z ( x)dx= x 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
18
例3.设X 的概率密度为:
1 x, f ( x ) 1 x, 0,
解:

1 x 0 0 x 1 其他
求E(X)。
E ( X ) xf ( x)dx x(1 x)dx x(1 x)dx
1 0 0 1
0
注: 由于f(x)是偶函数,由定理1.1也知E(X)=0。
(2) X 是连续型随机变量,其概率密度为f(x).若

g ( x) f ( x)dx 绝对收敛, 则

E (Y ) E[ g ( X )] g ( x) f ( x)dx.


25
例4.设离散型随机向量X的概率分布如下表所示, 求:Z=X2的期望. X 0
1 2
−1
1 4
1
1 4
第四章 数学期望和方差
分布函数能够完整地描述随机变量的 统计特性,但在实际问题中,随机变量的 分布函数较难确定,而它的一些数字特征 较易确定.并且在很多实际问题中,只需 知道随机变量的某些数字特征也就够了. 另一方面,对于一些常用的重要分布, 如二项分布、泊松分布、指数分布、正态 分布等,只要知道了它们的某些数字特征, 就能完全确定其具体的分布。
E ( X ) kC p (1 p)
k 0 n k n k
n
nk
n! k nk k p (1 p) k 1 k!( n k )! n (n 1)! k 1 ( n 1)( k 1) np p (1 p) k 1 ( k 1)!( n k )!
P
解: E(Z)= g(0)0.5 + g(-1)0.25 + g(1)0.25 = 0.5
2 g ( x ) x . 注:这里的
26
例5: 设随机变量X 服从 二项分布B(n , p), Y = eaX, 求E(Y)。 解:
n ak k 0
n
eak P{ X k}
k 0
22
随机向量函数的数学期望
设X=(X1 ,…, Xn)为离散型随机向量,概率 分布为
P( X ( x j1 ,, x jn )) p j1 jn , j1 ,, jn 1.
Z = g(X1 ,…, Xn), 若
j1 jn
g(x

j1
,, x jn ) p j1 jn .
解:
nm
n 0 m 0


n
n p m (1 p)nm
m!(n m)!
n m0
e
n
n 0
n
n!
e

m m n m m C p (1 p ) n
29
注意到二项分布B(n , p)的数学期望,就有 于是
注: 最后一步用了泊松分布数学期望的结果.
E ( X ) xf ( x)dx


f ( x)dx ( x ) f ( x )dx



tf (t )dt


推论1.2.若X~N( , ),则 E(X)= 。 若X~U( a,b ), 则 E(X)=(a+b)/2。

E ( Z ) E ( g ( X 1 , , X n ))
j1 jn
g( x
j1
, , x jn ) p j1 jn
23
随机向量函数的数学期望(续)
设X=(X1 ,…, Xn)为连续型随机向量,联合 密度函数为 f ( x1 , , xn ) Z = g(X1 ,…, Xn), 若积分
1
1/8 1/2
2
1/4 1/8
解:
E(Z)= g(1,1)0.125 + g(1,2)0.25 + g(2,1)0.5 + g(2,2)0.125 =4.25
注:这里的 g ( x, y) x 2 y.
28
例7: 设(X,Y)的联合分布律为
其中λ>0, 0<p<1, 求E(XY).

绝对收敛,则称其和为随机变量 X 的数学 期望或均值,记作 E( X )。
E ( X ) xk p k
k 1
5

常见离散型随机变量的数学期望 (1) 两点分布 这时 P(X=1)=p, P(X=0)=1-p. 故 E(X)=0×P(X=0)+1×P(X=1)= p. (2)二项分布 X的取值为0,1,…,n. 且 P(X=k)= Cnk pk (1-p)n-k, k= 0, 1, …, n.
19
§4.2 数学期望的性质
设已知随机变量X的分布,我们需要计算 的不是X的数学期望,而是X的某个函数的 数学期望,比如说g(X)的数学期望. 那么应 该如何计算呢? 更一般的,已知随机向量(X1 , X2 …,Xn ) 的联合分布, Y= g(X1, X2 …,Xn ) 是(X1 , X2 …,Xn )的函数,需要计算Y 的数学 期望,应该如何计算呢?我们下面就来处 理这个问题。
| x| 发散 但 | x | f ( x)dx dx 2 (1 x )
它的数学期望不存在
17
定理 1.1. 设 X 的数学期望有限,概率密度 f(x) 关 于 对称,f( +x) = f( -x)。则E(X)= 。 证明:令g(t)=tf(t+ ),由g(-t)=-g(t)知g(t) 是奇函数。于是,
1 q q 2 q n1
1 q n 1 (1 p ) n 1 q p
12
定义1. 2 :设 X 为连续型随机变量, 其密度 函数为 f ( x) ,若积分
xf ( x)dx
绝对收敛,则称此积分为随机变量 X 的数学 期望或均值,记作 E( X )。


1 e 2
y2 2
dy

因此, 对于正态分布N(μ,σ2 ),参数μ就是 它的数学期望. 15
(7)指数分布E()
随机变量X的概率密度为
16
注意:不是所有的随机变量都有数学期望
例如:Cauchy分布的密度函数为
1 f ( x) , 2 (1 x )

x
30
例8: 设X ~ U[0,], Y =sinX,求E(Y)。 解: X 的概率密度为
所以
31
例9 设二维随机变量(X ,Y)的密度函数为 1 x(1 3 y 2 ), 0 x 2,0 y 1, f ( x, y ) 4 0, 其它 求E(X), E(Y), E( X + Y ), E(XY), E(Y / X) 解: E ( X ) xf ( x, y )dxdy
解:设X为停止检查时,抽样的件数,则X的可能 取值为1,2,…,n,且
k 1 q p, k 1,2,, n 1; P{X k} n 1 q , k n. 其中q 1 p,于是
E( X )

k 1
n 1
kq k 1 p nqn 1
11

一维情形 设Y是随机变量X的函数: Y=g(X), g(x) 是连续函数,
(1) X是离散型随机变量,其分布律为 pk P{X xk }
k 1,2,

g(x ) p
k 1 k
k 1

k
绝对收敛, 则
E (Y ) E[ g ( X )] g ( xk ) pk
8
例 1: 甲、乙两人射击,他们的射击水平由下表给出: X:甲击中的环数;
Y:乙击中的环数;
X P
Y P
8 0.1
8 0.2
9 0.3
9 0.5
10 0.6
10 0.3
9
试问哪一个人的射击水平较高?
例1(续)
解:甲、乙的平均环数可写为
EX 8 0.1 9 0.3 10 0.6 9.5
D k P( X k ) kpk 10.14
k 8 k 8
12
12
称之为这 5 个数字的加权平均,数学期望的 概念源于此.
4
数学期望的定义
定义1.1:设离散型随机变量X的概率分布为
P( X xk ) pk , 若无穷级数
k 1,2,
xk p k
k 1
1 4 1 2 0 x xdx 0 (1 3 y )dy 3 4 E (Y ) yf ( x, y )dxdy 21 1 5 2 0 xdx0 y (1 3 y )dy 4 8 2

32
E ( X Y ) ( x y ) f ( x, y )dxdy xf ( x, y )dxdy yf ( x, y )dxdy
n
e C p (1 p)
k n k
nk
k Cn (ea p)k (1 p)n k k 0
[e p (1 p)]
a
n
[ p(e 1) 1] .
a n
27
例6.设二维离散型随机向量(X,Y)的概率分布如下 表所示,求:Z=X2+Y的期望.
Y X 1 2
20
一种方法是,因为g(X)也是随机 变量,故应有概率分布,它的分布 可以由已知的X的分布求出. 一旦我
们知道了g(X)的分布,就可以按照 数学期望的定义把E[g(X)]计算出来.
21
使用上述方法必须先求出随机变量 函数g(X)的分布,有时是比较复杂的 .
那么是否可以不先求出g(X)的分布而 只根据X的分布直接求得E[g(X)]呢? 下面的基本公式指出,答案是肯定的.
相关文档
最新文档