2014中考数学应用题专题训练

合集下载

2014年中考数学真题分类解析汇编(9)一元二次方程及其应用

2014年中考数学真题分类解析汇编(9)一元二次方程及其应用

2014年中考数学真题分类解析汇编(9)一元二次方程及其应用一元二次方程及其应用一、选择题1. ( 2014•广东,第8题3分)关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根,则实数m 的取值范围为( )A .B .C .D .2. ( 2014•广西玉林市、防城港市,第9题3分)x 1,x 2是关于x 的一元二次方程x 2﹣mx +m ﹣2=0的两个实数根,是否存在实数m 使+=0成立?则正确的是结论是( )A . m =0时成立B . m =2时成立C . m =0或2时成立D . 不存在3.(2014年天津市,第10题3分)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A . x (x +1)=28B .x (x ﹣1)=28C . x (x +1)=28D . x (x ﹣1)=284.(2014年云南省,第5题3分)一元二次方程x 2﹣x ﹣2=0的解是( )A . x 1=1,x 2=2B . x 1=1,x 2=﹣2C . x 1=﹣1,x 2=﹣2D . x 1=﹣1,x 2=25.(2014•四川自贡,第5题4分)一元二次方程x 2﹣4x +5=0的根的情况是( )A . 有两个不相等的实数根B . 有两个相等的实数根C .只有一个实数根D .没有实数根6.(2014·云南昆明,第3题3分)已知1x 、2x 是9. (2014•益阳,第5题,4分)一元二次方程x 2﹣2x +m =0总有实数根,则m 应满足的条件是( )A .m >1B . m =1C . m <1D .m ≤110.(2014•呼和浩特,第10题3分)已知函数y =的图象在第一象限的一支曲线上有一点A (a ,c ),点B (b ,c +1)在该函数图象的另外一支上,则关于一元二次方程ax 2+bx +c =0的两根x 1,x 2判断正确的是( )A .x 1+x 2>1,x 1•x 2>0 B . x 1+x 2<0,x 1•x 2>0 C . 0<x 1+x 2<1,x 1•x 2>0 D . x 1+x 2与x 1•x 2的符号都不确定 11.(2014•菏泽,第6题3分)已知关于x 的一元二次方程x 2+ax +b =0有一个非零根﹣b ,则a ﹣b 的值为( ) A. 1 B . ﹣1 C . 0 D . ﹣212.(2014年山东泰安,第13题3分)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=15二.填空题1. (2014•广西贺州,第16题3分)已知关于x的方程x2+(1﹣m)x+=0有两个不相等的实数根,则m的最大整数值是2.(2014•舟山,第11题4分)方程x2﹣3x=0的根为.3. (2014•扬州,第17题,3分)已知a,b是方程x2﹣x﹣3=0的两个根,则代数式2a3+b2+3a2﹣11a﹣b+5的值为.4.(2014•呼和浩特,第15题3分)已知m,n 是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=.5.(2014•德州,第16题4分)方程x2+2kx+k2﹣2k+1=0的两个实数根x1,x2满足x12+x22=4,则k的值为.6.(2014•济宁,第13题3分)若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m﹣4,则=.三.解答题1. (2014•广西玉林市、防城港市,第24题9分)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过11.9万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,假定每年新增电动车数量相同,问:(1)从今年年初起每年新增电动车数量最多是多少万辆?(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%)2.((2014•新疆,第19题10分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?3.2014年广东汕尾,第22题9分)已知关于x 的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.4.(2014•毕节地区,第25题12分)某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y 元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.5.(2014•襄阳,第16题3分)若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是.6. (2014•株洲,第21题,6分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.7. (2014年江苏南京,第22题,8分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率8解方程:2x2﹣4x﹣1=0.9. (2014•扬州,第20题,8分)已知关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,求k的值.。

2014年数学中考应用题专题复习

2014年数学中考应用题专题复习

《2014年数学中考应用题专题复习》1.(本题满分10分)近年来,由于受国际石油市场的影响,汽油价格不断上涨,请你根据下面的信息,帮小明计算今年5月份每升汽油的价格.2.(本题满分9分)某公司专销产品A ,第一批产品A 上市40天内全部售完.该公司对第一批产品A 上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图10中的折线表示的是市场日销售量与上市时间的关系;图11中的折线表示的是每件产品A 的销售利润与上市时间的关系.(1)试写出第一批产品A 的市场日销售量y 与上市时间t 的关系式;(2)第一批产品A 上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?(说明理由)3.(本题满分8分)为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?4. (本题满分9分)为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部800元,已知今年5月份每升汽油的价格是去年5月份的1.6倍,用150元给汽车加的油量比去年少18.75升 今年5月份每升汽油的价格是多少呢?3倍,求彩电、冰箱、手机三大类产品分别销售多少万台销售的冰箱(含冰柜)数量是彩电数量的2(部),并计算获得的政府补贴分别为多少万元?5.(本题满分10分)为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1、y2与x之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?6.(本题满分10分)为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.7.(本题满分10分)我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y(件)与售价x(元)之间存在着如下表所示的一次函数关系.(利润=(售价-成本价)×销售量)(1)求销售量y(件)与售价x(元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40000 元?8.(本题满分10分)某种商品的成本为5元/件,开始按8元/件销售,销售量为50件,为了获取最大利润,商家先后采取了提价与降价两种措施进行试销.经试销发现:销售价每上涨1元每天销售量就减少10件;而降价后,日销售量利润y (元)与实际销售价x (元)满足关系:y=198-6x(6≤x<8).(1)求售价为7元/件时,日销售量为多少件?(2)求日销售利润(利润=销售额-成本)y(元)与实际销售价x (件)的函数关系式;(3)试问:当实际销售价为多少元时,总利润最大.。

初中数学应用题(含答案解析)

初中数学应用题(含答案解析)

武汉中考数学22题专题-二次函数应用1.(2014?武汉四月调考)某工厂生产一种矩形材料板,其长宽之比为3:2.每张材料板的成本c(单位:元)与它的面积(单位:cm2)成正比例,每张材料板的销售价格y(单位:元)与其宽x之间满足我们学习过的三种函数(即一次函数、反比例函数和二次函数)关系中的一种.下表记录了该工厂生产、销售该材料板一些数据.材料板的宽x(单位:cm)24 30 42 54成本c(单位:元)96 150 294 486销售价格y(单位:元)780 900 1140 1380(1)求一张材料板的销售价格y与其宽x之间的函数关系式,不要求写出自变量的取值范围;(2)若一张材料板的利润w为销售价格y与成本c的差.①请直接写出一张材料板的利润w与其宽x之间的函数关系,不要求写出自变量的取值范围;②当材料板的宽为多少时,一张材料板的利润最大?最大利润是多少.2.(2001?安徽)某工厂生产的A种产品,它的成本是2元,售价是3元,年销量为100万件,为了获得更好的效益,厂家准备拿出一定的资金做广告;根据统计,每年投入的广告费是x(十万元),产品的年销量将是原销售量的y倍,且y是x的二次函数,它们的关系如表:x(十万元)0 1 2y 1 1.5 1.8(1)求y与x的函数关系式;(2)如果把利润看成销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元的函数关系式);(3)如果投入的年广告费为10万元~30万元,问广告费在什么范围内,工厂获得的利润最大?最大利润是多少?3.(2014?合肥模拟)某工厂共有10台机器,生产一种仪器元件,由于受生产能力和技术水平等因素限制,会产生一定数量的次品.每台机器产生的次品数p(千件)与每台机器的日产量x(千件)(生产条件要求4≤x≤12)之间变化关系如表:日产量x(千件/台)… 5 6 7 8 9 …次品数p(千件/台)…0.7 0.6 0.7 1 1.5 …已知每生产1千件合格的元件可以盈利 1.6千元,但没生产1千件次品将亏损0.4千元.(利润=盈利﹣亏损)(1)观察并分析表中p与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识求出p(千件)与x(千件)的函数解析式;(2)设该工厂每天生产这种元件所获得的利润为y(千元),试将y表示x的函数;并求当每台机器的日产量x(千件)为多少时所获得的利润最大,最大利润为多少?4.(2013?乌鲁木齐)某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个)的变化如下表:价格x(元/个)…30 40 50 60 …销售量y(万个)… 5 4 3 2 …同时,销售过程中的其他开支(不含造价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?5.(2013?沙市区三模)某公司准备购进一批产品进行销售,该产品的进货单价为6元/个.根据市场调查,得到了四组关于日销售量y(个)与销售单价x(元/个)的数据,如表x 10 12 14 16y 300 240 180 120(1)如果在一次函数、二次函数和反比例函数这三个函数模型中,选择一个来描述日销售量与销售单价之间的关系,你觉得哪个合适?并写出y与x之间的函数关系式(不要求写出自变量的取值范围)(2)按照(1)中的销售规律,请你推断,当销售单价定为17.5元/个时,日销售量为多少?此时,获得日销售利润是多少?(3)为了防范风险,该公司将日进货成本控制在900元(含900元)以内,按照(1)中的销售规律,要想获得的日销售利润最大,那么销售单价应定为多少?并求出此时的最大利润.6.(2012?新区二模)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:x(万元) 1 2 2.5 3 5y A(万元)0.4 0.8 1 1.2 2信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B= ax2+bx,且投资2万元时获利润 2.4万元,当投资4万元时,可获利润 3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?7.“哪里的民营经济发展得好,哪里的经济就越发达.”恒强科技公司在重庆市委市政府这一执政理念的鼓舞下,在已有高科技产品A产生利润的情况下,决定制定一个开发利用高科技产品B的10年发展规划,该规翘晦年的专项投资资金是50万元,在前五年,每年从专项资金中最多拿出25万元投入到产品A使它产生利润,剩下的资金全部用于产品B的研发.经测算,每年投入到产品A中x万元时产生的利润y1(万元)满足下表的关系x(万元)10 20 30 40y1(万元) 2 8 10 8从第六年年初开始,产品B已研发成功,在产品A继续产生利润的同时产品B也产生利润,每年投入到产品B 中x万元时产生的利润y2(万元)满足.(1)请观察题目中的表格,用所学过的一次函数、二次函数或反比例函数的相关知识,求出y1与x的函数关系式?(2)按照此发展规划,求前5年产品A产生的最大利润之和是多少万元?(3)后5年,专项资金全部投入到产品A、产品B使它们产生利润,求后5年产品A、产品B产生的最大利润之和是多少万元?8.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.而且物价部门规定这种产品的销售价不得高于28元/千克,通过市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)的变化如下表:销售价x(元/千克)21 23 25 27销售量w(千克)38 34 30 26设这种产品每天的销售利润为y(元).(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出w与x所满足的函数关系式,并求出y与x所满足的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)该农户想要每天获得150元的销售利润,销售价应定为多少元?9.某商品每件成本60元,试销阶段每件商品的销售价x(元)与商品的日销售量y(件)之间的关系如下表,其中日销售量y是销售价x的函数.x(元)50 60 65 70 …y (件)100 80 70 60 …(1)请判断这种函数是一次函数、反比例函数,还是二次函数?并求出函数解析式;(2)要使每日的销售利润最大,每件商品的销售价应定为多少元?此时每日销售利润是多少?(3)要使这种商品每日的销售利润不低于600元,且每件商品的利润率不得高于40%,那么该商品的销售价x应定为多少?请直接写出结果.10.某厂设计了一款成本为20元∕件的公益用品投放市场进行试销.经过调查,得到如下数据:销售单价x(元∕件)…30 40 50 60 …每天销售量y(件)…500 400 300 200 …(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的y与x的函数关系,并求出函数关系式.(2)当销售单价定为多少时,该厂试销该公益品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地民政部门规定,若该厂销售此公益品单价不低于成本价且不超过46元/件时,该厂每销售一件此公益品,国家就补贴该厂a元利润(a>4),公司通过销售记录发现,日销售利润随销售单价的增大而增大,求a的取值范围.11.(2011?南昌模拟)阅读下列文字2010年广州亚运会前夕某公司生产一种时令商品每件成本为20元,经市场发现该商品在未来40天内的日销售量为a件,与时间t天的关系如下表:时间t(天) 1 3 6 10 36 …日销售量a(件)94 90 84 76 24 …未来40天内,前20天每天的价格b(元/件)与时间t的关系为b=t+25(1≤t≤20),后20天每天价格为c(元/件)与时间t的关系式为c=﹣t+40(21≤t≤40)解得下列问题(1)分析表中的数据,用所学过的一次函数,二次函数,反比例函数知识确定一个满足这些数据的a与t的函数关系式;(2)请预测未来40天中哪一天日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中该公司决定销售一件就捐赠n元(n<4)利润给亚运会组委会,通过销售记录发现前20天中,每天扣除捐赠后利润随时间t的增大而增大,求n的取值范围.12.2009年11月4日,上海市人民政府新闻办宣布上海迪斯尼项目报告已获国家有关部门核准.相应的周边城市效应也随即带动,某周边城市计划开通至上海的磁悬浮列车,列车走完全程包含启动加速、均匀运行、制动减速三个阶段,已知磁悬浮列车从启动加速到稳定匀速运行共需200秒,在这段时间内的相关数据如表所示:时间 t(秒)0 50 100 150 200速度V(米/秒)0 30 60 90 120路程s(米)0 750 3000 6750 12000(1)请你在一次函数、二次函数和反比例函数中选择合适的函数来分别表示在加速阶段(0≤t≤200)速度v与时间t的函数关系,路程s与时间t的函数关系.(2)最新研究表明,此种列车的稳定运行速度可达180米/秒,为了检测稳定运行时各项指标,在列车达到这一速度后至少要运行100秒,才能收集全相关数据.若在加速过程中,路程、速度随时间的变化关系任然满足(1)中的函数关系式,并且制动减速所需路程与启动加速的路程相同,根据以上要求,至少要建多长的轨道才能满足实验检测要求?13.(2013?蕲春县模拟)今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如表:周数x 1 2 3 4价格y(元/千克) 2 2.2 2.4 2.6(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x的函数关系式;(2)进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数y=﹣x2+bx+c,请求出5月份y与x的函数关系式;(3)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=x+1.2,5月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=x+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?14.(2014?宜兴市模拟)在气候对人类生存压力日趋加大的今天,发展低碳经济,全面实现低碳生活逐渐成为人们的共识,某企业采用技术革新,节能减排,今年前5个月二氧化碳排放量y(吨)与月份x(月)之间的关系如下表:月份x(月) 1 2 3 4 5 …二氧化碳排放量y(吨)48 46 44 42 40 …(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数关系能表示y和x的变化规律,请写出y与x的函数关系式;(2)随着二氧化碳排放量的减少,每排放一吨二氧化碳,企业相应获得的利润也有所提高,且相应获得的利润p(万元)与月份x(月)的函数关系如图所示,那么今年哪月份,该企业获得的月利润最大?最大月利润是多少万元?(3)受国家政策的鼓励,该企业决定从今年6月份起,每月二氧化碳排放量在上一个月的基础上都下降a%,与此同时,每排放一吨二氧化碳,企业相应获得的利润在上一个月的基础上都增加50%,要使今年6、7月份月利润的总和是今年5月份月利润的3倍,求a的值(精确到个位)(参考数据:,,,)15.(2010?安庆一模)某公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来4 0天内的日销售量m(件)与时间t(天)的关系如图.未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为(1≤t≤20,且t为整数),后20天每天的价格30元/件(21≤t≤40,且t为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.16.中央综治委在对全国各省市自治区2010年社会治安综合治理考评中,重庆市以93.48分居全国第一,成为全国最安全、最稳定的城市之一.市政府非常重视交巡警平台的建设,据统计,某行政区在去年前7个月内,交巡警平台的数量与月份之间的关系如下表:月份x(月) 1 2 3 4 5 6 7交巡警平台数量y1(个)32 34 36 38 40 42 44而由于部分地区陆续被划分到其它行政区,该行政区8至12月份交巡警平台数量y2(个)与月份x(月)之间存在如图所示的变化趋势:(1)请观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)2012年一月份,政府计划该区的交巡警平台数量比去年12份减少a%,在去年12月份的基础上每一个交巡警平台所需的资金量将增加0.1a%,某民营企业为表示对“平安重庆”的鼎力支持,决定在1月份对每个交巡警平台分别赞助30000元.若政府计划一月份用于交巡警平台的资金总额为126万元,请参考以下数据,估计a的整数值.(参考数据:872=7569,882=7744,892=7921)17.(2012?重庆模拟)樱桃含铁量位于各种水果之首,常食樱桃可促进血红蛋白再生,既可防治缺铁性贫血,又可增强体质,健脑益智.樱桃营养丰富,具有调中益气,健脾和胃,祛风湿,“令人好颜色,美志性”之功效,对食欲不振,消化不良,风湿身痛等症状均有益处,今年4月份,某樱桃种植基地种植的樱桃喜获丰收,4月1日至10日,销售价格y(元/千克)与天数x(天)(1≤x≤10且x为整数)的函数关系如下表:天数x 1 2 3 4 5 6 7 8 9 10市场价格y 19.5 19 18.5 18 17.5 17 16.5 16 15.5 15销售量z(千克)与天数x(天)(1≤x≤10且x为整数)之间存在如图所示的变化趋势;(1)请观察题中的表格,用所学过的一次函数,反比例函数或二次函数的有关知识,直接写出y与x之间的函数关系式,根据如图所示的变化趋势,直接写出z与x之间满足的一次函数关系式;(2)若采摘樱桃的人员费用m(元)与销售量z(千克)之间的函数关系式为:m=0.1z+100.则4月份前10天,哪天销售樱桃的利润最大,求出这个最大利润;(3)在(1)问的基础上,4月11日至4月12日,该樱桃种植基地调整了销售价格,每天都比前一天增加a%(0<a<20),在此影响下,销售量每天都比前一天减少100千克,若这两天销售樱桃的利润为80330元,请你参考以下数据,通过计算估算出整数值.(参考数据:742=5476,74.52=5550.25,752=5625)18.该厂生产了一种成本为20元∕个的小镜子投放市场进行试销.经过调查,得到如下数据:销售单价x(元∕个)…30 40 50 60 …每天销售量y(个)…500 400 300 200 …(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的y(个)与x(元∕个)之间的关系式;(2)当销售单价定为多少时,该厂试销这种镜子每天获得的总利润最大?最大利润是多少?(总利润=每个镜子的利润×销售量)参考答案与试题解析一.解答题(共18小题)1.(2014?武汉四月调考)某工厂生产一种矩形材料板,其长宽之比为3:2.每张材料板的成本c(单位:元)与它的面积(单位:cm2)成正比例,每张材料板的销售价格y(单位:元)与其宽x之间满足我们学习过的三种函数(即一次函数、反比例函数和二次函数)关系中的一种.下表记录了该工厂生产、销售该材料板一些数据.材料板的宽x(单位:cm)24 30 42 54成本c(单位:元)96 150 294 486销售价格y(单位:元)780 900 1140 1380(1)求一张材料板的销售价格y与其宽x之间的函数关系式,不要求写出自变量的取值范围;(2)若一张材料板的利润w为销售价格y与成本c的差.①请直接写出一张材料板的利润w与其宽x之间的函数关系,不要求写出自变量的取值范围;②当材料板的宽为多少时,一张材料板的利润最大?最大利润是多少.考点:二次函数的应用.分析:(1)根据图表可知所有点在一条直线上,故是一次函数;(2)①因为长宽之比为3:2,当宽为x时,则长为 1.5x,根据矩形的面积公式可得x和y的关系进而得到c和x的关系,所以一张材料板的利润w与其宽x之间的函数关系可求出;②利用①中的函数性质即可求出当材料板的宽为多少时,一张材料板的利润最大,以及最大利润是多少.解答:解:(1)根据表中的数据判断,销售价格y于宽x之间的函数关系不是反比例函数关系,假设是一次函数,设其解析式为y=kx+b,则24k+b=780,30k+b=900,解得:k=20,b=300,将x=42,y=1140和x=54,y=1380代入检验,满足条件所以其解析式为y=20x+300;(2)①∵矩形材料板,其长宽之比为3:2,∴当宽为x时,则长为 1.5x,∴w=yx?1.5x﹣x?1.5x=(20x+300)x?1.5x﹣x?1.5x,=﹣x2+20x+300;②由①可知:w=﹣x2+20x+300,=﹣(x﹣60)2+900,∴当材料板的宽为60cm时,一张材料板的利润最大,最大利润是900元.点评:本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.2.(2001?安徽)某工厂生产的A种产品,它的成本是2元,售价是3元,年销量为100万件,为了获得更好的效益,厂家准备拿出一定的资金做广告;根据统计,每年投入的广告费是x(十万元),产品的年销量将是原销售量的y倍,且y是x的二次函数,它们的关系如表:x(十万元)0 1 2y 1 1.5 1.8(1)求y与x的函数关系式;(2)如果把利润看成销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元的函数关系式);(3)如果投入的年广告费为10万元~30万元,问广告费在什么范围内,工厂获得的利润最大?最大利润是多少?考点:二次函数的应用.专题:压轴题.分析:(1)根据题意可求出y与x的二次函数关系式.(2)根据题意可知S=(3﹣2)×100y÷10﹣x=﹣x2+5x+10;(3)根据解析式求最值即可.解答:解:(1)设y与x的函数关系式为y=ax2+bx+c,由题意得:,解得:,∴y 与x 的函数关系式为:y=﹣0.1x 2+0.6x+1;(2)∵利润=销售总额减去成本费和广告费,∴S=(3﹣2)×100y ÷10﹣x=﹣x 2+5x+10;(3)S=﹣x 2+5x+10=﹣(x ﹣2.5)2+16.25,当x=2.5时,函数有最大值.所以x <2.5是函数的递增区间,由于1≤x ≤3,所以1≤x ≤2.5时,S 随x 的增大而增大.∴x=2.5时利润最大,最大利润为16.25(十万元).点评:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.要学会用二次函数解决实际问题.3.(2014?合肥模拟)某工厂共有10台机器,生产一种仪器元件,由于受生产能力和技术水平等因素限制,会产生一定数量的次品.每台机器产生的次品数p (千件)与每台机器的日产量x (千件)(生产条件要求4≤x ≤12)之间变化关系如表:日产量x (千件/台)… 5 6 7 8 9 …次品数p (千件/台)…0.7 0.6 0.7 1 1.5 …已知每生产1千件合格的元件可以盈利 1.6千元,但没生产1千件次品将亏损0.4千元.(利润=盈利﹣亏损)(1)观察并分析表中p 与x 之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识求出p(千件)与x (千件)的函数解析式;(2)设该工厂每天生产这种元件所获得的利润为y (千元),试将y 表示x 的函数;并求当每台机器的日产量x (千件)为多少时所获得的利润最大,最大利润为多少?考点:二次函数的应用.分析:(1)由表格中的数据可以看出p 与x 是二次函数关系,根据对称点找出顶点坐标(6,0.6),设出顶点式代入点求得函数即可;(2)根据实际利润=合格产品的盈利﹣生产次品的亏损将生产这种元件所获得的实际利润y (万元)表示为日产量x (万件)的函数;再进一步求得最值即可.解答:解:(1)根据表格中的数据可以得出:p 与x 是二次函数关系,且图象经过的顶点坐标为(6,0.6),设函数解析式为p=a (x ﹣6)2+0.6,把(8,1)代入,的4a+0.6=1解得a=0.1,所以函数解析式为p=0.1(x ﹣6)2+0.6=0.1x 2﹣1.2x+4.2;(2)y=10[1.6(x ﹣p )﹣0.4p]=16x ﹣20p =16x ﹣20(0.1x 2﹣1.2x+4.2)=﹣2x 2+40x ﹣84(4≤x ≤12)y=﹣2x 2+40x ﹣84 =﹣2(x ﹣10)2+116,∵4≤x ≤12∴当x=10时,y 取得最大值,最大利润为116千元答:当每台机器的日产量为10千件时,所获得的利润最大,最大利润为116千元.点评:此题考查的知识点是根据实际问题选择函数类型,熟练掌握二次函数的图象和性质是解答的关键.4.(2013?乌鲁木齐)某公司销售一种进价为20元/个的计算机,其销售量y (万个)与销售价格x (元/个)的变化如下表:价格x (元/个)…30 40 50 60 …销售量y (万个)… 5 4 3 2 …同时,销售过程中的其他开支(不含造价)总计40万元.(1)观察并分析表中的y 与x 之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y (万个)与x (元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z (万个)与销售价格x (元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x (元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?考点:二次函数的应用.专题:压轴题.分析:(1)根据数据得出y与x是一次函数关系,进而利用待定系数法求一次函数解析式;(2)根据z=(x﹣20)y﹣40得出z与x的函数关系式,求出即可;(3)首先求出40=﹣(x﹣50)2+50时x的值,进而得出x(元/个)的取值范围.解答:解:(1)根据表格中数据可得出:y与x是一次函数关系,设解析式为:y=ax+b,则,解得:,故函数解析式为:y=﹣x+8;(2)根据题意得出:z=(x﹣20)y﹣40=(x﹣20)(﹣x+8)﹣40=﹣x2+10x﹣200,=﹣(x2﹣100x)﹣200=﹣[(x﹣50)2﹣2500]﹣200=﹣(x﹣50)2+50,故销售价格定为50元/个时净得利润最大,最大值是50万元.(3)当公司要求净得利润为40万元时,即﹣(x﹣50)2+50=40,解得:x1=40,x2=60.如上图,通过观察函数y=﹣(x﹣50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60.而y与x的函数关系式为:y=﹣x+8,y随x的增大而减少,因此,若还需考虑销售量尽可能大,销售价格应定为40元/个.点评:此题主要考查了二次函数的应用以及待定系数法求一次函数解析式、二次函数最值问题等知识,根据已知得出y与x的函数关系是解题关键.5.(2013?沙市区三模)某公司准备购进一批产品进行销售,该产品的进货单价为6元/个.根据市场调查,得到了四组关于日销售量y(个)与销售单价x(元/个)的数据,如表。

中考数学专题训练:方案设计型(含答案)

中考数学专题训练:方案设计型(含答案)
苦荞茶
青花椒
野生蘑菇
每辆汽车运载量(吨)
A型
2
2
B型
4
2
C型
1
6
车型
A
B
C
每辆车运费(元)
1500
1800
2000
(1)设A型汽车安排 辆,B型汽车安排 辆,求 与 之间的函数关系式.
(2)如果三种型号的汽车都不少于4辆,车辆安排有几种方案?并写出每种方案.
(3)为节约运费,应采用(2)中哪种方案?并求出最少运费.
总收入(单位:元)

3
1
12 500

2
3
16 500
说明:不同种植户种植的同类蔬菜每亩的平均收入相等;亩为土地面积单位.
(1)求A,B两类蔬菜每亩的平均收入各是多少元;
(2)某种植户准备租20亩地用来种植A,B两类蔬菜,为了使总收入不低于63 000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有的租地方案.
根据题意列,得
解得20≤a≤22.
∵总利润W=5a+10(100-a)=-5a+1 000,W是关于x的一次函数,W随x的增大而减小,
∴当x=20时,W有最大值,此时W=900,且100-20=80,
答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
2.今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环保意识,节约用水,某校数学教师编造了一道应用题:为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:
设商店销售完毕后获得的利润为w元,
则w=(2200﹣2000)a+(1800﹣1600)a+(1100﹣1000)(100﹣2a)=200a+10000,

2014年重庆中考数学应用题22训练及答案

2014年重庆中考数学应用题22训练及答案

2014年重庆中考数学应用题训练及答案22.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费下表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a0.80超过17吨不超过30吨的部分b0.80超过30吨的部分 6.00 0.80[说明:①每户产生的污水量等于该户的用水量;②水费=自来水费+污水处理费]已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元(1)求a,b的值(2)随着夏天的到来用水量将增加,为了节约开支,小王计划把6月份水费控制在家庭月收入的2 %,若小王家月收入为9200元,则小王家6月份最多能用水多少吨?22. 为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始.某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1) 在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?(2) 若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这l228台汽车用户共补贴了多少万元?1) 设政策出台前一个月,销售手动型和自动型汽车分别为x、y台依题意得方程组x+y=960 ①1.3x+1.25y=1228 ②由①得x=960-y 代入②得1.3(960-y)+1.25y=1228- 0.05y=-20y=400 x=560所以政策出台前一个月,销售手动型和自动型汽车分别为400、560台(2) 政策出台后一个月销售手动型车 1.3x=520 台销售自动型车 1.25y=700台政府共补贴520×8×0.05+700×9×0.05=208+315=523万元H N禽流感影响,家禽销量大幅下滑。

2014年全国中考数学试卷解析分类汇编:二元一次方程(组)及其应用

2014年全国中考数学试卷解析分类汇编:二元一次方程(组)及其应用

二元一次方程(组)及其应用一、选择题1. (2014•山东烟台,第5题3分)按如图的运算程序,能使输出结果为3的x ,y 的值是( )A . x =5,y =﹣2B . x =3,y =﹣3C . x =﹣4,y =2D . x =﹣3,y =﹣9 考点:实数的运算,二元一次方程的解.分析:根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.解答:由题意得,2x ﹣y =3,A 、x =5时,y =7,故本选项错误;B 、x =3时,y =3,故本选项错误;C 、x =﹣4时,y =﹣11,故本选项错误;D 、x =﹣3时,y =﹣9,故本选项正确.故选D .点评:本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.2.(2014•江西抚州,第6题,3分)已知a 、b 满足方程组2226a b a b -=⎧⎨+=⎩,则3a b +的值为( )A. 8B. 4C. -4D. -8 解析:选A . ∵方程(1)+方程(2)即可得a b +=38.3.(2014•娄底4.(3分))方程组的解是( ),.二、填空题1. (2014•山东枣庄,第14题4分)已知x、y是二元一次方程组的解,则代数式22解:,()=故答案为:.2. (2014•浙江杭州,第13题,4分)设实数x、y满足方程组,则x+y=8.,队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队.4. (2014•年山东东营,第15题4分)如果实数x,y满足方程组,那么代数式(+2)÷的值为 1 .考点:分式的化简求值;解二元一次方程组.菁优网专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出方程组的解得到x与y的值,代入计算即可求出值.解答:解:原式=•(x+y)=xy+2x+2y,方程组,解得:,当x=3,y=﹣1时,原式=﹣3+6﹣2=1.故答案为:1点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.5.(2014•江苏徐州,第11题3分)函数y=2x与y=x+1的图象交点坐标为(1,2).考点:两条直线相交或平行问题.菁优网专题:计算题.分析:根据两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解,所以解方程组即可得到两直线的交点坐标.解答:解:解方程组得,所以函数y=2x 与y=x+1的图象交点坐标为(1,2).故答案为(1,2).点评: 本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.三、解答题1. (2014•山东威海,第19题7分)解方程组:. 解:方程组整理得:,则方程组的解为2.(2014山东济南,第24题,8分)(本小题满分8分)2014年世界杯足球赛在巴西举行,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元.其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?【解析】设小李预定了小组赛球票x 张,淘汰赛球票y 张,由题意有⎩⎨⎧=+=+580070055010y x y x ,解之⎩⎨⎧==28y x . 所以,小李预定了小组赛球票8张,淘汰赛球票2张.3. (2014•山东聊城,第22题,8分)某服装店用6000元购进A ,B 两种新式服装,按标价,这两种服装的进价、标价如表所示:(2)如果A 中服装按标价的8折出售,B 中服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?.件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设每件甲种玩具的进价是x元,每件乙种玩具的进价是y元,根据“5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元”列出方程组解决问题;(2)分情况:不大于20件;大于20件;分别列出函数关系式即可;(3)设购进玩具x件(x>20),分别表示出甲种和乙种玩具消费,建立不等式解决问题.解答:解:(1)设每件甲种玩具的进价是x元,每件乙种玩具的进价是y元,由题意得,解得,答:件甲种玩具的进价是30元,每件乙种玩具的进价是27元;(2)当0<x≤20时,y=30x;当x>20时,y=20×30+(x﹣20)×30×0.7=21x+180;(3)设购进玩具x件(x>20),则乙种玩具消费27x元;当27x=21x+180,则x=30所以当购进玩具正好30件,选择购其中一种即可;当27x>21x+180,则x>30所以当购进玩具超过30件,选择购甲种玩具省钱;当27x<21x+180,则x<30所以当购进玩具少于30件,选择购乙种玩具省钱.点评:此题考查二元一次方程组,一次函数,一元一次不等式的运用,理解题意,正确劣势解决问题.5.( (2014年河南) 21,10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。

2014 2014年中招考试数学试卷及答案

2014   2014年中招考试数学试卷及答案

2014年数学试卷及答案一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-32. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).133.如图,直线AB、CD相交于O,射线OM平分∠AOC,O N⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350(B). 450(C) .550(D). 6504.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b25.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(c)神州飞船发射前钻要对冬部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查6:将两个长方体如图放皿,到所构成的几何体的左视田可能是()7.如图, ABCD 的对角线AC 与BD 相交于点O,AB ⊥AC.若AB =4,AC =6,则BD 的长是( ) (A)8 (B) 9 (C)10 (D )118.如图,在Rt △ABC 中,∠C=900,AC=1cm ,BC=2cm ,点P 从A 出发,以1cm/s 的速沿折线AC CB BA 运动,最终回到A 点。

设点P 的运动时间为x (s ),线段AP 的长度为y (cm ),则能反映y 与x 之间函数关系的图像大致是 ( )二、填空题(每小题3分,共21分) 9.计算:2-= . 10.不等式组3x 6042x 0+≥⎧⎨-⎩>的所有整数解的和是.11.在△ABC 中,按以下步骤作图:①分别以B 、C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M 、N ;②作直线MN 交AB 于点D ,连接CD. 若CD=AC ,∠B=250,则∠ACB 的度数为 .12.已知抛物线y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB 的长为 .13.一个不进明的袋子中装有仅颇色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 .14.如图,在菱形ABCD 中,AB =1,∠DAB=600,把菱形ABCD 绕点A 顺时针旋转300得到菱形AB'C'D',其中点C 的运动能路径为/CC,则图中阴影部分的面积为 .15.如图,矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D /落在∠ABC 的角平分线上时,DE 的长为 .三、解答题(本大题共8个,满分75分) 16.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中117.(9分)如图,CD 是⊙O 的直径,且CD=2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线PA 、PB ,切点分别为点A 、B.(1)连接AC,若∠APO =300,试证明△ACP 是等腰三角形; (2)填空:①当DP= cm 时,四边形AOBD 是菱形; ②当DP= cm 时,四边形AOBP 是正方形.18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; (2)请补全条形统计图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A测得潜艇C的俯角为300.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为680.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数。

【初中数学】2014年全国中考数学试卷解析分类汇编(49专题) 通用4

【初中数学】2014年全国中考数学试卷解析分类汇编(49专题) 通用4

一元一次方程及其应用一、选择题1. (2014年湖北咸宁2.(3分))若代数式x+4的值是2,则x等于()A. 2 B.﹣2 C. 6 D.﹣6考点:解一元一次方程;代数式求值.分析:根据已知条件列出关于x的一元一次方程,通过解一元一次方程来求x的值.解答:解:依题意,得x+4=2移项,得x=﹣2故选:B.点评:题实际考查解一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.二、填空题1. (2014•娄底13.(3分))已知关于x的方程2x+a﹣5=0的解是x=2,则a的值为1.三、解答题1.(2014•江西抚州,第19题,8分)情景:试根据图中的信息,解答下列问题:⑴购买6根跳绳需元,购买12根跳绳需元.⑵小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.解析:(1)25×6=150, 25×0.8×12=240.(2)有这种可能.设小红买了x根跳绳,则25×0.8·x=25(x-2)-5 ,解得x=11.∴小红买了11根跳绳.2.(2014•山东淄博,第21题8分)为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:档次每户每月用电数(度)执行电价(元/度)第一档小于等于200 0.55第二档大于200小于400 0.6第三档大于等于400 0.85例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各月电多少度?考点:一二元一次方程的应用.菁优网分析:某户居民五、六月份共用电500度,就可以得出每月用电量不可能都在第一档,分情况讨论,当5月份用电量为x度≤200度,6月份用电(500﹣x)度,当5月份用电量为x 度>200度,六月份用电量为(500﹣x)度>x度,分别建立方程求出其解即可.解答:解:当5月份用电量为x度≤200度,6月份用电(500﹣x)度,由题意,得0.55x+0.6(500﹣x)=290.5,解得:x=190,∴6月份用电500﹣x=310度.当5月份用电量为x度>200度,六月份用电量为(500﹣x)度,由题意,得0.6x+0.6(500﹣x)=290.5,300=290.5,原方程无解.∴5月份用电量为190度,6月份用电310度.点评:本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,分类讨论思想的运用,解答时由总价=单价×数量是关键.。

辽宁中考--列方程解应用题-2014

辽宁中考--列方程解应用题-2014

1.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为2.在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为3.某校成立“情暖校园”爱心基金会,去年上半年发给每个经济困难学生400元,今年上半年发给了500元.设每半年发给的资助金额的平均增长率为x,根据题意可列方程组为4.某商店销售一种玩具,每件售价90元,可获利15%,求这种玩具的成本价.设这种玩具的成本价为x 元,依题意可列方程5.小明和小丽到文化用品商店帮助同学们买文具.小明买了3支笔和2个圆规共花19元;小丽买了5支笔和4个圆规共花35元.设每支笔x元,每个圆规y元.根据题意可列方程组为6.某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件x个,依题意列方程为7.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,根据题意可列方程组为8.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件.若使利润最大,每件的售价应为元.9.某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.10.某城市的A商场和B商场都卖同一种电动玩具,A商场的单价与B商场的单价之比是5:4,用120元在A商场买这种电动玩具比在B商场少买2个,求这种电动玩具在A商场和B商场的单价.11.某工程开准备招标,指挥部现接到甲乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙合作16天可以完成.求甲、乙两队单独完成这项工程各需多少天.12.某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?13.某服装厂接到一份加工3000件服装的订单.应客户要求,需提前供货,该服装厂决定提高加工速度,实际每天加工的件数是原计划的1.5倍,结果提前10天完工.原计划每天加工多少件服装?14.晨光文具店用进货款1620元购进A 品牌的文具盒40个,B 品牌的文具盒60个,其中A 品牌文具盒的进货单价比B 品牌文具盒的进货单价多3元.(1)求A 、B 两种文具盒的进货单价?(2)已知A 品牌文具盒的售价为23元/个,若使这批文具盒全部售完后利润不低于500元,B 品牌文具盒的销售单价最少是多少元?15.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A ,B 两种型号的低排量汽车,其中A 型汽车的进货单价比B 型汽车的进货单价多2万元 花50万元购进A 型汽车的数量与花40万元购进B 型汽车的数量相同,销售中发现A 型汽车的每周销量y A (台)与售价x (万元/台)满足函数关系式y A =-x+20,B 型汽车的每周销量y B (台)与售价x (万元/台)满足函数关系式y B =-x+14.(1)求A 、B 两种型号的汽车的进货单价;(2)已知A 型汽车的售价比B 型汽车的售价高2万元/台,设B 型汽车售价为t 万元/台.每周销售这两种车的总利润为W 万元,求W 与t 的函数关系式,A 、B 两种型号的汽车售价各为多少时,每周销售这两种车的总利润最大?最大总利润是多少万元?16.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x (x≥60)元,销售量为y 套.(1)求出y 与x 的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax 2+bx+c (a≠0)的顶点坐标是)44,2(2a b ac a b --]17.为培养学生养成良好的“爱读书,读好书,好读书”的习惯,我市某中学举办了“汉字听写大赛”,准备为获奖同学颁奖.在购买奖品时发现,一个书包和一本词典会花去48元,用124元恰好可以购买3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)学校计划用总费用不超过900元的钱数,为获胜的40名同学颁发奖品(每人一个书包或一本词典),求最多可以购买多少个书包?18.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.(1)求每台A种、B种设备各多少万元?(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?19.为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?20.某旅游景点的门票价格是20元/人,日接待游客500人,进入旅游旺季时,景点想提高门票价格增加盈利.经过市场调查发现,门票价格每提高5元,日接待游客人数就会减少50人.设提价后的门票价格为x(元/人)(x>20),日接待游客的人数为y(人).(1)求y与x(x>20)的函数关系式;(2)已知景点每日的接待成本为z(元),z与y满足函数关系式:z=100+10y.求z与x的函数关系式;(3)在(2)的条件下,当门票价格为多少时,景点每日获取的利润最大?最大利润是多少?(利润=门票收入-接待成本)21.某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程对所用天数是乙工程队的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队单独做a天后,再由甲、乙两工程队合作(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.22.巴西世界杯足球赛期间,某商店购进一批单价为30元的纪念品,如果按每件40元出售,那么每天可销售100件.经市场调研发现,纪念品的销售单价每上涨1元,其销售量每天相应减少5件,如果每件纪念品的利润不超过40%,设纪念品的销售单价上涨x元,每天销售量为y件.(1)直接写出y与x之间的函数关系式.(2)将纪念品销售单价定为多少,才能使每天所获销售利润最大?最大利润是多少?23.甲乙两人在一环形场地上锻炼,甲骑自行车,乙跑步,甲比乙每分钟快200m,两人同时从起点同向出发,经过3min两人首次相遇,此时乙还需跑150m才能跑完第一圈.(1)求甲、乙两人的速度分别是每分钟多少米?(列方程或者方程组解答)(2)若两人相遇后,甲立即以每分钟300m的速度掉头向反方向骑车,乙仍按原方向继续跑,要想不超过1.2min两人再次相遇,则乙的速度至少要提高每分钟多少米?24.楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价-进价)25.小明和爸爸进行登山锻炼,两人同时从山脚下出发,沿相同路线匀速上山,小明用8分钟登上山顶,此时爸爸距出发地280米.小明登上山顶立即按原路匀速下山,与爸爸相遇后,和爸爸一起以原下山速度返回出发地.小明、爸爸在锻炼过程中离出发地的路程y1(米)、y2(米)与小明出发的时间x(分)的函数关系如图.(1)图中a= ,b= ;(2)求小明的爸爸下山所用的时间26.随着生活质量的提高,人们健康意识逐渐增强,安装净水设备的百姓家庭越来越多.某厂家从去年开始投入生产净水器,生产净水器的总量y(台)与今年的生产天数x(天)的关系如图所示.今年生产90天后,厂家改进了技术,平均每天的生产数量达到30台.(1)求y与x之间的函数表达式;(2)已知该厂家去年平均每天的生产数量与今年前90天平均每天的生产数量相同,求厂家去年生产的天数;(3)如果厂家制定总量不少于6000台的生产计划,那么在改进技术后,至少还要多少天完成生产计划?27.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y (千克)与销售价x (元/千克)之间的函数关系如图所示:(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)求每天的销售利润W (元)与销售价x (元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?28.在“玉龙”自行车队的一次训练中,1号队员以高于其他队员10千米/时的速度独自前行,匀速行进一段时间后,又返回队伍,在往返过程中速度保持不变.设分开后行进的时间为x (时),1号队员和其他队员行进的路程分别为y 1、y 2(千米),并且y 1、y 2与x 的函数关系如图所示:(1)1号队员折返点A 的坐标为,如果1号队员与其他队员经过t 小时相遇,那么点B 的坐标为 ;(用含t 的代数式表示)(2)求1号队员与其他队员经过几小时相遇?(3)在什么时间内,1号队员与其他队员之间的距离大于2千米?29.某商场在1月至12月份经销某种品牌的服装,由于受到时令的影响,该种服装的销售情况如下:销售价格y 1(元/件)与销售月份x (月)的关系大致满足如图的函数,销售成本y 2(元/件)与销售月份x (月)满足⎪⎩⎪⎨⎧≤≤<≤+-=)126(314)61(100102为整数且为整数且x x x x x x y ,月销售量y 3(件)与销售月份x (月)满足y 3=10x+20. (1)根据图象求出销售价格y 1(元/件)与销售月份x (月)之间的函数关系式;(6≤x≤12且x 为整数)(2)求出该服装月销售利润W (元)与月份x (月)之间的函数关系式,并求出哪个月份的销售利润最大?最大利润是多少?(6≤x≤12且x 为整数)30.小明家今年种植的草莓喜获丰收,采摘上市20天全部销售完,爸爸让他对今年的销售情况进行跟踪记录,小明利用所学的数学知识将记录情况绘成图象(所得图象均为线段),日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,草莓的价格w(单位:元/千克)与上市时间x(单位:天)的函数关系如图2所示.(1)观察图象,直接写出当0≤x≤11时,日销售量y与上市时间x之间的函数解析式为;当11≤x≤20时,日销售量y与上市时间x之间的函数解析式为.(2)试求出第11天的销售金额;(3)若上市第15天时,爸爸把当天能销售的草莓批发给了邻居马叔叔,批发价为每千克15元,马叔叔到市场按照当日的价格w元/千克将批发来的草莓全部销售完,他在销售的过程中,草莓总质量损耗了2%.那么,马叔叔支付完来回车费20元后,当天能赚到多少元?31.如图1,长为60km的某段线路AB上有甲、乙两车,分别从南站A和北站B同时出发相向而行,到达B、A后立刻返回到出发站停止,速度均为30km/h,设甲车,乙车距南站A的路程分别为y甲,y乙(km)行驶时间为t(h).(1)图2已画出y甲与t的函数图象,其中a= ,b= ,c= .(2)分别写出0≤t≤2及2<t≤4时,y乙与时间t之间的函数关系式.(3)在图2中补画y乙与t之间的函数图象,并观察图象得出在整个行驶过程中两车相遇的次数.。

中考数学应用题专项练习

中考数学应用题专项练习

中考数学应用题专项练习1. 某生态农业有限公司帮助和指导当地车厘子种植基地种植和销售车厘子,已知该车厘子的成本是12元/千克,规定销售价格不高于成本的2倍。

经市场调查发现,该车厘子的销售量y(千克)与销售价格x(元/千克)之间的函数关系如图所示:(1) 求y与x的函数关系式;(2) 当销售价格为多少时,销售车厘子所获的利润W最大?并求出此时的最大利润。

2. 某网店销售一种消毒用紫外线灯很畅销,该网店店主结合店铺数据发现日销量y(件)是售价x(元/件)的一次函数,其售价、日销售量、日销售纯利润W(元)的四组对应值如表:已知该商品进价是100元/件,该网店每日的固定成本折算下来为2000元。

注:日销售纯利润=日销售量×(售价-进价)-每日固定成本。

(1) 求y与x的函数关系式;(2) 当售价x(元/件)定为多少时,日销售纯利润W(元)最大?求出最大纯利润。

3. 某乡镇的主要经济作物为茶叶,该地政府为了推进乡村振兴战略,解决当地茶农卖茶困难的问题,决定在新茶上市30天内,帮助茶农集中销售.根据销售记录发现:第1天销售量为42斤,后面每天比前一天增加2斤;前10天的价格为500元/斤,后20天价格每天比前一天降低10元,设第x天(x为整数)的售价为y(元/斤),日销售额为w(元)。

(1) 求y与x的函数关系式;(2) 当第几天时日销售额w最大?求最大的日销售额。

4. 作为全球三大黄肉型猕猴桃种植地之一,成都市蒲江县是世界上少有、成都唯一的红、黄、绿三色齐聚的猕猴桃产地.某水果经销商到猕猴桃种植基地采购一种红心猕猴桃,经销商一次性采购红心猕猴桃的采购单价y(元/千克)与采购量x(千克)之间的函数关系如图所示。

(1) 求y与x的函数关系式;(2) 若红心猕猴桃的种植成本为6元/千克,某经销商一次性采购红心猕猴桃的采购量不超过200千克,求当采购量是多少时,猕猴桃种植基地获利最大?求最大利润。

5. 端午节前,某商店用8000元购进一批粽子礼盒,很快售完,于是商店又用20000元购进了第二批粽子礼盒,所购数量是第一批购进量的两倍,但每个礼盒的进价贵了20元。

中考初中数学应用题经典练习题

中考初中数学应用题经典练习题

中考初中数学应用题经典练习题中考初中数学应用题经典练题一、综合题(共8题;共85分)1.(10分)(2015•深圳)下表为深圳市居民每月用水收费标准,(单位:元/m3)。

根据表格,当用水量不超过22立方米时,每立方米的水费为a元,超过22立方米后,每立方米的水费为1.5元。

1) 已知某用户用水10立方米,共交水费23元,求a的值。

解:设a为每立方米的水费。

当用水量不超过22立方米时,总用水量为10立方米,总水费为10a元。

当用水量超过22立方米时,总用水量为0立方米,总水费为0元。

因此,总水费为10a元,根据题意,有10a+12(1.5)=23,解得a=1.05.2) 在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?解:当用水量不超过22立方米时,总用水量为x立方米,总水费为xa元。

当用水量超过22立方米时,总用水量为5月份用水量减去22立方米,总水费为(5月份用水量-22)×1.5元。

因此,总水费为xa+(5月份用水量-22)×1.5元,根据题意,有xa+(5月份用水量-22)×1.5=71,代入a=1.05,解得5月份用水量为34立方米。

2.(10分)XXX要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜,若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元。

1) 求每个A型放大镜和每个B型放大镜各多少元?设每个A型放大镜的价格为x元,每个B型放大镜的价格为y元。

根据题意,有8x+5y=220,4x+6y=152.解得x=12,y=28,因此每个A型放大镜12元,每个B 型放大镜28元。

2) XXX决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?设购买A型放大镜的数量为m,购买B型放大镜的数量为n。

根据题意,有mx+ny≤1180,m+n=75.要求购买的A型放大镜数量最多,即要求x/m的值最小。

2014年全国中考数学试题分类汇编04 一元一次方程及其应用(含解析)

2014年全国中考数学试题分类汇编04 一元一次方程及其应用(含解析)

一元一次方程及其应用一、选择题1.(2014·台湾,第19题3分)桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3︰4︰5.若不计杯子厚度,则甲杯内水的高度变为多少公分?()A.5.4 B.5.7 C.7.2 D.7.5分析:根据甲、乙、丙三杯内水的高度比变为3︰4︰5,设后来甲、乙、丙三杯内水的高度为3x、4x、5x,由表格中的数据列出方程,求出方程的解得到x的值,即可确定出甲杯内水的高度.解:设后来甲、乙、丙三杯内水的高度为3x、4x、5x,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4,则甲杯内水的高度变为3×2.4=7.2(公分).故选C.点评:此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.2.(2014•滨州,第4题3分)方程2x﹣1=3的解是().二、填空题1.(2014•浙江湖州,第11题4分)方程2x﹣1=0的解是x=.分析:此题可有两种方法:(1)观察法:根据方程解的定义,当x=时,方程左右两边相等;(2)根据等式性质计算.即解方程步骤中的移项、系数化为1.解:移项得:2x=1,系数化为1得:x=.点评:此题虽很容易,但也要注意方程解的表示方法:填空时应填x=,不能直接填.2. (2014•湘潭,第15题,3分)七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为2x+56=589﹣x.三、解答题1. (2014•益阳,第18题,8分)“中国﹣益阳”网上消息,益阳市为了改善市区交通状况,计划在康富路的北端修建通往资江北岸的新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BAD=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.(第1题图),,==4×2. (2014•益阳,第19题,10分)某电器超市销售每台进价分别为200元、170元的A、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.依题意得:,解得:3. (2014•株洲,第20题,6分)家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米;(2)他上山2小时到达的位置,离山顶还有1千米;(3)抄近路下山,下山路程比上山路程近2千米;(4)下山用1个小时;根据上面信息,他作出如下计划:(1)在山顶游览1个小时;(2)中午12:00回到家吃中餐.若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?4. (2014年江苏南京,第25题)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?(第4题图)考点:一次函数的解析式的运用,一元一次方程的运用分析:(1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.解答:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15﹣5=10,小明骑车在上坡路的速度为:15+5=20.∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意,得,解得:,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2+b2,由题意,得,解得:,∴y=﹣20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意,得10t+1.5=﹣20(t+0.15)+16.5,解得:t=0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出一次函数的解析式是关键.5. (2014•泰州,第20题,8分)某篮球运动员去年共参加40场比赛,其中3分球的命中率为0.25,平均每场有12次3分球未投中.(1)该运动员去年的比赛中共投中多少个3分球?(2)在其中的一场比赛中,该运动员3分球共出手20次,小亮说,该运动员这场比赛中一定投中了5个3分球,你认为小亮的说法正确吗?请说明理由.=126.(2014·浙江金华,第20题8分)一种长方形餐桌的四周可坐6 从用餐,现把若干张这样的餐桌按如图方式拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?【答案】(1)18,34;(2)22.【解析】7.(2014•浙江宁波,第24题10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?,∴盒子的个数为:=308.(2014•滨州,第19题3分)(1)解方程:2﹣=9.(2014•德州,第20题8分)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?10.(2014•菏泽,第17题7分)(1)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输,某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?。

2014中考数学专题训练:应用题专项训练(一)

2014中考数学专题训练:应用题专项训练(一)

第1页共1页 应用题专项训练(一)1.某校九年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品.经了解得知,该超市的A ,B 两种笔记本的单价分别是12元和8元,他们准备购买两种笔记本共30本.(1)如果他们计划用300元购买奖品,且钱恰好花完,那么可行的购买方案是( )(2)两位老师根据演讲比赛的设奖情况,决定所购买的A 种笔记本的数量要少于B 种笔记本数量的32,但又不少于B 种笔记本数量的31.若设他们购买A 种笔记本n 本,购买这两种笔记本共花费W 元,则W 与n 之间的函数关系式为( )(写出自变量的取值范围)(3)在(2)的条件下,W 的最小值为( )2.某商店为了抓住文化艺术节的商机,决定购进A ,B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件,需要800元.(1)购进A ,B 两种纪念品每件分别需要多少元?( )(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7 500元,但不超过7 650元,则该商场共有( )种进货方案.(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在(2)中的各种进货方案中,可获得的最大利润是( )元.3.某商场计划购进冰箱、彩电进行销售,相关信息如下表:已知商场用80 000元购进冰箱的数量与用64 000元购进彩电的数量相等.(1)表中a 的值为( )(2)为了满足市场需求,商场决定用不超过9万元采购冰箱、彩电共50台,且冰箱的数量不少于彩电数量的65.则该商场有( )种进货方案.(3)在(2)的条件下,若该商场将购进的冰箱、彩电全部售出,获得的利润为W 元,则W 的最大值为( )。

【江苏版】2014届中考数学专题(16)应用题(九年级上期末考试分类解析汇编)

【江苏版】2014届中考数学专题(16)应用题(九年级上期末考试分类解析汇编)

一、选择题1.【扬州市邗江区】某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()A.48(1﹣x)2=36 B.48(1+x)2=36C.36(1﹣x)2=48 D.36(1+x)2=48二、填空题1.【江阴市青阳片】某商场销售额3月份为16万元,5月份为25万元,设商场这两个月销售额的的平均增长率为x,则可列方程为_________________2.【南京市高淳区】某种药品原价为60元/盒,经过连续两次降价后售价为48.6元/盒.设平均每次降价的百分率为x,则根据题意,可列方程为.考点:一元二次方程的应用(增长率问题).3.【泰州市姜堰区】一种药品经过两次降价,药价从每盒100元调至每盒81元,则平均每次降价的百分率是____________4.【无锡市滨湖中学】某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1640张相片,如果全班有x名学生,根据题意,列出方程为___________.三、解答题1.【无锡市滨湖中学】某公司销售一种新型节能电子小产品,现准备从国内和国外两种销售方案中选择一种进行销售:①若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=-1100x+150,成本为20元/件,月利润为W内(元);②若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳1100x2元的附加费,月利润为W外(元).(1)若只在国内销售,当x=1000(件)时,y=(元/件);(2)分别求出W内、W外与x间的函数关系式(不必写x的取值范围);(3)若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值.2.【兴化市茅山中心校】东方商场购进一批单价为20元的日用品,销售一段时间后,经调查发现,若按每件24元的价格销售时,每月能卖36件;若按每件29元的价格销售时,每月能卖21件,假定每月销售件数y(件)与价格x(元/件)之间满足关系一次函数. (1)试求y与x的函数关系式;(2)为了使每月获得利润为144元,问商品应定为每件多少元?(3)为了获得了最大的利润,商品应定为每件多少元?(2)3.【靖江市】一学校为了绿化校园环境,向某园林公司购买力一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?4.【南京市高淳区】商场销售某种冰箱,该种冰箱每台进价为2500元,已知原销售价为每台2900元时,平均每天能售出8台.若在原销售价的基础上每台降价50元,则平均每天可多售出4台.设每台冰箱的实际售价比原销售价降低了x元.(1)填表(不需化简):(2)少元?5.【无锡市惠山北片】某文具店准备购进甲,乙两种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?(2)先设购进甲钢笔x支,乙钢笔y支,根据题意列出5x+10y=1000和不等式组6y≤x≤8y,把方程代入不等考点: 1.一元一次不等式组的应用;2.二元一次方程组的应用.6.【扬州市邗江区】小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?【答案】20.【解析】7.【无锡市前洲中学】如图所示,有一张“太阳”和两张“月亮”共三张精美卡片,它们除花形外,其余都一样.(1)从三张卡片中一次抽出两张卡片,请通过列表或画树状图的方法,求出两张卡片都是“月亮”的概率;(2)若再添加几张“太阳”卡片后,任意抽出一张卡片,使得抽出“太阳”卡片的概率为23,那么应添加多少张“太阳”卡片?请说明理由.8.【无锡市前洲中学】高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资,已知生产每件产品的成本是40元.在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),年获利(年获利=年销售额一生产成本—投资)为z(万元).(1)试写出y与x之间的函数关系式(不写x的取值范围);(2)试写出z与x之间的函数关系式(不写x的取值范围);(3)公司计划,在第一年按年获利最大确定销售单价进行销售;到第二年年底获利不低于1130万元,请借助函数的大致图象说明:第二年的销售单价x(元)应确定在什么范围内?- 11 -。

2014中考数学总复习专题4情境运用问题

2014中考数学总复习专题4情境运用问题

专题突破区
专题视点· 考向解读
重点解析
真题演练
【解析】 ( 1) 设该班胜 x 场, 则该班负( 10- x) 场, 依题意得: 3x- ( 10- x) = 14, 解之得: x = 6. ∴该班胜 6 场, 负 4 场. ( 2) 设甲班胜了 x 场, 乙班胜了 y 场, 依题意有: 3x- ( 10- x) = 3[ 3y- ( 10- y) ] ,
专题突破区
专题视点· 考向解读
重点解析
真题演练
5. (2012·泉州)国家推行“节能减排, 低碳经济”政策后, 某企业推出一种叫 “C N G ”的改烧汽油为天然气的装置, 每辆车改装费为 b 元, 据市场调查知: 每辆 车改装前、后的燃料费( 含改装费) y0、y1( 单位: 元) 与正常运营时 x( 单位: 天) 之间分 别满足关系式: y0= ax、y1= b+ 50x, 如图所示. 试根据图象解决下列问题: ( 1) 每辆车改装前每天的燃料费 a= 的改装费 b= 元, 正常营运 元; 每辆车 天后, 就可
重点解析
真题演练
专题考点 0 2 不等式型情境应用题
不等式( 组) 型应用题是指应用题的背景材料可以转化为不等式( 组) 来解决 的题目. 解决这类问题的关键是针对背景材料, 确定某个量的变化范围, 建立不 等式( 组) 模型. 列不等式解应用题, 一般所求问题中有“至少”、 “最多”、 “不 低于”、“不大于”、“不小于”、“高于”等词, 要正确理解这些词的含义. 同时, 在最后确定未知数的值时要注意未知数所表示的实际意义, 通常取正整数 值.
专题突破区
专题视点· 考向解读
重点解析
真题演练
【解析】 ( 1) 设现在实际购进这种水果每千克 a 元, 根据题意得 80( a+ 2) = 88a, 解之得 a= 20. 答: 现在实际购进这种水果每千克 20 元. ( 2) ∵y 是 x 的一次函数, 设函数关系式为 y= kx+ b,

中考数学应用题大全

中考数学应用题大全

完成面积为 400m2 区域的绿化时,甲队比乙队少用 4 天.
( 1)求甲、乙两工程队每天能完成绿化的面积分别是多少
m2?
(2)若学校每天需付给甲队的绿化费用为 0.4 万元,乙队为 0.25 万元,要使这次的绿化总费用不
超过 8 万元,至少应安排甲队工作多少天?
2.(2014 年山东泰安) 某超市用 3000 元购进某种干果销售, 由于销售状况良好, 超市又调拨 9000
1.( 2014?济宁)济宁市 “五城同创 ”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队 单独完成这项工作需 120 天,甲工程队单独工作 30 天后,乙工程队参与合做,两队又共同工作了
36 天完成. ( 1)求乙工程队单独完成这项工作需要多少天?
( 2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了
160 件,其进价和售价如下表: ( 注 : 获利 =
类型 价格 进价 ( 元 / 盏 ) 标价 ( 元 / 盏 )
A型
B型
40
65
60
100
4.( 2014?襄阳)甲、乙两座城市的中心火车站 A, B 两站相距
甲乙
360km.一列动车与一列特快列车分别从 A, B 两站同时出发相
向而行,动车的平均速度比特快列车快 54km/h,当动车到达 B 进价 ( 元 / 件 ) 15 35
(1) 这两种台灯各购进多少盏? (2) 在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润不少于
1400 元,问
至少需购进 B 种台灯多少盏 ?
3.( 2014?四川自贡)学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独
整理需要 40 分钟完成,现在李老师与工人王师傅共同整理

2014中考数学真题试卷题型分类汇编一元二次方程及其应用

2014中考数学真题试卷题型分类汇编一元二次方程及其应用

2014中考数学真题试卷题型分类汇编一元二次方程及其应用2014中考数学真题试卷题型分类汇编-一元二次方程及其应用一、选择题1. (2014•广东,第8题3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A .B.C.D.考点:根的判别式.专题:计算题.分析:先根据判别式的意义得到△=(﹣3)2﹣4m >0,然后解不等式即可.解答:解:根据题意得△=(﹣3)2﹣4m>0,解得m <.故选B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.2. ( 2014•广西玉林市、防城港市,第9题3分)x 1,x 2是关于x 的一元二次方程x 2﹣mx +m ﹣2=0的两个实数根,是否存在实数m 使+=0成立?则正确的是结论是( )A . m =0时成立B . m =2时成立C . m =0或2时成立D .不存在考点:根与系数的关系. 分析: 先由一元二次方程根与系数的关系得出,x 1+x 2=m ,x 1x 2=m ﹣2.假设存在实数m 使+=0成立,则=0,求出m =0,再用判别式进行检验即可.分析:关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.解答:解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=4×7.故选B.点评:本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.4.(2014年云南省,第5题3分)一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=2考点:解一元二次方程-因式分解法.分析:直接利用十字相乘法分解因式,进而得出方程的根解答:解:x2﹣x﹣2=0(x﹣2)(x+1)=0,解得:x 1=﹣1,x 2=2. 故选:D .点评: 此题主要考查了十字相乘法分解因式解方程,正确分解因式是解题关键.5.(2014•四川自贡,第5题4分)一元二次方程x 2﹣4x +5=0的根的情况是( ) A . 有两个不相等的实数根B .有两个相等的实数根 C . 只有一个实数根 D .没有实数根考点:根的判别式. 分析:把a =1,b =﹣4,c =5代入△=b 2﹣4ac 进行计算,根据计算结果判断方程根的情况. 解答: 解:∵a =1,b =﹣4,c =5,∴△=b 2﹣4ac =(﹣4)2﹣4×1×5=﹣4<0, 所以原方程没有实数根. 故选:D .点评: 本题考查了一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的根的判别式△=b 2﹣4ac .当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6.(2014·云南昆明,第3题3分)已知1x 、2x 是一元二次方程0142=+-x x 的两个根,则21x x ⋅等于( ) A . 4- B .1- C . 1D . 47.(2014·云南昆明,第6题3分)某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A. 100)1(1442=-x B.144)1(1002=-xC. 100)1(1442=+x D.144)1(1002=+x考点:由实际问题抽象出一元二次方程.分析:果园从2011年到2013年水果产量问题,是典型的二次增长问题.解答:解:设该果园水果产量的年平均增长率为x,由题意有144)1(1002=+x,故选D.点评:此题主要考查了由实际问题抽象出一元二次方程,理解二次增长是做本题的关键.8.(2014•浙江宁波,第9题4分)已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是()9. (2014•益阳,第5题,4分)一元二次方程x 2﹣2x +m =0总有实数根,则m 应满足的条件是( ) A . m >1 B .m =1 C .m <1 D .m ≤1 考点:根的判别式.分析:根据根的判别式,令△≥0,建立关于m 的不等式,解答即可. 解答: 解:∵方程x 2﹣2x +m =0总有实数根, ∴△≥0, 即4﹣4m ≥0, ∴﹣4m ≥﹣4, ∴m ≤1.故选D .点评: 本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.(2014•呼和浩特,第10题3分)已知函数y =的图象在第一象限的一支曲线上有一点A (a ,c ),点B (b ,c +1)在该函数图象的另外一支上,则关于一元二次方程ax 2+bx +c =0的两根x 1,x 2判断正确的是( )A .x 1+x 2>1,x 1•x 2>0 B . x 1+x 2<0,x 1•x 2>0 C .0<x 1+x 2<1,x 1•x 2>0 D . x 1+x 2与x 1•x 2的符号都不确定考点:根与系数的关系;反比例函数图象上点的坐标特征.分析根据点A (a ,c )在第一象限的一支曲线上,得出a >0,c >0,再点B (b ,c +1)在该函: 数图象的另外一支上,得出b <0,c <﹣1,再根据x 1•x 2=,x 1+x 2=﹣,即可得出答案. 解答: 解:∵点A (a ,c )在第一象限的一支曲线上,∴a >0,c >0,∵点B (b ,c +1)在该函数图象的另外一支上,∴b <0,c +1<0,∴c <﹣1,∴x 1•x 2=>0,0<x 1+x 2<1,故选C .点评: 本题考查了根与系数的关系,掌握根与系数的关系和各个象限点的特点是本题的关键;若x 1,x 2是关于x 的一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的两个实数根,则x 1+x 2=﹣,x 1x 2=.11.(2014•菏泽,第6题3分)已知关于x 的一元二次方程x 2+ax +b =0有一个非零根﹣b ,则a ﹣b 的值为( ) A. 1 B . ﹣1 C . 0 D .﹣2 考点: 一元二次方程的解.12.(2014年山东泰安,第13题3分)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=15分析:根据已知假设每盆花苗增加x株,则每盆花苗有(x+3)株,得出平均单株盈利为(4﹣0.5x)元,由题意得(x+3)(4﹣0.5x)=15即可.解:设每盆应该多植x株,由题意得(3+x)(4﹣0.5x)=15,故选A.点评:此题考查了一元二次方程的应用,根据每盆花苗株数×平均单株盈利=总盈利得出方程是解题关键.二.填空题1. (2014•广西贺州,第16题3分)已知关于x的方程x2+(1﹣m)x+=0有两个不相等的实数根,则m的最大整数值是0.考点:根的判别式.专题:计算题.分析:根据判别式的意义得到△=(1﹣m)2﹣4×>0,然后解不等式得到m的取值范围,再在此范围内找出最大整数即可.解答:解:根据题意得△=(1﹣m)2﹣4×>0,解得m<,所以m的最大整数值为0.故答案为0.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.2.(2014•舟山,第11题4分)方程x2﹣3x=0的根为.考解一元二次方程-因式分解法:分析:根据所给方程的系数特点,可以对左边的多项式提取公因式,进行因式分解,然后解得原方程的解.解答:解:因式分解得,x(x﹣3)=0,解得,x1=0,x2=3.点评:本题考查了解一元二次方程的方法,当方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.3. (2014•扬州,第17题,3分)已知a,b是方程x2﹣x﹣3=0的两个根,则代数式2a3+b2+3a2﹣11a﹣b+5的值为23.考点:因式分解的应用;一元二次方程的解;根与系数的关系专题计算题.分析:根据一元二次方程解的定义得到a2﹣a﹣3=0,b2﹣b﹣3=0,即a2=a+3,b2=b+3,则2a3+b2+3a2﹣11a﹣b+5=2a(a+3)+b+3+3(a+3)﹣11a﹣b+5,整理得2a2﹣2a+17,然后再把a2=a+3代入后合并即可.解答:解:∵a,b是方程x2﹣x﹣3=0的两个根,∴a2﹣a﹣3=0,b2﹣b﹣3=0,即a2=a+3,b2=b+3,∴2a3+b2+3a2﹣11a﹣b+5=2a(a+3)+b+3+3(a+3)﹣11a﹣b+5=2a2﹣2a+17=2(a+3)﹣2a+17=2a+6﹣2a+17=23.故答案为23.点评:本题考查了因式分解的运用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.也考查了一元二次方程解的定义.4.(2014•呼和浩特,第15题3分)已知m,n 是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n =8.考点:根与系数的关系;一元二次方程的解.专题:常规题型.分析:根据m+n=﹣=﹣2,m•n=﹣5,直接求出m、n即可解题.解答:解:∵m、n是方程x 2+2x ﹣5=0的两个实数根,且一元二次方程的求根公式是解得:m=﹣1,n=﹣1﹣或者m=﹣1﹣,n=﹣1,将m=﹣1、n=﹣1﹣代入m2﹣mn+3m+n=8;将m=﹣1﹣、n=﹣1代入m2﹣mn+3m+n=8;故答案为:8.点评:此题主要考查了一元二次方程根根的计算公式,根据题意得出m和n的值是解决问题的关键.5.(2014•德州,第16题4分)方程x2+2kx+k2﹣2k+1=0的两个实数根x1,x2满足x12+x22=4,则k的值为1.考点:根与系数的关系分析:由x12+x22=x12+2x1•x2+x22﹣2x1•x2=(x1+x2)2﹣2x1•x2=4,然后根据根与系数的关系即可得到一个关于k的方程,从而求得k的值.解答:解;x12+x22=4,即x12+x22=x12+2x1•x2+x22﹣2x1•x2=(x1+x2)2﹣2x1•x2=4,又∵x1+x2=﹣2k,x1•x2=k2﹣2k+1,代入上式有4k2﹣4(k2﹣2k+1)=4,解得k=1.故答案为:1.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.6.(2014•济宁,第13题3分)若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m﹣4,则=4.考点:解一元二次方程-直接开平方法.专题:计算题.分析:利用直接开平方法得到x=±,得到方程的两个根互为相反数,所以m+1+2m﹣4=0,解得m=1,则方程的两个根分别是2与﹣2,则有=2,然后两边平方得到=4.解答:解:∵x2=(ab>0),∴x=±,∴方程的两个根互为相反数,∴m+1+2m﹣4=0,解得m=1,∴一元二次方程ax2=b(ab>0)的两个根分别是2与﹣2,∴=2,∴=4.故答案为4.点评:本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式,那么可得x=±p;如果方程能化成(nx+m)2=p(p≥0)的形式,那么nx+m=±p.三.解答题1. (2014•广西玉林市、防城港市,第24题9分)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过11.9万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,假定每年新增电动车数量相同,问:(1)从今年年初起每年新增电动车数量最多是多少万辆?(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%)考点:一元二次方程的应用;一元一次不等式的应用.分析:(1)根据题意分别求出今年将报废电动车的数量,进而得出明年报废的电动车数量,进而得出不等式求出即可;(2)分别求出今年年底电动车数量,进而求出今年年底到明年年底电动车拥有量的年增长率.解答:解:(1)设从今年年初起每年新增电动车数量是x万辆,由题意可得出:今年将报废电动车:10×10%=1(万辆),∴[(10﹣1)+x](1﹣10%)+x≤11.9,解得:x≤2.答:从今年年初起每年新增电动车数量最多是2万辆;(2)∵今年年底电动车拥有量为:(10﹣1)+x=11(万辆),明年年底电动车拥有量为:11.9万辆,∴设今年年底到明年年底电动车拥有量的年增长率是y,则11(1+y)=11.9,解得:y≈0.082=8.2%.答:今年年底到明年年底电动车拥有量的年增长率是8.2%.点评:此题主要考查了一元一次不等式的应用以及一元一次方程的应用,分别表示出今年与明年电动车数量是解题关键.2.((2014•新疆,第19题10分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?考点:一元二次方程的应用.3.2014年广东汕尾,第22题9分)已知关于x 的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.分析:(1)将x=1代入方程x2+ax+a﹣2=0得到a的值,再根据根与系数的关系求出另一根;(2)写出根的判别式,配方后得到完全平方式,进行解答.解:(1)将x=1代入方程x2+ax+a﹣2=0得,1+a+a ﹣2=0,解得,a=;方程为x2+x﹣=0,即2x2+x﹣3=0,设另一根为x 1,则1x1=﹣,x1=﹣.(2)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4≥0,∴不论a取何实数,该方程都有两个不相等的实数根.点评:本题考查了根的判别式和根与系数的关系,要记牢公式,灵活运用.4.(2014•毕节地区,第25题12分)某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y 元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.解得:x1=6,x2=12(舍去).答:该产品的质量档次为第6档.点评:本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.5.(2014•襄阳,第16题3分)若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是5.考点:一元二次方程的解分析:把x=a代入方程x2﹣5x+m=0,得a2﹣5a+m=0①,把x=﹣a代入方程方程x2+5x﹣m=0,得a2﹣5a﹣m=0②,再将①+②,即可求出a的值.解答:解:∵a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,∴a2﹣5a+m=0①,a2﹣5a﹣m=0②,①+②,得2(a2﹣5a)=0,∵a>0,∴a=5.故答案为5.点评:本题主要考查的是一元二次方程的根即方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.6. (2014•湘潭,第26题)已知二次函数y=﹣x2+bx+c的对称轴为x=2,且经过原点,直线AC 解析式为y=kx+4,(1)求二次函数解析式;(2)若=,求k;(3)若以BC为直径的圆经过原点,求k.(第1题图)考点:二次函数综合题.分析:(1)由对称轴为x=﹣,且函数过(0,0),则可推出b,c,进而得函数解析式.(2)=,且两三角形为同高不同底的三角形,易得=,考虑计算方便可作B,C对x 轴的垂线,进而有B,C横坐标的比为=.由B,C为直线与二次函数的交点,则联立可求得B,C坐标.由上述倍数关系,则k易得.(3)以BC为直径的圆经过原点,即∠BOC=90°,一般考虑表示边长,再用勾股定理构造方程求解k.可是这个思路计算量异常复杂,基本不考虑,再考虑(2)的思路,发现B,C横纵坐标恰好可表示出EB,EO,OF,OC.而由∠BOC=90°,易证△EBO∽△FOC,即EB•FC=EO•FO.有此构造方程发现k值大多可约去,进而可得k 值.解答:解:(1)∵二次函数y=﹣x2+bx+c的对称轴为x=2,且经过原点,∴﹣=2,0=0+0+c,∴b=4,c=0,∴y=﹣x2+4x.(2)如图1,连接OB,OC,过点A作AE⊥y 轴于E,过点B作BF⊥y轴于F,∵=,∴=,∴=,∵EB∥FC,∴==.∵y=kx+4交y=﹣x2+4x于B,C,∴kx+4=﹣x2+4x,即x2+(k﹣4)x+4=0,∴△=(k﹣4)2﹣4•4=k2﹣8k,∴x=,或x=,∵x B<x C,∴EB=x B=,FC=x C=,∴4•=,解得k=9(交点不在y轴右边,不符题意,舍去)或k=﹣1.∴k=﹣1.(3)∵∠BOC=90°,∴∠EOB+∠FOC=90°,∵∠EOB+∠EBO=90°,∴∠EBO=∠FOC,∵∠BEO=∠OFC=90°,∴△EBO∽△FOC,∴,∴EB•FC=EO•FO.∵x B=,x C=,且B、C过y=kx+4,∴y B=k•+4,y C=k•+4,∴EO=y B=k•+4,OF=﹣y C=﹣k•﹣4,∴•=(k•+4)•(﹣k•﹣4),整理得16k=﹣20,∴k=﹣.点评:本题考查了函数图象交点的性质、相似三角形性质、一元二次方程及圆的基本知识.题目特殊,貌似思路不难,但若思路不对,计算异常复杂,题目所折射出来的思想,考生应好好理解掌握.7. (2014•株洲,第21题,6分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.考点:一元二次方程的应用.分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;(2)利用根的判别式进而得出关于a,b,c 的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.解答:解:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.点评:此题主要考查了一元二次方程的应用以及根的判别式和勾股定理逆定理等知识,正确由已知获取等量关系是解题关键.8. (2014年江苏南京,第22题,8分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为 2.6(1+x)2万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.考点:列一元二次方程解实际问题的运用%]分析:(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x),则第三年的可变成本为2.6(1+x)2,故得出答案;(2)根据养殖成本=固定成本+可变成本建立方程求出其解即可.解答:(1)由题意,得第3年的可变成本为:2.6(1+x)2,故答案为:2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146,解得:x1=0.1,x2=﹣2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.点评:本题考查了增长率的问题关系的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据增长率问题的数量关系建立方程是关键.9. (2014年江苏南京,第24题)已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?考点:二次函数和x轴的交点问题,根的判别式,平移的性质,二次函数的图象与几何变换的应用分析:(1)求出根的判别式,即可得出答案;(2)先化成顶点式,根据顶点坐标和平移的性质得出即可.(1)证明:∵△=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0,∴方程x2﹣2mx+m2+3=0没有实数解,即不论m为何值,该函数的图象与x轴没有公共点;(2)解答:y=x2﹣2mx+m2+3=(x﹣m)2+3,把函数y=(x﹣m)2+3的图象延y轴向下平移3个单位长度后,得到函数y=(x﹣m)2的图象,它的顶点坐标是(m,0),因此,这个函数的图象与x轴只有一个公共点,所以,把函数y=x2﹣2mx+m2+3的图象延y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.点评:本题考查了二次函数和x轴的交点问题,根的判别式,平移的性质,二次函数的图象与几何变换的应用,主要考查学生的理解能力和计算能力,题目比较好,有一定的难度.10. (2014•泰州,第17题,12分)(1)计算:﹣24﹣+|1﹣4sin60°|+(π﹣)0;(2)解方程:2x2﹣4x﹣1=0.考点:实数的运算;零指数幂;解一元二次方程-公式法;特殊角的三角函数值.分析:(1)原式第一项利用乘方的意义化简,第二项化为最简二次根式,第三项利用特殊角的三角函数值及绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果;(2)找出a,b,c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.解答解:(1)原式=﹣16﹣2+2﹣1+1=﹣16;(2)这里a=2,b=﹣4,c=﹣1,:∵△=16+8=24,∴x ==.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.11. (2014•扬州,第20题,8分)已知关于x 的方程(k﹣1)x2﹣(k﹣1)x +=0有两个相等的实数根,求k的值.考点:根的判别式;一元二次方程的定义分析:根据根的判别式令△=0,建立关于k的方程,解方程即可.解答:解:∵关于x的方程(k﹣1)x2﹣(k﹣1)x +=0有两个相等的实数根,∴△=0,∴[﹣(k﹣1)]2﹣4(k﹣1)=0,整理得,k2﹣3k+2=0,即(k﹣1)(k﹣2)=0,解得:k=1(不符合一元二次方程定义,舍去)或k=2.∴k=2.点评:本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.。

【初中数学】2014年中考数学试题分类汇编(共24个专题) 人教版23

【初中数学】2014年中考数学试题分类汇编(共24个专题) 人教版23

频数与频率一、选择题1. (2014•安徽省,第5题4分)某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()棉花纤维长度x频数0≤x<8 18≤x<16 216≤x<24 824≤x<32 632≤x<40 3A.0.8 B.0.7 C.0.4 D.0.2考点:频数(率)分布表.分析:求得在8≤x<32这个范围的频数,根据频率的计算公式即可求解.解答:解:在8≤x<32这个范围的频数是:2+8+6=16,则在8≤x<32这个范围的频率是:=0.8.故选A.点评:本题考查了频数分布表,用到的知识点是:频率=频数÷总数.2. (2014•山东淄博,第3题4分)如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A.8,6 B.8,5 C.52,53 D. 52,52考点:频数(率)分布直方图;中位数;众数.专题:计算题.分析:找出出现次数最多的速度即为众数,将车速按照从小到大顺序排列,求出中位数即可.解答:解:根据题意得:这些车的车速的众数52千米/时,车速分别为50,50,51,51,51,51,51,52,52,52,52,52,52,52,52,53,53,53,53,53,53,54,54,54,54,55,55,中间的为52,即中位数为52千米/时,则这些车的车速的众数、中位数分别是52,52.故选D点评:此题考查了频数(率)分布直方图,中位数,以及众数,弄清题意是解本题的关键.3.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(C)神州飞船发射前需要对零部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查答案:D解析:根据统计学知识;(A)“打开电视,正在播放河南新闻节目”是随机事件,(A)错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014中考数学应用题专题训练类型一:二元一次方程组方程应用题的解题步骤可用六个字概括,即审(审题),设(设未知数),列(列方程),解(解方程),检(检验),答。

例1.(2012湖南长沙,23,9分)以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省内境外投资合作项目多51个.(1)求湖南省签订的境外、省外境内的投资合作项目分别有多少个?(2)若境外、省内境外投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,求在这次“中博会”中,东道湖南省共引进资金多少亿元?练习:1.(2012江西南昌,24,6分)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两种菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨了50%,排骨的单价上涨了20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).2.(2012四川雅安,20,7分)用一根绳子环绕一个圆柱形油桶,若环绕油桶3周,则绳子还多4尺;若环绕油桶4周,则绳子又少了3尺。

这根绳子有多长?环绕油桶一周需要多少尺?3.(2012•山东聊城21,7分)儿童节期间,文具商店搞促销活动,同时购买一个书包和一个文具盒可以打8折优惠,能比标价省13.2元.已知书包标价比文具盒标价3倍少6元,那么书包和文具盒的标价各是多少元?类型二:一元二次方程例2 (2012甘肃白银,25,10分)某玩具店购进一种儿童玩具,计划每个售价36元,能盈利80%.在销售中出现了滞销,于是先后两次降价,售价降为25元.(1)求这种玩具的进价;(2)求平均每次降价的百分率.(精确到0.1%)练习1.(2012四川乐山,21,10分)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;20%(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.2.(2012山东济宁,18,6分)一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?类型三:方程与一次函数3.(2012山东莱芜,22,10分)为表彰在“缔造完美教师”活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;4个文具盒、7支钢笔共需161元.(1)每个文具盒、每支钢笔各多少元?(2)时逢“五一”,商店举行“优惠促销”活动,具体办法如下:文具盒“九折”优惠;钢笔10支以上超出部分“八折”优惠.若买x个文具盒需要y1元,买x支钢笔需要y2元,求y1、y2关于x的函数关系式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.练习:1..(2012湖北恩施,22,8分)(满分8分)小丁每天从某市报社以每份0.5元买进报纸200份,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,如果小丁平均每天卖出报纸x份,纯收入为y元.(1)求y与x之间的函数关系式(要求写出自变量x的取值范围);(2)如果每月以30天计,小丁每天至少要卖多少份报纸才能保证每月收入不低于2000元?2.(2012攀枝花).煤炭是攀枝花的主要矿产资源之一,煤炭生产企业需要对煤炭运往用煤单位所产生的费用进行核算并纳入企业生产计划。

某煤矿现有1000吨煤炭要全部运往A,t⋅”表示:每B两厂,通过了解获得A,B两厂的有关信息如下表(表中运费栏“元/km吨煤炭运送一千米所需的费用):t⋅)路程(km)需求量(t)厂别运费(元/kmA0.45200不超过600B(a a为常数)150不超过800(1)写出总运费y(元)与运往B厂的煤炭量x(t)之间的函数关系式,并写出自变量x 的取值范围;(2)请你运用函数有关知识,为该煤矿设计总运费最少的运送方案,并求出最少的总运费。

(可用含a的代数式表示)3.(2011陕西省8分)2011年4月28日,以“天人长安,创意自然一一城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园,这次园艺会的门票分为个人票和团体票两大类,其中个人票设置有三种:票得种类夜票(A)平日普通票(B)指定日普通票(C)单价(元/张)60 100 150某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B种票的张数是A种票张数的3倍还多8张,设购买A种票张数为x,C种票张数为y(1)写出y与x之间的函数关系式;(2)设购票总费用为w元,求出w(元)与x(张)之间的函数关系式;(3)若每种票至少购买1张,其中购买A种票不少于20张,则有几种购票方案?并求出购票总费用最少时,购买A,B,C三种票的张数.4.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆,已知从甲座仓库调运1辆农用车到A县和B县运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县费用为30元和50元.设从乙仓库调往A县农用车x辆,(1)求总运费y关于x的函数关系.(2)要求总运费不超过900元,共有几种调运方案?选出总运费最低的调运方案,最低运费是多少元?类型四:方程与二次函数例4、(2011新疆乌鲁木齐12分)某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足w=-2x+80,设销售这种台灯每天的利润为y(元)。

(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时.每天的利润最大?最大利润是多少?(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润.应将销售单价定为多少元?类型五:方程与不等式(方案设计问题)7、(2013•绥化)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240 160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?练习:1、(2013•恩施州)某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求这两种商品的进价.(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?2、(2013•益阳)“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.3.、(2013•攀枝花)某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?类型六:应用题与函数图像例6. 小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米. 小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁.图中折线O-A-B-C 和线段OD 分别表示两人离学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为 ▲ 分钟,小聪返回学校的速度为 ▲ 千米/分钟;(2)请你求出小明离开学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系式;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?练习:1. (2012上海,22,12分)某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y (万元/吨)与生产数量x (吨)的函数关系式如图5所示:(1)求y 关于x 的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)A B D 2t (分钟) O s (千米) 4 15 45 30 小聪 小明2(2010浙江衢州).小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55.为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1) 小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间、少年宫和学校之间的路程分别是多少米?(2) 下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留.问:① 小刚到家的时间是下午几时?② 小刚回家过程中,离家的路程s (米)与时间t (分)之间的函数关系如图,请写出点B 的坐标,并求出线段CD 所在直线的函数解析式.3.(2011江苏泰州,25,10分)小明从家骑自行车出发,沿一条直路到相距2400m 的邮局办事,小明出发的同时,他的爸爸以96m/min 的速度从邮局沿同一条道路步行回家,小明在邮局停留2min 后沿原路以原速返回,设他们出发后经过t min 时,小明与家之间的距离为 S 1 m ,小明爸爸与家之间的距离为S 2 m,,图中折线OABD ,线段EF 分别是表示S 1、S 2与t 之间函数关系的图像.(1) 求S 2与t 之间的函数关系式:(2) 小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远? ECOt (min )s (m )A B 12D 2400F 10t (分) Os (米) A B C D。

相关文档
最新文档