勾股定理的逆定理(1)
勾股定理的逆定理知识点

要点一、勾股定理的逆定理如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形. 要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如c ).(2) 验证2c 与22a b +是否具有相等关系.若222c a b =+,则△ABC 是∠C =90°的直角三角形;若222c a b ≠+,则△ABC 不是直角三角形.要点诠释:当222a b c +<时,此三角形为钝角三角形;当222a b c +>时,此三角形为锐角三角形,其中c 为三角形的最大边.要点三、互逆命题如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.要点诠释:原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.要点四、勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果a b c 、、是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形. 要点诠释:(1)22121n n n -+,,(1,n n >是自然数)是直角三角形的三条边长; (2)2222,21,221n n n n n ++++(n 是自然数)是直角三角形的三条边长;(3)2222,,2m n m n mn -+ (,m n m n >、是自然数)是直角三角形的三条边长;。
14.1 勾股定理的逆定理(1)--

他们用13个等距的结巴一根绳子分成 等长的12段,一个工匠同时握住绳子的第1 个结和第13个结,两个助手分别握住第4个 结和第8个结,拉紧绳子,就会得到一个直 角三角形,其直角在第4个结处。
这个问题意味着:
如果围成的三角形的三边分别 为3、4、5.满足关系: 32+42=52.那么围成的三角 形是直角三角形.
a、b、c满足 a2
+ b2 = c2 ,那么这个
三角形是直角三角形。
例1:判断由线段a,b,c组成的三角形是不是直角
三角形? (1) a=15,b=17,c=8; (2) a=13,b=15,c=14 是直角三角形, 只要看两条较少边长的平方和是否等于 条边长的三个正整数,称为 勾股数. 最大边长的平方 .
猜想:如果三角形的三边长a、b、c满
足 a2
+
2 b
=
2 c ,那么这个三角形是直
角三角形。
已知△ABC,AB=c,AC=b,BC=a,且a2+b2=c2, 求证:∠C=900
证明:作Rt△A′B′C′, 使∠C′=900,A′C′=b,B′C′=a
则△ABC≌ △A′B′C′
∴∠C=900
勾股定理的逆定理:如果三角形的三边长
△ABC三边a,b,c为边向外作正 方形,正三角形,以三边为直 径作半圆,若S1+S2=S3成立,则 是直角三角形吗?
S1
a c
S2
B
C
b
C
B
S2
A
b
a c
S1
A
S3
S3
已知:如图,四边形 ABCD 中,∠B=900,AB=3,BC=4, CD = 12 , AD = 13, 求 四 边 形 ABCD的面积?
第5课 勾股定理的逆定理1

18.2 勾股定理的逆定理1学习目标掌握勾股定理的逆定理,并会用来判断一个三角形是不是直角三角形;熟记一些勾股数学习重点勾股定理的逆定理及其应用学习过程一、复习引入1.直角三角形有哪些性质?2.你有哪些方法说明一个三角形是直角三角形?二、探究新知1.将勾股定理的题设与结论互换,得到的命题是:.2.这个命题是真命题吗?(1)我们用几组符合222+=的三条线段a,b,c来围成三角形,看看它们是否是直角三角a b c形?(3,4,5);(2.5,6,6.5).(2)你会证明这个命题吗?已知:求证:证明:3.将一个命题的题设和结论互换,得到一个新命题,新命题与原命题互为逆命题.练习:写出下列命题的逆命题,并判断原命题和其逆命题的真假:(1)原命题:两直线平行,同位角相等.()逆命题:.()(2)原命题:如果一个角的两边分别平行于另一个角的两边,那么这两个角互补.()逆命题:.()(3)原命题:如果AC=BC,那么点C是线段AB的中点.()逆命题:.()(4)原命题:对顶角相等.()逆命题:.()4.通过刚才的练习可知,原命题的真假与其逆命题的真假之间没有关联.当一个定理的逆命题也是真命题时,它也是一个定理,我们称这两个定理为互逆定理.练习:举出一些我们学过的互逆定理的例子三、巩固提高1.判断下面的三条线段能不能组成直角三角形:(1)15,8,17;(2)13,14,15;(3)n2-1,2n,n2+1.小结:能够构成直角三角形三条边长的三个正整数,成为勾股数.请你写出几组常见的勾股数:练习:书本77页 62.一个三角形的三边长分别为15,20,25,求这个三角形最长边上的高.练习:如果三角形的三边分别为2,2,2,那么这个三角形的三个角的度数分别为;如果三角形的三边分别为1,2的度数之比为.3.如果一个三角形的三边a,b,c满足4422220a b b c a c-+-=,试判断这个三角形的形状.4.正方形网格中,小格的顶点叫做格点。
《勾股定理的逆定理》PPT课件(第1课时)

理的逆定理,∴这个三角形不是直角三角形.
总结:根据勾股定理的逆定理,判断一个三角形是不是直角三 角形,只要看两条较小边长的平方和是否等于最大边长的平方.
巩固练习
D
在Rt△CEF中,得EF2=CE2+CF2=a2+4a2=5a2.
在Rt△ADF中,得AF2=AD2+DF2=16a2+4a2=20a2.
在△AEF中,AE2=EF2+AF2,∴△AEF为直角三角形,且AE为
斜边.∴∠AFE=90°,即AF⊥EF.
课堂小结
勾股定理 的逆定理
内容 作用 注意
如果三角形的三边长a 、b 、c满
下列各组线段中,能够组成直角三角形的一组是( D )
A. 1,2,3
B. 2,3,4
C. 4,5,6
D. 1, 2, 3 C
满足下列条件的三角形中,不是直角三角形的是( C )
A.三个内角比为1:2:1
C.三边之比为 3 : 2 : 5
B. 三边之比为1:2: 5 D. 三个内角比为1:2:3
探究新知 考 点 2 勾股定理的逆定理和乘法公式判断三角形
b
根据勾股定理,则有 A1B1 2=B1C1 2+C1A1 2=a2+b2. B
B
∵a2+b2=c2, ∴A1B1 =c, ∴AB=A1B1.
A1
在△ABC和△A1B1C 1中,
aC
BC=B1C1,
b
CA=C1A1, AB=A1B1.
B1 a C1
∴∆ABC ≌ ∆A1B1C1. ∠C=∠ C1 =90°.
勾股定理逆定理(一)

⑤ A. 2个; B. 3个; C. 4个; D. 5个.
6、三角形的三边长为 ,则这个三角形是( )
A.等边三角形; B.钝角三角形; C.直角三角形; D.锐角三角形.
7、如图,在△ABD中,∠A是直角,AB=3,AD=4,BC=12,DC=13,△DBC是直角三角形吗?
D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形。
3.下列四条线段不能组成直角三角形的是()
A.a=8,b=15,c=17 B.a=9,b=12,c=15
C.a= ,b= ,c= D.a:b:c=2:3:4
【四、综合提升】
三角形的三边长分别为 , , ( 都是正整数),试判断三角形的形状
集兵镇中学八年级数学导学案
备课日期:2013年12月3日教学日期:12月日设计:周健审核:祝亮
课题:勾股定理逆定理(一)
学
习
目
标
1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。
2.探究勾股定理的逆定理的证明方法。
3.理解原命题、逆命题、逆定理的概念及关系。
学习重点:掌握勾股定理的逆定理及证明
(1)这三组数满足 吗?
(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?
猜想命题2:如果三角形的三边长 、 、 ,满足 ,那么这个三角形是三角形
问题二:命题1:
命题2:
命题1和命题2的和正好相反,把像这样的两个命题叫做命题,如果把其中一个叫做,那么另一个叫做
由此得到
勾股定理逆定理:
【五、知识梳理】
【六、当堂检测】
1、任何一个命题都有,但任何一个定理未必都有。
八年级-人教版-数学-下册-第1课时-勾股定理的逆定理

3
5
4
三边分别为 3,4,5, 满足关系:32+42=52, 则该三角形是直角三角形.
探究
画一画:下列各组数中的两数的平方和等于第三数的平方,
分别以这些数为边长画出三角形(单位:cm).
① 2.5,6,6.5;
② 6,8,10;
③ 4,7.5,8.5.
量一量:用量角器量一量,它们是什么三角形? 直角三角形
例2 在△ABC 中,a∶b∶c=9∶15∶12,试判断△ABC 是否 是直角三角形.
解:依题意知 b 是最长边, 设 a=9k,b=15k,c=12k(k>0), ∵ a2+c2=(9k)2+(12k)2=225k2,b2=(15k)2=225k2, ∴ a2+c2=b2,即△ABC 是直角三角形.
本题易错点:没有弄清楚哪条边是最长边的情况下 就盲目地运用勾股定理的逆定理,从而导致错误.
勾股定理的逆定理
互逆命题:原命题、逆命题 勾股定理的逆定理的证明 勾股数
解:(3)对应角相等的两个三角形全等,不成立; (4)角平分线上的点到角两边的距离相等,成立.
一般地,原命题成立时,它的逆命题可能成立,也可 能不成立.
思考 命题 2 正确吗?如何证明呢?
∠C 是直角 ?
△ABC 是直角三角形
a2+b2=c2
画一个两条直角边分别为 a,b 的直角 三角形,如果△ABC 与这个直角三角形全等, 那么△ABC 就是直角三角形.
由前面几个例子,我们可以作出什么猜想?
如果三角形的三边长 a,b,c 满足 a2+b2=c2,那么这个三 角形是直角三角形.
题设
命题 1 如果直角三角形两直角边长分别为 a,b,斜边长为 c,
那么 a2+b2=c2.结论
18.2勾股定理的逆定理(1)

具体训练步骤
1、情景引入2、典型例题3、针对性练习4、小结
训练内容实例
一、情景引入一起看书第73页上的故事引出命题2
命题2如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形
思考:这个命题与命题1“如果直角三角形两直角边是a、b,斜边是c,那么a2+b2=c2”
(2)勾股定理的逆定理是:如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形。
(3)△ABC的三边之比是1:1: ,则△ABC是直角三角形。
2.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()
A.如果∠C-∠B=∠A,则△ABC是直角三角形。
B.如果c2= b2—a2,则△ABC是直角三角形,且∠C=90°。
⑴a= ,b= ,c= ;⑵a=5,b=7,c=9;
⑶a=2,b= ,c= ;⑷a=5,b= ,c=1。
5.若三角形的三边是⑴1、 、2;⑵ ;⑶32,42,52⑷9,40,41;
⑸(m+n)2-1,2(m+n),(m+n)2+1;则构成的是直角三角形的有()
A.2个B.3个 C.4个 D.5个
三、本课知识能力提升训练
四、课堂梳理小结作业说明
小结具体内容
1、命题与逆命题2、勾股定理的逆定理3、直角三角形的判断
详细分层作业
布置要求说明
必做:书76页习题18.2 1、2导航33页18.2随堂练习
选作:书76页习题18.2 4、6
提升能力点
灵活运用“勾股定理的逆定理”解决问题
学生层面
综合运用因式分解等相关知识解决勾股定理的问题
提升内容
1、已知a , b , c是△ABC的三边长,且满足 ,
勾股定理的逆定理定义

勾股定理的逆定理1. 引言勾股定理是数学中最基本且重要的定理之一,它描述了直角三角形中三条边的关系。
而勾股定理的逆定理则是根据已知两条边的长度,判断这两条边是否能构成一个直角三角形。
在本文中,我们将详细介绍勾股定理的逆定理的定义、证明以及应用。
2. 定义勾股定理的逆定理可以简单表述为:如果给定一个三角形,其中两条边长分别为a和b,那么当且仅当a、b满足以下条件时,该三角形为直角三角形:•a和b是正数;•a、b存在一个整数m使得a=m^2;•a、b存在一个整数n使得b=n^2;•m和n互质(即最大公约数为1)。
3. 证明下面我们将对勾股定理的逆定理进行证明。
步骤1:假设给定一个符合条件的三角形假设给定一个三角形ABC,其中AB=c为斜边,AC=a为一条直角边,BC=b为另一条直角边。
步骤2:根据已知条件推导首先,我们可以根据已知条件得出以下结论:•根据直角三角形的定义,我们知道角C为直角。
•根据勾股定理,我们有c^2 = a^2 + b^2。
步骤3:证明a、b满足逆定理的条件接下来,我们将分两步证明a、b满足逆定理的条件。
步骤3.1:证明a和b是正数根据已知条件,我们可以得出a、b都是正数。
步骤3.2:证明存在整数m和n使得a=m2和b=n2,并且m和n互质假设m和n不互质,则存在一个正整数d能够同时整除m和n。
那么我们可以将m 表示为dm’,n表示为dn’,其中m’和n’是互质的。
由已知条件可得:• a = m^2 = (dm’)^2 = d2(m’)2;• b = n^2 = (dn’)^2 = d2(n’)2。
由此可见,a和b都能被d^2整除。
但是根据勾股定理可知c不可能被d整除(因为c是斜边),这与已知矛盾。
因此,假设不成立。
即m和n一定是互质的。
步骤4:得出结论根据步骤3的证明,我们可以得出结论:当且仅当a、b满足逆定理的条件时,三角形ABC为直角三角形。
即勾股定理的逆定理成立。
4. 应用勾股定理的逆定理在实际问题中有广泛的应用。
勾股定理逆定理1

三、合作探究 命题 2:如果三角形的三边长 a 、 b 、 c 满足 a 2 b 2 c 2 ,那么这个三角形是直角三角形. 已 知 : 在 △ ABC 中 , AB=c , BC=a , CA=b , 且
a2 b2 c2 求证:∠C=90°
思路:构造法——构造一个直角三角形,使它与原三 角形全等, A' A 利用对应角相等来证明 证明: c b b
3、在下列以线段 a、b、c 的长为三边的三角形中,不 A、a=9,b=41,c=40 C 、a∶b∶c=3∶4∶5
2、说出下列命题的逆命题.这些命题的逆命题成立吗? (1)两条直线平行,内错角相等. (2)如果两个实数相等,那么它们的绝对值相等. (3)全等三角形的对应角相等. (4)在角的平分线上的点到角的两边的距离相等.
主备人:
郭海琴
审核人 :
姜瑞风Leabharlann 时间 :六、课堂小测编号 1501
四、课堂练习 1、判断由线段 a 、b 、c 组成的三角形是不是直角三角 形: (1) a 15, b 8, c 17 ; (2) a 13, b 14, c 15 .
1、以下列各组线段为边长,能构成三角形的是 ____________ , 能 构 成 直 角 三 角 形 的 是 ____________. (填序号) ①3,4,5 ② 1,3,4 ③ 4,4,6 ④ 6,8,10 ⑤ 5,7,2 ⑥ 13,5,12 ⑦ 7,25,24 2、在下列长度的各组线段中,能组成直角三角形的 是( ) B.1,4,9 D.5,11,12 ) B、a=b=5,c= 5 2 D a=11,b=12,c=15 ) A.5,6,7 C.5,12,13 能构成直角三角形的是(
18.2勾股定理的逆定理(1)[精选文档]
![18.2勾股定理的逆定理(1)[精选文档]](https://img.taocdn.com/s3/m/d95b845d4b7302768e9951e79b89680203d86bad.png)
(1)a=6,b=8,c=10; (2)a=5,b=12,c=13;
(3)a=5,b=7,c=9; (4)a=8,b=15,c=17;
尝试应用
4.说出下列命题的逆命题.这些命题的逆命题成立吗? (1)两条直线平行,内错角相等. (2)如果两个实数相等,那么它们的平方相等. (3)如果两个实数相等,那么它们的绝对值相等. (4)全等三角形的对应角相等. 5.如图所示△ABC三边a,b,c为边向外作正方形, 若S1+S2=S3成立,则△ABC是什么三角形?为什么?
情境引入
用一根钉上13个等距离结的细绳子,让同学操作, 用钉子钉在第一个结上,再钉在第4个结上,再钉在第8个结 上,最后将第十三个结与第一个结钉在一起.然后用角尺量 出最大角的度数.可以发现这个三角形是直角三角形.
课中探究
探究一:动手实践.
(一)、画一画.画出边长分别是下列各组数的三角形(单位:厘米).
作用:根据边的 数量关系判定是 否是直角三角形.
尝试应用
1.“如果同旁内角互补,那么两条直线平行”的题设是
_____, 结论是 ,逆命题是_______.
2.“对顶角相等”的的题设是 结论是
,逆命题
是_______.
3. 已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、
c,分别为下列长度,判断该三角形是否是直角三角形?
(1):3、4、5 ;(2):3、6、8;(3):6、8、10
(二)、量一量.用你的量角器分别测量一下小组内同学画出的三个三角形的
最大角的度数,并判断上述你们所画的三角形的形状:(按角分类)
(三)、算一算.请比较上述每个三角形的两条较短边的平方和与最长边的
平方之间的大小关系. 你能发现什么规律?
勾股定理的逆定理

勾股定理的逆定理(1)知识领航1.勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形. 2. 满足a 2 +b 2=c 2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用的勾股数有3、4、5、;6、8、10;5、12、13等.3. 应用勾股定理的逆定理时,先计算较小两边的平方和再把它和最大边的平方比较.4. 判定一个直角三角形,除了可根据定义去证明它有一个直角外,还可以采用勾股定理的逆定理,即去证明三角形两条较短边的平方和等于较长边的平方,这是代数方法在几何中的应用.e 线聚焦【例】如图,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13,求四边形ABCD的面积.分析:根据题目所给数据特征,联想勾股数,连接AC ,可实现四边形向三角形转化,并运用勾股定理的逆定理可判定△ACD 是直角三角形.解:连接AC ,在Rt △ABC 中,AC 2=AB 2+BC 2=32+42=25, ∴ AC =5. 在△ACD 中,∵ AC 2+CD 2=25+122=169, 而 AB 2=132=169,∴ AC 2+CD 2=AB 2,∴ ∠ACD =90°.故S 四边形ABCD =S △ABC +S △ACD =21AB ·BC +21AC ·CD =21×3×4+21×5×12=6+30=36.双基淘宝仔细读题,一定要选择最佳答案哟!1. 分别以下列四组数为一个三角形的边长:(1)3,4,5;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中能构成直角三角形的有( )A .4组B .3组C .2组D .1组2. 三角形的三边长分别为 a 2+b 2、2ab 、a 2-b 2(a 、b 都是正整数),则这个三角形是()A .直角三角形B .钝角三角形C .锐角三角形D .不能确定3.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A .1倍B . 2倍C . 3倍D . 4倍 4. 下列各命题的逆命题不成立的是( )A .两直线平行,同旁内角互补B .若两个数的绝对值相等,则这两个数也相等C .对顶角相等D .如果a =b ,那么a 2=b 2 5.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)A B C D综合运用认真解答,一定要细心哟!6. 如图所示的一块地,已知AD =4m ,CD =3m , AD ⊥DC ,AB =13m ,BC =12m ,求这块地的面积.7. 一个零件的形状如左图所示,按规定这个零件中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?ABCDA B CD5312138. 如图,E 、F 分别是正方形ABCD 中BC 和CD 边上的点,且AB =4,CE =41BC ,F 为CD 的中点,连接AF 、AE ,问△AEF 是什么三角形?请说明理由.AA D C B拓广创新试一试,你一定能成功哟!9. 勾股数又称商高数,它有无数组,是有一定规律的.比如有一组求勾股数的式子:a =m 2-n 2,b =2mn ,c =m 2+n 2(其中m ,n 为正整数,且m >n ).你能验证它吗?利用这组式子,完成下.123456 (2)3 4 5 6 …… … … … … ……勾股定理的逆定理(2)知识领航1.应用勾股定理及其逆定理解决简单的实际问题,建立数学模型.2.体会从“形”到“数”和从“数”到“形”的转化,培养转化、推理的能力.e 线聚焦【例】如图,南北向MN 为我国领域,即MN 以西为我国领海,以东为公海.上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B .已知A 、C 两艇的距离是13海里,A 、B 两艇的距离是5海里;反走私艇测得离C 艇的距离是12海里.若走私艇C 的速度不变,最早会在什么时间进入我国领海?分析:为减小思考问题的“跨度”,可将原问题分解成下述“子问题”:(1)△ABC 是什么类型的三角形?(2)走私艇C 进入我领海的最近距离是多少?(3)走私艇C 最早会在什么时间进入?这样问题就可迎刃而解.解:设MN 交AC 于E ,则∠BEC =900.又AB 2+BC 2=52+122=169=132=AC 2, ∴△ABC 是直角三角形,∠ABC =900.又∵MN ⊥CE ,∴走私艇C 进入我领海的最近距离是CE , 则CE 2+BE 2=144,(13-CE )2+BE 2=25,得26CE =288, ∴CE =13144. 13144÷169144≈0.85(小时), 0.85×60=51(分). 勾股 数n m A ME NB9时50分+51分=10时41分.答:走私艇最早在10时41分进入我国领海.双基淘宝◆ 仔细读题,一定要选择最佳答案哟!1. 如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .321,421,521 C .3,4,5 D .4,721,821 2.在下列说法中是错误的( )A .在△ABC 中,∠C =∠A 一∠B ,则△ABC 为直角三角形.B .在△ABC 中,若∠A :∠B :∠C =5:2:3,则△ABC 为直角三角形.C .在△ABC 中,若a =53c ,b =54c ,则△ABC 为直角三角形. D .在△ABC 中,若a :b :c =2:2:4,则△ABC 为直角三角形.3. 有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm ),从中取出三根首尾顺次连接搭成一个直角三角形,则这根木棒的长度分别为( )A .2,4,8B .4,8,10C .6,8,10D .8,10,124.将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股数 , , .5.若三角形的两边长为4和5,要使其成为直角三角形,则第三边的长为 . 6.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为 .综合运用◆ 认真解答,一定要细心哟!7.如图,已知等腰△ABC 的底边BC =20cm ,D 是腰AB 上一点,且CD =16cm ,BD =12cm ,求△ABC 的周长.8.如图,三个村庄A 、B 、C 之间的距离分别为AB =5km ,BC =12km ,AC =13km .要从B 修一条公路BD 直达AC .已知公路的造价为26000元/km ,求修这条公路的最低造价是多少?D B C AB12 59.如图,AB为一棵大树,在树上距地面10m的D处有两只猴子,它们同时发现地面上的C处有一筐水果,一只猴子从D处上爬到树顶A处,利用拉在A处的滑绳AC,滑到C处,另一只猴子从D 处滑到地面B,再由B跑到C,已知两猴子所经路程都是15m,求树高AB.拓广创新试一试,你一定能成功哟!10.如图,在△ABC中,∠ACB=90º,AC=BC,P是△ABC内的一点,且PB=1,PC=2,P A=3,求∠BPC的度数.BACD.ACPB18.2 勾股定理的逆定理(1)参考答案1.B2.A3.B4.C5.C6.24m 27.符合 8.由勾股定理得AE 2=25,EF 2=5,AF 2=20,∵AE 2= EF 2 +AF 2,∴△AEF 是直角三角形 . 9.略18.2 勾股定理的逆定理(2)参考答案1.B2.D3.C4.5,12,13; 8,15,17; 11,60,61(此题答案不唯一)5.3或416.120cm 27.由BD 2+DC 2=122+162=202=BC 2得CD ⊥AB 又AC =AB =BD +AD =12+AD ,在Rt△ADC 中,AC 2=AD 2+DC 2,即(12+AD )2=AD 2+162,解得AD =314,故 △ABC 的周长为2AB +BC =3153cm 8.由勾股定理的逆定理可判定△ABC 是直角三角形,由面积关系可求出公路的最短距离BD =1360km , ∴最低造价为120000元 9.设AD =x 米,则AB 为(10+x )米,AC 为(15-x )米,BC 为5米,∴(x +10)2+52=(15-x )2,解得x =2,∴10+x =12(米) 10.如图,将△APC 绕点C 旋转,使CA 与CB 重合,即△APC ≌△BEC ,∴△PCE 为等腰Rt △,∴∠CPE =45°,PE 2=PC 2+CE 2=8. 又∵PB 2=1,BE 2=9,∴PE 2+ PB 2= BE 2,则∠BPE =90°,∴∠BPC =135°.第10题图。
八年级下册数学勾股定理的逆定理1

勾股定理的逆定理1知识点1.勾股定理的逆定理 考点1.直角三角形的判别方法例1.判断满足下列条件的三角形是不是直角三角形:(1)在△ABC 中,∠A=25°,∠C=65°; (2)在△ABC 中,AC=12,AB=20,BC=16; (3)一个三角形的三边长a 、b 、c 满足222c a b =-.练习:判断下列下列三角形的形状.(1)在△ABC 中,AC=5,AB=12, BC =13;(2)一个三角形三边长之比为1:1:.2考点2.利用三角形三边关系判定直角三角形.1.三边组成直角三角形的条件.例2.下面给出几组数:①7,8,9;②12,9,15;③均为正整数,n m mn n m n m ,(2,,2222-+ m>n);④2,1,222++a a a .以它们为边长的三角形一定是直角三角形的是( ).练习:在△ABC 中,∠A ,∠B ,∠C 的对边分别为a,b,c,且,))((2c b a b a =-+则( ). A.∠A 为直角 B.∠C 为直角 C.∠B 为直角D.△ABC 不是直角三角形2.从三边满足的关系式中判断三角形的形状.例3.已知a,b,c 为△ABC的三边长,且满足.ABC ,442222的形状试判断△b a c b c a -=-练习:已知a、b、c是△ABC的三边长,且满足关系式:.ABC ,0222的形状试判断△=-+--b a b a c3.通过求三角形三边长判断三角形的形状例4.如图,E、F分别是正方形ABCD中BC和CD边上的点,且AB=4,CE=BC41,F为CD的中点,连接AF、AE,问:△AEF是什么三角形?请说明理由.练习:如图,在四边形ABCD中,∠C是直角,AB=13,BC=4,CD=3,AD=12,求证:AD⊥BD.考点3.勾股定理及其逆定理的综合应用例5.如图,在△ABC中,AB=17,BC=16,BC边上的中线AD等于15,证明:AB=AC. 练习:如图,在四边形ABCD中,已知AB:BC:CD:DA=2:2:3:1,且∠B=90°,求:∠DAB的度数.考点4.勾股定理及其逆定理的实际应用某校把一块三角形的废地开辟为植物园,如图,测得AC=80m,BC=60m,AB=100m.(1)若入口E在边AB上,且与A,B的距离相等.求从入口E到出口C的最短路线的长(提示:直角三角形中斜边上的中线等于斜边的一半);(2)若线段CD是一条小渠,且点D在边AB上,点D距点A多远时,水渠的距离最短?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.2 勾股定理的逆定理(一)
教学目标
1、知识与技能:了解并掌握勾股定理的逆定理,掌握直角三角形的判定条件。
2、过程与方法:通过实验操作探索三边长a 、b 、c 满足222c b a
=+的三角形是
直角三角形,直接领教同一法;
3、情感、态度、价值观:在探索活动过程中,亲身体验并感受知识的生成和发展的过程,培养敢于实践、敢于发现、大胆探索、合作创新的精神。
教学重点、难点
1.重点:掌握勾股定理的逆定理及证明。
2.难点:勾股定理的逆定理的证明。
教学设计:
一、课堂引入
创设情境:
⑴ 样判定一个三角形是等腰三角形?
⑵ 怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的
逆命题进行猜想。
二、合作、探究
1、复习原命题与逆命题
例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?
⑴同旁内角互补,两条直线平行。
⑵如果两个实数的平方相等,那么两个实数平方相等。
⑶线段垂直平分线上的点到线段两端点的距离相等。
⑷直角三角形中30°角所对的直角边等于斜边的一半。
分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用。
⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假。
2、勾股定理的逆定理
例2(P82探究)证明:如果三角形的三边长a ,b ,
c 满足a 2+b 2=c 2,那么这个三角形是直角三角形。
分析:⑴注意命题证明的格式,首先要根据题意画出图
形,然后写已知求证。
⑵如何判断一个三角形是直角三角形,现在只知道
若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。
⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。
b
B C A 1C1
⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证。
⑸先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法。
充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受。
例3(课本例1)判断由线段a、b、c所组成的三角形是不是直角三角形:(1)a=15,b=8,c=17;(2)a=13,b=14,c=15。
三、课堂练习
1.判断题。
⑴在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角。
⑵命题:“在一个三角形中,有一个角是30°,那么它所对的边是另一边的一半。
”的逆命题是真命题。
⑶勾股定理的逆定理是:如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形。
⑷△ABC的三边之比是1:1:2,则△ABC是直角三角形。
2.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C-∠B=∠A,则△ABC是直角三角形。
B.如果c2= b2—a2,则△ABC是直角三角形,且∠C=90°。
C.如果(c+a)(c-a)=b2,则△ABC是直角三角形。
D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形。
3.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?
2,c=5;⑵a=5,b=7,c=9;
⑴a=3,b=2
2,c=1。
⑶a=2,b=3,c=7;⑷a=5,b=6
四、小结
1、内容:勾股定理的逆定理的内容及其证明方法
2、思想方法:通过让动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再通过探究理论证明方法,使实践上升到理论,提高学生的理性思维
五、课后作业
1.叙述下列命题的逆命题,并判断逆命题是否正确。
⑴如果a3>0,那么a2>0;
⑵如果三角形有一个角小于90°,那么这个三角形是锐角三角形;
⑶如果两个三角形全等,那么它们的对应角相等;
⑷关于某条直线对称的两条线段一定相等。
2.填空题。
⑴任何一个命题都有,但任何一个定理未必都有。
⑵“两直线平行,内错角相等。
”的逆定理是。
⑶在△ABC 中,若a 2=b 2-c 2,则△ABC 是三角形,是直角;
若a 2<b 2-c 2,则∠B 是。
⑷若在△ABC 中,a=m 2-n 2,b=2mn ,c= m 2+n 2,则△ABC 是三角形。
3.若三角形的三边是⑴1、3、2;⑵5
1,41,31;⑶32,42,52⑷9,40,41;⑸(m +n )2-1,2(m +n ),(m +n )2+1;则构成的是直角三角形的有()
A .2个
B .3个 C.4个 D.5个
4.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?
⑴a=9,b=41,c=40;⑵a=15,b=16,c=6;
⑶a=2,b=32,c=4;⑷a=5k ,b=12k ,c=13k (k >0)。
选作:
已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,a=n 2-1,b=2n ,c=n 2+1(n >1)
求证:∠C=90°。