与角有关的辅助线(过程训练二)(人教版)含答案

合集下载

人教版八年级上第12章全等三角形热门考点整合应用训练含答案

人教版八年级上第12章全等三角形热门考点整合应用训练含答案

人教版八年级上第12章全等三角形热门考点整合应用训练含答案名师点金:本章主要学习了全等三角形的性质与判定及角平分线的性质与判定,对于三角形全等主要考查利用全等三角形证明线段或角的等量关系,以及判断位置关系等,对于角平分线主要考查利用角平分线的性质求距离、证线段相等.两个概念概念1:全等形1.如图,将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为N,Q,M,P的四个图形,填空:A与________对应;B与________对应;C与________对应;D与________对应.(第1题) 概念2:全等三角形2.如图,已知△ABE与△ACD全等,∠1=∠2,∠B=∠C,指出全等三角形中的对应边和对应角.(第2题)3.如图所示,已知△ABD≌△ACD,且B,D,C在同一条直线上,那么AD与BC有怎样的位置关系?为什么?(第3题)两个性质性质1:全等三角形的性质4.【·天水】(1)如图①,已知△ABC,以AB,AC为边分别向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形(尺规作图,不写作法,保留作图痕迹),并证明:BE=CD;(2)如图②,已知△ABC,以AB,AC为边分别向△ABC外作正方形ABFD和正方形ACGE,连接BE,CD,猜想BE与CD有什么数量关系?并说明理由.(第4题)性质2:角平分线的性质5.如图,在正方形ABCD中,点E是BC的中点,点F在CD上,∠EAF=∠BAE.求证:AF=BC+FC.(第5题)判定1:全等三角形的判定6.课间,小明拿着老师的等腰直角三角尺玩,不小心掉到两堆砖块之间,如图所示.(1)求证:△ADC≌△CEB;(2)已知DE=35 cm,请你帮小明求出砖块的厚度a的大小(每块砖的厚度相同).判定2:角平分线的判定7.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.(1)求证:AD平分∠BAC;(2)猜想写出AB+AC与AE之间的数量关系并给予证明.(第7题)四个技巧技巧1:构造全等三角形法8.如图∠BAC是钝角,AB=AC,D,E分别在AB,AC上,且CD=BE.求证:∠AEB=∠ADC.(第8题)9.如图,AB=DC,∠A=∠D,求证:∠ABC=∠DCB.(第9题)技巧2:构造角平分线法10.【中考·黄冈】已知:如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.(第10题)技巧3:截长(补短)法11.如图,AB∥CD,CE,BE分别平分∠BCD和∠CBA,点E在AD上,求证:BC =AB+CD.(第11题)技巧4:倍长中线法12.如图,CE,CB分别是△ABC,△ADC的中线,且∠ACB=∠ABC.求证:CD=2CE.(第12题)两种思想思想1:建模思想13.如图,某段河流的两岸是平行的,数学兴趣小组在老师的带领下不用涉水过河就测到了河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20步有一棵树C,继续前行20步到达D处;③从D处沿岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长就是河宽AB.请你证明他们做法的正确性.思想2:转化思想14.如图,已知AB=AE,∠C=∠D,BC=ED,点F是CD的中点,则AF平分∠BAE,为什么?(第14题)答案1.M ;N ;Q ;P2.解:AB 与AC ,AE 与AD ,BE 与CD 是对应边;∠B 与∠C ,∠2与∠1,∠BAE 与∠CAD 是对应角.3.解:AD ⊥BC. 理由略. 4.解:(1)完成作图,如图所示.(第4题)证明:∵△ABD 和△ACE 都是等边三角形, ∴AD =AB ,AC =AE ,∠BAD =∠CAE =60°.∴∠BAD +∠BAC =∠CAE +∠BAC ,即∠CAD =∠EAB. ∴△CAD ≌△EAB. ∴CD =EB ,即BE =CD. (2)BE =CD.理由如下:∵四边形ABFD 和四边形ACGE 都是正方形, ∴AD =AB ,AC =AE ,∠BAD =∠CAE =90°.∴∠BAD +∠BAC =∠CAE +∠BAC ,即∠CAD =∠EAB. ∴△CAD ≌△EAB. ∴CD =EB ,即BE =CD.5.证明:如图,过点E 作EG ⊥AF ,垂足为点G.连接EF. ∵∠BAE =∠EAF ,∴AE 为∠BAF 的平分线. 又∵EB ⊥AB ,EG ⊥AF ,∴EB =EG.在Rt △ABE 和Rt △AGE 中,⎩⎪⎨⎪⎧EB =EG ,AE =AE ,∴Rt △ABE ≌Rt △AGE(HL ),∴AB =AG . ∵在正方形ABCD 中,AB =BC ,∴BC =AG.又∵点E 是BC 的中点, ∴BE =EC =EG .在Rt △EGF 和Rt △ECF 中,⎩⎪⎨⎪⎧EG =EC ,EF =EF ,∴Rt △EGF ≌Rt △ECF(HL ). ∴GF =CF ,∴AF =AG +GF =BC +FC.(第5题)6.(1)证明:由题意得AC =BC ,∠ACB =90°,AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∠ACD +∠BCE =90°.∴∠ACD +∠CAD =90°,∴∠BCE =∠CAD.在△ADC 和△CEB 中,⎩⎪⎨⎪⎧∠ADC =∠CEB ,∠CAD =∠BCE ,AC =CB ,∴△ADC ≌△CEB(AAS ).(2)解:由题意得AD =4a ,BE =3a.由(1)知△ADC ≌△CEB ,∴DC =BE =3a ,CE =AD =4a ,∴DE =DC +CE =7a.∵DE =35 cm ,∴a =5 cm .答:砖块的厚度a 为5 cm .7.(1)证明:∵DE ⊥AB 于E ,DF ⊥AC 于F ,∴∠E =∠AFD =∠DFC =90°,在Rt △BDE 和Rt △CDF 中,∵BD =CD ,BE =CF ,∴Rt △BDE ≌Rt △CDF ,∴DE =DF ,∴AD 平分∠BAC.(2)解:AB +AC =2AE.证明如下:由(1)可知AD 平分∠BAC ,∴∠EAD =∠CAD.在△AED 与△AFD 中,∵∠EAD =∠CAD ,∠E =∠AFD =90°,AD =AD ,∴△AED ≌△AFD ,∴AE =AF.又∵BE =CF ,∴AB +AC =AE -BE +AF +CF =AE +AE =2AE.8.证明:过点B ,C 分别作CA ,BA 延长线的垂线,垂足分别为F ,G. 在△ABF 和△ACG 中, ⎩⎪⎨⎪⎧∠BFA =∠CGA =90°,∠FAB =∠GAC ,AB =AC ,∴△ABF ≌△ACG(AAS ). ∴BF =CG.在Rt △BEF 和Rt △CDG 中,⎩⎪⎨⎪⎧BF =CG ,BE =CD , ∴Rt △BEF ≌Rt △CDG(HL ).∴∠AEB =∠ADC.点拨:判定两个三角形全等时,先根据已知条件或求证的结论确定三角形,再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.9.证明:分别取AD ,BC 的中点N ,M ,连接BN ,CN ,MN ,则有AN =ND ,BM =MC.在△ABN 和△DCN 中,⎩⎪⎨⎪⎧AN =DN ,∠A =∠D ,AB =DC ,∴△ABN ≌△DCN(SAS ). ∴∠ABN =∠DCN ,NB =NC. 在△NBM 和△NCM 中,⎩⎪⎨⎪⎧NB =NC ,BM =CM ,NM =NM ,∴△NBM ≌△NCM(SSS ). ∴∠NBC =∠NCB.∴∠NBC +∠ABN =∠NCB +∠DCN , 即∠ABC =∠DCB.点拨:证明三角形全等时常需添加适当的辅助线,辅助线的添加以能创造已知条件为上策,如本题取AD ,BC 的中点就是把中点作为了已知条件.分散证明,也是几何证明中的一种常用技巧.10.证明:连接AD.∵AB =AC ,BD =CD ,AD =AD , ∴△ABD ≌△ACD ,∴∠BAD =∠CAD , ∴AD 是∠EAF 的平分线. ∵DE ⊥AB ,DF ⊥AC ,∴DE =DF.11.证明:(方法一——截长法)如图①,在BC 上取一点F ,使BF =BA.连接EF ,∵CE ,BE 分别平分∠BCD ,∠CBA ,∴∠3=∠4,∠1=∠2. 在△ABE 和△FBE 中, ⎩⎪⎨⎪⎧BA =BF ,∠1=∠2,BE =BE.∴△ABE ≌△FBE(SAS ). ∴∠A =∠5.∵AB ∥CD ,∴∠A +∠D =180°,而∠5+∠6=180°,∴∠6=∠D. 在△EFC 和△EDC 中,⎩⎪⎨⎪⎧∠6=∠D ,∠3=∠4,EC =EC ,∴△EFC ≌△EDC(AAS ),∴FC =DC ,∴BC =BF +CF =AB +CD.(方法二——补短法)如图②,延长BA 至点F ,使BF =BC ,连接EF ,∵CE ,BE 分别平分∠BCD ,∠CBA ,∴∠1=∠2=12∠ABC ,∠3=∠4=12∠BCD. 在△BEF 和△BEC 中,⎩⎪⎨⎪⎧BF =BC ,∠1=∠2,BE =BE ,∴△BEF ≌△BEC(SAS ).∴EF =EC ,∠F =∠3=∠4.∵AB ∥CD ,∴∠7=∠D.在△AEF 和△DEC 中,⎩⎪⎨⎪⎧∠7=∠D ,∠F =∠4,EF =EC.∴△AEF ≌△DEC(AAS ),∴AF =CD.∵BC =BF =AB +AF ,∴BC =AB +CD.(第11题)12.证明:如图,延长CE 到点F ,使EF =CE ,连接FB ,则CF =2CE. ∵CE 是△ABC 的中线,∴AE =BE.在△BEF 和△AEC 中,⎩⎪⎨⎪⎧BE =AE ,∠BEF =∠AEC ,EF =EC ,∴△BEF ≌△AEC(SAS ).∴∠EBF =∠EAC ,BF =AC.过点A 作AG ⊥BC 于点G ,则∠AGC =∠AGB =90°.∵∠ABC =∠ACB ,AG =AG ,∴△AGC ≌△AGB.∴AC =AB.又∵∠ABC =∠ACB ,∴∠CBD =∠BAC +∠ACB =∠EBF +∠ABC =∠CBF. ∵CB 是△ADC 的中线,∴AB =BD.又∵AB =AC ,AC =BF ,∴BF =BD.在△CBF 和△CBD 中,⎩⎪⎨⎪⎧CB =CB ,∠CBF =∠CBD ,BF =BD ,∴△CBF ≌△CBD(SAS ).∴CF =CD.∴CD =2CE.(第12题)13.证明:由做法知:在△ABC 和△EDC 中,⎩⎪⎨⎪⎧∠ABC =∠EDC =90°,BC =DC ,∠ACB =∠ECD ,∴△ABC ≌△EDC(ASA ).∴AB =ED ,即他们的做法是正确的.14.解:连接BF ,EF.∵点F 是CD 的中点,∴CF =DF.在△BCF 和△EDF 中,⎩⎪⎨⎪⎧BC =ED ,∠C =∠D ,CF =DF ,∴△BCF ≌△EDF(SAS ).∴BF =EF.在△ABF 和△AEF 中,⎩⎪⎨⎪⎧AB =AE ,BF =EF ,AF =AF ,∴△ABF ≌△AEF(SSS ).∴∠BAF =∠EAF.∴AF 平分∠BAE.。

全等三角形经典题型——辅助线问题

全等三角形经典题型——辅助线问题

全等三角形问题中常见的辅助线的作法( 含答案 )总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法” :遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为 60 度或 120 度的把该角添线后构成等边三角形7. 角度数为 30、60 度的作垂线法:遇到三角形中的一个角为 30 度或 60 度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90 的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8. 计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形, 常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

初中数学辅助线的添加方法及压轴题答题技巧

初中数学辅助线的添加方法及压轴题答题技巧

初中数学辅助线的添加方法及压轴题答题技巧1三角形中常见辅助线的添加1. 与角平分线有关的(1)可向两边作垂线。

(2)可作平行线,构造等腰三角形(3)在角的两边截取相等的线段,构造全等三角形2. 与线段长度相关的(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。

(4)遇到中点,考虑中位线或等腰等边中的三线合一。

3. 与等腰等边三角形相关的(1)考虑三线合一(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 °2四边形中常见辅助线的添加特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形。

在解决一些和四边形有关的问题时往往需要添加辅助线。

下面介绍一些辅助线的添加方法。

1. 和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。

(1)利用一组对边平行且相等构造平行四边形(2)利用两组对边平行构造平行四边形(3)利用对角线互相平分构造平行四边形2. 与矩形有辅助线作法(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题。

(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题。

和矩形有关的试题的辅助线的作法较少。

3. 和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题。

(1)作菱形的高(2)连结菱形的对角线4. 与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多。

2020-2021学年人教版七年级数学下册第五章 相交线与平行线 解答题常考题训练(二)

2020-2021学年人教版七年级数学下册第五章 相交线与平行线 解答题常考题训练(二)

人教版七年级数学下册第五章《相交线与平行线》解答题常考题训练(二)1.如图,BC⊥AE于点C,∠A+∠BCD=90°,∠B=55°,求∠ECD的度数.2.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°).(1)如图1,①若∠DCE=40°,求∠ACB的度数;②若∠ACB=150°,直接写出∠DCE的度数是度.(2)由(1)猜想∠ACB与∠DCE满足的数量关系是.(3)若固定△ACD,将△BCE绕点C旋转,①当旋转至BE∥AC(如图2)时,直接写出∠ACE的度数是度.②继续旋转至BC∥DA(如图3)时,求∠ACE的度数.3.如图,已知AB∥DE.∠ABC=70°,∠CDE=140°,求∠C的度数.4.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.5.已知:如图EF∥CD,∠1+∠2=180°.(1)试说明GD∥CA;(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度数.6.如图,已知AB∥CD∥PN,∠ABC=50°,∠CPN=150°,求∠BCP的度数.7.如图,AC∥BD,BC平分∠ABD,设∠ACB为α,点E是射线BC上的一个动点.(1)若α=30°时,且∠BAE=∠CAE,求∠CAE的度数;上方,且满足∠BAE=100°,∠BAE:∠CAE=5:1,求a的值;(2)若点E运动到l1(3)若∠BAE:∠CAE=n(n>1),求∠CAE的度数(用含n和α的代数式表示).8.已知:直线GH分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,并且EM ∥FN.(1)如图1,求证:AB∥CD;(2)如图2,∠AEF=2∠CFN,在不添加任何辅助线的情况下,请直接写出图2中四个角,使写出的每个角的度数都为135°.9.如图,直线MN分别与直线AC、DG交于点B、F,且∠1=∠2.∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C.(1)求证:BE∥CF;(2)若∠C=35°,求∠BED的度数.10.如图,D是BC上一点,DE∥AB,交AC于点E,DF∥AC,交AB点F.(1)直接写出图中与∠BAC构成的同旁内角.(2)请说明∠A与∠EDF相等的理由.(3)若∠BDE+∠CDF=234°,求∠BAC的度数.11.如图,AB∥DG,AD∥EF.(1)试说明:∠1+∠2=180°;(2)若DG是∠ADC的平分线,∠2=138°,求∠B的度数.12.探究:如图①,AB∥CD∥EF,试说明∠BCF=∠B+∠F.下面给出了这道题的解题过程,请在下列解答中,填上适当的理由.解:∵AB∥CD,(已知)∴∠B=∠1.()同理可证,∠F=∠2.∵∠BCF=∠1+∠2,∴∠BCF=∠B+∠F.()应用:如图②,AB∥CD,点F在AB、CD之间,FE与AB交于点M,FG与CD交于点N.若∠EFG=115°,∠EMB=55°,则∠DNG的大小为度.拓展:如图③,直线CD在直线AB、EF之间,且AB∥CD∥EF,点G、H分别在直线AB、EF上,点Q是直线CD上的一个动点,且不在直线GH上,连结QG、QH.若∠GQH=70°,则∠AGQ+∠EHQ=度.13.如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.14.如图1,AB∥CD,E是AB、CD之间的一点.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.直接写出∠AFD与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.15.已知:点A在射线CE上,∠C=∠D.(1)如图1,若AC∥BD,求证:AD∥BC;(2)如图2,若∠BAC=∠BAD,BD⊥BC,请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线于点F,当∠DFE=8∠DAE时,求∠BAD的度数.16.已知:MN∥PQ,点A,B分别在MN,PQ上,点C为MN,PQ之间的一点,连接CA,CB.(1)如图1,求证:∠C=∠MAC+∠PBC;(2)如图2,AD,BD,AE,BE分别为∠MAC,∠PBC,∠CAN,∠CBQ的角平分线,求证∠D与∠E互补;(3)在(2)的条件下,如图3,过点D作DA的垂线交PQ于点G,点F在PQ上,∠FDA =2∠FDB,FD的延长线交EA的延长线于点H,若3∠C=4∠E,猜想∠H与∠GDB的倍数关系并证明.17.综合与探究如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合).BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)求∠ABN、∠CBD的度数;根据下列求解过程填空.解:∵AM∥BN,∴∠ABN+∠A=180°∵∠A=60°,∴∠ABN=,∴∠ABP+∠PBN=120°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP、∠PBN=,()∴2∠CBP+2∠DBP=120°,∴∠CBD=∠CBP+∠DBP=.(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P运动到使∠ACB=∠ABD时,直接写出∠ABC的度数.18.已知,如图,∠ABC=∠ADC,BF,DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:∠1+∠4=180°.请根据条件进行推理,得出结论,并在括号内注明理由.证明:∵BF,DE分别平分∠ABC与∠ADC,(已知)∴∠1=∠ABC,∠2=∠ADC.().∵∠ABC=∠ADC,()∴∠1=∠2().∵∠1=∠3(已知)∴∠2=∠.(等量代换)∴AB∥CD,().∴∠1+∠4=180°.()19.如图,已知AD⊥BC于点D,E是延长线BA上一点,且EC⊥BC于点C,若∠ACE=∠E.求证:AD平分∠BAC.参考答案1.解:因为BC⊥AE,所以∠BCE=∠BCD+∠ECD=90°,因为∠BCD+∠A=90°,所以∠DCE=∠A,所以CD∥AB,所以∠BCD=∠B,因为∠B=55°,所以∠BCD=55°,所以∠ECD=90°﹣55°=35°.2.解:(1)①∵∠DCE=40°,∴∠ACE=∠ACD﹣∠DCE=50°,∴∠ACB=∠ACE+∠ECB=50°+90°=140°;②∵∠ACB=150°,∠ACD=90°,∴∠ACE=150°﹣90°=60°,∴∠DCE=∠ACD﹣∠ACE=90°﹣60°=30°,故答案为:30;(2)∵∠ACB=∠ACD+∠BCE﹣∠DCE=90°+90°﹣∠DCE,∴∠ACB+∠DCE=180°,故答案为:∠ACB+∠DCE=180°;(3)①∵BE∥AC,∴∠ACE=∠E=45°,故答案为:45°;②∵BC∥DA,∴∠A+∠ACB=180°,又∵∠A=60°,∴∠ACB=180°﹣60°=120°,∵∠BCE=90°,∴∠BCD=∠ACB﹣∠ECB=120°﹣90°=30°.3.解:如图,延长ED到M,交BC于F,∵AB∥DE,∠ABC=70°,∴∠MFC=∠B=70°,∵∠CDE=140°,∴∠FDC=180°﹣140°=40°,∴∠C=∠MFC﹣∠MDC=70°﹣40°=30°.4.解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.5.解:(1)∵EF∥CD∴∠1+∠ECD=180°又∵∠1+∠2=180°∴∠2=∠ECD∴GD∥CA(2)由(1)得:GD∥CA,∴∠BDG=∠A=40°,∠ACD=∠2,∵DG平分∠CDB,∴∠2=∠BDG=40°,∴∠ACD=∠2=40°,∵CD平分∠ACB,∴∠ACB=2∠ACD=80°.6.解:∵AB∥CD∥PN,∴∠BCD=∠ABC=50°,∠DCP=180°﹣∠CPN=180°﹣150°=30°,∴∠BCP=∠BCD﹣∠DCP=50°﹣30°=20°.7.解:(1)∵α=30°,AC∥BD,∴∠CBD=30°,∵BC平分∠ABD,∴∠ABE=∠CBD=30°,∴∠BAC=180°﹣∠ABE﹣α=180°﹣30°﹣30°=120°,又∵∠BAE=∠CAE,∴∠CAE=∠BAC==60°;(2)根据题意画图,如图1所示,∵∠BAE=100°,∠BAE:∠CAE=5:1,∴∠CAE=20°,∴∠BAC=∠BAE﹣∠CAE=100°﹣20°=80°,∵AC∥BD,∴∠ABD=180°﹣∠BAC=100°,又∵BC平分∠ABD,∴∠CBD=∠ABD=×100°=50°,∴α=∠CBD=50°;(3)①如图2所示,∵AC∥BD,∴∠CBD=∠ACB=α,∵BC平分∠ABD,∴∠ABD=2∠CBD=2α,∴∠BAC=180°﹣∠ABD=180°﹣2α,又∵∠BAE:∠CAE=n,∴(∠BAC+∠CAE):∠CAE=n,(180°﹣2α+∠CAE):∠CAE=n,解得∠CAE=;②如图3所示,∵AC∥BD,∴∠CBD=∠ACB=α,∵BC平分∠ABD,∴∠ABD=2∠CBD=2α,∴∠BAC=180°﹣∠ABD=180°﹣2α,又∵∠BAE:∠CAE=n,∴(∠BAC﹣∠CAE):∠CAE=n,(180°﹣2α﹣∠CAE):∠CAE=n,解得∠CAE=.综上∠CAE的度数为或.8.(1)证明:∵EM∥FN,∴∠EFN=∠FEM.∵EM平分∠BEF,FN平分∠CFE,∴∠CFE=2∠EFN,∠BEF=2∠FEM.∴∠CFE=∠BEF.∴AB∥CD.(2)∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.理由如下:∵AB∥CD,∴∠AEF+∠CFE=180°,∵FN平分∠CFE,∴∠CFE=2∠CFN,∵∠AEF=2∠CFN,∴∠AEF=∠CFE=90°,∴∠CFN=∠EFN=45°,∴∠DFN=∠HFN=180°﹣45°=135°,同理:∠AEM=∠GEM=135°.∴∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.9.(1)证明:方法一:∵∠1=∠2,∠2=∠BFG,∴∠1=∠BFG,∴AC∥DG,∴∠ABF=∠BFG,∵∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C,∴∠EBF=∠ABF, BFG,∴∠EBF=∠CFB,∴BE∥CF;方法二:∵∠1=∠2,∠1=∠ABF,∠2=∠BFG,∴∠ABF=∠BFG,∵∠ABF的平分线是BE,∠BFG的平分线是FC,∴∠EBF=∠ABF, BFG,∴∠EBF=∠CFB,∴BE∥CF;(2)解:∵AC∥DG,BE∥CF,∠C=35°,∴∠C=∠CFG=35°,∴∠CFG=∠BEG=35°,∴∠BED=180°﹣∠BEG=145°.10.解:(1)∠BAC的同旁内角有:∠AFD,∠AED,∠C,∠B;(2)∵DE∥AB,∴∠BAC=∠DEC,∵DF∥AC,∴∠EDF=∠DEC,∴∠BAC=∠EDF;(3)∵∠BDE+∠CDF=234°,∴∠BDE+∠EDC+∠EDF=234°,即180°+∠EDF=234°,∴∠EDF=54°,∴∠BAC=54°.11.解:(1)∵AD∥EF,∴∠BAD+∠2=180°,∵AB∥DG,∴∠BAD=∠1,∴∠1+∠2=180°.(2)∵∠1+∠2=180°且∠2=138°,∴∠1=42°,∵DG是∠ADC的平分线,∴∠CDG=∠1=42°,∵AB∥DG,∴∠B=∠CDG=42°.12.解:探究:∵AB∥CD,∴∠B=∠1.(两直线平行内错角相等)同理可证,∠F=∠2.∵∠BCF=∠1+∠2,∴∠BCF=∠B+∠F.(等量代换)故答案为:两直线平行,内错角相等,等量代换.应用:由探究可知:∠MFN=∠AMF+∠CNF,∴∠CNF=∠DNG=115°﹣55°=60°.故答案为60.拓展:如图③中,当的Q在直线GH的右侧时,∠AGQ+∠EHQ=360°﹣70°=290°,当点Q′在直线GH的左侧时,∠AGQ′+∠EHQ′=∠GQ′H=70°.故答案为70或290.13.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B,∴∠2+∠5+∠6=3∠B+∠B+∠B=180°,∴∠B=36°,∴∠2=108°,∵∠1+∠2=180°,∴∠1=72°.14.解:(1)∠BAE+∠CDE=∠AED.理由如下:作EF∥AB,如图1,∵AB∥CD,∴EF∥CD,∴∠1=∠BAE,∠2=∠CDE,∴∠BAE+∠CDE=∠AED;(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,∵∠BAE、∠CDE的两条平分线交于点F,∴∠BAF=∠BAE,∠CDF=∠CDE,∴∠AFD=(∠BAE+∠CDE),∵∠BAE+∠CDE=∠AED,∴∠AFD=∠AED;(3)由(1)的结论得∠AGD=∠BAF+∠CDG,而射线DC沿DE翻折交AF于点G,∴∠CDG=4∠CDF,∴∠AGD=∠BAF+4∠CDF=∠BAE+2∠CDE=∠BAE+2(∠AED﹣∠BAE)=2∠AED﹣∠BAE,∵90°﹣∠AGD=180°﹣2∠AED,∴90°﹣2∠AED+∠BAE=180°﹣2∠AED,∴∠BAE=60°.15.解:(1)如图1,∵AD∥BC,∴∠DAE=∠C,又∵∠C=∠D,∴∠DAE=∠D,∴AD∥BC;(2)∠EAD+2∠C=90°.证明:如图2,设CE与BD交点为G,∵∠CGB是△ADG是外角,∴∠CGB=∠D+∠DAE,∵BD⊥BC,∴∠CBD=90°,∴△BCG中,∠CGB+∠C=90°,∴∠D+∠DAE+∠C=90°,又∵∠D=∠C,∴2∠C+∠DAE=90°;(3)如图3,设∠DAE=α,则∠DFE=8α,∵∠DFE+∠AFD=180°,∴∠AFD=180°﹣8α,∵DF∥BC,∴∠C=∠AFD=180°﹣8α,又∵2∠C+∠DAE=90°,∴2(180°﹣8α)+α=90°,∴α=18°,∴∠C=180°﹣8α=36°=∠ADB,又∵∠C=∠BDA,∠BAC=∠BAD,∴∠ABC=∠ABD=∠CBD=45°,∴△ABD中,∠BAD=180°﹣45°﹣36°=99°.16.证明:(1)如图1,过C作EF∥MN,∵MN∥PQ,∴MN∥EF∥PQ,∴∠MAC=∠ACF,∠BCF=∠PBC,∴∠ACF+∠BCF=∠MAC+∠PBC,即∠ACB=∠MAC+∠PBC;(2)如图2,∵AD,AE分别为∠MAC,∠CAN的角平分线,∴∠DAC=,∠EAC=∠NAC,∴∠DAE===90°,同理可得:∠DBE=90°,∵∠D+∠E+∠DAE+∠DBE=360°,∴∠D+∠E=180°,即∠D与∠E互补;(3)猜想:∠H=3∠GDB,理由:由(1)可知:∠C=2∠ADB,∵3∠C=4∠E,∴6∠ADB=4∠E,∴3∠ADB=2∠E,∵∠ADB+∠E=180°,∴∠ADB=72°,∠E=108°,∵DG⊥DA,∴∠GDB=18°,∵∠FDA=2∠FDB,∴∠ADF=144°,∴∠HDA=36°,∵DA⊥AE,∴∠H=54°,∴∠H=3∠GDB.17.解:(1)∵AM∥BN,∴∠ABN+∠A=180°,∵∠A=60°,∴∠ABN=120°∴∠ABP+∠PBN=120°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP、∠PBN=2∠PBD,(角平分线的定义),∴2∠CBP+2∠DBP=120°,∴∠CBD=∠CBP+∠DBP=60°.故答案为120°,2∠PBD,角平分线的定义,60°.(2)∠APB与∠ADB之间数量关系是:∠APB=2∠ADB.不随点P运动变化.理由是:∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN(两直线平行内错角相等),∵BD平分∠PBN(已知),∴∠PBN=2∠DBN(角平分线的定义),∴∠APB=∠PBN═2∠DBN=2∠ADB(等量代换),即∠APB=2∠ADB.(3)结论:∠ABC=30°.理由:∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,由(1)可知∠ABN=120°,∠CBD=60°,∴∠ABC+∠DBN=60°,∴∠ABC=30°18.证明:∵BF,DE分别平分∠ABC与∠ADC(已知),∴∠1=∠ABC,∠2=∠ADC(角平分线的定义),∵∠ABC=∠ADC(已知),∴∠1=∠2(等量代换),∵∠1=∠3(已知),∴∠2=∠3,(等量代换),∴AB∥CD,(内错角相等,两直线平行),∴∠1+∠4=180°(两直线平行,同旁内角互补),故答案为:角平分线的定义,已知,等量代换,3,内错角相等,两直线平行,两直线平行,同旁内角互补.19.证明:∵AD⊥BC于点D,EC⊥BC于点C,∴AD∥EC,∴∠BAD=∠E,∠DAC=∠ACE,∵∠ACE=∠E,∴∠BAD=∠DAC,即AD平分∠BAC.第21页(共21页)。

(文末带答案)人教版初中数学全等三角形考点专题训练

(文末带答案)人教版初中数学全等三角形考点专题训练

(文末带答案)人教版初中数学全等三角形考点专题训练单选题1、如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③B.①②④C.①③④D.①②③④2、如图,已知∠ABC=∠DCB.添加一个条件后,可得△ABC≌△DCB,则在下列条件中,不能添加的是()A.AC=DB B.AB=DC C.∠A=∠D D.∠ABD=∠DCA3、工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA、OB上分别在取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是()A.SAS B.ASA C.AAS D.SSS4、如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a−b+c D.a+b−c5、如图,AC=BD,AO=BO,CO=DO,∠D=30°,∠A=95°,则∠AOB等于( )A.120°B.125°C.130°D.135°6、如图,△ABC和△EDF中,∠B=∠D=90°,∠A=∠E,点B,F,C,D在同一条直线上,再增加一个条件,不能判定△ABC≌△EDF的是( )A.AB=EDB.AC=EFC.AC∥EFD.BF=DC7、如图,AB//DC,AB=DC,要使∠A=∠C,直接利用三角形全等的判定方法是()A.AASB.SASC.ASAD.SSS∠AOB,则OC是∠AOB的平分线③a>b,则8、下列说法:①若AC=BC,则C为AB的中点②若∠AOC=12a2>b2④若a=b,则|a|=|b|,其中正确的有()A.1个B.2个C.3个D.4个填空题9、如图,MN∥PQ,AB⊥PQ,点A,D,B,C分别在直线MN和PQ上,点E在AB上,AD+BC=7,AD=EB,DE=EC,则AB=_____.10、如图,在△ABC中,点A的坐标为(0,1),点B的坐标为(0,4),点C的坐标为(4,3),点D在第二象限,且△ABD与△ABC全等,点D的坐标是__________.11、工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此做法得△MOC≌△NOC的依据是____.12、如图,已知AF=BE,∠A=∠B,AC=BD,经分析__________≌__________,依据是__________.13、如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是_____.(不添加任何字母和辅助线)解答题14、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,猜想DE、AD、BE之间的关系,并请给出证明.15、如图,在△ABC中,AB=AC,D是BA延长线上一点,E是AC的中点,连接DE并延长,交BC于点M,∠DAC的平分线交DM于点F.求证:AF=CM.(文末带答案)人教版初中数学全等三角形_010参考答案1、答案:D解析:根据三角形内角和定理以及角平分线定义判断①;根据全等三角形的判定和性质判断②③;根据角平分线的判定与性质判断④.解:在△ABC 中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD 、BE 分别平分∠BAC 、∠ABC ,∴∠BAD+∠ABE=12(∠BAC+∠ABC)=12(180°-∠ACB)=12(180°-90°)=45°, ∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF ⊥AD ,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB ,又∵∠ABP=∠FBP ,BP=BP ,∴△ABP ≌△FBP(ASA),∴∠BAP=∠BFP ,AB=FB ,PA=PF ,故②正确.在△APH 和△FPD 中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP ,PA=PF ,∴△APH ≌△FPD(ASA),∴PH=PD ,故③正确.连接CP ,如下图所示:∵△ABC的角平分线AD、BE相交于点P,∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,∴点P到BC、AC的距离相等,∴点P在∠ACB的平分线上,∴CP平分∠ACB,故④正确,综上所述,①②③④均正确,故选:D.小提示:本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理.掌握相关性质是解题的关键.2、答案:A解析:先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项.解:∵∠ABC=∠DCB,∵BC=BC,A、添加AC=DB,不能得△ABC≌△DCB,符合题意;B、添加AB=DC,利用SAS可得△ABC≌△DCB,不符合题意;C、添加∠A=∠D,利用AAS可得△ABC≌△DCB,不符合题意;D、添加∠ABD=∠DCA,∴∠ACB=∠DBC,利用ASA可得△ABC≌△DCB,不符合题意;故选:A.小提示:本题主要考查三角形全等的判定,熟练掌握判定方法是解题的关键.3、答案:D解析:根据全等三角形的判定条件判断即可.解:由题意可知OC=OD,MC=MD在△OCM和△ODM中{OC=OD OM=OM MC=MD∴△OCM≅△ODM(SSS)∴∠COM=∠DOM∴OM就是∠AOB的平分线故选:D小提示:本题考查全等三角形的判定及性质、角平分线的判定、熟练掌握全等三角形的判定是关键.4、答案:D解析:分析:详解:如图,∵AB⊥CD,CE⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故选:D.点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.5、答案:B解析:在△AOC和△BOD中{AC=BD AO=BO CO=DO,∴△AOC≌△BOD(SSS),∴∠C=∠D,又∵∠D=30°,∴∠C=30°,又∵在△AOC中,∠A=95°,∴∠AOC=(180-95-30) °=55°,又∵∠AOC+∠AOB=180°(邻补角互补),∴∠AOB=(180-55)°=125 °.故选B.6、答案:C解析:根据全等三角形的判定方法即可判断.A. AB=ED,可用ASA判定△ABC≌△EDF;B. AC=EF,可用AAS判定△ABC≌△EDF;C. AC∥EF,不能用AAA判定△ABC≌△EDF,故错误;D. BF=DC,可用AAS判定△ABC≌△EDF;故选C.小提示:此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定方法.7、答案:B解析:根据平行线性质得出∠ABD=∠CDB,再加上AB=DC,BD=DB,根据全等三角形的判定定理SAS即可推出△ABD≌△CDB,从而推出∠A=∠C,即可得出答案.∵AB//DC,∴∠ABD=∠CDB,在△ABD和△CDB中,{AB=CD∠ABD=∠CDBBD=BD,∴△ABD≌△CDB(SAS),∴∠A=∠C,故选B.小提示:本题考查了平行线性质、全等三角形的判定与性质的应用,熟练掌握全等三角形的判定与性质定理是解题的关键.8、答案:A解析:根据直线中点、角平分线、有理数大小比较以及绝对值的性质,逐一判定即可.当三点不在同一直线上的时候,点C不是AB的中点,故错误;当OC位于∠AOB的内部时候,此结论成立,故错误;当a、b为负数时,a2<b2,故错误;若a=b,则|a|=|b|,故正确;故选:A.小提示:此题主要考查直线中点、角平分线、有理数大小比较以及绝对值的性质,熟练掌握,即可解题.9、答案:7解析:由MN∥PQ,AB⊥PQ,可知∠DAE=∠EBC=90°,可判定△ADE≌△BCE,从而得出AE=BC,则AB=AE+BE=AD+BC=7.所以答案是:7.点睛:本题考查了直角三角形全等的判定和性质以及平行线的性质,是基础知识,比较简单.10、答案:(﹣4,3)或(﹣4,2)解析:分△ABD≌△ABC,△ABD≌△BAC两种情况,根据全等三角形对应边相等即可解答.解:当△ABD≌△ABC时,△ABD和△ABC关于y轴对称,如下图所示:∴点D的坐标是(-4,3),当△ABD’≌△BAC时,过D’作D’G⊥AB,过C点作CH⊥AB,如上图所示:△ABD’边AB上的高D’G与△BAC的边AB上高CH相等,∴D’G=CH=4,AG=BH=1,∴OG=2,∴点D’的坐标是(-4,2),所以答案是:(-4,3)或(-4,2).小提示:本题考查的是全等三角形的性质,坐标与图形的性质,掌握全等三角形的对应边相等是解题的关键.11、答案:SSS##边边边解析:由作图过程可得MO=NO,NC=MC,再加上公共边CO=CO可利用SSS定理判定△MOC≌△NOC.解:∵在△ONC和△OMC中{ON=OM CO=CO NC=MC,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,所以答案是:SSS.小提示:本题主要考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.12、答案:△ADF△BCE SAS解析:利用SAS 得出全等三角形.证明:∵AC =BD ,∴AD =BC ,在△ADF 和△BCE 中∵{AD =BC ∠A =∠B AF =BE,∴△ADF ≌△BCE (SAS ).所以答案是:①△ADF ,②△BCE ,③SAS .小提示:此题主要考查了全等三角形的判定,熟练掌握判定方法是解题的关键13、答案:AB =AC 或∠ADC =∠AEB 或∠ABE =∠ACD .解析:根据图形可知证明△ADC ≌△AEB 已经具备了一个公共角和一对相等边,因此可以利用ASA 、SAS 、AAS 证明两三角形全等.∵∠A =∠A ,AD =AE ,∴可以添加AB =AC ,此时满足SAS ;添加条件∠ADC =∠AEB ,此时满足ASA ;添加条件∠ABE =∠ACD ,此时满足AAS ,故答案为AB =AC 或∠ADC =∠AEB 或∠ABE =∠ACD ;小提示:本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.14、答案:(1)①见解析;②见解析;(2)AD−BE=DE,证明见解析.解析:(1)①利用“AAS”证明△ADC≌△CEB全等即可;②根据△ADC≌△CEB即可得到AD=CE,BE=CD,即可得到AD+BE=CE+CD=DE;(2)同(1)证明△ADC≌△CEB得到AD=CE,BE=CD,即可推出AD−BE=CE−CD=DE.证明(1)①∵AD⊥MN,BE⊥MN,∠ACB=90∘∴∠ADC=∠CEB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中,{∠ADC=∠CEB ∠DAC=∠ECBAC=CB,∴△ADC≌△CEB(AAS);②∵△ADC≌△CEB,∴AD=CE,BE=CD,∴AD+BE=CE+CD=DE;(2)关系:AD−BE=DE;证明:∵AD⊥MN,∠ACB=90∘,BE⊥MN,∴∠ADC=∠CEB=90°,∴∠DAC+∠ACD=90∘,∠ECB+∠ACD=90∘,∴∠DAC=∠ECB,在△ADC和△CEB中,{∠ADC=∠CEB ∠DAC=∠ECBAC=CB,∴△ADC≌△CEB(AAS),∴AD=CE,BE=CD,∴AD−BE=CE−CD=DE.小提示:本题主要考查了全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.15、答案:证明见解析.解析:先根据等腰三角形的性质可得∠B=∠C,再根据三角形的外角性质可得∠DAC=∠B+∠C=2∠C,然后根据角平分线的定义得∠EAF=12∠DAC=∠C,最后根据三角形全等的判定定理与性质即可得证.∵AB=AC,∴∠B=∠C,∴∠DAC=∠B+∠C=2∠C,∵AF是∠DAC的平分线,∴∠EAF=12∠DAC=∠C,∵E是AC的中点,∴AE=CE,在△AEF和△CEM中,{∠EAF=∠CAE=CE∠AEF=∠CEM,∴△AEF≅△CEM(ASA),∴AF=CM.小提示:本题考查了等腰三角形的性质、角平分线的定义、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.。

2023学年八年级数学上册高分突破必练专题(人教版) 一线三等角模型的综合应用(解析版)

2023学年八年级数学上册高分突破必练专题(人教版) 一线三等角模型的综合应用(解析版)

一线三等角模型的综合应用模型一 一线三垂直全等模型如图一 ∠D=∠BCA=∠E=90° BC=AC 。

结论:Rt △BDC ≌Rt △CEA 模型二 一线三等角全等模型如图二 ∠D=∠BCA=∠E BC=AC 。

结论:△BEC ≌△CDA图一 图二应用:①通过证明全等实现边角关系的转化 便于解决对应的几何问题; ②与函数综合应用中有利于点的坐标的求解。

【类型一:标准“K ”型图】【典例1】在△ABC 中 ∠ACB =90° AC =BC 直线MN 经过点C 且AD ⊥MN 于D BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图(1)的位置时求证:①△ADC ≌△CEB ;②DE =AD +BE ;(2)当直线MN 绕点C 旋转到图(2)的位置时 求证:DE =AD ﹣BE ;(3)当直线MN 绕点C 旋转到图(3)的位置时 请直接写出DE AD BE之间的等量CD EBA关系.【解答】解:(1)①∵AD⊥MN BE⊥MN∴∠ADC=∠ACB=90°=∠CEB∴∠CAD+∠ACD=90°∠BCE+∠ACD=90°∴∠CAD=∠BCE∵在△ADC和△CEB中∴△ADC≌△CEB(AAS);②∵△ADC≌△CEB∴CE=AD CD=BE∴DE=CE+CD=AD+BE;(2)证明:∵AD⊥MN BE⊥MN∴∠ADC=∠CEB=∠ACB=90°∴∠CAD=∠BCE∵在△ADC和△CEB中∴△ADC≌△CEB(AAS);∴CE=AD CD=BE∴DE=CE﹣CD=AD﹣BE;(3)当MN旋转到题图(3)的位置时AD DE BE所满足的等量关系是:DE=BE﹣AD.理由如下:∵AD⊥MN BE⊥MN∴∠ADC=∠CEB=∠ACB=90°∴∠CAD=∠BCE∵在△ADC和△CEB中∴△ADC≌△CEB(AAS)∴CE=AD CD=BE∴DE=CD﹣CE=BE﹣AD.【变式1-1】如图∠BAC=90°AD是∠BAC内部一条射线若AB=AC BE⊥AD于点E CF⊥AD于点F.求证:△ABE≌△CAF.【解答】证明:∵∠BAC=90°∴∠CAF+∠BAE=90°∵BE⊥AD CF⊥AD∴∠CF A=∠BEA=90°∴∠C+∠CAF=90°∴∠C=∠BAE∵AB=AC∴△ABE≌△CAF(AAS)【变式1-2】在△ABC中∠BAC=90°AB=AC直线l经过点A过点B、C分别作l 的垂线垂足分别为点D、E.(1)特例体验:如图①若直线l∥BC AB=AC=分别求出线段BD、CE和DE 的长;(2)规律探究:(Ⅰ)如图②若直线l从图①状态开始绕点A旋转α(0<α<45°)请探究线段BD、CE和DE的数量关系并说明理由;(Ⅱ)如图③若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°)与线段BC相交于点H请再探线段BD、CE和DE的数量关系并说明理由;(3)尝试应用:在图③中延长线段BD交线段AC于点F若CE=3 DE=1 求S△BFC.【解答】解:(1)在△ABC中∠BAC=90°AB=AC∴∠ABC=∠ACB=45°∵l∥BC∴∠DAB=∠ABC=45°∠CAE=∠ACB=45°∴∠DAB=∠ABD=45°∠EAC=∠ACE=45°∴AD=BD AE=CE∵AB=AC=∴AD=BD=AE=CE=1∴DE=2;(2)(Ⅰ)DE=BD+CE.理由如下:在Rt△ADB中∠ABD+∠BAD=90°∵∠BAC=90°∴∠BAD+∠CAE=90°∴∠ABD=∠CAE在△ABD和△CAE中∴△ABD≌△CAE(AAS);∴CE=AD BD=AE∴DE=AE+AD=BD+CE.(Ⅱ)DE=BD﹣CE.理由如下:在Rt△ADB中∠ABD+∠BAD=90°∵∠BAC=90°∴∠BAD+∠CAE=90°∴∠ABD=∠CAE在△ABD和△CAE中∴△ABD≌△CAE(AAS);∴CE=AD BD=AE∴DE=AE﹣AD=BD﹣CE.(3)由(2)可知∠ABD=∠CAE DE=AE﹣AD=BD﹣CE ∵∠BAC=∠ADB=90°∴△ABD∽△FBA∴AB:FB=BD:AB∵CE=3 DE=1∴AE=BD=4∴AB=5.∴BF=.∴S△BFC=S△ABC﹣S△ABF=×52﹣×3×=.【类型二:做辅助线构造“K”型图】【典例2】如图△ABC为等腰直角三角形∠ABC=90°△ABD为等腰三角形AD=AB=BC E为DB延长线上一点∠BAD=2∠CAE.(1)若∠CAE=20°求∠CBE的度数;(2)求证:∠BEC=135°;(3)若AE=a BE=b CE=c.则△ABC的面积为.(用含a b c 的式子表示)【解答】(1)解:∵∠CAE=20°∠BAD=2∠CAE∴∠BAD=40°∵AD=AB∴∠D=∠DBA=70°又∵∠ABC=90°∴∠CBE=180°﹣70°﹣90°=20°;(2)证明:过点A作AF⊥DE于点F过点C作CG⊥DE于点G∴∠AFB=∠ABC=∠CGB=90°又∵AD=BC=AB∴∠BAC=∠ACB=45°∠F AB=∠DAB=∠CAE∵∠F AB+∠FBA=∠FBA+∠CBG=90°∴∠F AB=∠CBG=∠CAE在△BAF和△CBG中∴△BAF≌△CBG(AAS)∴AF=BG BF=CG∵∠CBG=∠CAE∴∠AEF=∠ACB=45°∴AF=EF=BG BF=CG∴BF=EG=CG∴∠CEG=∠AEF=45°∴∠AEC=90°∴∠BEC=135°;(3)解:由(2)可知CG=BF AF=EF∴CG=BF=EF﹣BE=AF﹣BE∵S△ABC=S△AEB+S△AEC﹣S△BEC∴S△ABC=BE•CG=BE•(AF﹣BE)=.故答案为:.【类型三:“K”型图与平面直角坐标综合】【典例3】如图平面直角坐标系中有点A(﹣1 0)和y轴上一动点B(0 a)其中a >0 以B点为直角顶点在第二象限内作等腰直角△ABC设点C的坐标为(c d).(1)当a=2时则C点的坐标为;(2)动点B在运动的过程中试判断c+d的值是否发生变化?若不变请求出其值;若发生变化请说明理由.【解答】解:(1)如图1中过点C作CE⊥y轴于E则∠CEB=∠AOB.∵△ABC是等腰直角三角形∴BC=BA∠ABC=90°∴∠BCE+∠CBE=90°=∠BAO+∠CBE∴∠BCE=∠ABO在△BCE和△BAO中∴△CBE≌△BAO(AAS)∵A(﹣1 0)B(0 2)∴AO=BE=1 OB=CE=2∴OE=1+2=3∴C(﹣2 3)故答案为:(﹣2 3);(2)动点A在运动的过程中c+d的值不变.理由:过点C作CE⊥y轴于E则∠CEA=∠AOB∵△ABC是等腰直角三角形∴BC=BA∠ABC=90°∴∠BCE+∠CBE=90°=∠ABO+∠CBE∴∠BCE=∠ABO在△BCE和△BAO中∴△CBE≌△BAO(AAS)∵B(﹣1 0)A(0 a)∴BO=AE=1 AO=CE=a∴OE=1+a∴C(﹣a1+a)又∵点C的坐标为(c d)∴c+d=﹣a+1+a=1即c+d的值不变.【变式3】点A的坐标为(4 0)点B为y轴负半轴上的一个动点分别以OB、AB为直角边在第三象限和第四象限作等腰Rt△OBC和等腰Rt△ABD.(1)如图一若点B坐标为(0 ﹣3)连接AC、OD.①求证:AC=OD;②求D点坐标.(2)如图二连接CD与y轴交于点E试求BE长度.【解答】(1)①证明:∵△OBC和△ABD是等腰直角三角形∴OB=CB BD=AB∠ABD=∠OBC=90°∴∠ABD+ABO=∠OBC+∠A∠O∴∠OBD=∠CBA∴△OBD≌△CBA(SAS)∴AC=OD;②如图一、∵A(4 0)B(0 ﹣3)∴OA=4 OB=3过点D作DF⊥y轴于F∴∠BOA=∠DFB=90°∴∠ABO+∠OAB=90°∵∠ABD=90°∴∠ABO+∠FBD=90°∴∠OAB=∠FBD∵AB=BD∴△AOB≌△BFD(AAS)∴DF=OB=3 BF=OA=4∴OF=OB+BF=7∴D(3 ﹣7);(2)如图二、过点D作DF⊥y轴于F则∠DFB=90°=∠CBF同(1)②的方法得△AOB≌△BFD(AAS)∴DF=OB BF=OA=4∵OB=BC∴BC=DF∵∠DEF=∠CEB∴△DEF≌△CEB(AAS)∴BE=EF∴BF=BE+EF=2BE=4∴BE=2.【类型四:特殊“K”型图】【典例4】(1)猜想:如图1 已知:在△ABC中∠BAC=90°AB=AC直线m经过点A BD⊥直线m CE⊥直线m垂足分别为点D、E.试猜想DE、BD、CE有怎样的数量关系请直接写出;(2)探究:如果三个角不是直角那结论是否会成立呢?如图2 将(1)中的条件改为:在△ABC中AB=AC D A、E三点都在直线m上并且有∠BDA=∠AEC=∠BAC =α(其中α为任意锐角或钝角)如果成立请你给出证明;若不成立请说明理由;(3)解决问题:如图3 F是角平分线上的一点且△ABF和△ACF均为等边三角形D、E分别是直线m上A点左右两侧的动点D、E、A互不重合在运动过程中线段DE的长度始终为n连接BD、CE若∠BDA=∠AEC=∠BAC试判断△DEF的形状并说明理由.【解答】解:(1)DE=BD+CE理由如下:∵∠BAC=90°∴∠BAD+∠CAE=90°∵BD⊥m CE⊥m∴∠ADB=∠CEA=90°∴∠BAD+∠ABD=90°∴∠ABD=∠CAE在△ADB和△CEA中∴△ADB≌△CEA(AAS)∴BD=AE AD=CE∴DE=AD+AE=BD+CE;(2)结论DE=BD+CE成立理由如下:∵∠BAD+∠CAE=180°﹣∠BAC∠BAD+∠ABD=180°﹣∠ADB∠ADB =∠BAC∴∠ABD=∠CAE在△BAD和△ACE中∴△BAD≌△ACE(AAS)∴BD=AE AD=CE∴DE=DA+AE=BD+CE;(3)△DFE为等边三角形理由如下:由(2)得△BAD≌△ACE∴BD=AE∠ABD=∠CAE∴∠ABD+∠FBA=∠CAE+F AC即∠FBD=∠F AE在△FBD和△F AE中∴△FBD≌△F AE(SAS)∴FD=FE∠BFD=∠AFE∴∠DFE=∠DF A+∠AFE=∠DF A+∠BFD=60°∴△DFE为等边三角形.【变式4】已知在△ABC中AB=AC D A E三点都在直线m上且DE=9cm∠BDA=∠AEC=∠BAC(1)如图①若AB⊥AC则BD与AE的数量关系为CE与AD的数量关系为;(2)如图②判断并说明线段BD CE与DE的数量关系;(3)如图③若只保持∠BDA=∠AEC BD=EF=7cm点A在线段DE上以2cm/s的速度由点D向点E运动同时点C在线段EF上以xcm/s的速度由点E向点F运动它们运动的时间为t(s).是否存在x使得△ABD与△EAC全等?若存在求出相应的t 的值;若不存在请说明理由.【解答】解:(1)∵∠BDA=∠AEC=∠BAC∴∠BAD+∠CAE=∠BAD+∠ABD∴∠CAE=∠ABD∵∠BDA=∠AEC BA=CA∴△ABD≌△CAE(AAS)∴BD=AE CE=AD故答案为:BD=AE CE=AD;(2)DE=BD+CE由(1)同理可得△ABD≌△CAE(AAS)∴BD=AE CE=AD∴DE=BD+CE;(3)存在当△DAB≌△ECA时∴AD=CE=2cm BD=AE=7cm∴t=1 此时x=2;当△DAB≌△EAC时∴AD=AE=4.5cm DB=EC=7cm∴t=x=7÷=综上:t=1 x=2或t=x=.1.如图∠ACB=90°AC=BC AD⊥CE BE⊥CE垂足分别为D E.(1)求证:△ACD≌△CBE;(2)试探究线段AD DE BE之间有什么样的数量关系请说明理由.【解答】(1)证明:∵AD⊥CE BE⊥CE∴∠ADC=∠BEC=90°∴∠ACE+∠CAD=90°∵∠ACB=90°∴∠BCE+∠ACD=90°∴∠BCE=∠CAD在△ACD和△CBE中∴△ACD≌△CBE(AAS);(2)解:AD=BE+DE理由如下:∵△ACD≌△CBE∴CD=BE AD=CE∵CE=CD+DE∴AD=BE+DE.2.如图在△ABC中AB=AC D、A、E三点都在直线m上并且有∠BDA=∠AEC=∠BAC=α若DE=10 BD=3 求CE的长.【解答】解:∵∠AEC=∠BAC=α∴∠ECA+∠CAE=180°﹣α∠BAD+∠CAE=180°﹣α∴∠ECA=∠BAD在△BAD与△ACE中∴△BAD≌△ACE(AAS)∴CE=AD AE=BD=3∵DE=AD+AE=10∴AD=DE﹣AE=DE﹣BD=10﹣3=7.∴CE=7.3.如图把一块直角三角尺ABC的直角顶点C放置在水平直线MN上在△ABC中∠C =90°AC=BC试回答下列问题:(1)若把三角尺ABC绕着点C按顺时针方向旋转当AB∥MN时∠2=45度;(2)在三角尺ABC绕着点C按顺时针方向旋转过程中分别作AM⊥MN于M BN⊥MN与N若AM=6 BN=2 求MN.(3)三角尺ABC绕着点C按顺时针方向继续旋转到图3的位置其他条件不变则AM、BN与MN之间有什么关系?请说明理由.【解答】解:(1)在△ABC中AB=AC∠ACB=90°∴∠B=∠A=45°∵AB∥MB∴∠2=∠B=45°故答案为45;(2)∵AM⊥MN于M BN⊥MN于N∴∠AMC=90°∠BNC=90°.∴∠1+∠CAM=90°又∵∠1+∠2=90°∴∠2=∠CAM同理:∠1=∠CBN在△AMC和△CNB中∴△AMC≌△CNB(ASA)∴AM=CN MC=BN∴MN=MC+CN=AM+BN=2+6=8;(3)MN=BN﹣AM理由:同(2)的方法得△AMC≌△CNB(ASA)∴AM=CN MC=BN∴MN=MC﹣CN=BN﹣AM.4.在△ABC中∠ACB=90°AC=BC直线MN经过点C且AD⊥MN于D BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时(1)中的结论还成立吗?若成立请给出证明;若不成立说明理由.【解答】(1)证明:①∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°∴∠DAC=∠BCE.又AC=BC∠ADC=∠BEC=90°∴△ADC≌△CEB.②∵△ADC≌△CEB∴CD=BE AD=CE.∴DE=CE+CD=AD+BE.(2)△ADC≌△CEB成立DE=AD+BE.不成立此时应有DE=AD﹣BE.证明:∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°∴∠DAC=∠BCE.又AC=BC∠ADC=∠BEC=90°∴△ADC≌△CEB.∴CD=BE AD=CE.∴DE=AD﹣BE.5.已知△ABC在平面直角坐标系中在△ABC中AB=BC∠ABC=90°.(1)如图①已知点A(0 ﹣4)B(1 0)求点C的坐标;(2)如图②已知点A(0 0)B(3 1)求点C的坐标.【解答】解:(1)过点C作x轴的垂线交x轴于点D∵A(0 ﹣4)B(1 0)∴OA=4 OB=1∵∠ABC=90°∠AOB=90°∴∠CBD+∠OBA=90°∠OAB+∠OBA=90°∴∠CBD=∠BAO∵AB=BC∠AOB=∠BDC=90°∴△BCD≌△ABO(AAS)∴CD=BO=1 BD=AO=4∴OD=3∴点C坐标为(﹣3 1);(2)过B作x轴的垂线交x轴于点D过点C作DB的垂线交DB的延长线于点E∵A(0 0)B(3 1)∴OD=3 BD=1∵∠ABC=90°∠ADB=90°∴∠CBE+∠OBD=90°∠BAD+∠OBD=90°∴∠BAD=∠CBE∵AB=BC∠ADB=∠BEC=90°∴△ABD≌△BCE(AAS)∴CE=BD=1 BE=AD=3∴DE=4∴点C的横坐标为3﹣1=2∴点C坐标为(2 4).6.如图1 在平面直角坐标系中点A(0 m)B(m0)C(0 ﹣m)其中m>0 点P为线段OA上任意一点连接BP CE⊥BP于E AD⊥BP于D.(1)求证:AD=BE;(2)当m=3时若点N(﹣3 0)请你在图1中连接CD EN交于点Q.求证:EN ⊥CD;(3)若将“点P为线段OA上任意一点”改为“点P为线段OA延长线上任意一点”其他条件不变连接CD EN⊥CD垂足为F交y轴于点H交x轴于点N请在图2中补全图形求点N的坐标(用含m的代数式表示).【解答】(1)证明:如图1中∵A(0 m)B(m0)C(0 ﹣m)∴OA=OB=OC=m∴∠ABC=90°∵OB⊥AC OA=OC∴BA=BC∵CE⊥BP于E AD⊥BP于D∴∠ADB=∠CEB=90°∵∠CBE+∠ABD=90°∠CBE+∠BCE=90°∴∠ABD=∠BCE在△ADB和△BEC中∴△ADB≌△BEC(AAS)∴AD=BE.(2)证明:如图1中设CD交ON于点J EN交CD于点K.∵N(﹣3 0)m=3∴OA=OB=OC=ON=3∴AC=BN∵∠ADP=∠BOP=90°∠APD=∠BPO∴∠DAC=∠EBN在△ACD和△BNE中∴△ACD≌△BNE(SAS)∴∠ACD=∠BNE∵∠ACD+∠CJO=90°∠CJO=∠NJK∴∠CNE+∠NJK=90°∴∠NKJ=90°∴CD⊥EN.(3)解:如图2中∵CE⊥BP于E AD⊥BP于D ∴∠ADB=∠CEB=90°∵∠CBE+∠ABD=90°∠CBE+∠BCE=90°∴∠ABD=∠BCE在△ADB和△BEC中∴△ADB≌△BEC(AAS)∴AD=BE.∠BAD=∠CBE∵∠CAB=∠CBO=45°∴∠CAD=∠EBN∵EN⊥CD∴∠CFH=∠NOH∵∠NHO=∠CHF∴∠ACD=∠HNO在△CAD和△NBE中∴△CAD≌△NBE(AAS)∴AC=BN=2m∴ON=BN﹣OB=m∴N(﹣m0).7.如图1 在平面直角坐标系内A(﹣6 0)B(0 9)C(0 4)连接AB、AC点D为x轴正半轴上一点且S△ACD=S△ABC.(1)求点D的坐标;(2)如图2 延长DC交AB于点E AE=AC求点E的坐标;(3)如图3 在(2)的条件下点P在第三象限连接AP、BP、CP若∠CAP=90°∠BAC=2∠PCO BP交x轴于点K求点K的坐标.【解答】解:(1)∵A(﹣6 0)B(0 9)C(0 4)∴AO=6 OB=9 OC=4∴BC=OB﹣OC=9﹣4=5∴S△ACB=×5×6=15∵S△ACD=×4•AD=2AD S△ACD=S△ABC.∴2AD=×15∴AD=10∴OD=AD﹣OA=10﹣6=4∴D(4 0);(2)过点E作FH∥AD交y轴于点H过点A作F A⊥AD交FH于点F∵x轴⊥y轴∴∠AOB=90°∵FH∥AD∴∠FHO=90°∵F A⊥AD∴∠F AO=90°∵FH∥AD∴∠AFH+∠F AD=180°∴∠AFH=90°∴∠AFH=∠FHO=∠F AO=∠AOB=90°∴四边形AFHO是矩形∵AE=AC∴∠AEC=∠ACE∵OC=OD∴∠COD=90°∴∠CDO=∠DCO=45°∵FH∥AD∠CEH=∠CDO=45°且∠AEF+∠AEC+∠CEH=180°∠ACO+∠ACE+∠DCO=180°∴∠AEF=∠ACO在△AEF和△ACO中∴△AEF≌△ACO(AAS)∴AF=AO EF=CO=4∴矩形AFHO为正方形∴AO=FH=6∴EH=FH﹣EF=6﹣4=2∴E(﹣2 6);(3)∵∠BAC=2∠PCO设∠PCO=α∴∠BAC=2α∵AE=AC∴∠AEC=∠ACE=(180°﹣∠BAC)=90°﹣α∵∠DCO=45°∴∠ACP=180°﹣∠DCO﹣∠PCO﹣∠ECA=180°﹣45°﹣α﹣(90°﹣α)=45°∵∠CAP=90°∴∠APC=180°﹣∠CAP﹣∠ACP=180°﹣90°﹣45°=45°∴∠ACP=∠CAP∴AC=AP过点A作HR⊥x轴.过点C作CH⊥HR过点P作RT⊥HR∴∠H=∠CAP=∠R=90°∵∠HAC+∠HCA=180°﹣∠H=180°﹣90°=90°∠HAC+∠RAP=180°﹣∠CAP =180°﹣90°=90°∴∠HCA=∠RAP在△CHA和△ARP中∴△CHA≌△ARP(AAS)∴HC=AR HA=RP∵OA=6 OC=4 TB=OB+OT=9+6=15∴HC=AR=6∴HA=RP=4∴PT=RT﹣RP=6﹣4=2设KO=a S△BPT=S梯形KOTP+S△BKO∴(KO+PT)•OT+KO•OB∴×(a+2)×6+a×9解得a=∴K(﹣0).8.从反思中总结基本活动经验是一个重要的学习方法.例如我们在全等学习中所总结的“一线三等角、K型全等”这一基本图形可以使得我们在观察新问题的时候很迅速地联想从而借助已有经验迅速解决问题.(1)如图1 在平面直角坐标系中四边形OBCD是正方形且D(0 2)点E是线段OB延长线上一点M是线段OB上一动点(不包括点O、B)作MN⊥DM垂足为M且MN=DM.设OM=a请你利用基本活动经验直接写出点N的坐标(2+a a)(用含a的代数式表示);(2)基本经验有利有弊当基本经验有利于新问题解决的时候这是基本经验的正迁移;当基本经验所形成的思维定势局限了新问题的思考让新问题解决不出来的时候这是基本经验的负迁移.例如如果(1)的条件去掉“且MN=DM”加上“交∠CBE的平分线与点N”如图2 求证:MD=MN.如何突破这种定势获得问题的解决请你写出你的证明过程.(3)如图3 请你继续探索:连接DN交BC于点F连接FM下列两个结论:①FM 的长度不变;②MN平分∠FMB请你指出正确的结论并给出证明.【解答】(1)解:如图1中作NE⊥OB于E∵∠DMN=90°∴∠DMO+∠NME=90°∠NME+∠MNE=90°∴∠DMO=∠MNE在△DMO和△MNE中∴△DMO≌△MNE∴ME=DO=2 NE=OM=a∴OE=OM+ME=2+a∴点N坐标(2+a a)故答案为N(2+a a).(2)证明:如图2中在OD上取OH=OM连接HM∵OD=OB OH=OM∴HD=MB∠OHM=∠OMH ∴∠DHM=180°﹣45°=135°∵NB平分∠CBE∴∠NBE=45°∴∠NBM=180°﹣45°=135°∴∠DHM=∠NBM ∵∠DMN=90°∴∠DMO+∠NMB=90°∵∠HDM+∠DMO=90°∴∠HDM=∠NMB在△DHM和△MBN中∴△DHM≌△MBN(ASA)∴DM=MN.(3)结论:MN平分∠FMB成立.证明:如图3中在BO延长线上取OA=CF在△AOD和△FCD中∴△DOA≌△DCF∴AD=DF∠ADO=∠CDF∵∠MDN=45°∴∠CDF+∠ODM=45°∴∠ADO+∠ODM=45°∴∠ADM=∠FDM在△DMA和△DMF中∴△DMA≌△DMF∴∠DFM=∠DAM=∠DFC过M作MP⊥DN于P则∠FMP=∠CDF 由(2)可知∠NMF+∠FMP=∠PMN=45°∵∠NMB=∠MDO∠MDO+∠CDF=45°∴∠NMB=∠NMF即MN平分∠FMB.(在旋转过程中FM=AM显然AM的长度是变化的故FM的长度是变化的或取两个特殊位置比较AM的值即可发现结论).。

人教版八年级上 册第十二章全等三角形辅助线系列之一---角平分线类辅助线作法大全

人教版八年级上 册第十二章全等三角形辅助线系列之一---角平分线类辅助线作法大全

全等三角形辅助线系列之一 与角平分线有关的辅助线作法大全一、角平分线类辅助线作法角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等.对于有角平分线的辅助线的作法,一般有以下四种.1、角分线上点向角两边作垂线构全等:过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题; 2、截取构全等利用对称性,在角的两边截取相等的线段,构造全等三角形; 3、延长垂线段题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形; 4、做平行线:以角分线上一点做角的另一边的平行线,构造等腰三角形有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形.或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形.通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形.至于选取哪种方法,要结合题目图形和已知条件.图四图三图二图一QPONMPONM BAAB MNOP PONM BA典型例题精讲【例1】 如图所示,BN 平分∠ABC ,P 为BN 上的一点,并且PD ⊥BC 于D ,2AB BC BD =+.求证:180BAP BCP ∠∠=︒+.【解析】过点P 作PE ⊥AB 于点E .∵PE ⊥AB ,PD ⊥BC ,BN 平分∠ABC ,∴PE PD =. 在Rt △PBE 和Rt △PBC 中, BP BPPE PD =⎧⎨=⎩, ∴Rt △PBE ≌Rt △PBC (HL ),∴BE BD =.∵2AB BC BD +=,BC CD BD =+,AB BE AE =-,∴AE CD =. ∵PE ⊥AB ,PD ⊥BC ,∴90PEB PDB ∠=∠=︒. 在△P AE 和Rt △PCD 中, ∵PE PD PEB PDC AE DC =⎧⎪∠=∠⎨⎪=⎩, ∴△P AE ≌Rt △PCD ,∴PCB EAP ∠=∠.∵180BAP EAP ∠+∠=︒,∴180BAP BCP ∠+∠=︒.【答案】见解析.【例2】 如图,已知:90A ∠=︒,AD ∥BC ,P 是AB 的中点,PD 平分∠ADC ,求证:CP 平分∠DCB .【解析】因为已知PD 平分∠ADC ,所以我们过P 点作PE ⊥CD ,垂足为E ,则PA PE =,由P 是AB的中点,得PB PE =,即CP 平分∠DCB .【答案】作PE ⊥CD ,垂足为E ,∴90PEC A ∠=∠=︒,∵PD 平分∠ADC ,∴PA PE =, 又∵90B PEC ∠=∠=︒,∴PB PE =, ∴点P 在∠DCB 的平分线上, ∴CP 平分∠DCB .【例3】 已知:90AOB ∠=︒,OM 是∠AOB 的平分线,将三角板的直角顶点P 在射线OM 上滑动,两直角边分别与OA 、OB 交于C 、D .(1)PC 和PD 有怎样的数量关系是__________. (2)请你证明(1)得出的结论.PDCBA A BCDPE【解析】(1)PC PD =.(2)过P 分别作PE ⊥OB 于E ,PF ⊥OA 于F , ∴90CFP DEP ∠=∠=︒,∵OM 是∠AOB 的平分线,∴PE PF =,∵190FPD ∠+∠=︒,且90AOB ∠=︒,∴90FPE ∠=︒, ∴290FPD ∠+∠=︒,∴12∠=∠, 在△CFP 和△DEP 中12CPF DEPPF PE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CFP ≌△DEP ,∴PC PD =. 【答案】见解析.【例4】 如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,60B ∠=︒,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F ,请你判断并写出FE 与FD 之间的数量关系(不需证明); (2)如图③,在△ABC 中,60B ∠=︒,请问,在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【解析】如图①所示;(1)FE FD =.(2)如图,过点F 作FG ⊥AB 于G ,作FH ⊥BC 于H ,作FK ⊥AC 于K , ∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,∴FG FH FK ==, 在四边形BGFH 中,36060902120GFH ∠=︒-︒-︒⨯=︒, ∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,60B ∠=︒, ∴()118060602FAC FCA ∠+∠=︒-︒=︒. 在△AFC 中, ()180********AFC FAC FCA ∠=︒-∠+∠=︒-︒=︒, ∴120EFD AFC ∠=∠=︒,∴EFG DFH ∠=∠, 在△EFG 和△DFH 中,EFG DFH EGF DHF FG FH ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EFG ≌△DFH ,∴FE FD = 【答案】见解析.【例5】 已知120MAN ∠=︒,AC 平分∠MAN ,点B 、D 分别在AN 、AM 上.(1)如图1,若90ABC ADC ∠=∠=︒,请你探索线段AD 、AB 、AC 之间的数量关系,并证明之;(2)如图2,若180ABC ADC ∠+∠=︒,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.【解析】(1)得到30ACD ACB ∠=∠=︒后再可以证得12AD AB AC ==,从而,证得结论; (2)过点C 分别作AM 、AN 的垂线,垂足分别为E 、F ,证得△CED ≌△CFB后即可得到AD AB AE ED AF FB AE AF +=-++=+,从而证得结论.【答案】(1)关系是:AD AB AC +=.证明:∵AC 平分∠MAN ,120MAN ∠=︒ ∴60CAD CAB ∠=∠=︒ 又90ADC ABC ∠=∠=︒, ∴30ACD ACB ∠=∠=︒ 则12AD AB AC ==(直角三角形一锐角为30°,则它所对直角边为斜边一半) ∴AD AB AC +=; (2)仍成立.证明:过点C 分别作AM 、AN 的垂线,垂足分别为E 、F ∵AC 平分∠MAN∴CE CF =(角平分线上点到角两边距离相等) ∵180ABC ADC ∠+∠=︒,180ADC CDE ∠+∠=︒ ∴CDE ABC ∠=∠ 又90CED CFB ∠=∠=︒, ∴△CED ≌△CFB (AAS ) ∵ED FB =,∴AD AB AE ED AF FB AE AF +=-++=+ 由(1)知AE AF AC +=, ∴AD AB AC +=.【例6】 如图,在△ABC 中,2C B ∠=∠,AD 平分∠BAC ,求证:AB AC CD -=.【解析】在AB 上截取点E ,使得AE AC =.∵AD 平分∠BAC ,∴EAD CAD ∠=∠,∴△ADE ≌△ADC (SAS ).∴AED C ∠=∠,ED CD =. ∵2C B ∠=∠,∴=2AED B ∠∠.∵AED B EDB ∠=∠+∠,∴B EDB ∠=∠,∴BE DE =. ∴CD BE AB AE AB AC ==-=-.【答案】见解析.【例7】 如图,△ABC 中,AB AC =,108A ∠=︒,BD 平分ABC ∠交AC 于D 点.求证:BC AC CD =+.【解析】在BC 上截取E 点使BE BA =,连结DE .∵BD 平分ABC ∠,∴ABD EBD ∠=∠. 在ABD ∆与EBD ∆中∵AB EB =,ABD EBD ∠=∠,BD BD = ∴ABD EBD ∆∆≌,∴A DEB ∠=∠∵AB AE =, ∴BAD BED ∠=∠,∴72DEC ∠=︒. 又∵361854ADB ∠=︒+︒=︒,∴72CDE ∠=︒ABCDE DCBAAB CD∴CDE DEC ∠=∠,∴CD CE = ∵BC BE EC =+,∴BC AC CD =+【答案】见解析.【例8】 已知ABC ∆中,60A ∠=︒,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.【解析】在BC 上截取一点F 使得BF BE =,易证BOE BOF ∆∆≌,在根据120BOC ∠=︒推出60BOE COF ∠=∠=︒,再证明OCF OCD ∆∆≌即可.【答案】BC BE CD =+.【例9】 如图:已知AD 为△ABC 的中线,且12∠=∠,34∠=∠,求证:BE CF EF +>.【解析】在DA 上截取DN DB =,连接NE ,NF ,则DN DC =,在△DBE 和△DNE 中:E DCB AOED CBAFOED CBA∵12DN DB ED ED =⎧⎪∠=∠⎨⎪=⎩∴△DBE ≌△DNE (SAS ),∴BE NE = 同理可得:CF NF =在△EFN 中,EN FN EF +>(三角形两边之和大于第三边) ∴BE CF EF +>.【答案】见解析.【例10】 已知:在四边形ABCD 中,BC BA >,180A C ∠+∠=︒,且60C ∠=︒,BD 平分∠ABC ,求证:BC AB DC =+.【解析】在BC 上截取BE BA =,∵BD 平分∠ABC ,∴ABD EBD ∠=∠, 在△BAD 和△BED 中, BA BE ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△BED ,∴AD DE =,A BED ∠=∠. ∵180BED DEC ∠+∠=︒,180A C ∠+∠=︒. ∴C DEC ∠=∠,∴DE DC =.∴DC AD =.∵60∠=︒,∴△CDE是等边三角形,C∴DE CD CE=+=+.==,∴BC BE CE AB CD【答案】见解析.【例11】观察、猜想、探究:在△ABC中,2∠=∠.ACB B(1)如图①,当90=+;C∠=︒,AD为∠BAC的角平分线时,求证:AB AC CD (2)如图②,当90∠≠︒,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量C关系?不需要证明,请直接写出你的猜想;(3)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.【解析】(1)过D作DE⊥AB,交AB于点E,理由角平分线性质得到ED=CD,利用HL得到直角三角形AED与直角三角形ACD全等,由全等三角形的对应边相等,对应角相等,得到AE AC=,A CB B∠=∠,利用等量代换及外角性质得到一对角相等,利用等角对等∠=∠,由2AED ACB边得到BE DE=+,等量代换即可得证;=,由AB AE EB(2)AB CD AC=+,理由为:在AB上截取AG AC=,如图2所示,由角平分线定义得到=,利用SAS得到三角形AGD与三角形ACD全等,接下来同(1)一对角相等,再由AD AD即可得证;(3)AB CD AC=,如图3所示,同(2)即可得证.=-,理由为:在AF上截取AG AC【答案】(1)过D作DE⊥AB,交AB于点E,如图1所示,∵AD为∠BAC的平分线,DC⊥AC,DE⊥AB,∴DE DC=,在Rt △ACD 和Rt △AED 中,AD AD =,DE DC =, ∴Rt △ACD ≌Rt △AED (HL ),∴AC AE =,ACB AED ∠=∠, ∵2ACB B ∠=∠,∴2AED B ∠=∠, 又∵AED B EDB ∠=∠+∠,∴B EDB ∠=∠, ∴BE DE DC ==,则AB BE AE CD AC =+=+; (2)AB CD AC =+,理由为: 在AB 上截取AG AC =,如图2所示, ∵AD 为∠BAC 的平分线,∴GAD CAD ∠=∠, ∵在△ADG 和△ADC 中,AG ACGAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ADG ≌△ADC (SAS ),∴CD CG =,AGD ACB ∠=∠, ∵2ACB B ∠=∠,∴2AGD B ∠=∠, 又∵AGD B GDB ∠=∠+∠,∴B GDB ∠=∠, ∴BE DG DC ==,则AB BG AG CD AC =+=+; (3)AB CD AC =-,理由为: 在AF 上截取AG AC =,如图3所示, ∵AD 为∠F AC 的平分线,∴GAD CAD ∠=∠, ∵在△ADG 和△ADC 中,AG AC GAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△ADC (SAS ), ∴CD GD =,AGD ACD ∠=∠,即ACB FGD ∠=∠,∵2ACB B ∠=∠,∴2FGD B ∠=∠,又∵FGD B GDB ∠=∠+∠,∴B GDB ∠=∠, ∴BG DG DC ==,则AB BG AG CD AC =-=-.【例12】 如图所示,在△ABC 中,3ABC C ∠=∠,AD 是∠BAC 的平分线,BE ⊥AD 于F .求证:()12BE AC AB =-.【解析】延长BE 交AC 于点F .则AD 为∠BAC 的对称轴,∵BE ⊥AD 于F ,∴点B 和点F 关于AD 对称, ∴12BE EF BF ==,AB AF =,ABF AFB ∠=∠. ∵3ABF FBC ABC C ∠∠=∠=∠+,ABF AFB FBC C ∠=∠=∠∠+, ∴3FBC C FBC C ∠∠∠=∠++, ∴FBC C ∠=∠,∴FB FC =,∴()()111222BE FC AC AF AC AB ==-=-,∴()12BE AC AB =-. 【答案】见解析.【例13】 如图,已知:△ABC 中AD 垂直于∠C 的平分线于D ,DE ∥BC 交AB 于E .求证:EA EB =.【解析】由AD 垂直于∠C 的平分线于D ,可以想到等腰三角形中的三线合一,于是延长AD 交BC 与点F ,得D 是AF 的中点,又因为DE ∥BC ,由三角形中位线定理得EA EB =.【答案】延长AD 交BC 与点F ,∵CD 平分∠ACF ,∴12∠=∠,又AD ⊥CD , ∴ΔADC ≌ΔFDC ,∴AD FD =, 又∵DE ∥BC ,∴EA EB =.【例14】 已知:如图,在△ABC 中,3ABC C ∠=∠,12∠=∠,BE ⊥AE .求证:2AC AB BE -=.【解析】延长BE 交AC 于M ,∵BE ⊥AE ,∴90AEB AEM ∠=∠=︒ 在△ABE 中,∵13180AEB ∠+∠+∠=︒, ∴3901∠=︒-∠ 同理,4902∠=︒-∠∵12∠=∠,∴34∠=∠,∴AB AM =∵BE ⊥AE ,∴2BM BE =, ∴AC AB AC AM CM -=-=, ∵∠4是△BCM 的外角,∴45C ∠=∠+∠ ∵3ABC C ∠=∠,∴3545ABC ∠=∠+∠=∠+∠ ∴34525C C ∠=∠+∠=∠+∠,∴5C ∠=∠ ∴CM BM =,∴2AC AB BM BE -==【答案】见解析.【例15】 如图,已知AB AC =,90BAC ∠=︒,BD 为∠ABC 的平分线,CE ⊥BE ,求证:2BD CE =.【解析】延长CE ,交BA 的延长线于点F .∵BD 为∠ABC 的平分线,CE ⊥BE , ∴△BEF ≌△BEC ,∴BC BF =,CE FE =. ∵90BAC ∠=︒,CE ⊥BE ,∴ABD ACF ∠=∠,又∵AB AC =,∴△ABD ≌△ACF ,∴BD CF =.∴2BD CE =.【答案】见解析.EDCBAFEDCBA课后复习【作业1】如图所示,在△ABC 中,BP 、CP 分别是∠ABC 的外角的平分线,求证:点P 在∠A 的平分线上.【解析】过点P 作PE ⊥AB 于点E ,PG ⊥AC 于点G ,PF ⊥BC 于点F .因为P 在∠EBC 的平分线上,PE ⊥AB ,PH ⊥BC ,所以PE PF =. 同理可证PF PG =. 所以PG PE =,又PE ⊥AB ,PG ⊥AC ,所以P 在∠A 的平分线上,【答案】见解析.【作业2】已知:如图,2AB AC =,BAD CAD ∠=∠,DA DB =,求证:DC ⊥AC .PCBAPABCD【解析】在AB 上取中点E ,连接DE ,则12AE BE AB ==. ∵DA DB =,∴DE ⊥AB ,90AED ∠=︒. 又∵2AB AC =,∴AE AC =.∵BAD CAD ∠=∠,∴△ADE ≌△ADC (SAS ). ∴90AED ACD ∠=∠=︒,即DC ⊥AC .【答案】见解析.【作业3】已知等腰ABC ∆,100A ∠=︒,ABC ∠的平分线交AC 于D ,则BD AD BC +=.【解析】如图,在BC 上截取BE BD =,连接DE ,过D 作DF BC ∥,交AB 于F ,于是32∠=∠,ADF ECD ∠=∠. 又∵12∠=∠,∴13∠=∠,故DF BF =.显然FBCD 是等腰梯形. ∴BF DC =,DF DC =.∵()111218010020222ABC ∠=∠=⨯︒-︒=︒,()11802802BED BDE ∠=∠=︒-∠=︒, ∴180100DEC BED ∠=︒-∠=︒,∴100FAD DEC ∠=∠=︒,∴AFD EDC ∆∆≌,AD EC =. 又∵BE BD =,∴BC BD EC BD AD =+=+.【答案】见解析.EDCBAABCD【作业4】如图,已知在△ABC 中,AD 、AE 分别为△ABC 的内、外角平分线,过顶点B 作BF ⊥AD ,交AD 的延长线于F ,连接FC 并延长交AE 于M .求证:AM ME =.【解析】延长AC ,交BF 的延长线于点N .∵AD 平分∠BAC ,BF ⊥AD ,∴△AFB ≌△AFN ,∴BF NF =. ∵AD 、AE 分别为△ABC 的内、外角平分线,∴EA ⊥F A . ∵BF ⊥AF ,∴BF ∥AE .∴::BF ME CF CM =,::FN AM CF CM =. ∵BF NF =,∴AM ME =.【答案】见解析.ECMF EDCBAN MFEDCBA。

新人教版初中数学八年级数学上册第二单元《全等三角形》测试卷(含答案解析)(2)

新人教版初中数学八年级数学上册第二单元《全等三角形》测试卷(含答案解析)(2)

一、选择题1.如图,已知16AB AC +=,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC 于D .若4OD =,则四边形ABOC 的面积是( )A .36B .32C .30D .642.如图,在△ABC 中,∠B =∠C =50°,BD =CF ,BE =CD ,则∠EDF 的度数是( )A .40°B .50°C .60°D .30°3.下列说法正确的( )个.①0.09的算术平方根是0.03;②1的立方根是±1;③3.1<10<3.2;④两边及一角分别相等的两个三角形全等.A .0B .1C .2D .34.如图,已知ABC DCB ∠=∠,添加一个条件使ABC DCB △△≌,下列添加的条件不能使ABC DCB △△≌的是( )A .A D ∠=∠B .AB DC = C .AC DB =D .ACB DBC ∠=∠ 5.如图,123,,l l l 是三条两两相交的公路,现需建一个仓库,要求仓库到三条公路距离相等,则仓库的可能地址有( )处.6.下列判断正确的个数是( )①三角形的三条高都在三角形的内部,并且相交于一点;②两边及一角对应相等的两个三角形全等;③两角及一边对应相等的两个三角形全等;④到三角形的三边所在的直线距离相等的点有三个;⑤两边及第三边上的高对应相等的两个三角形全等.A .4B .3C .2D .17.下列命题中,假命题是( )A .在同一平面内,垂直于同一条直线的两直线平行B .到线段两端点距离相等的点在这条线段的垂直平分线上C .一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等D .一边长相等的两个等腰直角三角形全等8.如图,已知△ABC 的周长是20,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于,且OD=2,△ABC 的面积是( )A .20B .24C .32D .409.如图,在Rt ABC 中,C 90∠=,AD 是BAC ∠的平分线,若AC 3=,BC 4=,则ABD ACD S :S 为( )A .5:4B .5:3C .4:3D .3:410.如图,OB 平分∠MON ,A 为OB 的中点,AE ⊥ON ,EA=3,D 为OM 上的一个动点,C 是DA 延长线与BC 的交点,BC //OM ,则CD 的最小值是( )11.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),当△ACP 与△BPQ 全等时,则点Q 的运动速度为( )cm/s .A .0.5B .1C .0.5或1.5D .1或1.5 12.已知,如图,OC 是∠AOB 内部的一条射线,P 是射线OC 上任意点,PD ⊥OA ,PE ⊥OB ,下列条件中:①∠AOC =∠BOC ,②PD =PE ,③OD =OE ,④∠DPO =∠EPO ,能判定OC 是∠AOB 的角平分线的有( )A .1个B .2个C .3个D .4个二、填空题13.如图,AC=BC ,请你添加一个条件,使AE=BD .你添加的条件是:________.14.如图,AOP BOP ∠=∠,PD OA ⊥,C 是OB 上的动点,连接PC ,若4PD =,则PC 的最小值为_________.15.如图,四边形ABDC 中,对角线AD 平分BAC ∠,136ACD ∠=︒,44BCD ∠=︒,则ADB ∠的度数为_____16.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 长的最小值为_______.17.如图,△ACB 和△DCE 中,AC =BC ,∠ACB =∠DCE =90°,∠ADC =∠BEC ,若AB =17,BD =5,则S △BDE =_______.18.如图,AB ⊥BC ,DC ⊥BC ,垂足分别为B 、C ,垂足为B 、C ,AC 与BD 相交于点E ,AC=BD 且∠A=50°,则∠BEA=___________.19.如图,ABC 中,90C ∠=,AD 平分BAC ∠,若2DC =,则点D 到线段AB 的距离等于________.20.如图,已知ABC DCB ∠=∠,则需添加的一个条件是______可使ACB DBC ≌.(只写一个即可,不添加辅助线).三、解答题21.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在边BC 上(不与点B ,C 重合),过点C 作CE ⊥AD ,垂足为点E ,交AB 于点F ,连接DF .(1)请直接写出∠CAD 与∠BCF 的数量关系;(2)若点D 是BC 中点,在图2中画出图形,猜想线段AD ,CF ,FD 之间的数量关系,并证明你的猜想.22.作图题:已知∠α,线段m 、n ,请按下列步骤完成作图(不需要写作法,保留作图痕迹)(1)作∠MON =∠α(2)在边OM 上截取OA =m ,在边ON 上截取OB =n .(3)作直线AB .23.如图,已知A ABC ∠=∠,D CBD ∠=∠,ABD CBD ∠=∠,点E 在BC 的延长线上.求证:CD 平分ACE ∠.24.如图,AB AD =,AC AE =,CAE BAD ∠=∠.求证:B D ∠=∠.25.如图,点,,,B F C E 在一条直线上,,//,//AB DE AB ED AC FD =.求证:(1) AC DF =(2)FB CE =26.如图①,∠BAD=90°,AB=AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥CA 的延长线点E ,由∠1+∠2=∠D+∠2=90°,得∠1=∠D ,又∠ACB=∠AED=90°,AB=AD ,得△ABC ≌△DAE 进而得到AC=DE ,BC=AE , 我们把这个数学模型称为“K 字”模型或“一线三等角”模型.请应用上述“一线三等角”模型,解决下列问题:(1)如图②,∠BAD=∠CAE=90°,AB=AD ,AC=AE ,连接BC 、DE ,且BC ⊥AH 于点H ,DE 与直线AH 交于点G ,求证:点G 是DE 的中点.(2)如图③,在平面直角坐标系中,点A 为平面内任意一点,点B 的坐标为(4,1),若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,根据角平分线的性质求出OE =OD =OF =4,根据三角形的面积公式求出即可.【详解】解:过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,∵点O 为∠ABC 与∠ACB 的平分线的交点,OD ⊥BC 于D ,OD =4,∴OE =OD =4,OF =OD =4,∵AB +AC =16,∴四边形ABOC 的面积S =S △ABO +S △ACO =1122AB OE AC OF ⨯+⨯ =114422AB AC ⨯+⨯ =42×(AB +AC ) =42×16 =32,故选:B .【点睛】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质得出OD =OE =OF =3是解此题的关键.2.B解析:B【分析】由SAS 证明△BDE ≌△CFD ,得出∠BDE=∠CFD ,∠EDF 可由180°与∠BDE 、∠CDF 的差表示,进而求解即可.【详解】解:在△BDE 与△CFD 中,BD CF B C BE CD ⎧⎪∠∠⎨⎪⎩===,∴△BDE ≌△CFD (SAS );∴∠BDE=∠CFD ,∴∠EDF=180°-(∠BDE+∠CDF )=180°-(∠CFD+∠CDF )=180°-(180°-∠C )=50°; 故选:B .【点睛】本题主要考查了全等三角形的判定及性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件. 3.B解析:B【分析】根据平方根、立方根、无理数的估算和三角形全等判定定理进行判断即可.【详解】解:①0.09的算术平方根是0.3,不是0.03,因此①不正确;②1的立方根是1,不是±1,因此②不正确;③因为3.12=9.91,3.22=10.24,而9.91<10<10.24,所以3.1<3.2,因此③正确;④只有两边夹角对应相等的两个三角形全等,而两边及一角分别相等的两个三角形不一定全等.因此④不正确;所以正确的只有③,故选:B .【点睛】本题考查平方根、立方根、无理数的估算以及三角形全等判定定理,掌握平方根、立方根的意义、掌握无理数的估算方法和三角形全等的判断方法是正确判断的前提.4.C解析:C【分析】根据全等三角形的判定与性质综合分析即可;【详解】在ABC和DCB中,A DABC DCBBC CB∠=∠⎧⎪∠=∠⎨⎪=⎩,故ABC DCB△△≌,A不符合题意;在ABC和DCB中,AB DCABC DCBBC CB=⎧⎪∠=∠⎨⎪=⎩,故ABC DCB△△≌,B不符合题意;只有AC=BD,BC=CB,ABC DCB∠=∠,不符合全等三角形的判定,故C符合题意;在ABC和DCB中,ACB DBCCB BCABC DCB∠=∠⎧⎪=⎨⎪∠=∠⎩,故ABC DCB△△≌,D不符合题意;故答案选C.【点睛】本题主要考查了全等三角形的判定与性质,准确分析判断是解题的关键.5.D解析:D【分析】到三条相互交叉的公路距离相等的地点应是三条角平分线的交点,把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【详解】(1)三角形两个内角平分线的交点,共一处(2)三个外角两两平分线的交点,共三处,共四处,故选:D..【点睛】此题考查角平分线的性质:角平分线上的点到角两边的距离相等,熟记性质是正确解题的关键.6.D解析:D【分析】根据三角形的高线、角平分线的性质及全等三角形的判定分析各个选项即可.【详解】解:①只有当三角形是锐角三角形时,三条高才在三角形的内部,此选项错误;②有两边及一角对应相等的两个三角形全等,此选项错误;③有两角和一边对应相等,满足AAS或ASA,此选项正确;④在三角形内部到三边距离相等的点是三条内角平分线的交点,交点重合,只有一点;在三角形的外部到三条边所在直线距离相等的点是外角平分线的交点,交点不重合,有三个.则到三角形三边所在直线距离相等的点有4个,此选项错误;⑤两边及第三边上的高对应相等的两个三角形不一定全等,此选项错误.正确的有一个③,故选:D.【点睛】本题考查了全等三角形的判定方法及三角形的角平分线,垂心等概念,熟练掌握概念和性质是解题的关键.7.D解析:D【分析】根据垂线的性质,线段垂直平分线的判定,全等三角形的判定对各选项分析判断后利用排除法求解.【详解】A、同一平面内,垂直于同一条直线的两直线互相平行,真命题,本选项不符合题意;B、到线段两端点距离相等的点在这条线段的垂直平分线上,真命题,本选项不符合题意;C、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另一条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等,真命题,本选项不符合题意;D、有一边相等的两个等腰直角三角形不一定全等,如:一个等腰直角三角形的直角边与另一个等腰直角三角形的斜边相等,这两个等腰直角三角形并不全等,假命题,本选项符合题意.故选:D.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.A解析:A【分析】连接OA ,过O 作OE ⊥AB 于E ,OF ⊥AC 于F ;然后利用角平分线定理可得OF=OE=DO=2,然后用S △ABC =S △AOC +S △OBC +S △ABO 求解即可.【详解】解:如图:连接OA ,过O 作OE ⊥AB 于E ,OF ⊥AC 于F,∵OB ,OC 分别平分∠ABC 和∠ACB ,∴OD=OE,OF=OD,即OF=OE=DO=2,∴S △ABC =12×2AC+12×2BC +12×2AB =12×2(AC+BC+AB ) = AC+BC+AB=20.故答案为A .【点睛】本题主要考查了角平分线定理,正确作出辅助线、利用角平分线定理得到OF=OE=DO=2是解答本题的关键.9.B解析:B【分析】过D 作DF AB ⊥于F ,根据角平分线的性质得出DF =DC ,再根据三角形的面积公式求出ABD 和ACD 的面积,最后求出答案即可.【详解】解:过D 点作DF AB ⊥于F ,∵AD 平分CAB ∠,C 90∠=(即AC BC ⊥),∴DF CD =,设DF CD R ==,在Rt ABC 中,C 90∠=,AC 3=,BC 4=, ∴22AB 5AC BC =+=, ∴ABD 115S AB DF 5R R 222=⨯⨯=⨯⨯=,ACD 113S AC CD 3R R 222=⨯⨯=⨯⨯=,∴ABD ACD 5S:S R 2⎛⎫= ⎪⎝⎭:3R 5:32⎛⎫= ⎪⎝⎭, 故选:B.【点睛】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质求出DF =CD 是解此题的关键.10.A解析:A【分析】根据两条平行线之间的距离可知当CD ⊥OM 时,CD 取最小值,先利用角平分线的性质得出AD =AE =3,利用全等三角形的判定和性质得出AC =AD =AE =3,进而解答即可.【详解】解:由题意得,当CD ⊥OM 时,CD 取最小值,∵OB 平分∠MON ,AE ⊥ON 于点E ,CD ⊥OM ,∴AD =AE =3,∵BC ∥OM ,∴∠DOA =∠B ,∵A 为OB 中点,∴AB =AO ,在△ADO 与△ABC 中B DOA AB AO BAC DAO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADO ≌△ABC (SAS ),∴AC =AD =3,∴336CD AC AD =+=+=,故选A .【点睛】此题考查角平分线的性质、全等三角形的判定和性质、平行线之间的距离,关键是利用全等三角形的判定和性质得出AC =AD =AE =3.11.D解析:D【分析】设点Q 的运动速度是x cm/s ,有两种情况:①AP=BP ,AC=BQ ,②AP=BQ ,AC=BP ,列出方程,求出方程的解即可.【详解】解:设点Q 的运动速度是x cm/s ,∵∠CAB=∠DBA ,∴△ACP 与△BPQ 全等,有两种情况:①AP=BP ,AC=BQ ,则1×t=4-1×t ,则3=2x ,解得:t=2,x=1.5;②AP=BQ ,AC=BP ,则1×t=tx ,4-1×t=3,解得:t=1,x=1,故选:D .【点睛】本题考查了全等三角形的判定的应用,以及一元一次方程的应用,掌握方程的思想和分类讨论思想是解此题的关键.12.D解析:D【分析】根据角平分线的性质、全等三角形的判定定理和性质定理判断即可.【详解】解:∵∠AOC =∠BOC ,∴OC 是∠AOB 的角平分线,① 符合题意;∵PD ⊥OA ,PE ⊥OB ,PD =PE ,∴OC 是∠AOB 的角平分线,② 符合题意;在Rt △POD 和Rt △POE 中,OD DE OP OP =⎧⎨=⎩, ∴Rt △POD ≌Rt △POE ,∴∠AOC =∠BOC ,∴OC 是∠AOB 的角平分线,③ 符合题意;∵∠DPO=∠EPO ,PD ⊥OA ,PE ⊥OB∴在△POD 和△POE 中,DPO EPO PDO PEO OP OP =⎧⎪=⎨⎪=⎩∠∠∠∠∴△POD ≌△POE (AAS ),∴∠AOC =∠BOC ,∴OC 是∠AOB 的角平分线,④ 符合题意,故选:D .【点睛】本题考查的是角平分线的性质、全等三角形的判定与性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键;二、填空题13.∠A=∠B 或CD=CEAD=BE ∠AEC=∠BDC 等【分析】根据全等三角形的判定解答即可【详解】解:因为AC=BC ∠C=∠C 所以添加∠A=∠B 或CD=CEAD=BE ∠AEC=∠BDC 可得△ADC 与△解析:∠A=∠B 或CD=CE 、AD=BE 、∠AEC=∠BDC 等【分析】根据全等三角形的判定解答即可.【详解】解:因为AC=BC ,∠C=∠C ,所以添加∠A=∠B 或CD=CE 、AD=BE 、∠AEC=∠BDC ,可得△ADC 与△BEC 全等,利用全等三角形的性质得出AD=BE ,故答案为:∠A=∠B 或CD=CE 、AD=BE 、∠AEC=∠BDC .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.4【分析】当PC 垂直于OB 时PC 最小根据角平分线的性质可求最小值【详解】解:当PC ⊥OB 时PC 最小∵PC ⊥OB ∴PC=PD=4故答案为:4【点睛】本题考查了垂线段最短和角平分线的性质能够根据垂线段最解析:4【分析】当PC 垂直于OB 时,PC 最小,根据角平分线的性质可求最小值.【详解】解:当PC ⊥OB 时,PC 最小,∵AOP BOP ∠=∠,PD OA ⊥,PC ⊥OB ,∴PC=PD=4,故答案为:4.【点睛】本题考查了垂线段最短和角平分线的性质,能够根据垂线段最短的性质判断出点C 的位置,并根据角平分线的性质得出PC=PD 是根关键.15.【分析】先添加辅助线过点作交的延长线于点过点作交的延长线于点过点作于点根据角平分线的判定性质定义以及三角形外角的性质邻补角的定义角的和差等可求得【详解】解:过点作交的延长线于点过点作交的延长线于点过 解析:46︒【分析】先添加辅助线“过点D 作DE AB ⊥交AB 的延长线于点E ,过点D 作DF AC ⊥交AC 的延长线于点F ,过点D 作DG BC ⊥于点G ”,根据角平分线的判定、性质、定义以及三角形外角的性质、邻补角的定义、角的和差等可求得()1462ADB CBE BAC ∠=∠-∠=︒. 【详解】 解:过点D 作DE AB ⊥交AB 的延长线于点E ,过点D 作DF AC ⊥交AC 的延长线于点F ,过点D 作DG BC ⊥于点G ,如图:∵AD 平分BAC ∠,DE AB ⊥,DF AC ⊥∴12BAD BAC ∠=∠,DE DF = ∵136ACD ∠=︒ ∴18044DCF ACD ∠=︒-∠=︒∵44BCD ∠=︒,92ACB ACD BCD ∠=∠-∠=︒∴CD 平分BCF ∠∵DF AC ⊥,DG BC ⊥∴DF DG =∴DE DG =∵DE AB ⊥,DG BC ⊥∴BD 平分CBE ∠∴12DBE CBE ∠=∠ ∴ADB DBE BAD ∠=∠-∠1122CBE BAC =∠-∠()12CBE BAC =∠-∠ 12BCA =∠ 46=︒.故答案是:46︒【点睛】本题考查了角平分线的判定、性质、定义以及三角形外角的性质、邻补角的定义、角的和差等,熟练掌握相关知识点是解题的关键.16.3【分析】过点D 作于点H 先证明BD 是的角平分线然后根据角平分线的性质得到当点P 运动到点H 的位置时DP 的长最小即DH 的长【详解】解:如图过点D 作于点H ∵∴∵∴∴BD 是的角平分线∵∴∵点D 是直线BC 外一 解析:3【分析】过点D 作DH BC ⊥于点H ,先证明BD 是ABC ∠的角平分线,然后根据角平分线的性质得到3AD DH ==,当点P 运动到点H 的位置时,DP 的长最小,即DH 的长.【详解】解:如图,过点D 作DH BC ⊥于点H ,∵BD CD ⊥,∴90BDC ∠=︒,∵180C BDC DBC ∠+∠+∠=︒,180ADB A ABD ∠+∠+∠=︒,ADB C ∠=∠,90A ∠=︒,∴ABD CBD ∠=∠,∴BD 是ABC ∠的角平分线,∵AD AB ⊥,DH BC ⊥,∴3AD DH ==,∵点D 是直线BC 外一点,∴当点P 在BC 上运动时,点P 运动到与点H 重合时DP 最短,其长度为DH 长,即DP 长的最小值是3.故答案是:3.【点睛】本题考查角平分线的性质,解题的关键是熟练运用角平分线的性质定理.17.30【分析】根据∠ACB =∠DCE =90°可得∠ACD =∠BCE 利用三角形全等判定可得△ACD ≌△BCE 则BE =AD ∠DAC =∠EBC 再证明∠DBE =90°根据三角形面积计算公式便可求得结果【详解】解析:30【分析】根据∠ACB =∠DCE =90°,可得∠ACD =∠BCE ,利用三角形全等判定可得△ACD ≌△BCE ,则BE =AD ,∠DAC =∠EBC ,再证明∠DBE =90°,根据三角形面积计算公式便可求得结果.【详解】解:∵∠ACB =∠DCE =90°,∴∠ACB -∠DCB =∠DCE -∠DCB .即∠ACD =∠BCE .∵AC =BC ,∠ADC =∠BEC ,∴△ACD ≌△BCE .∴BE =AD ,∠DAC =∠EBC .∵∠DAC +∠ABC =90°,∴∠EBC +∠ABC =90°.∴△BDE 为直角三角形.∵AB =17,BD =5,∴AD =AB -BD =12.∴S △BDE =12BD ⋅BE =30. 故答案为:30.【点睛】本题考查了全等三角形的判定与性质,通过分析题意找出三角形全等的条件并能结合全等性质解决相应的计算问题是解题的关键.18.80°【分析】先证明△ABC ≌△DCB 得∠DBC=∠ACB 进一步得∠ACB=40°根据三角形外角的性质可求出∠BEA 【详解】解:∵AB ⊥BCDC ⊥BC ∴∠ABC=∠DCB=90°在Rt △ABC 和Rt解析:80°【分析】先证明△ABC ≌△DCB 得∠DBC=∠ACB ,进一步得∠ACB=40°,根据三角形外角的性质可求出∠BEA .【详解】解:∵AB ⊥BC ,DC ⊥BC ,∴∠ABC=∠DCB=90°,在Rt △ABC 和Rt △DCB 中,AC BD BC CB⎧⎨⎩==,∴Rt△ABC≌Rt△DCB(HL);∴∠DBC=∠ACB,∵∠A=50°,∴∠ACB=∠DCB=40°∵∠AEB=∠DBC+∠ABC∴∠AEB=40°+40°=80°,故答案为:80°.【点睛】此题主要考查了直角三角形全等的判定以及三角形外角的性质,熟练掌握直角三角形全等的判定定理是解答此题的关键.19.【分析】过D作DE⊥AB于E根据角平分线的性质得出DE=DC即可求出答案【详解】解:过D作DE⊥AB于E∵∠C=90°AD平分∠BACDC=2∴DE=DC=2即点D到线段AB的距离等于2故答案为:2解析:【分析】过D作DE⊥AB于E,根据角平分线的性质得出DE=DC,即可求出答案.【详解】解:过D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,DC=2,∴DE=DC=2,即点D到线段AB的距离等于2,故答案为:2.【点睛】本题考查了考查了角平分线的性质,能根据角平分线的性质得出DE=DC是解此题的关键.20.AB=DC(答案不唯一)【分析】因为和公共边BC根据全等证明方法即可求得【详解】当AB=DC时根据全等证明方法SAS可证故答案为:AB=DC(答案不唯一)【点睛】本题考查三角形全等的判定条件掌握五种解析:AB=DC(答案不唯一)【分析】∠=∠和公共边BC,根据全等证明方法即可求得.因为ABC DCB【详解】当AB=DC时≌根据全等证明方法SAS可证ACB DBC故答案为:AB=DC(答案不唯一)【点睛】本题考查三角形全等的判定条件,掌握五种全等证明方法是解题的关键.三、解答题21.(1)∠BCF=∠CAD;(2)AD=CF+DF,证明见解析【分析】(1)由余角的性质可求解;(2)过点B作BG∥AC交CF的延长线于G,由“ASA”可证△ACD≌△CBG,可得CD=BG,AD=CG,由“SAS”可证△BDF≌△BGF,可得DF=GF,可得结论.【详解】解:(1)∠BCF=∠CAD,理由如下:∵CE⊥AD,∴∠CED=∠ACD=90°,∴∠CAD+∠ADC=90°=∠ADC+∠BCF,∴∠CAD=∠BCF;(2)如图所示:猜想:AD=CF+DF,理由如下:过点B作BG∥AC交CF的延长线于G,则∠ACB+∠CBG=180°,∴∠CBG=∠ACD=90°,在△ACD和△CBG中,∵CAD BCF AC BCACD CBG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACD≌△CBG(ASA),∴CD=BG,AD=CG,∵D是BC的中点,∴CD=BG=BD,∵AC=BC,∠ACB=90°,∴∠CBA=∠CAB,∴∠CBA=45°,∴∠FBG=∠CBG﹣∠CBA=90°﹣45°=45°,∴∠FBG =∠FBD ,在△BDF 和△BGF 中,BF BF FBD FBG BD BG =⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△BGF (SAS ),∴DF =GF ,∵AD =CG =CF +FG ,∴AD =CF +DF .【点睛】本题主要考查余角的性质,全等三角形的判定和性质,添加合适的辅助线,构造全等三角形,是解题的关键.22.(1)见解析;(2)见解析;(3)见解析【分析】(1)先画一条射线ON ,以∠α的顶点为圆心,任意长度为半径画弧,交∠α的两个边于两个点,这两个点的距离记为a ,接着以点O 为圆心,同样的长度为半径画弧,交ON 于一个点,以这个点为圆心,a 为半径画弧,与刚刚画的弧有一个交点,连接这个点和点O ,得到射线OM ,即可得到∠MON =∠α;(2)以点O 为圆心,m 为半径画弧,交OM 于点A ,以点O 为圆心,n 为半径画弧,交ON 于点B ;(3)连接AB ,线段AB 所在的直线即直线AB .【详解】解:(1)如图所示,(2)如图所示,(3)如图所示,【点睛】本题考查尺规作图,解题的关键是掌握作已知角度的方法,截取线段和画直线的方法. 23.见解析【分析】根据题意,先证明//AB CD ,然后由平行线的性质以及等量代换,得到ACD DCE ∠=∠,即可得到结论成立.【详解】证明:D CBD ∠=∠,ABD CBD ∠=∠,D ABD ∴∠=∠,//AB CD ∴ABC DCE ∴∠=∠,A ACD ∠=∠又A ABC ∠=∠,ACD DCE ∴∠=∠,CD ∴平分ACE ∠.【点睛】本题考查了平行线的判定和性质,角平分线的判定,解题的关键是掌握所学的知识,正确得到//AB CD .24.见解析【分析】先证明BAC DAE ∠=∠,再根据“SAS”证明ABC ADE △≌△即可.【详解】证明:CAE BAD ∠=∠,CAE EMB BAD EAB ∴∠+∠=∠+∠,即BAC DAE ∠=∠.在ABC 和ADE 中, AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,()ABC ADE SAS ∴≌.B D ∴∠=∠.【点睛】题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.25.(1)见解析;(2)见解析【分析】(1)根据平行线的性质求出∠B=∠E ,∠ACB=∠DFE ,根据AAS 证出△BAC ≌△EDF ,可得AC=DF ;.(2)由△BAC ≌△EDF ,可证BC=EF ,进而可得FB=CE .【详解】证明:(1)∵AB//ED ,AC//FD ,∴∠B=∠E ,∠ACB=∠DFE ,在△BAC 和△EDF 中ACB DFE B EAB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△EDF (AAS ),∴AC=DF ;(2)∵△BAC ≌△EDF ,∴BC=EF ,∴BC-FC=EF-FC ,∴FB=CE .【点睛】本题考查了全等三角形的性质和判定,平行线的性质,注意:①全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,②全等三角形的对应边相等,对应角相等.26.(1)见解析;(2)A(32,52)或(52,-32). 【分析】(1)过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N .根据“K 字模型”即可证明AH=DM 和AH=EN ,即EN=DM ,再根据全等三角形的判定和性质即可证明DG=EG ,即点G 是DE 的中点.(2)分情况讨论①当A 点在OB 的上方时,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .根据“K 字模型”即可证明AC BD OC AD DE ===,,再利用B 点坐标即可求出A 点坐标.②当A 点在OB 的下方时,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .同理即能求出A 点坐标.【详解】(1)如图,过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N ,则∠DMA=90°,∠ENG=90°.∵∠BHA=90 ,∴∠2+∠B=90°.∵∠BAD=90°,∴∠1+∠2=90°.∴∠B=∠1 .在△ABH 和△DAM 中1BHA AMD B AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≅△DAM (AAS ),∴AH=DM .同理 △ACH ≅△EAN (AAS ),∴ AH=EN .∴EN=DM .在△DMG 和△ENG 中MGD NGE DMG ENG DM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DMG ≅△ENG (AAS ).∴DG=EG .∴点G 是DE 的中点.(2)根据题意可知有两种情况,A 点分别在OB 的上方和下方.①当A 点在OB 的上方时,如图,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .利用“K 字模型”可知ACO BDA ≅,∴AC BD OC AD DE ===,,设AC x =,则BD x =,∵1DE BD BE x =+=+,∴1OC AD DE x ===+,又∵4CD AD AC =+=,即14x x ++=, 解得32x =, ∴32AC =,35122DE =+=. 即点A 坐标为(32,52).②当A点在OB的下方时,如图,作AP垂直于y轴,BM垂直于x轴,PA和BM的延长线交于点Q.根据①同理可得:52AP=,32MQ=.即点A坐标为(52,32-).【点睛】本题考查了三角形全等的判定和性质.熟练利用三角形的判定方法是解答本题的关键.。

初中几何辅助线大全-最全

初中几何辅助线大全-最全

三角形中作辅助线的常用方法举例一、延长已知边构造三角形:例如:如图7-1:已知AC=BD,AD⊥AC于A,BC⊥BD于B,求证:AD=BC分析:欲证AD=BC,先证分别含有AD,BC的三角形全等,有几种方案:△ADC与△BCD,△AOD与△BOC,△ABD与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角。

E 证明:分别延长DA,CB,它们的延长交于E点,∵AD⊥ACBC⊥BD(已知)∴∠CAE=∠DBE=90°(垂直的定义)在△DBE与△CAE中A BO EE()公共角∵DBECAE()已证D CBDAC(已知)图71∴△DBE≌△CAE(AAS)∴ED=ECEB=EA(全等三角形对应边相等)∴ED-EA=EC-EB即:AD=BC。

(当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。

)二、连接四边形的对角线,把四边形的问题转化成为三角形来解决。

三、有和角平分线垂直的线段时,通常把这条线段延长。

例如:如图9-1:在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E。

求证:BD=2CEF分析:要证BD=2CE,想到要构造线段2CE,同时AE1B 12DC 图91CE与∠ABC的平分线垂直,想到要将其延长。

证明:分别延长B A,CE交于点F。

∵BE⊥CF(已知)∴∠BEF=∠BEC=90°(垂直的定义)在△BEF与△BEC中,12(已知)∵BEBE(公共边)BEFBEC()已证1C F(全等三角形对应边相等)∴△BEF≌△BEC(ASA)∴CE=FE=2∵∠BAC=90°BE⊥CF(已知)∴∠BAC=∠CAF=90°∠1+∠BDA=90°∠1+∠BFC=90°∴∠BDA=∠BFC在△ABD与△ACF中BACCAF(已证)BDABFC()已证AB=AC(已知)∴△ABD≌△ACF(AAS)∴BD=CF(全等三角形对应边相等)∴BD=2CE四、取线段中点构造全等三有形。

专题05 全等三角形中的常见辅助线强化练习(举一反三)

专题05 全等三角形中的常见辅助线强化练习(举一反三)

专题05 全等三角形中的常见辅助线【举一反三】【人教版】【考点1 角分线上点向角两边作垂线构全等】【方法点拨】过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题;【例1】如图,已知BP平分∠ABC,PD⊥BC于D,BF+BE=2BD,求证:∠BFP+∠BEP=180°.【变式1-1】(2019秋•汉阳区期中)已知:∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P 在射线OM上滑动,两直角边分别与OA、OB交于C、D.(1)PC和PD有怎样的数量关系是.(2)请你证明(1)得出的结论.【变式1-2】(2019•北京校级期中)已知∠MAN=120°,AC平分∠MAN,点B、D分别在AN、AM上.(1)如图1,若∠ABC=∠ADC=90°,请你探索线段AD、AB、AC之间的数量关系,并证明之;(2)如图2,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.【变式1-3】(2019秋•东区校级月考)如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.请你判断并写出FE与FD之间的数量关系;(不需证明)(2)如图③,在△ABC中,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【考点2 截取法构全等】【方法点拨】利用对称性,在角的两边截取相等的线段,构造全等三角形;【例2】(2019秋•黄浦区校级期中)已知:在四边形ABCD中,BC>BA,∠A+∠C=180°,且∠C=60°,BD平分∠ABC,求证:BC=AB+DC.【变式2-1】已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,试判断BE,CD,BC的数量关系,并说明理由.【变式2-2】(2019秋•邵阳期末)如图①,在△ABC中,∠ACB=2∠B,AD为∠BAC的角平分线,求证:AB=AC+CD小明同学经过思考,得到如下解题思路:在AB上截取AE=AC,连接DE,得到△ADE≌△ADC,从而易证AB=AC+CD(1)请你根据以上解思路写出证明过程;(2)如图②,若AD为△ABC的外角∠CAE平分线,交BC的延长线于点D,∠D=25°,其他条件不变,求∠B的度数.【变式2-3】(2019•长汀县校级模拟)观察、猜想、探究:在△ABC中,∠ACB=2∠B.(1)如图①,当∠C=90°,AD为∠BAC的角平分线时,求证:AB=AC+CD;(2)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想;(3)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.【考点3 延长垂线段构全等】【方法点拨】题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形;【例3】如图,在△ABC中,∠ABC=3∠C,AD平分∠BAC,BE⊥AD于E,求证:BE=(AC﹣AB).(提示:延长BE交AC于点F).【变式3-1】已知:如图,在△ABC中,∠ABC=3∠C,∠1=∠2,BE⊥AE.求证:AC﹣AB=2BE.【变式3-2】(2019秋•通州区期末)已知:∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD,垂足为E.求证:BD=2CE.【变式3-3】(2019•成都校级期中)如图,△ABC中,过点A分别作∠ABC,∠ACB的外角的平分线的垂线AD,AE.D,E为垂足,求证:(1)ED∥BC;(2)ED=(AB+AC+BC).【考点4 倍长中线法构全等】【方法点拨】遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形.【例4】(2019秋•津南区校级期中)已知:在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF.【变式4-1】(2019秋•闵行区期中)如图,在△ABC中,AE平分∠BAC,交BC于点E,D是BC边上点,且DE=CE,点F在AE上,联结DF,满足DF=AC,求证:DF∥AB.【变式4-2】(2019春•富阳市校级期中)如图,AD为△ABC的中线,∠ADB和∠ADC的平分线分别交AB、AC于点E、F.求证:BE+CF>EF.【变式4-3】(2019秋•启东市校级月考)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,已知:CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE.【考点5 作平行线构全等】【方法点拨】有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形.或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形.【例5】若两个三角形的一边及其对角对应相等,并有一对角互补(不是直角),则这两个三角形为友好三角形.如图1,点D在AB边上,CD=CB,则△ABC和△ACD就是友好三角形.(1)两个友好三角形全等.(从下面选择一个正确的填入)A.一定B.不一定C.一定不(2)如图2,在△ABC中,AB=AC,点D在AB上,点E在AC延长线上,连结DE交BC于其中BD≠BF,若△BDF和△CEF是友好三角形,求证:DF=EF.(3)如图3,CE是△ABC的中线,点D在AC上,BD与CE交于点F,CF=AE,DF=DC,图中与△ACE 成友好三角形的是.【变式5-1】(2019秋•建湖县期末)如图,在△ABC,AD平分∠BAC,E、F分别在BD、AD上,且DE=CD,EF=AC,求证:EF∥AB.【变式5-2】(2019春•河口区校级期中)如图所示,在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC 交BC于E,交CD于F,FG∥AB交BC于G.试判断CE,CF,GB的数量关系,并说明理由.【变式5-3】△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ.(有多种辅助线作法)【考点6 旋转法构全等】【方法点拨】对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形。

人教版八年级数学上册 12.2 复习小专题(二)构造全等三角形常见辅助线的添法 课件(共20张

人教版八年级数学上册 12.2  复习小专题(二)构造全等三角形常见辅助线的添法 课件(共20张
9
知识点二:利用“截补法”构造全等三角形
归纳总结
不管是截长法还是补短法,往往都需要连接 其他线段,构造全等三角形,利用全等三角形的性 质解决问题.
10
知识点三:利用“倍长中线法”构造全等三角形
典例分析
例3:如图,在△ABC中,AD是BC边上的中线,
求证:AD< (AB+AC)
A
通过添加辅助线,构造全等三角形,将
AD AB ,AC转化到同一个三角形中来求解. B D
C
E
11
知识点三:利用“倍长中线法”构造全等三角形
典例分析
A
例3:如图,在△ABC中,AD是BC边上的中线,
求证:AD< (AB+AC)
B
2
DC
证明:延长AD至点E,使得DE = AD,连接BE.
E
∵AD是BC边上的中线, ∴点D为BC的中点,∴BD=CD.
∴∠F=∠4.
6
知识点二:利用“截补法”构造全等三角形
大显身手
1.如图,AD为△ABC的角平分线,AB >AC,
A
求证:AB﹣AC> BD﹣DC.
E
B
DC
7
知识点二:利用“截补法”构造全等三角形
大显身手
2.如图,在△ABC中, B=2∠C,AD是BC边上的高.
求证:CD=AB+BD.
A

E
BD
C
B
从结论出发,把较长的线段AB截成与 AC,BD分别相等的两条线段,或延长较短的线段AC, 使延长后的线段的长等于线段AB的长,再利用三角 形全等即可证明.
4
知识点二:
解:如图,在线段AB上截取AF=AC连接EF C ∵AE,BE分别平分∠CAB和∠DBA

八年级数学上册第十三章轴对称专题训练(八)特殊三角形中常见添加辅助线的方法课件新版新人教版

八年级数学上册第十三章轴对称专题训练(八)特殊三角形中常见添加辅助线的方法课件新版新人教版

6.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形, 且∠BDC=120°.以D为顶点作一个60°角, 使其两边分别交AB于点M,交AC于点N,连接MN. (1)求证:MN=BM+NC; (2)求△AMN的周长为多少?
解:(1)证明:∵△BDC是等腰三角形,且∠BDC=120°, ∴∠BCD=∠DBC=30°. ∵△ABC是边长为3的等边三角形, ∴∠ABC=∠BAC=∠BCA=60°, ∴∠DBA=∠DCA=90°, 延长AB至点F,使BF=CN,连接DF,
AB=AC, 在 Rt△ABF 和 Rt△ACE 中,BF=CE, ∴Rt△ABF≌Rt△ACE(HL),∴∠ACE=∠B
2.如图,在△ABC中,AC=2AB,AD平分∠BAC交BC于 点D,E是AD上一点,且EA=EC,求证:EB⊥AB.
证明:过点 E 作 EF⊥AC 于点 F,∵EA=EC,∴AF=FC=12 AC.
5.如图,△ABC中,CA=CB,∠ACB=108°, BD平分∠ABC交AC于点D,求证:AB=AD+BC.
证明:方法一:(截长法),如图①,在AB上截取BE=BC, 连接ED,△BCD≌△BED, 易求∠AED=∠ADE=72°,∴AD=AE,∴AB=BE+AE=BC+AD. 方法二:(补短法),如图②,延长BC至F,使BF=AB,连接FD, 只证AD=DF=CF即可
第十三章 轴对称
专题训练(八) 特殊三角形中常见添加辅助线的方法
1.如图,在△ABC 中,AB=AC,CE⊥AE 于点 E,CE=12 BC, 点 E 在△ABC 外,求证:∠ACE=∠B.
证明:过点 A 作 AF⊥BC 于点 F,∵AB=AC,∴BF=CF. ∵CE=12 BC,∴BF=CE.∵CE⊥AE,∴∠AFB=∠AEC=90°,

人教版七年级数学下册 第五章 相交线与平行线 第3节 与角有关的辅助线 暑假作业(部分含答案)

人教版七年级数学下册 第五章 相交线与平行线 第3节  与角有关的辅助线  暑假作业(部分含答案)

第3节与角有关的辅助线1.已知:如图,AB∥CD,∠1=135°,∠3=75°,则∠2的度数为()A.45°B.75°C.30°D.105°第1题图第2题图2.已知:如图,∠BAC+∠C=180°,点E是CD上一点,且∠1=32°,∠AFE=110°,则∠FED的度数为()A.78°B.64°C.55°D.60°3.如图,AB∥EF,∠BCD=90°,则∠α,∠β,∠γ的关系是()A.∠β=∠α+∠γB.∠α+∠β+∠γ=180°C.∠α+∠β-∠γ=90°D.∠β+∠γ-∠α=90°4.已知:如图,AB∥CD,∠B=40°,∠D=20°,求∠BED的度数.5.已知:如图,AB∥CD.求证:∠1+∠3-∠2=180°.6.(1)①如图1所示,已知AB∥CD,∠ABC=60°,根据_____________________________,可得∠BCD=____________;②如图2所示,在①的条件下,若CM平分∠BCD,则∠BCM=_______;③如图3所示,在①②的条件下,若CN⊥CM,则∠BCN=__________.(2)尝试解决下面的问题:如图4所示,AB∥CD,∠B=40°,CN是∠BCE的平分线,CN⊥CM,求∠BCM的度数.7.如图(1),已知直线l1∥l2,且l3与l1、l2分别交于A、B两点,l4与l1、l2分别交于C、D两点,记∠ACP=∠1,∠BDP=∠2,∠CPD=∠3,点P在线段AB上.(1)若∠1=25°,∠2=33°,则∠3=;(2)猜想∠1,∠2,∠3之间的相等关系,并说明理由;(3)如图(2),点A在点B的南偏东23°方向,在点C的西南方向,利用(2)的结论,可知∠BAC=;(4)点P在直线l3上且在A、B两点外侧运动时,其它条件不变,请直接写出∠1,∠2,∠3之间的相等关系.8.如图,已知AB∥CD,点C在点D的右侧,∠ADC=70°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB,CD之间.(1)如图1,点B在点A的左侧,若∠ABC=60°,求∠BED的度数?(2)如图2,点B在点A的右侧,若∠ABC=100°,直接写出∠BED的大小.9.小明同学在完成第10章的学习后,遇到了一些问题,请你帮助他.(1)图1中,当AB∥CD,试说明∠AEC=∠BAE+∠DCE.(2)图2中,若∠AEC=∠BAE+∠DCE,则AB∥CD吗?请说明理由.(3)图3中,AB∥CD,若∠BAE=x°,∠AEF=y°,∠EFD=z°,∠FDC=m°,则m =.(直接写出结果,用含x,y,z的式子表示)10.如图,∠BED=∠B+∠D,猜想AB与CD有怎样的位置关系,并说明理由.11.直线AB∥CD,点P在其所在平面上,且不在直线AB,CD,AC上,设∠PAB=α,∠PCD=β,∠APC=γ(α,β,γ,均不大于180°,且不小于0°)(1)如图1,当点P在两条平行直线AB,CD之间、直线AC的右边时试确定α,β,γ的数量关系;(2)如图2,当点P在直线AB的上面、直线AC的右边时试确定α,β,γ的数量关系;(3)α,β,γ的数量关系除了上面的两种关系之外,还有其他的数量关系,请直接写出这些.12.(1)读读做做:平行线是平面几何中最基本、也是非常重要的图形.在解决某些平面几何问题时,若能依据问题的需要,添加恰当的平行线,往往能使证明顺畅、简洁.请根据上述思想解决教材中的问题:如图①,AB∥CD,则∠B+∠D∠E(用“>”、“=”或“<”填空);(2)倒过来想:写出(1)中命题的逆命题,判断逆命题的真假并说明理由.(3)灵活应用如图②,已知AB∥CD,在∠ACD的平分线上取两个点M、N,使得∠AMN=∠ANM,求证:∠CAM=∠BAN.13.小华在学习“平行线的性质”后,对图中∠B,∠D和∠BOD的关系进行了探究:(1)如图1,AB∥CD,点O在AB,CD之间,试探究∠B,∠D和∠BOD之间有什么关系?并说明理由;小华添加了过点O的辅助线OM,并且OM∥CD请帮助他写出解答过程;(2)如图2,若点O在CD的上侧,试探究∠B,∠D和∠BOD之间有什么关系?并说明理由;(3)如图3,若点O在AB的下侧,试探究∠B,∠D和∠BOD之间有什么关系?请直接写出它们的关系式.14.已知AB∥CD,点E、F分别为两条平行线AB、CD上的一点,GE⊥GF于G.(1)如图1,直接写出∠AEG和∠CFG之间的数量关系;(2)如图2,连接GF,过点G分别作∠BGF和∠BGE的角平分线交AB于点K、H.GH⊥AB.①求∠HGK的度数;②探究∠CFG和∠BGF的数量关系并加以证明.15.已知射线AB平行于射线CD,点E、F分别在射线AB、CD上(1)如图1,若点P在线段EF上,若∠A=25°,∠APC=70°时,则∠C=;(2)如图1,若点P在线段EF上运动(不包含E、F两点),则∠A、∠APC、∠C之间的等量关系是;(3)①如图2,若点P在线段FE的延长线上运动,则∠A、∠APC、∠C之间的等量关系是;②如图3,若点P在线段EF的延长线上运动,则∠A、∠APC、∠C之间的等量关系是;(4)请说明图2中所得结论的理由.16.如图,已知l1∥l2,线段MA分别与直线l1,l2交于点A,B,线段MC分别与直线l1,l2交于点C,D,点P在线段AM上运动(P点与A,B,M三点不重合),设∠PDB=α,∠PCA=β,∠CPD=γ.(1)若点P在A,B两点之间运动时,若a=25°,B=40°,那么γ=.(2)若点P在A,B两点之间运动时,探究α,β,γ之间的数量关系,请说明理由;(3)若点P在B,M两点之间运动时,α,β,γ之间有何数量关系?(只需直接写出结论)部分参考答案7.【解答】解:(1)∵l1∥l2,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD中,∠3+∠PCD+∠PDC=180°,∴∠3=∠1+∠2=58°,故答案为:58°;(2)∠1+∠2=∠3,∵l1∥l2,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD中,∠3+∠PCD+∠PDC=180°,∴∠1+∠2=∠3;(3)过A点作AF∥BE,如图1,则AF∥BE∥CD,则∠BAC=∠ABE+∠ACD=23°+45°=68°;故答案为:68°;(4)当P点在A的外侧时,如图2,过P作PF∥l1,交l4于F,∴∠1=∠FPC.∵l1∥l4,∴PF∥l2,∴∠2=∠FPD∵∠CPD=∠FPD﹣∠FPC∴∠3=∠2﹣∠1.当P点在B的外侧时,如图3,过P作PG∥l2,交l4于G,∴∠2=∠GPD ∵l 1∥l 2, ∴PG ∥l 1, ∴∠1=∠CPG∵∠CPD =∠CPG ﹣∠GPD ∴∠3=∠1﹣∠2.8.【解答】解:(1)如图1,过点E 作EF ∥AB , ∵AB ∥CD , ∴AB ∥CD ∥EF ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =60°,∠ADC =70°,∴∠ABE =∠ABC =30°,∠CDE =∠ADC =35°, ∴∠BED =∠BEF +∠DEF =30°+35°=65°; (2)如图2,过点E 作EF ∥AB ,∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =100°,∠ADC =70°∴∠ABE =∠ABC =50°,∠CDE =∠ADC =35° ∵AB ∥CD , ∴AB ∥CD ∥EF ,∴∠BEF=180°﹣∠ABE=180°﹣50°=130°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°﹣50°+35°=165°.9.【解答】解:(1)过E作EM∥AB,∵AB∥CD,∴AB∥CD∥EM,∴∠BAE=∠AEM,∠DCE=∠CEM,∴∠AEC=∠AEM+∠CEM=∠BAE+∠DCE;(2)过E作EM∥AB,∵EM∥AB,∴∠BAE=∠AEM,∵∠AEC=∠BAE+∠DCE,∴∠DCE=∠CEM,∴EM∥CD,∵AB∥EM,∴AB∥CD;(3)过E作EM∥AB,过F作FN∥AB,∵AB∥CD,∴AB∥CD∥EM∥FN,∴∠BAE=∠AEM,∠FEM=∠EFN,∠DFN=∠CDF,∴∠BAE+∠EFN+∠DFN=∠AEM+∠FEM+∠CDF,∴∠BAE+∠EFD=∠AEF+∠CDF,∵∠BAE=x°,∠AEF=y°,∠EFD=z°,∠FDC=m°,∴x+z=y+m,∴m=x+z﹣y,故答案为:x+z﹣y.10.【解答】解:延长BE交CD于F.∵∠BED=∠B+∠D,∠BED=∠EFD+∠D,∴∠B=∠EFD,∴AB∥CD.11.【解答】解:(1)如图1中,结论:γ=α+β.理由:作PE∥AB,∵AB∥CD,∴PE∥CD,∴∠BAP=∠APE,∠PCD=∠CPE,∴∠APC=∠APE+∠CPE=∠BAP+∠PCD,∴γ=α+β.(2)如图2中,结论:γ=β﹣α.理由:作PE∥AB,∵AB∥CD,∴PE∥CD,∴∠BAP=∠APE,∠PCD=∠CPE,∴∠APC=∠CPE﹣∠APE,∴γ=β﹣α.(3)如图3中,有γ=α﹣β.如图4中,有γ=β﹣α.如图5中,有γ=360°=β﹣α.如图6中,有γ=α﹣β.综上所述,γ=α﹣β,γ=β﹣α,γ=360°﹣β﹣α.12.【解答】(1)解:过E作EF∥AB,如图①所示:则EF∥AB∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠B+∠D=∠BEF+∠DEF,即∠B+∠D=∠BED;故答案为:=;(2)解:逆命题为:若∠B+∠D=∠BED,则AB∥CD;该逆命题为真命题;理由如下:过E作EF∥AB,如图①所示:则∠B=∠BEF,∵∠B+∠D=∠BED,∠BEF+∠DEF=∠BED,∴∠D=∠BED﹣∠B,∠DEF=∠BED﹣∠BEF,∴∠D=∠DEF,∴EF∥CD,∵EF∥AB,∴AB∥CD;(3)证明:过点N作NG∥AB,交AM于点G,如图②所示:则NG∥AB∥CD,∴∠BAN=∠ANG,∠GNC=∠NCD,∵∠AMN是△ACM的一个外角,∴∠AMN=∠ACM+∠CAM,又∵∠AMN=∠ANM,∠ANM=∠ANG+∠GNC,∴∠ACM+∠CAM=∠ANG+∠GNC,∴∠ACM+∠CAM=∠BAN+∠NCD,∵CN平分∠ACD,∴∠ACM=∠NCD,∴∠CAM=∠BAN.13.【解答】解:(1)∠BOD=∠D+∠B,理由是:∵AB∥CD,OM∥CD,∴AB∥CD∥OM,∴∠D=∠DOM,∠B=∠BOM,∴∠DOB=∠DOM+∠BOM=∠B+∠D;(2)∠B=∠BOD+∠D,理由是:过O作OM∥CD,∵AB∥CD,OM∥CD,∴AB∥CD∥OM,∴∠D=∠DOM,∠B=∠BOM,∴∠B=∠BOM=∠DOM+∠DOB=∠D+∠DOB;(3)∠D=∠DOB+∠B,理由是:过O作OM∥CD,∵AB∥CD,OM∥CD,∴AB∥CD∥OM,∴∠D=∠DOM,∠B=∠BOM,∴∠D=∠DOM=∠BOM+∠DOB=∠B+∠DOB.14.【解答】解:(1)如图1中,结论:∠AEG+∠CFG=90°.理由:作GH∥AB.∵AB∥CD,∴GH∥CD,∴∠AEG=∠EGH,∠CFG=∠HGF,∵EG⊥FG,∴∠EGF=90°,∴∠AEG+∠CFG=∠EGH+∠HGF=∠EGF=90°.(2)①如图2中,∵GH平分∠BGE,∴∠EGH=∠BGH,∵GH⊥BE,∴∠GHB=∠GHE=90°,∴∠EGH+∠GEB=90°,∠B+∠BGH=90°,∴∠GEB=∠B,∵GE⊥GF,∴∠EGF=90°,∴∠EGH+∠FGH=90°,∴∠FGH=∠GEB=∠B,∵∠HKG=∠B+∠KGB,∠HGK=∠HGL+∠KGL,∠KGB=∠KGL,∴∠HKG=∠HGK=45°.②结论:∠CFG=45°+∠BGF.理由:∵AB∥CD,∴∠ALG=∠CFG,∵∠ALG=∠LKG+∠KGL=45°+∠BGF,∴∠CFG=45°+∠BGF.15.【解答】解:(1)过P作PH∥CD,∴∠HPC=∠C,∵AB∥CD,∴AB∥PH,∴∠A=∠APH=25°,∴∠HPC=∠APC﹣∠APH=70°﹣25°=45°;(2)∠APC=∠A+∠C;理由如下:过P作PH∥CD,∴∠HPC=∠C,∵AB∥CD,∴AB∥PH,∴∠A=∠APH,∴∠APC=∠HPC+∠APH=∠A+∠C;(3)①∠APC=∠C﹣∠A,理由如下:过点P作PQ∥AB(如图2),∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵PQ∥AB,∴∠A=∠APQ,∵∠APC=∠CPQ﹣∠APQ,∴∠APC=∠C﹣∠A;②∠APC=∠A﹣∠C.理由如下:过点P作PQ∥AB(如图3),∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵PQ∥AB,∴∠A=∠APQ,∵∠APC=∠APQ﹣∠CPQ=∠A﹣∠C,∴∠APC=∠A﹣∠C.(4)过点P作PQ∥AB(如图2),∵AB∥CD,∴PQ∥CD,∵PQ∥AB,∴∠A=∠APQ,∵∠APC=∠CPQ﹣∠APQ,∴∠APC=∠C﹣∠A.故答案为:45°,∠APC=∠A+∠C,∠APC=∠C﹣∠A,∠APC=∠A﹣∠C.16.【解答】解:(1)∵AC∥BD,∴β+∠PCD+∠PDC+α=180°,∵γ+∠PCD+∠PDC=180°,∴γ=α+β=65°.故答案为:65°.(2)∵AC∥BD,∴β+∠PCD+∠PDC+α=180°,∵γ+∠PCD+∠PDC=180°,∴γ=α+β=(3)如图,当P在B,M之间时,∵AC∥BD,∴∠1=β,∵∠1=α+γ,∴β=α+γ.。

有关角平分线的辅助线做法 含例题与分析

有关角平分线的辅助线做法 含例题与分析

由角平分线想到的辅助线角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。

对于有角平分线的辅助线的作法,一般有两种。

①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。

通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。

至于选取哪种方法,要结合题目图形和已知条件。

与角有关的辅助线(一)、截取构全等如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。

例1. 如图1-2,AB//CD ,BE 平分∠ABC ,CE 平分∠BCD ,点E 在AD 上,求证:BC=AB+CD 。

分析:此题中就涉及到角平分线,可以利用角平分线来构造全等三角形,即利用解平分线来构造轴对称图形,同时此题也是证明线段的和差倍分问题,在证明线段的和差倍分问题中常用到的方法是延长法或截取法来证明,延长短的线段或在长的线段长截取一部分使之等于短的线段。

但无论延长还是截取都要证明线段的相等,延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等,进而达到所证明的目的。

简证:在此题中可在长线段BC 上截取BF=AB ,再证明CF=CD ,从而达到证明的目的。

这里面用到了角平分线来构造全等三角形。

另外一个全等自已证明。

此题的证明也可以延长BE 与CD 的延长线交于一点来证明。

自已试一试。

例2. 已知:如图1-3,AB=2AC ,∠BAD=∠CAD ,DA=DB ,求证DC ⊥ACB图1-2DBC分析:此题还是利用角平分线来构造全等三角形。

构造的方法还是截取线段相等。

其它问题自已证明。

例3. 已知:如图1-4,在△ABC 中,∠C=2∠B,AD 平分∠BAC ,求证:AB-AC=CD分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。

人教版_部编版八年级数学上册第十一章第二节三角形的外角练习题(含答案) (48)

人教版_部编版八年级数学上册第十一章第二节三角形的外角练习题(含答案) (48)

人教版_部编版八年级数学上册第十一章第二节三角形的外角作业练习题(含答案)如图,在ABC ∆中,AB AC =,,,D E F 分别在三边上,且,BE CD BD CF ==,G 为EF 的中点.(1)若40A ∠=︒,求B 的度数;(2)试说明:DG 垂直平分EF .【答案】(1)70°(2)见解析【解析】【分析】(1)如图,首先证明∠ABC=∠ACB ,运用三角形的内角和定理即可解决问题;(2)如图,作辅助线;首先证明△BDE ≌△CFD ,得到DE=DF ,运用等腰三角形的性质证明DG ⊥EF ,即可解决问题.【详解】(1)因为AB AC =,所以C B ∠=∠,因为40A ∠=︒, 所以18040702B ︒-︒∠==︒;(2)连接DE DF ,,在BDE ∆和CFD ∆中,BD CF B C BE CD =⎧⎪∠=∠⎨⎪=⎩所以()BDE CFD SAS ∆∆≌,所以DE DF =,因为G 为EF 的中点,所以DG EF ⊥,所以DG 垂直平分EF .【点睛】该题主要考查了等腰三角形的判定及其性质、三角形的内角和定理、全等三角形的判定及其性质等几何知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用等腰三角形的判定及其性质、三角形的内角和定理等几何知识点来分析、判断、解答.72.如图,CD 是△ABC 的角平分线,点E 是AC 边上的一点,ECD EDC ∠=∠. (1)求证://ED BC ;(2)30A ︒∠=,65BDC ︒∠=,求∠DEC 的度数.【答案】(1)证明见解析;(2)110°.【解析】【分析】(1)根据角平分线的定义可得ACD BCD ∠=∠,从而求出BCD EDC ∠=∠,再利用内错角相等,两直线平行证明即可;(2)根据三角形的外角性质得+BDC A ACD ∠=∠∠,可求出ECD EDC 35︒∠=∠=,再利用三角形的内角和等于180°列式计算即可得解.【详解】(1)∵CD 是△ABC 的角平分线,∴ACD BCD ∠=∠∵ECD EDC ∠=∠∴BCD EDC ∠=∠∴//ED BC (内错角相等,两直线平行);(2)∵∠BDC 是△ADC 的外角∴+BDC A ACD ∠=∠∠∴653035ACD BDC A ︒︒︒∠=∠-∠=-=∴ECD EDC 35︒∠=∠=∴1803535110DEC ︒︒︒︒∠=--=.故答案为(1)证明见解析;(2)110°.【点睛】本题考查三角形的内角和定理,平行线的判定与性质,三角形的外角性质,准确识别图形是解题的关键.73.如图,在△ABC中,D是BC上一点,∠1=∠2,∠3=∠4,∠BAC=60°,求∠DAC的度数.【答案】20°【解析】【分析】根据三角形外角的性质可得∠3=∠1+∠2,结合条件可得∠4=2∠2,然后在△ABC中运用三角形内角和定理可求出∠2,即可得到∠1,从而可求出∠DAC.【详解】解:设∠1=∠2=x,则∠3=∠4=2x因为∠BAC=60°所以∠2 +∠4=120°即x+2x=120°所以x=40°所以∠3=∠4=80°,∠DAC=180°-∠3-∠4=20°【点睛】本题主要考查三角形内角和定理及外角的性质,从条件中找到3∠和12与∠∠之间的关系是解题的关键.74.如图,ABC 中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G(1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.【答案】(1)证明见解析;(2)78°.【解析】【分析】(1)因为CAF BAE ∠=∠,所以有BAC EAF ∠=∠,又因为AE AB AC AF ==,,所以有()BAC EAF SAS △≌△,得到EF BC =;(2)利用等腰三角形ABE 内角和定理,求得∠BAE=50°,即∠FAG=50°,又因为第一问证的三角形全等,得到28F C ∠=∠=︒,从而算出∠FGC【详解】(1)CAF BAE ∠=∠BAC EAF ∴∠=∠AE AB AC AF ==,()BAC EAF SAS ∴△≌△EF BC ∴=(2)65AB AE ABC =∠=︒,18065250BAE ∴∠=︒-︒⨯=︒50FAG ∴∠=︒BAC EAF △≌△28F C ∴∠=∠=︒502878FGC ∴∠=︒+︒=︒【点睛】本题主要考查全等三角形证明与性质,等腰三角形性质,旋转性质等知识点,比较简单,基础知识扎实是解题关键75.已知:D 是直线AB 上一点,E 是直线AC 上一点,直线BE 与直线CD 相交于F ,62CAB ∠=,若35ACD ∠=,20ABE ∠=.求:(1)BDC ∠度数;(2)BFD ∠度数.【答案】(1)27BDC ∠= ;(2)133BFD ∠=;【解析】【分析】(1)利用外角的性质可得出BDC ∠的度数;(2)利用外角的性质先得出BFC ∠的度数,再计算BFD ∠的度数.【详解】解:(1)∵DC CD C +=∠A ∠A ∠BA∴BDC ∠=BAC ∠-ACD ∠=6235︒-︒=27︒(2)BFC ∠=DBE BDC ∠+∠=2027︒+︒=47︒∴BFD ∠180BFC =︒-∠18047=︒-︒133=︒【点睛】本题考查了三角形的外角的性质的应用,熟练掌握三角形外角的性质是解题关键.76.已知:如图1,在平面直角坐标系中,点A ,B ,E 分别是x 轴和y 轴上的任意点. BD 是∠ABE 的平分线,BD 的反向延长线与∠OAB 的平分线交于点C .探究: (1)求∠C 的度数.发现: (2)当点A ,点B 分别在x 轴和y 轴的正半轴上移动时,∠C 的大小是否发生变化?若不变,请直接写出结论;若发生变化,请求出∠C 的变化范围.应用:(3)如图2在五边形ABCDE 中,∠A +∠B +∠E =310°,CF 平分∠DCB ,CF 的反向延长线与∠EDC 外角的平分线相交于点P ,求∠P 的度数.【答案】(1)∠C=45°;(2)不变.∠C=1∠AOB =45°;(3) 25°.2【解析】【分析】(1)先确定∠ABE与∠OAB的关系,∠ABE=∠OAB+90°,再根据角平分线和三角形的外角求得∠ACB的度数;(2)设∠DBC=x,∠BAC=y,再根据BC平分∠DBO,AC平分∠BAO可知∠CBO=∠DBC=x,∠OAC=∠BAC=y.再由∠DBO是△AOB的外角,∠DBC 是△ABC的外角可得出关于x、y,∠C的方程组,求出∠C的值即可;(3)延长ED,BC相交于点G,易求∠G的度数,由三角形外角的性质可得结论.【详解】(1)∵∠ABE=∠OAB+∠AOB,∠AOB =90°,∴∠ABE=∠OAB+90°,∵BD是∠ABE的平分线,AC平分∠OAB,∴∠ABE=2∠ABD,∠OAB=2∠BAC,∴2∠ABD=2∠BAC+90°,∴∠ABD=∠BAC+45°,又∵∠ABD= ∠BAC +∠C ,∴∠C=45°.(2)不变.∠C=12∠AOB =45°. 理由如下:设∠DBA=x ,∠BAC=y ,∵BD 平分∠EBA ,AC 平分∠BAO .∴∠EBD=∠DBA=x ,∠OAC=∠BAC=y .∵∠EBA 是△AOB 的外角,∠DBA 是△ABC 的外角, ∴2902x y x C y ︒+⎧⎨∠+⎩==, ∴∠C=45°.(3) 延长ED ,BC 相交于点G.在四边形ABGE 中,∵∠G =360°-(∠A +∠B +∠E)=50°,∴∠P =∠FCD -∠CDP =12(∠DCB -∠CDG) =12∠G =12×50°=25°. 【点睛】本题考查的是三角形外角的性质,即三角形的外角等于与之不相邻的两个内角的和.77.如图1,在绿茵场上,足球队员带球进攻,总是尽力向球门AB 冲近.(1)在D 点的射门角度ADB ∠与在C 点的射门角度ACB ∠哪个大?请说明理由.(2)若测得130︒∠=,220︒∠=,50ACB ︒∠=,请计算出球员在D 点射门的角度ADB ∠.(3)通过上面的计算,你能得到关于1∠,2∠,ACB ∠与ADB ∠四个角之间的等世关系吗?直接写出这个结论.并利用这个结论,计算图2五角星中五个角A B C D E ∠+∠+∠+∠+∠的和.(4)请写出图3中六个角AB C D E F ∠∠∠∠∠∠,,,,,之间的一个等量关系,并利用(3)的结论进行证明.【答案】(1)ADB ACB ∠>∠;(2)100ADB ︒∠=;(3)12,180ADB ACB A B C D E ︒∠=∠+∠+∠∠+∠+∠+∠+∠=;(4)F D A B E C ∠+∠=∠+∠+∠+∠.【解析】【分析】(1)利用三角形外角的性质得到43∠>∠,56∠>∠,即可解答.(2)利用三角形外角的性质得到413∠=∠+∠,562∠=∠+∠,再进行等量代换,即可解答.(3)利用三角形外角的性质得到3C E ∠=∠+∠,4A B D ∠=∠+∠+∠,再进行等量代换即可解答.(4)连接BE ,由(3)中的结论得,514,623A C ∠=∠+∠+∠∠=∠+∠+∠,再进行等量代换即可解答.【详解】解:(1)ADB ACB ∠>∠.理由:如图1,∵4∠是ACD ∆的外角,∴43∠>∠.∵5∠是BCD ∆的外角,∴56∠>∠.∴4536∠+∠>∠+∠,即ADB ACB ∠>∠.(2)如图1,∵4∠是ACD ∆的外角,∴413∠=∠+∠.∵5∠是BCD ∆的外角,∴562∠=∠+∠.∴4512302050100ADB ACB ︒︒︒︒∠=∠+∠=∠+∠+∠=++=.(3)12ADB ACB ∠=∠+∠+∠.如图2,∵3∠是COE ∆的外角,∴3C E ∠=∠+∠.由上述结论得4A B D ∠=∠+∠+∠,∵34180︒∠+∠=,∴180A B C D E ︒∠+∠+∠+∠+∠=.(4)F D A B E C ∠+∠=∠+∠+∠+∠.证明:如图3,连接BE .由(3)中的结论得,514,623A C ∠=∠+∠+∠∠=∠+∠+∠.∴561234A C A ABC FED C ∠+∠=∠+∠+∠+∠+∠+∠=∠+∠+∠+∠. 即AFE EDC A ABC FED C ∠+∠=∠+∠+∠+∠.【点睛】此题考查三角形外角的性质,余角与补角,解题关键在于进行等量代换.78.如图所示,BD CE ,是ABC ∆的两条高,50A ︒∠=,求BOC ∠的度数.【答案】130BOC ︒∠=【解析】【分析】要求∠BOC的度数,观察图形可以看到∠BOC是△DOC的外角,可以得到∠BOC=∠CDB+∠ACE,将问题转化为求∠CDB以及∠ACE的度数,根据BD 是△ABC的高可得∠BDC=90°,要求∠ACE的度数,由CE是△ABC的高可得∠A+∠ACE=90°,再由∠A=50°可求得∠ACE=40°,即可解答.【详解】∵BD、CE均为△ABC的高,∴∠AEC=∠ADB=∠BDC=90°,∵∠A=62°,∴∠ACE=90°-∠A=90°-62°=40°.则∠BOC=∠BDC+∠ACE=90°+40°=130°.故答案为:130°.【点睛】此题考查三角形内角和定理,三角形外角与内角的关系,解题关键在于掌握各性质定义.79.如图,已知50A︒∠的度数.C︒∠=,求BDC∠=,40B︒∠=,30【答案】120BDC︒∠=【解析】【分析】连接AD 并延长,根据三角形的一个外角等于与它不相邻的两个内角的和计算即可.【详解】如图,连接AD 并延长,则∠1=∠B+∠BAD ,∠2=∠C+∠CAD ,∴∠BDC=∠1+∠2=∠B+∠BAD+∠C+∠CAD=∠B+∠C+∠BAC , ∵∠A=50°,∠B=40°,∠C=30°,∴∠BDC=50°+40°+30°=120°.故答案为:120°.【点睛】此题考查三角形的外角性质,解题关键在于作辅助线.80.如图所示,已知CE 为ABC ∆的外角ACD ∠的平分线,CE 交BA 的延长线于点E ,求证:BAC B ∠>∠.【答案】详见解析【解析】【分析】比较两个角的大小,首先把两个不同的角用相等的角等效替换,再进行比较.【详解】证明:∵CE 平分ACD ∠(已知),∴12∠=∠(角平分线的定义).∵BAC ∠是ACE ∆的一个外角(外角的定义),∴1BAC ∠>∠(三角形的一个外角大于任何一个和它不相邻的内角). ∴2BAC ∠>∠(等量代换).又∵2∠是EBC ∆的一个外角(外角的定义),∴2B ∠>∠(三角形的一个外角大于任何一个和它不相邻的内角).∴BAC B ∠>∠.【点睛】此题考查三角形的外角性质,解题关键在于利用等量代换.。

2020年秋人教版八年级数学上册第11章《与角有关的辅助线》(讲义、随堂练习、习题及答案)

2020年秋人教版八年级数学上册第11章《与角有关的辅助线》(讲义、随堂练习、习题及答案)

人教版八年级数学上册第11章与角有关的辅助线(讲义)➢ 课前预习1. 如图,∠AOB =130°,OC ⊥OB 于点O ,求∠AOC 的度数.OAB C解:如图, ∵OC ⊥OB (已知)∴____________(垂直的定义) ∵∠AOB =130°(已知) ∴∠AOC =______-______=______-______ =______(等式的性质)➢ 知识点睛1. 为了解决几何问题,在原图基础之上另外添加的直线或线段称为辅助线.辅助线通常画成________.2. 辅助线的原则:添加辅助线,构造新图形,形成新关系,建立______和______之间的桥梁,把问题转化成自己已经会解的情况. 3. 辅助线的作用:①________________________________________________; ②________________________________________________. 4. 添加辅助线的注意事项:____________________________.➢ 精讲精练1. 如图,AB ∥CD ,∠E =27°,∠C =52°,则∠EAB 的度数为______________.EDB A2. 如图,∠BAF =46°,∠ACE =136°,CD ⊥CE .求证:AB ∥CD .FEDCBA3. 已知:如图,直线AB ∥CD ,∠EFG =130°,∠DGH =40°.你认为EF ⊥AB 吗?请说明理由.F HGE D CBA4. 已知:如图,AB ∥CD ,E ,F 分别是AB ,CD 上的点.求证:∠EPF =∠AEP +∠CFP .PF E DCBA5. 如图,l 1∥l 2,∠1=105°,∠2=40°,则∠3=___________.321l 2l 16. 已知:如图,AB ∥EF ,∠B =25°,∠D =30°,∠E =10°,则∠BCD =________.FEDCBA7. 已知:如图,AB ∥ED ,α=∠A +∠E ,β=∠B +∠C +∠D .求证:β=2α.ECDBA8. 已知:如图,CD ∥EF ,∠1+∠2=∠ABC .求证:AB ∥GF .21GEDCB A9. 已知:如图,在四边形ABDC 中.求证:∠BDC =∠A +∠B +∠C .ADB【参考答案】➢课前预习1.∠COB=90°∠AOB -∠COB 130°-90° 40°➢ 知识点睛1. 虚线2. 已知,未知3. ①把分散的条件转为集中②把复杂的图形转化为基本图形 4. 明确目的,多次尝试➢ 精讲精练1. 79°2. 证明:如图,延长DC 到点G .G ABCD EF∵CD ⊥CE (已知)∴∠ECG =90°(垂直的定义) ∵∠ACE =136°(已知) ∴∠ACG =∠ACE -∠ECG=136°-90°=46°(等式的性质)∵∠BAF =46°(已知) ∴∠ACG =∠BAF (等量代换)∴AB ∥CD (同位角相等,两直线平行) 3. 解:EF ⊥AB ,理由如下:如图,延长EF 交CD 于点M .F AB CDE MN GH∵∠DGH =40°(已知)∠DGH =∠FGM (对顶角相等) ∴∠FGM =40°(等量代换)∵∠EFG 是△FGM 的一个外角(外角的定义)∴∠EFG =∠FGM +∠FMG (三角形的一个外角等于和它不相邻的两个内角的和)∵∠EFG =130°(已知) ∴∠FMG =∠EFG -∠FGM =130°-40°=90°(等式的性质)∵AB ∥CD (已知)∴∠BNE =∠FMG =90°(两直线平行,同位角相等) ∴EF ⊥AB (垂直的定义) 4. 证明:如图,过点P 作MN ∥AB .N M 4321P FE DCBA∵CD ∥AB (已知)∴AB ∥MN ∥CD (平行于同一条直线的两条直线平行) ∴∠1=∠2,∠3=∠4(两直线平行,内错角相等) ∴∠2+∠4=∠1+∠3(等式的性质) 即∠EPF =∠AEP +∠CFP 5. 115° 6. 45°7. 证明:如图,过点C 作MN ∥ED .21E DM CNAB∵AB ∥ED (已知)∴MN ∥AB ∥ED (平行于同一条直线的两条直线平行) ∴∠1+∠D =180°, ∠2+∠B =180°,∠A +∠E =180°(两直线平行,同旁内角互补) ∵α=∠A +∠E (已知) ∴α=180°(等量代换) ∵β=∠B +∠C +∠D (已知) ∴β=∠B +∠1+∠2+∠D =180°+180° =360°(等式的性质) ∴β=2α(等式的性质) 8. 证明:NMAB C DE F G 12如图,延长CB 交FG 于点M ,延长FE 交CM 于点N . ∵CD ∥EF (已知)∴∠2=∠FNM (两直线平行,同位角相等) ∵∠BMG 是△FMN 的一个外角(外角的定义) ∴∠BMG =∠1+∠FNM=∠1+∠2(三角形的一个外角等于和它不相邻的两个内角的和)∵∠1+∠2=∠ABC (已知) ∴∠BMG =∠ABC (等量代换)∴AB ∥GF (同位角相等,两直线平行) 9. 证明:如图,延长BD 交AC 于点E .1EABC D∵∠1是△ABE 的一个外角(外角的定义)∴∠1=∠A +∠B (三角形的一个外角等于和它不相邻的两个内角的和)∵∠BDC 是△CDE 的一个外角(外角的定义)∴∠BDC =∠1+∠C (三角形的一个外角等于和它不相邻的两个内角的和)∴∠BDC =∠A +∠B +∠C (等量代换)与角有关的辅助线(随堂测试)2. 已知:如图,AB ⊥EF 于点O ,BD 与MN 相交于点C ,∠1=35°,∠B =125°. 求证:EF ∥MN .N MFA B C D E1O【参考答案】1. 解:EF ∥MN理由如下:如图,延长AB 交MN 于点G .∵∠1=35°(已知)∴∠BCG =35°(对顶角相等)∵∠ABC 是△BCG 的一个外角(外角的定义)∴∠ABC =∠BGC +∠BCG (三角形的外角等于和它不相邻的两个内角的和)∵∠ABC =125°(已知) ∴∠BGC =∠ABC -∠BCG =125°-35°=90°(等式的性质)∵AB ⊥EF (已知)∴∠AOF =90°(垂直的定义) ∴∠AOF =∠BGC (等量代换)∴EF ∥MN (同位角相等,两直线平行)NMFEGO 1DC B A与角有关的辅助线(习题)➢ 例题示范例1:已知:如图,∠BED =∠B +∠D . 求证:AB ∥CD .①读题标注:②梳理思路:要证AB ∥CD ,我们需要找相关的同位角、内错角或同旁内角.观察图形发现,AB ,CD 没有截线,故需要构造截线,然后证明.可尝试延长BE 交CD 于点G .③过程书写:证明:如图,延长BE 交CD 于点G . ∵∠BED 是△DEG 的一个外角 ∴∠BED =∠DGE +∠D ∵∠BED =∠B +∠D ∴∠DGE =∠B ∴AB ∥CD➢ 巩固练习EDBA CEDBA CGCABDE3.已知:如图,a∥b,则∠1+∠2-∠3=_________.4.已知:如图,∠B+∠E+∠D=360°.求证:AB∥CD.5.已知:如图,AB∥CD,∠1=∠2.求证:∠3=∠4.6.已知:如图,AB∥CD.求证:∠1+∠3 ∠2=180°.ba132CA BDE4F123C DEBA7.已知:如图,∠3=∠1+∠2.求证:∠A+∠B+∠C+∠D=180°.➢思考小结已知:如图,在四边形ABDC中.求证:∠BDC=∠A+∠B+∠C.A BC D123EF GEDC BA321(1)请根据图下方的描述在图上作出辅助线,并进行证明(不需要写过程);延长BD 交AC 于点E 延长CD 交AB 于点E连接AD 并延长AD 到点E 连接BC过点D 作EF ∥AB 交AC 于点E 过点D 作EF ∥AC 交AB 于点E (2)根据上面的证明方法可以总结出辅助线的作用: ①_____________________________________; ②_____________________________________.【参考答案】 ➢ 巩固练习1. 180°2. 证明:如图,过点E 作EF ∥AB .DBA DC BADBADC BADBADC BA∴∠B +∠BEF =180°(两直线平行,同旁内角互补) ∵∠B +∠BED +∠D =360°(已知)∴∠B +∠BEF +∠FED +∠D =180°(等量代换) ∴∠FED +∠D =180°(等式的性质) ∴EF ∥CD (同旁内角互补,两直线平行) ∴AB ∥CD (平行于同一条直线的两条直线平行) 3. 证明:如图,延长BE 交CD 于点G .∵AB ∥CD (已知) ∴∠1=∠5(两直线平行,内错角相等)∵∠1=∠2(已知) ∴∠2=∠5(等量代换)∴BG ∥CF (同位角相等,两直线平行) ∴∠3=∠4(两直线平行,内错角相等) 4. 证明:如图,延长EA 交CD 于点F .∵AB ∥CD (已知)∴∠1=∠4(两直线平行,同位角相等) ∵∠4是△CEF 的一个外角(外角的定义)∴∠4=∠2+∠ECF (三角形的一个外角等于和它不相邻的两个内角的和)∵∠3+∠ECF =180°(平角的定义) ∴∠ECF =180°-∠3(等式的性质)FED BA C 5GAB EDC 321F44FE321D C BA∴∠4=∠2+180°-∠3(等量代换)∴∠4+∠3-∠2=180°(等式的性质)∴∠1+∠3-∠2=180°(等量代换)(方法不只一种)5.证明:如图,延长EG交CF于点H.∵∠3是△GFH的一个外角(外角的定义)∴∠3=∠2+∠GHF(三角形的一个外角等于和它不相邻的两个内角的和)∵∠3=∠1+∠2(已知)∴∠GHF=∠1(等式的性质)∴BE∥CF(内错角相等,两直线平行)∴∠BMD+∠MNC=180°(两直线平行,同旁内角互补)∵∠BMD是△ABM的一个外角(外角的定义)∴∠BMD=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∵∠MNC是△CDN的一个外角(外角的定义)∴∠MNC=∠C+∠D(三角形的一个外角等于和它不相邻的两个内角的和)∴∠BMD+∠MNC=∠A+∠B+∠C+∠D(等式的性质)∴∠A+∠B+∠C+∠D=180°(等量代换)(方法不只一种)➢思考小结(1)作辅助线,证明略;(2)①把分散的条件转为集中;②把复杂的图形转化为基本图形.。

专题03与角平分线有关的辅助线的三种考法(解析版)【压轴必考】八年级数学上册压轴题攻略(人教版)

专题03与角平分线有关的辅助线的三种考法(解析版)【压轴必考】八年级数学上册压轴题攻略(人教版)

专题03 与角平分线有关的辅助线的三种考法类型一、角平分线上的点向两边作垂线例1.如图,已知30AOB Ð=°,P 是AOB Ð的平分线OC 上的任意一点,PD OA ∥交OB 于点D ,PE OA ^于点E ,如果8cm OD =,求PE 的长.【答案】4cm【详解】如图,过点P 作PF ⊥OB 于点F ,∵OC 平分∠AOB ,PE ⊥OA ,∴PF =PE ,∠EOP =∠DOP∵PD P OA ,∠AOB =30°,∴∠PDF =∠AOB =30°,∴∠DPO =∠EOP =∠DOP ,∴ PD =OD =8cm在Rt △PDF 中,∵∠DFP=90°,∠FDP=30°∴PF =12PD =4cm ,∴ PF =PE =4cm .【变式训练1】如图,ABC D 中,90ACB Ð=°,点,D E 分别在边BC ,AC 上,DE DB =,DEC B Ð=Ð.求证: AD 平分BAC Ð.【答案】见解析【详解】证明:过点D 作DF AB ^于点F . 90DFB \Ð=°90ACB Ð=°Q ,DFB ACB DC AC \Ð=Ð^.在DCE D 和DFB D 中,,,,DCE DFB DEC B DE DB Ð=ÐìïÐ=Ðíï=î()DCE DFB AAS \D D ≌.DC DF \=.\点D 在BAC Ð的平分线上.\AD 平分BAC Ð..【变式训练2】图,已知AE ⊥AB ,AF ⊥AC .AE =AB ,AF =AC ,BF 与CE 相交于点M .(1)EC =BF ;(2)EC ⊥BF ;(3)连接AM ,求证:AM 平分∠EMF .【答案】(1)见解析.(2)见解析.(3)见解析.【解析】(1)证明:∵AE ⊥AB ,AF ⊥AC ,∴∠BAE =∠CAF =90°,∴∠BAE +∠BAC =∠CAF +∠BAC ,即∠EAC =∠BAF ,在△ABF 和△AEC 中,∵AE AB EAC BAF AF AC =ìïÐ=Ðíï=î,∴△ABF ≌△AEC (SAS ),∴EC =BF ;(2)根据(1),∵△ABF ≌△AEC ,∴∠AEC =∠ABF ,∵AE ⊥AB ,∴∠BAE =90°,∴∠AEC +∠ADE =90°,∵∠ADE =∠BDM (对顶角相等),∴∠ABF +∠BDM =90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,所以EC⊥BF.(3)作AP⊥CE于P,AQ⊥BF于Q.如图:∵△EAC≌△BAF,∴AP=AQ(全等三角形对应边上的高相等).∵AP⊥CE于P,AQ⊥BF于Q,∴AM平分∠EMF.【变式训练3】已知点C是∠MAN平分线上一点,∠BCD的两边CB、CD分别与射线AM、AN相交于B,D两点,且∠ABC+∠ADC=180°.过点C作CE⊥AB,垂足为E.(1)如图1,当点E在线段AB上时,求证:BC=DC;(2)如图2,当点E在线段AB的延长线上时,探究线段AB、AD与BE之间的等量关系;(3)如图3,在(2)的条件下,若∠MAN=60°,连接BD,作∠ABD的平分线BF交AD于点F,交AC于点O,连接DO并延长交AB于点G.若BG=1,DF=2,求线段DB的长.【答案】(1)见解析;(2)AD﹣AB=2BE,理由见解析;(3)3.【详解】(1)证明:如图1,过点C作CF⊥AD,垂足为F,∵AC平分∠MAN,CE⊥AB,CF⊥AD,∴CE=CF,∵∠CBE +∠ADC =180°,∠CDF +∠ADC =180°,∴∠CBE =∠CDF ,在△BCE 和△DCF 中,90CBE CDF CEB CFD CE CF °Ð=ÐìïÐ=Ð=íï=î,∴△BCE ≌△DCF (AAS )∴BC =DC ;(2)解:AD ﹣AB =2BE ,理由如下:如图2,过点C 作CF ⊥AD ,垂足为F ,∵AC 平分∠MAN ,CE ⊥AB ,CF ⊥AD ,∴CE =CF ,AE =AF ,∵∠ABC +∠ADC =180°,∠ABC +∠CBE =180°,∴∠CDF =∠CBE ,在△BCE 和△DCF 中,90CBE CDF CEB CFD CE CF °Ð=ÐìïÐ=Ð=íï=î,∴△BCE ≌△DCF (AAS ),∴DF =BE ,∴AD =AF +DF =AE +DF =AB +BE +DF =AB +2BE ,∴AD ﹣AB =2BE ;(3)解:如图3,在BD 上截取BH =BG ,连接OH ,∵BH =BG ,∠OBH =∠OBG ,OB =OB在△OBH 和△OBG 中,BH BG OBH OBG OB OB =ìïÐ=Ðíï=î,∴△OBH ≌△OBG (SAS )∴∠OHB =∠OGB ,∵AO 是∠MAN 的平分线,BO 是∠ABD 的平分线,∴点O 到AD ,AB ,BD 的距离相等,∴∠ODH =∠ODF ,∵∠OHB =∠ODH +∠DOH ,∠OGB =∠ODF +∠DAB ,∴∠DOH =∠DAB =60°,∴∠GOH =120°,∴∠BOG =∠BOH =60°,∴∠DOF =∠BOG =60°,∴∠DOH =∠DOF ,在△ODH 和△ODF 中,DOH DOF OD OD ODH ODF Ð=Ðìï=íïÐ=Ðî,∴△ODH ≌△ODF (ASA ),∴DH =DF ,∴DB =DH +BH =DF +BG =2+1=3.类型二、过边上的点向角平分线作垂线构造等腰三角形例1.如图,△ABC 的面积为9cm 2,BP 平分∠ABC ,AP ⊥BP 于P ,连接PC ,则△PBC 的面积为______cm 2.【答案】4.5【详解】解:延长AP 交BC 于E ,∵BP 平分∠ABC ,∴∠ABP=∠EBP,∵AP ⊥BP ,∴∠APB=∠EPB=90°,在△ABP 和△EBP 中,ABP EBP PB PB APB EPB Ð=Ðìï=íïÐ=Ðî,∴△ABP ≌△EBP (ASA ),∴AP=PE ,∴,APB EPB ACP ECP S S S S ==V V V V ∴119 4.522BPC ABC S S ==´=V V cm 2,故答案为4.5.【变式训练1】如图,在△ABC 中,∠A =90°,AB =AC ,∠ABC 的平分线BD 交AC 于点D ,CE ⊥BD ,交BD 的延长线于点E ,若BD =4,则CE =________.【答案】2【详解】解:如图,延长BA 、CE 相交于点F ,∵BD 平分∠ABC ,∴∠ABD=∠CBD ,在△BCE 和△BFE 中,90ABD CBD BE BE BEF BEC ìïíïÐÐÐаî====,∴△BCE ≌△BFE (ASA ),∴CE=EF,∵∠BAC=90°,CE ⊥BD ,∴∠ACF+∠F=90°,∠ABD+∠F=90°,∴∠ABD=∠ACF ,在△ABD 和△ACF 中,90ABD ACF AB AC BAC CAF ìïíïÐÐÐаî====,∴△ABD ≌△ACF (ASA ),∴BD=CF ,∵CF=CE+EF=2CE ,∴BD=2CE=4,∴CE=2.故答案为:2.【变式训练2】如图,在△ABC 中,∠C =90°,BC =AC ,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,AE =12BD ,且DF ⊥AB 于F ,求证:CD =DF 【答案】见解析【解析】证明:延长AE 、BC 交于点F. 如图所示:∵AE ⊥BE ,∴∠BEA=90°,又∠ACF=∠ACB=90°,∴∠DBC+∠AFC=∠FAC+∠AFC=90°,∴∠DBC=∠FAC ,在△ACF 和△BCD 中,90ACF BCD AC BC FAC DBC Ð=Ð=°ìï=íïÐ=Ðî,∴△ACF ≌△BCD(ASA),∴AF=BD.又AE=12BD ,∴AE=12AF ,即点E 是AF 的中点,∴AB=BF ,∴BD 是∠ABC 的角平分线,∵∠C=90°,DF ⊥AB 于F ,∴CD=DF.类型三、利用角平分线的性质,在角两边截长补短例1.已知:如图,//AC BD ,AE ,BE 分别平分CAB Ð和ABD Ð,点E 在CD 上.用等式表示线段AB 、AC 、BD三者之间的数量关系,并证明.【答案】AB=AC+BD,证明见详解.【详解】解:延长AE,交BD的延长线于点F,∵//AC BD,∴∠F=∠CAF,∵AE平分CABÐ,∴∠CAF=∠BAF,∴∠F=∠BAF,∴AB=BF,∵BE平分ABFÐ,∴AE=EF,∵∠F=∠CAF,∠AEC=∠FED,∴△ACE≌△FDE,∴AC=DF,∴AB=BF=BD+DF=BD+AC.【变式训练1】如图1,在△ABC中,∠BAC的平分线AD与∠BCA的平分线CE交于点O.(1)求证:∠AOC=90°+12∠ABC;(2)当∠ABC=90°时,且AO=3OD(如图2),判断线段AE,CD,AC之间的数量关系,并加以证明.【答案】(1)见解析;(2)43AE+CD=AC,证明见解析【解析】(1)证明:∵∠ABC+∠ACB+∠BAC=180°,∴∠BAC+∠BCA=180°-∠ABC,∵∠BAC的平分线AD与∠BCA的平分线CE交于点O.∴∠OAC=12∠BAC,∠OCA=12∠BCA,∴∠OAC+∠OCA=12(∠BAC+∠BCA)=12(180°-∠ABC)=90°-12∠ABC,∴∠AOC=180°-(∠OAC+∠OCA)=180°-(90°-12∠ABC),即∠AOC =90°+12∠ABC ;(2)解:43AE +CD =AC ,证明:如图2,∵∠AOC =90°+12∠ABC =135°,∴∠EOA =45°,在AC 上分别截取AM 、CN ,使AM =AE ,CN =CD ,连接OM ,ON ,则在△AEO 和△AMO 中,AE AM EAO MAO AO AO =ìïÐ=Ðíï=î,∴△AEO ≌△AMO ,同理△DCO ≌△NCO ,∴∠EOA =∠MOA ,∠CON =∠COD ,OD =ON ,∴∠EOA =∠MOA =∠CON =∠COD =45°,∴∠MON =∠MOA =45°,过M 作MK ⊥AD 于K ,ML ⊥ON 于L ,∴MK =ML ,S △AOM =12AO ×MK ,S △MON =12ON ×ML ,∴AOM MON S AO ON S D D =,∵AOM MON S AM S MN D D =,∴AO AM ON MN=,∵AO =3OD ,∴31AO OD =,∴31AO AM ON MN ==,∴AN =43AM =43AE ,∵AN +NC =AC ,∴43AE +CD =AC .【变式训练2】如图,∠B =∠C =90°,E 是BC 的中点,DE 平分∠ADC .求证:AE 是∠DAB 的平分线.(提示:过点E 作EF ⊥AD ,垂足为F .)【答案】见解析【详解】证明:过点E作EF⊥DA于点F,∵∠C=90°,DE平分∠ADC,∴CE=EF,∵E是BC的中点,∴BE=CE,∴BE=EF,又∵∠B=90°,EF⊥AD,∴AE平分∠DAB.【变式训练3】如图所示,已知B(﹣2,0),C(2,0),A为y轴正半轴上的一点,点D为第二象限一动点,点E在BD的延长线上,CD交AB于点F,且∠BDC=∠BAC.(1)求证:∠ABD=∠ACD;(2)求证:AD平分∠CDE;(3)若在D点运动的过程中,始终有DC=DA+DB,在此过程中,∠BAC的度数是否发生变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数.【答案】(1)证明过程见解析;(2)证明过程见解析;(3)∠BAC =60°,理由见解析【解析】(1)证明:∵∠BDC =∠BAC ,∠DFB =∠AFC ,又∵∠ABD +∠BDC +∠DFB =∠BAC +∠ACD +∠AFC =180°,∴∠ABD =∠ACD ;(2)证明:过点A 作AM ⊥CD 于点M ,作AN ⊥BE 于点N ,如下图所示:则∠AMC =∠ANB =90°.∵OB =OC ,OA ⊥BC ,∴AB=AC ,由(1)可知:∠ABD =∠ACD ,∴△ACM ≌△ABN (AAS ),∴AM =AN .∴DA 平分∠CDE .(角的两边距离相等的点在角的平分线上);(3)解:∠BAC 的度数为60°,理由如下:在CD 上截取CP=BD ,连接AP ,如下图所示:∵CD=AD+BD ,∴AD=PD .∵AB=AC ,∠ABD =∠ACD ,BD=CP ,∴△ABD ≌△ACP (SAS ) ,∴AD=AP ,∠BAD =∠CAP ,∴AD=AP=PD ,即△ADP 是等边三角形,∴∠DAP =60°.∴∠BAC =∠BAP +∠CAP =∠BAP +∠BAD =60°.【变式训练4】已知:如图1,在ABC V 中,AD 是BAC Ð的平分线.E 是线段AD 上一点(点E 不与点A ,点D 重合),满足2Ð=ÐABE ACE .(1)如图2,若18Ð=°ACE ,且EA EC =,则DEC Ð=________°,AEB Ð=_______°.(2)求证:AB BE AC +=.(3)如图3,若BD BE =,请直接写出ABE Ð和BAC Ð的数量关系.【答案】(1)36,126;(2)见解析;(3)3180Ð+Ð=°ABE BAC 【详解】(1)∵18Ð=°ACE ,且EA EC =,∴∠EAC =∠ACE =18°,∴∠DEC =∠EAC +∠ACE =36°,又∵AD 是BAC Ð的平分线,∴∠BAD =∠CAD =18°,∵2Ð=ÐABE ACE ,∴∠ABE =36°,∴1801836126Ð=°-°-°=°AEB ;故答案为:36,126(2)在AC 上截取AF AB =,连接FE ,又∵AE =AE ,EAF EAB Ð=Ð,∴()V V ≌AEF AEB SAS ,∴EF EB =,AFE ABEÐ=Ð∵∠AFE =∠ACE +∠FEC ,∠ABE =2∠ACE ,∴FEC FCE Ð=Ð,∴EF FC=∴=+=+AC AF FC AB BE ;(3)∵BD BE =,∴BED BDE Ð=Ð,∵BED ABE BAE Ð=Ð+Ð,Ð=Ð+ÐBDE DAC ACD ,∠CAD =∠BAE ,∴∠ACD =∠ABE ,∵∠ABE =2∠ACE ,∴∠ACD =2∠ACE ,∴CE 平分∠ACB ,∴点E 到CA 、CB 的距离相等,又∵AD 是BAC Ð的平分线,∴点E 到AC 、AB 的距离相等,∴点E 到BA 、BC 的距离相等,∴BE 是ABD Ð的平分线,∴∠ABE =∠CBE ,∴Ð=Ð=ÐABE ACD DBE ,又∵180ACB ABC BAC Ð+Ð+Ð=°,∴2180Ð+Ð+Ð=°ABE ABE BAC ,即3180Ð+Ð=°ABE BAC .课后训练1.如图①,CDE Ð是四边形ABCD 的一个外角,AD //BC ,BC BD =,点F 在CD 的延长线上,FAB FBA Ð=Ð,FG AE ^,垂足为G .(1)求证:①DC 平分BDE Ð;②BC DG AG +=.(2)如图②,若4AB =,3BC =,1DG =.求AFD Ð的度数.【答案】(1)①见解析;②见解析;(2)90°【解析】(1)解:①∵AD ∥BC ,∴∠C =∠CDE ,∵BC =BD ,∴∠C =∠CDB ,∴∠CDB =∠CDE ,∴DC 平分BDE Ð;②如图,过点F 作FH ⊥BD ,交BD 延长线于H ,∵∠FDG =∠CDE ,∠FDH =∠CDB ,∠EDC =∠CDB ,∴∠FDG =∠FDH ,∵FG ⊥AE ,FH ⊥BD ,∴FH =FG ,∠H =∠FGD =∠AGF =90°,∵FD =FD ,∴Rt △FHD ≌Rt △FGD (HL ),∴DH =DG ,∵FAB FBA Ð=Ð,∴FB =FA ,∴Rt △FHB ≌Rt △FGA (HL )∴BH =AG ,∵BD =BC ,∴AG =BH =BD +DH =BC +DG ,即AG =BC +DG ;(2)解:∵AB =4,BC =3,DG =1,∴BD =BC =3,AG =BC +DG =3+1=4,∴AD =AG +DG =4+1=5,∵AB 2+BD 2=42+32=52=AD 2,∴∠ABD =90°,过点F 作FM ⊥AB 于M ,交AD 于N ,如图,则∠AMF =∠BMF =90°=∠ABD ,∴FM ∥BD ,∴∠BFM =∠FBD ,∵FAB FBA Ð=Ð,∴FB =FA ,∴AM =12AB =2,∠AFM =∠BFM ,∴∠AFM =∠FBD ,由(1)②知,Rt △FHB ≌Rt △FGA ,∴∠FAG =∠FBD ,∴∠FAG =∠AFN ,∵FM ∥BD ,∴∠MFD =∠BDC ,∵∠BDC =∠CDE =∠FDG ,∴∠MFD =∠FDG ,∴∠AFM +∠FAG +∠DFN +∠FDG =180°,∴2∠AFM +2∠DFN =180°,∴2∠AFD =180°,∴∠AFD =90°.2.已知:如图1,四边形ABCD 中,135ABC Ð=°,连接AC 、BD ,交于点E ,BD BC AD AC ^=,.(1)求证:90DAC Ð=°;(2)如图2,过点B 作BF AB ^,交DC 于点F ,交AC 于点G ,若2DBF CBF S S =V V ,求证:AG CG =;(3)如图3,在(2)的条件下,若3AB =,求线段GF 的长.【答案】(1)见解析;(2)见解析;(3)52【解析】(1)解:如图,过点A 作AP ⊥BD 于点P ,AF ⊥BC ,交CB 的延长线于点F ,∵AP ⊥BD ,AF ⊥BC ,BD ⊥BC∴四边形APBF 是矩形∵∠ABC =135°,∠DBC =90°,∴∠ABP =45°,且∠APB =90°,∴AP =PB ,∴四边形APBF 是正方形,∴AP =AF ,且AD =AC ,∴ΔΔRt APD Rt AFC HL ≌(),∴∠DAP =∠FAC ,∵∠FAC +∠PAC =90°,∴∠DAP +∠PAC =90°,∴∠DAC =90°(2)如图,过点F 作FM ⊥BC 于点M ,FN ⊥BD 于点N ,过点C 作CP ⊥BF 于点P ,在BD 上截取DH =BC ,连接AH ,∵∠ABC =135°,∠ABF =90°,∴∠CBF =45°,且∠DBC =90°,∴∠DBF =∠CBF ,且FN ⊥BD ,FM ⊥BC ,∴FN =FM ,∵S △DBF =2S △CBF ,∴1122BD FN BC FM ´´=´´×2,∴BD =2BC ,∴BH =BD ﹣DH =BD ﹣BC =BC ,∵∠AED =∠BEC ,∠DAC =∠DBC =90°,∴∠ADH =∠ACB ,且AD =AC ,DH =BC ,∴△ADH ≌△ACB (SAS ),∴∠AHD =∠ABC =135°,AH =AB ,∴∠AHB =∠ABD =45°,∴∠HAB =90°,∵BC =BH ,∠HAB =∠BPC ,∠AHB =∠FBC =45°,∴△AHB ≌△PBC (AAS ),∴AB =PC ,∵AB =PC ,且∠ABP =∠BPC ,∠AGB =∠CGP ,∴△AGB ≌△CGP (AAS ),∴AG =GC(3)解:如图,∵AB =3=PC ,∠PBC =45°,PC ⊥BF ,∴BP =PC=3,∵△AGB ≌△CGP ,∴BG =PG =32,在Rt PGC D 中,CG ∴AG =GC ,∴AC =AD =2AG =在Rt ADC D 中,CD ,∵S △DBF =2S △CBF ,∴DF =2FC∵DF +FC =DC ,∴F C在Rt PFC D 中,PF =1,∴FG =PG +PF =1+32 =52.3.如图1,正方形ABCD 中,点E 是BC 延长线上一点,连接DE ,过点B 作BF ⊥DE 于点F ,交CD 于点G .(1)求证:CG =CE ;(2)如图2,连接FC ,AC .若BF 平分∠DBE ,求证:CF 平分∠ACE ;(3)如图3,若G 为DC 中点,AB =2,求EF【答案】(1)证明见详解;(2)证明见详解;【解析】(1)证明:∵四边形ABCD 是正方形,∴BC =DC ,∠BCG =∠DCE =90°,∵BF ⊥DE ,∴∠DFG =∠BCG =90°,∵∠DGF =∠BGC ,∴∠GBC =∠EDC ,在△BCG 和△DCE 中,BCG DCE BC DC GBC EDC Ð=Ðìï=íïÐ=Ðî,∴△BCG ≌△DCE (ASA ),∴CG =CE ;(2)证明:∵BF 平分∠DBE ,BF ⊥DE ,∴DF =EF ,∴CF 是Rt △DCE 的中线,∴CF =EF ,∴∠E =∠FCE ,∵四边形ABCD 是正方形,∴∠DBE =∠ACB =45°,∵BF 平分∠DBE ,∴∠FBE 12=∠DBE =22.5°,∴∠E =90°﹣∠FBE =90°﹣22.5°=67.5°,∴∠FCE =67.5°,∴∠ACF =180°﹣∠FCE ﹣∠ACB =180°﹣67.5°﹣45°=67.5°,∴∠ACF =∠FEC ,∴CF 平分∠ACE ;(3)解:∵四边形ABCD 是正方形,∴∠BCG =90°,AB =BC =CD=2,BD ==∵G 为DC 中点,∴CG =GD 12=CD=1,在Rt△BCG 中,由勾股定理得:BG ===设GF =x ,在Rt △BDF 和Rt △DFG 中,由勾股定理得:BD 2﹣BF 2=DF 2,DG 2﹣GF 2=DF 2,∴2222-=1-x x (),解得:x =,∴DF 2=12﹣22025=,∴DF =,由(1)知:△BCG ≌△DCE ,∴BG =DE =,∴EF =DE ﹣DF =4.已知:在四边形ABCD 中,180,B CAD DE AC Ð+°Ð=^于E ,且2AD AE =.(1)如图1,求B Ð的度数;(2)如图2,BF 平分ABC Ð交AC 于F ,点G 在BC 上,连接FG ,且AF FG =.求证:AB BG =;(3)如图3,在(2)的条件下,AF AD =,过点F 作FH CD ^,且2CH CG =,若21,52CD AB ==,求线段BF 的长.【答案】(1)120°;(2)见解析;(3)3.【解析】(1)解:如图1,取AD 的中点F ,连接EF ,∵DE ⊥AC ,∴∠AED =90°,∴AD =2AF =2EF ,∵AD =2AE ,∴AE =EF =AF ,∴∠CAD =60°,∵∠B +∠CAD =180°,∴∠B =120°;(2)证明:如图2,作FM ⊥BC 于M ,FN ⊥AB 于点N ,∴∠BMF =∠BNF =90°,∠GMF =∠ANF =90°,∵BF 平分∠ABC ,∴FM =FN ,在Rt △BFM 和Rt △BFN 中,BF BF FM FN =ìí=î,∴Rt △BFM ≌Rt △BFN (HL ),∴BM =BN ,在Rt △FMG 和Rt △FNA 中,FG FA FM FN=ìí=î,∴Rt △FMG ≌Rt △FNA (HL ),∴MG =NA ,∴BN +NA =BM +MG ,∴AB =BG .(3)如图3,连接AG ,DF ,DG ,作FM ⊥BC 于M ,延长GF 交AD 于N ,∵AF =AD ,∠DAE =60°,∴△ADF 是等边三角形,∴∠AFD =60°,AF =DF ,∵GF =AF ,∠DFC =180°-∠AFD =120°,∴AF =GF =DF ,∴∠FGD =∠FDG ,∠FAG =∠FGA ,∴∠AGD =12∠AFN +12∠DFN =12∠AFD =12×60°=30°,∵∠ADC =120°,AD =DG ,∴∠DGA =∠DAG =1802ADC °-Ð=30°,∴∠DGC =180°-∠DGA -∠AGD =180°-30°-30°=120°,∴∠DGC =∠DFC ,∵∠1=∠2,∴180°-∠DGC -∠1=180°-∠DFC -∠2,∴∠GCF =∠FDG ,∠DCF =∠FGD ,∴∠GCF =∠DCF ,∵FH ⊥CD ,∴FM =FH ,∵∠FMG =∠FHD =90°,∴Rt △FMG ≌Rt △FHD (HL ),∴DH =MG ,同理可得:△MCF ≌△HCF (HL ),∴CM =CH =2CG ,∴GM =CG =DH ,∴3CG =CD =212,∴GM =CG =72,∴BM =BG -GM =AB -GM =5-72=32,在Rt △BFM 中,∠BFM =90°-∠FBM =90°-60°=30°,∴BF =2BM =3.5.如图1,ABC D 的ABC Ð和ACB Ð的平分线BE ,CF 相交于点G ,60BAC Ð=°.(1)求BGC Ð的度数;(2)如图2,连接AG ,求证:AG 平分BAC Ð;(3)如图3,在⑵的条件下,在AC 上取点H ,使得AGH BGC Ð=Ð,且8AH =,10BC =,求ABC D 的周长.【答案】(1)120°;(2)见解析;(3)28【详解】(1)证明:如图1,BE CF Q 、分别平分ABC ACB ÐÐ、,111 , 2 22ABC ACB \Ð=ÐÐ=Ð,()()11112 180 90 222ABC ACB A A \Ð+Ð=Ð+Ð=°-Ð=°-Ð,60BAC Ð=°Q ,() 1 180 ********BGC A \Ð=°-Ð+Ð=°+Ð=°;(2)如图2,过点G 分别作GM ⊥AB 于M ,GN ⊥BC 于N , GQ ⊥AC 于Q ,BE Q 平分ABC Ð, GM ⊥AB 于M ,GN ⊥BC 于N ,GM GN \=,同理GN GQ =,GM GQ \=,∵GM ⊥AB 于M , GQ ⊥AC 于Q , AG \平分BAC Ð ;(3)解:∵GM ⊥AB 于M , GQ ⊥AC 于Q ,GM =GQ ,∴AG 平分BAC Ð,∵又60BAC Ð=°, 30BAG CAG \Ð=Ð=°,在BC 上取点K ,使 BK BA =,BE Q 平分ABC Ð,ABG CBG \Ð=Ð,又BG BG =Q ,ABG KBG \D D ≌,BKG BAG \Ð=Ð,30BKG BAG \Ð=Ð= ,=18030150GKC \Ð-= ,120AGH BGC Ð=Ð=°Q , 30CAG Ð=°,120 30 150GHC \Ð=°+°=°,GKC GHC \Ð=Ð,又CG CG =Q ,KCG HCG Ð=Ð,KCG HCG \D D ≌,CK CH \=,△ABC 的周长为:()()2210828AB BC CA AB BK KC AH CH BC AH ++=++++=+=´+=, ABC \D 的周长是28.6.如图所示,AD 是ABC V 的高,点H 为AC 的垂直平分线与BC 的交点,HC AB =.(1)如图1,求证:2B C Ð=Ð;(2)如图2,若2DAF B C Ð=Ð-Ð,求证:AC BF BA =+;(3)在(2)的条件下,若12AC =,CF 10=,求DF 的长.【答案】(1)见解析;(2)见解析;(3)1【详解】解:(1)连接AH ,∵H 为AC 的垂直平分线与BC 的交点,∴HA HC =,HAC C Ð=Ð,∵HC AB =,∴AB AH =,∴B AHB Ð=Ð,∵AHB C HAC Ð=Ð+Ð,∴2AHB C Ð=Ð,∴2B C Ð=Ð.(2)∵2DAF B C Ð=Ð-Ð,∴1122DAF B C Ð=Ð-Ð,在Rt ADF V 中,9090DAF AFD FAC C Ð=°-Ð=°-Ð-Ð,∴119022FAC C B C °-Ð-Ð=Ð-Ð∴[]111190180()2222FAC B C B C BAC Ð=°-Ð-Ð=°-Ð+Ð=Ð,即AF 平分BAC Ð, 在AC 上截取AG AB =,连接FG ,在BAF △和GAF V 中,AB AG BAF GAF AF AF =ìïÐ=Ðíï=î,∴()BAF GAF SAS V V ≌,∴BF FG =,AB =AG ,B AGF Ð=Ð,∵2B CÐ=Ð∴2AGF C Ð=Ð,∴GFC C Ð=Ð,∴FG GC BF ==,∴AC GC AG BE BA =+=+.(3)在DB 上截取DM DF =,连接AM ,在ADF V 和ADM △中,AD AD ADF ADM DF DM =ìïÐ=Ðíï=î,∴()ADF ADM SAS V V ≌,∴DAF DAM Ð=Ð,∴2MAC DAF FAC Ð=Ð+Ð,由(2)可知119022FAC B C Ð=°-Ð-Ð,又∵2DAF B C Ð=Ð-Ð,2B C Ð=Ð.∴11131909029022222MAC B C B C C C C Ð=Ð-Ð+°-Ð-Ð=+´Ð-Ð=-°Ð°.∵()11111180909022222AMC AFM C FAC C BAC C B C B C C °Ð=Ð=Ð+Ð=Ð+Ð=Ð+-Ð-Ð=-Ð+°Ð=-а∴MAC AMC Ð=Ð ,∴AC MC =∴2MC CF AC CF DF -=-=,∴12102DF-=∴1DF =.7.教材呈现:如图是华师版八年级上册数学教材第96页的部分内容.请根据教材中的分析,结合图①,写出“角平分线的性质定理”完整的证明过程.定理应用:(1)如图②.在△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D .若AC =3,BC =4,求CD 的长;(2)如图③.在△ABC 中,∠ACB =90°,AD 平分∠BAC 交BC 于点D ,点P 在AD 上,点M 在AC 上.若AC =6,BC =8,则PC +PM 的最小值为 .【答案】教材呈现:证明见解析;定理应用:(1)32;(2)245.【详解】教材呈现:OC Q 是AOB Ð的平分线,POD POE \Ð=Ð,,PD OA PE OB ^^Q ,90PDO PEO \Ð=Ð=°,在POD V 和POE △中,POD POE PDO PEO OP OP Ð=ÐìïÐ=Ðíï=î,()POD POE AAS \@V V ,PD PE \=;定理应用:(1)如图,过点D 作DE AB ^于点E ,Q 在ABC V 中,90,3,4C AC BC Ð=°==,5AB \==,Q AD 平分BAC Ð,且90C Ð=°,CD DE \=,在Rt ACD △和Rt AED △中,AD AD CD ED =ìí=î,()Rt ACD Rt AED HL \@V V ,3AC AE \==,532BE AB AE \=-=-=,设CD DE x ==,则4BD BC CD x =-=-,在Rt BDE V 中,222DE BE BD +=,即2222(4)x x +=-,解得32x =,即CD 的长为32;(2)如图,过点M 作MN AD ^,交AB 于点N ,连接PN,Q AD 平分BAC Ð,AD \垂直平分MN (等腰三角形的三线合一),PM PN \=,PC PM PC PN \+=+,由两点之间线段最短得:当点,,C P N 在同一条直线上时,PC PN +取得最小值,最小值为CN ,又由垂线段最短得:当CN AB ^时,CN 取得最小值,Q 在ABC V 中,90,6,8ACB AC BC Ð=°==,10AB \==,又1122Rt ABC S AC BC AB CN =×=×V Q ,11681022CN \´´=´,解得245CN =,即PC PM +的最小值为245,故答案为:245.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与角有关的辅助线(过程训练二)(人教版)
一、单选题(共4道,每道25分)
1.请根据过程示范完成下题.
例题:已知:如图,AB∥CD,∠A=25°,∠C=45°,求∠AEC的度数.
问题:已知:如图,AB∥CD,∠B=40°,∠D=20°,求∠BED的度数.
横线处应填写的过程最恰当的是( ) A.
B.
C.
D.
答案:C
解题思路:
试题难度:三颗星知识点:与角有关的辅助线
2.已知,如图,AB∥CD,E是AC上一点,∠B=30°,∠D=60°.求证:BE⊥ED.
横线处应填写的过程最恰当的是( ) A.
B.
C.
D.
答案:B
解题思路:
试题难度:三颗星知识点:与角有关的辅助线
3.已知:如图,CE平分∠ACD,点G是AB上一点,GF∥CE.若∠1=60°,∠2=20°,求∠BAC 的度数.
横线处应填写的过程最恰当的是( ) A.
B.
C.
D.
答案:D
解题思路:
试题难度:三颗星知识点:与角有关的辅助线
4.已知:如图,AB∥CD,∠B=30°,∠BEF=120°,∠EFD=130°,求∠D的度数.
横线处应填写的过程最恰当的是( )
A.
B.
C.
D.
答案:A
解题思路:
如不慎侵犯了你的权益,请联系我们告知!
试题难度:三颗星知识点:平行线的性质
(本资料素材和资料部分来自网络,仅供参考。

请预览后才下载,期待您的好评与关注!)。

相关文档
最新文档