热力学第二定律
热力学第二定律
第二章热力学第二定律2.1 自发变化的共同特征自发变化某种变化有自动发生的趋势,一旦发生就无需借助外力,可以自动进行,这种变化称为自发变化。
自发变化的共同特征—不可逆性任何自发变化的逆过程是不能自动进行的。
例如:(1)焦耳热功当量中功自动转变成热;(2)气体向真空膨胀(3)热量从高温物体传入低温物体;(4)浓度不等的溶液混合均匀;(5)锌片与硫酸铜的置换反应等,它们的逆过程都不能自动进行。
当借助外力,体系恢复原状后,会给环境留下不可磨灭的影响。
2.2热力学第二定律(T h e S e c o n d L a w o f T h e r m o d y n a m i c s)克劳修斯(Clausius)的说法:“不可能把热从低温物体传到高温物体,而不引起其它变化。
”开尔文(Kelvin)的说法:“不可能从单一热源取出热使之完全变为功,而不发生其它的变化。
” 后来被奥斯特瓦德(Ostward)表述为:“第二类永动机是不可能造成的”。
第二类永动机:从单一热源吸热使之完全变为功而不留下任何影响。
2.3卡诺循环与卡诺定理2.3.1卡诺循环(C a r n o t c y c l e)1824 年,法国工程师N.L.S.Carnot (1796~1832)设计了一个循环,以理想气体为工作物质,从高温T h热源吸收Q h的热量,一部分通过理想热机用来对外做功W,另一部分Q c的热量放给低温热源T c。
这种循环称为卡诺循环.1mol 理想气体的卡诺循环在pV图上可以分为四步:过程1:等温T h 可逆膨胀由 p 1V 1到p 2V 2(AB)10U ∆= 21h 1lnV W nRT V =- h 1Q W =- 所作功如AB 曲线下的面积所示。
过程2:绝热可逆膨胀由 p 2V 2T h 到p 3V 3T c (BC)20Q = ch 22,m d T V T W U C T =∆=⎰所作功如BC 曲线下的面积所示。
热力学第二定律
热力学第二定律热力学第二定律是热力学领域中的基本定律之一,它描述了自然界中的物质运动和能量转化的方向性。
本文将详细介绍热力学第二定律的概念、原理及其在热力学系统中的应用。
1. 热力学第二定律的概念热力学第二定律是指在孤立系统中,任何自发过程都会导致熵的增加,而不会导致熵的减少。
其中,孤立系统是指与外界没有物质和能量交换的系统,熵是描述系统无序程度或混乱程度的物理量。
2. 热力学第二定律的原理热力学第二定律有多种表述形式,其中最常用的是凯尔文-普朗克表述和克劳修斯表述。
2.1 凯尔文-普朗克表述凯尔文-普朗克表述认为不可能通过单一热源从热能的完全转化形式(即热量)中提取能量,并将其完全转化为功。
该表述包括两个重要概念:热机和热泵。
热机是指将热能转化为功的设备,而热泵则是将低温热源的热量转移到高温热源的设备。
2.2 克劳修斯表述克劳修斯表述认为不可能存在这样的过程:热量从低温物体自发地传递到高温物体。
这一表述可由热力学第一定律和熵的概念推导得出。
3. 热力学第二定律的应用热力学第二定律在能量转化和机械工程领域具有广泛的应用。
以下将介绍几个实际应用。
3.1 热机效率根据热力学第二定律,热机的效率不可能达到100%,即不可能将一定量的热能完全转化为功。
热机的效率定义为输出功与输入热量之比,常用符号为η。
根据卡诺热机的理论,热机的最高效率与工作温度之差有关。
3.2 热力学循环过程热力学循环过程是指系统在经历一系列状态变化后,最终回到初始状态的过程。
根据热力学第二定律,热力学循环过程中所涉及的热机或热泵的效率不可能大于卡诺循环的效率。
3.3 等温膨胀过程等温膨胀过程是热力学第二定律的应用之一。
在等温膨胀过程中,系统与热源保持恒温接触,通过对外做功来改变系统的状态。
根据热力学第二定律,等温膨胀过程无法实现自发进行,必须进行外界功输入才能实现。
4. 热力学第二定律的发展和突破随着科学技术的发展,人们对热力学第二定律的认识不断深化。
热力学第二定律 概念及公式总结
热力学第二定律一、 自发反应-不可逆性(自发反应乃是热力学的不可逆过程)一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。
二、 热力学第二定律1. 热力学的两种说法:Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化Kelvin :不可能从单一热源取出热使之完全变为功,而不发生其他的变化2. 文字表述: 第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功)功 热 【功完全转化为热,热不完全转化为功】(无条件,无痕迹,不引起环境的改变) 可逆性:系统和环境同时复原3. 自发过程:(无需依靠消耗环境的作用就能自动进行的过程)特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功三、 卡诺定理(在相同高温热源和低温热源之间工作的热机)ηη≤ηη (不可逆热机的效率小于可逆热机)所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关四、 熵的概念1. 在卡诺循环中,得到热效应与温度的商值加和等于零:ηηηη+ηηηη=η 任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关热温商具有状态函数的性质 :周而复始 数值还原从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数2. 热温商:热量与温度的商3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量ηη :起始的商 ηη :终态的熵 ηη=(ηηη)η(数值上相等) 4. 熵的性质:(1)熵是状态函数,是体系自身的性质 是系统的状态函数,是容量性质(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和(3)只有可逆过程的热温商之和等于熵变(4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量(5)可用克劳修斯不等式来判别过程的可逆性(6)在绝热过程中,若过程是可逆的,则系统的熵不变(7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。
热力学第二定律详解
热力学第二定律(英文:second law of thermodynamics)是热力学的四条基本定律之一,表述热力学过程的不可逆性——孤立系统自发地朝着热力学平衡方向──最大熵状态──演化,同样地,第二类永动机永不可能实现。
这一定律的历史可追溯至尼古拉·卡诺对于热机效率的研究,及其于1824年提出的卡诺定理。
定律有许多种表述,其中最具代表性的是克劳修斯表述(1850年)和开尔文表述(1851年),这些表述都可被证明是等价的。
定律的数学表述主要借助鲁道夫·克劳修斯所引入的熵的概念,具体表述为克劳修斯定理。
虽然这一定律在热力学范畴内是一条经验定律,无法得到解释,但随着统计力学的发展,这一定律得到了解释。
这一定律本身及所引入的熵的概念对于物理学及其他科学领域有深远意义。
定律本身可作为过程不可逆性[2]:p.262及时间流向的判据。
而路德维希·玻尔兹曼对于熵的微观解释——系统微观粒子无序程度的量度,更使这概念被引用到物理学之外诸多领域,如信息论及生态学等克劳修斯表述克劳修斯克劳修斯表述是以热量传递的不可逆性(即热量总是自发地从高温热源流向低温热源)作为出发点。
虽然可以借助制冷机使热量从低温热源流向高温热源,但这过程是借助外界对制冷机做功实现的,即这过程除了有热量的传递,还有功转化为热的其他影响。
1850年克劳修斯将这一规律总结为:不可能把热量从低温物体传递到高温物体而不产生其他影响。
开尔文表述参见:永动机#第二类永动机开尔文勋爵开尔文表述是以第二类永动机不可能实现这一规律作为出发点。
第二类永动机是指可以将从单一热源吸热全部转化为功,但大量事实证明这个过程是不可能实现的。
功能够自发地、无条件地全部转化为热;但热转化为功是有条件的,而且转化效率有所限制。
也就是说功自发转化为热这一过程只能单向进行而不可逆。
1851年开尔文勋爵把这一普遍规律总结为:不可能从单一热源吸收能量,使之完全变为有用功而不产生其他影响。
热力学第二定律的表述
热力学第二定律的表述热力学第二定律,也称为熵增定律,是热力学中的重要概念之一。
该定律表明,任何一个孤立系统在自发过程中,其熵总是不断增加的。
熵是一个描述系统无序程度的物理量,可理解为一个系统的混乱程度。
具体来说,热力学第二定律的表述可以从以下几个方面进行阐述:一、热力学第二定律的基本原理热力学第二定律是热力学的基本定律之一,它表明孤立系统总是向着不可逆的方向进行自发变化。
熵作为描述系统无序程度的物理量,可以解释这一现象。
热力学第二定律将熵增作为孤立系统自发性质的概率形式,即熵的增加是不可逆的。
二、熵的定义及熵增过程的表述熵是一个描述系统无序程度的物理量,熵的增加意味着这一系统的混乱程度变得更大,而系统的混乱程度是不可逆的。
热力学第二定律表明,在孤立的系统中,一切自发过程中的熵增加,即系统无序程度不断增大。
这种无序程度的增加可以表述为:在过程中,能量总是从有序的状态流向有限的状态,因此越来越多的能量被转化为无用的热能。
三、热力学第二定律和环境保护的关系热力学第二定律是我们了解和约束自然界不可逆演化过程的基础。
正是热力学第二定律的存在,才有了反渗透、风能、水力发电,甚至太阳能电池等各种环境保护技术。
人类社会发展中不断寻找新的技术,不仅是为了满足能源需求,更重要的是要在这个过程中尽可能地减少环境污染。
总之,热力学第二定律能够为我们揭示自然界中不可逆的演化规律,对于人类社会发展中的环境保护及科学技术的发展,也起到了重要的指导意义。
我们应该加强对这一领域的研究,推进可持续发展进程,使得人类社会发展与环境保护取得良好的平衡。
热力学第二定律
§10.8热力学第二定律一、热力学第二定律任务自然界中发生的过程总是有方向的。
热力学第二定律正是反映了自然界中热力学过程的方向性问题,是自然界经验的总结。
二、热力学第二定律的两种表述 1、开尔文表述(开氏表述):不可能制成一种循环动作的热机,只从单一热源吸取热量,使它完全变为有用功而不引起其它变化。
说明:1)前提:即工作物质必须循环动作和其它物体不发生任何变化。
2)开尔文说法是从功热转化的角度出发的,它揭示了功热转换是不可逆的,即3)开尔文表述可等价说成“第二类永动机是不可能制造出来的。
” 2、克劳修斯表述(克氏表述):热量不可能自动地从低温物体传到高温物体。
注意:1)条件:“自动地”2)表明热传递的不可逆性 3、两种表述的等效性1)开尔文说法不成立,则克劳修斯说法也不成立;若开氏说法不成立,则热机可从高温热源吸收热量Q 1,全部用来对外作功A= Q 1;这个功A 可用来驱动一台致冷机,从低温热源吸收热量Q 2,同时向高温热源放出热量Q 2+ A= Q 2+ Q 1。
两者总的效果是低温热源的热量传到了高温热源,而没产生其它影响,显然违反了克劳修斯说法。
2)克劳修斯说法不成立,则开尔文说法也不成立;若克劳修斯说法不成立,即热量可自动地从低温热源传到高温热源。
考虑一台工作于高温热源与低温热源的热机。
从高温热源吸收热量Q 1,向低温热源放出热量Q 2,则Q 2能自动地传到高温热源;两者总的效果是热机把从高温热源吸收的热量全部用来对外作功,这显然违反开氏说法。
由此,可以看出热力学第二定律的表述是多种多样的,而且不同的表述是可以相互沟通的。
三、热力学第二定律的本质 1、可逆过程与不可逆过程一个热力学系统经历一个过程P ,从状态A 变到状态B ,若能使系统进行逆向变化,从状态B 又回到状态A ,且外界也同时恢复原状,我们称过程P 为可逆过程;反之,如果用任何方法都不能使系统和外界完全复原,则称为不可逆过程。
热力学第二定律
三. 玻尔兹曼熵
为了理论上的需要,玻尔兹曼定义了描述系统 为了理论上的需要,玻尔兹曼定义了描述系统 宏观态无序性的态函数—玻尔兹曼熵 宏观态无序性的态函数 玻尔兹曼熵
S = k ln Ω
玻尔兹曼熵公式
是对分子无序性的量度。 玻尔兹曼熵 S 是对分子无序性的量度。
孤立系的熵变 熵增原理
孤立系经历不可逆过程 孤立系经历不可逆过程从状态 1 变化到状态 2 经历不可逆过程从状态
∆S = ∫
2
1
2 RdV 2 pdV V2 dQ =∫ = R ln =∫ 1 1 V V1 T T
绝热自由膨胀过程是不可逆过程 可假设一可逆过程 ∆S irrev
V2 = R ln V1
混合物的熵。 例3.14 混合物的熵。质量为 0.4kg、温度为 30ºC的 、 的 水与质量为 0.5kg、温度为 90ºC 的水放入一绝热容 、 器中混合起来达到平衡,求混合物系统的熵变。 器中混合起来达到平衡,求混合物系统的熵变。 解:设混合后的温度为 T,c 为水的比热 , 由能量守恒得
四、卡诺定理
(1)在相同的高温热源和低温热源之间工作的任意工作 物质的可逆机,都具有相同的效率; 物质的可逆机,都具有相同的效率; 可逆机 (2)工作在相同的高温热源和低温热源之间一切不可逆 工作在相同的高温热源和低温热源之间一切不可逆 机的效率都不可能大于可逆机的效率。 机的效率都不可能大于可逆机的效率。
Q1 Q2 = T1 T2
热温比
重新规定 Q 正负号
Q T
等温过程中吸收或放出的热 量与热源温度之比。 量与热源温度之比。
可逆卡诺循环中,热温比总和为零。 ★ 结论 : 可逆卡诺循环中,热温比总和为零。
任意可逆循环可视为由许多小卡诺循环所组成
热力学第二定律卡诺定律
• 热力学第二定律概述 • 卡诺定律的起源与原理 • 卡诺定律在热机效率中的应用 • 卡诺定律与环境保护 • 卡诺定律的现代研究与发展
01
热力学第二定律概述
定义与表述
热力学第二定律定义
热力学第二定律是描述热能和其他形式的能量之间转换的规 律,它指出不可能从单一热源吸收热量并使之完全变为功, 而不引起其他变化。
热力学第二定律在能源工程领域有着广泛的应用,例如在火力 发电、核能发电、风能发电等领域中,都需要遵循热力学第二
定律以提高能源利用效率。
制冷技术
在制冷技术领域,热力学第二定律是制冷机设计和性能评估的 重要依据,它指导人们不断改进制冷技术,提高制冷效率。
化工过程
在化工过程中,热力学第二定律用于指导化学反应过程的优化 和能效提升,通过降低能耗和提高产率来实现经济效益的提升
针对复杂系统的卡诺定律研究,需要发展更精确的理论模型和实验技术。
THANKS
感谢观看
卡诺循环
卡诺循环是理想化的一种热机工作过程,由 两个等温过程和两个绝热过程组成。
卡诺效率
卡诺效率是指卡诺热机在理想工作过程中,从高温 热源吸收的热量与向低温热源放出的热量之比。
卡诺定律
卡诺定律指出,在相同的高温热源和低温热 源之间,所有实际热机的效率都不可能超过 卡诺效率。
实际热机的效率与卡诺定律的关联
。
02
卡诺定律的起源与原理
卡诺的生平简介
卡诺(Sadi Carnot)是19世纪初的法国物理学家和工程师,出生于1796年,逝世 于1832年。他是热力学的先驱之一,对热机效率的研究有着重要贡献。
卡诺在巴黎综合理工学院学习期间,受到拉格朗日和拉普拉斯等数学家的影响, 对数学和物理学产生了浓厚兴趣。他毕业后从事军事工程工作,但始终未放弃对 热学的研究。
热力学第二定律 概念及公式总结
(不可逆热机的效率小于可逆热机)
所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关
四、熵的概念
1.在卡诺循环中,得到热效应与温度的商值加和等于零:
任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关
热温商具有状态函数的性质 :周而复始 数值还原
五、克劳修斯不等式与熵增加原理
不可逆过程中,熵的变化量大于热温商
1.某一过程发生后,体系的热温商小于过程的熵变,过程有可能进行不可逆过程
2.某一过程发生后,热温商等于熵变,则该过程是可逆过程
3.热温商大于熵变的过程是不可能发生的
4.热力学第二定律的数学表达式:
5. 隔离系统中, (一个隔离系统的熵永不减少)
6.熵增加原理:
7.隔离系统中有: 【根据熵增加原理知,若从体系的熵值变化量判断过程一定是自发过程,那么该过程一定是隔离系统】
六、热力学基本方程式与T-S图
1.热力学基本方程:
2.根据热二定律基本方程得: 可逆过程中有
3.绝热可逆过程:
七、 熵变的计算
1.等温过程中熵的变化值:
(1)理想气体等温可逆变化: 、 、
从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数
2.热温商:热量与温度的商
3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量 (数值上相等)
4. 熵的性质:
(1)熵是状态函数,是体系自身的性质是系统的状态函数,是容量性质
(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和
(2)等温、等压可逆相变:
I :在标准压力下,任何物质之间的熔沸点之间的相变为可逆相变;
热力学第二定律
定理定律
01 定律表述
03 定律质疑
目录
02 定律解释
热力学第二定律(second law of thermodynamics),热力学基本定律之一,克劳修斯表述为:热量不能 自发地从低温物体转移到高温物体。开尔文表述为:不可能从单一热源取热使之完全转换为有用的功而不产生其 他影响。熵增原理:不可逆热力过程中熵的微增量总是大于零。在自然过程中,一个孤立系统的总混乱度(即 “熵”)不会减小。
也就是说,在孤立系统内对可逆过程,系统的熵总保持不变;对不可逆过程,系统的熵总是增加的。这个规 律叫做熵增加原理。这也是热力学第二定律的又一种表述。熵的增加表示系统从几率小的状态向几率大的状态演 变,也就是从比较有规则、有秩序的状态向更无规则,更无秩序的状态演变。熵体现了系统的统计性质。
第二定律在有限的宏观系统中也要保证如下条件: 1.该系统是线性的; 2.该系统全部是各向同性的。 另外有部分推论:比如热辐射:恒温黑体腔内任意位置及任意波长的辐射强度都相同,且在加入任意光学性 质的物体时,腔内任意位置及任意波长的辐射强度都不变。
主词条:热寂论
热寂热寂论是把热力学第二定律推广到整个宇宙的一种理论。宇宙的能量保持不变,宇宙的熵将趋于极大值, 伴随着这一进程,宇宙进一步变化的能力越来越小,一切机械的、物理的、化学的、生命的等多种多样的运动逐 渐全部转化为热运动,最终达到处处温度相等的热平衡状态,这时一切变化都不会发生,宇宙处于死寂的永恒状 态。宇宙热寂说仅仅是一种可能的猜想。
第二定律指出在自然界中任何的过程都不可能自动地复原,要使系统从终态回到初态必需借助外界的作用, 由此可见,热力学系统所进行的不可逆过程的初态和终态之间有着重大的差异,这种差异决定了过程的方向,人 们就用状态函数熵来描述这个差异,从理论上可以进一步证明:
热力学第二定律公式
热力学第二定律公式
热力学第二定律是一种基本的物理定律,它描述了物质在发生热力学过程时所表现出的一般性规律。
它的公式表达式为ΔS ≥ δQ/T,其中ΔS代表热力学系统的熵增量,δQ代表系统受到的热量,T代表系统的绝对温度。
它的定义如下:当一个物质在发生热力学过程时,物质的熵增量ΔS必须大于系统受到的热量δQ除以系统的绝对温度T,即ΔS ≥ δQ/T。
这一定律表明,当物质发生热力学过程时,物质的熵总是在增加,而不会减少,即熵增量ΔS必须大于等于零,而不能小于零。
当一个物质发生热力学过程时,熵增量ΔS可能会大于δQ/T,这表明物质的熵增量不仅是由外加的热量所决定,还受到系统的温度影响,即熵增量也受到温度的影响,这也是热力学第二定律的一个重要内容。
热力学第二定律是一个重要的物理定律,它描述了物质在发生热力学过程时的一般规律,即物质的熵总是在增加,而不会减少,而且熵增量的大小也受到系统的温度的影响。
鉴于热力学第二定律的重要性,它已经成为热力学研究的基础,它在很多热力学相关问题的研究中都发挥着重要作用。
热力学第二定律.
S f
2 dQ 1T
系统熵的变化量与熵流之差定义为熵产,用“Sg”表示
Sg S2 S1 S f
(S2 S1) S f Sg
熵流是由于系统与外界的发生热交换而引起的,其取 值可正可负可为零,而熵产是过程不可逆性的度量, 可逆过程熵产为零,不可逆过程熵产大于零,任何过 程的熵产不可能小于零。
• (2)若把此热机当制冷机使用,同样由克劳修斯积分 判断
Q Q1 Q2 2000 800 0.585 kJ / K 0
T T1 T2 973 303
工质经过任意不可逆循环,克劳修斯积分必小于零, 因此循环不能进行。
• 若使制冷循环能从冷源吸热800kJ,假设至少 耗功Wmin,根据孤立系统熵增原理有△Siso=0:
因为工质恢复到原来状态,所以工质熵变
△SE=0
对热源而言,由于热源放热,所以
SH
Q1 T1
2000 973
2.055 kJ / K
• 对冷源而言,冷源吸热
S L
Q2 T2
800 303
2.64 k J
/K
代入得:
Siso (2.055) 2.64 0 0.585 kJ / K 0
2 Q
1T
对于微元过程:
ds
(
dq T
) re v
或 dS
dQ
( T
) re v
mds
由于熵是状态参数,所以不论过程是否可逆,熵 变只由初终状态决定。
可逆与不可逆的情况
S2
S1
2 1
Q
T
热力学第二定律及其应用
热力学第二定律及其应用引言:热力学第二定律是热力学理论中最重要的定律之一。
它描述了热量的自然流动方向和热转化的不可逆性。
在本文中,我们将探讨热力学第二定律的基本原理,以及其在热机效率、热泵和制冷器等应用中的重要性。
一、热力学第二定律的基本原理热力学第二定律可以通过两种不同的表述进行解释:克劳修斯表述和开尔文表述。
克劳修斯表述:热量不会自行从低温物体传递到高温物体,除非有外界做功。
开尔文表述:不可能通过一个循环过程使得热量完全从一个低温物体转化为有用的功,而不产生其他影响。
这两种表述实际上是等效的,都强调了热转化的不可逆性和热量流动的方向。
二、热机效率根据热力学第二定律,任何热机的效率都不可能达到100%。
热机效率定义为所获得的净功与所输入的热量之比。
热机效率 = (所获得的净功)/(所输入的热量)热力学第二定律告诉我们,不能通过热机将所有的输入热量转化为有用的功。
一部分热量会被从高温物体传递到低温物体,而无法产生功。
因此,热机的效率必然小于1,且与工作物质的性质、温度差异和热机的设计有关。
热机效率的计算和分析对于工程设计和能源利用非常重要。
它帮助我们评估热机的性能,并采取相应的措施来改善能源利用效率。
三、热泵和制冷器热力学第二定律在热泵和制冷器的工作原理中扮演着关键的角色。
热泵是一种利用外部能源将热量从低温区域转移到高温区域的设备。
根据热力学第二定律,热量不会自行从低温区域传递到高温区域,但我们可以借助外界做功来实现这一过程。
通过消耗一定的功,热泵可以使低温区域的热量转移至高温区域。
制冷器则是热泵的反过程。
它将热量从低温区域移除,使得低温区域的温度进一步下降。
同样地,在制冷器中,根据热力学第二定律,通过外界做功,我们可以将热量从低温区域移除。
热泵和制冷器的工作原理是基于热力学第二定律对热量流动的限制。
它们在实际生活中的应用广泛,如空调系统、冷藏设备和制冷车辆等。
四、熵的增加与热力学过程的不可逆性熵是热力学中一种用来描述系统无序程度的物理量。
热力学第二定律详解
热力学第二定律(英文:seco nd law of thermody namics )是热力学的四条基本定律之一,表述热力学过程的不可逆性一一孤立系统自发地朝着热力学平衡方向最大熵状态演化,同样地,第二类永动机永不可能实现。
这一定律的历史可追溯至尼古拉•卡诺对于热机效率的研究,及其于1824年提出的卡诺定理。
定律有许多种表述,其中最具代表性的是克劳修斯表述(1850 年)和开尔文表述(1851年),这些表述都可被证明是等价的。
定律的数学表述主要借助鲁道夫•克劳修斯所引入的熵的概念,具体表述为克劳修斯定理。
虽然这一定律在热力学范畴内是一条经验定律,无法得到解释,但随着统计力学的发展,这一定律得到了解释。
这一定律本身及所引入的熵的概念对于物理学及其他科学领域有深远意义。
定律本身可作为过程不可逆性旦:P.262及时间流向的判据。
而路德维希•玻尔兹曼对于熵的微观解释一一系统微观粒子无序程度的量度,更使这概念被引用到物理学之外诸多领域,如信息论及生态学等克劳修斯表述克劳修斯克劳修斯表述是以热量传递的不可逆性(即热量总是自发地从高温热源流向低温热源)作为出发点。
虽然可以借助制冷机使热量从低温热源流向高温热源,但这过程是借助外界对制冷机做功实现的,即这过程除了有热量的传递,还有功转化为热的其他影响。
1850年克劳修斯将这一规律总结为: 不可能把热量从低温物体传递到高温物体而不产生其他影响开尔文表述参见:永动机#第二类永动机开尔文勋爵开尔文表述是以第二类永动机不可能实现这一规律作为出发点。
第二类永动机是指可以将从单一热源吸热全部转化为功,但大量事实证明这个过程是不可能实现的。
功能够自发地、无条件地全部转化为热;但热转化为功是有条件的,而且转化效率有所限制。
也就是说功自发转化为热这一过程只能单向进行而不可逆。
1851年开尔文勋爵把这一普遍规律总结为:不可能从单一热源吸收能量,使之完全变为有用功而不产生其他影响两种表述的等价性上述两种表述可以论证是等价的:1.如果开尔文表述不真,那么克劳修斯表述不真:假设存在违反开尔文表述的热机A,可以从低温热源匚吸收热量’”并将其全部转化为有用功:…。
热力学第二定律
2.[多选]关于热力学定律,下列说法正确的是
()
A.为了增加物体的内能,必须对物体做功或向它传递热量
B.对某物体做功,必定会使该物体的内能增加
C.可以从单一热源吸收热量,使之完全变为功
D.不可能使热量从低温物体传向高温物体
E.功转变为热的实际宏观过程是不可逆过程
解析:改变内能的方法有做功和热传递两种,所以为了增加物 体的内能,必须对物体做功或向它传递热量,A 项正确;对物 体做功的同时物体向外界放热,则物体的内能可能不变或减小, B 项错误;根据热力学第二定律可知,在对外界有影响的前提 下,可以从单一热源吸收热量,使之完全变为功,C 项正确; 在有外界做功的条件下,可以使热量从低温物体传递到高温物 体,D 项错误;根据热力学第二定律可知,E 项正确。 答案:ACE
热力学第二定律与热力学第一定律比较
1.热力学第一定律与热力学第二定律的区别与联系 热力学第一定律揭示了做功和传热对改变物体内能的 规律关系ΔU=W+Q,指明内能不但可以转移,而且 还能跟其他形式的能相互转化。热力学第一定律是能 量守恒定律在热学中的一种表述形式,是从能的角度
区 揭示不同物质运动形式相互转化的可能性 别 热力学第二定律揭示了大量分子参与的宏观过程的方
(1)高温物体热热量量QQ不能能自自发发传传给给低温物体
(2)功不能能 自发自地发且地不 完能 全完转全化转为化为热
(3)气体体积V1
能自发膨胀到 不能自发收缩到
气体体积V2(较大)
(4)不同气体A和B
能自发混合成 不能自发分离成
混合气体AB
4.热力学第二定律的其他描述 (1)一切宏观自然过程的进行都具有方向性。 (2)气体向真空的自由膨胀是不可逆的。 (3)第二类永动机是不可能制成的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热力学系统
相 相变
状态 平近 非 衡平 平 态衡 衡
态态
宏观 微观 描述 描述
(热 温力 度学 计第 可零 以定 制律 造 )
基本规律
三、热力学系统的状态参量(宏观描述)
1. 几何:体积(三维)、面积(二维)、长度(一维)。
2. 力学:压强(单位面积上所受的力),单位 N/m2 (Pa) ,
1bar 105 Pa, 1atm 101325 Pa 760 mmHg, 1Torr 1mmHg.
3. 电磁:需借用电学或磁学中的基本物理量,如电极化强度、 磁化强度等
③ 华氏温标和摄氏温标之间的关系
tF
/ F
32
9 5
t
/ C
t / C
④ 经验温标的缺陷讨论:
20 40 60 80 100
0.0
ⅰ 参考点的不准确;
二氧化碳定压
-0.1
t / C
水银
ⅱ 测温物质的属性并不是 -0.2
2. 分子处于不停顿的无规则的热运动之中
布朗粒子(藤黄颗粒悬 浮在水中)的运动轨迹 三例。黑点表示粒子的 一个位置,两个黑点的 时间间隔是30秒。每个 网格的分度单位约几微 米。
藤黄颗粒半径:107 m, 水分子半径: 10-10m
3. 分子间存在相互作用力---分子力
(a)分子之间的吸引力、排斥
力和分子力随距离变化的
一般形式;
(b)相应的分子间相互作用的
势能曲线。
林纳德-琼斯势:
rr
(r)
s
t
r0 :平衡位置 d :分子的有效直径
三种常用的分子间相互作用的势能函数
§1.2 热力学系统及其状态参量
第二节
一、热力学系统和外界
1.热力学研究的对象称为热力学系统或体系,指的是含 有大量原子、分子或其他微观粒子,体积有限的宏观物 体。
2.热力学系统周围、对此系统起作用的物体称为外界。
二、热力学系统的分类
A. 与外界的关系
1. 孤立系统
2. 封闭系统
3. 绝热系统
4. 开放系统
B. 系统的组成成分
组成物质系统的化学成分称为组元。单元系、多元系。
C. 系统组成的均匀性
(1) 系统状态(物态) 当大量分子、原子或其他粒子,在一定外界条件(温度和压 强)下,聚集为一种稳定的结构时,称为物质的一种物态:
宏观性质;热动平衡、涨落 长时间;驰豫时间 2. 平衡态的气体中分子碰撞的完全随机性和分子运动的 完全无序性。故在这样的气体中不可能存在任何整体 上有规则的定向运动。
§1.4 温度和温标(热力学第零定律)
第四节
1. 温度:
物体冷热程度的数值表示(宏观描述);是组成物 体的大量分子的பைடு நூலகம்规则运剧烈程度的表现和度量
(热 第力 一学 类第 永一 动定 机律 不 能 实 现 )
(热 第力 二学 类第 永二 动定 机律 不 能 实 现 )
(热 绝力 对学 零第 度三 不定 可律 实 现 )
第一章目录
Ch1. 热力学系统的平衡态及状态方程
§1.1 物质结构的基本图像 §1.2 热力学系统及其状态参量 §1.3 平衡态的概念 §1.4 温度和温标(热力学第零定律) §1.5 状态方程的一般讨论 §1.6 气体的状态方程
2. 液态一般也只有一种相,两种不同液体均匀混合则形成一 个均匀相,不能均匀混合则有分界面形成两个相。液氦特殊, 有两个相;
3. 固态较复杂,由于不同的晶体结构对应不同的物理性质, 因此,同种化学成分的固体可以具有不同的相。如金刚石和 石墨是碳原子两个不同的相。
不同相之间的转变就称为相变。
单相系统(均匀系统)和复相系统(非均匀系统)
§1.1 物质结构的基本图像
第一节
1. 物质结构的分子、原子学说 2. 分子处于不停顿的无规则的热运动之中 3. 分子间存在相互作用力---分子力
1. 物质结构的分子、原子学说
a. 物质是有大量的分子或原子组成的; b. 分子是物质保持其化学性质的最小单位; c. 分子可以分解成原子; d. 原子是由带正电的原子核和带负电的电子组成的; e. 原子核是由带正电的质子和电中性的中子所组成; f. 质子和中子仍然是有结构的,由夸克组成
c. 经验温标:利用测温物质的属性与温度成近似线性
关系
t(x) t0 kx
① 摄氏温标
规定:0度、100度
纪录: xi (t 0C), xs (t 100 C) 得到: t( x) 100 x xi
xs xi
② 华氏温标
规定:32度(0C )、212度(100C )
4. 化学:物质的量,单位摩尔(mol),及阿伏伽德罗常量(NA)
1NA 6.02213671023 mol1. 5. 热学:温度
第三节
§1.3 平衡态的概念
1. 定义:在没有外界影响的条件下,热力学系统的各个 部分的宏观性质在长时间里不发生任何变化的状态。
a. 状态;状态参量 b. 没有外界影响;孤立系 c. 不发生任何变化;
主要参考书:
《热学》大学物理通用教程,刘玉鑫编著,北京大学 出版社。
其他参考书:
《热物理学基础》面向21世纪课程教材,包科达编著, 高等教育出版社。
课程安排:
第一章 热力学系统的平衡态和状态方程 第二章 热平衡态的统计分布律 第三章 近平衡态中的输运过程 总共14学时,期中考试,占总成绩45%,平时作业占5%。
(微观描述)。 2. 温标
a. 热力学第零定律(温度计可以制造): 若 A 和 B 两个物体分别于第三个处于确定状态 的物体 C 达到热平衡,则物体 A 和 B 彼此也处 于热平衡。
① 热平衡的概念; ② 这是一个实验事实,是标定物体温度的基本依据。
b. 温标:温度数值的标定办法
经验温标;理想气体温标;热力学温标;国际实用 温标
1. 物质的三态,固、液、气;固态又有晶态和非晶态之分; 2. 等离子态,称为物质的第四态。 3. 在无限的宇宙空间中,存在各种各样的形体及宇宙物质, 因此也就存在各种不同的物质状态。如中子态、黑洞等等。
(2) 相
相是指被一定边界包围、具有确定而均匀的物理和化学性质 的一个系统或系统的一个部分。
1. 气态只有一种相,气体均匀混合也只是一种相;