高中数学(人教版必修2)配套练习 第二章2.2.1
最新人教版高中数学必修2课时同步测题(全册 共236页 附解析)
![最新人教版高中数学必修2课时同步测题(全册 共236页 附解析)](https://img.taocdn.com/s3/m/06c5df7d0b1c59eef9c7b403.png)
最新人教版高中数学必修2课时同步测题(全册共236页附解析)目录1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图1.2.3 空间几何体的直观图1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积1.3.2 球的体积和表面积章末复习课第一单元评估验收卷(一)第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.1 平面第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.2 空间中直线与直线之间的位置关系2.1.3 空间中直线与平面之间的位置关系2.1.4 平面与平面之间的位置关系2.2 直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定2.2.2 平面与平面平行的判定2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质2.3 直线、平面垂直的判定及其性质2.3.1 直线与平面垂直的判定2.3.2 平面与平面垂直的判定2.3.3 直线与平面垂直的性质2.3.4 平面与平面垂直的性质章末复习课第二单元评估验收卷(二)第三章直线与方程3.1 直线的倾斜角与斜率3.1.1 倾斜角与斜率3.1.2 两条直线平行与垂直的判定3.2 直线的方程3.2.1 直线的点斜式方程3.2.2 直线的两点式方程第一章空间几何体1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征A级基础巩固一、选择题1.下列几何体中棱柱有()A.5个B.4个C.3个D.2个解析:由棱柱的定义及几何特征,①③为棱柱.答案:D2.对有两个面互相平行,其余各面都是梯形的多面体,以下说法正确的是()A.棱柱B.棱锥C.棱台D.一定不是棱柱、棱锥解析:根据棱柱、棱锥、棱台的特征,一定不是棱柱、棱锥.答案:D3.下列图形经过折叠可以围成一个棱柱的是()解析:A、B、C、中底面多边形的边数与侧面数不相等.答案:D4.由5个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是()A.三棱柱B.三棱台C.三棱锥D.四棱锥解析:根据棱台的定义可判断知道多面体为三棱台.答案:B5.某同学制作了一个对面图案均相同的正方形礼品盒,如图所示,则这个正方体礼品盒的表面展开图应该为(对面是相同的图案)()解析:其展开图是沿盒子的棱剪开,无论从哪个棱剪开,剪开的相邻面在展开在图中可以不相邻,但未剪开的相邻面在展开图中一定相邻,又相同的图案是盒子相对的面,展开后绝不能相邻.答案:A二、填空题6.如图所示,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是________.解析:折叠后,各面均为三角形,且点B、C、D重合为一点,因此该多面体为三棱锥(四面体).答案:三棱锥(四面体)7.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm.解析:由题设,该棱柱为五棱柱,共5条侧棱.所以每条侧棱的长为605=12(cm).答案:128.①有两个面互相平行,其余各面都是平行四边形的几何体的侧棱一定不相交于一点,故一定不是棱台;②两个互相平行的面是平行四边形,其余各面是四边形的几何体不一定是棱台;③两个互相平行的面是正方形,其余各面是四边形的几何体一定是棱台.其中正确说法的个数为________.解析:①正确,因为具有这些特征的几何体的侧棱一定不相交于一点,故一定不是棱台;②正确;③不正确,当两个平行的正方形完全相等时,一定不是棱台.答案:29.根据如图所示的几何体的表面展开图,画出立体图形.解:图①是以ABCD为底面,P为顶点的四棱锥.图②是以ABCD和A1B1C1D1为底面的棱柱.其图形如图所示.B级能力提升1.如图所示,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定解析:如图所示,倾斜小角度后,因为平面AA1D1D∥平面BB1C1C,所以有水的部分始终有两个平面平行,而其余各面都易证是平行四边形(水面与两平行平面的交线)因此呈棱柱形状.答案:A2.一个正方体的六个面上分别标有字母A,B,C,D,E,F,下图是此正方体的两种不同放置,则与D面相对的面上的字母是________.解析:由图知,标字母C的平面与标有A、B、D、E的面相邻,则与D面相对的面为E面,或B面,若B面与D面相对,则A面与B面相对,这时图②不可能,故只能与D面相对的面上字母为B.答案:B3.如图所示,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,求沿正方体表面从点A到点M的最短路程.解:若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.第一章空间几何体1.1 空间几何体的结构1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征A级基础巩固一、选择题1.下列几何体中是旋转体的是()①圆柱②六棱锥③正方体④球体⑤四面体A.①和⑤B.①C.③和④D.①和④解析:圆柱、球体是旋转体,其余均为多面体.答案:D2.如图所示的简单组合体的结构特征是()A.由两个四棱锥组合成的B.由一个三棱锥和一个四棱锥组合成的C.由一个四棱锥和一个四棱柱组合成的D.由一个四棱锥和一个四棱台组合成的解析:这个8面体是由两个四棱锥组合而成.答案:A3.下图是由哪个平面图形旋转得到的()解析:图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.答案:A4.如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个平面去截这个几何体,若这个平面平行于底面,那么截面图形为()解析:截面图形应为图C所示的圆环面.答案:C5.用一张长为8、宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是()A.2 B.2πC.2π或4πD.π2或π4解析:如图所示,设底面半径为r,若矩形的长8恰好为卷成圆柱底面的周长,则2πr=8,所以r=4π;同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr=4,所以r=2π.所以选C.答案:C二、填空题6.等腰三角形绕底边上的高所在的直线旋转180°,所得几何体是________.解析:结合旋转体及圆锥的特征知,所得几何体为圆锥.答案:圆锥7.给出下列说法:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线,都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是____________(填序号).解析:由旋转体的形成与几何特征可知①③错误,②④正确.答案:②④8.如图是一个几何体的表面展成的平面图形,则这个几何体是__________.答案:圆柱三、解答题9.如图所示的物体是运动器材——空竹,你能描述它的几何特征吗?解:此几何体是由两个大圆柱、两个小圆柱和两个小圆台组合而成的.10.如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.解:如图,过圆台的轴作截面,截面为等腰梯形ABCD,由已知可得上底半径O1A=2 cm,下底半径OB=5 cm,且腰长AB=12 cm.设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO,可得l-12 l=25,所以l=20 cm.故截得此圆台的圆锥的母线长为20 cm.B级能力提升1.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖出一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体解析:外面的圆旋转形成一个球,里面的长方形旋转形成一个圆柱.所有形成的几何为一个球体挖出一个圆柱.答案:B2.一个半径为5 cm的球,被一平面所截,球心到截面圆心的距离为4 cm,则截面圆面积为__________cm2.解析:如图所示,过球心O作轴截面,设截面圆的圆心为O1,其半径为r.由球的性质,OO1⊥CD.在Rt△OO1C中,R=OC=5,OO1=4,则O1C=3,所以截面圆的面积S=π·r2=π·O1C2=9π.答案:9π3.如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?解:把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,即为蚂蚁爬行的最短距离.因为AB=A′B′=2,AA′为底面圆的周长,且AA′=2π×1=2π.所以AB′=A′B′2+AA′2=4+(2π)2=21+π2,所以蚂蚁爬行的最短距离为21+π2.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图A级基础巩固一、选择题1.以下关于投影的叙述不正确的是()A.手影就是一种投影B.中心投影的投影线相交于点光源C.斜投影的投影线不平行D.正投影的投影线和投影面垂直解析:平行投影的投影线互相平行,分为正投影和斜投影两种,故C错.2.如图所示,水平放置的圆柱形物体的三视图是()答案:A3.如图,在直角三角形ABC,∠ACB=90°,△ABC绕边AB 所在直线旋转一周形成的几何体的正视图为()解析:由题意,该几何体是两个同底的圆锥组成的简单组合体,且上部分圆锥比底部圆锥高,所以正视图应为选项B.答案:B4.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱解析:球的三视图都是圆;三棱锥的三视图都是全等的三角形;正方体的三视图都是正方形;圆柱的底面放置在水平面上,则其俯视图是圆,正视图是矩形,故几何体不可能是圆柱.5.一个四棱锥S-ABCD,底面是正方形,各侧棱长相等,如图所示,其正视图是一等腰三角形,其腰长与图中等长的线段是()A.AB B.SBC.BC D.SE解析:正视图的投影面应是过点E与底面ABCD垂直的平面,所以侧棱SB在投影面上的投影为线段SE.答案:D二、填空题6.下列几何体各自的三视图中,有且仅有两个视图相同的是________(填序号).①正方体②圆锥③三棱台④正四棱锥解析:在各自的三视图中,①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.所以满足仅有两个视图相同的是②④.答案:②④7.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆.其中满足条件的序号是________.答案:②③8.下图中的三视图表示的几何体是________.解析:根据三视图的生成可知,该几何体为三棱柱.答案:三棱柱三、解答题9.根据三视图(如图所示)想象物体原形,指出其结构特征,并画出物体的实物草图.解:由俯视图知,该几何体的底面是一直角梯形;由正视图知,该几何体是一四棱锥,且有一侧棱与底面垂直.所以该几何体如图所示.10.画出图中3个图形的指定视图.解:如图所示.B级能力提升1.如图所示为一个简单几何体的三视图,则其对应的实物图是()答案:A2.已知正三棱锥V-ABC的正视图、俯视图如图所示,它的侧棱VA=2,底面的边AC=3,则由该三棱锥得到的侧视图的面积为________.解析:正三棱锥V-ABC的侧视图不是一个等腰三角形,而是一个以一条侧棱、该侧棱所对面的斜高和底面正三角形的一条高构成的三角形,如侧视图所示(其中VF是斜高),由所给数据知原几何体的高为3,且CF=3 2.故侧视图的面积为S=12×32×3=334.答案:33 43.如图所示的是某两个几何体的三视图,试判断这两个几何体的形状.解:①由俯视图知该几何体为多面体,结合正视图和侧视图知,几何体应为正六棱锥.②由几何体的三视图知该几何体的底面是圆,相交的一部分是一个与底面同圆心的圆,正视图和侧视图是由两个全等的等腰梯形组成的.故该几何体是两个圆台的组合体.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.3 空间几何体的直观图A级基础巩固一、选择题1.关于斜二测画法所得直观图,以下说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图不是梯形D.正三角形的直观图一定为等腰三角形解析:由直观图的性质知B正确.答案:B2.利用斜二测画法画边长为3 cm的正方形的直观图,正确的是图中的()解析:正方形的直观图应是平行四边形,且相邻两边的边长之比为2∶1.答案:C3.如图,用斜二测画法画一个水平放置的平面图形为一个正方形,则原来图形的形状是()解析:直观图中正方形的对角线为2,故在平面图形中平行四边形的高为22,只有A项满足条件,故A正确.答案:A4.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为2 cm,另一个圆锥顶点到底面的距离为3 cm,则其直观图中这两个顶点之间的距离为()A.2 cm B.3 cm C.2.5 cm D.5 cm解析:因为这两个顶点连线与圆锥底面垂直,现在距离为5 cm,而在直观图中根据平行于z轴的线段长度不变,仍为5 cm.答案:D5.若一个三角形采用斜二测画法,得到的直观图的面积是原三角形面积的()A.24B.2倍 C.22 D.2倍解析:底不变,只研究高的情况即可,此结论应识记.答案:A二、填空题6.如图所示,△A′B′C′是△ABC的水平放置的直观图,A′B′∥y轴,则△ABC是________三角形.解析:由于A′B′∥y轴,所以在原图中AB∥y轴,故△ABC为直角三角形.答案:直角7.已知△ABC的直观图如图所示,则△ABC的面积为________.解析:△ABC中,∠A=90°,AB=3,AC=6,所以S=12×3×6=9.答案:98.如图所示,水平放置的△ABC的斜二测直观图是图中的△A′B′C′,已知A′C′=6,B′C′=4,则AB边的实际长度是_______.解析:在原图中AC=6,BC=4×2=8,∠AOB=90°,所以AB=62+82=10.答案:10三、解答题9.如图所示,已知水平放置的平面图形的直观图是一等腰直角三角形ABC,且AB=BC=1,试画出它的原图形.解:(1)在如图所示的图形中画相应的x轴、y轴,使∠xOy=90°(O与A′重合);(2)在x轴上取C′,使A′C′=AC,在y轴上取B′,使A′B′=2AB;(3)连接B′C′,则△A′B′C′就是原图形.10.画出底面是正方形、侧棱均相等的四棱锥的直观图(棱锥的高不做具体要求).解:画法:(1)画轴.画Ox轴、Oy轴、Oz轴,∠xOy=45°(135°),∠xOz=90°,如图.(2)画底面.以O为中心在xOy平面内,画出底面正方形的直观图ABCD.(3)画顶点.在Oz轴上截取OP,使OP的长度是四棱锥的高.(4)成图.顺次连接PA、PB、PC、PD,并擦去辅助线,得四棱锥的直观图.B级能力提升1.水平放置的△ABC有一边在水平线上,它的斜二测直观图是正△A′B′C′,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能解析:如下图所示,斜二测直观图还原为平面图形,故△ABC 是钝角三角形.答案:C2.如图,Rt△O′A′B′是一平面图形的直观图,直角边O′B′=1,则这个平面图形的面积是________.解析:因为O′B=1,所以O′A′=2,所以在Rt△OAB中,∠AOB=90°,OB=1,OA=2 2.所以S△AOB=12×1×22= 2.答案:23.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.解:根据三视图可以想象出这个几何体是六棱台.(1)画轴.如图①,画x轴、y轴、z轴,使∠xOy=45°,∠xOz =90°.(2)画两底面,由三视图知该几何体为六棱台,用斜二测画法画出底面正六边形ABCDEF,在z轴上截取OO′,使OO′等于三视图中的相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′,利用O′x与O′y′画出底面正六边形A′B′C′D′E′F′.(3)成图.连接A′A,B′B,C′C,D′D,E′E,F′F,整理得到三视图表示的几何体的直观图,如图②.第一章空间几何体1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积A级基础巩固一、选择题1.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的( )A .4倍B .3倍 C.2倍D .2倍解析:设轴截面正三角形的边长为2a ,所以S 底=πa 2,S 侧=πa ·2a =2πa 2,因此S 侧=2S 底. 答案:D2.如图所示,ABC A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是( )A.13B.12C.23D.34解析:因为V C A ′B ′C ′=13V 柱=13,所以V C AA ′B ′B =1-13=23.答案:C3.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积为( )A .3πB .33πC .6πD .9π解析:由于圆锥的轴截面是等边三角形,所以2r =l , 又S 轴=12×l 2×sin 60°=34l 2=3,所以l =2,r =1.所以S圆锥表=πr2+πrl=π+2π=3π.故选A.答案:A4.(2015·课标全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依恒内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图所示,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放米约有()A.14斛B.22斛C.36斛D.66斛解析:由l=14×2πr=8得圆锥底面的半径r=16π≈163,所以米堆的体积V=14×13πr2h=14×2569×5=3209(立方尺),所以堆放的米有3209÷1.62≈22(斛).答案:B5.已知正方体的8个顶点中,有4个为侧面是等边三角形的一三棱锥的顶点,则这个三棱锥与正方体的表面积之比为()A.1∶ 2 B.1∶ 3C.2∶ 2 D.3∶ 6解析:棱锥B′ ACD′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的边长为1,则B′C=2,S△B′AC=3 2.三棱锥的表面积S 锥=4×32=23,又正方体的表面积S 正=6. 因此S 锥∶S 正=23∶6=1∶ 3. 答案:B 二、填空题6.若一个圆台的正视图如图所示,则其侧面积为________.解析:由正视图可知,该圆台的上、下底面圆的半径分别为1,2,其高为2,所以其母线长l =⎝ ⎛⎭⎪⎫4-222+22=5, 所以S 侧=π(1+2)×5=35π. 答案:35π7.下图是一个空间几何体的三视图,这个几何体的体积是________.解析:由图可知几何体是一个圆柱内挖去一个圆锥所得的几何体,V =V 圆柱-V 圆锥=π×22×3-13π×22×3=8π.答案:8π8.(2015·福建卷)某几何体的三视图如图所示,则该几何体的表面积等于________.解析:由三视图知,该几何体是直四棱柱,底面是直角梯形,且底面梯形的周长为4+ 2.则S侧=8+22,S底=2×(1+2)2×1=3.故S表=S侧+S底=11+2 2.答案:11+22三、解答题9.已知圆柱的侧面展开图是长、宽分别为2π和4π的矩形,求这个圆柱的体积.解:设圆柱的底面半径为R,高为h,当圆柱的底面周长为2π时,h=4π,由2πR=2π,得R=1,所以V圆柱=πR2h=4π2.当圆柱的底面周长为4π时,h=2π,由2πR=4π,得R=2,所以V圆柱=πR2h=4π·2π=8π2.所以圆柱的体积为4π2或8π2.10.一个正三棱柱的三视图如图所示(单位:cm),求这个正三棱柱的表面积与体积.解:由三视图知直观图如图所示,则高AA′=2 cm,底面高B′D′=23cm ,所以底面边长A ′B ′=23×23=4(cm).一个底面的面积为12×23×4=43(cm 2).所以表面积S =2×43+4×2×3=24+83(cm 2), V =43×2=83(cm 3).所以表面积为(24+83)cm 2,体积为83(cm 3).B 级 能力提升1.某几何体的三视图如图所示,俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )A.203π B.103π C .6πD.163π 解析:该几何体的上方是以2为底面圆的半径,高为2的圆锥的一半,下方是以2为底面圆的半径,高为1的圆柱的一半,其体积为V =π×22×12+12×13π×22×2=2π+43π=103π.答案:B2.(2015·江苏卷)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为__________.解析:底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱的总体积为13π×52×4+π×22×8=196π3.设新的圆锥和圆柱的底面半径为r ,则13π·r 2×4+π·r 2×8=28π3r 2=196π3,解得r =7.答案:73.某几何体的三视图如图所示(单位:cm),求该几何体的体积.解:由三视图知,该几何体是一个四棱柱与一个四棱锥的组合体. V 四棱柱=23=8,V 四棱锥=13×22×2=83.故几何体的体积V =V 四棱柱+V 四棱锥=8+83 =323(cm 3).第一章 空间几何体 1.3 空间几体的表面积与体积 1.3.2 球的体积和表面积A 级 基础巩固一、选择题1.若一个球的体积扩大到原来的27倍,则它的表面积扩大到原来的( )A .3倍B .3 3 倍C .9倍D .9 3 倍解析:由V ′=27 V ,得R ′=3R ,R ′R=3则球的表面积比S ′∶S =⎝ ⎛⎭⎪⎫R ′R 2=9. 答案:C2.把3个半径为R 的铁球熔成一个底面半径为R 的圆柱,则圆柱的高为( )A .RB .2RC .3RD .4R 解析:设圆柱的高为h ,则πR 2h =3×43πR 3,所以h =4R . 答案:D3.如图所示,是某几何体的三视图,则该几何体的体积为( )A .9π+42B .36π+18 C.92π+12 D.92π+18解析:由三视图可知该几何体是一个长方体和球构成的组合体,其体积V=43π⎝⎛⎭⎪⎫323+3×3×2=92π+18.答案:D4.设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2解析:设该球的半径为R,所以(2R)2=(2a)2+a2+a2=6a2,即4R2=6a2.所以球的表面积为S=4πR2=6πa2.答案:B5.下图是一个几何体的三视图,根据图中数据,可得几何体的表面积是()A.4π+24 B.4π+32C.22πD.12π解析:由三视图可知,该几何体上部分为半径为1的球,下部分为底边长为2,高为3的正四棱柱,几何体的表面积为4π+32.答案:B二、填空题6.将一钢球放入底面半径为3 cm 的圆柱形玻璃容器中,水面升高4 cm ,则钢球的半径是________.解析:圆柱形玻璃容器中水面升高4cm ,则钢球的体积为V =π×32×4=36π,即有43πR 3=36π,所以R =3.答案:3 cm7.两个球的表面积之差为48π,它们的大圆周长之和为12π,则这两个球的半径之差为________.解析:由题意设两球半径分别为R 、r (R >r ),则:⎩⎪⎨⎪⎧4πR 2-4πr 2=48π2πR +2πr =12π即⎩⎪⎨⎪⎧R 2-r 2=12R +r =6.,所以R -r =2. 答案:28.已知某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知几何体为组合体,上方是半径为1的球,下方是长方体,其底面是边长为2的正方形,侧棱长为4,故其体积V =43×π×13+2×2×4=16+4π3. 答案:16+4π3三、解答题9.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.解:组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π. 因为圆柱的体积V 圆柱=πr 2l =π×12×3=3π,又两个半球的体积2V 半球=43πr 3=43π, 因此组合体的体积V =3π+43π=133π. 10.如图,一个圆柱形的玻璃瓶的内半径为3 cm ,瓶里所装的水深为8 cm ,将一个钢球完全浸入水中,瓶中水的高度上升到8.5 cm ,求钢球的半径.解:设球的半径为R ,由题意可得43πR 3=π×32×0.5, 解得:R =1.5 (cm),所以所求球的半径为1.5 cm.B 级 能力提升1.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π3解析:截面面积为π,则该小圆的半径为1,设球的半径为R ,则R 2=12+12=2,所以R =2,V =43πR 3=82π3.答案:B2.边长为42的正方形ABCD 的四个顶点在半径为5的球O 的表面上,则四棱锥O -ABCD 的体积是________.解析:因为正方形ABCD 外接圆的半径r =(42)2+(42)22=4.又因为球的半径为5, 所以球心O 到平面ABCD 的距离d =R 2-r 2=3,所以V O ABCD =13×(42)3×3=32. 答案:323.体积相等的正方体、球、等边圆柱(轴截面为正方形的圆柱)的表面积分别是S 1,S 2,S 3,试比较它们的大小.解:设正方体的棱长为a ,球的半径为R ,等边圆柱的底面半径为r ,则S 1=6a 2,S 2=4πR 2,S 3=6πr 2.由题意知,43πR 3=a 3=πr 2·2r , 所以R =334πa ,r =312πa , 所以S 2=4π⎝⎛⎭⎪⎪⎫334πa 2=4π·3916π2a 2=336πa 2, S 3=6π⎝⎛⎭⎪⎪⎫312πa 2=6π·314π2a 2=354πa 2, 所以S 2<S 3.又6a 2>3312πa 2=354πa 2,即S 1>S 3. 所以S 1,S 2,S 3的大小关系是S 2<S 3<S 1.章末复习课[整合·网络构建][警示·易错提醒]1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱(母线)延长后必交于一点.2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视虚线的画法.4.求组合体的表面积时:组合体的衔接部分的面积问题易出错.5.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.6.易混侧面积与表面积的概念.专题1空间几何体的三视图与直观图三视图是立体几何中的基本内容,能根据三视图识别其所表示的立体模型,并能根据三视图与直观图所提供的数据解决问题.主要考查形式:(1)由三视图中的部分视图确定其他视图;(2)由三视图还原几何体;(3)三视图中的相关量的计算.其中(3)是本章的难点,也是重点之一,解这类题的关键是准确地将三视图中的数据转化为几何体中的数据.[例1](1)若一个正三棱柱的三视图如图所示,则这个正三棱柱的高和底面边长分别为()A.2,23B.22,2C.4,2D.2,4(2)(2016·全国Ⅲ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36 5 B.54+18 5 C.90 D.81解析:(1)由三视图的画法规则知,正视图与俯视图长度一致,正视图与侧视图高度一致,俯视图与侧视图宽度一致.所以侧视图中2为正三棱柱的高,23为底面等边三角形的高,所以底面等边三角形边长为4.(2)由三视图可知,该几何体的底面是边长为3的正方形,高为6,侧棱长为35,则该几何体的表面积S=2×32+2×3×35+2×3×6=54+18 5.故选B.答案:(1)D(2)B。
高中数学(人教版必修2)配套练习第二章2.1.1
![高中数学(人教版必修2)配套练习第二章2.1.1](https://img.taocdn.com/s3/m/f591a39916fc700aba68fc42.png)
第二章点、直线、平面之间的位置关系§2.1空间点、直线、平面之间的位置关系2.1.1平面一、基础过关1.(2019·北京高考题)下列图形中,不一定是平面图形的是()A.三角形B.菱形C.梯形D.四边相等的四边形2.(2019·兰州高考题)下列命题:①书桌面是平面;②有一个平面的长是50 m,宽是20 m;③平面是绝对的平、无厚度,可以无限延展的抽象数学概念.其中正确命题的个数为() A.1个B.2个C.3个D.0个3.空间中,可以确定一个平面的条件是() A.两条直线B.一点和一条直线C.一个三角形D.三个点4.已知平面α与平面β、γ都相交,则这三个平面可能的交线有() A.1条或2条B.2条或3条C.1条或3条D.1条或2条或3条5.(2019·兰州高考题)给出以下命题:①和一条直线都相交的两条直线在同一平面内;②三条两两相交的直线在同一平面内;③有三个不同公共点的两个平面重合;④两两平行的三条直线确定三个平面.其中正确命题的个数是________.6.(2019·北京高考题)已知α∩β=m,a?α,b?β,a∩b=A,则直线m与A的位置关系用集合符号表示为________.7.(2019·兰州高考题)如图,梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由.8.空间中三个平面两两相交于三条直线,这三条直线两两不平行,证明此三条直线必相交于一点.二、能力提升9.(2019·北京高考题)空间不共线的四点,可以确定平面的个数是()A.0 B.1 C.1或4 D.无法确定10.已知α、β为平面,A、B、M、N为点,a为直线,下列推理错误的是() A.A∈a,A∈β,B∈a,B∈β?a?βB.M∈α,M∈β,N∈α,N∈β?α∩β=MNC.A∈α,A∈β?α∩β=AD.A、B、M∈α,A、B、M∈β,且A、B、M不共线?α、β重合11.(2019·北京高考题)下列四个命题:①两个相交平面有不在同一直线上的三个公共点;②经过空间任意三点有且只有一个平面;③过两平行直线有且只有一个平面;④在空间两两相交的三条直线必共面.其中正确命题的序号是________.12. (2019·兰州高考题)如图所示,四边形ABCD中,已知AB∥CD,AB,BC,DC,AD(或延长线)分别与平面α相交于E,F,G,H,求证:E,F,G,H必在同一直线上.三、探究与拓展13. (2019·北京高考题)如图,在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC、BD交于点M,E为AB的中点,F为AA1的中点.求证:(1)C1、O、M三点共线;(2)E、C、D1、F四点共面.答案1.A 2.D 3.C 4.D5.06.A∈m7. 解很明显,点S是平面SBD和平面SAC的一个公共点,即点S在交线上,由于AB>CD,则分别延长AC和BD交于点E,如图所示.∵E∈AC,AC?平面SAC,∴E∈平面SAC.同理,可证E∈平面SBD.∴点E在平面SBD和平面SAC的交线上,连接SE,直线SE是平面SBD和平面SAC的交线.8.证明∵l1?β,l2?β,l1D∥l2,∴l1、l2交于一点,记交点为P.∵P∈l1?α,P∈l2?γ,∴P∈α∩γ=l3,∴l1,l2,l3交于一点.9.C10.C11.③12.证明因为AB∥CD,所以AB,CD确定平面AC,AD∩α=H,因为H∈平面AC,H∈α,由公理3可知,H必在平面AC与平面α的交线上.同理F、G、E都在平面AC与平面α的交线上,因此E,F,G,H必在同一直线上.13.证明(1)∵C1、O、M∈平面BDC1,又C1、O、M∈平面A1ACC1,由公理3知,点C1、O、M在平面BDC1与平面A1ACC1的交线上,∴C1、O、M三点共线.(2)∵E,F分别是AB,A1A的中点,∴EF∥A1B.∵A1B∥CD1,∴EF∥CD1.∴E、C、D1、F四点共面.。
高一数学必修二2.2.1直线与平面平行的判定2.2.2平面与平面平行的判定练习题(解析版)
![高一数学必修二2.2.1直线与平面平行的判定2.2.2平面与平面平行的判定练习题(解析版)](https://img.taocdn.com/s3/m/0f2d740dbed5b9f3f90f1c41.png)
2.2.1 直线与平面平行的判定2.2.2 平面与平面平行的判定一、选择题1.下列说法中正确的是 ( )A.如果一个平面内有一条直线和另一个平面平行,那么这两个平面平行B.如果一个平面内有无数条直线和另一个平面平行,那么这两个平面平行C.如果一个平面内任意一条直线和另一个平面平行,那么这两个平面平行D.若果两个平面平行于同一条直线,那么这两个平面平行2.下列命题中,正确的个数为 ( )①若a ∥b ,α⊂b ,则a ∥α②若a ∥α,b ∥α,则a ∥b③若a ∥b ,b ∥α,则a ∥α④若a ∥α,α⊂b ,则a ∥bA.0B.1C.2D.33.已知三条互相平行的直线c b a ,,中,,,βα⊂⊂c b a 、则两个平面βα,的位置关系是( )A.平行B.相交C.平行或相交D.重合4.与两个相交平面的交线平行的直线和这两个平面的位置关系是( )A.都平行B.都相交C.在这两个平面内D.至少和其中一个平面平行5.下列说法正确的是 ( )①若一个平面内的任何直线都与另一个平面无公共点,则这两个平面平行②过平面外一点有且仅有一个平面和已知平面平行③过平面外两点不能作平面与已知平面平行④若一条直线和一个平面平行,经过这条直线的任何平面都与已知平面平行A. ①③B. ②④C. ①②D. ②③④二、填空题6.若直线b a =A ,a ∥α,则b 与α的位置关系是_______7.若直线a b a 满足,与平面βα,∥b ,a ∥α,b ∥β,则平面α与平面β的位置关系是 ________8.过平面外一点有___条直线与已知平面平行,过平面外一点有且只有___个平面与已知平面平行.9.正方体1111D C B A ABCD -中,的平面与过的中点,则为E C A BD DD E ,,11的位置关系是______三、解答题10.正方体1111D C B A ABCD -中个,F E N M ,,,分别为棱11111111,,,D C C B D A B A 的中点。
高中数学第二章2.2对数函数2.2.1对数与对数运算第1课时对数练习(含解析)新人教版必修1
![高中数学第二章2.2对数函数2.2.1对数与对数运算第1课时对数练习(含解析)新人教版必修1](https://img.taocdn.com/s3/m/1d51d551227916888486d7d4.png)
2.2.1 对数与对数运算第一课时对数1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式;③以10为底的对数叫做常用对数;④=-5成立.其中正确命题的个数为( B )(A)1 (B)2 (C)3 (D)4解析:②错误,如(-1)2=1,不能写成对数式;④错误,log3(-5)没有意义.2.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x,则x=100;④若e=ln x,则x=e2.其中正确的是( C )(A)①③ (B)②④ (C)①② (D)③④解析:lg(lg 10)=lg 1=0,①正确;ln(ln e)=ln 1=0,②正确;10=lg x得x=1010,③错误;e=ln x,x=e e,④错误.故选C.3.已知log x9=2,则x的值为( B )(A)-3 (B)3 (C)±3 (D)解析:由log x9=2得x2=9,又因为x>0且x≠1,所以x=3.故选B.4.若log a=c,则下列各式正确的是( A )(A)b=a5c (B)b=c5a (C)b=5a c(D)b5=a c解析:由log a=c得a c=,所以b=a5c.故选A.5.已知log a=m,log a3=n,则a m+2n等于( D )(A)3 (B)(C)9 (D)解析:由已知得a m=,a n=3.所以a m+2n=a m×a2n=a m×(a n)2=×32=.故选D.6.已知log7[log3(log2x)]=0,那么等于( D )(A)(B)(C)(D)解析:由题知log3(log2x)=1,则log2x=3,解得x=8,所以===.故选D.7.已知f(2x+1)=,则f(4)等于( B )(A)log25 (B)log23(C)(D)解析:令2x+1=4,得x=log23,所以f(4)=log23,选B.8.已知x2+y2-4x-2y+5=0,则log x(y x)的值是( B )(A)1 (B)0 (C)x (D)y解析:x2+y2-4x-2y+5=0,则(x-2)2+(y-1)2=0,所以x=2,y=1.log x(y x)=log212=0.故选B.9.已知对数式log(a-2)(10-2a)(a∈N)有意义,则a= .解析:由对数定义知得2<a<5且a≠3,又因为a∈N,所以a=4.答案:410.方程log2(1-2x)=1的解x= .解析:因为log2(1-2x)=1=log22,所以1-2x=2,所以x=-.经检验满足1-2x>0. 答案:-11.已知=,则x= .解析:由已知得log2x=log9=log9=-,所以x==.答案:12.若f(10x)=x,则f(3)= .解析:令10x=3,则x=lg 3,所以f(3)=lg 3.答案:lg 313.计算下列各式:(1)10lg 3-(+e ln 6;(2)+.解:(1)原式=3-()0+6=3-1+6=8.(2)原式=22÷+3-2·=4÷3+×6=+=2.14.(1)已知10a=2,10b=3,求1002a-b的值; (2)已知log4(log5a)=log3(log5b)=1,求的值.解:(1)1002a-b=104a-2b===.(2)由题得log5a=4,log5b=3,则a=54,b=53,所以==5.15.(1)求值:0.1-2 0150+1+; (2)解关于x的方程(log2x)2-2log2x-3=0.解:(1)原式=0.-1++=()-1-1+23+=-1+8+=10.(2)设t=log2x,则原方程可化为t2-2t-3=0,(t-3)(t+1)=0,解得t=3或t=-1,所以log2x=3或log2x=-1,所以x=8或x=.16.()的值为( C )(A)6 (B)(C)8 (D)解析:()=()-1·()=2×4=8.故选C.17.若a>0,=,则lo a等于( B )(A)2 (B)3 (C)4 (D)5解析:因为=,a>0,所以a=()=()3,则lo a=lo()3=3.故选B.18.计算:lo(+)= .解析:因为(-)·(+)=n+1-n=1,所以+=(-)-1,所以原式=-1.答案:-119.已知log x27=,则x的值为.解析:log x27==3·=3×2=6,所以x6=27,所以x6=33,又x>0,所以x=. 答案:20.设x=,y=(a>0且a≠1),求证:z=.证明:由已知得log a x=,①log a y=, ②将②式代入①式,得log a z=, 所以z=.。
高一数学 人教A版必修2 第二章 2.2.1、2直线与平面平行、平面与平面平行的判定 课件
![高一数学 人教A版必修2 第二章 2.2.1、2直线与平面平行、平面与平面平行的判定 课件](https://img.taocdn.com/s3/m/aed3ece3e45c3b3566ec8b60.png)
(1)直线EG∥平面BDD1B1;
证明 如图,连接SB.
∵点E,G分别是BC,SC的中点,
∴EG∥SB.
又∵SB⊂平面BDD1B1,EG⊄平面BDD1B1,
∴EG∥平面BDD1B1.
证明
(2)平面EFG∥平面BDD1B1. 证明 连接SD. ∵点F,G分别是DC,SC的中点, ∴FG∥SD. 又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1, ∴FG∥平面BDD1B1. 又EG∥平面BDD1B1, 且EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G, ∴平面EFG∥平面BDD1B1.
证明
反思与感悟 解决线面平行与面面平行的综合问题的策略 (1)立体几何中常见的平行关系是线线平行、线面平行和面面平行,这三 种平行关系不是孤立的,而是相互联系、相互转化的. (2) 线线平行 ―判――定―→ 线面平行 ―判――定―→ 面面平行
所以平行关系的综合问题的解决必须灵活运用三种平行关系的判定定理.
第二章 §2.2 直线、平面平行的判 定及其性质
2.2.2 平面与平面平行的判定
学习目标
1.通过直观感知、操作确认,归纳出平面与平面平行的判定定理. 2.掌握平面与平面平行的判定定理,并能初步利用定理解决问题.
问题导学
知识点 平面与平面平行的判定定理
思考1 三角板的两条边所在直线分别与平面α平行,这个三角板所在平 面与平面α平行吗? 答案 平行.
证明
Байду номын сангаас
命题角度2 以柱体为背景证明线面平行 例3 在三棱柱ABC-A1B1C1中,D,E分别是棱BC,CC1的中点,在线 段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.
解答
引申探究 将本例改为在三棱柱ABC-A1B1C1中,若M为AB的中点, 求证:BC1∥平面A1CM. 证明 如图,连接AC1交A1C于点F, 则F为AC1的中点. 又因为M是AB的中点,连接MF, 所以BC1∥MF. 因为MF⊂平面A1CM,BC1⊄平面A1CM, 所以BC1∥平面A1CM.
高中数学(人教版必修2)配套练习 第二章章末检测
![高中数学(人教版必修2)配套练习 第二章章末检测](https://img.taocdn.com/s3/m/06087df269eae009581becbf.png)
9.如图所示,将等腰直角△ABC 沿斜边 BC 上的高 AD 折成一个二面角,此时
∠B′AC=60°,那么这个二面角大小是
( )
A.90°
B.60°
C.45°
D.30°
10.如图,ABCD-A1B1C1D1 为正方体,下面结论错误的是 A.BD∥平面 CB1D1 B.AC1⊥BD C.AC1⊥平面 CB1D1 D.异面直线 AD 与 CB1 所成的角为 60°
小.
答案
1.C 2.D 3.C 4.B 5.D 6.D 7.A 8.B 9.A 10.D 11.D 12.D 13.9 14.④ 15.B1D1⊥A1C1(答案不唯一) 16.a>6 17.解 直线 MN∥平面 A1BC1,M 为 AB 的中点,证明如下:
∵MD/∈平面 A1BC1,ND/∈平面 A1BC1. ∴MN⊄平面 A1BC1. 如图,取 A1C1 的中点 O1,连接 NO1、BO1.
( )
10 题图 11 题图
11.如图所示,在长方体 ABCD—A1B1C1D1 中,AB=BC=2,AA1=1,则 BC1 与平面
BB1D1D 所成角的正弦值为
6
26
15
( ) 10
A. 3
B. 5
C. 5
D. 5
12.已知正四棱柱 ABCD-A1B1C1D1 中,AB=2,CC1=2 2,E 为 CC1 的中点,则直线 AC1
15 题图 16 题图
16.如图所示,已知矩形 ABCD 中,AB=3,BC=a,若 PA⊥平面 AC,在 BC 边上取点
E,使 PE⊥DE,则满足条件的 E 点有两个时,a 的取值范围是________.
三、解答题
17.如图所示,长方体 ABCD-A1B1C1D1 中,M、N 分别为 AB、A1D1 的中点,判断 MN 与 平面 A1BC1 的位置关系,为什么?
人教版高中数学必修2第二章测试题A组及答案解析
![人教版高中数学必修2第二章测试题A组及答案解析](https://img.taocdn.com/s3/m/c66ef77ec950ad02de80d4d8d15abe23492f0355.png)
人教版高中数学必修2第二章测试题A组及答案解析第二章点、直线、平面之间的位置关系一、选择题1.设 $\alpha$,$\beta$ 为两个不同的平面,$l$,$m$ 为两条不同的直线,且 $l\subset\alpha$,$m\subset\beta$,有如下的两个命题:①若 $\alpha\parallel\beta$,则 $l\parallel m$;②若 $l\perp m$,则 $\alpha\perp\beta$。
那么()。
A。
①是真命题,②是假命题B。
①是假命题,②是真命题C。
①②都是真命题D。
①②都是假命题2.如图,ABCD为正方体,下面结论错误的是()。
A。
BD $\parallel$ 平面CBB。
AC $\perp$ BDC。
AC $\perp$ 平面CBD。
异面直线AD与CB角为60°3.关于直线 $m$,$n$ 与平面 $\alpha$,$\beta$,有下列四个命题:① $m\parallel\alpha$,$n\parallel\beta$ 且$\alpha\parallel\beta$,则 $m\parallel n$;② $m\perp\alpha$,$n\perp\beta$ 且 $\alpha\perp\beta$,则$m\perp n$;其中真命题的序号是()。
A。
①②B。
③④C。
①④D。
②③4.给出下列四个命题:①垂直于同一直线的两条直线互相平行②垂直于同一平面的两个平面互相平行③若直线 $l_1$,$l_2$ 与同一平面所成的角相等,则$l_1$,$l_2$ 互相平行④若直线 $l_1$,$l_2$ 是异面直线,则与 $l_1$,$l_2$ 都相交的两条直线是异面直线其中假命题的个数是()。
A。
1B。
2C。
3D。
45.下列命题中正确的个数是()。
①若直线 $l$ 上有无数个点不在平面 $\alpha$ 内,则$l\parallel\alpha$②若直线 $l$ 与平面 $\alpha$ 平行,则 $l$ 与平面$\alpha$ 内的任意一条直线都平行③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行④若直线 $l$ 与平面 $\alpha$ 平行,则 $l$ 与平面$\alpha$ 内的任意一条直线都没有公共点A。
高中数学必修二第二章同步练习(含答案)
![高中数学必修二第二章同步练习(含答案)](https://img.taocdn.com/s3/m/9b86dd9d770bf78a6429540d.png)
1.1.1柱、锥、台、球的的结构特征练习一一、选择题1、下列命题中,正确命题的个数是()(1)桌面是平面;(2)一个平面长2米,宽3米;(3)用平行四边形表示平面,只能画出平面的一部分;(4)空间图形是由空间的点、线、面所构成。
A 、 1 B、 2C、 3D、 42、下列说法正确的是()A、水平放置的平面是大小确定的平行四边形B、平面ABCD就是四边形ABCD的四条边围来的部分C、 100个平面重叠在一起比10个平面重叠在一起厚D、平面是光滑的,向四周无限延展的面3、下列说法中表示平面的是()A、水面B、屏面C、版面D、铅垂面4、下列说法中正确的是()A、棱柱的面中,至少有两个面互相平行B、棱柱的两个互相平行的平面一定是棱柱的底面C、棱柱的一条侧棱的长叫做棱柱的高D、棱柱的侧面是平行四边形,但它的底面一定不是平行四边形5、长方体的三条棱长分别是AA/=1,AB=2,AD=4,则从A点出发,沿长方体的表面到C/的最短距离是()A、 5B、 7C、、6、若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是()A、三棱锥B、四棱锥C、五棱锥D、六棱锥]7、过球面上两点可能作出球的大圆()A、 0个或1个B、有且仅有1个C、无数个D、一个或无数个8、一个圆柱的母线长为5,底面半径为2,则圆柱的轴截面的面积为()A、 10B、 20C、 40D、 15二、填空题9、用一个平面去截一个正方体,截面边数最多是----------------条。
10、正三棱台的上、下底面边长及高分别为1、2、2,则它的斜高是------------。
11、一个圆柱的轴截面面积为Q,则它的侧面面积是----------------。
12、若圆锥的侧面面积是其底面面积的2倍,则这个圆锥的母线与底面所成的角为----------------,圆锥的侧面展开图扇形的圆心角为----------------。
13、在赤道上,东经1400与西经1300的海面上有两点A、B,则A、B两点的球面距离是多少海里---------------。
《步步高 学案导学设计》2013-2014学年 高中数学 人教B版必修2【配套备课资源】第二章 2.2.1
![《步步高 学案导学设计》2013-2014学年 高中数学 人教B版必修2【配套备课资源】第二章 2.2.1](https://img.taocdn.com/s3/m/19687b262af90242a895e577.png)
研一研· 问题探究、课堂更高效
2.2.1
本 课 时 栏 目 开 关
小结 倾斜角和斜率都反映直线相对于 x 轴正方向的倾斜程 度.倾斜角直接反映倾斜程度.
研一研· 问题探究、课堂更高效
2.2.1
跟踪训练 3 求过下列两点直线的斜率,并判断其倾斜角是 锐角还是钝角. (1)(1,1),(2,4);(2)(-3,5),(0,2);
求直线 AB,BC,CA 的斜率,并判断这些直 线的倾斜角是锐角还是钝角.
本 课 时 栏 目 开 关
解
1-2 1 直线 AB 的斜率 kAB= = ; -4-3 7
-1-1 1 直线 BC 的斜率 kBC= =-2; 0--4 -1-2 直线 CA 的斜率 kCA= =1. 0-3 由 kAB>0 及 kCA>0 知,直线 AB 与 CA 的倾斜角均为锐角; 由 kBC<0 知,直线 BC 的倾斜角为钝角.
研一研· 问题探究、课堂更高效
2.2.1
问题 5 直线的斜率 k 与倾斜角 α 之间有怎样的变化关系?
答 由斜率 k 的定义可知:k=0 时,直线平行于 x 轴或与 x
本 课 时 栏 目 开 关
轴重合;
k>0 时,直线的倾斜角为锐角,k 值增大,直线的倾斜角也 随着增大; k<0 时,直线的倾斜角为钝角,k 值增大,直线的倾斜角也 随着增大;
练一练· 当堂检测、目标达成落实处
2.2.1
1.对于下列命题:
本 课 时 栏 目 开 关
①若 α 是直线 l 的倾斜角,则 0° ≤α<180° ; ②若 k 是直线的斜率,则 k∈R; ③任一条直线都有倾斜角,但不一定有斜率; ④任一条直线都有斜率,但不一定有倾斜角. 其中正确命题的个数是 A.1 B.2 C.3 D.4
高中数学(人教版必修2)配套练习 第二章2.1.3-2.1.4
![高中数学(人教版必修2)配套练习 第二章2.1.3-2.1.4](https://img.taocdn.com/s3/m/a1cd9468b52acfc789ebc977.png)
2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系一、基础过关1.已知直线a∥平面α,直线b⊂α,则a与b的位置关系是() A.相交B.平行C.异面D.平行或异面2.直线l与平面α不平行,则() A.l与α相交B.l⊂αC.l与α相交或l⊂αD.以上结论都不对3.如果直线a∥平面α,那么直线a与平面α内的() A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交4.如果平面α外有两点A、B,它们到平面α的距离都是a,则直线AB和平面α的位置关系一定是() A.平行B.相交C.平行或相交D.AB⊂α5.直线a⊂平面α,直线b⊄平面α,则a,b的位置关系是________.6.若a、b是两条异面直线,且a∥平面α,则b与α的位置关系是________.7.平面α内有无数条直线与平面β平行,那么α∥β是否正确?说明理由.8. 如图,直线a∥平面α,a⊂β,α∩β=b,求证:a∥b.二、能力提升9.下列命题正确的是() A.若直线a在平面α外,则直线a∥αB.若直线a与平面α有公共点,则a与α相交C.若平面α内存在直线与平面β无交点,则α∥βD.若平面α内的任意直线与平面β均无交点,则α∥β10.教室内有一根直尺,无论怎样放置,在地面上总有这样的直线与直尺所在的直线() A.异面B.相交C.平行D.垂直11.若不在同一条直线上的三点A、B、C到平面α的距离相等,且A、B、CD/∈α,则面ABC 与面α的位置关系为________.12. 如图,平面α、β、γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b、a与β的关系并证明你的结论.三、探究与拓展13.正方体ABCD—A1B1C1D1中,点Q是棱DD1上的动点,判断过A、Q、B1三点的截面图形的形状.答案1.D2.C3.D4.C5.平行、相交或异面6.b⊂α,b∥α或b与α相交7.解不正确.如图,设α∩β=l,则在α内与l平行的直线可以有无数条,如a1,a2,…,a n,它们是一组平行线,这时a1,a2,…,a n与平面β平行,但此时α与β不平行,α∩β=l.8.证明∵直线a∥平面α,∴直线a与平面α无公共点.∵α∩β=b,∴b⊂α,b⊂β.∴直线a与b无公共点.∵a⊂β,∴a∥b.9.D10.D11.平行或相交12.解由α∩γ=a知a⊂α且a⊂γ,由β∩γ=b知b⊂β且b⊂γ,∵α∥β,a⊂α,b⊂β,∴a、b无公共点.又∵a⊂γ且b⊂γ,∴a∥b.∵α∥β,∴α与β无公共点,又a⊂α,∴a与β无公共点,∴a∥β.13.解由点Q在线段DD1上移动,当点Q与点D1重合时,截面图形为等边三角形AB1D1,如图(1)所示;当点Q与点D重合时,截面图形为矩形AB1C1D,如图(2)所示;图(1)图(2)当点Q不与点D,D1重合时,截面图形为等腰梯形AQRB1,如图(3)所示.图(3)。
《步步高 学案导学设计》2013-2014学年 高中数学 人教B版必修2【配套备课资源】第二章 2.2.2(一)
![《步步高 学案导学设计》2013-2014学年 高中数学 人教B版必修2【配套备课资源】第二章 2.2.2(一)](https://img.taocdn.com/s3/m/fd0f2e5a77232f60ddcca177.png)
∴由两点式可得直线 AD 的方程: y+1 x-1 3 =3-1,即 5x-4y-9=0. 2+1
练一练· 当堂检测、目标达成落实处
2.2.2(一)
本 课 时 栏 目 开 关
1.经过点(- 2,2),倾斜角是 30° 的直线的方程是 ( C ) 3 A.y+ 2= (x-2) B.y+2= 3(x- 2) 3 3 C.y-2= (x+ 2) D.y-2= 3(x+ 2) 3 3 解析 由题意直线的斜率 k=tan 30° 3 , =
本 课 时 栏 目 开 关
(3)过点 P(5,-2),且与 y 轴平行; (4)过 P(-2,3),Q(5,-4)两点.
解 (1)∵直线过点 P(-4,3),斜率 k=-3,
∴由直线方程的点斜式得直线方程为 y-3=-3(x+4), 即 3x+y+9=0.
(2)与 x 轴平行的直线,其斜率 k=0,由直线方程的点斜式 可得直线方程为 y-(-4)=0(x-3),即 y=-4.
本 课 时 栏 目 开 关
答
已知直线上的一个点和直线的倾斜角(斜率)可以确
定一条直线;
已知两点也可以确定一条直线.
研一研· 问题探究、课堂更高效
2.2.2(一)
问题 3 已知直线 l 经过点 P0(x0,y0),且斜率为 k,如何来 求直线 l 的方程?
本 课 时 栏 目 开 关
答 设点 P(x,y)为直线 l 上不同于 P0(x0,y0)的任意一点, y-y0 则直线 l 的斜率 k 可由 P 和 P0 两点的坐标表示为 k= , x-x0 即 y-y0=k(x-x0).
2.2.2(一)
本 课 时 栏 目 开 关
1 例 2 求过点(0,1),斜率为- 的直线的方程. 2 解 直线过点(0,1),表明直线在 y 轴上的截距为 1,又直 1 线斜率为-2,由直线的斜截式方程, 1 得 y=-2x+1,即 x+2y-2=0.
人教高中数学必修2--练习 第二章2.2.1
![人教高中数学必修2--练习 第二章2.2.1](https://img.taocdn.com/s3/m/5288548b240c844768eaee43.png)
§2.2直线、平面平行的判定及其性质2.2.1直线与平面平行的判定一、基础过关1.直线m∥平面α,直线n∥m,则()A.n∥αB.n与α相交C.n⊂αD.n∥α或n⊂α2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在的平面的位置关系是()A.平行B.相交C.平行或相交D.不相交3.已知a,b是两条相交直线,a∥α,则b与α的位置关系是()A.b∥αB.b与α相交C.b⊂αD.b∥α或b与α相交4.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是()A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α5. 如图,在长方体ABCD-A1B1C1D1的面中:(1)与直线AB平行的平面是______;(2)与直线AA1平行的平面是______;(3)与直线AD平行的平面是______.6.已知不重合的直线a,b和平面α.①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α,其中正确命题的个数是________.7.在正方体ABCD-A1B1C1D1中,E为DD1的中点,求证:BD1∥平面AEC.8. 如图,四棱锥A—DBCE中,O为底面正方形DBCE对角线的交点,F为AE的中点.求证:AB∥平面DCF.二、能力提升9.在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=EF∶FB=1∶3,则对角线AC和平面DEF的位置关系是()A.平行B.相交C.在内D.不能确定10.过直线l外两点,作与l平行的平面,则这样的平面()A.不存在B.只能作出一个C.能作出无数个D.以上都有可能11.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有________条.12.如图,在平行四边形ABCD中,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,F为线段A′C的中点.求证:BF∥平面A′DE.。
高中数学人教A版必修2练习第二章 2.1 2.1.1 平面 课堂强化 Word版含解析
![高中数学人教A版必修2练习第二章 2.1 2.1.1 平面 课堂强化 Word版含解析](https://img.taocdn.com/s3/m/28e8cdd8524de518964b7d68.png)
.用符号表示“点在直线上,在平面α外”,正确的是( )
.∈,∉α.∈,⊄α
.⊂,⊄α.⊂,∉α解析:点与直线,直线与平面间的关系分别用“∈或∉”和“⊂或⊄”表示.
答案:
.如果直线⊂平面α,直线⊂平面α,∈,∈,∈,∈,则
( ) .⊂α.⊄α
.∩α=.∩α=
解析:∵∈,⊂α,∴∈α,同理,∈α,又∈,∈,故⊂α.
答案:
.下列说法中正确的个数为( )
①三角形一定是平面图形②若四边形的两对角线相交于一点,则该四边形是平面图形③圆心和圆上两点可确定一个平面④三条平行线最多可确定三个平面
..
..
解析:根据题意知,①,②,④正确,故正确.
答案:
.若点在直线上,在平面β内,则、、β之间的关系可记作.
答案:∈,⊂β,∈β
.有下列几个说法:
①两个相交平面有不在同一直线上的三个公共点;
②经过空间任意三点至少有一个平面;
③过两平行直线有且只有一个平面;
其中正确说法的序号是.
解析:两个相交平面的公共点都在一条直线上,故①错;当三点在一条直线上时,过这三个点有无数个平面,当三点不共线时,过三点有且只有一个平面,故②正确;根据公理,③正确.
答案:②③
.如图,在正方体-中,设∩平面=.求证:,,三点共线.
证明:如图,连接、、,
∩平面=,∵∈,∈平面.∴⊂平面,∵
∈平面.∴
∵平面∩平面=,
∴∈,∴,,三点共线.。
人教版高中数学(必修2)全套训练习题含答案
![人教版高中数学(必修2)全套训练习题含答案](https://img.taocdn.com/s3/m/6aad0357e518964bcf847c6c.png)
高中数学必修二训练集锦目录:数学2(必修)数学2(必修)第一章:空间几何体[ 基础训练A组] 数学2(必修)第一章:空间几何体[ 综合训练B 组] 数学2(必修)第一章:空间几何体[ 提高训练C 组] 数学2(必修)第二章:点直线平面[ 基础训练A组] 数学2(必修)第二章:点直线平面[ 综合训练B 组] 数学2(必修)第二章:点直线平面[ 提高训练C 组] 数学2(必修)第三章:直线和方程[ 基础训练A组] 数学2(必修)第三章:直线和方程[ 综合训练B 组] 数学2(必修)第三章:直线和方程[ 提高训练C 组] 数学2(必修)第四章:圆和方程[ 基础训练A组] 数学2(必修)第四章:圆和方程[ 综合训练 B 组] 数学 2(必修)第四章:圆和方程 [ 提高训练 C 组]33 3 ( 数 学 2 必 修 ) 第 一 章 空 间 几 何 体[ 基础训练 A 组] 一、选择题1 . 有 一 个 几 何 体 的 三 视 图 如 下 图 所 示 , 这 个 几 何 体 应 是 一 个 ()A . 棱 台B . 棱 锥C . 棱 柱 D. 都 不 对主 视 图左 视 图俯 视 图2 . 棱 长 都 是 1 的 三 棱 锥 的 表 面 积 为 ()A .B .2 C .3 D.43 . 长 方 体 的 一 个 顶 点 上 三 条 棱 长 分 别 是 3,4 ,5 , 且 它 的 8 个 顶 点 都 在同 一 球 面 上 , 则 这 个 球 的 表 面 积 是 ( )A . 2 5B . 5 0C . 1 2 5D . 都 不 对4 . 正 方 体 的 内 切 球 和 外 接 球 的 半 径 之 比 为 ()A .: 1 B . : 2C . 2 :D . 35 . 在 △ A B C 中 , AB 2 , B C 1 . 5 , AB C1 2 0 ,若 使 绕 直 线 B C 旋 转 一 周 ,则 所 形 成 的 几 何 体 的 体 积 是 ( )9 7 5 3 A .B .C .D.22226 . 底 面 是 菱 形 的 棱 柱 其 侧 棱 垂 直 于 底 面 , 且 侧 棱 长 为 5 , 它 的 对 角 线 的 长分 别 是 9 和 1 5 , 则 这 个 棱 柱 的 侧 面 积 是 ( ) A . 1 3 0B . 1 4 0C . 1 5 0D . 1 6 0二、填空题1 . 一 个 棱 柱 至 少 有 _____ 个 面 , 面 数 最 少 的 一 个 棱 锥 有 ________个 顶 点 ,顶 点 最 少 的 一 个 棱 台 有________条 侧 棱 。
高中数学(人教版必修2)配套练习 第二章2.2.2
![高中数学(人教版必修2)配套练习 第二章2.2.2](https://img.taocdn.com/s3/m/6edbab5db7360b4c2e3f6475.png)
2.2.2平面与平面平行的判定一、基础过关1.直线l∥平面α,直线m∥平面α,直线l与m相交于点P,且l与m确定的平面为β,则α与β的位置关系是() A.相交B.平行C.异面D.不确定2.平面α与平面β平行的条件可以是() A.α内的一条直线与β平行B.α内的两条直线与β平行C.α内的无数条直线与β平行D.α内的两条相交直线分别与β平行3.给出下列结论,正确的有()①平行于同一条直线的两个平面平行;②平行于同一平面的两个平面平行;③过平面外两点,不能作一个平面与已知平面平行;④若a,b为异面直线,则过a与b平行的平面只有一个.A.1个B.2个C.3个D.4个4.若正n边形的两条对角线分别与面α平行,则这个正n边形所在的平面一定平行于平面α,那么n的取值可能是() A.12 B.8 C.6 D.55.已知平面α、β和直线a、b、c,且a∥b∥c,a⊂α,b、c⊂β,则α与β的关系是________.6.有下列几个命题:①平面α内有无数个点到平面β的距离相等,则α∥β;②α∩γ=a,α∩β=b,且a∥b(α,β,γ分别表示平面,a,b表示直线),则γ∥β;③平面α内一个三角形三边分别平行于平面β内的一个三角形的三条边,则α∥β;④平面α内的一个平行四边形的两边与平面β内的一个平行四边形的两边对应平行,则α∥β.其中正确的有________.(填序号)7.如图所示,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,求证:AE∥平面DCF.8. 在长方体ABCD—A1B1C1D1中,E、F、E1、F1分别是AB、CD、A1B1、C1D1的中点.求证:平面A1EFD1∥平面BCF1E1.二、能力提升9.α、β是两个不重合的平面,a、b是两条不同的直线,在下列条件下,可判定α∥β的是() A.α,β都平行于直线a、bB.α内有三个不共线的点到β的距离相等C.a,b是α内两条直线,且a∥β,b∥βD.a、b是两条异面直线,且a∥α,b∥α,a∥β,b∥β10. 正方体EFGH—E1F1G1H1中,下列四对截面中,彼此平行的一对截面是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G11. 如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,有MN∥平面B1BDD1.12.已知在正方体ABCD—A1B1C1D1中,M、E、F、N分别是A1B1、B1C1、C1D1、D1A1的中点.求证:(1)E、F、D、B四点共面;(2)平面AMN∥平面EFDB.三、探究与拓展13.如图所示,B为△ACD所在平面外一点,M、N、G分别为△ABC、△ABD、△BCD的重心.(1)求证:平面MNG∥平面ACD;(2)求S△MNG∶S△ADC.答案1.B 2.D 3.B 4.D 5.相交或平行 6.③7.证明 由于AB ∥CD ,BE ∥CF ,故平面ABE ∥平面DCF .而直线AE 在平面ABE 内,根据线面平行的定义,知AE ∥平面DCF . 8.证明 ∵E 、E 1分别是AB 、A 1B 1的中点,∴A 1E 1∥BE 且A 1E 1=BE .∴四边形A 1EBE 1为平行四边形. ∴A 1E ∥BE 1.∵A 1E ⊄平面BCF 1E 1, BE 1⊂平面BCF 1E 1. ∴A 1E ∥平面BCF 1E 1. 同理A 1D 1∥平面BCF 1E 1, A 1E ∩A 1D 1=A 1,∴平面A 1EFD 1∥平面BCF 1E 1. 9.D 10.A 11.M ∈线段FH12.证明 (1)∵E 、F 分别是B 1C 1、C 1D 1的中点,∴EF 綊12B 1D 1,∵DD 1綊BB 1,∴四边形D 1B 1BD 是平行四边形, ∴D 1B 1∥BD . ∴EF ∥BD ,即EF 、BD 确定一个平面,故E 、F 、D 、B 四点共面. (2)∵M 、N 分别是A 1B 1、A 1D 1的中点, ∴MN ∥D 1B 1∥EF . 又MN ⊄平面EFDB , EF ⊂平面EFDB . ∴MN ∥平面EFDB .连接NE ,则NE 綊A 1B 1綊AB . ∴四边形NEBA 是平行四边形.∴AN ∥BE .又AN ⊄平面EFDB ,BE ⊂平面EFDB .∴AN ∥平面EFDB . ∵AN 、MN 都在平面AMN 内,且AN ∩MN =N , ∴平面AMN ∥平面EFDB .13.(1)证明 连接BM 、BN 、BG 并延长交AC 、AD 、CD 分别于P 、F 、H .∵M 、N 、G 分别为△ABC 、△ABD 、△BCD 的重心,则有BM MP =BN NF =BGGH =2.连接PF 、FH 、PH ,有MN ∥PF . 又PF ⊂平面ACD ,MN ⊄平面ACD , ∴MN ∥平面ACD .同理MG ∥平面ACD ,MG ∩MN =M , ∴平面MNG ∥平面ACD .(2)解 由(1)可知MG PH =BG BH =23,∴MG =23PH .又PH =12AD ,∴MG =13AD .同理NG =13AC ,MN =13CD .∴△MNG ∽△DCA ,其相似比为1∶3, ∴S △MNG ∶S △ADC =1∶9.。
高中数学(人教版必修2)配套练习 第二章2.3.1
![高中数学(人教版必修2)配套练习 第二章2.3.1](https://img.taocdn.com/s3/m/eb0abf1b25c52cc58bd6beec.png)
§2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定一、基础过关1.已知直线a∥b,平面α∥β,a⊥α,则b与β的位置关系是() A.b⊥βB.b∥βC.b⊂βD.b⊂β或b∥β2.直线a⊥直线b,b⊥平面β,则a与β的关系是() A.a⊥βB.a∥βC.a⊂βD.a⊂β或a∥β3.空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是() A.垂直且相交B.相交但不一定垂直C.垂直但不相交D.不垂直也不相交4.如图所示,定点A和B都在平面α内,定点P∉α,PB⊥α,C是平面α内异于A和B的动点,且PC⊥AC,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定B1C1D1中,5. 在正方体ABCD-A(1)直线A1B与平面ABCD所成的角是________;(2)直线A1B与平面ABC1D1所成的角是________;(3)直线A1B与平面AB1C1D所成的角是______.6. 如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是棱AA1和AB上的点,若∠B1MN是直角,则∠C1MN=______.7.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.8. 如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱P A垂直于底面,E、F分别是AB、PC的中点,P A=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD.二、能力提升9. 如图所示,P A⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为()A.4 B.3 C.2 D.110.已知矩形ABCD,AB=1,BC=2,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中() A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直11.在直三棱柱ABC—A1B1C1中,BC=CC1,当底面A1B1C1满足条件________时,有AB1⊥BC1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况).12. 如图所示,在正方体ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,求证:B1O⊥平面P AC.三、探究与拓展13.已知平面α外两点A、B到平面α的距离分别为1和2,A、B两点在α内的射影之间距离为3,求直线AB和平面α所成的角.答案1.A 2.D 3.C 4.B 5.(1)45° (2)30° (3)90° 6.90°7.证明 在平面B 1BCC 1中, ∵E 、F 分别是B 1C 1、B 1B 的中点, ∴△BB 1E ≌△CBF , ∴∠B 1BE =∠BCF ,∴∠BCF +∠EBC =90°,∴CF ⊥BE , 又AB ⊥平面B 1BCC 1,CF ⊂平面B 1BCC 1, ∴AB ⊥CF ,又AB ∩BE =B , ∴CF ⊥平面EAB .8.证明 (1)∵P A ⊥底面ABCD , ∴CD ⊥P A .又矩形ABCD 中,CD ⊥AD ,且AD ∩P A =A ,∴CD ⊥平面P AD ,∴CD ⊥PD .(2)取PD 的中点G ,连接AG ,FG .又∵G 、F 分别是PD 、PC 的中点,∴GF 綊12CD ,∴GF 綊AE ,∴四边形AEFG 是平行四边形,∴AG ∥EF . ∵P A =AD ,G 是PD 的中点, ∴AG ⊥PD ,∴EF ⊥PD , ∵CD ⊥平面P AD ,AG ⊂平面P AD . ∴CD ⊥AG .∴EF ⊥CD .∵PD ∩CD =D ,∴EF ⊥平面PCD . 9.A 10.B 11.∠A 1C 1B 1=90°12.证明 连接AB 1,CB 1,设AB =1.∴AB 1=CB 1=2,∵AO =CO ,∴B 1O ⊥AC .连接PB 1.∵OB 21=OB 2+BB 21=32, PB 21=PD 21+B 1D 21=94, OP 2=PD 2+DO 2=34,∴OB 21+OP 2=PB 21.∴B 1O ⊥PO ,又∵PO ∩AC =O ,∴B 1O ⊥平面P AC .13.解 (1)如图①,当A 、B 位于平面α同侧时,由点A 、B 分别向平面α作垂线,垂足分别为A 1、B 1,则AA 1=1,BB 1=2,B 1A 1= 3.过点A 作AH ⊥BB 1于H ,则AB 和α所成角即为∠HAB .而tan ∠BAH =2-13=33.∴∠BAH =30°.(2)如图②,当A 、B 位于平面α异侧时,经A 、B 分别作AA 1⊥α于A 1,BB 1⊥α于B 1,AB ∩α=C ,则A 1B 1为AB 在平面α上的射影,∠BCB 1或∠ACA 1为AB 与平面α所成 的角.∵△BCB 1∽△ACA 1, ∴BB 1AA 1=B 1C CA 1=2, ∴B 1C =2CA 1,而B 1C +CA 1=3,∴B 1C =233.∴tan ∠BCB 1=BB 1B 1C =2233=3,∴∠BCB 1=60°.综合(1)、(2)可知:AB 与平面α所成的角为30°或60°.。
高中数学(人教版必修2)配套练习 第二章2.1.1
![高中数学(人教版必修2)配套练习 第二章2.1.1](https://img.taocdn.com/s3/m/f1faaf6916fc700aba68fc29.png)
第二章点、直线、平面之间的位置关系§2.1空间点、直线、平面之间的位置关系2.1.1平面一、基础过关1.下列命题:①书桌面是平面;②有一个平面的长是50 m,宽是20 m;③平面是绝对的平、无厚度,可以无限延展的抽象数学概念.其中正确命题的个数为() A.1个B.2个C.3个D.0个2.下列图形中,不一定是平面图形的是() A.三角形B.菱形C.梯形D.四边相等的四边形3.空间中,可以确定一个平面的条件是() A.两条直线B.一点和一条直线C.一个三角形D.三个点4.已知平面α与平面β、γ都相交,则这三个平面可能的交线有() A.1条或2条B.2条或3条C.1条或3条D.1条或2条或3条5.给出以下命题:①和一条直线都相交的两条直线在同一平面内;②三条两两相交的直线在同一平面内;③有三个不同公共点的两个平面重合;④两两平行的三条直线确定三个平面.其中正确命题的个数是________.6.已知α∩β=m,a⊂α,b⊂β,a∩b=A,则直线m与A的位置关系用集合符号表示为________.7.如图,梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由.8.空间中三个平面两两相交于三条直线,这三条直线两两不平行,证明此三条直线必相交于一点.二、能力提升9.空间不共线的四点,可以确定平面的个数是() A.0 B.1 C.1或4 D.无法确定10.已知α、β为平面,A、B、M、N为点,a为直线,下列推理错误的是() A.A∈a,A∈β,B∈a,B∈β⇒a⊂βB.M∈α,M∈β,N∈α,N∈β⇒α∩β=MNC.A∈α,A∈β⇒α∩β=AD.A、B、M∈α,A、B、M∈β,且A、B、M不共线⇒α、β重合11.下列四个命题:①两个相交平面有不在同一直线上的三个公共点;②经过空间任意三点有且只有一个平面;③过两平行直线有且只有一个平面;④在空间两两相交的三条直线必共面.其中正确命题的序号是________.12. 如图所示,四边形ABCD中,已知AB∥CD,AB,BC,DC,AD(或延长线)分别与平面α相交于E,F,G,H,求证:E,F,G,H必在同一直线上.三、探究与拓展13. 如图,在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC、BD交于点M,E为AB的中点,F为AA1的中点.求证:(1)C1、O、M三点共线;(2)E、C、D1、F四点共面.答案1.A 2.D 3.C 4.D5.06.A∈m7. 解很明显,点S是平面SBD和平面SAC的一个公共点,即点S在交线上,由于AB>CD,则分别延长AC和BD交于点E,如图所示.∵E∈AC,AC⊂平面SAC,∴E∈平面SAC.同理,可证E∈平面SBD.∴点E在平面SBD和平面SAC的交线上,连接SE,直线SE是平面SBD和平面SAC的交线.8.证明∵l1⊂β,l2⊂β,l1D∥\l2,∴l1、l2交于一点,记交点为P.∵P∈l1⊂α,P∈l2⊂γ,∴P∈α∩γ=l3,∴l1,l2,l3交于一点.9.C10.C11.③12.证明因为AB∥CD,所以AB,CD确定平面AC,AD∩α=H,因为H∈平面AC,H∈α,由公理3可知,H必在平面AC与平面α的交线上.同理F、G、E都在平面AC与平面α的交线上,因此E,F,G,H必在同一直线上.13.证明(1)∵C1、O、M∈平面BDC1,又C1、O、M∈平面A1ACC1,由公理3知,点C1、O、M在平面BDC1与平面A1ACC1的交线上,∴C1、O、M三点共线.(2)∵E,F分别是AB,A1A的中点,∴EF∥A1B.∵A1B∥CD1,∴EF∥CD1.∴E、C、D1、F四点共面.高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.2 直线、平面平行的判定及其性质
2.2.1 直线与平面平行的判定
一、基础过关
1.直线m∥平面α,直线n∥m,则( ) A.n∥αB.n与α相交
C.n⊂αD.n∥α或n⊂α
2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在的平面的位置关系是( ) A.平行B.相交
C.平行或相交D.不相交
3.已知a,b是两条相交直线,a∥α,则b与α的位置关系是( ) A.b∥αB.b与α相交
C.b⊂αD.b∥α或b与α相交
4.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是( ) A.l∥αB.l⊥α
C.l与α相交但不垂直D.l∥α或l⊂α
5. 如图,在长方体ABCD-A1B1C1D1的面中:
(1)与直线AB平行的平面是______;
(2)与直线AA1平行的平面是______;
(3)与直线AD平行的平面是______.
6.已知不重合的直线a,b和平面α.
①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则
a∥α;④若a∥b,a∥α,则b∥α或b⊂α,其中正确命题的个数是________.
7.在正方体ABCD-A1B1C1D1中,E为DD1的中点,求证:BD1∥平面AEC.
8. 如图,四棱锥A—DBCE中,O为底面正方形DBCE对角线的交点,F为AE的中
点.求证:AB∥平面DCF.
二、能力提升
9.在空间四边形ABCD中,E、F分别是AB和BC上的点,若
AE∶EB=EF∶FB=1∶3,则对角线AC和平面DEF的位置关系是
( )
A.平行B.相交
C.在内D.不能确定
10.过直线l外两点,作与l平行的平面,则这样的平面( ) A.不存在B.只能作出一个
C.能作出无数个D.以上都有可能
11.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有________条.
12.如图,在平行四边形ABCD中,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,F为线段A′C的中点.求证:BF∥平面A′DE.
三、探究与拓展
13. 正方形ABCD与正方形ABEF所在平面相交于AB,在AE,BD上各有一点P,Q,且
AP=DQ.求证:PQ∥平面BCE.(用两种方法证明)
答案
1.D 2.B 3.D 4.D
5.(1)平面A 1C 1和平面DC 1 (2)平面BC 1和平面DC 1 (3)平面B 1C 和平面A 1C 1
6.1
7.证明 如图,连接BD 交AC 于F ,连接EF .
因为F 为正方形ABCD 对角线的交点,所以F 为AC 、BD 的中点.在三角形DD 1B 中,E 、F 分别为DD 1、DB 的中点,所以EF ∥D 1B .又EF ⊂平面AEC ,BD 1⊄平面AEC ,所以BD 1∥平面AEC .
8.证明 连接OF ,
∵O 为正方形DBCE 对角线的交点,∴BO =OE ,
又AF =FE ,
∴AB ∥OF ,
Error!⇒AB ∥平面DCF .
9.A 10.D 11.12
12.证明 取A ′D 的中点G ,连接GF ,GE ,
由条件易知FG ∥CD ,FG =CD ,BE ∥CD ,BE =CD ,1212所以FG ∥BE ,FG =BE ,故四边形BEGF 为平行四边形,所以BF ∥EG .因为EG ⊂平面A ′DE ,
BF ⊄平面A ′DE ,
所以BF ∥平面A ′DE .
13.证明 如图所示,连接AQ 并延长交BC 于K ,连接EK .
∵KB ∥AD ,∴=.
DQ BQ AQ QK ∵AP =DQ ,AE =BD ,
∴BQ =PE .
∴=.∴=.∴PQ ∥EK .
DQ BQ AP PE AQ QK AP PE 又PQ ⊄平面BCE ,EK ⊂平面BCE ,
∴PQ ∥平面BCE .。