高三物理二轮复习能力演练专题2动量和能量
高考二轮总复习课件物理(适用于老高考旧教材)专题2能量与动量第1讲 动能定理机械能守恒定律功能关系的

(1)建立运动模型。
(2)抓住运动过程之间运动参量的联系。
(3)分阶段或全过程列式计算。
(4)对于选定的研究过程,只考虑初、末位置而不用考虑中间过程。
注意摩擦力做功特点
深化拓展
应用动能定理解题应注意的三个问题
(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比
动力学研究方法要简捷。
则重力的瞬时功率不为0,C错误;随着运动员在圆弧跳台上升高,速率逐渐
减小,所需要的向心力也在减小,向心力由台面的支持力与重力垂直接触面
向下的分力提供,由牛顿第二定律有FN-mgcos θ=m
大,v在减小,所以FN在减小,D正确。
2
,随着高度升高,θ在增
2.(命题角度1、2)(多选)一个质量为5 kg静止在水平地面上的物体,某时刻
能定理
1
Pt-W=2 m 2 ,则这一过程中小汽车克服阻力做的功为
D 错误。
W=Pt- 2 ,率启动
1
a-图像和
1
a-v 图像
1
F-图像问题
恒定加速度启动
1
F-v 图像
恒定功率启动
1
a- 图像
v
恒定加速度启动
1
F- 图像
v
①AB 段牵引力不变,做匀加速直线运动;
1
1
2
由动能定理得-mg·2r-W=2 2 − 2 1 2 ,联立解得小球克服阻力做的功
W=mgr,A 错误,B 正确;设再一次到达最低点时速度为 v3,假设空气阻力做
功不变,从最高点到最低点根据动能定理得
最低点,根据牛顿第二定律
1
mg·2r-W= 3 2
高考物理二轮专题“析与练”专题二 动量与能量课件

【解析】 (1)汽车以额定功率运行,其牵引力为
F=Pv, 由牛顿第二定律,得 F-f=ma. 当 F=f 时,a=0,此时 vm=Pf =PF=804×001003m/s=20 m/s.
(2)汽车以恒定加速度起动后,有 F′-f=ma. 所以 F′=f+ma=4 000 N+2 000×2 N=8 000 N, 匀加速运动可达到的最大速度为 vm′=FP=808×001003m/s=10 m/s. 所以匀加速运动的时间 t=vma′=120s=5 s.
面:(1)四个规律看物理量间的联系和变化:①牛顿第二定律 F 牵 -F 阻=ma;②匀加速运动 vt=v0+at;③机车功率 P=F 牵 v; ④牵引力做功 W=Pt.(2)抓住两个临界:①当 F 牵=F 阻时,a=0, v 达到最大; ②当机车功率达到最大功率(额定功率)后功率不 能再变,如果速度增大,则力减小.(3)注意一种情况:当机车 减速即 F 牵<F 阻时,若功率 P 不变,由于速度 v 变小,则牵引力 F 牵变大,而加速度反而变小.
(1)小球通过粗糙管道过程中克服摩擦阻力做的功; (2)小球通过“9”管道的最高点 M 时对轨道的作用力大小; (3)小球从 C 点离开“9”管道之后做平抛运动的水平位移.
【解析】 (1)小球从初始位置到达缝隙 P 的过程中,由动 能定理,有
mg(H+3R)-Wf=12mv2-0. 代入数据,得 Wf=2 J.
(2)由机械能守恒,得 mgH=12mv2B. 由牛顿第二定律,得 F′-mg=mvR2B. 则 F′=2mRgH+mg=10H+1. 据此作图象如图所示.
【答案】 (1)0.1 kg 0.2 m (2)见解析
安徽庐江二中高三物理二轮复习----动量和能量(2)

专题训练——动量和能量(2)一、单项选择题1.如图所示,图线表示作用在某物体上的合外力随时间变化的关系,若物体开始时是静止的,那么( )A .前3 s 内合外力对物体做的功为零B .前5 s 内物体的动能变化量为零C .在前5 s 内只有第1 s 末物体的动能最大D .在前5 s 内只有第5 s 末物体的速率最大2.质量为g k 1023⨯、发动机的额定功率为80kw 的汽车在平直公路上行驶,若汽车所受阻力大小恒为N 3104⨯,则下列说法错误的是( )A .汽车的最大速度是20m/sB .若汽车保持额定功率启动,则当其速度为5m/s 时,加速度为6m/s 2C .汽车维持加速度2m/s 2匀加速运动的时间最多为10sD .汽车以加速度2m/s 2匀加速启动,启动后第2s 末时发动机的实际功率是32kw3.如图甲所示,斜面AB 与水平面BC 是由同种材料制成的。
质量相等的可视为质点的a 、b 两物块,从斜面上的同一位置A 由静止开始下滑,经B 点在水平面上滑行一段时间后停止。
不计经过B 点时的能量损失,用传感器采集到它们的速度—时间图象如图乙所示,则由上述信息判断下列说法正确的是( )A .在斜面上滑行的加速度物块a 比物块b 的小B .在水平面上滑行的距离物块a 比物块b 的小C .与斜面间的动摩擦因数物块a 比物块b 的小D .在整个运动过程中克服摩擦力做的功物块a 比物块b 多4.如图所示,一条轻绳一端通过定滑轮悬挂一个质量为m 的重物,在另一端施加拉力F ,使重物从地面由静止开始加速向上运动。
当重物上升高度为h 时,轻绳断开,不计一切摩擦,则( )A .重物从开始向上加速到轻绳断开的过程中重力势能的增量为FhB .轻绳断开瞬间重物重力的瞬时功率为-2(F -mg )mg 2hC .重物上升过程中机械能守恒D .重物落地前瞬间的动能为Fh ﹢mgh5.质量分别为2m 和m 的A 、B 两球之间压缩一根轻弹簧,静置于光滑水平桌面上。
2021高考物理统考二轮复习学案:专题复习篇 专题2 第讲 动量和能量的综合应用

动量和能量的综合应用[建体系·知关联][析考情·明策略]考情分析近几年高考对动量及动量守恒的考查多为简单的选择题形式;而动量和能量的综合性问题则以计算题形式命题,难度较大,常与曲线运动,带电粒子在电磁场中运动和导体棒切割磁感线相联系。
素养呈现1。
动量、冲量、动量定理2。
动量守恒的条件及动量守恒定律3.动力学、能量和动量守恒定律的应用素养落实1。
掌握与动量相关的概念及规律2.灵活应用解决碰撞类问题的方法3。
熟悉“三大观点”在力学中的应用技巧考点1| 动量定理和动量守恒定律冲量和动量定理(1)恒力的冲量可应用I=Ft直接求解,变力的冲量优先考虑应用动量定理求解,合外力的冲量可利用I=F合·t或I合=Δp求解。
(2)动量定理的表达式是矢量式,在一维情况下,各个矢量必须选取统一的正方向.[典例1](2020·武汉二中阶段测试)运动员在水上做飞行运动表演,如图所示,他操控喷射式悬浮飞行器将竖直送上来的水反转180°后向下喷出,令自己悬停在空中。
已知运动员与装备的总质量为90 kg,两个喷嘴的直径均为10 cm,重力加速度大小g=10 m/s2,水的密度ρ=1。
0×103kg/m3,则喷嘴处喷水的速度大约为( )A.2.7 m/s B.5.4 m/sC.7。
6 m/s D.10。
8 m/s[题眼点拨] ①“悬停在空中”表明水向上的冲击力等于运动员与装备的总重力。
②“水反转180°”水速度变化量大小为2v。
B [两个喷嘴的横截面积均为S=错误!πd2,根据平衡条件可知每个喷嘴对水的作用力为F=错误!mg,取质量为Δm=ρSvΔt的水为研究对象,根据动量定理得FΔt=2Δmv,解得v=错误!≈5。
4 m/s,选项B正确.]动量和动量守恒定律(1)判断动量是否守恒时,要注意所选取的系统,注意区别系统内力与外力。
系统不受外力或所受合外力为零时,系统动量守恒。
2024年高考物理二轮复习专题二能量与动量、机械振动与机械波专题突破2板块模型的综合应用

B. 仅增大木板的质量M
C. 仅增大木块的质量m
D. 仅减小木块与木板间的动摩擦因数
考点二 板块模型中动量、能量的综合问题
板块模型中因滑块与滑板间的滑动摩擦力做功,产生摩擦热,所以常涉
及能量问题。若滑板在光滑水平面上,无水平外力作用时,滑板和滑块
组成的系统满足动量守恒,如涉及时间,可应用动量定理,所以该模型
M,平板车右端放一物块m,开始时M、m均静止。t=0时,平板车在外
力作用下开始沿水平面向右运动,其v-t图像如图乙所示,整个过程中
物块m恰好没有从平板车上滑下。已知物块与平板车间的动摩擦因数为
0.1,g取10m/s2,下列说法正确的是( C )
A. 0~4s内,物块m的加速度一直变大
B. 整个过程中,物块m相对平板车M滑动的时间为4s
(1) 在平台上运动的时间t。
解:(1) 在平台上,根据牛顿第二定
律,有F=mAa,根据匀变速直线运动
2
的位移公式,有L= at ,解得t= s。
(2) 刚滑上木板B时,地面对木板B的摩擦力f。
解:(2) 木块A刚滑上木板B时,A对
B的摩擦力大小为f1=μmAg=4N,假设
木板B滑动,地面对B的摩擦力为f2=μ
(mA+mB)g=6N,可知f1<f2,所以
木板B静止,由平衡条件得出f=f1=
4N,方向水平向左。
(3) 滑上木板B并与其右端碰撞后的最大动能Ekm。
解:(3) 对木块A,设其与木板B碰撞
前的速度为v1,根据动能定理,有FL-
μmAgL= mA ,碰撞为弹性碰撞,设
碰撞后A、B的速度分别为vA、vB,根据
高考物理二轮复习教案专题二能量与动量功和功率功能关系

功和功率 功能关系复习备考建议(1)能量观点是高中物理三大观点之一,是历年高考必考内容;或与直线运动、平抛运动、圆周运动结合,或与电场、电磁感应结合,或与弹簧、传送带、板块连接体等结合;或借助选择题单独考查功、功率、动能定理、功能关系的理解,或在计算题中考查动力学与能量观点的综合应用,难度较大.(2)对于动量问题,17年只在选择题中出现,而且是动量守恒、动量定理的基本应用,18年在计算题中出现,Ⅰ卷、Ⅱ卷都是动量守恒的基本应用,运动过程简单,综合性较低,Ⅲ卷只是用到了动量的概念,19年在计算题中出现,Ⅰ卷、Ⅲ卷都涉及动量与能量观点的综合应用,Ⅱ卷中用到了动量定理,对于动量的考察,综合性、难度有所提升,备考时应多加注意.第4课时 功和功率 功能关系 考点 功、功率的分析与计算1.恒力功的计算(1)单个恒力的功W =Fl cos α. (2)合力为恒力的功①先求合力,再求W =F 合l cos α. ②W =W 1+W 2+…. 2.变力功的计算(1)若力大小恒定,且方向始终沿轨迹切线方向,可用力的大小跟路程的乘积计算. (2)力的方向不变,大小随位移线性变化可用W =F l cos α计算. (3)F -l 图象中,功的大小等于“面积”. (4)求解一般变力做的功常用动能定理. 3.功率的计算(1)P =Wt,适用于计算平均功率;(2)P =Fv ,若v 为瞬时速度,则P 为瞬时功率;若v 为平均速度,则P 为平均功率. 注意:力F 与速度v 方向不在同一直线上时功率为Fv cos θ.例1 (多选)(2019·山西晋中市适应性调研)如图1甲所示,足够长的固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,沿杆方向给环施加一个拉力F ,使环由静止开始运动,已知拉力F 及小环速度v 随时间t 变化的规律如图乙、丙所示,重力加速度g 取10m/s 2.则以下判断正确的是( )图1A .小环的质量是1kgB .细杆与地面间的倾角是30°C .前3s 内拉力F 的最大功率是2.25WD .前3s 内拉力对小环做功5.75J 答案 AD解析 由速度-时间图象得到环先匀加速上升,然后匀速运动,由题图可得:第1s 内,a =Δv t =0.51m/s 2=0.5 m/s 2,加速阶段:F 1-mg sin θ=ma ;匀速阶段:F 2-mg sin θ=0,联立以上三式解得:m =1kg ,sin θ=0.45,故A 正确,B 错误;第1s 内,速度不断变大,拉力的瞬时功率也不断变大,第1s 末,P =Fv 1=5×0.5W=2.5W ;第1s 末到第3s 末,P =Fv 1=4.5×0.5W=2.25W ,即拉力的最大功率为2.5W ,故C 错误;从速度-时间图象可以得到,第1 s 内的位移为0.25 m,1~3 s 内的位移为1 m ,前3 s 内拉力做的功为:W =5×0.25 J +4.5×1J =5.75J ,故D 正确. 变式训练1.(2019·河南名校联盟高三下学期2月联考)如图2所示,ad 、bd 、cd 是竖直面内三根固定的光滑细杆,a 、b 、c 、d 位于同一圆周上,a 点为圆周的最高点,d 点为最低点.每根杆上都套着一个质量相等的小滑环(图中未画出),三个滑环分别从a 、b 、c 处由静止释放,用P 1、P 2、P 3依次表示各滑环从静止滑到d 过程中重力的平均功率,则( )图2A .P 1<P 2<P 3B .P 1>P 2>P 3C .P 3>P 1>P 2D .P 1=P 2=P 3 答案 B解析 对小滑环b 受力分析,受重力和支持力,将重力沿杆的方向和垂直杆的方向正交分解,根据牛顿第二定律得,小滑环做初速度为零的匀加速直线运动的加速度为a =g sin θ(θ为杆与水平方向的夹角),由数学知识可知,小滑环的位移x =2R sin θ,所以t =2xa=2×2R sin θg sin θ=4Rg,t 与θ无关,即t 1=t 2=t 3,而三个环重力做功W 1>W 2>W 3,所以有:P 1>P 2>P 3,B 正确.2.(多选)(2019·福建龙岩市期末质量检查)如图3所示,在竖直平面内有一条不光滑的轨道ABC ,其中AB 段是半径为R 的14圆弧,BC 段是水平的.一质量为m 的滑块从A 点由静止滑下,最后停在水平轨道上C 点,此过程克服摩擦力做功为W 1.现用一沿着轨道方向的力推滑块,使它缓慢地由C 点推回到A 点,此过程克服摩擦力做功为W 2,推力对滑块做功为W ,重力加速度为g ,则下列关系中正确的是( )图3A .W 1=mgRB .W 2=mgRC .mgR <W <2mgRD .W >2mgR 答案 AC解析 滑块由A 到C 的过程,由动能定理可知mgR -W 1=0,故A 对;滑块由A 到B 做圆周运动,而在推力作用下从C 经过B 到达A 的过程是一个缓慢的匀速过程,所以从A 到B 的过程中平均支持力大于从B 到A 的平均支持力,那么摩擦力从A 到B 做的功大于从B 到A 做的功,而两次经过BC 段摩擦力做功相等,故W 2<W 1=mgR ,故B 错;滑块由C 到A 的过程中,由能量守恒可知,推力对滑块做的功等于滑块重力势能增加量与克服摩擦力所做的功两部分,即W -mgR -W 2=0,即W =W 1+W 2,由于W 2<W 1=mgR ,所以mgR <W <2mgR ,故C 对,D 错.考点 功能关系的理解和应用1.几个重要的功能关系(1)重力做的功等于重力势能的减少量,即W G =-ΔE p . (2)弹力做的功等于弹性势能的减少量,即W 弹=-ΔE p . (3)合力做的功等于动能的变化量,即W =ΔE k .(4)重力(或系统内弹力)之外的其他力做的功等于机械能的变化量,即W 其他=ΔE . (5)系统内一对滑动摩擦力做的功是系统内能改变的量度,即Q =F f ·x 相对. 2.理解(1)做功的过程就是能量转化的过程,不同形式的能量发生相互转化可以通过做功来实现.(2)功是能量转化的量度,功和能的关系,一是体现在不同性质的力做功对应不同形式的能转化,二是做功的多少与能量转化的多少在数值上相等. 3.应用(1)分析物体运动过程中受哪些力,有哪些力做功,有哪些形式的能发生变化. (2)列动能定理或能量守恒定律表达式.例2 (多选)(2019·全国卷Ⅱ·18)从地面竖直向上抛出一物体,其机械能E 总等于动能E k 与重力势能E p 之和.取地面为重力势能零点,该物体的E 总和E p 随它离开地面的高度h 的变化如图4所示.重力加速度取10m/s 2.由图中数据可得( )图4A .物体的质量为2kgB .h =0时,物体的速率为20m/sC .h =2m 时,物体的动能E k =40JD .从地面至h =4m ,物体的动能减少100J 答案 AD解析 根据题图图像可知,h =4m 时物体的重力势能mgh =80J ,解得物体质量m =2kg ,抛出时物体的动能为E k0=100J ,由公式E k0=12mv 2可知,h =0时物体的速率为v =10m/s ,选项A 正确,B 错误;由功能关系可知F f h =|ΔE 总|=20J ,解得物体上升过程中所受空气阻力F f =5 N ,从物体开始抛出至上升到h =2 m 的过程中,由动能定理有-mgh -F f h =E k -100J ,解得E k =50J ,选项C 错误;由题图图像可知,物体上升到h =4m 时,机械能为80J ,重力势能为80J ,动能为零,即从地面上升到h =4m ,物体动能减少100J ,选项D 正确. 变式训练3.(多选)(2018·安徽安庆市二模)如图5所示,一运动员穿着飞行装备从飞机上跳出后的一段运动过程可近似认为是匀变速直线运动,运动方向与水平方向成53°角,运动员的加速度大小为3g4.已知运动员(包含装备)的质量为m ,则在运动员下落高度为h 的过程中,下列说法正确的是(sin53°=45,cos53°=35)( )图5A .运动员重力势能的减少量为35mghB .运动员动能的增加量为34mghC .运动员动能的增加量为1516mghD .运动员的机械能减少了116mgh答案 CD解析 运动员下落的高度是h ,则重力做功:W =mgh ,所以运动员重力势能的减少量为mgh ,故A 错误;运动员下落的高度是h ,则飞行的距离:L =h sin53°=54h ,运动员受到的合外力:F 合=ma =34mg ,动能的增加量等于合外力做的功,即:ΔE k =W 合=F 合L =34mg ×54h =1516mgh ,故B 错误,C 正确;运动员重力势能的减少量为mgh ,动能的增加量为1516mgh ,所以运动员的机械能减少了116mgh ,故D 正确.4.(多选)(2019·福建厦门市第一次质量检查)如图6甲所示,一轻质弹簧的下端固定在水平面上,上端与A 物体相连接,将B 物体放置在A 物体上面,A 、B 的质量都为m ,初始时两物体处于静止状态.现用竖直向上的拉力F 作用在物体B 上,使物体B 开始向上做匀加速运动,拉力F 与物体B 的位移x 的关系如图乙所示(g =10m/s 2),下列说法正确的是( )图6A .0~4cm 过程中,物体A 、B 和弹簧组成的系统机械能增大B .0~4cm 过程中,弹簧的弹性势能减小,物体B 运动到4cm 处,弹簧弹性势能为零C .弹簧的劲度系数为7.5N/cmD.弹簧的劲度系数为5.0N/cm答案AC解析0~4 cm过程中,物体A、B和弹簧组成的系统,因力F对系统做正功,则系统的机械能增大,选项A正确.由题图可知,在x=4 cm处A、B分离,此时A、B之间的压力为零,A、B的加速度相等,但是弹簧仍处于压缩状态,弹簧的弹性势能不为零,选项B错误.开始物体处于静止状态,重力和弹力二力平衡,有:2mg=kΔl1;拉力F1为20 N时,弹簧弹力和重力平衡,合力等于拉力,根据牛顿第二定律,有:F1=2ma;物体B与A分离后,拉力F2为50 N,根据牛顿第二定律,有:F2-mg=ma;物体A与B分离时,物体A的加速度为a,则根据牛顿第二定律有:kΔl2-mg=k(Δl1-4 cm)-mg=ma;联立解得:m=4.0 kg,k=7.5 N/cm.选项C正确,D错误.考点动能定理的应用1.表达式:W总=E k2-E k1.2.五点说明(1)W总为物体在运动过程中所受各力做功的代数和.(2)动能变化量E k2-E k1一定是物体在末、初两状态的动能之差.(3)动能定理既适用于直线运动,也适用于曲线运动.(4)动能定理既适用于恒力做功,也适用于变力做功.(5)力可以是各种性质的力,既可以同时作用,也可以分阶段作用.3.基本思路(1)确定研究对象和研究过程.(2)进行运动分析和受力分析,确定初、末速度和各力做功情况,利用动能定理全过程或者分过程列式.4.在功能关系中的应用(1)对于物体运动过程中不涉及加速度和时间,而涉及力和位移、速度的问题时,一般选择动能定理,尤其是曲线运动、多过程的直线运动等.(2)动能定理也是一种功能关系,即合外力做的功(总功)与动能变化量一一对应.例3如图7所示,在地面上竖直固定了刻度尺和轻质弹簧,弹簧原长时上端与刻度尺上的A点等高.质量m=0.5kg的篮球静止在弹簧正上方,其底端距A点的高度h1=1.10m,篮球由静止释放,测得第一次撞击弹簧时,弹簧的最大形变量x1=0.15m,第一次反弹至最高点,篮球底端距A点的高度h2=0.873m,篮球多次反弹后静止在弹簧的上端,此时弹簧的形变量x2=0.01m,弹性势能为E p=0.025J.若篮球运动时受到的空气阻力大小恒定,忽略篮球与弹簧碰撞时的能量损失和篮球形变,弹簧形变在弹性限度范围内,g取10m/s2.求:图7(1)弹簧的劲度系数;(2)篮球在运动过程中受到的空气阻力的大小; (3)篮球在整个运动过程中通过的路程. 答案 (1)500N/m (2)0.50N (3)11.05m 解析 (1)由最后静止的位置可知kx 2=mg , 所以k =500N/m(2)由动能定理可知,在篮球由静止下落到第一次反弹至最高点的过程中mg Δh -F f ·L =12mv 22-12mv 12整个过程动能变化为0,重力做功mg Δh =mg (h 1-h 2)=1.135J 空气阻力大小恒定,作用距离为L =h 1+h 2+2x 1=2.273m故可得F f ≈0.50N(3)整个运动过程中,空气阻力一直与运动方向相反 根据动能定理有mg Δh ′+W f +W 弹=12mv 2′2-12mv 12整个过程动能变化为0,重力做功mg Δh ′=mg (h 1+x 2)=5.55J 弹力做功W 弹=-E p =-0.025J则空气阻力做功W f =-mg Δh ′-W 弹=-5.525J 因W f =-F f s 故解得s =11.05m. 变式训练5.(2019·全国卷Ⅲ·17)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用.距地面高度h 在3m 以内时,物体上升、下落过程中动能E k 随h 的变化如图8所示.重力加速度取10m/s 2.该物体的质量为( )图8A.2kgB.1.5kgC.1kgD.0.5kg答案 C解析设物体的质量为m,则物体在上升过程中,受到竖直向下的重力mg和竖直向下的恒定外力F,当Δh=3m时,由动能定理结合题图可得-(mg+F)×Δh=(36-72) J;物体在下落过程中,受到竖直向下的重力mg和竖直向上的恒定外力F,当Δh=3m时,再由动能定理结合题图可得(mg-F)×Δh=(48-24) J,联立解得m=1kg、F=2N,选项C正确,A、B、D均错误.6.由相同材料的木板搭成的轨道如图9所示,其中木板AB、BC、CD、DE、EF…的长均为L =1.5m,木板OA和其他木板与水平地面的夹角都为β=37°,sin37°=0.6,cos37°=0.8,g取10m/s2.一个可看成质点的物体在木板OA上从离地高度h=1.8m处由静止释放,物体与木板间的动摩擦因数都为μ=0.2,在两木板交接处都用小曲面相连,使物体能顺利地经过,既不损失动能,也不会脱离轨道,在以后的运动过程中,求:(最大静摩擦力等于滑动摩擦力)图9(1)物体能否静止在木板上?请说明理由.(2)物体运动的总路程是多少?(3)物体最终停在何处?并作出解释.答案(1)不能理由见解析(2)11.25m (3)C点解释见解析解析(1)物体在木板上时,重力沿木板方向的分力为mg sinβ=0.6mg最大静摩擦力F fm=μmg cosβ=0.16mg因mg sinβ>μmg cosβ,故物体不会静止在木板上.(2)从物体开始运动到停下,设总路程为s,由动能定理得mgh -μmgs cos β=0解得s =11.25m(3)假设物体依次能到达B 、D 点,由动能定理得mg (h -L sin β)-μmg cos β(L +hsin β)=12mv B 2 解得v B >0mg (h -L sin β)-μmg cos β(3L +hsin β)=12mv D 2 v D 无解说明物体能通过B 点但不能到达D 点,因物体不能静止在木板上,故物体最终停在C 点.考点 动力学与能量观点的综合应用1.两个分析(1)综合受力分析、运动过程分析,由牛顿运动定律做好动力学分析.(2)分析各力做功情况,做好能量的转化与守恒的分析,由此把握各运动阶段的运动性质,各连接点、临界点的力学特征、运动特征、能量特征. 2.四个选择(1)当物体受到恒力作用发生运动状态的改变而且又涉及时间时,一般选择用动力学方法解题;(2)当涉及功、能和位移时,一般选用动能定理、机械能守恒定律、功能关系或能量守恒定律解题,题目中出现相对位移时,应优先选择能量守恒定律;(3)当涉及细节并要求分析力时,一般选择牛顿运动定律,对某一时刻的问题选择牛顿第二定律求解;(4)复杂问题的分析一般需选择能量的观点、运动与力的观点综合分析求解.例4 (2019·河北邯郸市测试)如图10所示,一根轻弹簧左端固定于竖直墙上,右端被质量m =1kg 可视为质点的小物块压缩而处于静止状态,且弹簧与物块不拴接,弹簧原长小于光滑平台的长度.在平台的右端有一传送带,AB 长L =5m ,物块与传送带间的动摩擦因数μ1=0.2,与传送带相邻的粗糙水平面BC 长s =1.5 m ,它与物块间的动摩擦因数μ2=0.3,在C 点右侧有一半径为R 的光滑竖直圆弧轨道与BC 平滑连接,圆弧对应的圆心角为θ=120°,在圆弧的最高点F 处有一固定挡板,物块撞上挡板后会以原速率反弹回来.若传送带以v =5m/s 的速率顺时针转动,不考虑物块滑上和滑下传送带的机械能损失.当弹簧储存的E p =18 J 能量全部释放时,小物块恰能滑到与圆心等高的E 点,取g =10 m/s 2.图10(1)求右侧圆弧的轨道半径R ;(2)求小物块最终停下时与C 点的距离;(3)若传送带的速度大小可调,欲使小物块与挡板只碰一次,且碰后不脱离轨道,求传送带速度的可调节范围.答案 (1)0.8m (2)13m (3)37m/s≤v ≤43m/s解析 (1)物块被弹簧弹出,由E p =12mv 02,可知:v 0=6m/s因为v 0>v ,故物块滑上传送带后先减速,物块与传送带相对滑动过程中, 由:μ1mg =ma 1,v =v 0-a 1t 1,x 1=v 0t 1-12a 1t 12得到:a 1=2m/s 2,t 1=0.5s ,x 1=2.75m因为x 1<L ,故物块与传送带同速后相对静止,最后物块以5m/s 的速度滑上水平面BC ,物块滑离传送带后恰到E 点,由动能定理可知:12mv 2=μ2mgs +mgR代入数据得到:R =0.8m.(2)设物块从E 点返回至B 点的速度大小为v B , 由12mv 2-12mv B 2=μ2mg ·2s 得到v B =7m/s ,因为v B >0,故物块会再次滑上传送带,物块在恒定摩擦力的作用下先减速至0再反向加速,由运动的对称性可知,物块以相同的速率离开传送带,经分析可知最终在BC 间停下,设最终停在距C 点x 处,由12mv B 2=μ2mg (s -x ),代入数据解得:x =13m. (3)设传送带速度为v 1时物块恰能到F 点,在F 点满足mg sin30°=m v F 2R从B 到F 过程中由动能定理可知: -μ2mgs -mg (R +R sin30°)=12mv F 2-12mv 12解得:v 1=37m/s设传送带速度为v 2时,物块撞挡板后返回能再次上滑恰到E 点, 由12mv 22=μ2mg ·3s +mgR解得:v 2=43m/s若物块在传送带上一直加速运动,由12mv B m 2-12mv 02=μ1mgL知其到B 点的最大速度v B m =56m/s若物块在E 、F 间速度减为0,则物块将脱离轨道.综合上述分析可知,只要传送带速度37m/s≤v ≤43m/s 就满足条件. 变式训练7.(2019·山东青岛二中上学期期末)如图11所示,O 点距水平地面的高度为H =3m ,不可伸长的细线一端固定在O 点,另一端系一质量m =2kg 的小球(可视为质点),另一根水平细线一端固定在墙上A 点,另一端与小球相连,OB 线与竖直方向的夹角为37°,l <H ,g 取10m/s 2,空气阻力不计.(sin37°=0.6,cos37°=0.8)图11(1)若OB 的长度l =1m ,剪断细线AB 的同时,在竖直平面内垂直OB 的方向上,给小球一个斜向下的冲量,为使小球恰好能在竖直平面内做完整的圆周运动,求此冲量的大小; (2)若先剪断细线AB ,当小球由静止运动至最低点时再剪断OB ,小球最终落地,求OB 的长度l 为多长时,小球落地点与O 点的水平距离最远,最远水平距离是多少. 答案 (1)246kg·m/s (2)1.5m355m 解析 (1)要使小球恰好能在竖直平面内做完整的圆周运动,最高点需满足:mg =m v 2l从B 点到最高点,由动能定理有: -mg (l +l cos37°)=12mv 2-12mv 02联立得一开始的冲量大小为I =mv 0=246kg·m/s(2)从剪断AB 到小球至H -l 高度过程,设小球至H -l 高度处的速度为v 0′ 由机械能守恒可得12mv 0′2=mgl (1-cos37°)小球从H -l 高度做初速度为v 0′的平抛运动,12gt 2=H -l ,x =v 0′t 联立得,x =45(-l 2+3l ) 当l =1.5m 时x 取最大值,为355m .专题突破练1.(2019·山东烟台市上学期期末)如图1所示,把两个相同的小球从离地面相同高度处,以相同大小的初速度v 分别沿竖直向上和水平向右方向抛出,不计空气阻力.则下列说法中正确的是( )图1A .两小球落地时速度相同B .两小球落地时,重力的瞬时功率相同C .从小球抛出到落地,重力对两小球做的功相等D .从小球抛出到落地,重力对两小球做功的平均功率相等 答案 C解析 两小球运动过程中均只有重力做功,故机械能都守恒,由机械能守恒定律得,两小球落地时的速度大小相同,但方向不同,故A 错误;两小球落地时,由于竖直方向的分速度不同,故重力的瞬时功率不相同,故B 错误;由重力做功公式W =mgh 得,从开始运动至落地,重力对两小球做功相同,故C 正确;从抛出至落地,重力对两小球做的功相同,但是落地的时间不同,故重力对两小球做功的平均功率不相同,故D 错误.2.(2019·河北张家口市上学期期末)如图2所示,运动员跳伞将经历加速下降和减速下降两个过程,在这两个过程中,下列说法正确的是( )图2A .运动员先处于超重状态后处于失重状态B .空气浮力对系统始终做负功C .加速下降时,重力做功大于系统重力势能的减小量D .任意相等的时间内系统重力势能的减小量相等 答案 B解析 运动员先加速向下运动,处于失重状态,后减速向下运动,处于超重状态,选项A 错误;空气浮力与运动方向总相反,则对系统始终做负功,选项B 正确;无论以什么运动状态运动,重力做功都等于系统重力势能的减小量,选项C 错误;因为是变速运动,相等的时间内,因为系统下降的高度不相等,则系统重力势能的减小量不相等,选项D 错误. 3.(2019·河南驻马店市上学期期终)一物体在竖直向上的恒力作用下,由静止开始上升,到达某一高度时撤去外力.若不计空气阻力,则在整个上升过程中,物体的机械能E 随时间t 变化的关系图象是( )答案 A解析 设物体在恒力作用下的加速度为a ,机械能增量为:ΔE =F Δh =F ·12at 2,知此时E-t 图象是开口向上的抛物线;撤去外力后的上升过程中,机械能守恒,则机械能不随时间改变,故A 正确,B 、C 、D 错误.4.(多选)如图3所示,楔形木块abc 固定在水平面上,粗糙斜面ab 和光滑斜面bc 与水平面的夹角相同,顶角b 处安装一定滑轮.质量分别为M 、m (M >m )的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中( )图3A .两滑块组成的系统机械能守恒B .轻绳对m 做的功等于m 机械能的增加量C .重力对M 做的功等于M 动能的增加量D .两滑块组成的系统机械能的损失等于M 克服摩擦力做的功 答案 BD5.(2019·福建三明市期末质量检测)如图4所示,一个质量m =1 kg 的小球(视为质点)从H =11m 高处,由静止开始沿光滑弯曲轨道AB 进入半径R =4m 的竖直圆环内侧,且与圆环的动摩擦因数处处相等,当到达圆环顶点C 时,刚好对轨道压力为零,然后沿CB 圆弧滑下,进入光滑弧形轨道BD ,到达高度为h 的D 点时速度为零,则h 的值可能为(重力加速度g =10m/s 2)( )图4A .10mB .9.5mC .9mD .8.5m 答案 B解析 到达圆环顶点C 时,刚好对轨道压力为零,则mg =m v C 2R,解得v C =210m/s ,则物体在BC 阶段克服摩擦力做功,由动能定理mg (H -2R )-W BC =12mv C 2,解得W BC =10J ;由于从C到B 过程小球对圆轨道的平均压力小于从B 到C 过程小球对圆轨道的平均压力,则小球从C 到B 过程克服摩擦力做的功小于从B 到C 过程克服摩擦力做的功,即0<W CB <10J ;从C 到D 由动能定理:mg (2R -h )-W CB =0-12mv C 2,联立解得9m<h <10m.6.一名外卖送餐员用电动自行车沿平直公路行驶给客户送餐,中途因电瓶“没电”,只能改用脚蹬车以5m/s 的速度匀速前行,骑行过程中所受阻力大小恒为车和人总重力的0.02倍(取g =10 m/s 2),该送餐员骑电动自行车以5m/s 的速度匀速前行过程做功的功率最接近( )A .10WB .100WC .1kWD .10kW 答案 B解析 设送餐员和车的总质量为100kg ,匀速行驶时的速率为5m/s ,匀速行驶时的牵引力与阻力大小相等,F =0.02mg =20 N ,则送餐员骑电动自行车匀速行驶时的功率为P =Fv =100W ,故B 正确.7.(多选)(2019·四川第二次诊断)如图5甲所示,质量m =1kg 的物块在平行斜面向上的拉力F 作用下从静止开始沿斜面向上运动,t =0.5s 时撤去拉力,其1.5s 内的速度随时间变化关系如图乙所示,g 取10m/s 2.则( )图5A .0.5s 时拉力功率为12WB .0.5s 内拉力做功9JC .1.5s 后物块可能返回D .1.5s 后物块一定静止 答案 AC解析 0~0.5 s 内物体的位移:x 1=12×0.5×2 m=0.5 m ;0.5~1.5 s 内物体的位移:x 2=12×1×2m =1m ;由题图乙知,各阶段加速度的大小:a 1=4m/s 2,a 2=2 m/s 2;设斜面倾角为θ,斜面对物块的动摩擦因数为μ,根据牛顿第二定律,0~0.5s 内F -μgm cos θ-mg sin θ=ma 1;0.5~1.5s 内-μmg cos θ-mg sin θ=-ma 2,联立解得:F =6N ,但无法求出μ和θ.0.5s 时,拉力的功率P =Fv =12W ,故A 正确.拉力做的功为W =Fx 1=3J ,故B 错误.无法求出μ和θ,不清楚tan θ与μ的大小关系,故无法判断物块能否静止在斜面上,故C 正确,D 错误.8.(多选)(2019·安徽安庆市期末调研监测)如图6所示,重力为10N 的滑块轻放在倾角为30°的光滑斜面上,从a 点由静止开始下滑,到b 点接触到一个轻质弹簧,滑块压缩弹簧到c 点开始弹回,返回b 点离开弹簧,最后又回到a 点.已知ab =1m ,bc =0.2m ,则以下结论正确的是( )图6A .整个过程中弹簧弹性势能的最大值为6JB .整个过程中滑块动能的最大值为6JC .从c 到b 弹簧的弹力对滑块做功5JD .整个过程中弹簧、滑块与地球组成的系统机械能守恒 答案 AD解析 滑块从a 到c, mgh ac +W 弹′=0-0,解得:W 弹′=-6J .则E pm =-W 弹′=6J ,所以整个过程中弹簧弹性势能的最大值为6J ,故A 正确;当滑块受到的合外力为0时,滑块速度最大,设滑块在d 点合外力为0,由分析可知d 点在b 点和c 点之间.滑块从a 到d 有:mgh ad +W 弹=E k d -0,因mgh ad <6J ,W 弹<0,所以E k d <6J ,故B 错误;从c 点到b 点弹簧的弹力对滑块做的功与从b 点到c 点弹簧的弹力对滑块做的功大小相等,即为6J ,故C 错误;整个过程中弹簧、滑块与地球组成的系统机械能守恒,没有与系统外发生能量转化,故D 正确.9.(多选)(2019·河南九师联盟质检)如图7所示,半径为R =0.4m 的14圆形光滑轨道固定于竖直平面内,圆形轨道与光滑固定的水平轨道相切,可视为质点的质量均为m =0.5kg 的小球甲、乙用轻杆连接,置于圆轨道上,小球甲与O 点等高,小球乙位于圆心O 的正下方.某时刻将两小球由静止释放,最终它们在水平面上运动,g 取10m/s 2.则( )图7A .小球甲下滑过程中机械能增加B .小球甲下滑过程中重力对它做功的功率先增大后减小C .小球甲下滑到圆形轨道最低点对轨道压力的大小为12ND .整个过程中轻杆对小球乙做的功为1J 答案 BD解析 小球甲下滑过程中,轻杆对甲做负功,则甲的机械能减小,故A 错误.小球甲下滑过程中,最高点速度为零,故重力的功率为零;最低点速度和重力垂直,故重力的功率也是零;而中途重力的功率不为零,故重力的功率应该是先增大后减小,故B 正确.两个球与轻杆组成的系统机械能守恒,故:mgR =12mv 2+12mv 2,解得:v =gR =10×0.4m/s =2 m/s ;小球甲下滑到圆弧形轨道最低点,重力和支持力的合力提供向心力,故:F N -mg =m v 2R,解得:F N=mg +m v 2R =0.5×10N+0.5×220.4N =10N ,根据牛顿第三定律,小球甲对轨道的压力大小为10N ,故C 错误;整个过程中,对球乙,根据动能定理,有:W =12mv 2=12×0.5×22J =1J ,故D 正确.10.(2019·吉林“五地六校”合作体联考)一辆赛车在水平路面上由静止启动,在前5s 内做匀加速直线运动,5s 末达到额定功率,之后保持以额定功率运动.其v -t 图象如图8所示.已知赛车的质量为m =1×103kg ,赛车受到的阻力为车重力的0.1倍,重力加速度g 取10m/s 2,则以下说法正确的是( )图8A .赛车在前5s 内的牵引力为5×102N。
2020高考物理二轮复习 专题二 能量与动量 第4讲 动量定理和动量守恒定律练习(含解析)

动量定理和动量守恒定律一、单项选择题1.(2019·海口质检)如图所示,两质量分别为m1和m2的弹性小球A、B叠放在一起,从高度为h处自由落下,h远大于两小球半径,落地瞬间,B先与地面碰撞,后与A碰撞,所有的碰撞都是弹性碰撞,且都发生在竖直方向.碰撞时间均可忽略不计.已知m2=3m1,则A反弹后能达到的高度为( )A.h B。
2hC.3h D。
4h解析:选 D.所有的碰撞都是弹性碰撞,所以不考虑能量损失.设竖直向上为正方向,根据机械能守恒定律和动量守恒定律可得,(m1+m2)gh=错误!(m1+m2)v2,m2v-m1v=m1v1+m2v2,错误!(m1+m2)v2=错误!m1v错误!+错误!m2v错误!,错误!m1v错误!=m1gh1,将m2=3m1代入,联立可得h1=4h,选项D正确.2.(2019·高三惠州模拟)质量为1 kg的物体从距地面5 m 高处自由下落,落在正以5 m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂子的总质量为4 kg,地面光滑,则车后来的速度为(g=10 m/s2)() A.4 m/s B。
5 m/sC.6 m/s D.7 m/s解析:选 A.物体和车作用过程中,两者组成的系统水平方向不受外力,水平方向系统的动量守恒.已知两者作用前,车在水平方向的速度v0=5 m/s,物体水平方向的速度v=0;设当物体与小车相对静止后,小车的速度为v′,取原来小车速度方向为正方向,则根据水平方向系统的动量守恒得:mv+Mv0=(M+m)v′,解得:v′=错误!=错误! m/s=4 m/s,故选项A正确,B、C、D错误.3.某同学质量为60 kg,在军事训练中要求他从岸上以大小为2 m/s的速度跳到一条向他缓慢飘来的小船上,然后去执行任务,小船的质量是140 kg,原来的速度大小是0.5 m/s,该同学上船后又跑了几步,最终停在船上,则()A.人和小船最终静止在水面上B.该过程人的动量变化量的大小为105 kg·m/sC.船最终速度的大小为0.95 m/sD.船的动量变化量的大小为70 kg·m/s解析:选B。
(通用版)高三物理二轮复习第一部分专题二能量和动量第三讲动量定理动量守恒定律课件

(2015·北京高考)“蹦极”运动中,长弹性绳的一端固定,另 一端绑在人身上,人从几十米高处跳下,将蹦极过程简化为
人沿竖直方向的运动,从绳恰好伸直,到人第一次下降至最
低点的过程中,下列分析正确的是
()
A.绳对人的冲量始终向上,人的动量先增大后减小
B.绳对人的拉力始终做负功,人的动能一直减小
C.绳恰好伸直时,绳的弹性势能为零,人的动能最大
自由落下,h远大于两小球半径,落地瞬间,B
先与地面碰撞,后与A碰撞,所有的碰撞都是弹
性碰撞,且都发生在竖直方向、碰撞时间均可
忽略不计。已知m2=3m1,则A反弹后能达到的 高度为
()
A.h
B.2h
C.3h
D.4h
A、B两个小球为弹性小球,B碰地面后原速弹回,B
与A碰撞过程中动量、动能均守恒。
2.爆炸与反冲的特点 (1)时间极短,内力远大于外力,系统动量守恒或某个 方向的动量守恒。 (2)因有内能转化为机械能,系统机械能会增加。 (3)系统初始状态若处于静止状态,则爆炸或反冲后系 统内物体速度往往方向相反。
恒力F作用下,由静止开始运动,经过时间t,速度为v,在此
时间内恒力F和重力的冲量大小分别为
()
A.Ft,0
B.Ftcos θ,0
C.mv,0
D.Ft,mgt
2.变力的冲量可优先考虑应用动量定理求解,如诊断卷第 4题中,
(2016·三明一中月考)质量为m的钢球自高处落下,以速率v1
碰地面,竖直向上弹回,碰撞时间极短,离开地面的速率为
3.动量观点和能量观点的选取原则 (1)动量观点 ①对于不涉及物体运动过程中的加速度而涉及物体运 动时间的问题,特别对于打击一类的问题,因时间短且冲 力随时间变化,应用动量定理求解,即Ft=mv-mv0。 ②对于碰撞、爆炸、反冲一类的问题,若只涉及初、 末速度而不涉及力、时间,应用动量守恒定律求解。
物理知识点高三物理第二轮专题复习专题二动量和能量教案人教版

物理知识点高三物理第二轮专题复习专题二动量和能量教案人教版动量和能量高考形势分析及历年部分省市高考试题分布:高中物理在力学、热学、电磁学、光学和原子物理等各分支学科中涉及到许多形式的能,如动能、势能、电能、内能、核能,这些形式的能可以相互转化,并且遵循能量转化和守恒定律,能量是贯穿于中学物理教材的一条主线,是分析和解决物理问题的主要依据。
在每年的高考物理试卷中都会出现考查能量的问题。
并时常发现“压轴题”就是能量试题。
历年高考中动量和能量题分布情况:2021年,全国理综II,计算题25题考查动量和能量综合题;全国理综III,计算题25题考查动量和能量综合题;北京卷24题考查动量和能量综合题;天津卷选择题21题考查碰撞中的动量守恒,25题考查动量和能量的综合题。
2021年,全国理综I动量和能量的题占19分,理综II占36分,理综III占20分,北京卷占16分,天津卷占18分。
2021年全国理综I、III,选择题20题动量定理和动能定理;理综II,18题碰撞中的动量和能量问题;重庆卷2计算题25题考查机械能守恒定律、动量守恒定律和圆周运动中的牛顿第二定律的知识;四川卷计算题25题考查带电粒子在磁场中的运动,动量守恒定律,圆周运动,平抛运动。
天津卷实验题22题考查验证碰撞中的动量守恒定律和百分误差。
2021年,湖南卷实验题22题,考查验证中碰撞中的动量守恒定律,计算题24题考查电子阻尼、碰撞动量守恒;北京卷选择题19题考查碰撞动量守恒和单摆周期的知识结合,20题考查动量定理和电场的知识。
全国卷II选择题16题考查动量和动能定理。
四川卷选择题18题考查碰撞中的动量守恒定律和机械能守恒定律。
天津卷选择题15题考查动量守恒与动能定理,计算题23题考查机械能守恒,圆周运动中的牛顿第二定律,动量守恒定律和动能定理。
动量与能量知识框架:力对时间的积力的积累和效应力对位移的积累效应势能重力势能:Ep=mgh 弹性势能机械能动能累效应动量p=mv 功:W=FScosα 瞬时功率:P=Fvcosα牛顿第二定律冲量I=Ft 动量定理动量守恒定律Ft=mv2-mv1 系统所受合力为零或不受外力m1v1+m2v2=m1v1’+m2v2’ F=ma 动能定理平均功率:P?W?Fvcos? tWA?1212mv2?mv1 22Ek?1mv2 2机械能守恒定律Ek1+EP1=Ek2+EP2 ΔE=ΔE 一、考点回顾1.动量、冲量和动量定理用心爱心专心12.动量守恒定律3.动量和能量的应用4.动量与动力学知识的应用5.航天技术的发展和宇宙航行6.动量守恒定律实验二、动量和能量知识点1.动量(1)动量:运动物体的质量和速度的乘积叫做动量,即p=mv.是矢量,方向与v的方向相同.两个动量相同必须是大小相等,方向一致。
2022-2023年高考物理二轮复习 专题2能量与动量第2讲动量观点的应用课件

【解析】 由于地面光滑,所以物块和小车构成的系统动量守恒, 故 A 正确;由于物块和小车之间有摩擦力,所以系统机械能不守恒,故 B 错误;设物块与小车的共同速度为 v,以水平向右的方向为正方向, 根据动量守恒定律有 m2v0=(m1+m2)v,设物块与车面间的滑动摩擦力 为 f,则 f=μm2g,对物块应用动量定理有-μm2gt=m2v-m2v0,解得 t =μmm1+1vm0 2g,t=μmm1+1vm0 2g,代入数据得 t=0.24 s,C 正确;要使物 块恰好不从车面上滑出,须物块到车面最右端时与小车有共同的速度,
根据题意,木块 A 和墙壁碰撞后,速度变小,机械能有损失,B 错误; 水平轨道光滑,则 A 和 B 碰撞过程动量守恒 mAv2=(mA+mB)v,解得 v =3 m/s,故 C 正确;四分之一圆弧轨道足够高,则 A、B 不会脱离轨 道,它们运动到最高点时,速度变为零.从轨道最低点到它们一起运动 到最高点的过程中,只有重力做功,机械能守恒,即21(mA+mB)v2=(mA +mB)gh,解得 h=0.45 m,D 错误;故选 A、C.
【解析】 因安全气囊充气后,受力面积增大,故减小了司机单 位面积的受力大小,故A错误;有无安全气囊司机初动量和末动量均 相同,所以动量的改变量也相同,故B错误;因有安全气囊的存在, 司机和安全气囊接触后会有一部分动能转化为气体的内能,不能全部 转化成汽车的动能,故C错误;因为安全气囊充气后面积增大,司机 的受力面积也增大,在司机挤压气囊作用过程中由于气囊的缓冲故增 加了作用时间,故D正确.
专题二 能量与动量
第2讲 动量观点的应用
01 考情速览 · 明规律
02 核心知识 · 提素养
“物理观念”构建
1.动量定理 (1)公式:Ft=p′-p,除表明等号两边大小、方向的关系外,还 说明了两边的因果关系,即合外力的冲量是动量变化的原因. (2)意义:动量定理说明的是合外力的冲量与动量变化的关系,反 映了力对时间的累积效果,与物体的初、末动量无必然联系.动量变 化的方向与合外力的冲量方向相同,而物体在某一时刻的动量方向跟 合外力的冲量方向无必然联系.
(新高考适用)2023版高考物理二轮总复习专题2 能量与动量 第2讲 动量 动量守恒定律

第一部分 专题二 第2讲基础题——知识基础打牢1. (多选)(2022·广东汕头二模)科学家常在云室中加入铅板以降低运动粒子的速度.图示为物理学家安德森拍下的正电子在云室中运动的径迹,已知图示云室加垂直纸面方向的匀强磁场,由图可以判定( BC )A .匀强磁场方向向外B .正电子由上而下穿过铅板C .正电子在铅板上、下磁场中运动角速度相同D .正电子在铅板上、下磁场运动中动量大小相等【解析】 正电子在匀强磁场中,洛伦兹力提供向心力,则有qvB =m v 2r 解得r =mv qB,由于正电子经过铅板后速度会减小,可知正电子经过铅板后的轨迹半径减小,从图中可以看出正电子在铅板上方轨迹半径比下方轨迹半径大,故正电子由上而下穿过铅板,由左手定则判断匀强磁场方向向里,A 错误,B 正确;正电子经过铅板后速度会减小,则正电子经过铅板后动量减小,正电子在铅板上、下磁场运动中动量大小不相等,D 错误;正电子在磁场中做圆周运动的角速度为ω=v r =qBm可知正电子在铅板上、下磁场中运动角速度相同,C 正确.故选BC.2. (多选)(2022·重庆八中模拟)2022北京冬奥会期间,校园陆地冰壶也在积极的参与中.如图所示,某次投掷时,冰壶A 以速度v =3 m/s 与冰壶B 发生正碰,碰撞前后的速度均在同一直线上,若A 、B 的质量均为1 kg ,则下列说法正确的是( CD )A .碰撞后A 的速度可能为2 m/sB .碰撞后B 的速度可能为1 m/sC .碰撞后A 不可能反向运动D .碰撞后B 的速度可能为2.5 m/s【解析】 设A 、B 的质量为m ,若发生弹性碰撞,根据动量守恒得mv =mv A +mv B ,根据机械能守恒得12mv 2=12mv 2A +12mv 2B ,解得A 、B 的速度分别为v A =0,v B =v =3 m/s ,若发生完全非弹性碰撞,则mv =(m +m )v 共,解得A 、B 的共同速度为v 共=1.5 m/s ,所以碰撞后A 、B 球的速度范围分别为0~1.5 m/s,1.5 m/s ~3 m/s ,故选CD.3. (2022·广东汕头二模)汕头市属于台风频发地区,图示为风级(0~12)风速对照表.假设不同风级的风迎面垂直吹向某一广告牌,且吹到广告牌后速度立刻减小为零,则“12级”风对广告牌的最大作用力约为“4级”风对广告牌最小作用力的( A )C .27倍D .9倍【解析】 设空气的密度为ρ,广告牌的横截面积为S ,经过Δt 时间撞击在广告牌上的空气质量为Δm =ρΔV =ρSv Δt ,根据动量定理可得F Δt =Δmv ,解得F =ρSv 2,根据牛顿第三定律可知,风对广告牌作用力为F ′=F =ρSv 2∝v 2,则“12级”风对广告牌的最大作用力与“4级”风对广告牌最小作用力的比值为F 12′F 4′=36.925.52≈45,故选A.4. (2022·江苏连云港模拟)离子发动机是利用电场加速离子形成高速离子流而产生推力的航天发动机,这种发动机适用于航天器的姿态控制、位置保持等.某航天器质量M ,单个离子质量m ,带电量q ,加速电场的电压为U ,高速离子形成的等效电流强度为I ,根据以上信息计算该航天器发动机产生的推力为( B )A .I mU qB .I 2mUqC .I3mUqD .I5mUq【解析】 对离子,根据动能定理有qU =12mv 2,解得v =2qUm,根据电流的定义式则有I =Q Δt =Nq Δt ,对离子,根据动量定理有F ·Δt =Nmv ,解得F =Nmv Δt =mvIq=I 2Um q,根据牛顿第三定律,推进器获得的推力大小为F ′=I2Umq,故B 正确,A 、C 、D 错误.5. (多选)(2022·湖南长郡中学月考)如图所示,质量为m 的半圆轨道小车静止在光滑的水平地面上,其水平直径AB 长度为2R ,现将质量也为m 的小球从距A 点正上方h 0高处由静止释放,然后由A 点经过半圆轨道后从B 冲出,在空中能上升的最大高度为h 02(不计空气阻力).则下列说法错误的是( ACD )A .小球和小车组成的系统动量守恒B .小车向左运动的最大距离为RC .小球从B 点离开小车不会再落回轨道内D .小球从B 点离开小车后又会从B 点落回轨道,再次恰好到达A 点时速度为零不会从A 点冲出【解析】 小球与小车组成的系统在水平方向不受外力,所以只是系统水平方向动量守恒,故A 错误;系统水平方向动量守恒,以向右为正方向,在水平方向,由动量守恒定律得:mv -mv ′=0,m2R -x t =m xt解得x =R ,故B 正确;由于小球第二次在车中滚动时,对应位置的速度减小,因此小车给小球的弹力变小,摩擦力变小,克服摩擦力做的功小于12mgh 0,因此小球一定能从A 点冲出,故D 错误;小球与小车组成的系统水平方向上动量守恒,则知小球由B 点离开小车时水平方向动量为零,小球与小车水平方向速度均为零,小球离开小车后竖直上抛运动,最后又从B 点落回,故C 错误.故选ACD.6. (多选)(2022·湖南长沙二模)如图所示一平板车A 质量为2m ,静止于光滑水平面上,其右端与竖直固定挡板相距为L .小物块B 的质量为m ,以大小为v 0的初速度从平板车左端开始向右滑行,一段时间后车与挡板发生碰撞,已知车碰撞挡板时间极短,碰撞前后瞬间的速度大小不变但方向相反.A 、B 之间的动摩擦因数为μ,平板车A 表面足够长,物块B 总不能到平板车的右端,重力加速度大小为g .L 为何值,车与挡板能发生3次及以上的碰撞( CD )A .L =v20μgB .L =v2032μgC .L =v2065μgD .L =v2096μg【解析】 在车与挡板碰撞前,有mv 0=2mv A +mv B ,如果L 为某个值L 1,使A 与挡板能发生二次碰撞,从A 开始运动到与挡板第一次碰撞前瞬间,对A 由动能定理可得μmgL 1=12·2mv 2A ,设A 第二次与挡板碰撞前瞬间A 、B 的速度大小分别为v A ′、v B ′,从A 与挡板第一次碰撞后瞬间到第二次碰撞前瞬间,由动量守恒定律可得mv B -2mv A =2mv A ′+mv B ′且第二次碰撞前,A 、B 未达到共同速度,A 在这段时间内先向左后向右运动,加速度保持不变,根据匀变速直线运动的对称性可知v A ′=v A ,A 与挡板第二次碰撞后经一段时间后A 、B 同时停止运动,即mv B ′-2mv A ′=0,联立解得L 1=v2064μg ,车与挡板能发生3次及以上的碰撞的条件L <v 2064μg,故C 、D 可能,A 、B 不可能.7. (多选)(2022·江西贵溪二模)如图所示,在光滑水平面上放置一个质量为M 的滑块,滑块的一侧是一个14弧形凹槽OAB ,凹槽半径为R ,A 点切线水平,另有一个质量为m (m >M )的小球以速度v 0从A 点冲上凹槽,重力加速度大小为g ,不计摩擦.下列说法中正确的是( AB )A .当v 0=2gR 时,小球不可能到达B 点B .当v 0=2gR 时,小球在弧形凹槽上运动的过程中,滑块的动能一直增大C .如果小球的速度足够大,小球将从滑块的左侧离开滑块后落到水平面上D .当v 0=gR 时,小球返回A 点后可能做自由落体运动【解析】 当小球能够恰好到达B 点时,设小球和滑块达到共同速度v ,根据动量守恒定律有mv 0=(m +M )v ,根据机械能守恒定律有12mv 20=12(m +M )v 2+mgR ,联立以上两式解得v 0=2M +mMgR >2gR ,所以当v 0=2gR 时,小球不能到达B 点,A 正确;当v 0=2gR 时,小球未到达B 点,小球从进入凹槽至最高点的过程中,小球对滑块的作用力始终做正功,所以滑块的动能一直增大,B 正确;如果小球的初速度足够大,小球将从B 点冲出,由于B 点的切线方向竖直,小球离开滑块时,二者水平方向的速度相同,小球相对滑块做竖直上抛运动,最后将从B 再次进入凹槽,最后从滑块的右侧离开,C 错误;当v 0=gR 时,小球再次回到凹槽底部时的速度为v 1,凹槽的速度为v 2,根据系统机械能守恒和水平方向动量守恒可得12mv 20=12mv 21+12Mv 22,mv 0=mv 1+Mv 2,解得v 1=m -M m +M v 0,因为m >M ,则可知v 1=m -M m +M v 0>0,小球返回A 点后做平抛运动,而不是自由落体运动,D 错误.故选AB.应用题——强化学以致用8. (多选)(2022·重庆二诊)喷丸处理是一种表面强化工艺,即使用丸粒轰击工件表面,提升工件疲劳强度的冷加工工艺.用于提高零件机械强度以及耐磨性、抗疲劳性和耐腐蚀性等.某款喷丸发射器采用离心的方式发射喷丸,转轮直径为530 mm ,角速度为230 rad/s ,喷丸离开转轮时的速度与转轮上最大线速度相同.喷丸撞击到器件表面后发生反弹,碰撞后垂直器件方向的动能变为碰撞前动能的81%,沿器件表面方向的速度不变.一粒喷丸的质量为3.3×10-5kg ,若喷丸与器件的作用时间相同,且不计喷丸重力,则关于图甲、乙所示的两种喷射方式的说法正确的是( AD )A .喷丸发出过程喷丸发射器对一粒喷丸做的功约为0.06 JB .喷丸发出过程喷丸发射器对一粒喷丸做的功约为0.12 JC .图甲、乙所示一粒喷丸对器件表面的平均作用力之比为2∶1D .图甲、乙所示一粒喷丸对器件表面的平均作用力之比为2∶ 3【解析】 喷丸离开转轮时的速度与转轮上最大线速度相同,转轮上线速度的最大值为v =ωr =60.95 m/s ,则喷丸发出过程喷丸发射器对喷丸做的功约为W =12mv 2≈0.06 J,选项A 正确,B 错误;结合题述可知,喷丸碰撞后垂直器件表面的速度大小变为碰撞前的90%,设喷丸速度为v ,垂直喷射时有F 1=0.9mv --mvt,以60°角喷射时,有F 2=0.9×32mv -⎝ ⎛⎭⎪⎫-32mv t,解得F 1F 2=23,选项C 错误,D 正确.故选AD.9. (多选)(2022·河北衡水四调)质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块1、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( BCD )A .木块1相对木板静止前,木板是静止不动的B .木块1的最小速度是12v 0C .木块2的最小速度是56v 0D .木块3从开始运动到相对木板静止时对地位移是4v 2μg【解析】 木块1在木板上向右减速运动,该过程木板向右做加速运动,当木块1与木板速度相等时相对木板静止,由此可知,木块1相对静止前木板向右做加速运动,故A 错误;木块与木板组成的系统所受合外力为零,当木块1与木板共速时木板的速度最小,设木块与木板间的摩擦力为f ,则木块1的加速度a 1=f m 做匀减速运动,而木板a =3f 3m =fm做匀加速运动,则v 1=v 0-a 1t =at ,v 1=12v 0,故B 正确;设木块2的最小速度为v 2,此时木块2与木板刚刚共速,木块2此时速度的变量为2v 0-v 2,则木块3此时速度为3v 0-(2v 0-v 2)=v 0+v 2,由动量守恒定律得:m (v 0+2v 0+3v 0)=5mv 2+m (v 0+v 2),解得v 2=56v 0,故C 正确;木块与木板组成的系统动量守恒,以向右为正方向,木块3相对木板静止过程,由动量守恒定律得m (v 0+2v 0+3v 0)=(3m +3m )v 3,解得v 3=v 0,对木块3,由动能定理得-μmgx =12mv 23-12m (3v 0)2,解得x =4v20μg,故D 正确.故选BCD.10. (2022·辽宁沈阳二模)如图(a),质量分别为m A 、m B 的A 、B 两物体用轻弹簧连接构成一个系统,外力F 作用在A 上,系统静止在光滑水平面上(B 靠墙面),此时弹簧形变量为x .撤去外力并开始计时,A 、B 两物体运动的a t 图像如图(b)所示,S 1表示0到t 1时间内A的a t 图线与坐标轴所围面积大小,S 2、S 3分别表示t 1到t 2时间内A 、B 的a t 图线与坐标轴所围面积大小.A 在t 1时刻的速度为v 0.下列说法正确的是( C )A .m A <mB B .S 1+S 2=S 3C .0到t 1时间内,墙对B 的冲量大小等于m A v 0D .B 运动后,弹簧的最大形变量等于x【解析】 a t 图线与坐标轴所围图形的面积大小等于物体速度的变化量,因t =0时刻A 的速度为零,t 1时刻A 的速度大小v 0=S 1,t 2时刻A 的速度大小v A =S 1-S 2,B 的速度大小v B=S3,由图(b)所示图像可知,t1时刻A的加速度为零,此时弹簧恢复原长,B开始离开墙壁,到t2时刻两者加速度均达到最大,弹簧伸长量达到最大,此时两者速度相同,即v A=v B,则S1-S2=S3,t1到t2时间内,A与B组成的系统动量守恒,取向右为正方向,由动量守恒定律得m A v0=(m A+m B)v A,联立解得m A∶m B=S3∶S2,由图知S3>S2,所以m A>m B,故A、B错误;撤去外力后A受到的合力等于弹簧的弹力,0到t1时间内,对A,由动量定理可知,合力即弹簧弹力对A的冲量大小I=m A v0,弹簧对A与对B的弹力大小相等、方向相反、作用时间相等,因此弹簧对B的冲量大小与对A的冲量大小相等、方向相反,即弹簧对B的冲量大小I弹簧=m A v0,对B,以向右为正方向,由动量定理得I墙壁-I弹簧=0,解得,墙对B的冲量大小I墙壁=m A v0,方向水平向右,故C正确;B运动后,当A、B速度相等时弹簧形变量(伸长量或压缩量)最大,此时A、B的速度不为零,A、B的动能不为零,由能量守恒定律可知,B运动后弹簧形变量最大时A、B的动能与弹簧的弹性势能之和与撤去外力时弹簧的弹性势能相等,则B 运动后弹簧形变量最大时弹簧弹性势能小于撤去外力时弹簧的弹性势能,即B运动后弹簧形变量最大时弹簧的形变量小于撤去外力时弹簧的形变量x,故D错误.11. (2022·山东押题练)2022年北京冬奥会自由式滑雪女子大跳台决赛中,中国选手谷爱凌以188.25分的成绩获得金牌.北京冬奥会报道中利用“Al+8K”技术,把全新的“时间切片”特技效果首次运用在8K直播中,更精准清晰地抓拍运动员比赛精彩瞬间,给观众带来全新的视觉体验.将谷爱凌视为质点,其轨迹视为一段抛物线图.图(a)是“时间切片”特技的图片,图(b)是谷爱凌从3 m高跳台斜向上冲出的运动示意图,图(c)是谷爱凌在空中运动时离跳台底部所在水平面的高度y随时间t变化的图线.已知t=1 s时,图线所对应的切线斜率为4(单位:m/s),重力加速度g取10 m/s2,忽略空气阻力.(1)求谷爱凌冲出跳台时竖直速度的大小;(2)求谷爱凌离跳台底部所在水平面的最大高度;(3)若谷爱凌从空中落到跳台底部所在水平地面时与地面的碰撞时间Δt=0.4 s,经缓冲没有脱离地面,水平速度不受影响,求碰撞过程中谷爱凌受到地面的平均作用力大小与自身重力大小的比值.【答案】(1)14 m/s (2)12.8 m (3)5【解析】(1)运动员竖直方向做匀减速直线运动,有v y=v y0-gty t 图线斜率表示竖直分速度,t =1 s 时v y =4 m/s解得谷爱凌冲出跳台时的竖直分速度v y 0=14 m/s 谷爱凌冲出跳台时竖直速度的大小为14 m/s.(2)最高点竖直分速度为0,竖直方向做匀减速直线运动,设离开跳台可以上升h 高度,则0-v 2y 0=-2gh代入数据解得h =9.8 m 跳台离地面高度y 0=3 m解得离跳台底部所在水平面的最大高度为y =h +y 0=12.8 m.(3)谷爱凌落到跳台底部所在水平面的竖直分速度大小v yt =2gy =16 m/s落在水平地面时,在竖直方向上,运动员受重力和水平地面的作用力,水平方向速度不变,以竖直向上为正方向,由动量定理得(F -mg )Δt =0-(-mv yt )代入数据解得Fmg=5.12. (2021·浙江6月选考)如图所示,水平地面上有一高H =0.4 m 的水平台面,台面上竖直放置倾角θ=37°的粗糙直轨道AB 、水平光滑直轨道BC 、四分之一圆周光滑细圆管道CD 和半圆形光滑轨道DEF ,它们平滑连接,其中管道CD 的半径r =0.1 m 、圆心在O 1点,轨道DEF 的半径R =0.2 m 、圆心在O 2点,O 1、D 、O 2和F 点均处在同一水平线上.小滑块从轨道AB 上距台面高为h 的P 点由静止下滑,与静止在轨道BC 上等质量的小球发生弹性碰撞,碰后小球经管道CD 、轨道DEF 从F 点竖直向下运动,与正下方固定在直杆上的三棱柱G 碰撞,碰后速度方向水平向右,大小与碰前相同,最终落在地面上Q 点.已知小滑块与轨道AB 间的动摩擦因数μ=112,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2.(1)若小滑块的初始高度h =0.9 m ,求小滑块到达B 点时速度v 0的大小; (2)若小球能完成整个运动过程,求h 的最小值h min ;(3)若小球恰好能过最高点E ,且三棱柱G 的位置上下可调,求落地点Q 与F 点的水平距离x 的最大值x max .【答案】 (1)4 m/s (2)0.45 m (3)0.8 m【解析】 (1)小滑块在AB 轨道上运动,根据动能定理得mgh -μmg cos θ·hsin θ=12mv 20,解得v 0=4 m/s.(2)小滑块与小球碰撞后动量守恒,机械能守恒,因此有mv 0min =mv 块+mv 球min ,12mv 20min =12mv 2块+12mv 2球min , 解得v 块=0,v 球min =v 0min ,小球沿CDEF 轨道运动,在最高点可得mg =m v 2E minR,从C 点到E 点由机械能守恒可得 12mv 2E min +mg (R +r )=12mv 2球min , 由(1)问可知,小滑块提供给小球的初速度v 0min =43gh min ,解得h min =0.45 m.(3)设F 点到G 点的距离为y ,小球从E 点到G 点的运动,由动能定理得mg (R +y )=12mv2G -12mv 2E min , 由平抛运动可得x =v G t ,H +r -y =12gt 2,联立可得水平距离为x =20.5-y0.3+y ,由数学知识可得当0.5-y =0.3+y ,x 取最大值,最大值为x max =0.8 m.。
高三高考物理二轮复习资料2 动量和能量

高三高考物理二轮复习资料2 动量和能量动量和能量是高三物理二轮复习的重要内容之一。
本文将详细介绍动量和能量的概念、公式和应用,并提供一些复习资料供参考。
一、动量的概念和公式动量是物体运动状态的量度,表示物体运动的惯性大小。
动量的公式为:动量(p)= 质量(m) ×速度(v)。
动量的单位是千克·米/秒(kg·m/s)。
二、动量守恒定律动量守恒定律是指在没有外力作用下,一个系统的总动量在运动过程中保持不变。
这意味着系统中各个物体的动量之和保持恒定。
根据动量守恒定律,我们可以解决一些与碰撞有关的问题。
三、碰撞碰撞是指物体之间发生直接接触或间接作用力的过程。
根据碰撞过程中动量守恒定律,我们可以分为完全弹性碰撞和完全非弹性碰撞。
1. 完全弹性碰撞完全弹性碰撞是指碰撞后物体之间没有能量损失的碰撞。
在完全弹性碰撞中,动量守恒定律和动能守恒定律同时成立。
根据动量守恒定律和动能守恒定律,我们可以解决完全弹性碰撞问题。
2. 完全非弹性碰撞完全非弹性碰撞是指碰撞后物体之间有能量损失的碰撞。
在完全非弹性碰撞中,动量守恒定律成立,但动能守恒定律不成立。
根据动量守恒定律,我们可以解决完全非弹性碰撞问题。
四、能量的概念和公式能量是物体具有的做功能力,是物体运动和变化的基本原因。
常见的能量形式包括动能和势能。
1. 动能动能是物体由于运动而具有的能量。
动能的公式为:动能(KE)= 1/2 ×质量(m) ×速度的平方(v²)。
动能的单位是焦耳(J)。
2. 势能势能是物体由于位置或形状而具有的能量。
常见的势能形式包括重力势能、弹性势能和化学能等。
势能的公式根据具体情况而定。
五、能量守恒定律能量守恒定律是指在一个封闭系统中,能量总量在运动过程中保持不变。
根据能量守恒定律,我们可以解决一些与能量转化和能量损失有关的问题。
六、动量和能量的应用动量和能量的概念和公式在实际生活中有广泛的应用。
高考物理二轮专题复习 第2课 动量和能量课件

2.确定研究对象,进行受力分析、运动分析.
3.思考解题途径,正确选用规律.
K 考点 精辟 解析
(1)涉及求解物体运动的瞬时作用力、加速度以及运 动时间时,一般采用牛顿运动定律和运动学公式解答.
(2)不涉及物体运动过程中的加速度和时间,而涉
及力、位移、速度的问题,无论是恒力还是变力,一般
栏 目
采用动能定理解答;如果符合机械能守恒条件也可用机
端的小木块(可视为质点)以速度v0向右滑动,这时小木块 所受小车的滑动摩擦力向左,使其做匀减速运动;小车所 栏
目
受小木块的滑动摩擦力向右,使其做匀加速运动;如果双 链
接
方相对静止,则双方最后的速度相同.
K 考点 精辟 解析
设共同速度为 v,小木块与小车间的滑动摩擦力为 f,木块相对
小车的位移 d,小车相对于地面的位移为 s.
高考二轮专题复习与测试•物理 随堂讲义•第一部分 专题复习
专题二 功、能量与动量 第2课 动量和能量
栏 目 链 接
J 考点 简析
应用能量守恒定律与动量守恒定律是解决复杂物理
问题的一种重要途径,是近几年高考的压轴题.从过去三
年高考来看,本知识以物体碰撞、小物块与长木板相对运
栏
动、物体做平抛运动、圆周运动、带电粒子在电磁场中运
K 考题 专项 训练
解析 首先A与B发生碰撞,系统的动能损失一部分;
C在弹簧弹力的作用下加速,A、B在弹力的作用下减速,
但A、B的速度大于C的速度,故弹簧被压缩,直到A、
B和C的速度相等,弹簧的压缩量达到最大,此时弹簧
栏
的弹性势能最大.此后,C继续加速,A、B减速,当弹 目
链
簧第一次恢复原长时,C的速度达到最大,A、B开始要 接
高考物理二轮复习专题突破—动量和能量观点的应用(含解析)

高考物理二轮复习专题突破—动量和能量观点的应用1.(2021福建泉州高三月考)如图所示,建筑工地上的打桩过程可简化为重锤从空中某一固定高度由静止释放,与钢筋混凝土预制桩在极短时间内发生碰撞,并以共同速度下降一段距离后停下来。
则()A.重锤质量越大,撞预制桩前瞬间的速度越大B.重锤质量越大,预制桩被撞后瞬间的速度越大C.碰撞过程中,重锤和预制桩的总机械能保持不变D.整个过程中,重锤和预制桩的总动量保持不变2.(2021福建高三二模)如图所示,A车以某一初速度水平向右运动距离l后与静止的B 车发生正碰,碰后两车一起运动距离l后停下。
已知两车质量均为m,运动时受到的阻力为车重力的k倍,重力加速度为g,碰撞时间极短,则()A.两车碰撞后瞬间的速度大小为√kglB.两车碰撞前瞬间A车的速度大小为√2kglC.A车初速度大小为√10kglD.两车碰撞过程中的动能损失为4kmgl3.(2021辽宁丹东高三一模)2022年冬奥会将在北京举行,滑雪是冬奥会的比赛项目之一,如图所示,某运动员(视为质点)从雪坡上先后以v0和2v0沿水平方向飞出,不计空气阻力,则运动员从飞出到落到雪坡上的整个过程中()A.空中飞行的时间相同B.落在雪坡上的位置相同C.动量的变化量之比为1∶2D.动能的增加量之比为1∶24.(多选)(2021辽宁大连高三一模)在光滑水平桌面上有一个静止的木块,高速飞行的子弹水平穿过木块,若子弹穿过木块过程中受到的摩擦力大小不变,则()A.若木块固定,则子弹对木块的摩擦力的冲量为零B.若木块不固定,则子弹减小的动能大于木块增加的动能C.不论木块是否固定,两种情况下木块对子弹的摩擦力的冲量大小相等D.不论木块是否固定,两种情况下子弹与木块间因摩擦产生的热量相等5.(多选)(2021河南洛阳高三二模)如图所示,质量均为2 kg的三个物块静止在光滑水平面上,其中物块B的右侧固定一轻弹簧,物块A与弹簧接触但不连接。
高三物理二轮复习能力演练2 动量和能量

峙对市爱惜阳光实验学校陕市高三物理二轮复习能力演练2 动量和能量一、选择题(10×4分)1.的NBA篮球赛非常精彩,因此吸引了众多观众.在NBA篮球赛中经常能看到这样的场面:在终场前 0.1 s 的时候,运发动把球投出且准确命中,获得比赛的最后.球的质量为m,运发动将篮球投出时球离地的高度为h1,动能为E k,篮筐距地面的高度为h2,不计空气阻力,那么篮球进筐时的动能为( )A.E k+mgh1-mgh2B.E k-mgh1+mgh2C.-E k+mgh1+mgh2 D.-E k-mgh1+mgh2【解析】由动能理得:E k′-E k=W G=mg(h1-h2)解得:E k′=E k+mgh1-mgh2.[答案] A2.如下图,竖直放置的劲度系数为k的轻质弹簧上端与质量为m的小球连接,下端与放在水平桌面上的质量为M的绝缘物块相连.小球带正电,电荷量为q,且与弹簧绝缘,物块、弹簧和小球组成的系统处于静止状态.现突然加上一个竖直向上的大小为E的匀强电场,小球向上运动,某时刻物块对水平面的压力为零.从加上匀强电场到物块对水平面的压力为零的过程中,小球电势能的改变量为( )A.qE(M+m)gkB.-qE(M+m)gkC.qEMgkD.qEmgk【解析】加电场前,弹簧的压缩量x1=mgk,当物块对水平面的压力为零时,弹簧的伸长量x2=Mgk,故这一过程中小球沿电场方向运动的距离为x1+x2=(m+M)gk电势能的变化ΔE=-W电=-qE(m+M)gk.[答案] B3.一个质量为m的物体以某一速度从固斜面底端冲上倾角α=30°的斜面.该物体做匀减速运动的加速度为34g,在斜面上上升的最大高度为h,那么此过程中( )A.物体的动能增加32mghB.物体的重力做功mghC.物体的机械能损失了12mghD .物体克服摩擦力做功12mgh【解析】由题意可知: 物体受到的合外力F =34mg其中摩擦力f =F -mg sin θ=14mg由动能理得:ΔE k =-F ·h sin 30°=-32mgh重力做功W G =-mgh物体的机械能的变化ΔE =-f ·s =-14mg ·hsin 30°=-12mgh物体克服摩擦力做的功W f ′=f ·s =12mgh .[答案] CD4.一质量为m 的物体在水平恒力F 的作用下沿水平面运动,在t 0时刻撤去F ,其v -t 图象如下图.物体与水平面间的动摩擦因数为μ,那么以下关于F 的大小及其做的功W 的大小关系式中,正确的选项是( )A .F =μmgB .F =2μmgC .W =μmgv 0t 0D .W =32μmgv 0t 0【解析】由题图知:F -μmg =m ·v 0tμmg m =v 02t解得:F =3μmg故W =F ·v 02·t 0=32μmgv 0t 0.[答案] D5.如下图,木板的质量为M ,长度为L ;小木块的质量为m ;水平地面光滑;一根不计质量的轻绳通过滑轮分别与木板和小木块连接,小木块与木板间的动摩擦因数为μ.开始时,木块静止在木板左端,现用水平向右的力F 将小木块拉至木板右端,那么拉力至少做的功大小为( )A .2μmgLB .μmgLC .μmgL2D .μ(M +m )gL【解析】方法一当拉小木块向右缓慢移动时,拉力F =μmg +F T =2μmg 当小木块向右运动L2时到达木板的右端,有:W F =F ·L2=μmgL .方法二由功能关系知,拉力至少做的功于小木块与木板摩擦产生的热量.即W F =Q =μmgL .[答案] B6.质量为2×103kg 、发动机的额功率为 80 kW 的在平直公路上行驶.假设该所受阻力大小恒为4×103N ,那么以下判断中正确的有( )A .的最大速度是 20 m/sB .以加速度 2 m/s 2匀加速启动,启动后第 2 s 末时发动机的实际功率是32 kWC .做上述匀加速运动所能维持的时间为 10 sD .假设保持额功率启动,那么当其速度为 5 m/s 时,加速度为 6 m/s 2【解析】到达最大速度时有:P =F ·v m =f ·v m ,故v m =20 m/s当的加速度a =2 m/s 2时,有:F =f +ma =8×103 N故第 2 s 末P 实=F ·at =32 kW以a =2 m/s 2的加速度匀加速启动所能到达的最大速度为:v 1=PF=10 m/s能持续的时间t 1=v 1a=5 s以额功率启动,当v =5 m/s 时,有:F =P v =16×103 N ,a =F -f m=6 m/s 2.[答案] ABD7.如下图,质量为M 、长度为l 的小车静止在光滑的水平面上;质量为m的小物块(可视为质点)放在小车的最左端.现用一水平向右的恒力F 作用在小物块上,使物块从静止开始做匀加速直线运动.物块和小车之间的摩擦力为f .物块滑到小车的最右端时,小车运动的距离为s .在这个过程中,以下结论正确的选项是( )A .物块到达小车最右端时,具有的动能为F (l +s )B .物块到达小车最右端时,小车具有的动能为fsC .物块克服摩擦力所做的功为f (l +s )D .物块和小车增加的机械能为fs【解析】物块到达小车最右端时,知:物块具有的动能E k ′=(F -f )·(l +s )此时小车具有动能E k ′=f ·s这一过程物块克服摩擦力所做的功为:W f ′=f ·(l +s )由功能关系知ΔE =F ·(l +s )-f ·l . [答案] BC8.真空中存在竖直向上的匀强电场和水平方向的匀强磁场,一质量为m 、带电荷量为q 的物体以速度v 在竖直平面内做半径为R 的匀速圆周运动.假设t =0时刻物体在运动轨迹的最低点且重力势能为零,电势能也为零,那么以下说法正确的选项是( )A .物体带正电且逆时针转动B .在物体运动的过程中,机械能守恒,且机械能E =12mv 2C .在物体运动的过程中,重力势能随时间变化的关系为E p =mgR (1-cosvR t )D .在物体运动的过程中,电势能随时间变化的关系为E 电=mgR (cos vRt -1)【解析】由题意知,题中物体所受的电场力平衡,洛伦兹力提供其做匀速圆周运动所需的向心力,故知物体带正电,洛伦兹力使其逆时针转动.有:重力势能E p =mgh =mgR (1-cos vRt )电势能E 电=-qEh =-mgh =-E p .[答案] ACD9.如下图,在光滑的水平轨道上有甲、乙两个大的小球沿轨道向右运动,取向右为正方向,它们的动量分别为p 1=5 kg·m/s 和 p 2=7 kg ·m/s.假设两球能发生正碰,那么碰后两球动量的增量Δp 1和Δp 2可能是( )A .Δp 1=-3 kg·m/s,Δp 2=3 kg·m/sB .Δp 1=3 kg·m/s,Δp 2=3 kg·m/sC .Δp 1=3 kg·m/s,Δp 2=-3 kg·m/sD .Δp 1=-10 kg·m/s,Δp 2=10 kg·m/s 【解析】由题意知,5 kg·m/s m 甲>7 kg·m/sm 乙E k =522m 甲+722m 乙当动量做选项A 所述的变化时,系统的动量守恒,通过计算可知机械能可能减小,故有可能成立;当动量做选项B 所述的变化时,系统的动量不守恒,故不可能成立;当动量做选项C 所述的变化时,甲的速度大于乙的速度,故不可能成立;当动量做选项D 所述的变化时,系统的动能增大,故不可能成立.[答案] A10.如下图,在光滑的水平面上有一垂直向下的匀强磁场分布在宽为L 的区域内,一边长为a (a <L )的正方形闭合线圈以初速度v 0垂直于磁场边界滑过磁场后速度变为v (v <v 0),那么( )A .完全进入磁场中时线圈的速度大于v 0+v2B .完全进入磁场中时线圈的速度于v 0+v2C .完全进入磁场中时线圈的速度小于v 0+v2D .上述情况中A 、B 均有可能,而C 是不可能的【解析】设完全进入磁场中时线圈的速度为v x ,线圈在穿过磁场的过程中所受的合外力为安培力.对于线圈进入磁场的过程,据动量理可得:I =B I L ·Δt =mv x -mv 0又因为感电荷量q =I ·Δt =ΔΦR =B a2R可得:-B 2a3R=mv x -mv 0对于线圈穿出磁场的过程,同理可得:-B 2a 3R=mv -mv x联立解得:v x =v 0+v2,应选项B 正确.[答案] B二、选择题(共60分)11.(6分)气垫导轨是常用的一种仪器.它是利用气泵使带孔的导轨与滑块之间形成气垫,使滑块悬浮在导轨上,滑块在导轨上的运动可视为没有摩擦.我们可以用带竖直挡板C 和D 的气垫导轨以及滑块A 和B 来验证动量守恒律,装置如下图(弹簧的长度忽略不计).采用的步骤如下:①用天平分别测出滑块A 、B 的质量m A 、m B ; ②调整气垫导轨,使导轨处于水平;③在A 和B 间放入一个被压缩的轻弹簧,用电动卡销将其锁,把它们静止地放在气垫导轨上;④用刻度尺测出A 的左端至C 板的距离L 1;⑤按下电钮放开卡销,同时使分别记录滑块A 、B 的运动时间的计时器开始工作,当滑块A 、B 分别碰撞挡板C 、D 时停止计时,记下A 、B 分别到达C 、D 的运动时间t 1和t 2.(1)中还测量的物理量是______________________. (2)利用上述测量的数据验证动量守恒律的表达式是________________________,上式中算得的A 、B 两滑块的动量大小并不完全相,产生误差的原因是______________________________________________.(3)利用上述数据能否测出被压缩弹簧的弹性势能的大小?如能,请写出表达式:__________________.[答案] (1)B 的右端至D 板的距离L 2 (1分)(2)m A L 1t 1-m B L 2t 2=0 (1分) 测量时间、距离物理量时存在误差,阻力、气垫导轨不水平造成误差(答对其中两点即可) (2分)(3)能,E p =12(m A L 12t 12+m B L 22t 22) (2分)12.(9分)光电计时器是一种研究物体运动情况的常用计时仪器,其结构如图甲所示,a 、b 分别是光电门的激光发射和接收装置,当有物体从a 、b 间通过时,光电计时器就可以显示物体的挡光时间.现利用如图乙所示的装置来测量滑块与长 1 m 左右的木板间的动摩擦因数及被压缩弹簧的弹性势能,图中木板固在水平面上,木板的左壁固有一个处于锁状态的压缩轻弹簧(弹簧的长度与木板相比可忽略),弹簧右端与滑块接触,1和2是固在木板上适当位置的两个光电门,与之连接的两个光电计时器没有画出.现使弹簧解除锁,滑块获得一的初速度后水平向右运动,光电门1、2各自连接的计时器显示的挡光时间分别为2.0×10-2s 和5.0×10-2s .用游标卡尺测量小滑块的宽度d ,游标卡尺的示数如图丙所示.(1)读出滑块的宽度d =________cm .(2)滑块通过光电门1的速度v 1=________m/s ,通过光电门2的速度v 2=________m/s .(3)假设用米尺测量出两个光电门之间的距离为L ,当地的重力加速度为g ,那么滑块与木板间的动摩擦因数的表达式为______________.(各量均用字母表示)(4)假设用米尺测量出滑块的初始位置到光电门2的距离为s ,为测量被压缩弹簧的弹性势能,那么还需测量的物理量是__________________________(说明其含义,并指明代表物理量的字母),被压缩弹簧的弹性势能可表示为______________________________(各量均用字母表示).[答案] (1)0 (2)5 0 (每空1分)(3)v 12-v 222gL(2分)(4)滑块的质量m 12mv 22+ms (v 12-v 22)2L(每空2分)13.(10分)在半径R =5000 km 的某星球外表,宇航员做了如下.装置如图甲所示,竖直平面内的光滑轨道由轨道AB 和圆弧轨道BC 组成,将质量m =0.2 kg 的小球从轨道ABH 处的某点静止滑下,用力传感器测出小球经过C 点时对轨道的压力F ,改变H 的大小,可测出相的F 大小,F 随H 的变化关系如图乙所示.求:(1)圆轨道的半径.(2)该星球的第一宇宙速度.【解析】(1)设该星球外表的重力加速度为g 0,圆轨道的半径为r .当H =0.5 m 时,有:mg 0(H -2r )=12mv 02(2分)mv 02r=mg 0 (2分) 解得:r =25H =0.2 m . (1分)(2)当H >0.5 m 时,有:mg 0(H -2r )=12mv 2(1分)mv 2r=mg 0+F (1分) 即F =g 0(2H -1) (1分)由F -H 图象可得:g 0=5 m/s 2(1分)该星球的第一宇宙速度v =g 0R =5 km/s . (1分) [答案] (1)0.2 m (2)5 km/s14.(10分)如下图,间距为L 的两条足够长的平行金属导轨与水平面的夹角为θ,导轨光滑且电阻忽略不计.磁感强度为B 的条形匀强磁场的方向与导轨平面垂直,磁场区域的宽度为d 1,间距为d 2.两根质量均为m 、有效电阻均为R 的导体棒a 和b 放在导轨上,并与导轨垂直.(设重力加速度为g )(1)假设a 进入第2个磁场区域时,b 以与a 同样的速度进入第1个磁场区域,求b 穿过第1个磁场区域过程中增加的动能ΔE k .(2)假设a 进入第2个磁场区域时,b 恰好离开第1个磁场区域,此后a 离开第2个磁场区域时,b 又恰好进入第2个磁场区域,且a 、b 在任意一个磁场区域或无磁场区域的运动时间均相同,求b 穿过第2个磁场区域的过程中,两导体棒产生的总焦耳热Q .【解析】(1)这一过程a 和b 不受安培力作用. 由机械能守恒律知:ΔE k =mgd 1sin θ. (3分)(2)由题意可知,两导体棒每次进磁场区域时的速度相,出磁场区域时的速度也相,分别设为v 1和v 2.当b 穿过第2个磁场区域时,对于棒a ,有:12mv 12-12mv 22=mgd 2sin θ (2分) 对于棒b ,有:12mv 22-12mv 12=mgd 1sin θ-W 安 (2分) W 安=Q (1分)解得:Q =mg (d 1+d 2)sin θ. (2分)[答案] (1)mgd 1sin θ (2)mg (d 1+d 2)sin θ15.(12分)如下图,质量分别为3m 、2m 、m 的三个小球A 、B 、C ,用两根长为L 的轻绳相连,置于倾角为30°、高为L 的固光滑斜面上,A 球恰能从斜面顶端处竖直落下,弧形挡板使小球只能竖直向下运动,碰撞过程中没有动能损失,小球落地后均不再反弹.现由静止开始释放它们,不计所有摩擦.求:(1)A 球刚要落地时的速度大小. (2)C 球刚要落地时的速度大小.(3)在B 球运动的过程中,两绳对B 球做的总功.【解析】(1)在A 球未落地前,A 、B 、C 组成的系统机械能守恒,设A 球刚要落地时系统的速度大小为v 1,那么:12(m A +m B +m C )v 12=m A gh A -m B gh B 1-m C gh C 1 (2分) 又h A =L ,h B 1=h C 1=L sin 30°=12L代入数据解得:v 1=gL2. (2分)(2)在A 球落地后,B 球未落地前,B 、C 组成的系统机械能守恒.设B 球刚要落地时系统的速度大小为v 2,那么:12(m B +m C )v 22-12(m B +m C )v 12=m B gh B 2-m C gh C 2 (2分) 又h B 2=L ,h C 2=L sin 30°=12L代入数据解得:v 2=3gL2(1分) 在B 球落地后,C 球在下落过程中机械能守恒,设C 球刚要落地时系统的速度大小为v 3,那么:12m C v 32-12m C v 22=m C gh C 3,又h C 3=L (1分) 代入数据得:v 3=7gL2. (1分) (3)在B 球运动的过程中,重力和绳的拉力做功,设两绳做的总功为W ,根据动能理可得:m B gL sin 30° +W =12m B v 22 (2分)代入数据解得:W =12mgL . (1分)[答案] (1)gL2(2)7gL 2 (3)12mgL 16.(13分)如下图,一个带有14圆弧的粗糙滑板A 的总质量m A =3 kg ,其圆弧与水平相切于P ,水平PQ 长L =3.75 m .开始时,A 静止在光滑水平面上.现有一质量m B =2 kg 的小木块B 从滑块A 的右端以水平初速度v 0=5 m/s 滑上A ,小木块B 与滑板A 之间的动摩擦因数μ=0.15,小木块B 滑到滑板A 的左端并沿着圆弧上滑一段弧长后返回,最终停止在滑板A 上.(1)求A 、B 相对静止时的速度大小.(2)假设B 最终停在A 的水平上的R 点,P 、R 相距 1 m ,求B 在圆弧上运动的过程中因摩擦而产生的内能.(3)假设圆弧光滑,且除v 0不确外其他条件不变,讨论小木块B 在整个运动过程中,是否有可能在某段时间里相对地面向右运动?如不可能,说明理由;如可能,试求出B 既向右滑动,又不滑离木板A 的v 0取值范围.(取g =10 m/s 2,结果可以保存根号)【解析】(1)根据动量守恒得:m B v 0=(m B +m A )v (2分)解得:v =25v 0=2 m/s . (1分)(2)设B 在A 的圆弧产生的热量为Q 1,在A 的水平产生的热量为Q 2.那么有: 12m B v 02=12(m B +m A )v 2+Q 1+Q 2 (2分) 又Q 2=μm B g (L QP +L PR ) (1分) 联立解得:Q 1=0.75 J . (1分)(3)当B 滑上圆弧再返回至P 点时最有可能速度向右,设木块滑至P 的速度为v B ,此时A 的速度为v A ,有:m B v 0=m B v B +m A v A (1分)12m B v 02=12m B v B 2+12m A v A 2+μm B gL (2分) 代入数据得:v B 2-0.8v 0v B +5-0.2v 02=0当v B 的两个解一正一负时,表示B 从圆弧滑下的速度向右.即需:v 0>5.9m/s ,故B 有可能相对地面向右运动.假设要B 最终不滑离A ,有:μm B g ·2L ≥12m B v 02-12(m B +m A )(25v 0)2 (2分)得:v 0≤6.1 m/s故v 0的取值范围为:5.9 m/s <v 0≤6.1 m/s. (1分)[答案] (1)2 m/s (2)0.75 J(3)可能 5.9 m/s <v 0≤6.1 m/s。
(通用版)高三物理二轮复习第一部分专题二能量和动量教师用书

专题二 能量和动量第一讲功和功率__动能定理考点一功和功率1.[考查功的大小计算]如图所示,质量m =1 kg 、长L =0.8 m 的均匀矩形薄板静止在水平桌面上,其右端与桌子边缘相平。
板与桌面间的动摩擦因数为μ=0.4。
现用F =5 N 的水平力向右推薄板,使它翻下桌子,力F 做的功至少为(g 取10 m/s 2)( )A .1 JB .1.6 JC .2 JD .4 J解析:选B 在薄板没有翻转之前,薄板与水平面之间的摩擦力f =μmg =4 N 。
力F 做的功用来克服摩擦力消耗的能量,而在这个过程中薄板只需移动的距离为L 2,则做的功至少为W =f ×L2=1.6 J ,所以B 正确。
2.[考查机车的启动与牵引问题](多选)(2016·天津高考)我国高铁技术处于世界领先水平。
和谐号动车组是由动车和拖车编组而成,提供动力的车厢叫动车,不提供动力的车厢叫拖车。
假设动车组各车厢质量均相等,动车的额定功率都相同,动车组在水平直轨道上运行过程中阻力与车重成正比。
某列车组由8节车厢组成,其中第1、5节车厢为动车,其余为拖车,则该动车组( )A .启动时乘客受到车厢作用力的方向与车运动的方向相反B .做匀加速运动时,第5、6节与第6、7节车厢间的作用力之比为3∶2C .进站时从关闭发动机到停下来滑行的距离与关闭发动机时的速度成正比D .与改为4节动车带4节拖车的动车组最大速度之比为1∶2解析:选BD 启动时,乘客的加速度向前,车厢对人的作用力方向向前,与车运动的方向相同,选项A 错误。
以后面的车厢为研究对象,F 56=3ma ,F 67=2ma ,则5、6节与6、7节车厢间的作用力之比为3∶2,选项B 正确。
根据v 2=2ax ,车厢停下来滑行的距离x 与速度的二次方成正比,选项C 错误。
若改为4节动车,则功率变为原来2倍,由P =Fv 知,最大速度变为原来2倍,选项D 正确。
3.[考查瞬时功率与平均功率的计算](2016·潍坊模拟)质量为m =2 kg 的物体沿水平面向右做直线运动,t =0时刻受到一个水平向左的恒力F ,如图甲所示,此后物体的v t 图像如图乙所示,取水平向右为正方向,g 取10 m/s 2,则( )A .物体与水平面间的动摩擦因数为μ=0.5B .10 s 末恒力F 的瞬时功率为6 WC .10 s 末物体在计时起点左侧4 m 处D .0~10 s 内恒力F 做功的平均功率为0.6 W解析:选D 由图线可知0~4 s 内的加速度:a 1=84 m/s 2=2 m/s 2,可得:F +μmg =ma 1;由图线可知4~10 s 内的加速度:a 2=66 m/s 2=1 m/s 2,可得:F -μmg =ma 2;解得:F =3 N ,μ=0.05,选项A 错误;10 s 末恒力F 的瞬时功率为P 10=Fv 10=3×6 W =18 W ,选项B 错误;0~4 s 内的位移x 1=12×4×8 m =16 m,4~10 s 内的位移x 2=-12×6×6 m =-18 m ,故10 s 末物体在计时起点左侧2 m 处,选项C 错误;0~10 s 内恒力F 做功的平均功率为P =Fx t =3×210W =0.6 W ,选项D 正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三物理二轮复习能力演练 专题2 动量和能量一、选择题(10×4分)1.美国的NBA 篮球赛非常精彩,因此吸引了众多观众.在NBA 篮球赛中经常能看到这样的场面:在终场前 0.1 s 的时候,运动员把球投出且准确命中,获得比赛的最后胜利.已知球的质量为m ,运动员将篮球投出时球离地的高度为h 1,动能为E k ,篮筐距地面的高度为h 2,不计空气阻力,则篮球进筐时的动能为( )A .E k +mgh 1-mgh 2B .E k -mgh 1+mgh 2C .-E k +mgh 1+mgh 2D .-E k -mgh 1+mgh 2【解析】由动能定理得:E k ′-E k =W G =mg (h 1-h 2) 解得:E k ′=E k +mgh 1-mgh 2. [答案] A2.如图所示,竖直放置的劲度系数为k 的轻质弹簧上端与质量为m 的小球连接,下端与放在水平桌面上的质量为M 的绝缘物块相连.小球带正电,电荷量为q ,且与弹簧绝缘,物块、弹簧和小球组成的系统处于静止状态.现突然加上一个竖直向上的大小为E 的匀强电场,小球向上运动,某时刻物块对水平面的压力为零.从加上匀强电场到物块对水平面的压力为零的过程中,小球电势能的改变量为( )A .qE (M +m )g k B .-qE (M +m )gk C .qEMg k D .qEmg k【解析】加电场前,弹簧的压缩量x 1=mgk,当物块对水平面的压力为零时,弹簧的伸长量x 2=Mg k ,故这一过程中小球沿电场方向运动的距离为x 1+x 2=(m +M )g k电势能的变化ΔE =-W 电=-qE (m +M )gk.[答案] B3.一个质量为m 的物体以某一速度从固定斜面底端冲上倾角α=30°的斜面.已知该物体做匀减速运动的加速度为34g ,在斜面上上升的最大高度为h ,则此过程中( )A .物体的动能增加32mghB .物体的重力做功mghC .物体的机械能损失了12mghD .物体克服摩擦力做功12mgh【解析】由题意可知:物体受到的合外力F =34mg其中摩擦力f =F -mg sin θ=14mg由动能定理得:ΔE k =-F ·h sin 30°=-32mgh重力做功W G =-mgh物体的机械能的变化ΔE =-f ·s =-14mg ·hsin 30°=-12mgh物体克服摩擦力做的功W f ′=f ·s =12mgh .[答案] CD4.一质量为m 的物体在水平恒力F 的作用下沿水平面运动,在t 0时刻撤去F ,其v -t 图象如图所示.已知物体与水平面间的动摩擦因数为μ,则下列关于F 的大小及其做的功W 的大小关系式中,正确的是( )A .F =μmgB .F =2μmgC .W =μmgv 0t 0D .W =32μmgv 0t 0【解析】由题图知:F -μmg =m ·v 0tμmg m =v 02t解得:F =3μmg故W =F ·v 02·t 0=32μmgv 0t 0.[答案] D5.如图所示,已知木板的质量为M ,长度为L ;小木块的质量为m ;水平地面光滑;一根不计质量的轻绳通过定滑轮分别与木板和小木块连接,小木块与木板间的动摩擦因数为μ.开始时,木块静止在木板左端,现用水平向右的力F 将小木块拉至木板右端,则拉力至少做的功大小为( )A .2μmgLB .μmgLC .μmgL 2D .μ(M +m )gL【解析】方法一当拉小木块向右缓慢移动时,拉力F =μmg +F T =2μmg 当小木块向右运动L2时到达木板的右端,有:W F =F ·L2=μmgL .方法二由功能关系知,拉力至少做的功等于小木块与木板摩擦产生的热量.即W F =Q =μmgL . [答案] B6.质量为2×103kg 、发动机的额定功率为 80 kW 的汽车在平直公路上行驶.若该汽车所受阻力大小恒为4×103N ,则下列判断中正确的有( )A .汽车的最大速度是 20 m/sB .汽车以加速度 2 m/s 2匀加速启动,启动后第 2 s 末时发动机的实际功率是 32 kW C .汽车做上述匀加速运动所能维持的时间为 10 sD .若汽车保持额定功率启动,则当其速度为 5 m/s 时,加速度为 6 m/s 2【解析】汽车达到最大速度时有:P =F ·v m =f ·v m ,故v m =20 m/s当汽车的加速度a =2 m/s 2时,有: F =f +ma =8×103 N故第 2 s 末P 实=F ·at =32 kW汽车以a =2 m/s 2的加速度匀加速启动所能达到的最大速度为:v 1=PF=10 m/s能持续的时间t 1=v 1a=5 s以额定功率启动,当v =5 m/s 时,有: F =P v =16×103 N ,a =F -f m=6 m/s 2.[答案] ABD 7.如图所示,质量为M 、长度为l 的小车静止在光滑的水平面上;质量为m 的小物块(可视为质点)放在小车的最左端.现用一水平向右的恒力F 作用在小物块上,使物块从静止开始做匀加速直线运动.物块和小车之间的摩擦力为f .物块滑到小车的最右端时,小车运动的距离为s .在这个过程中,以下结论正确的是( )A .物块到达小车最右端时,具有的动能为F (l +s )B .物块到达小车最右端时,小车具有的动能为fsC .物块克服摩擦力所做的功为f (l +s )D .物块和小车增加的机械能为fs【解析】物块到达小车最右端时,知: 物块具有的动能E k ′=(F -f )·(l +s ) 此时小车具有动能E k ′=f ·s这一过程物块克服摩擦力所做的功为: W f ′=f ·(l +s )由功能关系知ΔE =F ·(l +s )-f ·l . [答案] BC8.真空中存在竖直向上的匀强电场和水平方向的匀强磁场,一质量为m 、带电荷量为q 的物体以速度v 在竖直平面内做半径为R 的匀速圆周运动.假设t =0时刻物体在运动轨迹的最低点且重力势能为零,电势能也为零,则下列说法正确的是( )A .物体带正电且逆时针转动B .在物体运动的过程中,机械能守恒,且机械能E =12mv 2C .在物体运动的过程中,重力势能随时间变化的关系为E p =mgR (1-cos v Rt ) D .在物体运动的过程中,电势能随时间变化的关系为E 电=mgR (cos v Rt -1)【解析】由题意知,题中物体所受的电场力平衡,洛伦兹力提供其做匀速圆周运动所需的向心力,故知物体带正电,洛伦兹力使其逆时针转动.有:重力势能E p =mgh =mgR (1-cos v Rt )电势能E 电=-qEh =-mgh =-E p .[答案] ACD9.如图所示,在光滑的水平轨道上有甲、乙两个等大的小球沿轨道向右运动,取向右为正方向,它们的动量分别为p 1=5 kg·m/s 和 p 2=7 kg·m/s.若两球能发生正碰,则碰后两球动量的增量Δp 1和Δp 2可能是( )A .Δp 1=-3 kg·m/s,Δp 2=3 kg·m/sB .Δp 1=3 kg·m/s,Δp 2=3 kg·m/sC .Δp 1=3 kg·m/s,Δp 2=-3 kg·m/sD .Δp 1=-10 kg·m/s,Δp 2=10 kg·m/s【解析】由题意知,5 kg·m/s m 甲>7 kg·m/sm 乙E k =522m 甲+722m 乙当动量做选项A 所述的变化时,系统的动量守恒,通过计算可知机械能可能减小,故有可能成立;当动量做选项B 所述的变化时,系统的动量不守恒,故不可能成立; 当动量做选项C 所述的变化时,甲的速度大于乙的速度,故不可能成立; 当动量做选项D 所述的变化时,系统的动能增大,故不可能成立. [答案] A10.如图所示,在光滑的水平面上有一垂直向下的匀强磁场分布在宽为L 的区域内,一边长为a (a <L )的正方形闭合线圈以初速度v 0垂直于磁场边界滑过磁场后速度变为v (v <v 0),那么( )A .完全进入磁场中时线圈的速度大于v 0+v2 B .完全进入磁场中时线圈的速度等于v 0+v2C .完全进入磁场中时线圈的速度小于v 0+v2D .上述情况中A 、B 均有可能,而C 是不可能的 【解析】设完全进入磁场中时线圈的速度为v x ,线圈在穿过磁场的过程中所受的合外力为安培力.对于线圈进入磁场的过程,据动量定理可得:I =B I L ·Δt =mv x -mv 0又因为感应电荷量q =I ·Δt =ΔΦR =B a2R可得:-B2a3R=mv x -mv 0 对于线圈穿出磁场的过程,同理可得:-B 2a 3R=mv -mv x联立解得:v x =v 0+v2,故选项B 正确.[答案] B二、选择题(共60分)11.(6分)气垫导轨是常用的一种实验仪器.它是利用气泵使带孔的导轨与滑块之间形成气垫,使滑块悬浮在导轨上,滑块在导轨上的运动可视为没有摩擦.我们可以用带竖直挡板C 和D 的气垫导轨以及滑块A 和B 来验证动量守恒定律,实验装置如图所示(弹簧的长度忽略不计).采用的实验步骤如下:①用天平分别测出滑块A 、B 的质量m A 、m B ; ②调整气垫导轨,使导轨处于水平; ③在A 和B 间放入一个被压缩的轻弹簧,用电动卡销将其锁定,把它们静止地放在气垫导轨上;④用刻度尺测出A 的左端至C 板的距离L 1;⑤按下电钮放开卡销,同时使分别记录滑块A 、B 的运动时间的计时器开始工作,当滑块A 、B 分别碰撞挡板C 、D 时停止计时,记下A 、B 分别到达C 、D 的运动时间t 1和t 2.(1)实验中还应测量的物理量是______________________.(2)利用上述测量的实验数据验证动量守恒定律的表达式是________________________,上式中算得的A 、B 两滑块的动量大小并不完全相等,产生误差的原因是______________________________________________.(3)利用上述实验数据能否测出被压缩弹簧的弹性势能的大小?如能,请写出表达式:__________________.[答案] (1)B 的右端至D 板的距离L 2 (1分)(2)m A L 1t 1-m B L 2t 2=0 (1分) 测量时间、距离等物理量时存在误差,阻力、气垫导轨不水平等造成误差(答对其中两点即可) (2分)(3)能,E p =12(m A L 12t 12+m B L 22t 22) (2分)12.(9分)光电计时器是一种研究物体运动情况的常用计时仪器,其结构如图甲所示,a 、b 分别是光电门的激光发射和接收装置,当有物体从a 、b 间通过时,光电计时器就可以显示物体的挡光时间.现利用如图乙所示的装置来测量滑块与长 1 m 左右的木板间的动摩擦因数及被压缩弹簧的弹性势能,图中木板固定在水平面上,木板的左壁固定有一个处于锁定状态的压缩轻弹簧(弹簧的长度与木板相比可忽略),弹簧右端与滑块接触,1和2是固定在木板上适当位置的两个光电门,与之连接的两个光电计时器没有画出.现使弹簧解除锁定,滑块获得一定的初速度后水平向右运动,光电门1、2各自连接的计时器显示的挡光时间分别为2.0×10-2 s 和5.0×10-2s .用游标卡尺测量小滑块的宽度d ,游标卡尺的示数如图丙所示.(1)读出滑块的宽度d =________cm .(2)滑块通过光电门1的速度v 1=________m/s ,通过光电门2的速度v 2=________m/s .(3)若用米尺测量出两个光电门之间的距离为L ,已知当地的重力加速度为g ,则滑块与木板间的动摩擦因数的表达式为______________.(各量均用字母表示)(4)若用米尺测量出滑块的初始位置到光电门2的距离为s ,为测量被压缩弹簧的弹性势能,则还需测量的物理量是__________________________(说明其含义,并指明代表物理量的字母),被压缩弹簧的弹性势能可表示为______________________________(各量均用字母表示).[答案] (1)5.50 (2)2.75 1.10 (每空1分) (3)v 12-v 222gL(2分)(4)滑块的质量m 12mv 22+ms (v 12-v 22)2L(每空2分)13.(10分)在半径R =5000 km 的某星球表面,宇航员做了如下实验.实验装置如图甲所示,竖直平面内的光滑轨道由轨道AB 和圆弧轨道BC 组成,将质量m =0.2 kg 的小球从轨道AB 上高H 处的某点静止滑下,用力传感器测出小球经过C 点时对轨道的压力F ,改变H 的大小,可测出相应的F 大小,F 随H 的变化关系如图乙所示.求:(1)圆轨道的半径.(2)该星球的第一宇宙速度.【解析】(1)设该星球表面的重力加速度为g 0,圆轨道的半径为r .当H =0.5 m 时,有:mg 0(H -2r )=12mv 02 (2分)mv 02r=mg 0 (2分) 解得:r =25H =0.2 m . (1分)(2)当H >0.5 m 时,有:mg 0(H -2r )=12mv 2 (1分)mv 2r=mg 0+F (1分) 即F =g 0(2H -1) (1分)由F -H 图象可得:g 0=5 m/s 2(1分)该星球的第一宇宙速度v =g 0R =5 km/s . (1分)[答案] (1)0.2 m (2)5 km/s14.(10分)如图所示,间距为L 的两条足够长的平行金属导轨与水平面的夹角为θ,导轨光滑且电阻忽略不计.磁感应强度为B 的条形匀强磁场的方向与导轨平面垂直,磁场区域的宽度为d 1,间距为d 2.两根质量均为m 、有效电阻均为R 的导体棒a 和b 放在导轨上,并与导轨垂直.(设重力加速度为g )(1)若a 进入第2个磁场区域时,b 以与a 同样的速度进入第1个磁场区域,求b 穿过第1个磁场区域过程中增加的动能ΔE k .(2)若a 进入第2个磁场区域时,b 恰好离开第1个磁场区域,此后a 离开第2个磁场区域时,b 又恰好进入第2个磁场区域,且a 、b 在任意一个磁场区域或无磁场区域的运动时间均相同,求b 穿过第2个磁场区域的过程中,两导体棒产生的总焦耳热Q .【解析】(1)这一过程a 和b 不受安培力作用. 由机械能守恒定律知:ΔE k =mgd 1sin θ. (3分) (2)由题意可知,两导体棒每次进磁场区域时的速度相等,出磁场区域时的速度也相等,分别设为v 1和v 2.当b 穿过第2个磁场区域时,对于棒a ,有:12mv 12-12mv 22=mgd 2sin θ (2分) 对于棒b ,有: 12mv 22-12mv 12=mgd 1sin θ-W 安 (2分) W 安=Q (1分)解得:Q =mg (d 1+d 2)sin θ. (2分)[答案] (1)mgd 1sin θ (2)mg (d 1+d 2)sin θ15.(12分)如图所示,质量分别为3m 、2m 、m 的三个小球A 、B 、C ,用两根长为L 的轻绳相连,置于倾角为30°、高为L 的固定光滑斜面上,A 球恰能从斜面顶端处竖直落下,弧形挡板使小球只能竖直向下运动,碰撞过程中没有动能损失,小球落地后均不再反弹.现由静止开始释放它们,不计所有摩擦.求:(1)A 球刚要落地时的速度大小. (2)C 球刚要落地时的速度大小.(3)在B 球运动的过程中,两绳对B 球做的总功.【解析】(1)在A 球未落地前,A 、B 、C 组成的系统机械能守恒,设A 球刚要落地时系统的速度大小为v 1,则:12(m A +m B +m C )v 12=m A gh A -m B gh B 1-m C gh C 1 (2分) 又h A =L ,h B 1=h C 1=L sin 30°=12L代入数据解得:v 1=gL2. (2分) (2)在A 球落地后,B 球未落地前,B 、C 组成的系统机械能守恒.设B 球刚要落地时系统的速度大小为v 2,则:12(m B +m C )v 22-12(m B +m C )v 12=m B gh B 2-m C gh C 2 (2分) 又h B 2=L ,h C 2=L sin 30°=12L代入数据解得:v 2=3gL2(1分) 在B 球落地后,C 球在下落过程中机械能守恒,设C 球刚要落地时系统的速度大小为v 3,则:12m C v 32-12m C v 22=m C gh C 3,又h C 3=L (1分) 代入数据得:v 3=7gL2. (1分) (3)在B 球运动的过程中,重力和绳的拉力做功,设两绳做的总功为W ,根据动能定理可得:m B gL sin 30° +W =12m B v 22 (2分)代入数据解得:W =12mgL . (1分)[答案] (1)gL2 (2)7gL 2 (3)12mgL16.(13分)如图所示,一个带有14圆弧的粗糙滑板A 的总质量m A =3 kg ,其圆弧部分与水平部分相切于P ,水平部分PQ 长L =3.75 m .开始时,A 静止在光滑水平面上.现有一质量m B =2 kg 的小木块B 从滑块A 的右端以水平初速度v 0=5 m/s 滑上A ,小木块B 与滑板A 之间的动摩擦因数μ=0.15,小木块B 滑到滑板A 的左端并沿着圆弧部分上滑一段弧长后返回,最终停止在滑板A 上.(1)求A 、B 相对静止时的速度大小.(2)若B 最终停在A 的水平部分上的R 点,P 、R 相距 1 m ,求B 在圆弧上运动的过程中因摩擦而产生的内能.(3)若圆弧部分光滑,且除v 0不确定外其他条件不变,讨论小木块B 在整个运动过程中,是否有可能在某段时间里相对地面向右运动?如不可能,说明理由;如可能,试求出B 既向右滑动,又不滑离木板A 的v 0取值范围.(取g =10 m/s 2,结果可以保留根号)【解析】(1)根据动量守恒得: m B v 0=(m B +m A )v (2分)解得:v =25v 0=2 m/s . (1分)(2)设B 在A 的圆弧部分产生的热量为Q 1,在A 的水平部分产生的热量为Q 2.则有: 12m B v 02=12(m B +m A )v 2+Q 1+Q 2 (2分) 又Q 2=μm B g (L QP +L PR ) (1分) 联立解得:Q 1=0.75 J . (1分)(3)当B 滑上圆弧再返回至P 点时最有可能速度向右,设木块滑至P 的速度为v B ,此时A 的速度为v A ,有:m B v 0=m B v B +m A v A (1分)12m B v 02=12m B v B 2+12m A v A 2+μm B gL (2分) 代入数据得:v B 2-0.8v 0v B +6.75-0.2v 02=0当v B 的两个解一正一负时,表示B 从圆弧滑下的速度向右.即需:v 0>5.9 m/s ,故B 有可能相对地面向右运动.若要B 最终不滑离A ,有:μm B g ·2L ≥12m B v 02-12(m B +m A )(25v 0)2 (2分)得:v 0≤6.1 m/s故v 0的取值范围为:5.9 m/s <v 0≤6.1 m/s. (1分) [答案] (1)2 m/s (2)0.75 J (3)可能 5.9 m/s <v 0≤6.1 m/s。