第6章 几个典型的代数系统 [离散数学离散数学(第四版)清华

合集下载

离散数学第6章 格与布尔代数

离散数学第6章 格与布尔代数
设c是a∧b 的任一下界,即c ≤ a,c ≤ b 则 c∧a=c, c∧b=c c∧(a∧b)=(c∧a)∧b=c∧b=c ∴c ≤ a∧b 故 a∧b是a和b的最大下界
6-1 格的概念
5)下面证明 a∧b=aa∨b=b 若a∧b=a 则 a∨b=(a∧b)∨b=b 反之,若a∨b=b 则 a∧b=a∧(a∨b)=a
b用a∨b代替(∵两式中b是相互独立的) ∴a∨(a∧(a∨b))=a 即 a∨a=a. (2)格的等价定理:〈A,∨,∧〉代数系统,∨.∧满足交换性, 结合性,吸收性,则A上存在偏序关系≤,使〈A,≤〉是一个格
从格可引出代数系统〈A,∨,∧〉; 而从满足三个条件的〈A,∨,∧〉也可导出格〈A,≤〉 证明见书:(格中⑻⑼⑾三个性质很重要,决定了格)
(11) 要证 a≤a∨(a∧b) 第一式显然成立
a∨(a∧b)≤a
a≤a
a∧b≤a
∴a∨(a∧b) ≤a
∴a=a∨(a∧b)
6-1 格的概念
6、格的等价原理:格〈A,≤〉 (1)引理6-1.1:〈A,∨,∧〉代数系统,若∨, ∧满足吸收性,
则∨, ∧满足幂等性 证:a,b∈A. a∨(a∧b)=a a∧(a∨b)=a.
第六章 格与布尔代数
格论是近代数学的一个重要分支,由它所引出的布尔 代数在计算机科学中有很多直接应用。
格的概念 分配格 有补格 布尔代数 布尔表达式
6-1 格的概念
1、回忆偏序集〈A,≤〉,≤偏序关系:满足自反性,反对称性, 传递性。有限集合上的偏序集可用哈斯图来表示:
COV (A) {a,c, b,c, c, d, d,e, d, f }
∧也易求得 ∴ A,∨,∧〉是格〈A,|〉 诱导的代数系统
6-1 格的概念

《离散数学》几个典型的代数系统-1(群)

《离散数学》几个典型的代数系统-1(群)
离散数学几个典型的代数系统1群离散数学代数系统线性代数和离散数学线性代数离散数学离散数学代数结构证明代数系统是群代数系统群有什么用离散数学群离散数学群的意义离散数学群的习题集
第六章 几个典型的代 数系统
6.1 半群与群
6.1
半 群 与 群 半群与独异点 - 半群定义与性质 - 交换半群与独异点 - 半群与独异点的子代数和积代数 - 半群与独异点的同态 群 - 群的定义与性质 - 子群与群的直积 - 循环群 - 置换群
7
半群与独异点的子代数
6.1
半 群 与 群 定义 半群的子代数称为子半群,独异点的子代数称 为子独异点。 判断方法: 设 V=<S,>为半群, T 是 S 的非空子集, T是V的子半群当且仅当T对o运算封闭. 设V=<S, , e>为独异点,T是V的子独异点当且仅当T 对o运算封闭,且eT 实例: <Z+,+>, <N,+>是<Z,+>的子半群,<N,+>是<Z,+> 的子独异点, <Z+,+>不是<Z,+>的子独异点.
实例 nZ(n是自然数)是整数加群 <Z,+> 的子 群. 当 n≠1 时, nZ 是 Z 的真子群. 对任何群 G 都存在子群. G 和 {e} 都是 G 的 子群,称为 G 的平凡子群.
22
子群判定定理
6.1
半 群 与 群
判定定理 设 G 为群,H 是 G 的非空子集. H 是 G 的子群 当且仅当 x, y∈H 有 xy1∈H. 证明 H 为 G 的子群的步骤: 通过给出 H 中的元素说明 H 是 G 的非空子集 任取 x, y属于 H,证明 xy-1属于H

离散数学_第06章代数结构概念及性质

离散数学_第06章代数结构概念及性质

【例】(1)以实数集 R 为基集,加法运算" +"为二元,运算组成一代数系统,记为〈R, +〉。 (2)以全体n×n实数矩阵组成的集合 M为基集,矩阵加"+"为二元运算,组成一代 数系统,记为〈M,+〉。 (3)设 S A { | 是集合A上的关系}, “ ” 是求复合关系的运算。它们构成代数 系统S A , 。
有了集合上运算的概念后,便可定义代数结
构了。
定义6.1.2 设S是个非空集合且fi是S上的 ni元运算,其中i=1,2,…,m。由S及f1, f2,…,fm组成的结构,称为代数结构,记 作<S,f1,f2,…,fm>。
此外,集合S的基数即|S|定义代数结构 的基数。如果S是有限集合,则说代数结构 是有限代数结构;否则便说是无穷代数结构。
分配律,或者⊙对于○是可左分配的,即
(x)(y)(z)
(x,y,z∈S→x⊙(y○z))=(x⊙y)○(x⊙z))。
运算⊙对于○满足右分配律或⊙对于○是可 右分配的,即(x)(y)(z) (x,y,z∈S→(y○z)⊙x=(y⊙x)○(z⊙x)) 类似地可定义○对于⊙是满足左或右分配律。 若⊙对于○既满足左分配律又满足右分配律, 则称⊙对于○满足分配律或是可分配的。同样可 定义○对于⊙满足分配律。
x为关于⊙的右逆元:=(y)(y∈S∧y⊙x=e);
x为关于⊙可逆的:=(y)(y∈S∧y⊙x=x⊙y=e)
给定<S,⊙>及幺元e;x,y∈S,则 y为x的左逆元:=y⊙x=e
y为x的右逆元:=x⊙y=e
y为x的逆元:=y⊙x=x⊙y=e
显然,若y是x的逆元,则x也是y的逆元,
因此称x与y互为逆元。通常x的逆元表为x-1。

《离散数学》课件第6章 (2)

《离散数学》课件第6章 (2)

〈SS, , 〈Σ*, τ〉不是可交换半群。
定义 6.1.3 含有关于*运算的幺元的半群〈S, *〉, 称
它为独异点(monoid), 或含幺半群, 常记为〈S, *, e〉(e是
幺元)。
第六章 几个典型的代数系统
【例6.1.4】
〈Z, +〉是独异点, 幺元是0, 〈Z, +, 0〉;
〈Z, ×〉是独异点, 幺元是1, 〈Z, ×, 1〉;
(4) A≠ , 〈P(A), ∩〉是半群, 幺元为A, 非空集合无逆
元, 所以不是群。
(5) A≠ , 〈P(A), 是S, 所以是群。
S∈P(A), S的逆元
(6) 〈Q+, ·〉(正有理数与数乘)为一群, 1为其幺元。 〈Q, ·〉不是群, 因为数0无逆元。
因为零元无逆元, 所以含有零元的代数系统就不会是群。
逻辑关系见图6.1.1。
第六章 几个典型的代数系统
图6.1.1
第六章 几个典型的代数系统
定义 6.1.1 设〈S, *〉是代数系统, *是二元运算, 如果*运算满足结合律, 则称它为半群(semigroups)。
换言之, x, y, z∈S, 若*是S上的封闭运算且满足 (x*y)*z=x*(y*z), 则〈S, *〉是半群。
设半群〈S, *〉中元素a(简记为a∈S)的n次幂记为an, 递 归定义如下:
a1=a an+1=an*a1 n∈Z+ 即半群中的元素有时可用某些元素的幂表示出来。
因为半群满足结合律, 所以可用数学归纳法证明
am*an=am+n, (am)n=amn。
第六章 几个典型的代数系统
普通乘法的幂、 关系的幂、 矩阵乘法的幂等具体的代 数系统都满足这个幂运算规则。

离散数学讲义(第6章)

离散数学讲义(第6章)

18
6-2 分配格(续)
定理:如果在一个格中交运算对并运算可分配,则并运算 对交运算一定可分配。反之亦然。
定理:每个链是分配格。
定理:设〈A, ≤ 〉为一个分配格,则对任意的a,b,c A,如果有a b = a c且a b = a c,则b=c。
19
6-2 分配格(续)
定义:设〈A,,〉是由格〈A, ≤ 〉所诱导的代数系统。 如果对任意的a,b,cA,当b ≤ a时,有: a (b c) = b (a c) 则称〈A, ≤ 〉是模格。
5
6-1 格的概念(续)
偏序集但不是格
e d f

c a b
6
6-1 格的概念(续)
代数系统
设〈A, ≤ 〉是一个格,如果在A上定义两个二元运 算和,使得对于任意的a,bA,ab等于a和b的最小 上界,ab等于a和b的最大下界,那么就称〈A, , 〉 为由格〈A, ≤ 〉所诱导的代数系统。二元运算, 分 别称为并运算和交运算。
定理:分配格一定是模格。
21
6-3 有补格
定义:设〈A, ≤ 〉是一个格,如果存在元素aA,对 任意的xA,都有a ≤ x, 则称a为格〈A, ≤ 〉的全下界。记作 0。 定义:设〈A, ≤ 〉是一个格,如果存在元素bA,对 任意的xA,都有x ≤ b, 则称b为格〈A, ≤ 〉的全上界。记作 1。
{a,b} {a,b} {a,b} {a,b} {a,b}
{b} {a,b}
6-4 布尔代数(续)
定理:对布尔代数中的任意两个元素a,b,有
(a ) a
ab a b
a b ab
定义:具有有限个元素的布尔代数称为有限布尔代数。
26

离散数学代数系统

离散数学代数系统

离散数学代数系统
离散数学代数系统(DMA)是一种非常重要的自然科学的数学工具,它的应用涉及到很多领域,尤其有助于理解和解释有关数学物理和技术实践的问题。

例如,它可以用来解决常微分方程的相关性、热传导的传递的关系和任何复杂系统的建模和仿真。

离散数学代数是一个全面的研究领域,它包括各种数学工具,比如数论,偏微分方程,微分动力学和控制论等,以及如何实际应用这些工具来解决数学物理和技术实践的问题。

离散数学代数的主要任务是解决与数值计算有关的科学问题,为此,他们开发了一系列数据结构,比如图,矩阵和线性代数。

重点也放在了提出有效的算法来解决离散问题,比如图像处理、机器人控制和递归算法等。

随着计算机技术和网络技术的发展,离散数学代数越来越重要,它们被广泛应用于新技术的研究中,包括经过计算机处理的信号、全局优化和分布式计算环境等。

因此,离散数学代数对计算机科学和技术的发展有着重要的作用,其重要性日益增强。

离散数学第六章代数系统

离散数学第六章代数系统

6.2 代数系统的基本性质
性质4 吸收率
给定<S,⊙,*>,则 ⊙对于*满足左吸收律:(x)(y)(x,y∈S→x⊙(x*y)=x) ⊙对于*满足右吸收律:(x)(y)(x,y∈S→(x*y)⊙x=x) 若⊙对于*既满足左吸收律又满足右吸收律,则称⊙对于*满足吸收律或
者可吸收的。
*对于⊙满足左、右吸收律和吸收律类似地定义。 若⊙对于*是可吸收的且*对于⊙也是可吸收的,则⊙和*是互为吸收的或
代数﹝Algebra﹞是数学的其中一门分支,可大致分为初等代数学和抽象 代数学两部分。
代数的由来
初等代数学:是指19世纪中期以前发展的方程理论,主要研究某一方程﹝ 组﹞是否可解,如何求出方程所有的根﹝包括近似根﹞,以及方程的根有 何性质等问题。
抽象代数:是在初等代数学的基础上产生和发展起来的。它起始于十九世 纪初,形成于20世纪30年代。在这期间,挪威数学家阿贝尔(N.H. Abel)、 法国数学家伽罗瓦(E′. Galois)、英国数学家德·摩根(A. De Morgan) 和布尔(G. Boole)等人都做出了杰出贡献,荷兰数学家范德瓦尔登(B.L. Van Der Waerden)根据德国数学家诺特(A.E. Noether)和奥地利数学家阿 廷(E. Artin)的讲稿,于1930年和1931年分别出版了《近世代数学》一卷 和二卷,标志着抽象代数的成熟。
同态与同构
PART 同余、商代数、积代数
04
PART 05
代数系统实例
6.1 代数系统的定义
定义6.1 设S是个非空集合且函数f: Sn→S ,则称f为S上的一个 n元运算。其中n是自然数,称为运算的元数或阶。
当n = 1时,称f为一元运算,当n = 2时,称f为二元运算,等等。 定义6.2 如果对给定集合的成员进行运算,从而产生了象点,而

离散数学第六章

离散数学第六章

6.1.6 循环群和置换群
§循环群 在循环群G=<a>中, 生成元a的阶与群G的阶是一样 的. 如果a是有限阶元, |a|=n, 则称G为n阶循环群. 如 果a是无限阶元, 则称G为无限阶循环群. 例如: <Z,+>是无限阶循环群; <Z6,>是n阶循环群. 注意:(1) 对9 无限阶循环群G=<a>, G的生成元是a和a-1; (2) 对n阶循环群G=<a>=<e,a,…,an-1>,G的生成元是at 当且仅当t与n互素, 如12阶循环群中, 与12互素的数 有1、5、7、11. 那么G的生成元有a1=a、a5、a7、 a11. (3) N阶循环群G=<a>, 对于n的每个正因子d, G恰好有 一个d阶子群H=<an/d>.
6.1.3 子群
例如, 群<Z6,>中由2生成的子群包含2的各次 幂, 20=e=0, 21=2, 22=22=4, 23=222=0, 所 以由2生成的子群:<2>={0,2,4}.
对于Klein四元群G={e,a,b,c}来说, 由它的每个 元素生成的子群是 <e>={e}, <a>={e,a}, <b>={e,b}, <c>={e,c}
6.1.6 循环群和置换群
§循环群
定义6.7 在群G中, 如果存在aG使得 G={ak|kZ} 则称G为循环群, 记作G=<a>,称a为G的生成元. ☆ 循环群必定是阿贝尔群, 但阿贝尔群不一定 是循环群. 证明: 设<G,*>是一个循环群, 它的生成元是a, 那么,对于任意x,yG, 必有r,sZ, 使得 x=as,y=at, 而且x*y=as*at=as+t=at*as=y*x 由此可见<G,*>是一个阿贝尔群. 例如,<Z,+>是一个循环群, 其生成元是1或-1.

离散数学第六章

离散数学第六章

第六章几个典型的代数系统6.1 半群与群引言:简略介绍群论产生的背景1. 图形的对称性如正三角形、正方形(一般地正n 边形)、长方形、 等腰三角形、等腰梯形等;三维空间中的正四面体、 正方体、长方体等都各有自己的对称性。

画图解释:2.用根式求解代数方程的根(1)一元二次方程:20x bx c ++=⇒122b x -±=,。

注:①约公元前2000年即出现二次方程求根问题; ②约公元9世纪时,阿拉伯人花拉子米首次得到上述求根公式。

(2)三次及四次方程的求根公式一般三次方程: 320x ax bx c +++=。

先作变换:用3a x -代替x 后可化成 3x mx n +=(不含二次项), (*)其中 332,3327a ab a m b n c =-=--。

利用恒等式:333()3()u v uv u v u v -+-=-,把它与(*)比较得:33,3,x u v uv m u v n =-=-=。

由后面两个关于33,u v 的方程可得u x u v v ⎫⎪=⎪⇒=-= (即*方程的解) 以上求解三次方程的公式叫做卡丹公式, 出现在公元1545年出版的著作《大书》中。

关于四次方程的求根公式这里从略,可以肯定的是, 四次一般方程也有求根公式,并且也叫卡丹公式。

(3从1545年之后的近300年间,人们都没能找到五次(当然,这并不排除对 某些特殊的五次及五次以上的方程可以求出它们的根)。

直到1830年由法国人Galois (伽珞瓦)解决,证明出:五次及五次以上的一般方程不存在用加、减、乘、除及开方表示的求根公式,所用方法就是现在已广为接受的群的思想。

可是在当时,很多同时代的大数学家都无法理解和接受他的思想方法。

3.群在其它方面的应用:如编码理论、计算机等。

一.群的定义及简单性质1定义:设,G ⋅是一个具有二元运算⋅的代数系统,如果⋅同时满足(1)结合律:即,,a b c G ∀∈,()()a b c a b c ⋅⋅=⋅⋅总成立;(2)存在单位元(也称为幺元,记为e ),即 ,;a e e a a a G ⋅=⋅=∀∈(3)中每个元素a 都有逆元(记为1a -):即存在1a G -∈,使得11a a a a e --⋅=⋅=,则称G 关于运算⋅构成一个群。

《离散数学》几个典型的代数系统-2(环域格)

《离散数学》几个典型的代数系统-2(环域格)

格的并运算与交运算
并运算
在格中,任意两个元素的上确界称为它们的 并,并运算满足幂等律、交换律和结合律。
交运算
在格中,任意两个元素的下确界称为它们的 交,交运算也满足幂等律、交换律和结合律。
子格与商格
子格
格的一个非空子集,如果它关于原有的二元 运算也构成一个格,则称该子集为格的一个 子格。
商格
在格中定义一个等价关系,将格划分为若干 个互不相交的等价类,然后在这些等价类上 定义新的二元运算,所得到的集合和运算构
PSK等调制方式都是基于代数系统的理论基础。
代数系统在计算机图形学中的应用
几何变换
代数系统中的矩阵和向量等概念在计算机图形学中得到了 广泛应用,如平移、旋转、缩放等几何变换都可以通过矩 阵运算来实现。
图形渲染
基于代数系统的图形渲染技术,如光线追踪、纹理映射等, 提高了计算机图形的真实感和视觉效果。
示例
整数集Z、有理数集Q、实数集R、复数集C等在加法和乘法 运算下都构成环;矩阵环、多项式环等也是常见的环的例子 。
环的零元与幺元
零元
环中关于加法运算的单位元称为零元, 通常用0表示。对于任意元素a∈R, 都有a+0=a和0+a=a。
幺元
如果环中存在一个元素e,使得对于任 意元素a∈R,都有e·a=a和a·e=a,则 称e为环的幺元。并非所有环都有幺元, 有幺元的环称为幺环。
《离散数学》几个典型的代数系统 -2环域格
目录
• 环的基本概念与性质 • 域的基本概念与性质 • 格的基本概念与性质 • 环、域、格之间的关系与转换 • 代数系统在计算机科学中的应用 • 总结与展望
01 环的基本概念与性质
环的定义及示例

离散数学几个典型的代数系统

离散数学几个典型的代数系统

{ a, b, c, e, f }是 L2的子格, 并且同构于五角格;
{ a, c, b, e, f }是 L3的子格, 也同构于钻石格.
25
全上界与全下界
定义 设L是格, 若存在 a∈L 使得 x∈L 有 a ≼ x, 则称 a 为 L 的全 下界; 若存在 b∈L 使得 x∈L 有 x ≼ b, 则称 b 为 L 的全 上界. 说明:
对偶原理 交换律、结合律、幂等律、吸收律
格的等价定义 子格 格的同构 特殊的格:分配格、有界格、有补格、布尔格
10
格的定义
定义 设<S, ≼>是偏序集,如果x,y≼S,{x,y}都有 最小上界和最大下界,则称S关于偏序≼作成一个
格. 由于最小上界和最大下界的惟一性,可以把求{x,y} 的最小上界和最大下界看成 x 与 y 的二元运算∨和 ∧,即 x∨y 和 x∧y 分别表示 x 与 y 的最小上界和 最大下界. 注意:这里出现的∨和∧符号只代表格中的运算, 而不再有其他的含义.
由 a ≼ a, a∧b ≼ a 可得 a∨(a∧b) ≼ a (VI)
由式 (V) 和 (VI) 可得 a∨(a∧b) = a 根据对偶原理, a∧(a∨b) = a 得证.
18
格作为代数系统的定义
定理 设<S,∗, >是具有两个二元运算的代数系统, 若对于∗和运算适合交换律、结合律、吸收律, 则 可以适当定义S中的偏序≼,使得<S, ≼>构成格, 且 a,b∈S有 a∧b = a∗b, a∨b = ab.
4
零因子的定义与存在条件
设<R,+,>是环,若存在 ab =0, 且 a0, b0, 称 a 为左零因子,b为右零因子,环 R 不是无零因子 环. 实例 <Z6,,>,其中 23=0,2 和 3 都是零因 子.

离散数学 代数系统 ppt课件

离散数学 代数系统 ppt课件

1
33 0 1 2 8
代数系统举例
设A={1,2,3,4,6,12} A上的运算*定义为:a*b=|a-b| (1)写出二元运算的运算表; (2)<A,*>能构成代数系统吗?
9
解答
由运算表可知*运算在集合A上不封闭
所以: <A,*>不能构成代数系统
* 1 2 3 4 6 12
1 0 1 2 3 5 11
U=<I,+, > 证明:V=< m,+m, m >
满同态
g:I→Nm 对于所有的iI,有:
g(i)=(i)(modm)
32
证明
类型映射f定义为:f(+)=+m,f()=m (1)显然U=<I,+, >和V=< Nm,+m, m >同类型
(2)运算的象=象的运算
对任意的x,yI: g(x+y)=g(x) +m g(y) g(x y)=g(x) m g(y)
12
4、同类型的代数系统
V1=<S1,Ω1>:代数系统 类型映射 V2=<S2,Ω2>:代数系统 同元运算
存在一个双射函数f: Ω1 → Ω2 每一个ω∈Ω1和f(ω) ∈Ω2具有相同的阶 ωf V1和V2是同类型的代数系统
13
同类型的代数系统举例
V1=<Nm,+m , m > 和V2=<R,+, >是 同类型的代数系统吗?其中:
41
满同态举例(续)
(5)对“+”存在e=0,则: 对“+3”存在e=g(0)=0; (6)对“”存在e=1,则: 对“3”存在e=g(1)=1; (7)对“”存在零元=0,则: 对“3”存在零元=g(0)=0;

离散数学代数系统总结

离散数学代数系统总结

离散数学代数系统总结离散数学是数学的一个分支,主要研究离散对象和离散结构。

而代数系统是离散数学的一个重要分支,它研究的是一类具有特定性质的运算集合。

在这篇文章中,我们将从代数系统的基本概念、性质和应用几个方面对离散数学中的代数系统进行总结。

一、代数系统的基本概念代数系统是指一个非空集合A,以及在这个集合上定义的一个或多个运算。

根据运算的性质,代数系统可以分为不同的类型,包括群、环、域等。

其中,群是最基本的代数系统,它具有封闭性、结合律、单位元、逆元等性质。

环则在群的基础上增加了乘法运算,并满足了分配律。

域是环的一种扩充,它除了满足环的性质外,还具有乘法逆元。

二、代数系统的性质1. 封闭性:代数系统中的运算结果仍属于该系统,即对于任意a、b∈A,a运算b的结果仍然属于A。

2. 结合律:对于代数系统中的任意元素a、b、c,(a运算b)运算c 与a运算(b运算c)的结果相同。

3. 单位元:代数系统中存在一个元素e,对于任意元素a,a运算e与e运算a的结果均为a。

4. 逆元:代数系统中的每个元素a都存在一个逆元,使得a运算它的逆元等于单位元。

5. 交换律:对于代数系统中的任意元素a、b,a运算b与b运算a 的结果相同。

这些性质是代数系统的基本特征,不同类型的代数系统在这些性质上有所区别,比如群具有结合律和单位元,但不一定满足交换律。

三、代数系统的应用代数系统在数学及其他学科中有着广泛的应用。

以下是几个代数系统应用的例子:1. 编码理论:代数系统的运算可以用于编码和解码信息,例如循环冗余校验码(CRC)就是通过代数系统中的运算实现数据校验。

2. 密码学:代数系统中的数学运算被广泛应用于密码学中,用于加密和解密信息,保护数据的安全。

3. 图论:代数系统的概念和性质在图论中有着重要的应用,例如邻接矩阵和关联矩阵可以用于描述和分析图的结构和特性。

4. 计算机科学:代数系统在计算机科学中有着广泛的应用,例如布尔代数在逻辑电路设计和逻辑编程中的应用。

几个典型的代数系统

几个典型的代数系统
可交换半群:如果半群V = < S, >中的二元运算 是 可交换的,则称V为可交换半群。
2020/4/24
离散数学
一、半群的概念(续)
含幺半群(独异点):如果半群V = < S, >的二元 运算 含有幺元,则称V为含幺半群(独异点)。 即 eS,使得对 xS都有e x = x e = x。 独异点亦可记为< S, , e>。
如:<Z, +>, <R–{0}, >, <P(S), >, <Zn, >都是 阿贝尔群。
2020/4/24
离散数学
二、群的概念(续)
群中的幂:设群<G, > ,则对 xG, x0 = e ,xn+1 = xn x,(n为非负整数) x -n= (x -1)n= (xn)-1,(n为正整数)
幂运算的性质: (1) xG,(x -1)-1 = x, (2) x, yG,(x y)-1 = y -1 x –1, (3) xG,xm xn = xm + n ,m, n为整数 (4) xG,(xm)n = xmn , m, n为整数
如:群<Z6, >, <0> = {0}, <1> = {0, 1, 2, 3, 4, 5} = Z6 , <2> = {0, 2, 4}, <3> = {0, 3}, <4> = <2>, <5> = <1> 。
2020/4/24
离散数学
四、两种常用的群
1、循环群: 元素的阶(周期):设群<G, >,aG,使ak = e 成立
2020/4/24

离散数学几种典型的代数系统

离散数学几种典型的代数系统
例3中的 <S; >和<F; >
在独异点<S , >中,对任意a ∈ S,有
a0=e a n 1 a n a( n 0 , 1 ,2 , )
( )式中的两个等式在独异点中亦成立。
三、 子半群和子独异点
定义5-3 设<S;>是一个半群 ,若 <T; >是
<S; >的子代数,则称<T; >是<S; >的子半群。
因此 ,a1b 是方程 axb的解
假设 xG也使得 axb成立,则
x ex(a1a)xa1(ax) a1b
因此 xa1b是满足 axb的唯一的元素。
定理5-3 设<G;*>是一个群,则对任意 的a,b,c∈G
(1)若a*b=a*c, 则 b=c; (2)若b*a=c*a,则 b=c。
证 明 (1)令a*b=a*c=d,根据定理5-2, 方程a*x = d 在G中只有唯一的解,故得 b=c。
定理5-7 在有限群<G;*>中,每个元素均具有有限周
期,且周期不超过群<G;*>的阶。
证明 设<G;*>是有限群,#G = n,对任意a ∈ G,
构造序列a,a2,a3…,an,an+1,
因为#G=n,所以序列中必存在ai=aj (1ijn1). 于是 a i a i a j a i 得 a j i e (0 j i n )
<I;+>、<R;+>和<R-{0};·> 都是群。
例2 设有Z4={0,1,2,3},模4的加法运算
定义为 a 4bre 4(a s b )。构成代数
系统< Z4; >。 4

离散数学(近世代数)

离散数学(近世代数)

矩阵加法和乘法都是 Mn(R) 上的二元运算.
11
(6) 幂集 P(S) 上的二元运算:∪,∩,-, .
12
二元运算的表示
算符:∘, ∗, · , 等符号 表示二元运算 , 对二元运算 ∘,如果 x 与 y 运算得到 z,记做 x∘y = z; 表示二元的方法: 公式、 运算表
13
二元运算的表示(续)
31
积代数
定义 设 V1=<S1,o>和 V2=<S2,>是代数系统,其中 o 和 是二元运算. V1 与 V2 的 积代数 是V=<S1S2,∙>, <x1,y1>, <x2,y2>S1S2 , <x1,y1> ∙ <x2,y2>=<x1ox2, y1y2> 例3 V1=<Z,+>, V2=<M2(R), ∙ >, 积代数< ZM2(R),o> <z1,M1>, <z2,M2>ZM2(R) , <z1,M1> o <z2,M2> = <z1+z2, M1∙M2>
18
消去律
实例: Z, Q, R 关于普通加法满足消去律. Z\{0}, Q\{0}, R\{0} 关于普通乘法满足消去律. Mn(R) 关于矩阵加法满足消去律,但是关于矩阵 乘法不满足消去律.
19
二元运算的性质(续)
定义 设 ∘ 和 ∗ 为 S 上两个不同的二元运算, 如果 x, y, z∈S 有 (x ∗ y) ∘ z = (x ∘ z) ∗ (y ∘ z) z ∘(x ∗ y) = (z ∘ x) ∗ (z ∘ y) 则称 ∘ 运算对 ∗ 运算满足分配律.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 0
a
R,
则TS,且T对矩阵乘法·是封闭的。
∴ <T, ·>是V1=<S, ·>的子半群。
11/2/2020 8:50 AM
第三部分:代数结构(授课教师:向胜军)
6
在<T, ·>中存在自己的幺元
1 0
00 ,因为
a 0
00 T, 有
a 0
00
1 0
00
a 0
00,
1 0
00 a0
00
a 0
00,
第三部分:代数结构(授课教师:向胜军)
13
定理1:
设G为群,则G中的幂运算满足 (1) 对xG,(x-1)-1=x. (2) 对x, yG,(xy)-1=y-1x-1. (3) 对xG,xnxm=xn+m. (4) 对xG,(xn)m=xnm. m, n是整数。
11/2/2020 8:50 AM
第三部分:代数结构(授课教师:向胜军)
(x ·y)= (x) ·(y),
但是
1 0
10 10
00,

1 0
00 不是独异点V2的幺元,
∴ 不是独异点V2的自同态。
11/2/2020 8:50 AM
第三部分:代数结构(授课教师:向胜军)
9
DEFINITION 3.
设<G, ◦>是代数系统,◦为二元运算。如果◦ 是可结合的,存在幺元eG,并且对G中的 任意元素x都有x-1G,则称G为群。
14
定理2:
设G为群,对a, bG,方程ax=b和 ya=b在G中有解,且有唯一解。
第六章 几个典型的代数系统
§1 半群与群 §2 环与域 §3 格与布尔代数
11/2/2020 8:50 AM
第三部分:代数结构(授课教师:向胜军)
1
§1 半群与群
DEFINITION 1.
设V=<S, ◦>是代数系统,◦为二元运算, 如果◦是可结合的,则称V为半群。
如: (1) <Z+, +>, <N, +>, <Z, +>, <Q, +>, <R, +>都是 半群,其中+表示普通加法。 (2) <Mn(R), ·>是半群,其中·表示矩阵乘法。
4
DEFINITION 2.
设V1=<S1, ◦>, V2=<S2, *>为半群,: S1→S2, 且x, yS1,有:
(x ◦ y)= (x) * (y), 则称为半群V1到V2的同态。
设V1=<S1, ◦, e1>, V2=<S2, *, e2>为独异点, : S1→S2,且x, yS1,有:
(2) <Mn(R), ·>是独异点,矩阵乘法的幺元是n阶 单位矩阵E。
<Z+, +>, <N, +>都是<Z, +>的子半群,且 <N, +>也是<Z, +>的子独异点,但<Z+, +>不是<Z, +> 的子独异点,因为幺元0Z,但0Z+。
11/2/2020 8:50 AM
第三部分:代数结构(授课教师:向胜军)
如, (1) <Z, +>, <Q, +>, <R, +>都是群,而 <Z+, +>, <N, +>
不是群,因为<Z+, +>中的元素都没有逆元,而在 <N, +>中只有0有逆元0。 (2) <Mn(R), ·>不是群,因为不是所有的实矩阵都有逆 矩阵。
11/2/2020 8:50 AM
第三部分:代数结构(授课教师:向胜军)
(x ◦ y)= (x) * (y), (e1)= e2, 则称为独异点V1到V2的同态。
11/2/2020 8:50 AM
第三部分:代数结构(授课教师:向胜军)
5
EXAMPLE 1
设半群V1=<S, ·S>,独a0 异d0点 aV,d2=<RS,, ·,10 10 >,其中
·为矩阵乘法。令:
T
a 0
2
a1a 0
2
00
a1 0
0 0
ห้องสมุดไป่ตู้
a2 0
0 0
a1 0
0 d1
a2 0
0 d2

∴ 是半群V1的自同态,但不是满自同态,
且同态象为
(S)
a 0
00
a
R。
11/2/2020 8:50 AM
第三部分:代数结构(授课教师:向胜军)
8
对于独异点V2=<S,
·,
1 0
10 >,还是同一个映
射,根据前面的证明,对x, yS都有:
第三部分:代数结构(授课教师:向胜军)
12
如, (1) <Z, +>, <Q, +>, <R, +>都是阿贝尔群,
Klein四元群也是阿贝尔群。 (2) <Z, +>, <R, +>都是无限群, <Zn, >是有
限群,其阶是n,Klein四元群也是有限群, 其阶是4。
11/2/2020 8:50 AM
10
EXAMPLE 2
设G={a, b, c, e},·为G上的二元运算,由下表给出,
不难证明G是一个群。 该运算的特点:
· e a b c e为G中的幺元;·是可交换的; e e a b c G中的任何元素的逆元就是它 a a e c b 自己;在a, b, c三个元素中, b b c e a 任何两个元素运算的结果都 c c b a e 等于另一个元素。称这个群
∴<T, ·, 10 00 >也构成一个独异点,但它不是 V2=<S, ·, 10 10 >的子独异点。 ∵V2中的幺元 10 10T。
11/2/2020 8:50 AM
第三部分:代数结构(授课教师:向胜军)
7
令 有:
:
S
S,
a 0
0 d
a0
00,
a1 0
0 d1
a2 0
0 d2
a1a 0
2
0 d1d
11/2/2020 8:50 AM
第三部分:代数结构(授课教师:向胜军)
2
可交换半群:半群V中的二元运算可交换。 含幺半群(独异点):半群V中的二元运算含有
幺元。 子半群:半群的子代数。 子独异点:独异点的子代数。 积半群:若V1, V2是半群,则V1V2是积半群。 积独异点:若V1, V2是独异点,则V1V2是积独异
点。
11/2/2020 8:50 AM
第三部分:代数结构(授课教师:向胜军)
3
(1) <Z+, +>, <N, +>, <Z, +>, <Q, +>, <R, +>都是可 交换半群。
(2) <Mn(R), ·>不是可交换半群,因为矩阵乘法不 适合交换律。
(1)中除了<Z+, +>外都是独异点,其中普通加法的 幺元是0。
为Klein四元群。
11/2/2020 8:50 AM
第三部分:代数结构(授课教师:向胜军)
11
一些特殊的群:
交换群:群G中的二元运算可交换。也叫 阿贝尔(Abel)群。 无限群:群G中有无限多个元素。 有限群:群G中有有限个元素。有限群G 中的元素个数叫做G的阶,记作|G|。
11/2/2020 8:50 AM
相关文档
最新文档