2013年中考数学复习真题库(含答案)-实数的运算B

合集下载

2013年武汉市中考数学试卷及答案(word版)

2013年武汉市中考数学试卷及答案(word版)

2013年武汉市初中毕业生学业考试数学试卷第I卷(选择题共30 分)一、选择题(共12小题,每小题3分,共36 分)1 .下列各数中,最大的是()A . —3B . 0C . 1D . 22•式子• x -1在实数范围内有意义,则x的取值范围是(A • x<1 1 D . x< —13.不等式组x十2"的解集是(x —1 兰0A . —2W4.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球•下列事件是必然事件的是(A .摸出的三个球中至少有一个球是黑球.B .摸出的三个球中至少有一个球是白球.C .摸出的三个球中至少有两个球是黑球.摸出的三个球中至少有两个球是白球.x w 1 B. —2< x<1 C. x w—12x1, x2是一元二次方程x -2x-3=0的两个根,则x1x2的值是(A .6. 如图,△度数是(A . 18°7. 如图,是由B. —3ABC 中,AB = AC,/ A=36 )B . 24°C . 30 °C. 2 D . 3,BD是AC边上的高,则/ DBCD . 36°C的4个相同小正方体组合而成的几何体, )它的左视图是(&两条直线最多有1个交点,三条直线最多有3个交点, 那么六条直线最多有()A. 21个交点B . 18个交点C . 15个交点四条直线最多有6个交点,……,D . 10个交点9.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计。

图((2)是整理数据后绘制的两幅不完整的统计图。

以下结论不正确的是(1)与图)90人.第9题图(1)A .由这两个统计图可知喜欢"科普常识”的学生有B •若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360 个.C •由这两个统计图不能确定喜欢“小说”的人数.D .在扇形统计图中,“漫画”所在扇形的圆心角为10.如图,O A与O B外切于点D,若/ CED = x。

2013年中考数学真题试题(解析版)

2013年中考数学真题试题(解析版)

2013年中考数学试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.=9 =﹣2(2.(3分)(2013•济南)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称3.(3分)(2013•济南)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.34.(3分)(2013•济南)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()5.(3分)(2013•济南)图中三视图所对应的直观图是()6.(3分)(2013•济南)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是(),9.(3分)(2013•济南)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过n次抛掷所出现的点数之和大于n=.10.(3分)(2013•济南)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()=,=×(OB×OA=,=11.(3分)(2013•济南)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()12.(3分)(2013•济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.(4分)(2013•济南)cos30°的值是.cos30°==.故答案为:14.(4分)(2013•济南)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.15.(4分)(2013•济南)甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:经计算,=10,=10,试根据这组数据估计甲中水稻品种的产量比较稳定.=)﹣)的平均数为[﹣﹣16.(4分)(2013•济南)函数y=与y=x﹣2图象交点的横坐标分别为a,b,则+的值为﹣2 .先根据反比例函数与一次函数的交点坐标满足两函数的解析式得到然后变形+得=xy=+==17.(4分)(2013•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F 分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).∴CE=CF=﹣a==2+=2+三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(6分)(2013•济南)先化简,再求值:÷,其中a=﹣1.﹣••﹣19.(8分)(2013•济南)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5正正11192(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?1913220.(8分)(2013•济南)如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.AD=121.(10分)(2013•济南)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?y=y=(2≤x≤3)22.(10分)(2013•济南)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表1和与每列的各数之和均为非负整数,求整数a的值表2.列≤a23.(10分)(2013•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD 和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.∴BD=100BD=100=100米.24.(12分)(2013•济南)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.=3.=,,y=,t+1t+1+2 =PM•CM+PN•OM﹣(),﹣的最大值为。

2013中考全国100份试卷分类汇编:实数运算(含答案)

2013中考全国100份试卷分类汇编:实数运算(含答案)

2013中考全国100份试卷分类汇编:实数运算(含答案)。

cnXXXX年河北)在下面的计算中,正确的是+B1+的结果是()C.4﹣3 7 D。

cn13-a9 = 3B-8 = 2C .(-2)0 = 0D . 21 =2答案:d3分析:9是9的算术平方根,9 = 3,所以A是错误的;-8 =-2,b错了,(-2) 0 = 1,c也错了,选择d。

(XXXX年京5: 14)计算:(1?3)0??2?2cos45??()?1 .分辨率:1428,(13年山东青岛,8年)计算:2?1?回答:在XXXX,安徽省得了8分,计算:2 sin 300+(1) 2-2?231.(XXXX佛山)计算:2?5?(?2)?(??4?2)。

分析:根据负整数指数幂、绝对值和幂运算的性质,先计算幂,再计算乘除,最后计算加法解决方案:2×[5+(2)]﹣| | ﹣4 | > 2 = 2×(5-8)﹣4÷= ﹣6-﹣8)= 2。

备注:本主题主要考察实数运算。

本主题中需要注意的知识点是:当负整数指数为幂时,a=35.(XXXX深圳)计算:|-8|+()?1-4英寸45英寸?-(XXXX,湛江,广东)计算:-6+9???1?..解决方案:原始形式?6?3?12?837.(XXXX黄石公园)计算:3?3?tan30??38岁?(XXXX) (1)计算:2?1?1??sin45?8?2;?解决方案:原始公式=-1 1|×2(2 +1) 2 +|1- 2 2 21= - +(2 -1) ×2(2 +1)41= - +2[(2 )2 -12]41= 2-47= 465.(XXXX德阳市)计算:12013+(分析:一,一,二1 | 3 1 27 |+3 Tan 60 2。

2013年数学中考试题和答案

2013年数学中考试题和答案

2013年数学中考试题和答案◆ 注意事项:1、本卷满分150分,考试时间120分钟;2、所有题目必须在答题卷上作答,否则不予计分。

一、选择题(本大题共6小题,每小题5分,共30分。

每小题均给出了A 、B 、C 、D 的四个选项,其中有且只有一个选项是正确的,不填、多填或错填均得0分)1、若不等式组⎩⎨⎧<+>232a x x 有解,则实数a 的取值范围为( )A .21≤aB .21<aC .21≥aD .21>a2、化简2)28cos 28(sin ︒-︒等于( )A .︒-︒28cos 28sinB .0C .︒-︒28sin 28cosD .以上都不对3、若,012=--x x 则522234+-+-x x x x =( )A .0B .5C .52+D .5252-+或4、如图为一个几何体的三视图,左视图和主视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的全面积为( )A B .123 C .24 D .24+ 5、已知=++=+=+=+zx yz xy xyzx z zx z y yz y x xy ,则61,51,31( ) A .41 B .21 C .71 D .916、已知关于x 的方程0)21(542=+⋅++-xa x x ,若a 为正实数,则下列判断正确的是( )A .有三个不等实数根B .有两个不等实数根C .有一个实数根D .无实数根4题图二、填空题(本大题共8小题,每小题6分,共48分) 7、a a 13--与a a 13--是相反数,计算aa 1+= . 8、若[]x 表示不超过x 的最大整数,0444311311311⎪⎪⎭⎫⎝⎛-+++-=A , 则[]A = .9、如图,N M 、分别为ABC ∆两边BC AC 、的中点,AN 与BM 交于点O ,则的面积的面积ABC BON ∆∆ = .10、如图,已知圆O 的面积为3π,AB 为直径,弧AC 的度数为︒80,弧BD 的度数为︒20,点P 为直径AB 上任一点,则PD PC +的最小值为 . 11、观察下列各式:),4131(1331133133),3121(1221122122),211(1111111111222222222--=+-=+-+--=+-=+-+--=+-=+-+ ……计算:201120111201120113311225212222+-+++++++ = .12、从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a ,是3的倍数的个数为b ,则样本96、、、b a 的中位数是 .13、若3-x 为正整数,且是13522+-x x 的约数,则x 的所有可能值总和为 .14、由直线12-+=k kx y 和直线12)1(+++=k x k y (k 是正整数)与x 轴及y 轴所围成的图形面积为S ,则S 的最小值是 .三、解答题(本大题共5小题,共计72分)15、(14分)已知抛物线)0(2>++-=c c bx x y 过点)0,1(-C ,且与直线x y 27-=只有一个交点.⑴ 求抛物线的解析式;⑵ 若直线3+-=x y 与抛物线相交于两点B A 、,则在抛物线的对称轴上是否存在点Q ,使ABQ ∆是等腰三角形? 若存在,求出Q 点坐标;若不存在,说明理由.BACN MO PO AC DB第10题图第9题图B A DE C PFO 1 O 2MH GN第18题图 16、(14分)如图,过正方形ABCD 的顶点C 在形外引一条直线分别交AD AB 、延长线于点N M 、,DM 与BN 交于点H ,DM 与BC 交于点E ,BN 与DC 交于点F .⑴ 猜想:CE 与DF 的大小关系? 并证明你的猜想. ⑵ 猜想:H 是AEF ∆的什么心? 并证明你的猜想.17、(14分)设关于x 的方程0222)1(42=-+--+-y x y x x 恰有两个实数根,求y 的负整数值.18、(15分)如图,已知菱形ABCD 边长为36,︒=∠120ABC ,点P 在线段BC 延长线上,半径为1r 的圆1O 与DP CP DC 、、分别相切于点N F H 、、,半径为2r 的圆2O 与PD 延长线、CB 延长线和BD 分别相切于点G E M 、、.(1)求菱形的面积; (2)求证:MN EF =; (3)求21r r +的值.19、(15分)某企业某年年初建厂生产某种产品,其年产量为y 件,每件产品的利润为2200元,建厂年数为x ,y 与x 的函数关系式为504022++-=x x y .由于设备老化,从2011年起,年产量开始下滑.若该企业2012年投入100万元用于更换所有设备,则预计当年可生产产品122件,且以后每年都比上一年增产14件. ⑴ 若更换设备后,至少几年可收回投入成本? ⑵ 试写出更换设备后,年产量Q 件与企业建厂年数x 的函数关系式;并求出,到哪一年年产量可超过假定设备没有更换的年产量?AB MC E DF H N第16题图2012年蚌埠二中高一自主招生考试科学素养 数学答题卷一、 选择题 (本大题共6小题,每小题5分,共30分)二、填空题(本大题共8小题,每小题6分,共48分)7、8、 9、 10、 11、12、 13、 14、三、解答题(本大题共5小题,共计72分)15、(14分) 解:解:17、(14分)解:ABMCED FHN第16题图BA DEC PFO 1 O 2M H GN第18题图解: 19、(15分)解:2012年蚌埠二中自主招生考试数学参考答案一、 选择题 (本大题共6小题,每小题5分,共30分)1、B2、C3、C4、D5、C6、C二、填空题(本大题共8小题,每小题6分,共48分)7、5 8、-2 9、61 10、3 11、201220112(或其它形式)12、5.5 13、46 14、47三、解答题(本大题共5小题,27'15'1541'14'14'=++'++) 15、(14分)解:(1)322++-=x x y (6分)(2)Q )1,1()14,1()173,1(或或±±(14分)16、(14分)(1)DF CE =.(2分)证:∵正方形ABCD ∴AD ∥BC,DC ∥AB ∴NA BC MN MC ND CE ==,(4分)NANDAB DF =(6分) ∴NA ND BC CE =∴BCCEAB DF =又BC AB =∴DF CE =(7分) (2)垂心. (9分)易证ADF ∆≌CE D ∆(11分)∴FDE DAF ∠=∠又∴︒=∠+∠90ADE DAF ∴DE AF ⊥(13分)同理AE FB ⊥. H 为AEF ∆的垂心. (14分) (其他解法酌情给分)17、(14分)解:原式可变为0222)1(22=----+-y x y x()[]0)1(222=++---y x x ∴)1(222+-=-=-y x x 或∴0)1()1(2<+-+-=y y 或∴13->-=y y 或∴y 的负整数值为3-. (或也可去绝对值。

【中考宝典】2013年中考数学真题分类汇编(Word版,含答案)

【中考宝典】2013年中考数学真题分类汇编(Word版,含答案)

第一单元数与式一、实数1、绝对值、相反数、倒数2、科学记数法3、实数的概念及其运算二、整式1.幂的运算、整式的乘除2.因式分解三、分式四、二次根式第二单元方程(组)与不等式组一、一次方程(方程组)二、一元一次不等式与一元一次不等式组三、一元二次方程四、分式方程第三单元函数及其图像一、函数及其图像二、一次函数三、反比例函数四、二次函数五、函数的应用第四单元图形的认识与三角形一、角、相交线与平行线二、三角形与全等三角形三、等腰三角形与直角三角形第五单元四边形一、多边形与平行四边形二、矩形、菱形、正方形三、梯形第六单元圆一、圆的有关概念及性质二、点、直线、圆和圆的位置关系三、和圆有关的计算第七单元图形与变换一、尺规作图、视图与投影二、图形的对称、平移与旋转三、图形的相似与位似四.锐角三角函数和解直角三角形第八单元概率与统计一、统计二、概率第二单元 方程(组)与不等式组一、一次方程(方程组) 1、(2013黄石)四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(既不多也不少)能容纳这60名灾民,则不同的搭建方案有( )A .1种B .11种C .6种D .9种解析:设6人的帐篷有x 顶,4人的帐篷有y 顶,依题意,有:6x+4y=60,整理得y=15-1.5x ,因为x 、y 均为非负整数,所以15-1.5x≥0,解得:0≤x≤10,从2到10的偶数共有5个,所以x 的取值共有6种可能,即共有6种搭建方案. 答案:C2.(2013广安)如果y x b a 321与12+-x y b a 使同类项,则( )A. ⎩⎨⎧=-=32y xB.⎩⎨⎧==3-2y xC.⎩⎨⎧=-=3-2y xD.⎩⎨⎧==32y x解析:y x b a 321 与12+-x y b a 是同类项,∴⎩⎨⎧+==123x y y x ,解得:⎩⎨⎧==32y x 。

答案:D3、(2013凉山州)已知方程组⎩⎨⎧=+=+5242y x y x ,则y x +的值为 ( )A .-1B .0C .2D .3 解析:利用两式相加得:9)(3=+y x ,3=+y x .答案:D4、(2013济宁)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多 ( )A .60元B .80元C .120元D .180元 解析:设衣服的进价为x 元,依题意得300×80%-x=60,解得x=180.因此这款服装每件的标价比进价多300-180=120(元).答案:C5、(2013淄博)楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x 张成人票,y 张儿童票,根据题意,下列方程组正确的是 ( )+=20.35+70=1225x y A x y ⎧⎨⎩ +y=20.70+35=1225x B x y ⎧⎨⎩ +=1225.70+35=20x y C x y ⎧⎨⎩ +=1225.35+70=20x y D x y ⎧⎨⎩ 解析:确定等量关系:总票数=承认票数+儿童票数,总票钱数=成人票钱数+儿童票钱数.依据等量关系列出方程组即可.答案:B6、(2013•永州)已知(x-y+3)2+y x +2=0,则x+y 的值为( ) A .0 B .-1 C .1 D .5解析:∵ 02)3(2=+++-y x y x ,∴⎩⎨⎧=+=+-0203y x y x ,解得⎩⎨⎧=-=21y x∴121=+-=+y x 答案:C7、(2013南宁)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19B .18C .16D .15解析:设笑脸形的气球x 元一个,爱心形的气球y 元一个,由题意,得,解得:2x+2y=16.答案:C答案:B8、(2013毕节)二元一次方程组⎩⎨⎧=-=+112312y x y x 的解是_。

2013年中考数学试题(含答案)

2013年中考数学试题(含答案)

2014年中考数学试题一、选择题(本大题共10小题,每小题3分,共30分)1、2的值等于 ( ) A 、2 B 、-2 C 、2 D 、22、函数31+-=x y 中,自变量x 的取值围是 ( )A 、1>xB 、1≥xC 、1≤xD 、1≠x3、方程0312=--xx 的解为 ( ) A 、2=x B 、2-=x C 、3=x D 、3-=x4、已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是 ( ) A 、4,15 B 、3,15 C 、4,16 D 、3,165、下列说法中正确的是 ( ) A 、两直线被第三条直线所截得的同位角相等 B 、两直线被第三条直线所截得的同旁角互补C 、两平行线被第三条直线所截得的同位角的平分线互相垂直D 、两平行线被第三条直线所截得的同旁角的平分线互相垂直20. 已知圆柱的底面半径为3cm ,母线长为5cm ,则圆柱的侧面积是 ( )A 、30cm 2B 、30πcm 2C 、15cm 2D 、15πcm 27、如图,A 、B 、C 是⊙O 上的三点,且∠ABC=70°,则∠AOC 的度数是 ( ) A 、35°B 、140°C 、70°D 、70°或140°8、如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于O ,AD=1,BC=4,则△AOD 与△BOC 的面 积比等于 ( ) A 、21 B 、41C 、81D 、1611、如图,平行四边形ABCD 中,AB :BC=3:2,∠DAB=60°,E 在AB 上,且AE :EB=1:2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则DP ∶DQ 等于( ) A 、3:4 B 、3:52 C 、13:62 D 、32:1310、已知点A (0,0),B (0,4),C (3,t +4),D (3,t ). 记N (t )为□ABCD 部(不含边界)整 点第7题图第8题图第9题图的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t )所有可能的值为 ( )A 、6,7B 、7,8C 、6,7,8D 、6,8,9二、填空题(本大题共8小题,每小题2分,共16分) 11、分解因式:2x 2-4x =。

2013年湖北省武汉市中考数学试卷及答案(免费word版)

2013年湖北省武汉市中考数学试卷及答案(免费word版)

2013年湖北省武汉市中考数学试卷及答案(免费word版)D2013年武汉市初中毕业生学业考试数学试卷第I 卷(选择题 共30分)一、选择题(共12小题,每小题3分,共36分)1.下列各数中,最大的是( ) A .-3 B .0 C .1 D .2 2.式子1-x 在实数范围内有意义,则x 的取值范围是( )A .x <1B .x ≥1C .x ≤-1D .x <-13.不等式组⎩⎨⎧≤-≥+0102x x 的解集是( ) A .-2≤x ≤1 B .-2<x <1 C .x ≤-1 D .x ≥24.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )A .摸出的三个球中至少有一个球是黑球.B .摸出的三个球中至少有一个球是白球.C .摸出的三个球中至少有两个球是黑球.D .摸出的三个球中至少有两个球是白球. 5.若1x ,2x 是一元二次方程0322=--x x的两个根,D CA则9.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计。

图(1)与图(2)是整理数据后绘制的两幅不完整的统计图。

以下结论不正确...的是( )A .由这两个统计图可知喜欢“科普常识”第9题图(2)第9题图(1)30%其它10%科普常识漫画小说3060书籍人数的学生有90人.B .若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360个.C .由这两个统计图不能确定喜欢“小说”的人数.D .在扇形统计图中,“漫画”所在扇形的圆心角为72°.10.如图,⊙A 与⊙B 外切于点D ,PC ,PD ,PE 分别是圆的切线,C ,D ,E 是切点, 若∠CED =x °,∠ECD =y °,⊙B 的半径为R ,则⋂DE 的长度是( ) A .()9090Rx -π B .()9090R y -πC .()180180Rx -π D ()180180R y -π第II 卷(非选择题 共84分)二、填空题(共4小题,每小题3分,共12分)11.计算︒45cos = .12.在2013年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28.这组数据的众数是 .EPA BCD 第10题图13.太阳的半径约为696 000千米,用科学记数法表示数696 000为 .14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x 秒后两车间的距离为y 千米,y 关于x 的函数关系如图所示,则甲车的速度是 米/秒.15.如图,已知四边形ABCD 是平行四边形,BC =2AB ,A ,B 两点的坐标分别是(-1,0), (0,2),C ,D 两点在反比例函数)0(<=x x k y 的图象上,则k 的值等于 .16.如图,E ,F 是正方形ABCD 的边AD 上两220200100x /(秒)y/(米)500A B CD 第14题图O 900个动点,满足AE =DF .连接CF 交BD 于G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是 .三、解答题(共9小题,共72分)17.(本题满分6分)解方程:x x 332=-.18.(本题满分6分)直线b x y +=2经过点(3,5),求关于x 的不等式b x +2≥0的解集.19.(本题满分6分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .y x 第15题图D C B A O 第16题图H GF EDCBA第19题图A BCDEF20.(本题满分7分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁. (1)请用列表或画树状图的方法表示出上述试验所有可能结果;(2)求一次打开锁的概率.21.(本题满分7分)如图,在平面直角坐标系中, Rt △ABC 的三个顶点分别是A (-3,2),B (0,4), C (0,2). xyAC BO –1–2–3–4–512345–1–2–3–412345(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△11B A C ;平移△ABC ,若A 的对应点2A的坐标为(0,4),画出平移后对应的△222C B A ; (2)若将△11B A C 绕某一点旋转可以得到△222C B A ,请直接写出旋转中心的坐标;(3)在x 轴上有一点P ,使得PA+PB 的值最小,请直接写出点P 的坐标.22.(本题满分8分)如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是⋂AB 的中点,连接PA ,PB ,PC .(1)如图①,若∠BPC =60°,求证:AP AC 3=; (2)如图②,若2524sin =∠BPC ,求PAB ∠tan 的值.OP第22题图①CBA第22题图②OPCBA23.(本题满分10分)科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):温度x/℃……-4-20 244.5……植物每天高度增长量y/mm ……41 49 49 4125 19.75……由这些数据,科学家推测出植物每天高度增长量y是温度x的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度的增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm ,那么实验室的温度x 应该在哪个范围内选择?请直接写出结果.24.(本题满分10分)已知四边形ABCD 中,E 、F 分别是AB 、AD 边上的点,DE 与CF 交于点G .(1)如图①,若四边形ABCD 是矩形,且DE⊥CF ,求证CD ADCF DE =; (2)如图②,若四边形ABCD 是平行四边形,试探究:当∠B 与∠EGC 满足什么关系时,使得CD AD CF DE =成立?并证明你的结论; (3)如图③,若BA =BC =6,DA =DC =8,∠BAD=90°,DE ⊥CF ,请直接写出CF DE的值.EF G A B C D第24题图①第24题图②A B C D F GE 第24题图③A B C D FG E25.(本题满分12分)如图,点P 是直线l :22--=x y 上的点,过点P 的另一条直线m 交抛物线2x y =于A 、B 两点.(1)若直线m 的解析式为2321+-=x y ,求A 、B 两点的坐标;(2)①若点P 的坐标为(-2,t ),当PA =AB 时,请直接写出点A 的坐标; ②试证明:对于直线l 上任意给定的一点P ,在抛物线上都能找到点A ,使得PA =AB 成立.(3)设直线l 交y 边AB 上,且∠BPC =∠OCP ,求点P 的坐标.xy第25(1)题图OlmPBAxy lO第25(2)题图xyClmPAOB第25(3)题图2013年武汉市中考数学参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10答案D B A A B A C C C B二、填空题11.22 12.28 13.51096.6⨯ 14.20 15.-12 16.15-三、解答题17.(本题满分6分)解:方程两边同乘以()3-x x ,得()332-=x x解得9=x . 经检验,9=x 是原方程的解.18.(本题满分6分)解:∵直线b x y +=2经过点(3,5)∴b +⨯=325. ∴1-=b .即不等式为12-x ≥0,解得x ≥21. 19.(本题满分6分)证明:∵BE =CF ,∴BE+EF =CF+EF ,即BF =CE .在△ABF 和△DCE 中,⎪⎩⎪⎨⎧=∠=∠=CE BF C B DCAB∴△ABF ≌△DCE , ∴∠A =∠D . 20.(本题满分7分)解:(1)设两把不同的锁分别为A 、B ,能把两锁打开的钥匙分别为a 、b ,其余两把钥匙分别为m、n ,根据题意,可以画出如下树形图:abmnnmbA B a由上图可知,上述试验共有8种等可能结果.(列表法参照给分)(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等.∴P (一次打开锁)=4182=.21.(本题满分7分)(1)画出△A 1B 1C 如图所示: (2)旋转中心坐标(23,1-); (3)点P 的坐标(-2,0).22.(本题满分8分)(1)证明:∵弧BC =弧BC ,∴∠BAC =∠BPC =60°.又∵AB =AC ,∴△ABC 为等边三角形xy(B 1)C 2B 2A 2A 1ACB O 第21题图–1–2–3–4–512345–1–2–3–4–512345∴∠ACB =60°,∵点P 是弧AB 的中点,∴∠ACP =30°,又∠APC =∠ABC =60°,∴AC =3AP .(2)解:连接AO 并延长交PC 于F ,过点E 作EG ⊥AC 于G ,连接OC .∵AB =AC ,∴AF ⊥BC ,BF =CF . ∵点P 是弧AB 中点,∴∠ACP =∠PCB ,∴EG =EF .∵∠BPC =∠FOC ,∴sin ∠FOC =sin ∠BPC=2524. 设FC =24a ,则OC =OA =a , ∴OF =7a ,AF =32a .在Rt △AFC 中,AC 2=AF 2+FC 2,∴AC =40a .在Rt △AGE 和Rt △AFC 中,sin ∠FAC =ACFCAE EG =, ∴aaEG a EG 402432=-,∴EG =12a . ∴tan ∠PAB =tan ∠PCB=212412==a a CF EF .23.(本题满分10分)GEFAP O 第22(2)题图解:(1)选择二次函数,设cbx ax y ++=2,得⎪⎩⎪⎨⎧=++=+-=4124492449c b a c b a c ,解得⎪⎩⎪⎨⎧=-=-=4921c b a∴y 关于x 的函数关系式是4922+--=x x y .不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,所以y 不是x 的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,所以y 不是x 的一次函数. (2)由(1),得4922+--=x xy ,∴()5012++-=x y ,∵01<-=a ,∴当1-=x 时,y 有最大值为50. 即当温度为-1℃时,这种植物每天高度增长量最大. (3)46<<-x .24.(本题满分10分)(1)证明:∵四边形ABCD 是矩形,∴∠A =∠ADC =90°,∵DE ⊥CF ,∴∠ADE =∠DCF ,∴△ADE∽△DCF ,∴DCADCF DE =. (2)当∠B+∠EGC =180°时,DCADCF DE =成立,证明如下:在AD 的延长线上取点M ,使CM =CF ,则∠CMF =∠CFM .∵AB ∥CD ,∴∠A =∠CDM ,∵∠B+∠EGC =180°,∴∠AED =∠FCB ,∴∠CMF =∠AED .∴△ADE ∽△DCM ,∴DC AD CM DE =,即DCAD CF DE =. (3)2425=CF DE . 25.(本题满分12分) 解:(1)依题意,得⎪⎩⎪⎨⎧=+-=.,23212x y x y 解得⎪⎪⎩⎪⎪⎨⎧=-=492311y x ,⎩⎨⎧==1122yx∴A (23-,49),B (1,1). (2)①A 1(-1,1),A 2(-3,9). ②过点P 、B 分别作过点A 且平行于x 轴的直线的垂线,垂足分别为G 、H.设P (a ,22--a ),A (m ,2m ),∵PA=PB ,∴△PAG ≌△BAH ,∴AG =AH ,PG =BH ,∴B (a m -2,2222++a m ),将点B 坐标代入抛物线2x y =,得224222=--+-a a am m ,ME GF DCBA 第24题图②∵△=()()081816168228162222>++=++=---a a a a a a∴无论a 为何值时,关于m 的方程总有两个不等的实数解,即对于任意给定的点P ,抛物线上总能找到两个满足条件的点A .(3)设直线m :()0≠+=k b kx y 交y 轴于D ,设A (m ,2m ),B (n ,2n ).过A 、B 两点分别作AG 、BH 垂直x 轴于G 、H .∵△AOB 的外心在AB 上,∴∠AOB=90°,由△AGO ∽△OHB ,得BHOHOG AG =,∴1-=mn . 联立⎩⎨⎧=+=2xy b kx y 得02=--b kx x,依题意,得m 、n是方程02=--b kx x的两根,∴b mn -=,∴1-=b ,即D (0,1).∵∠BPC =∠OCP ,∴DP =DC =3.P 设P (a ,22--a ),过点P 作PQ ⊥y 轴于Q ,在Rt △PDQ 中,222PD DQ PQ =+,∴()2223122=---+a a .∴01=a (舍去),5122-=a ,∴P (512-,514). ∵PN 平分∠MNQ ,∴PT =NT ,∴(数学)试卷第 21 页 (共 21 页) ()t t t -=+-22212,x y H G Q 第25(3)题图B O A P m l C。

2013年湖北中考数学真题卷含答案解析

2013年湖北中考数学真题卷含答案解析

2013年武汉市初中毕业生学业考试数学试题(含答案全解全析)(满分:120分时间:120分钟)第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,共30分)1.下列各数中,最大的是()A.-3B.0C.1D.22.式子√x-1在实数范围内有意义,则x的取值范围是()A.x<1B.x≥1C.x≤-1D.x<-1的解集是()3.不等式组{x+2≥0,x-1≤0A.-2≤x≤1B.-2<x<1C.x≤-1D.x≥24.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球5.若x1,x2是一元二次方程x2-2x-3=0的两个根,则x1x2的值是()A.-2B.-3C.2D.36.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°7.如图是由四个大小相同的正方体组合而成的几何体,其主视图是()8.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,….那么六条直线最多有()A.21个交点B.18个交点C.15个交点D.10个交点9.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其他”类统计.图(1)与图(2)是整理数据后的是()绘制的两幅不完整的统计图.以下结论不正确...图(1)图(2)A.由这两个统计图可知喜欢“科普常识”的学生有90人B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360人C.由这两个统计图不能确定喜欢“小说”的人数D.在扇形统计图中,“漫画”所在扇形的圆心角为72°10.如图,☉A与☉B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点,若∠CED=x°,∠ECD=y°,☉B的半径为R,则DE⏜的长度是()A.π(90-x)R90B.π(90-y)R90C.π(180-x)R180D.π(180-y)R180第Ⅱ卷(非选择题,共90分)二、填空题(共6小题,每小题3分,共18分)11.计算cos45°=.12.在2013年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28.这组数据的众数是.13.太阳的半径约为696000千米,用科学记数法表示数696000为.14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度是米/秒.15.如图,已知四边形ABCD是平行四边形,BC=2AB,A,B两点的坐标分别是(-1,0),(0,2),C,D两点在反比例函数y=kx(x<0)的图象上,则k等于.16.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连结CF交BD于点G,连结BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.三、解答题(共9小题,共72分)17.(本小题满分6分)解方程2x-3=3 x .18.(本小题满分6分)直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.19.(本小题满分6分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证∠A=∠D.有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能的结果;(2)求一次打开锁的概率.21.(本小题满分7分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.如图,已知△ABC是☉O的内接三角形,AB=AC,点P是AB⏜的中点,连结PA,PB,PC.(1)如图①,若∠BPC=60°,求证AC=√3AP;,求tan∠PAB的值.(2)如图②,若sin∠BPC=2425图①图②23.(本小题满分10分)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表).温度x/℃……-4-2024 4.5……植物每天高度增长量y/mm……414949412519.75……由这些数据,科学家推测出植物每天高度增长量y是温度x的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果.已知四边形ABCD 中,E,F 分别是AB,AD 边上的点,DE 与CF 交于点G. (1)如图①,若四边形ABCD 是矩形,且DE ⊥CF.求证DE CF =ADCD ;(2)如图②,若四边形ABCD 是平行四边形,试探究:当∠B 与∠EGC 满足什么关系时,使得DE CF =ADCD成立?并证明你的结论; (3)如图③,若BA=BC=6,DA=DC=8,∠BAD=90°,DE ⊥CF.请直接写出DE CF的值.图① 图② 图③25.(本小题满分12分)如图,点P 是直线l:y=-2x-2上的点,过点P 的另一条直线m 交抛物线y=x 2于A,B 两点. (1)若直线m 的解析式为y=-12x+32,求A,B 两点的坐标;(2)①若点P的坐标为(-2,t),当PA=AB时,请直接写出点A的坐标;②试证明:对于直线l上任意给定的一点P,在抛物线上都能找到点A,使得PA=AB成立;(3)设直线l交y轴于点C,若△AOB的外心在边AB上,且∠BPC=∠OCP,求点P的坐标.答案全解全析:1.D 因为正数大于0,负数小于0,在数轴上,越往右边的点所表示的数越大,所以有-3<0<1<2.故选D.2.B 根据“二次根式的被开方数大于或等于0”,得x-1≥0,解得x≥1.故选B.评析本题考查二次根式的概念、不等式解法的简单应用,通常学生易忽略“等于0”的情形,属容易题.3.A 解不等式x+2≥0得x≥-2,解不等式x-1≤0得x≤1,所以不等式组的解集为-2≤x≤1.故选A.4.A 因为必然事件是一定会发生的事件,所以在装有4个黑球和2个白球的袋子中,“摸出的三个球中至少有一个球是黑球”一定会发生,而选项B、C、D中的事件都是可能会发生也可能不会发生的,是随机事件,故选A.5.B 根据一元二次方程的根与系数的关系易得x1x2=-3,故选B.6.A ∵AB=AC,∠A=36°,×(180°-36°)=72°.∴∠ABC=∠C=12∵BD是AC边上的高,∴∠BDC=90°.∴∠DBC=90°-72°=18°.故选A.7.C 主视图是指从正面看几何体得到的平面图形,该几何体有三列正方体,且第三列的正方体有上下2层,故选C.8.C ∵两条直线最多有一个交点,在此基础上增加一条直线,则最多增加2个交点,即三条直线最多有1+2=3个交点;在此基础上再增加一条直线,则最多增加3个交点,即四条直线最多有1+2+3=6个交点;…,以此类推,六条直线最多有1+2+3+4+5=15个交点.故选C.9.C 由统计图可知喜欢“其他”类的人数为30人,占总体的10%,∴抽取的样本总数为30÷10%=300(人).喜欢“科普常识”的学生占30%,∴喜欢“科普常识”的学生有300×30%=90(人),显然选项A正确,不符合题意;若该年级共有1 200名学生,则可估计喜爱“科普常识”的学生约有1200×90=360(人),显然选项B也正确,不符合题意;300又由统计图知喜欢“小说”的人数为300-90-60-30=120(人),显然选项C不正确,符合题意; 又由条形统计图可知喜欢“漫画”的人数为60人,占抽取样本的比例为20%,∴“漫画”所在扇形的圆心角为20%×360°=72°,显然选项D正确,不符合题意.综上,选C.评析 本题考查的是条形统计图和扇形统计图的综合运用,体现了用样本估计总体的统计思想.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图能直接反映部分占总体的百分比. 10.B 过D 作☉B 的直径DM,连结ME 、BE,则∠MED=90°,BE⊥PE. ∴∠BEM+∠BED=90°,∠PEB=∠BED+∠PED=90°. ∴∠PED=∠BEM. 又∵BE=BM,∴∠BEM=∠BME, ∴∠DBE=∠BEM+∠BME=2∠BEM. ∴∠BEM=12∠DBE, ∴∠PED=∠BEM=12∠DBE.由已知及切线长定理知PE=PD,PD=PC, ∴∠PED=∠PDE,∠PDC=∠PCD,∠PEC=∠PCE.在△CDE 中,∵∠CED=x°,∠ECD=y°,则x°+∠PDE+∠PDC+y°=180°, 即x°+x°+∠PEC+y°+∠PCE+y°=180°,∴x°+y°+∠PEC=90°,∴∠PED=x°+∠PEC=90°-y°,即12∠DBE=90°-y°. ∴∠DBE=2(90°-y°), ∴由弧长公式可知DE⏜的长度=2(90-y )πR 180=(90-y )πR90,故选B.评析 本题主要考查了圆的切线长定理、直径所对的圆周角是直角、等腰三角形的性质、三角形内角和定理以及圆的弧长公式等知识的综合应用,解题关键是通过等角转化求出圆心角∠DBE 的大小.属中等难度题.11.答案 √22解析 由特殊角的三角函数值直接可得.12.答案 28解析 因为28是这组数据中出现最多的数据,所以根据众数的概念可知这组数据的众数是28.13.答案 6.96×105解析 因为科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,所以696 000=6.96×105,故填6.96×105.14.答案 20解析 设甲车的速度是m 米/秒,乙车的速度为n 米/秒,由题意,得{100n -100m =500,20m +20n =900,解得{m =20,n =25.故甲车的速度为20米/秒. 15.答案 -12解析 如图.过D 作DH⊥y 轴于H,过C 作CF⊥DH 于F.则∠CFD=∠BOA=90°,又∵四边形ABCD 是平行四边形,∴∠CDH=∠BAO,DC=AB,∴△CFD≌△BOA.∴DF=OA=1,CF=OB=2.设D(x,y),则C(x+1,y+2).∵C、D 在反比例函数图象上,∴xy =(x+1)(y+2),即y=-(2x+2).过C 作CE⊥y 轴于E,由勾股定理得AB=√5,EC 2+EB 2=BC 2.即(x+1)2+y 2=(2√5)2,解方程组{y =-(2x +2),(x +1)2+y 2=(2√5)2, 得{x =-3,y =4或{x =1,y =-4(不合题意,舍去). ∴D(-3,4) .∴k=-12 .故答案为-12.评析 本题主要考查反比例函数图象与性质、平行四边形的性质、全等三角形的判定与性质、勾股定理等知识的综合应用,解题关键是巧妙构造全等三角形,利用勾股定理和反比例函数的意义列出方程组,求出反比例函数上某一点的坐标.16.答案 √5-1解析 ∵四边形ABCD 是正方形,∴AB=AD=DC,∠BAD=∠ADC=90°,∠ADG=∠CDG=45°.又∵AE=DF,DG=DG,∴△ABE≌△DCF,△ADG≌△CDG,∴∠ABE=∠DCG,∠DAG=∠DCG,∴∠ABE=∠DAG.∵∠BAH+∠DAG=90°,∴∠BAH+∠ABE=90°,∴∠AHB=90°.∴H 在以AB 为直径的☉M 上.连结MD 、MH (如图所示).则MH+HD≥MD.∵AB=AD=2,∴AM=BM=MH=1.∴在Rt△ADM 中,由勾股定理得DM=√AD 2+AM 2=√5.∴DH≥√5-1,∴DH 的最小值是√5-1.评析 本题是一道以正方形为载体的动态几何探究题,主要考查了正方形的性质、全等三角形的判定与性质、勾股定理以及圆周角定理的推论等相关知识的综合应用,其解题关键是通过等角转化,确定动点H 运动的路径,从而求出线段DH 的最小值,属中等偏难题.17.解析 方程两边同乘以x(x-3),得2x=3(x-3),解得x=9.经检验,x=9是原方程的解.18.解析 ∵直线y=2x+b 经过点(3,5),∴5=2×3+b,∴b=-1.即不等式为2x-1≥0,解得x≥12.19.证明 ∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF 和△DCE 中,{AB =DC ,∠B =∠C ,BF =CE ,∴△ABF≌△DCE,∴∠A=∠D.20.解析 (1)设两把不同的锁分别为A,B,能把A,B 两锁打开的钥匙分别为a,b,其余两把钥匙分别为m,n.根据题意,可以画出如下的树状图:由上图可知上述试验共有8种等可能的结果.(2)由(1)可知,任意取出一把钥匙去开任意的一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等,∴P(一次打开锁)=28=14. 21.解析 (1)画出△A 1B 1C 如图,画出△A 2B 2C 2如图.(2)旋转中心坐标:(32,-1). (3)点P 的坐标:(-2,0).22.解析 (1)证明:∵BC⏜=BC ⏜,∠BPC=60°,∴∠BAC=∠BPC=60°. 又∵AB=AC,∴△ABC 为等边三角形,∴∠ACB=60°,∵点P 是AB⏜的中点,∴∠ACP=30°. 又∠APC=∠ABC=60°,∴∠PAC=90°.在Rt△PAC 中,∠ACP=30°,∴AC=√3AP.(2)连结AO 并延长交PC 于E,交BC 于F,过点E 作EG⊥AC 于点G,连结OC.∵AB=AC,且O 为△ABC 的外心,∴AF⊥BC,BF=CF.∵点P是AB⏜的中点,∴∠ACP=∠PCB,∴EG=EF.易知∠BPC=∠FOC,∴sin∠FOC=sin∠BPC=2425. 设FC=24a,则OC=OA=25a. ∴OF=7a,AF=32a.在Rt△AFC中,AC2=AF2+FC2, ∴AC=40a.在Rt△AGE和Rt△AFC中,sin∠FAC=EGAE =FC AC,∴EG32a-EG =24a40a,∴EG=12a.∴tan∠PAB=tan∠PCB=EFCF =12a24a=12.23.解析(1)选择二次函数,设y=ax2+bx+c(a≠0),得{c=49,4a-2b+c=49,4a+2b+c=41,解得{a=-1,b=-2,c=49.∴y关于x的函数关系式是y=-x2-2x+49.不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,∴y不是x的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,∴y不是x的一次函数.(2)由(1),得y=-x2-2x+49=-(x+1)2+50.∵a=-1<0,∴当x=-1时,y的最大值为50.即当温度为-1 ℃时,这种植物每天高度增长量最大.(3)-6<x<4.24.解析 (1)证明:∵四边形ABCD 是矩形,∴∠A=∠ADC=90°,∴∠ADE+∠CDE=90°,∵DE⊥CF,∴∠CDE+∠DCF=90°,∴∠ADE=∠DCF,∴△ADE∽△DCF,∴DE CF =AD DC .(2)当∠B+∠EGC=180°时,DE CF =AD DC 成立.证明如下:在AD 的延长线上取点M,使CF=CM,则∠CMF=∠CFM.∵AB∥CD,∴∠A=∠CDM.∵AD∥BC,∴∠CFM=∠FCB.∵∠B+∠EGC=180°,∴∠FCB+∠GEB=180°,又∠AED+∠GEB=180°,∴∠AED=∠FCB, ∴∠CMF=∠AED.∴△ADE∽△DCM,∴DE CM =AD DC ,即DE CF =AD DC .(3)DE CF =2524.25.解析 (1)依题意,得{y =-12x +32,y =x 2,解得{x 1=-32,y 1=94,{x 2=1,y 2=1.∴A (-32,94),B(1,1). (2)①A 1(-1,1),A 2(-3,9).②证明:过点P,B 分别作过点A 且平行于x 轴的直线的垂线,垂足分别为点G,H. 设P(a,-2a-2),A(m,m 2).∵PA=AB,∴△PAG≌△BAH.∴AG=AH,PG=BH.∴B(2m -a,2m 2+2a+2).将点B 坐标代入抛物线y=x 2,得2m 2-4am+a 2-2a-2=0.∵Δ=16a 2-8(a 2-2a-2)=8a 2+16a+16=8(a+1)2+8>0,∴无论a 为何值时,关于m 的方程总有两个不等的实数解,即对于任意给定的点P,抛物线上总能找到两个满足条件的点A.(3)设直线m:y=kx+b(k≠0)交y 轴于点D,设A(m,m 2),B(n,n 2).过A 、B 两点分别作AG 、BH 垂直x 轴于G 、H.∵△AOB 的外心在AB 上,∴∠AOB=90°.易得△AGO∽△OHB,∴AG OG =OH BH ,∴mn=-1.联立{y =kx +b ,y =x 2,得x 2-kx-b=0, 依题意,得m,n 是方程x 2-kx-b=0的两根.∴mn=-b,∴b=1,即D(0,1).由题可得C(0,-2). ∵∠BPC=∠OCP,∴DP=DC=3.设P(a,-2a-2),过点P 作PQ⊥y 轴于Q,在Rt△PDQ 中,PQ 2+DQ 2=PD 2,即a 2+(-2a-2-1)2=32,∴a 1=0(舍去),a 2=-125,∴P (-125,145).。

2013年江苏省苏州市中考数学试卷及答案(解析版)

2013年江苏省苏州市中考数学试卷及答案(解析版)

江苏省苏州市2013年中考数学试卷一、选择题(本大共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一个符合题目要求的,请将选择题的答案用2B铅笔涂在答案卡相应的位置上).223.(3分)(2013•苏州)若式子在实数范围内有意义,则x的取值范围是()5.(3分)(2013•苏州)世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表n6.(3分)(2013•苏州)已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,2x=7.(3分)(2013•苏州)如图,AB是半圆的直径,点D是AC的中点,∠ABC=50°,则∠DAB 等于()ABD=×8.(3分)(2013•苏州)如图,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数y=(x>0)的图象经过顶点B,则k的值为()==5(9.(3分)(2013•苏州)已知x﹣=3,则4﹣x2+x的值为()..﹣=.10.(3分)(2013•苏州)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一个动点,则PA+PC的最小值为()...,OB=2××AM=×=3AD=,由勾股定理得:(﹣=1DC=,二、填空题:本大题共8个小题,每小题3分,共24分。

把答案直接填在答案卡相对应位置上。

11.(3分)(2013•苏州)计算:a4÷a2=a2.12.(3分)(2013•苏州)分解因式:a2+2a+1=(a+1)2.13.(3分)(2013•苏州)方程=的解为x=2.14.(3分)(2013•苏州)任意抛掷一枚质地均匀的正方体骰子1次,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数大于4的概率为.的概率是:=.故答案为:.15.(3分)(2013•苏州)按照如图所示的操作步骤,若输入x的值为2,则输出的值为20.16.(3分)(2013•苏州)如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧的弧长为π.(结果保留π)长为=π故答案为:17.(3分)(2013•苏州)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为(2,4﹣2).据正方形的对角线等于边长的,OQ=2==BP=2﹣2222题考查了相似三角形的判定与性质,正方形的对角线等于边长的18.(3分)(2013•苏州)如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若=,则=用含k的代数式表示).,,∵=,=.故答案为:三、解答题(本大题共11小题,共76分.把解答过程写在答案卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明。

中考数学总复习第1课 实数

中考数学总复习第1课 实数
2.在做实数运算题时,要先理清运算顺序再计算,在计 算的过程中要注意各项符号的处理.
【精选考题 6】 (2013·浙江衢州) 4-23÷|-2|×(-7+ 5).
点评:(1)本题考查实数的运算,难度较小. (2)熟练掌握实数的运算法则是解题的关键.
解析: 4-23÷|-2|×(-7+5) =2-8÷2×(-2) =2+8=10.

【解析】 原式=3×9.42-3×9.42=0.
【答案】 0
考点剖析
考点一 实数的分类
知识清单
正整数 自然数 整数 0
负整数
有理数
正分数 有限小数或无
实数
分数 负分数 限循环小数
正无理数 无理数 负无理数 无限不循环小数
根据需要,我们也可以按符号进行分类,如:
正实数
实数 零
负实数
考点点拨
1.实数的概念及分类常以选择题和填空题的形式出现,题目 难度一般较小.对于实数的分类,应用较多的为按正、负 分类,在分类讨论及探索性问题中也常常涉及实数分类的 知识.
真题体验
1.(2013·浙江金华)在数 0,2,-3,-1.2 中,属于负整
数的是
()
A.0
B.2
C.-3
D.-1.2
【解析】 本题易错选 D,需注意读题,本题题干中要选
的是负整数,所以应满足两个条件:(1)负数:(2)整数,只
有-3 符合,故选 C.
【答案】 C
2.(2013·浙江宁波)-5 的绝对值为
值永远是非负的,绝对值的非负性往往也是题中的隐 含条件.数轴上 a,b 所表示的两个点之间的距离即为 |a-b|.
【精选考题 3】 (2013·浙江舟山)-2 的相反数是 ( )

初中数学中考计算题复习(最全)-含答案

初中数学中考计算题复习(最全)-含答案

一.解答题(共30小题)1.计算题:①;②解方程:.2.计算:+(π﹣2013)0.3.计算:|1﹣|﹣2cos30°+(﹣)0×(﹣1)2013.4.计算:﹣.5.计算:.6..7.计算:.8.计算:.9.计算:.10.计算:.11.计算:.12..13.计算:.14.计算:﹣(π﹣3.14)0+|﹣3|+(﹣1)2013+tan45°.15.计算:.16.计算或化简:(1)计算2﹣1﹣tan60°+(π﹣2013)0+|﹣|.(2)(a﹣2)2+4(a﹣1)﹣(a+2)(a﹣2)17.计算:(1)(﹣1)2013﹣|﹣7|+×0+()﹣1;(2).18.计算:.(1)19.(2)解方程:.20.计算:(1)tan45°+sin230°﹣cos30°•tan60°+cos245°;(2).21.(1)|﹣3|+16÷(﹣2)3+(2013﹣)0﹣tan60°(1)计算:.22.(2)求不等式组的整数解.(1)计算:23.(2)先化简,再求值:(﹣)÷,其中x=+1.24.(1)计算:tan30°25.计算:(1)(2)先化简,再求值:÷+,其中x=2+1.26.(1)计算:;(2)解方程:.27.计算:.28.计算:.29.计算:(1+)2013﹣2(1+)2012﹣4(1+)2011.30.计算:.1.化简求值:,选择一个你喜欢且有意义的数代入求值.2.先化简,再求值,然后选取一个使原式有意义的x值代入求值.3.先化简再求值:选一个使原代数式有意义的数代入中求值.4.先化简,再求值:,请选择一个你喜欢的数代入求值.5.(2010•红河州)先化简再求值:.选一个使原代数式有意义的数代入求值.6.先化简,再求值:(1﹣)÷,选择一个你喜欢的数代入求值.7.先化简,再求值:(﹣1)÷,选择自己喜欢的一个x求值.8.先化简再求值:化简,然后在0,1,2,3中选一个你认为合适的值,代入求值.9.化简求值(1)先化简,再求值,选择你喜欢的一个数代入求值.(2)化简,其中m=5.10.化简求值题:(1)先化简,再求值:,其中x=3.(2)先化简,再求值:,请选一个你喜欢且使式子有意义的数字代入求值.(3)先化简,再求值:,其中x=2.(4)先化简,再求值:,其中x=﹣1.11.(2006•巴中)化简求值:,其中a=.12.(2010•临沂)先化简,再求值:()÷,其中a=2.13.先化简:,再选一个恰当的x值代入求值.14.化简求值:(﹣1)÷,其中x=2.15.(2010•綦江县)先化简,再求值,,其中x=+1.16.(2009•随州)先化简,再求值:,其中x=+1.17.先化简,再求值:÷,其中x=tan45°.18.(2002•曲靖)化简,求值:(x+2)÷(x﹣),其中x=﹣1.19.先化简,再求值:(1+)÷,其中x=﹣3.20.先化简,再求值:,其中a=2.21.先化简,再求值÷(x﹣),其中x=2.22.先化简,再求值:,其中.24.先化简代数式再求值,其中a=﹣2.25.(2011•新疆)先化简,再求值:(+1)÷,其中x=2.26.先化简,再求值:,其中x=2.27.(2011•南充)先化简,再求值:(﹣2),其中x=2.28.先化简,再求值:,其中a=﹣2.29.(2011•武汉)先化简,再求值:÷(x ﹣),其中x=3. 30.化简并求值:•,其中x=21. . 2。

中考数学专题复习《实数》检测题真题(含答案)

中考数学专题复习《实数》检测题真题(含答案)

中考专题复习实 数1、有理数:像3、53-、119……这样的 或 。

2、数轴:规定了 、 和 的直线叫做数轴(画数轴时,要注意上述规定的 三要素缺一不可)。

3、相反数:只有 不同的两个数,如a 的相反数是 ,0的相反数仍是 。

若a 与b 互为相反数,则 .4、绝对值:正数的绝对值是它 ,负数的绝对值是它的 ,0的绝对值是0.任何实数的绝对值都是 ,a ≧0.互为相反数的两个数的绝对值相等,a =a -。

5、倒数: 没有倒数。

正数的倒数是正数,负数的倒数是负数。

若a 与b 互为倒数,则 .6、有理数的四则混合运算:(1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行;(4)如有括号,先做括号内的运算,按 ,中括号, 依次进行。

7、乘方:求n 个 的积的运算,叫做乘方,乘方的结果叫做 。

在a n中,a 叫做 ,n 叫做 。

8、科学记数法:把一个数写做 的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。

9、平方根:如果一个数的平方等a ,那么这个数叫做a 的 或 ,0的平方根是0,负数 平方根。

a 的平方根记为a ±(a ≧0),读作“正负根号a ”,a 叫做被开方数。

10、算术平方根:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,0的算术平方根为0。

a 的算术平方根记为a (a ≧0),读作“根号a ”,a 叫做被开方数。

11、立方根:如果一个数的立方等于a ,那么这个数叫做a 的 或 ,0的立方 根是0,正数的立方根是正数,负数的立方根是负数。

3a -=3a ,a 的立方根记为3a ,读作“三次根号a ”,a 叫做 ,3是 。

知识回顾12、无理数:像2、33、……这样的 。

13、实数: 和 统称为实数。

实数与数轴上的点 。

1.(2017湖南长沙,1)下列实数中,为有理数的是( ) A .B .C .D .12.(2017广东广州,1)如图1,数轴上两点表示的数互为相反数,则点表示的( )A . -6B .6C . 0D .无法确定3.(2017湖南长沙,3)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( ) A .B .C .D .4.(2017山东临沂,1)的相反数是( ) A .B .C .2017D .5.(2017浙江宁波,4)实数的立方根是 .6.(2017重庆A 卷,13)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 . 7.(2017重庆A 卷,14)计算:|﹣3|+(﹣1)2= . 8.(2017江苏徐州,9)的算术平方根是 . 9.(2017浙江嘉兴,17(1))计算:.10.(2017浙江台州,17)计算:.基础检测考点精讲1.有理数概念【例题1】(2017河南,1)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.【考点】有理数的大小比较.【变式】(2017重庆A卷,14)计算:|﹣3|+(﹣1)2= .【答案】4.【解析】|﹣3|+(﹣1)2=4【考点】有理数的混合运算.【例题2】(2017天津,1)计算的结果等于()A.2 B. C.8 D.【答案】A.【解析】根据有理数的加法法则即可得原式-2,故选A.【变式】(2017山东滨州,1)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.【例题3】(2017山东日照,3)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4640万有8位,所以可以确定n=8﹣1=7.4640万=4.64×107.故选:C.【考点】科学记数法—表示较大的数.【变式】(2017辽宁沈阳,3)“弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。

2013中考数学真题及答案汇编相当经典不用花钱(八)

2013中考数学真题及答案汇编相当经典不用花钱(八)

【答案】B 【解析】方差小的比较稳定,故选 B。 5.(2013 山西,5,2 分)下列计算错误的是( )
A.x3+ x3=2x3
B.a6÷a3=a2
C.
12 2
3
1 1 D. 3
3
【答案】B
【解析】a6÷a3= a63 a3 ,故 B 错,A、C、D 的计算都正确。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配0料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高高与中中带资资负料料荷试试下卷卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并中3试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2013年上海市中考数学试卷(附答案解析)

2013年上海市中考数学试卷(附答案解析)

9 ; (B) 7 ;
B
(C)
20 ; (D)
1 . 3
【考点分析】 本题主要考察最简二次根式的概念. 【解题思路】 本题解题的关键在于紧扣住最简二次根式的概念逐个辨析所给选项即可获得答案 B. 【解题过程】 根据题意选项 A: 9 =3,选项 C: 20 2 5 ,选项 D: 次根式的概念,可以发现答案选择 B. 【方法总结】 【关键词】 一个根式是否为最简二次根式,必须满足两个条件(1)根号内不含有开方开的尽的 二次根式 最简二次根式 因数或因式, (2)二次根式的根号内不含有分母.
等实数根(2) △=0 方程有两个相等实数根(3) △ 0 方程没有实数根. 【关键词】 一元二次方程 根的判别式
1
3.如果将抛物线 y x 2 向下平移 1 个单位,那么所得新抛物线的表达式是(
2

(A) y ( x 1) 2 ; (B) y ( x 1) 2 ;
2 . 7
【方法总结】 等可能概率计算公式: P 【关键词】等可能事件 概率计算
13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图 2 所示,那么报名参加甲组和丙组的人数 之和占所有报名人数的百分比为___________. 【答案】 40% 【考点分析】 本题主要考察能够通过频数直方图获取数据. 【解题思路】 本题解题关键在于对于图表数据的获取,即可获得答案 40% . 【解题过程】 从频数直方图中获取数据:
2
6.在梯形 ABCD 中,AD∥BC,对角线 AC 和 BD 交于点 O,下列条件中,能判断梯形 ABCD 是等腰 梯形的是( 【答案】 C 【考点分析】 本题主要考察等腰梯形的判定和全等三角形的判定方法. 【解题思路】 本题解题的关键在于掌握等腰梯形的判定方法,即可获得答案 C . 【解题过程】 逐个辨析发现当 ADB DAC 时,可推出 AC BD ,根据等腰梯形判定定理中的“对 角线相等的梯形是等腰梯形” ,即可以发现答案选择 C . 【方法总结】 等腰梯形的判定有: (1)有两腰相等的梯形是等腰梯形 (2)对角线相等的梯形是等 腰梯形(3)同一底边上的两个底角相等的梯形是等腰梯形. 【关键词】 梯形 等腰梯形判定 ) (A)∠BDC =∠BCD; (B)∠ABC =∠DAB; (C)∠ADB =∠DAC; (D)∠AOB =∠BOC.

2013年青海省中考数学试卷(含解析版)

2013年青海省中考数学试卷(含解析版)

2013年青海省中考数学试卷一、填空题(本大题共12小题15空,每空2分,共30分).1.(4分)﹣7+4的倒数是;(﹣2a2b)2=.2.(4分)分解因式:x3y﹣2x2y2+xy3=;分式方程的解是.3.(2分)2013年4月青海省著名品牌商品推介会签约总金额达7805000000元,该数据用科学记数法表示为元.4.(4分)已知实数a在数轴上的位置如图1所示,则化简的结果是;不等式组的解集是.5.(2分)在函数y=中,自变量x的取值范围是.6.(2分)如图,把一张长方形纸片ABCD沿EF折叠,点C、D分别落在点C′、D′的位置上,EC交AD于G,已知∠EFG=56°,那么∠BEG=.7.(2分)中国象棋一方棋子按兵种不同分布如下:1个“帅”、5个“兵”、“士、象、马、车、炮”各2个,将一方棋子反面朝上放在棋盘上,随机抽取一个棋子是“兵”的概率为.8.(2分)如图,BC=EC,∠1=∠2,添加一个适当的条件使△ABC≌△DEC,则需添加的条件是(不添加任何辅助线).9.(2分)如图,在⊙O中直径CD垂直弦AB,垂足为E,若∠AOD=52°,则∠DCB=.10.(2分)如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为.11.(2分)如图,小明在测量旗杆高度的实践活动中,发现地面上有一滩积水,他刚好能从积水中看到旗杆的顶端,测得积水与旗杆底部距离CD=6米,他与积水的距离BC=1米,他的眼睛距离地面AB=1.5米,则旗杆的高度DE= 米.12.(2分)用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n个图案中正三角形的个数为(用含n的代数式表示).二、选择题(本大题共8小题,每小题3分,共24分,每小题给出的四个选项中,只有一个选项符合要求,请把你认为正确的选项序号填入下面相应题号的表格内).13.(3分)下列计算正确的是()A.a2•a3=a6B.C.D.14.(3分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.15.(3分)在正方形网格中,△ABC的位置如图所示,则tanB的值为()A.B.C.D.16.(3分)在同一直角坐标系中,函数y=2x与的图象大致是()A.B.C.D.17.(3分)几名同学准备参加“大美青海”旅游活动,包租一辆面包车从西宁前往青海湖.面包车的租价为240元,出发时又增加了4名同学,结果每个同学比原来少分担了10元车费.设原有人数为x人,则可列方程()A.B.C.D.18.(3分)如图是一个物体的俯视图,则它所对应的物体是()A.B.C.D.19.(3分)数学老师布置了10道选择题作为课堂练习,课代表将全班答题情况绘制成如图10所示的条形统计图,根据此图可知,每位同学答对的题数所组成样本的中位数和众数分别为()A.8,8B.9,8C.8,9D.9,9 20.(3分)如图在直角△ABC中,∠ACB=90°,AC=8cm,BC=6cm,分别以A、B为圆心,以的长为半径作圆,将直角△ABC截去两个扇形,则剩余(阴影)部分的面积为()A.B.C.D.三、(本大题共3小题,第21题5分,第22题7分,第23题7分,共19分).21.(5分)|﹣|+()﹣1﹣(2013﹣π)0﹣3tan30°.22.(7分)先化简再求值:,其中a=3+,b=3﹣.23.(7分)如图,已知▱ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于N,交BD于F,连结AF、CE.求证:四边形AECF为平行四边形.四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分).24.(9分)如图,线段AB、CD分别表示甲、乙两建筑物的高,AB⊥BC,DC⊥BC,垂足分别为B、C,从B点测得D点的仰角α为60°,从A点测得D点的仰角β为30°,已知甲建筑物的高度AB=34m,求甲、乙两建筑物之间的距离BC和乙建筑物的高度DC.(结果保留根号)25.(8分)为了进一步了解某校九年级学生的身体素质,体育老师从该年级各班中随机抽取50名学生进行1分钟跳绳次数测试,以测试数据为样本,绘制出如图表.表:(1)求表中a和b的值:a=;b=.(2)请将频数分布直方图补充完整:(3)若在1分钟内跳绳次数大于等于120次认定为合格,则从全年级任意抽测一位同学为合格的概率是多少?(4)今年该校九年级有320名学生,请你估算九年级跳绳项目不合格的学生约有多少人?26.(9分)如图,已知△ABC内接于⊙O,AC是⊙O的直径,D是的中点,过点D作直线BC的垂线,分别交CB、CA的延长线E、F.(1)求证:EF是⊙O的切线;(2)若EF=8,EC=6,求⊙O的半径.五、(本大题共2小题,第27题8分,第28题13分,共21分).27.(8分)请你认真阅读下面的小探究系列,完成所提出的问题.(1)探究1:如图1,点E、F分别在正方形ABCD边BC、CD上,AE⊥BF 于点O,小芳看到该图后,发现AE=BF,这是因为∠EAB和∠FBC都是∠ABF的余角,就会由ASA判定得出△ABE≌△BCF.小芳马上联想到正方形的对角线也是互相垂直且相等的(如图2),是不是在一般情况下,正方形内部两条长度大于边长且互相垂直的线段,即使它们不经过正方形的顶点,也会相等呢?很快她发现结果是成立的,除了通过构造法证明两条线段所在的三角形全等之外,还可以通过平移的方法把图3转化为图1,得到GH=EF,该方法更加简捷;(2)探究2:小芳进一步思考,如果让两个全等正方形组成矩形ABCD,如图4所示,GH⊥EF于点O,她发现GH=2EF,请你替她完成证明;(3)探究3:如图5所示,让8个全等正方形组成矩形ABCD,GH⊥EF于点O,请你猜想GH和EF有怎样的数量关系,写在下面:.28.(13分)如图,已知抛物线经过点A(2,0),B(3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且以A,O,D,E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上第二象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P使得以点P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.2013年青海省中考数学试卷参考答案与试题解析一、填空题(本大题共12小题15空,每空2分,共30分).1.(4分)﹣7+4的倒数是;(﹣2a2b)2=4a4b2.【考点】17:倒数;19:有理数的加法;47:幂的乘方与积的乘方.【分析】根据倒数和幂的乘方和积的乘方的运算法则求解.【解答】解:﹣7+4=﹣3,倒数为﹣;(﹣2a2b)2=4a4b2.故答案为:;4a4b2.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.2.(4分)分解因式:x3y﹣2x2y2+xy3=xy(x﹣y)2;分式方程的解是x=1.【考点】55:提公因式法与公式法的综合运用;B3:解分式方程.【分析】先提取公因式xy,再根据完全平方公式进行二次分解;方程两边都乘以(x﹣2),把分式方程转化为整式方程,然后求解,再进行验证即可.【解答】解:x3y﹣2x2y2+xy3,=xy(x2﹣2xy+y2),=xy(x﹣y)2;方程两边都乘以(x﹣2),把分式方程转化为整式方程得,x﹣3+x﹣2=﹣3,解得x=1,检验:当x=1时,x﹣2≠0,所以,x=1是原方程方程的解.故答案为:xy(x﹣y)2;x=1.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.3.(2分)2013年4月青海省著名品牌商品推介会签约总金额达7805000000元,该数据用科学记数法表示为7.805×109元.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7805000000用科学记数法表示为:7.805×109.故答案为:7.805×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)已知实数a在数轴上的位置如图1所示,则化简的结果是1;不等式组的解集是x≤1.【考点】29:实数与数轴;CB:解一元一次不等式组.【分析】根据数轴得到0<a<1,由此可以计算绝对值和二次根式;不等组的解集是两个不等式解集的交集.【解答】解:如图所示,0<a<1,则=1﹣a+a=1;,不等式(1)的解集为:x≤1.不等式(2)的解集为:x<6,所以,原不等式组的解集为:x≤1.故答案是:1;x≤1.【点评】本题考查了实数与数轴,解一元一次不等式组.根据图示得到a的取值范围是解答第一个空的关键.5.(2分)在函数y=中,自变量x的取值范围是x≥﹣1.【考点】E4:函数自变量的取值范围.【分析】根据二次根式的性质,被开方数大于等于0,列不等式求解.【解答】解:根据题意得:x+1≥0,解得,x≥﹣1.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.6.(2分)如图,把一张长方形纸片ABCD沿EF折叠,点C、D分别落在点C′、D′的位置上,EC交AD于G,已知∠EFG=56°,那么∠BEG=68°.【考点】IK:角的计算;PB:翻折变换(折叠问题).【分析】根据平行线的性质求得∠CEF的度数,然后根据折叠的性质可得∠FEG=∠CEF,进而求得∠BEG的度数.【解答】解:∵长方形ABCD中,AD∥BC,∴∠CEF=∠EFG=56°,∴∠CEF=∠FEG=56°,∴∠BEG=180°﹣∠CEF﹣∠FEG=180°﹣56°﹣56°=68°.故答案是:68°.【点评】本题考查了折叠的性质,正确确定折叠过程中出现的相等的角是关键.7.(2分)中国象棋一方棋子按兵种不同分布如下:1个“帅”、5个“兵”、“士、象、马、车、炮”各2个,将一方棋子反面朝上放在棋盘上,随机抽取一个棋子是“兵”的概率为.【考点】X4:概率公式.【分析】让兵的个数除以棋子的总个数即为所求的概率.【解答】解:∵共有16个棋子,其中有5个兵,∴抽到兵的概率是;故答案为:.【点评】此题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.8.(2分)如图,BC=EC,∠1=∠2,添加一个适当的条件使△ABC≌△DEC,则需添加的条件是∠A=∠D(不添加任何辅助线).【考点】KB:全等三角形的判定.【专题】26:开放型.【分析】先求出∠ACB=∠DCE,再添加∠A=∠D,由已知条件BC=EC,即可证明△ABC≌△DEC.【解答】解:添加条件:∠A=∠D;∵∠1=∠2,∴∠1+∠ECA=∠2+∠ECA,即∠ACB=∠DCE,在△ABC和△DEC中,∴△ABC≌△DEC(AAS).【点评】本题考查了全等三角形的判定;熟练掌握全等三角形的判定方法是解题的关键.9.(2分)如图,在⊙O中直径CD垂直弦AB,垂足为E,若∠AOD=52°,则∠DCB=26°.【考点】M2:垂径定理;M5:圆周角定理.【分析】连接OB,先根据直径CD垂直弦AB得出=,故可得出∠BOE=∠AOE,由圆周角定理即可得出结论.【解答】解:连接OB,∵直径CD垂直弦AB,∴=,∴∠BOE=∠AOE=52°,∴∠DCB=∠BOE=26°.答案为:26°.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.(2分)如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为(﹣b,a).【考点】R7:坐标与图形变化﹣旋转.【专题】16:压轴题.【分析】根据旋转的性质“旋转不改变图形的大小和形状”以及直角三角形的性质解题.【解答】解:由图易知A′B′=AB=b,OB′=OB=a,∠A′B′0=∠ABO=90°,∵点A'在第二象限,∴A'的坐标为(﹣b,a).【点评】需注意旋转前后对应角的度数不变,对应线段的长度不变.11.(2分)如图,小明在测量旗杆高度的实践活动中,发现地面上有一滩积水,他刚好能从积水中看到旗杆的顶端,测得积水与旗杆底部距离CD=6米,他与积水的距离BC=1米,他的眼睛距离地面AB=1.5米,则旗杆的高度DE= 9米.【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】先根据光的反射定律得出∠ACB=∠ECD,再得出Rt△ACB∽Rt△ECD,根据相似三角形对应边成比例即可得出结论.【解答】解:根据光的反射定律,∠ACB=∠ECD,∵∠ACB=∠EDC,CD=6米,AB=1.5米,BC=1米,∴Rt△ACB∽Rt△ECD,∴=,即=,解得DE=9.故答案为:9.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟知相似三角形的对应边成比例是解答此题的关键.12.(2分)用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n个图案中正三角形的个数为2n+2(用含n的代数式表示).【考点】38:规律型:图形的变化类.【专题】16:压轴题;2A:规律型.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:由图可知:第一个图案有正三角形4个为2×2.第二图案比第一个图案多2个为2×2+2=6个.第三个图案比第二个多2个为2×3+2=8个.那么第n个就有正三角形2n+2个.【点评】本题是一道找规律的题目,注意由特殊到一般的分析方法,此题的规律为:第n个就有正三角形2n+2个.这类题型在中考中经常出现.二、选择题(本大题共8小题,每小题3分,共24分,每小题给出的四个选项中,只有一个选项符合要求,请把你认为正确的选项序号填入下面相应题号的表格内).13.(3分)下列计算正确的是()A.a2•a3=a6B.C.D.【考点】46:同底数幂的乘法;48:同底数幂的除法;75:二次根式的乘除法;78:二次根式的加减法.【分析】结合选项分别进行同底数幂的乘法、二次根式的乘法、同底数幂的除法、二次根式的乘除法等运算,然后选择正确选项.【解答】解:A、a2•a3=a5,原式计算错误,故本选项错误;B、3和2不是同类二次根式,不能合并,故本选项错误;C、a2÷a3=a﹣1=(a≠0),计算正确,故本选项正确;D、÷=,原式计算错误,故本选项错误.故选:C.【点评】本题考查了同底数幂的乘法、二次根式的乘法、同底数幂的除法、二次根式的乘除法等知识,掌握运算法则是解答本题的关键.14.(3分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】P3:轴对称图形;R5:中心对称图形.【专题】1:常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.15.(3分)在正方形网格中,△ABC的位置如图所示,则tanB的值为()A.B.C.D.【考点】T1:锐角三角函数的定义.【专题】24:网格型.【分析】根据锐角三角函数的正切是对边比邻边,可得答案.【解答】解:由正切是对边比邻边,得tanB==,故选:B.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.16.(3分)在同一直角坐标系中,函数y=2x与的图象大致是()A.B.C.D.【考点】F4:正比例函数的图象;G2:反比例函数的图象.【分析】根据正比例函数与反比例函数图象的特点与系数的关系解答即可.【解答】解:∵y=2x中的2>0,∴直线y=2x经过第一、三象限.∵中的﹣1<0,∴双曲线经过第二、四象限,综上所述,只有D选项符合题意.故选:D.【点评】本题考查一次函数,正比例函数的图象.注意,反比例函数中系数与图象位置之间关系.17.(3分)几名同学准备参加“大美青海”旅游活动,包租一辆面包车从西宁前往青海湖.面包车的租价为240元,出发时又增加了4名同学,结果每个同学比原来少分担了10元车费.设原有人数为x人,则可列方程()A.B.C.D.【考点】B6:由实际问题抽象出分式方程.【分析】设原有人数为x人,根据增加之后的人数为(x+4)人,根据增加人数之后每个同学比原来少分担了10元车费,列方程.【解答】解:设原有人数为x人,根据则增加之后的人数为(x+4)人,由题意得,﹣10=.故选:A.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可.18.(3分)如图是一个物体的俯视图,则它所对应的物体是()A.B.C.D.【考点】U3:由三视图判断几何体.【分析】根据俯视图是从物体上面看,从而得到出物体的形状.【解答】解:从俯视图可以看出直观图的下面部分为长方体,上面部分为圆柱,且与下面的长方体的顶面的两边相切高度相同,符合这些条件的只有C;故选:C.【点评】本题考查了三视图的概念.本题的关键是要考虑到俯视图中圆的直径与长方形的宽的关系.19.(3分)数学老师布置了10道选择题作为课堂练习,课代表将全班答题情况绘制成如图10所示的条形统计图,根据此图可知,每位同学答对的题数所组成样本的中位数和众数分别为()A.8,8B.9,8C.8,9D.9,9【考点】VC:条形统计图;W4:中位数;W5:众数.【分析】根据众数和中位数的概念求解.【解答】解:由图可得,答对8道题的人数最多,故众数为8,∵共有50名同学,∴第25和26人答对题目数的平均数为中位数,即中位数为:=2.故选:B.【点评】本题考查了众数和平均数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.20.(3分)如图在直角△ABC中,∠ACB=90°,AC=8cm,BC=6cm,分别以A、B为圆心,以的长为半径作圆,将直角△ABC截去两个扇形,则剩余(阴影)部分的面积为()A.B.C.D.【考点】MO:扇形面积的计算.【分析】根据勾股定理求出AB,则得出圆的半径,分别求出三角形ACB和扇形AEF和扇形BEM的面积和,即可得出答案.【解答】解:∵在Rt△ACB中,∠C=90°,BC=6,AC=8,由勾股定理得:AB=10,即两圆的半径是5,∴阴影部分的面积是S=S△ACB﹣S扇形AEF﹣S扇形BEM=×6×8﹣=24﹣π.故选:A.【点评】本题考查了勾股定理,三角形面积,扇形的面积的应用,注意:圆心角是n度,半径是r的扇形的面积S=.三、(本大题共3小题,第21题5分,第22题7分,第23题7分,共19分).21.(5分)|﹣|+()﹣1﹣(2013﹣π)0﹣3tan30°.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】11:计算题.【分析】原式第一项利用绝对值的代数意义化简,第二项利用负指数幂法则计算,第三项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=+5﹣1﹣=4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(7分)先化简再求值:,其中a=3+,b=3﹣.【考点】6D:分式的化简求值.【专题】11:计算题.【分析】先把括号内通分,再把分子分母因式分解,然后把除法运算化为乘法运算后约分得到原式=,再把a和b的值代入后进行二次根式的混合运算.【解答】解:原式=÷=•=,当a=3+,b=3﹣,原式==.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.23.(7分)如图,已知▱ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于N,交BD于F,连结AF、CE.求证:四边形AECF为平行四边形.【考点】KD:全等三角形的判定与性质;L7:平行四边形的判定与性质.【专题】14:证明题.【分析】由条件可证明△ABE≌△CDF,可证得AE=CF,且AE∥CF,由平行四边形的判定可证得四边形AECF为平行四边形.【解答】证明:在▱ABCD中,AD∥BC,AB=CD,∠ABC=∠ADC,∴∠ABD=∠CDB,又∵AM⊥BC,CN⊥AD,∴∠BAM=∠DCN,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴AE=CF,∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,∴四边形AECF为平行四边形.【点评】本题主要考查平行四边形的判定和性质,掌握平行四边形的判定和性质是解题的关键,即①两组对边分别平行⇔四边形为平行四边形,②两组对边分别相等⇔四边形为平行四边形,③一组对边平行且相等⇔四边形为平行四边形,④两组对角分别相等⇔四边形为平行四边形,⑤对角线互相平分⇔四边形为平行四边形.四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分).24.(9分)如图,线段AB、CD分别表示甲、乙两建筑物的高,AB⊥BC,DC⊥BC,垂足分别为B、C,从B点测得D点的仰角α为60°,从A点测得D点的仰角β为30°,已知甲建筑物的高度AB=34m,求甲、乙两建筑物之间的距离BC和乙建筑物的高度DC.(结果保留根号)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】作AE⊥CD,用BC可以分别表示DE,CD的长,根据CD﹣DE=AB,即可求得BC的长,即可解题.【解答】解:作AE⊥CD,∵CD=BC•tanα=BC,DE=BC•tanβ=BC,∴AB=CD﹣DE=BC,∴BC=17m,CD=BC•tanα=BC=51m.答:甲、乙两建筑物之间的距离BC为17m,乙建筑物的高度DC为51m.【点评】本题考查了直角三角形中三角函数的应用,考查了特殊角的三角函数值,本题中求的BC的长是解题的关键.25.(8分)为了进一步了解某校九年级学生的身体素质,体育老师从该年级各班中随机抽取50名学生进行1分钟跳绳次数测试,以测试数据为样本,绘制出如图表.表:(1)求表中a和b的值:a=12;b=0.24.(2)请将频数分布直方图补充完整:(3)若在1分钟内跳绳次数大于等于120次认定为合格,则从全年级任意抽测一位同学为合格的概率是多少?(4)今年该校九年级有320名学生,请你估算九年级跳绳项目不合格的学生约有多少人?【考点】V5:用样本估计总体;V7:频数(率)分布表;V8:频数(率)分布直方图;X4:概率公式.【分析】(1)用总数减去其他小组的频数即可求得a的值,用频数除以样本容量即可求得频数b;(2)根据求得的第四小组的频数补全统计图即可;(3)用合格的人数除以总人数即可求得合格的概率;(4)用学生总数乘以不合格的频率即可求得不合格的人数.【解答】解:(1)a=50﹣4﹣6﹣18﹣10=12;b=12÷50=0.24.(2)直方图为:)=1﹣0.08﹣0.12=0.80;(3)全年级任意抽测一位同学为合格的概率为:P(合格(4)九年级跳绳项目不合格的学生约有320×(0.08+0.12)=64(人).【点评】此题考查了频数分布直方图,关键是读懂统计图,能从统计图中获得有关信息,列出算式.26.(9分)如图,已知△ABC内接于⊙O,AC是⊙O的直径,D是的中点,过点D作直线BC的垂线,分别交CB、CA的延长线E、F.(1)求证:EF是⊙O的切线;(2)若EF=8,EC=6,求⊙O的半径.【考点】KQ:勾股定理;MD:切线的判定;S9:相似三角形的判定与性质.【专题】152:几何综合题.【分析】(1)要证EF是⊙O的切线,只要连接OD,再证OD⊥EF即可.(2)先根据勾股定理求出CF的长,再根据相似三角形的判定和性质求出⊙O 的半径.【解答】(1)证明:连接OD交于AB于点G.∵D是的中点,OD为半径,∴AG=BG.∵AO=OC,∴OG是△ABC的中位线.∴OG∥BC,即OD∥CE.又∵CE⊥EF,∴OD⊥EF,∴EF是⊙O的切线.(2)解:在Rt△CEF中,CE=6,EF=8,∴CF=10.设半径OC=OD=r,则OF=10﹣r,∵OD∥CE,∴△FOD∽△FCE,∴,∴=,∴r=,即:⊙O的半径为.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.五、(本大题共2小题,第27题8分,第28题13分,共21分).27.(8分)请你认真阅读下面的小探究系列,完成所提出的问题.(1)探究1:如图1,点E、F分别在正方形ABCD边BC、CD上,AE⊥BF 于点O,小芳看到该图后,发现AE=BF,这是因为∠EAB和∠FBC都是∠ABF的余角,就会由ASA判定得出△ABE≌△BCF.小芳马上联想到正方形的对角线也是互相垂直且相等的(如图2),是不是在一般情况下,正方形内部两条长度大于边长且互相垂直的线段,即使它们不经过正方形的顶点,也会相等呢?很快她发现结果是成立的,除了通过构造法证明两条线段所在的三角形全等之外,还可以通过平移的方法把图3转化为图1,得到GH=EF,该方法更加简捷;(2)探究2:小芳进一步思考,如果让两个全等正方形组成矩形ABCD,如图4所示,GH⊥EF于点O,她发现GH=2EF,请你替她完成证明;(3)探究3:如图5所示,让8个全等正方形组成矩形ABCD,GH⊥EF于点O,请你猜想GH和EF有怎样的数量关系,写在下面:GH=8EF.【考点】LO:四边形综合题;S9:相似三角形的判定与性质.【专题】2B:探究型.【分析】(2)平移FE至DE′,平移GH至AH′,根据平移的性质可得:FE=DE′,GH=AH′,FE∥DE′,GH∥AH′,易证Rt△BAH′∽Rt△ADE′,然后运用相似三角形的性质就可解决问题.(3)借鉴(2)中的解题经验可得===8,则有GH=8EF.【解答】(2)证明:平移FE至DE′,平移GH至AH′,如图4.根据平移的性质可得:FE=DE′,GH=AH′,FE∥DE′,GH∥AH′,∴四边形OPQR为平行四边形.∵GH⊥EF,即∠POR=90°,∴平行四边形OPQR为矩形,∴∠AQE′=∠PQR=90°,∴∠QAE′+∠QE′A=90°.又∵∠ADE′+∠DE′A=90°,∴∠ADE′=∠QAE′.又∵∠DAE′=∠ABH′=90°,∴Rt△BAH′∽Rt△ADE′,∴==2,∴==2,∴GH=2EF.(3)猜想:GH=8EF.解:平移FE至DE′,平移GH至AH′,如图5.根据平移的性质可得:FE=DE′,GH=AH′,FE∥DE′,GH∥AH′,∴四边形OPQR为平行四边形.∵GH⊥EF,即∠POR=90°,∴平行四边形OPQR为矩形,∴∠AQE′=∠PQR=90°,∴∠QAE′+∠QE′A=90°.又∵∠ADE′+∠DE′A=90°,∴∠ADE′=∠QAE′.又∵∠DAE′=∠ABH′=90°,∴Rt△BAH′∽Rt△ADE′,∴==8,∴==8,∴GH=8EF.。

2013大连中考数学试题(解析版)

2013大连中考数学试题(解析版)

辽宁省大连市2013年中考数学试卷一、选择题(本题8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)2.(3分)(2013•大连)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是()B234.(3分)(2013•大连)一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全B取到黄球的概率为:.5.(3分)(2013•大连)如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()6.(3分)(2013•大连)若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是7.(3分)(2013•大连)在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额8.(3分)(2013•大连)P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、二、填空题(本题8小题,每小题3分,共24分)9.(3分)(2013•大连)因式分解:x2+x=x(x+1).10.(3分)(2013•大连)在平面直角坐标系中,点(2,﹣4)在第四象限.11.(3分)(2013•大连)把16000 000用科学记数法表示为 1.6×107.12.(3分)(2013•大连)某林业部门统计某种幼树在一定条件下的移植成活率,结果如下成活的频率根据表中数据,估计这种幼树移植成活率的概率为0.9(精确到.=13.(3分)(2013•大连)化简:x+1﹣=.﹣.故答案为:.14.(3分)(2013•大连)用一个圆心角为90°半径为32cm的扇形作为一个圆锥的侧面(接缝处不重叠),则这个圆锥的底面圆的半径为8cm.=16解:∵=1615.(3分)(2013•大连)如图,为了测量河的宽度AB,测量人员在高21m的建筑物CD 的顶端D处测得河岸B处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB约为15.3m(精确到0.1m).(参考数据:≈1.41,,1.73)CD16.(3分)(2013•大连)如图,抛物线y=x2+bx+与y轴相交于点A,与过点A平行于x 轴的直线相交于点B(点B在第一象限).抛物线的顶点C在直线OB上,对称轴与x轴相交于点D.平移抛物线,使其经过点A、D,则平移后的抛物线的解析式为y=x2﹣x+.y=)×=,>﹣=,,x+.﹣x+三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)(2013•大连)计算:()﹣1+(1+)(1﹣)﹣..18.(9分)(2013•大连)解不等式组:.19.(9分)(2013•大连)如图,▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:BE=DF.20.(12分)(2013•大连)以下是根据《2012年大连市环境状况公报》中有关海水浴场环境质量和市区空气质量级别的数据制作的统计图表的一部分(2012年共366天).2012年7月至9月(1)2012年7月至9月被监测的8个海水浴场环境质量最好的是浴场5(填浴场名称),海水浴场环境质量为优的数据的众数为30%,海水浴场环境质量为良的数据的中位数为70%;(2)2012年大连市区空气质量达到优的天数为129天,占全年(366)天的百分比约为35.2%(精确到0.1%);(3)求2012年大连市区空气质量为良的天数(按四舍五入,精确到个位).×四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(9分)(2013•大连)某超市购进A、B两种糖果,A种糖果用了480元,B种糖果用了1260元,A、B两种糖果的重量比是1:3,A种糖果每千克的进价比B种糖果每千克的进价多2元.A、B两种糖果各购进多少千克?﹣=22.(9分)(2013•大连)如图,在平面直角坐标系xOy中,一次函数y=ax+b的图象与反比例函数y=的图象相交于点A(m,1)、B(﹣1,n),与x轴相交于点C(2,0),且AC=OC.(1)求该反比例函数和一次函数的解析式;(2)直接写出不等式ax+b≥的解集.AC=OC=坐标代入一次函数解析式得:;≥23.(10分)(2013•大连)如图,AB是⊙O的直径,CD与⊙O相切于点C,DA⊥AB,DO及DO的延长线与⊙O分别相交于点E、F,EB与CF相交于点G.(1)求证:DA=DC;(2)⊙O的半径为3,DC=4,求CG的长.==CG=DA AO=AM=CM=AM=.BC=.∴==,CM=,,﹣=CE==CF=×=五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(11分)(2013•大连)如图,一次函数y=﹣x+4的图象与x轴、y轴分别相交于点A、B.P是射线BO上的一个动点(点P不与点B重合),过点P作PC⊥AB,垂足为C,在射线CA上截取CD=CP,连接PD.设BP=t.(1)t为何值时,点D恰好与点A重合?(2)设△PCD与△AOB重叠部分的面积为S,求S与t的函数关系式,并直接写出t的取值范围.时,如题图所示,重合部分为<时,如答图x+4ABO=t t,即t+t=5t=,t=时,点,即t=5t=时,如题图所示:=•t•t=t<t+t=tABO=t=tABO=t•tBP=t t=t OB=∴,即CP t﹣(t=时,如答图﹣OAB==,∴﹣×=﹣t=CE=﹣(﹣t﹣t+;25.(12分)(2013•大连)将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC相交于点F,连接DA、BF.(1)如图1,若∠ABC=α=60°,BF=AF.①求证:DA∥BC;②猜想线段DF、AF的数量关系,并证明你的猜想;(2)如图2,若∠ABC<α,BF=mAF(m为常数),求的值(用含m、α的式子表示).FBN==mAFsin,∴=1+2msin.26.(12分)(2013•大连)如图,抛物线y=﹣x2+x﹣4与x轴相交于点A、B,与y轴相交于点C,抛物线的对称轴与x轴相交于点M.P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上).分别过点A、B作直线CP的垂线,垂足分别为D、E,连接点MD、ME.(1)求点A,B的坐标(直接写出结果),并证明△MDE是等腰三角形;(2)△MDE能否为等腰直角三角形?若能,求此时点P的坐标;若不能,说明理由;(3)若将“P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上)”改为“P是抛物线在x轴下方的一个动点”,其他条件不变,△MDE能否为等腰直角三角形?若能,求此时点P的坐标(直接写出结果);若不能,说明理由.x x x xx x﹣,x x﹣,故对称轴是直线∴x x,时,,坐标为(∴,xx代入抛物线解析式得:﹣x,时,y=4=,)坐标为(,。

2013年云南省中考数学试卷-答案

2013年云南省中考数学试卷-答案

云南省2013年初中学业水平考试数学答案解析 一、选择题1.【答案】B【解析】根据绝对值的性质,|66|-=.故选B .【提示】根据绝对值的性质,当a 是负有理数时,a 的绝对值是它的相反数a -,解答即可.【考点】绝对值2.【答案】B【解析】A .633m m m ÷=,选项错误;B .正确;C .222()2m n m mn n +=++,选项错误;D .235mn mn mn +=,选项错误.故选B .【提示】依据同底数的幂的除法、单项式的乘法以及完全平方公式,合并同类项法则即可判断.【考点】单项式乘单项式,合并同类项,同底数幂的除法,完全平方公式3.【答案】D【解析】由主视图和左视图为矩形判断出是柱体,由俯视图是正方形可判断出这个几何体应该是长方体. 故选D .【提示】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【考点】由三视图判断几何体4.【答案】B【解析】将150.5亿元用科学记数法表示101.50510⨯元.故选B .【提示】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于1时,n 是正数;当原数的绝对值小于1时,n 是负数.【考点】科学记数法—表示较大的数5.【答案】A【解析】A .行四边形ABCD 的对角线AC ,BD 相交于点O ,AO CO ∴=,DO BO =,ABCD S =,故此选项错误;.ABCD 是中心对称图形,故此选项错误.【提示】根据平行四边形的性质分别判断得出答案即可.【考点】平行四边形的性质【解析】1O 与2O 的半径分别为又325+=>两圆的位置关系是相交..由1O 与2O 的半径分别为R ,r 的数量关系间的联系即可得出两圆位置关系.【考点】圆与圆的位置关系,估算无理数的大小D【解析】2525=,【提示】根据算术平方根的定义即可求出结果.【考点】算术平方根【解析】AB AC =,AB CD ∥【提示】根据等腰三角形两底角相等求出,再根据两直线平行,内错角相等解答.【考点】等腰三角形的性质,平行线的性质【解析】分子分别为,431-==3n +=)AB AD∠=∠可以添加的条件为C∠.E17.【答案】(1)如图所示:50CB =⨯12CD ∴=故船继续航行50海里与钓鱼岛A的距离最近.=)AB AC,是平行四边形,=)AB AC△中,在直角ACDBD AD=⨯34)利用勾股定理求得BD,a只能取正整数,香樟树91棵;方案三:四边形OA OE =1FEP ∴∠=(1,0)A -,,22F ∴ ⎝点【提示】(1)利用待定系数法求出直线EC的解析式,确定点A的坐标;然后利用等腰梯形的性质,确定点D的坐标;(2)利用待定系数法求出抛物线的解析式;(3)满足条件的点P存在,且有多个,需要分类讨论:①作线段AC的垂直平分线,与y轴的交点,即为所求;②以点A为圆心,线段AC长为半径画弧,与y轴的两个交点,即为所求;②以点C为圆心,线段CA长为半径画弧,与y轴的两个交点,即为所求.【考点】二次函数综合题。

2013年云南省昆明市中考数学试卷-答案

2013年云南省昆明市中考数学试卷-答案

云南省昆明市 2013 年初中学业水平考试数学答案分析一、选择题1.【答案】 B【分析】依据绝对值的性质,| 6|6.应选 B.【提示】依据绝对值的性质,当 a 是负有理数时, a 的绝对值是它的相反数 a ,解答即可.【考点】绝对值2.【答案】 A【分析】从左面看,是一个等腰三角形.应选 A.【提示】依据左视图是从图形的左面看到的图形求解即可.【考点】简单几何体的三视图3.【答案】 D【分析】 A .本选项不可以归并,错误;B.38 2 ,本选项错误;C.(x2y)2x24xy 4 y2,本选项错误;D.188 3 2 2 22本选项正确.【提示】 A .本选项不可以归并,错误;B.利用立方根的定义化简获得结果,即可做出判断;C.利用完整平方公式睁开获得结果,即可做出判断;D.利用二次根式的化简公式化简,归并获得结果,即可做出判断.【考点】完整平方公式,立方根,归并同类项,二次根式的加减法4.【答案】 C【分析】由题意得AED 180A ADE 70 ,点D,E分别是AB,AC的中点,DE 是△ABC的中位线,DE∥BC ,C AED 70 .应选 C.【提示】在△ ADE 中利用内角和定理求出AED ,而后判断DE∥ BC ,利用平行线的性质可得出 C .5.【答案】 D【分析】 A . 2013 年昆明市九年级学生的数学成绩是整体,原说法错误,故 A 选项错误;B.每一名九年级学生的数学成绩是个体,原说法错误,故 B 选项错误;C. 1000 名九年级学生的数学成绩是整体的一个样本,原说法错误,故 C 选项错误;D.样本容量是1000,该说法正确,故 D 选项正确.应选 D.【提示】依据整体、个体、样本、样本容量的观点联合选项选出正确答案即可.【考点】整体,个体,样本,样本容量6.【答案】 A【分析】( 5)2 4 2 1 25 8 17 0 ,方程有两个不相等的实数根.应选 A.【提示】求出根的鉴别式,而后选择答案即可.【考点】根的鉴别式7.【答案】 C【分析】设道路的宽应为x 米,由题意有(100 x)(80 x)7644 .应选 C.【提示】把所修的两条道路分别平移到矩形的最上面和最左侧,则剩下的草坪是一个长方形,依据长方形的面积公式列方程.【考点】由实质问题抽象出一元二次方程8.【答案】 B【分析】四边形 ABCD 是正方形,BAC DAC 45 ,BAC DAC在△APE 和△AME 中,AE AE ,△ APE≌△ AME ,故①正确;AEP AEMPE EM 1FN1ABCD 中 AC BD ,又PE AC ,PF BD ,PM ,同理, FP NP ,正方形2 2PEO EOF PFO 90 ,且△APE 中AE AE ,四边形PEOF 是矩形,PF OE ,PE PF OA ,又PE EM 1,FP1NP,OA1PN AC ,故②正确;PM FN AC, PM2 2 2四边形 PEOF 是矩形,PE OF ,在直角△OPF中, OF 2 PF 2 PO2,PE 2 PF 2 PO2,故③正确;△BNF 是等腰直角三角形,而△POF 不必定是,故④错误;△ AMP 是等腰直角三角形,当△PMN∽△AMP 时,△PMN 是等腰直角三角形,PM PN ,又△ AMP 和△BPN都是等腰直角三角形,AP BP ,即 P 是 AB 的中点,故⑤正确.应选 B.【提示】依照正方形的性质以及勾股定理、矩形的判断方法即可判断△ APM 和△BPN以及△ APE 、△BPF 都是等腰直角三角形,四边形PEOF 是矩形,进而作出判断.【考点】相像三角形的判断与性质,全等三角形的判断与性质,勾股定理,正方形的性质二、填空题9.【答案】 1.234 107【分析】将12340000 用科学记数法表示为 1.234 107.故答案为107.【提示】科学记数法的表示形式为 a 10n的形式,此中 1 | a | 10 ,n为整数.确立n的值时,要看把原数变为 a 时,小数点挪动了多少位,n 的绝对值与小数点挪动的位数同样,当原数绝对值大于 1 时,n 是正数;当原数的绝对值小于 1 时, n 是负数.【考点】科学记数法—表示较大的数10.【答案】y 2 x【分析】正比率函数 y kx 的图象经过点 A( 1,2) ,k 2 ,解得k 2 ,正比率函数的分析式为y2x .故答案为 y2x .【提示】把点A的坐标代入函数分析式求出k 值即可得解【考点】待定系数法求正比率函数分析式11.【答案】 3【分析】( 3)2 9 ,9 的平方根的值为 3 .故答案为 3 .【提示】依据平方根的定义解答.【考点】平方根12.【答案】x 2【分析】x 2 4 x2 4 ( x 2)(x 2).2 2 x x 2 x 2 x 2x故答案为 x 2 .【提示】先转变为同分母( x 2) 的分式相加减,而后约分即可得解.【考点】分式的加减法13.【答案】22【分析】 设圆锥的底面圆的半径为 r ,连结 AB ,如图, 扇形 OAB 的圆心角为 90 ,AOB 90, AB 为圆形纸片的直径,AB 4cm , OB2AB 2 2cm , 扇形 OAB 的弧 AB 的长90 π2 2 2π,2180, r2(cm) .2πr2π2故答案为 r2(cm) .2【 提 示 】 设 圆 锥 的 底 面 圆 的 半 径 为 r , 由 于 AOB 90 得 到 AB 为 圆 形 纸 片 的 直 径 , 则 OB2AB 2 2cm ,依据弧长公式计算出扇形 OAB 的弧 AB 的长,而后依据圆锥的侧面睁开图为扇形,2扇形的弧长等于圆锥底面圆的周进步行计算.【考点】圆锥的计算14.【答案】 8【分析】以下图,使得△AOP 是等腰三角形的点 P 共有 8 个.故答案为 8.【提示】成立网格平面直角坐标系,而后作出切合等腰三角形的点P 的地点,即可得解.【考点】等腰三角形的判断,坐标与图形性质三、解答题15.【答案】 2【分析】原式1 1 3 21 2 .2【提示】分别进行零指数幂、负整数指数幂的运算,再代入特别角的三角函数值,归并即可得出答案.【考点】实数的运算,零指数幂,负整数指数幂,特别角的三角函数值16.【答案】AB ∥CD ,B C在△AOB和△DOC 中, A D ,OA OD△ AOB≌△ DOC ( AAS) ,AB CD.【提示】第一依据AB∥ CD ,可得B C ,A D ,联合OA OD ,可知证明出△AOB≌△DOC,即可获得 AB CD .【考点】全等三角形的判断与性质17.【答案】(1)四边形A1B1C1D1以下列图所示;( 2)四边形A2 B2C2 D2以下列图所示,C2 (1, 2) .1A、 B、C、 D 平移后的对应点A1、 B1、 C1、 D1的地点,而后按序连【提示】()依据网格构造找出点接即可;(2)依据网格构造找出 B1、 C1、 D1绕点 A1逆时针旋转 90 的对应点 B2、 C2、 D2的地点,而后按序连结即可,再依据平面直角坐标系写出点 C2的坐标.【考点】作图—旋转变换,作图—平移变换18.【答案】(1)依据题意得:10 25% 40 (名),则此次检查的学生为40 名;( 2)依据题意得:“比较认识”的学生为40 (4 10 11)15 (名),补全统计图,以下图;( 3)依据题意预计“比较认识”和“特别认识”的学生共有15 11600 390 (名).40【提示】( 1)由“基本认识”的人数除以所占的百分比即可获得检查的学生数;( 2)依据学生总数求出“比较认识”的学生数,补全条形统计图即可;( 3)求出“比较认识”和“特别认识”的学生在样本中所占的百分比,乘以600 即可获得结果.【考点】条形统计图,用样本预计整体19.【答案】(1)依据题意画出树状图以下:( 2)当 x1 时, y2 2 ,当 x 1时, y 2 2 ,当 x 2 时, y 2 1 ,一共有 9 种等可能的状况,1 12点 ( x, y) 落在双曲线上 2 上的有 22y种状况,因此 P .x9【提示】( 1)画出树状图即可得解;2( 2)依据反比率函数图象上点的坐标特点判断出在双曲线y上的状况数,而后依据概率公式列式计算x即可得解.【考点】列表法与树状图法,反比率函数图象上点的坐标特点20.【答案】【分析】过 B 作 BF AD 于 F ,则四边形 BCEF 为矩形,则 BFCE 5m ,BC EF 10m ,在 Rt △ABF 中,BFtan 35 ,则 AF5 7.1m ,在 Rt △ CDE 中,CD 的坡度为 i 1:1.2 ,CE 1:1.2 ,则 AFEDED 6m , ADAF EFED 7.1 10 6 23.1(m) .答:天桥下底 AD 的长度约为 .【提示】过 B 作 BF AD 于 F ,可得四边形 BCEF 为矩形, BF CE ,在 Rt △ABF 和 Rt △CDE 中,分别解直角三角形求出 AF , ED 的长度,既而可求得 AD 的长度. 【考点】解直角三角形的应用21.【答案】( 1)设打折前售价为 x 元,则打折后售价为 元,由题意得36010 360 ,解得 x 4 ,x经查验得 x 4 是原方程的根.答:打折前每本笔录本的售价为4 元.( 2)设购置笔录本 y 件,则购置笔袋 (90 y) 件,由题意得, 360 4 0.9 y(90 y) 365 ,解得 672y 7 ,y为正整数,y可取 68,69, 70,故有三种购置方案:9方案一:购置笔录本 68 本,购置笔袋 22 个; 方案二:购置笔录本 69 本,购置笔袋 21 个; 方案三:购置笔录本 70 本,购置笔袋 20 个.【提示】( 1)设打折前售价为x 元,则打折后售价为0.9x 元,表示出打折前购置的数目及打折后购置的数量,再由打折后购置的数目比打折前多10 本,可得出方程,解出即可;( 2)设购置笔录本y件,则购置笔袋(90 y) 件,依据购置总金额不低于360 元,且不超出365 元,可得出不等式组,解出即可.【考点】分式方程的应用,一元一次不等式组的应用22.【答案】(1)连结OB,AC 是O 直径,ABC 90 ,OC OB ,OBC ACB ,PBA ACB ,PBA OBC,PBA OBA OBC ABO ABC 90 ,OB PB ,OB 为半径,PB 是O 的切线;( 2)设O 的半径为 r ,则AC2r , OB r ,OP∥BC ,OBC OCB,POB OBC OCB ,PBO ABC 90 ,△PBO∽△ ABC ,OP OB,AC BC8 rr 2 2 ,即O的半径为 2 2 .2r,2【提示】( 1)连结OB,求出ABC 90 ,PBA OBC OCB ,推出PBO 90 ,依据切线的判定推出即可;(2)证△PBO和△ABC相像,得出比率式,代入求出即可.【考点】切线的判断,相像三角形的判断与性质23.【答案】(1)y 3 x2 3x( 2) 1,94( 3) N 1 (2,0)N 2 (6,0)N 3 ( 7 1,0) N 4 ( 7 1,0)【分析】(1)设抛物线极点为 E ,依据题意OA 4 ,3 ,得 E3)2,(,设抛物线分析式为2y a(x 2) 3 ,OC将 A(4,0) 坐标代入得 04a 3 ,即 a3 ,则抛物线分析式为 y3 ( x 2)2 33 x 2 3x ;4444k b 0 k3 ( 2)设直线 AC 分析式为 ykx b( k0)A(4,0) 与 C(0,3)4,将 代入得b 3,解得 ,故直b 33y 3 x 3x1 x 4x 3 ,与抛物线分析式联立得4,解得9 或D 坐标线 AC 分析式为 y3yy,则点4y23x4x4为 1,9;4( 3)存在,分两种状况考虑:①当点 M 在 x 轴上方时,如图1 所示:四边形 ADMN 为平行四边形, DM ∥AN , DMAN ,由对称性获得 M 3,9 2,故 AN2,,即 DM4N 1 (2,0) , N 2 (6,0) ;②当点 M 在 x 轴下方时,如图2 所示:过点 D 作 DQx 轴于点 Q ,过点 M 作 MP x 轴于点 P ,可得 △ADQ ≌△ NMP ,MP DQ9, NP AQ 3 ,将 y M9代入抛物线分析式得9 3 x 2 3x ,4444解得 x M 2 7 或 x M 2 7 ,x N x M371或 7 1 ,N 3 (7 1,0) , N 4 ( 7 1,0) .综上所述,知足条件的点N 有四个: N 1 (2,0) , N 2 (6,0) , N 3 (7 1,0), N 4( 7 1,0) .【提示】 ( 1 )由 OA 的长度确立出A 的坐标,再利用对称性获得极点坐标,设出抛物线的极点形式y a( x 2)23,将 A 的坐标代入求出 a 的值,即可确立出抛物线分析式;( 2)设直线 AC 分析式为 y kx b ,将 A 与 C 坐标代入求出 k 与 b 的值,确立出直线 AC 分析式,与抛物线分析式联立刻可求出D 的坐标;3ADMN 为平行四边形时, DM ∥AN , DMAN ,由( )存在,分两种状况考虑:以下图,当四边形 对称性获得 M3,9,即DM 2 ,故 AN 2,依据 OAAN 求出 ON 的长,即可确立出 N 的坐标;当四4边形 ADM N 为平行四边形,可得三角形ADQ 全等于三角形 NM P ,M P DQ9,NPAQ 3 ,将4y9 代入得 9 3 x 2 3x ,求出 x 的值,确立出 OP 的长,由 OP PN 求出 ON 的长即可确立出 N 坐4 44标.【考点】二次函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数的运算B一、选择题1. (2011湖北随州,10,3分)计算()221222-+---1(-)=( )A .2B .-2C .6D .10【答案】A2. (2011湖北襄阳,3,3分)若x ,y 为实数,且011=-++y x ,则2011)(yx 的值是 A .0B .1C .-1D .-2011【答案】C3. (2011广东佛山,2,3)计算332(2)+-的值是A. 0B. 12C. 16D. 18 【答案】A4. (2011山东莱芜,3,3分)下列运算正确的是 ( )A.3)3(2-=- B.91)31(2=-- C.632)(a a =- D.4262)21(a a a =÷ 【答案】D5. (2011湖北省随州市,2,4分)计算-22+(-2)2-(-21)—1的正确结果是 ( )A .2B .-2C .6D .10【答案】A6. (2011福建龙岩,10,4分)现定义运算“★”,对于任意实数a 、b ,都有a ★b=23a a b -+,如:3★5=33335-⨯+,若x ★2=6,则实数x 的值是( ) A .4-或1-B .4或1-C .4或2-D .4-或2【答案】B7. (2011湖北鄂州,10,3分)计算()221222-+---1(-)=( )A .2B .-2C .6D .10【答案】A8. (2011云南省昆明市,1,3分)昆明今年1月份某天的最高气温为5℃,最低气温为-1℃,则昆明这天的温差为( )A .4℃ B.6℃ C.-4℃ D.-6℃ 【答案】B9. (2011内蒙古包头,2,3分)3的平方根是( ) A .3±B .9C .3D .±9【答案】A 10.(2011•泸州1,2分)25的算术平方根是( )A 、5B 、﹣5C 、±5D 、错误!未找到引用源。

【答案】A11. (2011广西崇左,11,3分)下列各数中,负数是( ). A .-(1-2) B .(-1)-1 C .(-1)n D .1-2 【答案】B12. (2011 广西玉林、防港,1,3分)计算2×(-1)的结果是( )A .-12B .-2C .1D .2【答案】B13. (2011广西玉林、防港,12,3分)一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15,…按照这种倒水的方法,倒了10次后容器内剩余的水量是( )A.1011升B.19升C.110升D.111升【答案】D14. (2011广西百色,5,3分)计算(π-12)0-sin30°= A.12. B. π-1 C. 32D. 1-32【答案】:A15. (2011广西贵港,2,3分)计算4×(-2)的结果是(A)6 (B)-6 (C)8 (D)-8 【答案】D16. (2010乌鲁木齐,2,4分)如图,在数轴上点A ,B 对应的实数分别为a ,b ,则有A.a +b >0B.a -b >0C.ab >0D.0ab> 【答案】A17. (2011新疆维吾尔自治区,新疆生产建设兵团,2,5分)已知:a a =-,则数a 等于A .0B . -1C .1D .不确定 【答案】A18. (2011张家界,1,3分)计算:-(-1)2011的结果是( ) A.1 B.-1 C.2011 D.-2011 【答案】A19. (2011福建漳州,3,3分) 9的算数平方根是( ) A .3 B .±3 C .3 D .3± 【答案】A20.(2011贵州黔南,1,4分)9的平方根为( ) A.3 B.±3 C.3 D.±3【答案】D 21.(2011贵州黔南,7,4分)估计20的算术平方根的大小在( ) A.2与3之间 B.3与4之间 C.4与5之间 D.5与6之间 【答案】C23. (2011辽宁本溪,3,3分)下列整数中与15最接近的数是( ) A .2 B .4 C .15 D .16 【答案】B24. (2011青海西宁,1,3分)﹣2+5的相反数是 A .3 B .﹣3 C .-7 D .7 【答案】B 25. 26.二、填空题 1. (2011广东湛江,20,4分)已知:23233556326,54360,5432120,6543360A A A A =⨯==⨯⨯==⨯⨯⨯==⨯⨯⨯=,,观察前面的计算过程,寻找计算规律计算27A = (直接写出计算结果),并比较59A 310A (填“>”或“<”或“=”) 【答案】42,>。

277642A =⨯=2. (2011广西桂林,18,3分)若a 1=1-1m ,a 2=1-1a 1,a 3=1-1a 2,…,则a 2011的值为______.(用含m 的代数式表示) 【答案】1-1m3. (2011贵州毕节,18,5分)对于两个不相等的实数a 、b ,定义一种新的运算如下,)0(*>+-+=b a ba ba b a ,如:523232*3=-+=, 那么)4*5(*6= 。

【答案】14. (2011江苏常州,9,2分)计算:-(-12)=______;12-=______;012⎛⎫- ⎪⎝⎭=______;112-⎛⎫- ⎪⎝⎭=_______. 【答案】12,12,1,-25. (2011山西,13,3分)计算: 11826sin 45______.-+-︒=【答案】126. (2011江西b 卷,9,3分)计算:(-2)2-1=__________. 【答案】37. (2011江苏徐州,11,3分)0132--= ▲ . 【答案】-12. 8. (2011年铜仁地区,12,4分)=--+- 45tan )32(001.020________________;【答案】49 9. (2011年铜仁地区,15,4分)按照下图所示的操作步骤,若输入x 的值为3,则输出的值为_______________;【答案】710.(2011福建三明,11,4分)计算:4-20110=【答案】111. (2011年青海,8,2分)某种药品原价为100元,经过连续两次的降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价后的百分率是 . 【答案】20%12. (2011广西柳州,13,3分)计算:2×(-3)= . 【答案】-613. (2011广西百色,16,3分)如图,是一个简单的数值运算程序,当输入x 的值为-2时,则输出的结果为 .【答案】:-2009.输入x 减去5 平方 加上3 输出14. (2011广西贵港,18,2分)若记22()1xy f xx==+,其中(1)f表示当x=1时y的值,即2211(1)112f==+;1()2f表示当x=12时y的值,即221()112()1251()2f==+;…;则111(1)(2)()(3)()(2011)()232011f f f f f f f+++++++=。

【答案】1 2010215. (2011张家界,12,3分)我们可以利用计算器求一个正数a的平方根,其操作方法的顺序进行按键输入:a=.小明按键输入16=显示的结果为4,则他按键输入1600=后显示的结果为.【答案】40三、解答题1.(2011福建泉州,18,9分)(9分)计算:10262820113-⨯+⨯-+-.【答案】解:原式=33442161613=+-=⨯+-+.2. (2011广东河源,11,6分)计算:0113(()3cos3032011)oπ--+---.【答案】原式=3+1-3-233⨯=1-23=-213. (2011广东湛江,21,6分)计算:9(2011)|2|π︒--+-解:原式=3124-+=.4. (2011广东珠海,11,6分)(本题满分6分)计算2-+(31)-1-(π-5)0-16. 【答案】解:原式=2+3-1-4=05. (2011广西桂林,19,6分)计算:(2+1)0-2-1-2tan45°+|-2|.【答案】解:原式=1-12-2+2=12.6. (2011贵州毕节,21,8分)02)3(45sin22221π-+︒---⎪⎭⎫⎝⎛--【答案】原式=212(22)2112()2---⨯+-=42221+--+ =37. (2011海南省,19(1),4分)计算(1)32)2(214)3(-+⨯- 【答案】 =3―2―8 =-7 8. (2011湖北十堰,17,6分)计算:38-2-1+︱2-1︱. 【答案】解:原式=2-12 + 2 -1= 12+ 29. (湖南湘西,17,5分)计算:()0222tan 45 --- 【答案】()0222tan 45 ---=4-1-1=210.(2011江苏常州,18(1),4分) (1)计算:sin45°3182-+; 【答案】(1)原式=22-222+=2.11. (2011辽宁大连,17,9分)计算:121(31)362-⎛⎫+-- ⎪⎝⎭.【答案】121(31)362-⎛⎫+-- ⎪⎝⎭=2+3-23+1-6=-23.12. (2011广东深圳,17,5分)计算: 2-1 +3cos30° +|-5|-(π-2011)0【答案】解:原式=13351622+⨯+-= 13. (2011北京市,13,5分) 计算:101()2cos3027(22--︒++-π). 【答案】解:(12)-1-2cos30+27+(2-π)0=2-2×32+33+1 =2-3+33+1 =23+314. (2011贵州遵义,19,6分)(6分)计算:()()0201130sin 2193---+-π【答案】()()30sin 21932011---+-π=1+3-1-2×12=3-1=215. (2011广东清远,17,5分)计算:10192cos60()20112-+︒+- 【答案】 解:原式=3+1+2-1=516. (2011四川达州,16,3分)计算:10)20101()20112011(---- 【答案】解:10)20101()20112011(---- =)2010(1-- =20101+=201117. (2011福建莆田,17,8分)计算:0(3)3228π-+-+ 【答案】原式=1+3-22+22=4 18. (2011广东肇庆,16,6分)计算:︒-+-60cos 2921解:原式=212321⨯-+ =127-=2519. (2011广西桂林,19,6分)计算:01(21)22452tan -︒+--+-. 【解】原式=112122--⨯+=12.20.(2011广西南宁,19,6分)计算:-12 +6sin60°—12+20110【答案】解:原式=-1+6×23-23+1 =-1+33-23+1 =3.21. (2011广西梧州,19,6分)计算: |-2|-8+(3-π)0. 【答案】解:原式=2-22+1=-2+1.22. (2011湖北潜江天门仙桃江汉油田,16,6分)计算:165)1(2011+---. 【答案】解:原式=-1-5+4=-223. (2011福建龙岩,18,10分)(1)计算:023162sin 30(2)---+-: 【答案】解:原式=224. (2011四川广元,16,7分)计算:(-12)-1+sin 60°-|-3|+(π-2)0 【答案】解:原式=-2+32-3+1 =-1-32. 25. (2011广西来宾,19,6分)计算:I-3I-0219()33-+ 【答案】解:原式=3+3-1+9 =1426. (2011四川眉山,19,6分)计算:(π-3.14)o+(-1)2011+8-|-2| 【答案】解:原式=1+(-1)+22-2 =227. (2011云南省昆明市,16, 5分)计算: 12+11()2-0(21)--+(-1)2011【答案】解:原式=23+2-1-1=2328. (2011昭通,21,6分)计算:01)23(60cos 2)21(2π-+︒-+--【答案】解:原式=121222+⨯-+ =429. (2011内蒙古赤峰,17(1),6分)计算: 0112(21)()tan 603--++-+︒ 【答案】解:(1)原式=2+1-3+ 3 30.31. (2011•泸州,19,5分) 计算:错误!未找到引用源。

相关文档
最新文档