云南省曲靖市麒麟区第七中学高中数学 2-3抛物线的几何性质学案 新人教A版选修1-1

合集下载

高中数学 2.4.3 抛物线的简单几何性质(二)学案 新人教A版选修2-1

高中数学 2.4.3  抛物线的简单几何性质(二)学案 新人教A版选修2-1

§2.4.3 抛物线的简单几何性质(二)学习目标:1、掌握抛物线的几何性质;2、掌握直线与抛物线位置关系等;3、在对抛物线几何性质的讨论中,注意数与形的结合一、知识回顾:(见《三维设计》)1、焦半径:2、焦点弦的问题:二、典例分析:〖例1〗:已知抛物线的方程24y x =,直线l 过定点()2,1P -,斜率为k 。

k 为何值时,直线l 与抛物线24y x =:只有一个公共点;有两个公共点;没有公共点?〖例2〗:过抛物线22y x =的顶点作互相垂直的二弦,OA OB 。

(1)求AB 中点M 的轨迹方程;(2)证明:AB 与x 轴的交点为定点。

〖例3〗:已知点()()()11222,8,,,,A B x y C x y 在抛物线22y px =上,ABC ∆的重心与此抛物线的焦点F重合。

(1)写出该抛物线的方程和焦点F 的坐标;(2)求线段BC 中点M 的坐标;(3)求BC 所在直线的方程。

〖例4〗:线段AB 过点()(),00M m m >,并且点,A B 到x 轴的距离之积为4m ,抛物线C 以x 轴为对称轴且经过,,O A B 三点。

(1)求抛物线C 的方程;(2)当1,2m AM MB ==,时,求直线AB 的方程。

三、课后作业:1、已知抛物线()220y px p =>上有一点()4,M y ,它到焦点F 的距离为5,O 为原点,则OFM S ∆=( )A 、1B C 、2 D 、 2、抛物线2y x =上到直线240x y -+=的距离最小的点是( )A 、11,22⎛⎫ ⎪⎝⎭B 、93,42⎛⎫ ⎪⎝⎭C 、()1,1D 、()4,2 3、过抛物线2y x =的焦点F 作弦AB ,若()()1122,,,A x y B x y ,则( )A 、1214x x ⋅=-B 、1214x x ⋅=C 、1214y y =-D 、1214y y = 4、已知定点()1,0F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=,PN PM =,则动点N 的轨迹方程是( )A 、24y x =B 、24y x =-C 、22y x =D 、22y x =- 5、对于抛物线24y x =上任一点Q ,点(),0P a 都满足PQ a ≥,则a 的取值范围是( )A 、(),0-∞B 、()0,2C 、[]0,2D 、(],2-∞ 6、抛物线22x y =上离点()0,A a 最近的点恰好是顶点的充要条件( )A 、1a ≤B 、0a ≤C 、12a ≤D 、2a ≤7、顶点在原点,焦点在x 轴上的抛物线截直线24y x =-所得的弦长AB =则抛物线方程为 。

【高中数学】3.3.2 抛物线的简单几何性质高二数学新教材配套学案(人教A版选择性必修第一册)

【高中数学】3.3.2 抛物线的简单几何性质高二数学新教材配套学案(人教A版选择性必修第一册)

3.3.2 抛物线的简单几何性质【学习目标】1.抛物线的几何性质⎛⎫p ⎛⎫p ⎛⎫p ⎛⎫p 2.直线过抛物线y 2=2px (p >0)的焦点F ,与抛物线交于A (x 1,y 1)、B (x 2,y 2)两点,由抛物线的定义知,|AF |=x 1+p 2,|BF |=x 2+p2,故|AB |= . 3.直线与抛物线的位置关系直线与抛物线有三种位置关系: 、 和 .设直线y =kx +m 与抛物线y 2=2px (p >0)相交于A (x 1,y 1),B (x 2,y 2)两点,将y =kx +m 代入y 2=2px ,消去y 并化简,得k 2x 2+2(mk -p )x +m 2=0. ∈k =0时,直线与抛物线只有 交点;∈k ≠0时,Δ>0∈直线与抛物线 ∈有 公共点. Δ=0∈直线与抛物线 ∈只有 公共点.Δ<0∈直线与抛物线∈ 公共点.【小试牛刀】1.抛物线关于顶点对称.()2.抛物线只有一个焦点,一条对称轴,无对称中心.() 3.抛物线的标准方程虽然各不相同,但是其离心率都相同.() 4.抛物线y2=2px过焦点且垂直于对称轴的弦长是2p.()5.抛物线y=-18x2的准线方程为x=132.()【经典例题】题型一抛物线性质的应用把握三个要点确定抛物线的简单几何性质(1)开口:由抛物线标准方程看图象开口,关键是看准二次项是x还是y,一次项的系数是正还是负.(2)关系:顶点位于焦点与准线中间,准线垂直于对称轴.(3)定值:焦点到准线的距离为p;过焦点垂直于对称轴的弦(又称为通径)长为2p;离心率恒等于1.例1 (1)已知抛物线的顶点在坐标原点,对称轴为x轴且与圆x2+y2=4相交的公共弦长等于23,则抛物线的方程为________.(2)如图,过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=4,求抛物线的方程.[跟踪训练]1 已知抛物线y2=8x.(1)求出该抛物线的顶点、焦点、准线方程、对称轴、变量x的范围;(2)以坐标原点O为顶点,作抛物线的内接等腰三角形OAB,|OA|=|OB|,若焦点F是∈OAB 的重心,求∈OAB的周长.题型二直线与抛物线的位置关系直线与抛物线交点问题的解题思路(1)判断直线与抛物线的交点个数时,一般是将直线与抛物线的方程联立消元,转化为形如一元二次方程的形式,注意讨论二次项系数是否为0.若该方程为一元二次方程,则利用判别式判断方程解的个数.(2)直线与抛物线有一个公共点时有两种情形:(1)直线与抛物线的对称轴重合或平行;(2)直线与抛物线相切.例2已知直线l:y=kx+1,抛物线C:y2=4x,当k为何值时,l与C:只有一个公共点;有两个公共点;没有公共点.[跟踪训练]2若抛物线y2=4x与直线y=x-4相交于不同的两点A,B,求证OA∈OB.题型三中点弦及弦长公式“中点弦”问题解题方法例3已知抛物线方程为y2=2px(p>0),过此抛物线的焦点的直线与抛物线交于A,B两点,[跟踪训练]3 过点Q(4,1)作抛物线y2=8x的弦AB,恰被点Q所平分,求AB所在直线的方程.题型四 抛物线的综合应用例4 求抛物线y =-x 2上的点到直线4x +3y -8=0的最小距离.[跟踪训练]4 如图所示,抛物线关于x 轴对称,它的顶点为坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上. (1)求抛物线的方程及其准线方程;(2)当P A 与PB 的斜率存在且倾斜角互补时,证明:直线AB 的斜率为定值.【当堂达标】1.在抛物线y 2=16x 上到顶点与到焦点距离相等的点的坐标为( ) A .(42,±2) B .(±42,2) C .(±2,42)D .(2,±42)2.以x 轴为对称轴的抛物线的通径(过焦点且与对称轴垂直的弦)长为8,若抛物线的顶点在坐标原点,则其方程为( ) A .y 2=8xB .y 2=-8xC .y 2=8x 或y 2=-8xD .x 2=8y 或x 2=-8y3.若抛物线y 2=2x 上有两点A 、B 且AB 垂直于x 轴,若|AB |=22,则抛物线的焦点到直线AB 的距离为( )A .12B .14C .16D .184.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA →·AF →=-4,则点A的坐标是()A.(2,±22)B.(1,±2)C.(1,2)D.(2,22)5.过点P(0,1)与抛物线y2=x有且只有一个交点的直线有()A.4条B.3条C.2条D.1条6.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,如果x1+x2=6,则|AB|=________.7.已知AB是过抛物线2x2=y的焦点的弦,若|AB|=4,则AB的中点的纵坐标是________.8.已知抛物线x=-y2与过点(-1,0)且斜率为k的直线相交于A,B两点,O为坐标原点,当∈AOB的面积等于10时,求k的值.9.已知y=x+m与抛物线y2=8x交于A,B两点.(1)若|AB|=10,求实数m的值;(2)若OA∈OB,求实数m的值.10.已知抛物线的顶点在原点,x轴为对称轴,经过焦点且倾斜角为π4的直线l被抛物线所截得的弦长为6,求抛物线的标准方程.【参考答案】【自主学习】x =-p 2 x =p 2 y =-p 2 y =p2 x 轴 y 轴 (0,0) 1 x 1+x 2+p 相离 相切 相交 一个 相交 两个 相切 一个 相离 没有 【小试牛刀】 × √ √ √ × 【经典例题】例1 (1)y 2=3x 或y 2=-3x [根据抛物线和圆的对称性知,其交点纵坐标为±3,交点横坐标为±1,则抛物线过点(1,3)或(-1,3),设抛物线方程为y 2=2px 或y 2=-2px (p >0),则2p =3,从而抛物线方程为y 2=3x 或y 2=-3x .](2)[解] 如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D , 设|BF |=a ,则由已知得:|BC |=2a ,由定义得:|BD |=a ,故∈BCD =30°,在Rt∈ACE 中,∈|AF |=4,|AC |=4+3a ,∈2|AE |=|AC |,∈4+3a =8,从而得a =43,∈BD ∈FG ,∈43p =23,p =2.因此抛物线的方程是y 2=4x .[跟踪训练]1 解 (1)抛物线y 2=8x 的顶点、焦点、准线方程、对称轴、变量x 的范围分别为(0,0),(2,0),x =-2,x 轴,x ≥0.(2)如图所示,由|OA |=|OB |可知AB ∈x 轴,垂足为点M , 又焦点F 是∈OAB 的重心,则|OF |=23|OM |. 因为F (2,0),所以|OM |=32|OF |=3,所以M (3,0).故设A (3,m ),代入y 2=8x 得m 2=24;所以m =26或m =-26,所以A (3,26),B (3,-26),所以|OA |=|OB |=33,所以∈OAB 的周长为233+4 6. 例2 解 联立⎩⎨⎧y =kx +1,y 2=4x ,消去y ,得k 2x 2+(2k -4)x +1=0.(*)当k =0时,(*)式只有一个解x=14,∈y =1,∈直线l 与C 只有一个公共点⎝ ⎛⎭⎪⎫14,1,此时直线l 平行于x 轴.当k ≠0时,(*)式是一个一元二次方程,Δ=(2k -4)2-4k 2=16(1-k ).∈当Δ>0,即k <1,且k ≠0时,l 与C 有两个公共点,此时直线l 与C 相交;∈当Δ=0,即k =1时,l 与C 有一个公共点,此时直线l 与C 相切; ∈当Δ<0,即k >1时,l 与C 没有公共点,此时直线l 与C 相离. 综上所述,当k =1或0时,l 与C 有一个公共点; 当k <1,且k ≠0时,l 与C 有两个公共点; 当k >1时,l 与C 没有公共点.[跟踪训练]2 [证明] 由⎩⎨⎧y 2=4x ,y =x -4,消去y ,得x 2-12x +16=0.∈直线y =x -4与抛物线相交于不同两点A ,B , ∈可设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=12,x 1x 2=16.∈OA →·OB →=x 1x 2+y 1y 2=x 1x 2+(x 1-4)(x 2-4)=x 1x 2+x 1x 2-4(x 1+x 2)+16=16+16-4×12+16=0,∈OA →∈OB →,即OA ∈OB .例3 解 由题意知焦点F ⎝ ⎛⎭⎪⎫p 2,0,设A (x 1,y 1),B (x 2,y 2),若AB ∈x 轴,则|AB |=2p ≠52p ,不满足题意.所以直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2,k ≠0.由⎩⎪⎨⎪⎧y =k ⎝ ⎛⎭⎪⎫x -p 2,y 2=2px ,消去x ,整理得ky 2-2py -kp 2=0.由根与系数的关系得y 1+y 2=2pk ,y 1y 2=-p 2.所以|AB |=⎝ ⎛⎭⎪⎫1+1k 2·y 1-y 22=1+1k 2·y 1+y 22-4y 1y 2=2p ⎝ ⎛⎭⎪⎫1+1k 2=52p ,解得k =±2.所以AB 所在的直线方程为2x -y -p =0或2x +y -p =0.[跟踪训练]3 [解] 法一:(点差法)设以Q 为中点的弦AB 的端点坐标为A (x 1,y 1),B (x 2,y 2),则有y 21=8x 1,y 22=8x 2,∈(y 1+y 2)(y 1-y 2)=8(x 1-x 2).又y 1+y 2=2,∈y 1-y 2=4(x 1-x 2),即y 1-y 2x 1-x 2=4,∈k AB =4. ∈AB 所在直线的方程为y -1=4(x -4),即4x -y -15=0.法二:由题意知AB 所在直线斜率存在,设A (x 1,y 1),B (x 2,y 2),弦AB 所在直线的方程为y=k (x -4)+1.联立⎩⎨⎧y 2=8x ,y =k x -4+1,消去x ,得ky 2-8y -32k +8=0,此方程的两根就是线段端点A ,B 两点的纵坐标.由根与系数的关系得y 1+y 2=8k .又y 1+y 2=2,∈k =4.∈AB 所在直线的方程为4x -y -15=0. 例4 解 方法一 设A (t ,-t 2)为抛物线上的点,则点A 到直线4x +3y -8=0的距离d =|4t -3t 2-8|5=|3t 2-4t +8|5=15⎪⎪⎪⎪⎪⎪3⎝⎛⎭⎪⎫t -232-43+8 =15⎪⎪⎪⎪⎪⎪3⎝ ⎛⎭⎪⎫t -232+203=35⎝ ⎛⎭⎪⎫t -232+43. 所以当t =23时,d 有最小值43.方法二 如图,设与直线4x +3y -8=0平行的抛物线的切线方程为4x +3y +m =0,由⎩⎨⎧y =-x 2,4x +3y +m =0,消去y 得3x 2-4x -m =0,∈Δ=16+12m =0,∈m =-43. 故最小距离为⎪⎪⎪⎪⎪⎪-8+435=2035=43.[跟踪训练]4 [解] (1)由题意可设抛物线的方程为y 2=2px (p >0),则由点P (1,2)在抛物线上,得22=2p ×1,解得p =2,故所求抛物线的方程是y 2=4x ,准线方程是x =-1.(2)证明:因为P A 与PB 的斜率存在且倾斜角互补,所以k P A =-k PB ,即y 1-2x 1-1=-y 2-2x 2-1. 又A (x 1,y 1),B (x 2,y 2)均在抛物线上,所以x 1=y 214,x 2=y 224,从而有y 1-2y 214-1=-y 2-2y 224-1,即4y 1+2=-4y 2+2,得y 1+y 2=-4,故直线AB 的斜率k AB =y 1-y 2x 1-x 2=4y 1+y 2=-1. 【当堂达标】1.D [抛物线y 2=16x 的顶点O (0,0),焦点F (4,0),设P (x ,y )符合题意,则有⎩⎨⎧y 2=16x ,x 2+y 2=x -42+y 2∈⎩⎨⎧ y 2=16x ,x =2∈⎩⎨⎧x =2,y =±4 2.所以符合题意的点为(2,±42).] 2. C 解析 设抛物线方程为y 2=2px 或y 2=-2px (p >0),依题意得x =p2,代入y 2=2px 或y 2=-2px 得|y |=p ,∈2|y |=2p =8,p =4. ∈抛物线方程为y 2=8x 或y 2=-8x .3.A [线段AB 所在的直线方程为x =1,抛物线的焦点坐标为⎝ ⎛⎭⎪⎫12,0,则焦点到直线AB 的距离为1-12=12.]4.B [由题意知F (1,0),设A ⎝ ⎛⎭⎪⎫y 204,y 0,则OA →=⎝ ⎛⎭⎪⎫y 204,y 0,AF →=⎝ ⎛⎭⎪⎫1-y 204,-y 0,由OA →·AF →=-4得y 0=±2,∈点A 的坐标为(1,±2),故选B.]5. B 解析 当直线垂直于x 轴时,满足条件的直线有1条; 当直线不垂直于x 轴时,满足条件的直线有2条,故选B.6. 8解析 因为直线AB 过焦点F (1,0),所以|AB |=x 1+x 2+p =6+2=8.7.158 [设A (x 1,y 1),B (x 2,y 2),由抛物线2x 2=y ,可得p =14.∈|AB |=y 1+y 2+p =4,∈y 1+y 2=4-14=154,故AB 的中点的纵坐标是y 1+y 22=158.] 8.解 过点(-1,0)且斜率为k 的直线方程为y =k (x +1)(k ≠0), 由方程组⎩⎨⎧x =-y 2,y =k x +1,消去x 整理得ky 2+y -k =0,Δ=1+4k 2>0,设A (x 1,y 1),B (x 2,y 2),由根与系数之间的关系得y 1+y 2=-1k ,y 1·y 2=-1. 设直线与x 轴交于点N ,显然N 点的坐标为(-1,0). ∈S ∈OAB =S ∈OAN +S ∈OBN =12|ON ||y 1|+12|ON ||y 2|=12|ON ||y 1-y 2|, ∈S ∈AOB =12×1×y 1+y 22-4y 1y 2=12×1k 2+4=10,解得k =±16.9.解 由⎩⎨⎧y =x +m ,y 2=8x ,得x 2+(2m -8)x +m 2=0.由Δ=(2m -8)2-4m 2=64-32m >0,得m <2.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8-2m ,x 1x 2=m 2,y 1y 2=m (x 1+x 2)+x 1x 2+m 2=8m . (1)因为|AB |=1+k 2x 1+x 22-4x 1x 2=2·64-32m =10,所以m =716,经检验符合题意.(2)因为OA ∈OB ,所以x 1x 2+y 1y 2=m 2+8m =0,解得m =-8或m =0(舍去). 所以m =-8,经检验符合题意.10.[解] 当抛物线焦点在x 轴正半轴上时,可设抛物线标准方程为y 2=2px (p >0),则焦点F ⎝ ⎛⎭⎪⎫p 2,0,直线l 的方程为y =x -p 2.设直线l 与抛物线的交点为A (x 1,y 1),B (x 2,y 2),过点A ,B 向抛物线的准线作垂线,垂足分别为点A 1,点B 1,则|AB |=|AF |+|BF |=|AA 1|+|BB 1|=⎝ ⎛⎭⎪⎫x 1+p 2+⎝ ⎛⎭⎪⎫x 2+p 2=x 1+x 2+p =6, ∈x 1+x 2=6-p .∈ 由⎩⎪⎨⎪⎧y =x -p 2,y 2=2px 消去y ,得⎝ ⎛⎭⎪⎫x -p 22=2px ,即x 2-3px +p 24=0.∈x 1+x 2=3p ,代入∈式得3p =6-p ,∈p =32.∈所求抛物线的标准方程是y 2=3x .当抛物线焦点在x 轴负半轴上时,用同样的方法可求出抛物线的标准方程是y 2=-3x .高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。

(教师用书)高中数学 2.3.2 抛物线的简单几何性质教案 新人教A版选修1-1

(教师用书)高中数学 2.3.2 抛物线的简单几何性质教案 新人教A版选修1-1

2.3.2 抛物线的简单几何性质(教师用书独具)●三维目标1.知识与技能(1)理解抛物线的几何性质.(2)与抛物线有关的轨迹的求法,直线与抛物线的位置关系.2.过程与方法(1)灵活运用抛物线的性质.(2)培养学生对研究方法的思想渗透及运用数形结合思想解决问题的能力.3.情感、态度与价值观(1)训练学生分析问题、解决问题的能力.(2)培养学生数形结合思想、化归思想及方程的思想,提高学生的综合能力.●重点、难点重点:(1)掌握抛物线的几何性质.(2)根据给出的条件求出抛物线的标准方程.难点:抛物线各个几何性质的灵活应用.(教师用书独具)●教学建议本节课以启发式教学为主,综合运用演示法、讲授法、讨论法、有指导的发现法及练习法等教学方法.先通过多媒体动画演示,创设问题情境,在抛物线简单几何性质的教学过程中,通过多媒体演示,有指导的发现问题,然后进行讨论、探究、总结、运用,最后通过练习加以巩固提高.学法上,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,结合教法和学生的实际,在多媒体辅助教学的基础上,主要采用“复习——类比——探索——应用”的探究式学习方法,增加学生参与的机会,使学生在掌握知识形成技能的同时,培养逻辑推理、理性思维的能力及科学的学习方法,增强自信心.学法指导包括:联想法、观察分析法、练习巩固法.这样,本节课的重点与难点就迎刃而解了. ●教学流程提出问题:你能说出抛物线y 2=2px p >的几何性质吗?⇒引导学生结合图象得出抛物线四种形式的几何性质,并对比它们的区别与联系.⇒通过引导学生回顾直线与椭圆的位置关系问题,引出直线与抛物线的位置关系知识.⇒通过例1及其变式训练,使学生掌握抛物线的性质及应用问题.⇒通过例2及其变式训练,使学生掌握抛物线的焦点弦问题.⇒错误!⇒错误!⇒错误!(对应学生用书第39页)类比椭圆、双曲线的几何性质,结合图象,你能说出抛物线y 2=2px (p >0)的范围、对称性、顶点坐标吗?【提示】 范围x ≥0,关于x 轴对称,顶点坐标(0,0).续表1.直线与抛物线有哪几种位置关系?【提示】三种:相离、相切、相交.2.若直线与抛物线只有一个交点,直线与抛物线一定相切吗?【提示】不一定,当平行或重合于抛物线的对称轴的直线与抛物线相交时,也只有一个交点.直线与抛物线的位置关系与公共点(对应学生用书第40页)图2-3-3是抛物线上的一点,其横坐标为4,且在x 轴的上方,点A 到抛物线的准线的距离等于5,过A 作AB ⊥y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)过M 作MN ⊥FA ,垂足为N ,求直线MN 的方程. 【思路探究】 (1)根据题意你能求出p 的值吗? (2)M 点的坐标是多少?直线MN 的斜率呢?【自主解答】 (1)抛物线y 2=2px (p >0)的准线为x =-p2,于是4+p2=5,p =2,∴抛物线的方程为y 2=4x .(2)由题意知A (4,4),B (0,4),M (0,2),F (1,0), ∴k FA =43.又MN ⊥FA ,∴k MN =-34,则直线FA 的方程为y =43(x -1),直线MN 的方程为y -2=-34x ,即3x +4y -8=0.研究抛物线的性质时要注意它们之间的关系:抛物线的焦点始终在对称轴上,顶点就是抛物线与对称轴的交点,准线始终与对称轴垂直,准线与对称轴的交点和焦点关于顶点对称,离心率不变总为1.已知抛物线的焦点F 在x 轴上,直线l 过F 且垂直于x 轴,l 与抛物线交于A 、B 两点,O 为坐标原点,若△OAB 的面积等于4,求此抛物线的标准方程.【解】 由题意,抛物线方程为y 2=2px (p ≠0),焦点F ⎝ ⎛⎭⎪⎫p 2,0,直线l :x =p2,∴A 、B 两点坐标为⎝ ⎛⎭⎪⎫p 2,p ,⎝ ⎛⎭⎪⎫p2,-p ,∴|AB |=2|p |. ∵△OAB 的面积为4,∴12·⎪⎪⎪⎪⎪⎪p 2·2|p |=4,∴p =±2 2. ∴抛物线标准方程为y 2=±42x .(1)一个公共点;(2)两个公共点;(3)没有公共点?【思路探究】 (1)联立直线l 与抛物线C 的方程,得到的关于x 的方程是什么形式?(2)能直接用判别式法判断公共点的情况吗?【自主解答】 由⎩⎪⎨⎪⎧y =kx +1,y 2=4x ,得k 2x 2+(2k -4)x +1=0.(*)当k =0时,方程变为-4x +1=0,x =14,此时y =1.∴直线l 与C 只有一个公共点(14,1),此时直线l 平行于x 轴.当k ≠0时,方程(*)是一个一元二次方程: Δ=(2k -4)2-4k 2×1=16-16k①当Δ>0,即k <1,且k ≠0时,l 与C 有两个公共点,此时l 与C 相交; ②当Δ=0,即k =1时,l 与C 有一个公共点,此时l 与C 相切; ③当Δ<0,即k >1时,l 与C 没有公共点,此时l 与C 相离. 综上所述,(1)当k =1或k =0时,直线l 与C 有一个公共点; (2)当k <1,且k ≠0时,直线l 与C 有两个公共点; (3)当k >1时,直线l 与C 没有公共点.1.直线与抛物线的位置关系判断方法.通常使用代数法:将直线的方程与抛物线的方程联立,整理成关于x 的方程ax 2+bx +c =0.(1)当a ≠0时,利用判别式解决.Δ>0⇒相交;Δ=0⇒相切;Δ<0⇒相离.(2)当a =0时,方程只有一解x =-cb,这时直线与抛物线的对称轴平行或重合. 2.直线与抛物线相切和直线与抛物线公共点的个数的关系:直线与抛物线相切时,只有一个公共点,但是不能把直线与抛物线有且只有一个公共点统称为相切,这是因为平行于抛物线的对称轴的直线与抛物线只有一个公共点,而这时抛物线与直线是相交的.若过点(-3,2)的直线与抛物线y 2=4x 有两个公共点,求直线的斜率k 的取值范围. 【解】 设直线方程为y -2=k (x +3).由⎩⎪⎨⎪⎧y -2=kx +y 2=4x消去x ,整理得ky 2-4y +8+12k =0.①(1)当k =0时,方程①化为y =2,直线y =2与抛物线y 2=4x 相交,有一个公共点,不合要求; (2)当k ≠0时,Δ=16-4k (8+12k )>0. ∴-1<k <13,因此-1<k <13且k ≠0.综上可知,斜率k 的取值范围为{k |-1<k <13且k ≠0}.已知抛物线的顶点在原点,x 轴为对称轴,经过焦点且倾斜角为4的直线l 被抛物线所截得的弦长为6,求抛物线方程.【思路探究】 (1)焦点在x 轴上的抛物线方程如何设?(2)过焦点且倾斜角为π4的直线方程怎么求?它被抛物线截得的弦长问题能联系抛物线的定义吗?【自主解答】 当抛物线焦点在x 轴正半轴上时, 可设抛物线标准方程是y 2=2px (p >0), 则焦点F (p 2,0),直线l 为y =x -p2.设直线l 与抛物线的交点为A (x 1,y 1),B (x 2,y 2),过A 、B 分别向抛物线的准线作垂线AA 1、BB 1,垂足分别为A 1、B 1.则|AB |=|AF |+|BF |=|AA 1|+|BB 1|=(x 1+p 2)+(x 2+p2)=x 1+x 2+p =6,∴x 1+x 2=6-p .①由⎩⎪⎨⎪⎧y =x -p 2,y 2=2px ,消去y ,得(x -p2)2=2px ,即x 2-3px +p 24=0.∴x 1+x 2=3p ,代入①式得3p =6-p ,∴p =32.∴所求抛物线标准方程是y 2=3x .当抛物线焦点在x 轴负半轴上时,用同样的方法可求出抛物线的标准方程是y 2=-3x .1.本题是通过抛物线的性质求其方程的典型例题,抛物线的方程有两种形式,解答时切勿漏掉.2.过焦点F 和抛物线相交的弦叫做抛物线的焦点弦,在解决与焦点弦有关的问题时,一是注意用焦点弦所在的直线方程和抛物线方程联立得方程组,再结合根与系数关系解题,二是注意抛物线定义的灵活运用,特别应注意整体代入的方法.本例中,若把直线的倾斜角改为135°,被抛物线截得的弦长改为8,其他条件不变,试求抛物线的方程.【解】 如图,依题意当抛物线方程设为y 2=2px (p >0)时, 抛物线的准线为l ,则直线方程为y =-x +12p .设直线交抛物线于A (x 1,y 1),B (x 2,y 2),则由抛物线定义得|AB |=|AF |+|FB |=|AC |+|BD |=x 1+p 2+x 2+p2,即x 1+p 2+x 2+p2=8.①又A (x 1,y 1),B (x 2,y 2)是抛物线和直线的交点,由⎩⎪⎨⎪⎧y =-x +12p ,y 2=2px ,消去y 得x 2-3px +p 24=0.于是x 1+x 2=3p .将其代入①得p =2. 故所求抛物线方程为y 2=4x .当抛物线方程设为y 2=-2px (p >0)时,同理可求得抛物线方程为y 2=-4x . 综上所述,抛物线的方程为y 2=4x 或y 2=-4x .(对应学生用书第41页)忽略特殊直线致误求过定点P (0,1),且与抛物线y 2=2x 只有一个公共点的直线方程. 【错解】 设直线方程为y =kx +1,由⎩⎪⎨⎪⎧y =kx +1,y 2=2x得k 2x 2+2(k -1)x +1=0.当k =0时,解得y =1,即直线y =1与抛物线只有一个公共点; 当k ≠0时,Δ=4(k -1)2-4k 2=0,解得k =12,即直线y =12x +1与抛物线只有一个公共点.综上所述,所求的直线方程为y =1或y =12x +1.【错因分析】 本题直接设出了直线的点斜式方程,而忽视了斜率不存在的情况,从而导致漏解.【防范措施】 在解直线与抛物线的位置关系时,往往直接把直线方程设成点斜式方程,这样就把范围缩小了,而应先看斜率不存在的情况是否符合要求,直线斜率为0的情况也容易被忽略,所以解决这类问题时特殊情况要优先考虑,画出草图是行之有效的方法.【正解】 如图所示,若直线的斜率不存在, 则过点P (0,1)的直线方程为x =0, 由⎩⎪⎨⎪⎧x =0,y 2=2x得⎩⎪⎨⎪⎧x =0,y =0,即直线x =0与抛物线只有一个公共点.若直线的斜率存在,则由错解可知,y =1或y =12x +1为所求的直线方程.故所求的直线方程为x =0或y =1或y =12x +1.1.讨论抛物线的几何性质,一定要利用抛物线的标准方程;利用几何性质,也可以求出抛物线的方程.2.解决焦点弦问题时,抛物线的定义有广泛的应用,求焦点弦长,一般不用弦长公式. 3.直线和抛物线的位置关系问题的通法与椭圆、双曲线一样,即联立方程消未知数,产生一元二次方程,用判别式Δ、根与系数关系解决问题.(对应学生用书第42页)1.抛物线y 2=ax (a ≠0)的对称轴为( ) A .y 轴 B .x 轴 C .x =-a2D .x =-a4【解析】 形如y 2=±2px (p >0)的抛物线的对称轴为x 轴. 【答案】 B2.顶点在原点,对称轴是y 轴,并且顶点与焦点的距离等于3的抛物线的标准方程( ) A .x 2=±3yB .y 2=±6xC .x 2=±12yD .x 2=±6y【解析】 依题意,p2=3,∴p =6.∴抛物线的标准方程为x 2=±12y . 【答案】 C3.抛物线y =ax 2的准线方程是y =-12,则a =________.【解析】 抛物线方程可化为x 2=1a y ,由题意14a =12,∴a =12.【答案】 124.若抛物线y 2=x 上一点P 到准线的距离等于它到顶点的距离,求点P 的坐标.【解】 根据题意可知:|PF |=|PO |,其中O 为原点,F 为焦点,∴x P =x F 2=18,∴y P =±18=±122=±24,∴P (18,±24).(对应学生用书第101页)一、选择题1.(2013·泰安高二检测)已知抛物线的顶点在原点,以x 轴为对称轴,焦点为F ,过F 且垂直于x 轴的直线交抛物线于A 、B 两点,且|AB |=8,则抛物线的标准方程为( )A .y 2=8x B .y 2=-8x C .y 2=±8xD .x 2=±8y【解析】 由抛物线的定义知,|AB |=|AF |+|BF |=2p =8,∴p =4,故标准方程为y 2=±8x .【答案】 C2.抛物线y =ax 2+1与直线y =x 相切,则a 等于( ) A.18 B.14C.12D .1【解析】 由⎩⎪⎨⎪⎧y =ax 2+1,y =x ,消y 得ax 2-x +1=0.∵直线y =x 与抛物线y =ax 2+1相切, ∴方程ax 2-x +1=0有两相等实根. ∴判别式Δ=(-1)2-4a =0,∴a =14.【答案】 B3.(2013·长沙高二检测)过点M (2,4)与抛物线y 2=8x 只有一个公共点的直线共有( )A .1B .2C .3D .4【解析】 由于M (2,4)在抛物线上,故满足条件的直线共有2条,一条是与x 轴平行的线,另一条是过M 的切线,如果点M 不在抛物线上,则有3条直线.【答案】 B4.探照灯反射镜的纵断面是抛物线的一部分,光源在抛物线的焦点处,灯口直径为60 cm ,灯深40 cm ,则光源到反射镜顶点的距离是( )A .11.25 cmB .5.625 cmC .20 cmD .10 cm【解析】 如图建立直角坐标系,则A (40,30),设抛物线方程为y 2=2px (p >0),将点(40,30)代入得p =454,所以p2=5.625即光源到顶点的距离.【答案】 B5.若点P 在y 2=x 上,点Q 在(x -3)2+y 2=1上,则|PQ |的最小值为( ) A.3-1 B.102-1 C .2 D.112-1 【解析】 设圆(x -3)2+y 2=1的圆心为Q ′(3,0),要求|PQ |的最小值,只需求|PQ ′|的最小值.设P 点坐标为(y 20,y 0),则|PQ ′|=y 20-2+y 2=y 202-5y 20+9=y 20-522+114. ∴|PQ ′|的最小值为112, 从而|PQ |的最小值为112-1. 【答案】 D 二、填空题6.(2013·台州高二检测)设抛物线y 2=16x 上一点P 到对称轴的距离为12,则点P 与焦点F 的距离|PF |=______.【解析】 设P (x,12),代入到y 2=16x 得x =9, ∴|PF |=x +p2=9+4=13.【答案】 137.设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2),若线段FA 的中点B 在抛物线上,则点B 到该抛物线准线的距离为________.【解析】 由已知得点B 的纵坐标为1,横坐标为p 4,即B (p4,1)将其代入y 2=2px 得p=2,则点B 到准线的距离为p 2+p 4=34p =342.【答案】342 8.(2012·北京高考)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点.其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为________.【解析】 ∵y 2=4x 的焦点为F (1,0),又直线l 过焦点F 且倾斜角为60°,故直线l 的方程为y =3(x -1),将其代入y 2=4x 得3x 2-6x +3-4x =0, 即3x 2-10x +3=0. ∴x =13或x =3.又点A 在x 轴上方,∴x A =3.∴y A =2 3. ∴S △OAF =12×1×23= 3.【答案】 3三、解答题9.若抛物线的顶点在原点,开口向上,F 为焦点,M 为准线与y 轴的交点,A 为抛物线上一点,且|AM |=17,|AF |=3,求此抛物线的标准方程.【解】 设所求抛物线的标准方程为x 2=2py (p >0),A (x 0,y 0),由题知 M (0,-p2).∵|AF |=3,∴y 0+p2=3,∵|AM |=17, ∴x 20+(y 0+p2)2=17,∴x 20=8,代入方程x 20=2py 0得, 8=2p (3-p2),解得p =2或p =4.∴所求抛物线的标准方程为x 2=4y 或x 2=8y .10.已知A ,B 两点在抛物线C :x 2=4y 上,点M (0,4)满足MA →=λMB →(λ≠0),求证:OA→⊥OB →.【证明】 设A (x 1,y 1)、B (x 2,y 2).∵MA →=λMB →,∴M 、A 、B 三点共线,即直线AB 过点M . 设l AB ∶y =kx +4(易知斜率存在),与x 2=4y 联立得,x 2-4kx -16=0,Δ=(-4k )2-4×(-16) =16k 2+64>0,由根与系数的关系得x 1+x 2=4k ,x 1x 2=-16, ∴OA →·OB →=x 1x 2+y 1y 2 =x 1x 2+(kx 1+4)(kx 2+4) =(1+k 2)x 1x 2+4k (x 1+x 2)+16=(1+k 2)·(-16)+4k ·(4k )+16=0, ∴OA →⊥OB →.11.(2013·泰州高二检测)已知抛物线x 2=ay (a >0),点O 为坐标原点,斜率为1的直线与抛物线交于A ,B 两点.(1)若直线l 过点D (0,2)且a =4,求△AOB 的面积;(2)若直线l 过抛物线的焦点且OA →·OB →=-3,求抛物线的方程. 【解】 (1)依题意,直线l 的方程为y =x +2,抛物线方程x 2=4y ,由⎩⎪⎨⎪⎧x 2=4y ,y =x +2,消去y ,得x 2-4x -8=0.则Δ=16-4×(-8)=48>0恒成立.设l 与抛物线的交点坐标为A (x 1,y 1),B (x 2,y 2),x 1<x 2. ∴x 1=2-23,x 2=2+2 3. 则|x 2-x 1|=4 3.∴S △AOB =12·|OD |·|x 2-x 1|=12×2×43=4 3.(2)依题意,直线l 的方程为y =x +a4.⎩⎪⎨⎪⎧y =x +a 4,x 2=ay ,⇒x 2-ax -a 24=0,∵Δ>0,设直线l 与抛物线交点A (x 1,y 1),B (x 2,y 2). ∴x 1+x 2=a ,x 1x 2=-a 24.又已知OA →·OB →=-3, 即x 1x 2+y 1y 2=-3,∴x 1x 2+(x 1+a 4)(x 2+a4)=-3,∴2x 1x 2+a 4(x 1+x 2)+a 216=-3, ∵a >0,∴a =4.∴所求抛物线方程为x 2=4y .(教师用书独具)已知抛物线y 2=2x ,(1)设点A 的坐标为(23,0),求抛物线上距离点A 最近的点P 的坐标及相应的距离|PA |;(2)在抛物线上求一点P ,使P 到直线x -y +3=0的距离最短,并求出距离的最小值. 【解】 (1)设抛物线上任一点P 的坐标为(x ,y ), 则|PA |2=(x -23)2+y 2=(x -23)2+2x=(x +13)2+13.∵x ≥0,且在此区间上函数单调递增, ∴当x =0时,|PA |min =23,距点A 最近的点的坐标为(0,0).(2)法一 设点P (x 0,y 0)是y 2=2x 上任一点, 则P 到直线x -y +3=0的距离为 d =|x 0-y 0+3|2=|y 22-y 0+3|2=y 0-2+5|22,当y 0=1时,d min =522=524,∴点P 的坐标为(12,1).法二 设与直线x -y +3=0平行的抛物线的切线为x -y +t =0,与y 2=2x 联立,消去x 得y 2-2y +2t =0,由Δ=0得t =12,此时y =1,x =12,∴点P 坐标为(12,1),两平行线间的距离就是点P 到直线的最小距离, 即d min =524.已知抛物线y 2=4x 与直线x +y -2=0的交点为A 、B ,抛物线的顶点为O ,在AOB 上求一点C ,使△ABC 的面积最大,并求出这个最大面积.【解】 设与直线AB 平行且与抛物线相切的直线方程为x +y -b =0,将它与抛物线方程y 2=4x 联立,消去x 得方程y 2=4(b -y ),即y 2+4y -4b =0.由Δ=42-4(-4b )=0得b =-1,故切线为x +y +1=0. 求得切点C (1,-2).因直线x +y +1=0与x +y -2=0的距离d =|1+2|2=322.由⎩⎪⎨⎪⎧x +y -2=0,y 2=4x ,解得交点坐标为A (4+23,-2-23)、B (4-23,-2+23). ∴|AB |=4 6.于是S △ABC =12|AB |·d =12×46×322=6 3.所以当C 点为(1,-2)时,S△ABC的最大值为6 3.。

高中数学第2章2.32.3.2抛物线的简单几何性质教师用书教案新人教A版选修1

高中数学第2章2.32.3.2抛物线的简单几何性质教师用书教案新人教A版选修1

2.3.2 抛物线的简单几何性质学习目标核心素养1.掌握抛物线的几何性质.(重点)2.掌握直线与抛物线的位置关系的判断及相关问题.(重点)3.能利用方程及数形结合思想解决焦点弦、弦中点等问题.(难点)1.借助直线与抛物线的位置关系,培养学生的直观想象和数学运算的素养.2.借助抛物线的几何性质解题,提升逻辑推理的素养.1.抛物线的几何性质标准方程y2=2px(p>0) y2=-2px(p>0) x2=2py(p>0) x2=-2py (p>0) 图形性质焦点⎝⎛⎭⎫p2,0⎝⎛⎭⎫-p2,0⎝⎛⎭⎫0,p2⎝⎛⎭⎫0,-p2准线x=-p2x=p2y=-p2y=p2范围x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R性质对称轴x轴y轴顶点(0,0)离心率e=1直线过抛物线y2=2px(p>0)的焦点F,与抛物线交于A(x1,y1),B(x2,y2)两点,由抛物线的定义知,|AF|=x1+p2,|BF|=x2+p2,故|AB|=x1+x2+p.3.直线与抛物线的位置关系直线y=kx+b与抛物线y2=2px(p>0)的交点个数决定于关于x的方程组⎩⎪⎨⎪⎧y=kx+b,y2=2px解的个数,即二次方程k2x2+2(kb-p)x+b2=0解的个数.当k≠0时,若Δ>0,则直线与抛物线有两个不同的公共点;若Δ=0时,直线与抛物线有一个公共点;若Δ<0时,直线与抛物线没有公共点.当k=0时,直线与抛物线的对称轴平行或重合,此时直线与抛物线有一个公共点.思考:直线与抛物线只有一个公共点,那么直线与抛物线一定相切吗?[提示] 可能相切,也可能相交,当直线与抛物线的对称轴平行或重合时,直线与抛物线相交且只有一个公共点.1.设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程是( ) A .y 2=-8x B .y 2=-4x C .y 2=8xD .y 2=4xC [由准线方程为x =-2,可知抛物线的焦点在x 轴正半轴上,且p =4,所以抛物线的方程为y 2=2px =8x .]2.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,若x 1+x 2=6,则|AB |=( )A .10B .8C .6D .4B [|AB |=x 1+x 2+p =6+2=8.]3.直线y =2x -1与抛物线x 2=12y 的位置关系是( )A .相切B .相交C .相离D .不确定 C [由⎩⎪⎨⎪⎧y =2x -1,x 2=12y ,得2x 2-2x +1=0,即Δ=4-8<0, ∴y =2x -1与x 2=12y 无交点,故选C .]抛物线的几何性质求出抛物线的方程,并指出它的焦点坐标和准线方程.[解] 当焦点在x 轴的正半轴上时,设方程为y 2=2px (p >0). 当x =p2时,y =±p ,由|AB |=2p =8,得p =4.故抛物线方程为y 2=8x ,焦点坐标为(2,0),准线方程为x =-2. 当焦点在x 轴的负半轴上时,设方程y 2=-2px (p >0).由对称性知抛物线方程为y 2=-8x , 焦点坐标为(-2,0),准线方程为x =2.抛物线各元素间的关系抛物线的焦点始终在对称轴上,顶点就是抛物线与对称轴的交点,准线始终与对称轴垂直,准线与对称轴的交点和焦点关于顶点对称,顶点到焦点的距离等于顶点到准线的距离,为p 2.[跟进训练]1.边长为1的等边三角形AOB ,O 为坐标原点,AB ⊥x 轴,以O 为顶点且过A ,B 的抛物线方程是( )A .y 2=36x B .y 2=-33x C .y 2=±36xD .y 2=±33xC [设抛物线方程为y 2=ax (a ≠0).又A ⎝⎛⎭⎫±32,12(取点A 在x 轴上方),则有14=±32a ,解得a =±36,所以抛物线方程为y 2=±36x .故选C .]抛物线的焦点弦问题(1)若直线l 的倾斜角为60°,求|AB |的值;(2)若|AB |=9,求线段AB 的中点M 到准线的距离.[思路点拨] (1)设出l 的方程,与抛物线联立,消去y 得关于x 的一元二次方程,利用|AB |=x A +x B +p 求解.(2)由代数法或几何法求解.[解] (1)因为直线l 的倾斜角为60°, 所以其斜率k =tan 60°=3, 又F ⎝⎛⎭⎫32,0.所以直线l 的方程为y =3⎝⎛⎭⎫x -32. 联立⎩⎪⎨⎪⎧y 2=6x ,y =3⎝⎛⎭⎫x -32,消去y 得x 2-5x +94=0.设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=5,而|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=x 1+x 2+p ,∴|AB |=5+3=8.(2)法一:设A (x 1,y 1),B (x 2,y 2),由抛物线定义知|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=x 1+x 2+p =x 1+x 2+3=9,所以x 1+x 2=6,于是线段AB 的中点M 的横坐标是3, 又准线方程是x =-32,所以M 到准线的距离等于3+32=92.法二:如图,作AC ⊥l ,BD ⊥l ,ME ⊥l ,易知|ME |=12(|AC |+|BD |)=12(|AF |+|BF |)=12|AB |=12×9=92.1.已知AB 是过抛物线y 2=2px (p >0)的焦点的弦,F 为抛物线的焦点,A (x 1,y 1),B (x 2,y 2),则:(1)y 1y 2=-p 2,x 1x 2=p 24; (2)|AB |=x 1+x 2+p =2psin 2 θ(θ为直线AB 的倾斜角); (3)S △ABO =p 22sin θ(θ为直线AB 的倾斜角);(4)1|AF |+1|BF |=2p; (5)以AB 为直径的圆与抛物线的准线相切.2.当直线经过抛物线的焦点,且与抛物线的对称轴垂直时,直线被抛物线截得的线段称为抛物线的通径,显然通径长等于2p .[跟进训练]2.过抛物线C :y 2=2px (p >0)的焦点F 的直线交抛物线于A ,B 两点,且A ,B 两点的纵坐标之积为-4,求抛物线C 的方程.[解] 由于抛物线的焦点F ⎝⎛⎭⎫p 2,0,故可设直线AB 的方程为x =my +p 2.由⎩⎪⎨⎪⎧x =my +p 2,y 2=2px ,得y 2-2pmy -p 2=0, 设A (x 1,y 1),B (x 2,y 2), 则y 1y 2=-p 2, ∴-p 2=-4. 由p >0,可得p =2. ∴抛物线C 的方程为y 2=4x .直线与抛物线的位置关系1.过点(1,1)与抛物线y 2=x 有且只有一个公共点的直线有几条? 提示:两条,如图.2.借助直线与抛物线的方程组成的方程组解的个数能否说明直线与抛物线的位置关系? 提示:不一定.当有两解或无解时,可以说明两者的关系,但只有一解时,需分清相交还是相切.【例3】 已知直线l :y =kx +1,抛物线C :y 2=4x ,当k 为何值时,直线l 与抛物线C 有:(1)一个公共点? (2)两个公共点?(3)没有公共点? [思路点拨]联立方程组――→消元关于x 的方程――――――――――――→讨论x 最高项的系数再分Δ>0,Δ=0,Δ<0三类求解[解] 将直线l 和抛物线C 的方程联立得⎩⎪⎨⎪⎧y =kx +1,y 2=4x ,消去y ,得k 2x 2+(2k -4)x +1=0.(*)当k =0时,方程(*)只有一个解,为x =14,此时y =1.∴直线l 与抛物线C 只有一个公共点⎝⎛⎭⎫14,1,此时直线l 平行于x 轴. 当k ≠0时,方程(*)为一元二次方程,Δ=(2k -4)2-4k 2,①当Δ>0,即k <1且k ≠0时,直线l 与抛物线C 有两个公共点,此时直线l 与抛物线C 相交;②当Δ=0,即k =1时,直线l 与抛物线C 有一个公共点,此时直线l 与抛物线C 相切; ③当Δ<0,即k >1时,直线l 与抛物线C 没有公共点,此时直线l 与抛物线C 相离. 综上所述,(1)当k =1或k =0时,直线l 与抛物线C 有一个公共点; (2)当k <1且k ≠0时,直线l 与抛物线C 有两个公共点; (3)当k >1时,直线l 与抛物线C 没有公共点.直线与抛物线位置关系的判断方法设直线l :y =kx +b ,抛物线:y 2=2px (p >0),将直线方程与抛物线方程联立消元得:k 2x 2+(2kb -2p )x +b 2=0.(1)若k 2=0,此时直线与抛物线有一个交点,该直线平行于抛物线的对称轴或与对称轴重合.(2)若k 2≠0,当Δ>0时,直线与抛物线相交,有两个交点; 当Δ=0时,直线与抛物线相切,有一个交点; 当Δ<0时,直线与抛物线相离,无公共点.[跟进训练]3.求过定点P (0,1),且与抛物线y 2=2x 只有一个公共点的直线方程. [解] 如图所示,若直线的斜率不存在, 则过点P (0,1)的直线方程为x =0,由⎩⎪⎨⎪⎧ x =0,y 2=2x ,得⎩⎪⎨⎪⎧x =0,y =0,即直线x =0与抛物线只有一个公共点.若直线的斜率存在,设为k ,则过P 的直线方程为y =kx +1.由方程组⎩⎪⎨⎪⎧y =kx +1,y 2=2x ,消去y 得k 2x 2+2(k -1)x +1=0, 当k =0时,得x =12,y =1.故直线y =1与抛物线相交,只有一个公共点. 当k ≠0时,由直线与抛物线只有一个公共点, 则Δ=4(k -1)2-4k 2=0,∴k =12,此时直线y =12x +1与抛物线相切,只有一个公共点.∴y =1或y =12x +1为所求的直线方程.故所求的直线方程为x =0或y =1或y =12x +1.1.讨论抛物线的几何性质,一定要利用抛物线的标准方程;利用几何性质,也可以根据待定系数法求抛物线的方程.2.直线与抛物线的相交弦问题共有两类,一类是过焦点的弦,一类是不过焦点的弦.解决弦的问题,大多涉及到抛物线的弦长、弦的中点、弦的斜率.常用的办法是将直线方程与抛物线方程联立,转化为关于x 或y 的一元二次方程,然后利用根与系数的关系,这样避免求交点.尤其是弦的中点问题,还应注意“点差法”的运用.3.判断直线与抛物线位置关系的两种方法(1)几何法:利用图象,数形结合,判断直线与抛物线的位置关系,但有误差影响判断的结果.(2)代数法:设直线l 的方程为y =kx +m ,抛物线的方程为y 2=2px (p >0),将直线方程与抛物线方程联立整理成关于x (或y )的一元二次方程形式:Ax 2+Bx +C =0(或Ay 2+By +C =0).相交:①有两个交点⎩⎪⎨⎪⎧A ≠0,Δ>0;②有一个交点:A =0(直线与抛物线的对称轴平行或重合,即相交);相切:有一个公共点,即⎩⎪⎨⎪⎧A ≠0,Δ=0;相离:没有公共点,即⎩⎪⎨⎪⎧A ≠0,Δ<0.直线与抛物线有一个交点,是直线与抛物线相切的必要不充分条件.1.判断正误(1)在抛物线y 2=2px (p >0)中,p 值越大,抛物线的开口越开阔,p 值越小,开口越扁狭.( ) (2)抛物线既是轴对称图形也是中心对称图形. ( ) (3)抛物线的顶点一定在过焦点且与准线垂直的直线上. ( ) (4)直线与抛物线只有一个公共点,则直线与抛物线相切. ( ) (5)直线与抛物线相交时,直线与抛物线不一定有两个公共点. ( )[答案] (1)√ (2)× (3)√ (4)× (5)√2.若抛物线y 2=2x 上有两点A ,B 且AB 垂直于x 轴,若|AB |=22,则抛物线的焦点到直线AB 的距离为( )A .12B .14C .16D .18A [线段AB 所在的直线的方程为x =1,抛物线的焦点坐标为⎝⎛⎭⎫12,0,则焦点到直线AB 的距离为1-12=12.]3.如图,过抛物线y 2=2px (p >0)焦点F 的直线交抛物线于点A ,B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( )A .y 2=3xB .y 2=9xC .y 2=32xD .y 2=92xA [过A 、B 作l 的垂线,分别交l 于A 1、B 1点. 因为|BB 1|=|BF |,|BC |=2|BF |,所以∠B 1BC =60°, 所以∠A 1AF =60°,又因为|AA 1|=|AF |,所以|A 1F |=3, 所以|O 1F |=32=p ,所以抛物线的方程为y 2=3x .]4.已知抛物线C 的顶点在原点,焦点在x 轴上,且抛物线上有一点P (4,m )到焦点的距离为6.(1)求抛物线C 的方程;(2)若抛物线C 与直线y =kx -2相交于不同的两点A ,B ,且AB 中点横坐标为2,求k 的值.[解] (1)由题意设抛物线方程为y 2=2px (p >0),其准线方程为x =-p2,因为P (4,m )到焦点的距离等于P 到其准线的距离,所以4+p2=6,所以p =4,所以抛物线C 的方程为y 2=8x .(2)由⎩⎪⎨⎪⎧y 2=8x ,y =kx -2,消去y ,得k 2x 2-(4k +8)x +4=0.因为直线y =kx -2与抛物线相交于不同的两点A ,B ,则有k ≠0,Δ=64(k +1)>0, 解得k >-1且k ≠0. 又x 1+x 22=2k +4k2=2,解得k =2或k =-1(舍去),所以k 的值为2.。

人教A版高中数学选修抛物线的简单几何性质学案

人教A版高中数学选修抛物线的简单几何性质学案

§2.4.2 抛物线的简单几何性质(1) 学习目标1.掌握抛物线的几何性质; 2.根据几何性质确定抛物线的标准方程.学习过程一、课前准备6870,文P 60~ P 61找出疑惑之处)复习1:准线方程为x=2的抛物线的标准方程是 .复习2:双曲线221169x y -=有哪些几何性质?二、新课导学※ 学习探究探究1:类比椭圆、双曲线的几何性质,抛物线又会有怎样的几何性质?新知:抛物线的几何性质图形标准方程焦点 (0,)2p -准线2p y =-顶点(0,0)(0,0) 对称轴x 轴离心率试试:画出抛物线28y x =的图形,顶点坐标( )、焦点坐标( )、准线方程 、对称轴 、离心率 .※ 典型例题例1已知抛物线关于x 轴对称,它的顶点在坐标原点,并且经过点(2,M -,求它的标准方程.变式:顶点在坐标原点,对称轴是坐标轴,并且经过点(2,M -的抛物线有几条?求出它们的标准方程.小结:一般,过一点的抛物线会有两条,根据其开口方向,用待定系数法求解.例2斜率为1的直线l 经过抛物线24y x =的焦点F ,且与抛物线相交于A ,B 两点,求线段AB 的长 .变式:过点(2,0)M 作斜率为1的直线l ,交抛物线24y x =于A ,B 两点,求AB .小结:求过抛物线焦点的弦长:可用弦长公式,也可利用抛物线的定义求解.※动手试试练1. 求适合下列条件的抛物线的标准方程:⑴顶点在原点,关于x轴对称,并且经过点(5M,4)-;⑵顶点在原点,焦点是(0,5)F;⑶焦点是(0,8)F-,准线是8y=.三、总结提升※学习小结1.抛物线的几何性质;2.求过一点的抛物线方程;3.求抛物线的弦长.※知识拓展抛物线的通径:过抛物线的焦点且与对称轴垂直的直线,与抛物线相交所得的弦叫抛物线的通径.其长为2p.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1.下列抛物线中,开口最大的是().A.21 2y x=B.2y x=C .22y x =D .24y x =2.顶点在原点,焦点是(0,5)F 的抛物线方程( ) .A .220y x =B .220x y =C .2120y x =D .2120x y = 3.过抛物线24y x =的焦点作直线l ,交抛物线于A ,B 两点,若线段AB 中点的横坐标为3,则AB 等于( ).A .10B .8C .6D .44.抛物线2(0)y ax a =≠的准线方程是 .5.过抛物线22y x =的焦点作直线交抛物线于11(,)A x y ,22(,)B x y 两点,如果126x x +=,则AB = .1. 根据下列条件,求抛物线的标准方程,并画出 图形:⑴顶点在原点,对称轴是x 轴,并且顶点与焦点的距离等到于6; ⑵顶点在原点,对称轴是y 轴,并且经过点(6,3)P --.2 M 是抛物线24y x =上一点,F 是抛物线的焦点,60xFM ∠=o ,求FA .。

【高中】高中数学243抛物线的几何性质2导学案新人教A版选修21

【高中】高中数学243抛物线的几何性质2导学案新人教A版选修21

【关键字】高中2.4.3抛物线的几何性质(二)【学习目标】进一步理解并应用抛物线的几何性质,掌握直线与抛物线的位置关系【重点难点】直线与抛物线的位置关系的判断及相关应用一、自主学习要点1.直线与抛物线的交点问题要解决直线与抛物线的位置关系问题,可把直线方程与抛物线方程联立,消去y(或消去x)得出关于x(或关于y)的一个方程Ax2+Bx+C=0,其中二次项系数A有可能为0,此时直线与抛物线有一个交点.当二次项系数A≠0时,Δ=B2-.若Δ<0,则直线与抛物线没有公共点;若Δ=0,则直线与抛物线有且只有一个公共点;若Δ>0,则直线与抛物线有两个不同的公共点.要点2.过焦点的弦的问题若直线过y2=2px(p>0)的焦点与抛物线交于两点A(x1,y1),B(x2,y2),F为抛物线的焦点,则|AF|=x1+, |BF|=x2+.所以|AB|=|AF|+|BF|=x1+x2+p,这是过焦点的弦的弦长公式.二、合作,探究,展示,点评题型一直线与抛物线的位置关系例1 求过定点P(0,1)且与抛物线y2=2x只有一个公共点的直线方程.思考题1 (1)直线l:y=kx+1,抛物线C:y2=4x,当k为何值时,l与C相切、相交、相离.(2)若直线y=kx+k+1与抛物线y2=2x只有一个交点,求实数k的取值范围.题型二求弦长例2 过点Q(4,1)作抛物线y2=8x的弦AB,恰被Q所平分.(1)求AB所在直线方程;(2)求|AB|的长.思考题2 (1)抛物线y2=12x截直线y=2x+1所得弦长等于________.(2)抛物线y2=6x,过点P(4,1)引一弦,使它恰好被点P平分,求这条弦所在的直线方程.题型三焦点弦问题例3 过抛物线y2=2px(p>0)的焦点F的直线交抛物线于A,B两点,证明:+=.思考题3 (1)设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A,B两点,点C在抛物线的准线上,且BC∥x轴.(1)证明:直线AC经过原点O.(2)过抛物线y2=4ax(a>0)的焦点F,作互相笔直的两条焦点弦AB和CD,求|AB|+|CD|的最小值.题型四定点弦问题例4 求证:如图所示,抛物线y2=2px(p>0)的动弦AB恒过定点M(2p,0)的充要条件是k OA·k OB=-1.思考题4 (1)求证:若M(x0,y0)是抛物线y2=2px(p>0)的弦AB的中点,则直线AB的斜率为k AB=py0.(2)抛物线y2=2px上有两动点A,B和一定点M(a,b)与抛物线焦点F的距离|AF|,|MF|,|BF|成等差数列,求证:线段AB的中垂线过定点.题型五综合运用例5 已知抛物线y2=-x与直线y=k(x+1)相交于A,B两点.(1)求证:OA⊥OB;(2)当△OAB的面积等于10时,求k的值.三、知识小结1.涉及抛物线的弦长,弦的中点,弦所在的直线的斜率问题,注意韦达定理的应用.过焦点的弦的问题,注意抛物线的定义的应用.2.直线和抛物线的相交问题,一般常用“设而不求”的解题思想.3.总结本课的一些结论.《抛物线的几何性质一》课时作业1.若抛物线y 2=-4px (p >0)的焦点为F ,准线为l ,则p 表示 ( )A .F 到l 的距离B .F 到y 轴的距离C .F 点的横坐标D .F 到l 的距离的14 2.若等腰直角三角形AOB 内接于抛物线y 2=2px (p >0),O 为抛物线的顶点,OA ⊥OB ,则△AOB 的面积是( )A .8p 2B .4p 2C .2p 2D .p 23.已知抛物线C :y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且|AK |=2|AF |,则△AFK 的面积为 ( )A .4B .8C .16D .324.抛物线y 2=2px 与直线ax +y -4=0交于两点A ,B ,且点A 的坐标是(1,2),设抛物线的焦点为F ,则|FA |+|FB |等于 ( )A .7B .35C .6D .55.设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程是 ( )A .y 2=-8xB .y 2=8xC .y 2=-4xD .y 2=4x6.直线4kx -4y -k =0与抛物线y 2=x 交于A ,B 两点,若|AB |=4,则弦A ,B 的中点到直线x +12=0的距离等于 ( )A.74 B .2 C.94D .4 7.抛物线y 2=x 上的点到直线x -2y +4=0的距离最小的点的坐标是________.8.已知圆x 2+y 2-6x -7=0与抛物线y =2px 2(p >0)的准线相切,则p =________.9.对于顶点在原点的抛物线,给出下列条件:①焦点在y 轴上;②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).能使这抛物线方程为y 2=10x 的条件是________.(要求填写合适条件的序号)10.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.11.求顶点在原点,以x 轴为对称轴,且通径的长为8的抛物线的方程,并指出它的焦点坐标和准线方程.12.抛物线y 2=2px (p >0)上点M 到定点A (3,2)和焦点F 的距离之和的最小值为5,求此抛物线的方程.13.过抛物线y 2=8x 的焦点作直线l ,交抛物线于A ,B 两点,若线段AB 中点的横坐标为3,求|AB |的值.14.已知P为抛物线y2=4x上的动点,过P分别作y轴与直线x-y+4=0的垂线,垂足分别为A,B,求|PA|+|PB|的最小值.此文档是由网络收集并进行重新排版整理.word可编辑版本!。

高中数学 2.4.3抛物线的简单几何性质导学案 理新人教A版选修2-1

高中数学 2.4.3抛物线的简单几何性质导学案 理新人教A版选修2-1

§2.4.3抛物线的简单几何性质学习目标 :1.提升对抛物线定义、标准方程的理解,掌握抛物线的几何特性.2.学会解决直线与抛物线相交问题的综合问题.学习重点:抛物线定义、标准方程的理解,掌握抛物线的几何特性.学习难点:直线与抛物线相交问题的综合问题.课内探究案一、新课导学:探究点一 抛物线的标准方程例1: 抛物线的顶点在原点,对称轴是椭圆x 24+y 29=1短轴所在的直线,抛物线的焦点到顶点的距离为3,求抛物线的方程及准线方程.探究点二 抛物线的几何性质例2::过抛物线焦点F 的直线交抛物线于A ,B 两点,通过点A 和抛物线顶点的直线交抛物线的准线于点D ,求证:直线DB 平行于抛物线的对称轴.探究点三 抛物线中的定值、定点问题例3:如图,过抛物线y 2=x 上一点A (4,2)作倾斜角互补的两条直线AB 、AC 交抛物线于B 、C 两点,求证:直线BC 的斜率是定值.三、当堂检测1.教材73页6,7题,教材74页3题2.已知抛物线C :y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且|AK |=2|AF |,则△AFK 的面积为 ( )A .4B .8C .16D .32四、课后反思课后训练案1.若一动点到点(3,0)的距离比它到直线x =-2的距离大1,则该点的轨迹是 ( )A .椭圆B .双曲线C .双曲线的一支D .抛物线2.过抛物线y 2=4x 的顶点O 作互相垂直的两弦OM 、ON ,则M 的横坐标x 1与N 的横坐标x 2之积为________.3.对于顶点在原点的抛物线,给出下列条件:①焦点在y 轴上; ②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6; ④抛物线的通径的长为5; ⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).能使这条抛物线方程为y 2=10x 的条件是________(要求填写合适条件的序号).4.求以双曲线x 28-y 29=1的右顶点为焦点的抛物线的标准方程及准线方程.5.A 、B 为抛物线y 2=2px (p >0)上两点,O 为原点,若OA ⊥OB ,求证直线AB 过定点.。

2024-2025学年高中数学3.3.2抛物线的简单几何性质教案新人教A版选择性必修第一册

2024-2025学年高中数学3.3.2抛物线的简单几何性质教案新人教A版选择性必修第一册
b. 学生对抛物线几何性质的理解,是否能够准确描述和运用。
c. 学生解决实际问题时,是否能够将问题抽象为抛物线模型,并正确运用所学知识。
2. 针对存在的问题,给出以下改进建议:
a. 对于标准方程掌握不足的学生,建议加强基础知识的复习,特别是椭圆、双曲线与抛物线之间的联系。
b. 对于几何性质理解不深的学生,建议通过绘制图像、实际操作等方式,加强直观认识。
c. 对于实际问题解决能力不足的学生,建议多参与小组讨论、实验活动等,提高将理论知识应用于实际的能力。
3. 定期对学生的作业情况进行总结,及时调整教学方法,以提高教学效果:
a. 根据作业完成情况,调整课堂教学的节奏和深度,确保学生能够跟上教学进度。
b. 对于普遍存在的问题,可以在课堂上进行集中讲解,帮助学生克服难点。
2024-2025学年高中数学 3.3.2 抛物线的简单几何性质教案 新人教A版选择性必修第一册
课题:
科目:
班级:
课时:计划1课时
教师:
单位:
一、教学内容
2024-2025学年高中数学 3.3.2 抛物线的简单几何性质教案,本节内容选自新人教A版选择性必修第一册第三章圆锥曲线3.3抛物线部分。具体内容包括:
情感升华:
结合抛物线内容,引导学生思考数学与生活的联系,培养学生的社会责任感。鼓励学生分享学习抛物线的心得和体会,增进师生之间的情感交流。
(六)课堂小结(预计用时:2分钟)
简要回顾本节课学习的抛物线简单几何性质,强调重点和难点。肯定学生的表现,鼓励他们继续努力。
布置作业:
根据本节课学习的抛物线内容,布置适量的课后作业,巩固学习效果。提醒学生注意作业要求和时间安排,确保作业质量。
4. 数学运算:在解决抛物线相关问题时,培养学生熟练运用数学公式和运算方法,提高数学运算能力。

高中数学人教A版选修1-1第2章2.3.2抛物线的几何性质1教学设计

高中数学人教A版选修1-1第2章2.3.2抛物线的几何性质1教学设计

2.3.2 抛物线的简单几何性质1【学情分析】:由于学生具备了曲线与方程的部分知识,掌握了研究解析几何的基本方法,因而利用已有椭圆与双曲线的知识,引导学生独立发现、归纳知识,指导学生在实践和创新意识上下工夫,训练基本技能。

【教学目标】:(1)知识与技能:熟练掌握抛物线的范围,对称性,顶点,准线,离心率等几何性质。

(2)过程与方法:重视基础知识的教学、基本技能的训练和能力的培养;启发学生能够发现问题和提出问题,善于独立思考。

(3)情感、态度与价值观:培养严谨务实,实事求是的个性品质和数学交流合作能力,以及勇于探索,勇于创新的求知意识,激发学生学习数学的兴趣与热情。

【教学重点】:熟练掌握抛物线的范围,对称性,顶点,准线,离心率等几何性质。

【教学难点】:熟练掌握抛物线的范围,对称性,顶点,准线,离心率等几何性质及其应用。

【课前准备】:Powerpoint或投影片【教学过程设计】:三、例题讲解例1 已知抛物线的顶点在原点,对称轴为坐标轴,且过点A(4,23),求这条抛物线的准线方程。

解:⑴若抛物线开口向右,设抛物线的标准方程为22(0)y px p=>∵()22324p=∴32p=∴抛物线的标准方程为34x=-⑵若抛物线开口向上,设抛物线的标准方程为22(0)x py p=>∵24223p=∴433p=∴抛物线的标准方程为233y=-例2 汽车前灯反射镜与轴截面的交线是抛物线的一部分,灯口所在的圆面与反射镜的轴垂直,灯泡位于抛物线焦点处。

已知灯口的直径是24cm,灯深10cm,那么灯泡与反射镜的顶点距离是多少?让学生运用抛物线的几何性质,写出符合条件的抛物线的准线方程。

三、例题讲解分析:依标准方程特点和几何性质建系,由待定系数法求解,强调方程的完备性。

解:如图,在探照灯的轴截面所在平面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合,轴垂直于灯口直径.抛物线的标准方程为22(0)y px p=>,由已知条件可得点的坐标是(40,30)且在抛物线上,代入方程得:230240p=,254p=所以所求抛物线的标准方程为2452y=,焦点坐标是.例3 过抛物线pxy22=的焦点F任作一条直线m,交这抛物线于A、B两点,求证:以AB为直径的圆和这抛物线的准线相切.分析:运用抛物线的定义和平面几何知识来证比较简捷.证明:如图.设AB的中点为E,过A、E、B分别向准线l引垂线AD,EH,BC,垂足为D、H、C,则|AF|=|AD|,|BF|=|BC|∴|AB|=|AF|+|BF|=|AD|运用抛物线的几何性质解决现实生活中的问题,提高学生学习数学的兴趣和综合解题能力。

人教A版高中数学选修抛物线的简单几何性质学案第课时新

人教A版高中数学选修抛物线的简单几何性质学案第课时新

§2.3.2抛物线及其简单性质(第 2课时)[自学目标]:类比直线与双曲线的位置关系的研究,尝试探究直线与抛物线的位置关系,进一步体会用坐标法研究几何问题的思路 [难点]: 直线与抛物线的位置关系[重点]:直线与抛物线的位置关系的应用 [教材助读]:1、直线与抛物线的位置关系:将直线方程代入抛物线方程可得:(1)一元一次方程(直线与抛物线的对称轴平行):相交且只有一个交点 (2)一元二次方程:①△ 0,则直线与抛物线相交 ②△ 0,则直线与抛物线相切 ③△ 0,则直线与抛物线相离反思:一般的,点P 在抛物线内,则过点P 且和抛物线只有一个公共点的直线只有一条;点P 在抛物线上,则过点P 且和抛物线只有一个公共点的直线只两条; 点P 在抛物线外,则过点P 且和抛物线只有一个公共点的直线只有三条。

2.直线与抛物线相交形成的弦长计算公式:1211p p x y ==-=-3.过焦点的直线交抛物线22y px =于A 、B 两点,设A 12(,)x x B 12(,)y y 则12(0)AB x x p p =++>4、中点弦问题的解决方法:①联立直线方程与曲线方程求解 ②点差法 [预习自测]1.过点(2,4)M 作与抛物线28y x =只有一个公共点的直线l 有 ( )A .0条B .1条C .2条D .3条2 设AB 为过抛物线)0(22>=p px y 的焦点的弦,则AB 的最小值为( )A2pB pC p 2D 无法确定 3、已知直线l :y =-x +1和抛物线C :y 2=4x ,设直线与抛物线的交点为A 、B ,求AB 的长。

待课堂上与老师和同学探究解决。

[合作探究展示点评]探究一:直线与抛物线位置关系例1﹑已知抛物线的方程为24=,直线l过定点P(-2,1),斜率为k,k为何y x值时,直线l与抛物线24=:只有一个公共点;有两个公共点;没有公共点?y x探究二:中点问题例2、已知抛物线C:y2=4x,设直线与抛物线两交点为A、B,且线段AB中点为M(2,2),求该直线的方程。

高中数学新人教版A版精品教案《2.3.2 抛物线的简单几何性质》

高中数学新人教版A版精品教案《2.3.2 抛物线的简单几何性质》

《抛物线的简单几何性质》教学设计中山市杨仙逸中学梁永毅一、本节课内容分析与学情分析1、教材的内容和地位本节课是人教版普通高中课程标准实验教科书A版《数学》选修1—1第二章第三节的内容。

它是在学习了抛物线的定义及其标准方程的基础上,系统地按照抛物线方程来研究抛物线的简单几何性质,是高中数学的重要内容。

本节内容的学习,是对前面所学知识的深化、拓展和总结,可使学生对圆锥曲线形成一个系统的认识,同时也是一个培养学生数学思维和让学生体会数学思想的良好机会。

2、学生情况分析在此内容之前,学生已经比较熟练的掌握了椭圆、双曲线的标准方程和简单几何性质,以及研究问题的基本方法。

本节课,学生有能力通过类比椭圆、双曲线的几何性质,结合抛物线的标准方程去探索抛物线的几何性质。

可培养学生的自主学习能力和创新能力。

二、教学目标1、知识与技能:(1)理解并掌握抛物线的几何性质。

(2)能够运用抛物线的方程探索抛物线的几何性质。

能力目标:2、过程和方法:注重对研究方法的思想渗透,掌握研究曲线性质的一般方法;培养运用数形结合思想解决问题的能力。

3、情感态度价值观:通过对几何性质的探索活动,亲历知识的构建过程,使学生领悟其中所蕴含的数学思想,数学方法,体会新知识探索过程中带来的快乐和成就感。

让学生养成自主学习,合作探究的习惯。

三、教学重点、难点教学的重点是掌握抛物线的几何性质,使学生能根据给出的条件求出抛物线的标准方程和一些实际应用。

难点是抛物线各个知识点的灵活应用。

四、教学方法及手段采用引导式、讲练结合法;多媒体课件辅助教学。

五、教学程序教 学 过 程教学内容教师导拨与学生活动设计意图一、知识回顾1、 抛物线的定义:在平面内,与一个定点F 和一条定直线不经过点F 的距离相等的点的轨迹叫抛物线 2、 抛物线的标准方程2, 22-图形标准方程 焦点坐标准线方程抛物线的定义及标准方程由学生口述,老师展示结论 强化)0(22>=p px y )0,2(p 2p x -=)0(22>-=p px y )0,2(p -2p x =)0(22>=p py x )2,0(p2p y -=)0(22>-=p py x )2,0(p -2p y =22(0)y px p =>0≥x 与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e 表示。

云南省曲靖市麒麟区第七高中数学23曲线与方程1学案新人教A选修11

云南省曲靖市麒麟区第七高中数学23曲线与方程1学案新人教A选修11

云南省曲靖市麒麟区第七中学高中数学 2-3曲线与方程1学案新人教A版选修1-1【学习目标】:了解平面直角坐标中“曲线的方程”和“方程的曲线”的含义;会判定一个点是不是在已知曲线上。

【学习重点】:曲线和方程的概念。

【学习难点】:曲线和方程概念的明白得。

【问题导学】一、课前预备(预习教材理P34~ P36,找出疑惑的地方)1:画出函数22y x=(12)x-≤≤的图象.2:画出两坐标轴所成的角在第一、三象限的平分线,并写出其方程.二、新课导学※学习探讨探讨任务一:到两坐标轴距离相等的点的集合是什么?写出它的方程.问题:可否写成y x=,什么缘故?新知:曲线与方程的关系:一样地,在座标平面内的一条曲线C与一个二元方程(,)0F x y=之间,若是具有以下两个关系:1.曲线C上的点的坐标,都是的解;2.以方程(,)0F x y =的解为坐标的点,都是 的点,那么,方程(,)0F x y =叫做这条曲线C 的方程;曲线C 叫做那个方程(,)0F x y =的曲线.注意:1︒ 若是……,那么……;2︒ “点”与“解”的两个关系,缺一不可;3︒ 曲线的方程和方程的曲线是同一个概念,相对不同角度的两种说法;4︒ 曲线与方程的这种对应关系,是通过坐标平面成立的.试试:1.点(1,)P a 在曲线2250x xy y +-=上,那么a=___ .2.曲线220x xy by +-=上有点(1,2)Q ,那么b = .新知:依照已知条件,求出表示曲线的方程.※ 典型例题例1 证明与两条坐标轴的距离的积是常数(0)k k >的点的轨迹方程式是xy k =±.变式:到x 轴距离等于5的点所组成的曲线的方程是50y -=吗?例2设,A B 两点的坐标别离是(1,1)--,(3,7),求线段AB 的垂直平分线的方程.变式:已知等腰三角形三个极点的坐标别离是(0,3)A ,(2,0)B -,(2,0)C . 中线AO(O 为原点)所在直线的方程是0x =吗?什么缘故?反思:BC 边的中线的方程是0x =吗?小结:1.求曲线的方程的步骤:①成立适当的坐标系,用(,)M x y 表示曲线上的任意一点的坐标;②写出适合条件P 的点M 的集合{|()}P M p M =;③用坐标表示条件P ,列出方程(,)0f x y =;④将方程(,)0f x y =化为最简形式; ⑤说明以化简后的方程的解为坐标的点都在曲线上.2. 求轨迹方程的经常使用方式有:直接法,概念法,待定系数法,参数法,相关点法(代入法),交轨法等.※ 动手试试练1.以下方程的曲线别离是什么? (1) 2x y x = (2) 222x y x x -=- (3) log a x y a =练2.离原点距离为2的点的轨迹是什么?它的方程是什么?什么缘故?【基础题组】1. “以方程0),(=y x f 的解为坐标的点都是曲线C 上的点”是“曲线C 的方程是0),(=y x f ”的( ) 充分条件 B.必要条件 C.充要条件 D.既不充分也没必要要条件2.与曲线y x =相同的曲线方程是( ).A .2x y x = B .2y x = C .33y x = D .2log 2x y =3.直角坐标系中,已知两点(3,1)A ,(1,3)B -,假设点C 知足OC =αOA +βOB ,其中α,β∈R ,α+β=1,那么点C 的轨迹为 ( ) .A .射线B .直线C .圆D .线段4.(1,0)A ,(0,1)B ,线段AB 的方程是( ).A .10x y -+=B .10x y -+=(01)x ≤≤C .10x y +-=D .10x y -+=(01)x ≤≤5.已知方程222ax by +=的曲线通过点5(0,)3A 和点(1,1)B ,那么a = ,b =. 6.已知两定点(1,0)A -,(2,0)B ,动点p 知足12PA PB =,那么点p 的轨迹方程是 7.点(1,2)A -,(2,3)B -,(3,10)C 是不是在方程2210x xy y -++=表示的曲线上?什么缘故?8.求和点(0,0)O ,(,0)A c 距离的平方差为常数c 的点的轨迹方程.。

云南省曲靖市麒麟区第七中学高中数学 3-2简单的三角恒等变换(3)学案 新人教A版必修4

云南省曲靖市麒麟区第七中学高中数学 3-2简单的三角恒等变换(3)学案 新人教A版必修4

云南省曲靖市麒麟区第七中学高中数学 3-2简单的三角恒等变换(3)学案 新人教A 版必修4选择题1.若3sinA+cosA=0,则A A 2sin cos 12+的值为( )A .10/3 B.5/3 C.2/3 D.-22.函数f (x )=(1+x tan 3)cosx 的最小正周期为( )A .2π B.23π C. π D.2π3.已知,534sin )6cos(=+-απα则sin ()67πα+的值是( )A .532-B.532C.54-D. 54 4.已知),0(,51cos sin πβββ∈=+,则βtan 的值已知cos (51)=+βα,cos 53)(=-βα,求βαtan tan 的值三.已知的值求)cos(,31sin sin ,21cos cos βαβαβα-=+=+四.求证: (1)3+cos α4-4cos α2=8α4sin(2))32sin(2)cos (sin 3tan 2tan 2tan tan 22πααααααα-=-+-(3)ααα4cos 832cos 44cos =++(4)AA A A A 4tan 4cos 2cos 434cos 2cos 43=+++-五.已知函数f (x )=ax x x ++-++cos )6sin()6sin(ππ的最大值为1求常数a 的值;求使f (x )≥0成立的x 的取值范围六.如图,正方形ABCD 的边长为1,P ,Q 分别为AB ,DA 上的点。

当△APQ 的周长为2时,求∠PCQ 的大小。

七.如图所示,已知OPQ 是半径为1,圆心角为3π的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形。

记∠COP=α,求当角α取何值的时候,矩形ABCD 的面积最大?并求出这个最大面积。

云南省曲靖市麒麟区第七中学高中数学 3-2一元二次不等式(1)学案 新人教A版必修5

云南省曲靖市麒麟区第七中学高中数学 3-2一元二次不等式(1)学案 新人教A版必修5

云南省曲靖市麒麟区第七中学高中数学 3-2一元二次不等式(1)学案 新人教A 版必修 5【学习目标】理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法。

【学习重点】一元二次不等式的解法【学习难点】理解二次函数、一元二次方程与一元二次不等式解集的关系。

【知识回顾】(1)解方程:2x-7=0;(2)画出函数y=2x-7的图象;(3)解不等式:2x-7>0和2x-7<0.你能发现这三个问题之间的关系吗?【自主学习】阅读课本76-78页内容,完成下列题目:一元二次不等式的定义:怎样来求一元二次不等式052≤-x x 呢?一元二次方程052=-x x 、二次函数x x y 52-=与一元二次不等式052≤-x x 之间的关系是什么?上述方法可以推广到求一般的一元二次不等式02>++c bx ax 或)0(02><++a c bx ax 的解集吗?3、探究:一元二次不等式)0(02>>++a c bx ax 的解集与什么有关系呢?分几种情况来讨论呢?根据上述方法,填写下表 一元二次方程ax2+bx+c =0(a>0)解的情况 一元二次函数y=ax2+bx+c(a>0)的图象一元二次不等式ax2+bx+c>0(a>0)解集情况 一元二次不等式ax2+bx+c<0(a>0)解集情况 ax2+bx+c =0没有实数根(0<∆) ax2+bx+c =0有二等实根(0=∆)x o x y xx o x y xax2+bx+c =0有二不等实根(0>∆)(x1<x2)请大家将求解一元二次不等式)0(02>>++a c bx ax 的解集的过程用一个程序框图表示出来。

5、请大家从上面的表格和程序框图中总结出一元二次不等式)0(02>>++a c bx ax 与)0(02><++a c bx ax 的解集的规律。

云南省曲靖市麒麟区第七中学高中数学 2-1椭圆的几何性质学案 新人教A版选修1-1

云南省曲靖市麒麟区第七中学高中数学 2-1椭圆的几何性质学案 新人教A版选修1-1

云南省曲靖市麒麟区第七中学高中数学 2-1椭圆的几何性质学案新人教A版选修1-1【学习目标】掌握椭圆的范围、对称性、顶点、离心率、理解的几何意义初步利用椭圆的几何性质解决问题了解椭圆的第二定义【学习重点】椭圆的几何性质的探讨以及ecba,,,的关系【学习难点】对离心率e的讨论【问题导学】根据椭圆)0(12222>>=+babyax的图象指出变量x,y的取值范围以及具有怎样的对称性。

其对称轴与对称中心是什么?椭圆呢椭圆)0(12222>>=+babyax与对称轴有几个交点呢?你能根据方程求出这些交点坐标吗?椭圆的长半轴、短半轴、长轴长、短轴长分别是什么?椭圆)0(12222>>=+babyax呢从课本图2.2-10中可以发现两个椭圆的扁平程度不一,那么椭圆的扁平程度与哪些量有关?是如何利用这些量刻画椭圆的扁平程度呢?5.认真看课本例6.感受椭圆的第二定义:平面内到一定点F和到一定直线L的距离的比为常数e(0<e<1)的点的轨迹是椭圆,定点F叫做椭圆的焦点,定直线L叫做椭圆的准线,比值是椭圆的离心率。

(1)这个结论称为椭圆的第二定义,表达式为(2)第二定义中得焦点与准线是对应,即;左准线为,右准线为(3)比值e的取值范围是,超过此范围的不是椭圆。

(4)例6是如何用M点的坐标表示MF的长度的?【典型例题】例1 求椭圆221625400x y +=的x,y 的范围 、长轴和短轴的长、离心率、焦点和顶点的坐标.课本例5,例6,【基础题组】1.求下列椭圆的长轴和短轴长、焦距、离心率、各个顶点和焦点坐标2.若椭圆2215x y m +=的离心率e ,则m 的值是( ).A .3B .3或253 CD3.设P 是椭圆 2211612x y +=上一点,P 到两焦点的距离之差为2,则12PF F ∆是( ).A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形4,离心率23e =的椭圆两焦点为12,F F ,过1F 作直线交椭圆于,A B 两点,则2ABF ∆的周长为( ).A .3B .6C .12D .245.设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P ,若△F1PF2为等腰直角三角形,则椭圆的离心率是( ).A.B.C. 2-D. 16.已知点(3,2)在椭圆x2a2+y2b2=1上,则( ) A .点(-3,-2)不在椭圆上 B .点(3,-2)不在椭圆上 C .点(-3,2)在椭圆上D .无法判断点(-3,-2)、(3,-2)、(-3,2)是否在椭圆上7.椭圆x2a2+y2b2=1和x2a2+y2b2=k(k>0)具有( ) A .相同的长轴 B .相同的焦点 C .相同的顶点 D .相同的离心率8.椭圆的两个焦点与它的短轴的两个端点是一个正方形的四个顶点,则椭圆离心率为( )A.22B.32C.53D.63 9.椭圆x225+y29=1与x29-k +y225-k=1(0<k<9)的关系为( ) A .有相等的长、短轴 B .有相等的焦距 C .有相同的焦点 D .x ,y 有相同的取值范围10.以椭圆两焦点F1、F2所连线段为直径的圆,恰好过短轴两端点,则此椭圆的离心率e 等于( )A.12B.22C.32D.25514(2) 100425)1(2222=+=+y x y x11.中心在原点、焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( ) A.x281+y272=1 B.x281+y29=1 C.x281+y245=1 D.x281+y236=1 12.焦点在x 轴上,长、短半轴之和为10,焦距为45,则椭圆的方程为( ) A.x236+y216=1 B.x216+y236=1 C.x26+y24=1 D.y26+x24=1 13.若椭圆的短轴为AB ,它的一个焦点为F1,则满足△ABF1为等边三角形的椭圆的离心率是( ) A.14 B.12 C.22 D.32 14.已知椭圆221169x y +=的左、右焦点分别为12,F F ,点P 在椭圆上,若P 、F1、F2是一个直角三角形的三个顶点,则点P 到x 轴的距离为().A. B. 3 C. D.15.椭圆的焦距、短轴长、长轴长组成一个等到比数列,则其离心率为 .16. 点M (x ,y )与定点F(2,0)的距离和它到直线 l: x=8的距离得比是常数21,求M 点的轨迹方程【拓展题组】17.已知椭圆x2a2+y2b2=1(a>b>0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P.若AP →=2PB →,则椭圆的离心率是( )A.32 B.22 C.13 D.1218.若椭圆两焦点为F1(-4,0)、F2(4,0),P 在椭圆上,且△PF1F2的最大面积是12,则椭圆方程是( ) A.x236+y220=1 B.x228+y212=1 C.x225+y29=1 D.x220+y24=1 19.如图,在椭圆中,若AB ⊥BF ,其中F 为焦点,A 、B 分别为长轴与短轴的一个端点,则椭圆的离心率e =________.20.椭圆x2a2+y2b2=1上一点到两焦点的距离分别为d1、d2,焦距为2c ,若d1、2c 、d2成等差数列,则椭圆的离心率为________.21.已知椭圆mx2+5y2=5m 的离心率为e =105,求m 的值.第19题。

高中数学抛物线的几何性质(教案)新课标人教A版选修1

高中数学抛物线的几何性质(教案)新课标人教A版选修1

抛物线的几何性质教学目标:1.掌握抛物线的几何性质;能根据几何性质确定抛物线的标准方程; 2.能利用工具作出抛物线的图形.提高综合解题能力 教学重点及难点:1.抛物线的几何性质,抛物线定义,性质应用 2.几何性质的应用,解题思路分析 教学过程:第一课时 抛物线的几何性质Ⅰ.复习回顾简要回顾抛物线定义及标准方程的四种形式(要求学生回答)练习:①已知抛物线y 2=2px 的焦点为F ,准线为l ,过焦点F 的弦与抛物线交于A 、B 两点,过A 、B 分别作AP ⊥l ,BQ ⊥l ,M 为PQ 的中点,求证:MF ⊥AB略证:过F 作FN ⊥AB 交准线l 于N ,连结AN 、BN ,则Rt △APM ≌Rt △AMF,∴|PN|=|FN|,同理,|QN|=|FN|, 从而|QN|=|PN|,于是有,M 与N 重合,故MF ⊥AB说明:F 点在以PQ 为直径的圆上,故∠PFQ 为直角。

②在抛物线y 2=2x 上方有一点M (3,310),P 在抛物线上运动,|PM|=d 1,P 到准线的距离为d 2,求当d 1 +d 2最小时,P 的坐标。

注:连MF ,与抛物线交点即为所求。

(2,2)这一节,我们根据抛物线的标准方程)0(22>=p px y ①来研究它的几何性质Ⅱ.讲授新课 1. 范围当x 的值增大时,y 也增大,这说明抛物线向右上方和右下方无限延伸.(但应让学生注意与双曲线一支的区别,无渐近线). 2.对称性抛物线关于x 轴对称.我们把抛物线的对称轴叫抛物线的轴. 3.顶点抛物线和它的轴的交点叫抛物线的顶点.即坐标原点. 4.离心率抛物线上的点M 与焦点的距离和它到准线的距离的比,叫抛物线的离图8--24心率,用e 表示.由抛物线定义可知,e =1.说明:①对于其余三种形式的抛物线方程,要求自己得出它们的几何性质,这样,有助于学生掌握抛物线四种标准方程.②根据一次项的变量确定对称轴和焦点位置,根据一次项系数的符号确定开口方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

云南省曲靖市麒麟区第七中学高中数学 2-3抛物线的几何性质学案 新人教A
版选修
1-1
【学习目标】理解并掌握抛物线的简单的几何性质,能根据方程推导这些几何性质 能用性质解决一些简单的问题,从而培养学生分析、归纳、推理等能力 【学习重点】抛物线的几何性质,及简单应用 【学习难点】抛物线几何性质的应用 【问题导学】
前几节课我们学习过椭圆与双曲线的几何性质,这节课我们可以仿照前面的内容来研究抛物线的几何性质。

1、阅读课本第68-72页的有关内容完成下表: 1)、焦半径:指抛物线上一点M 与焦点的距离,利用抛物线的定义容易得出结论
2)、 通径:通过抛物线的焦点做垂直于对称轴而交抛物线于A 、B 两点的线段AB,称为抛物线的“通径”.
抛物线的焦距为2p
时通径为p 2.
3)、焦点弦:过焦点的直线与抛物线交于A 、B 两点,则线段AB 称为焦点弦。

2、抛物线的开口关系?
从方程角度看:在方程
)0(22>=p px y 中,对于x 的一个确定值,p 越大,则|y|也 ,即对应点离
对称轴越远,所以抛物线开口越 ,反之,p 越小,开口越 。

从图形角度看: p 越大,通经也越 ,开口越 ,反之p 越小,通经也越 ,开口越 。

【典型例题】
例1.已知抛物线关于x
轴对称,它的顶点在坐标原点,并且经过点(2,M -,求它的标准方程,(如果将上题中的x 轴改为坐标轴,满足条件的抛物线有几条?标准方程是什么?)
例 2.过抛物线
x y 42=的焦点作直线交抛物线于A(11,y x )、
B(22,y x )两点,若21x x +=6,求|AB|的值.
例3.过抛物线焦点F 的直线交抛物线于A,B 两点,通过点A 和抛
物线顶点的直线交抛物线的准线于点D, 求证:直线DB 平行于抛物线的对称轴。

例4.已知抛物线的方程为x y 42
=,直线l 过定点P(-2,1),斜率为k,k 为何值时,直线l 与抛物线x y 42
=:只有一个公共点;有两个公共点;没有公共点?
【基础题组】
1、在抛物线y2=2px 上,横坐标为4的点到焦点的距离为5,则P 的值为( )
A 、1
2 B 、1 C 、2 D 、4
2.设抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线上的点(k ,-2)与F 点的距离为4,则k 的值是( ) A .4 B .4或-4 C .-2 D .2或-2
3.抛物线的顶点在原点,对称轴是x 轴,抛物线上的点(-5,25)到焦点的距离是6,则抛物线的方程为( ) A .y2=-2x B .y2=-4x C .y2=2x D .y2=-4x 或y2=-36x
4.直线y =kx -2交抛物线y2=8x 于A 、B 两点,若AB 中点的横坐标为2,则k = ( ) A .2或-2 B .-1 C .2 D .
3
5.抛物线的焦点在直线x-y+2=0上,则抛物线的标准方程为
6.抛物线y2=16x上到顶点和焦点距离相等的点的坐标是________.
7.抛物线y2=4x的弦AB垂直于x轴,若AB的长为43,则焦点到AB的距离为________.8.求适合下列条件的抛物线的标准方程:
⑴准线方程为x=-1;
⑵顶点在原点,对称轴是x轴,并且顶点与焦点的距离是6;
⑶顶点在原点,坐标轴为对称轴,经过点(-2,3)
9、在抛物线
x
y2
2=
上求一点P,使P到直线x-y+3=0的距离最短,并求出距离的最小值.
10、AB为抛物线
px
y2
2=
(p>0)的焦点弦,A、B在准线上的射影分别为M、N,求证:以MN为直径的圆
与AB相切于焦点F.
【拓展题组】
11、直线y=kx+2与抛物线y2=8x有且只有一个公共点,则k的值为()
A.1 B.1或3 C.0 D.1或0
12、顶点在原点,焦点在x轴上的抛物线经过点(3,-23),过焦点且倾斜角为45°的直线与抛物线交于M、N两点,则|MN|等于()
A.13 B.8 C.16 D.8 2
13、等腰Rt△AOB内接于抛物线y2=2px(p>0),O为抛物线的顶点,OA⊥OB,则△AOB的面积是()A.8p2 B.4p2 C.2p2 D.p2
14、已知抛物线C的顶点坐标为原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若P(2,2)为AB的中点,则抛物线C的方程为________.
15、已知直线l经过抛物线
2
1
4
y x
=
的焦点F,且被抛物线截得的弦长为8,求l的方程
17.一抛物线拱桥跨度为52m,拱顶离水面6.5m,一竹排上载有一宽4m,高6m的大木箱,问竹排能否安全通过?。

相关文档
最新文档