高中数学必修一集合知识点总结大全(优选.)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改
高中数学 必修1知识点
集合
123412n x A x B A B A B A n A ∈∉⎧⎪
⎪⎨⎪⎪⎩
∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪
⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A B x x A x B A A A A A A B B A A B A A B B A B A B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪
⎪⎪
⎧⎪
⎪⎪
⎪⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎨⎪⎪⎪⎪
⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩
第一章 集合与函数概念
【1.1.1】集合的含义与表示
(1)集合的概念
把某些特定的对象集在一起就叫做集合.
(2)常用数集及其记法
N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表
示实数集.
(3)集合与元素间的关系
对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法
①自然语言法:用文字叙述的形式来描述集合.
②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类
①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).
【1.1.2】集合间的基本关系
(6)子集、真子集、集合相等
集合 相等
A B =
A 中的任一元素都
属于B ,B 中的任一元素都属于A
(1)A ⊆B
(2)B ⊆A
A(B)
(7)已知集合A 有(1)n n ≥个元素,则它有2n
个子集,它有21n
-个真子集,它有21n
-个非空子集,它有22n
-非空真子集.
【1.1.3】集合的基本运算
(8)交集、并集、补集
名称 记号
意义
性质
示意图
交集
A B
{|,x x A ∈且}x B ∈
(1)A
A A =
(2)A ∅=∅
(3)A B A ⊆
A B B ⊆
B
A
并集
A B
{|,x x A ∈或}x B ∈
(1)A A A = (2)A
A ∅= (3)A
B A ⊇
A
B B ⊇
B
A
补集
{|,}
x x U x A ∈∉且
⑴ (
⑵
⑶ ⑷
⑸
⑼ 集合的运算律:
交换律:.;A B B A A B B A ==
结合律:)()();()(C B A C B A C B A C B A == 分配律:)()()();()()(C A B A C B A C A B A C B A ==
0-1律:,,,A A A U A A U A U Φ=ΦΦ===
等幂律:.,A A A A A A == 求补律:A ∩ A ∪=U
反演律:(A ∩B)=(A)∪(B) (A ∪B)=(A)∩(B)
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1 下列各项中,不可以组成集合的是( )
A 所有的正数
B 等于2的数
C 接近于0的数
D 不等于0的偶数
2 下列四个集合中,是空集的是( )
A }33|{=+x x
B },,|),{(2
2R y x x y y x ∈-=
C }0|{2
≤x x D },01|{2
R x x x x ∈=+-
3 下列表示图形中的阴影部分的是( )
A ()()A
C B C B ()()A
B A C
C ()()A
B B
C
D ()A
B C
4 下面有四个命题:
(1)集合N 中最小的数是1; (2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2;
(4)x x 212
=+的解可表示为{
}1,1; 其中正确命题的个数为( )