高一数学教案:4.1.1 圆的标准方程
“圆的标准方程”教学设计
“圆的标准方程”教学设计一、教材分析本节课是普通高中课程标准实验教科书《数学》必修2第四章平面解析几何初步中4.1.1节圆的标准方程第一课时1、本节主要研究圆的方程,直线与圆的位置关系,圆与圆的位置关系,以及他们在生活中的简单运用。
圆是最简单的曲线之一,这节教材安排在学习了直线之后,学习三大圆锥曲线之前,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.2、有关圆的问题,特别是直线与圆的位置问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法。
二、学情分析1、圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的。
高一学生,在老师的引导下,已经具备一定探究与研究问题的能力,所以在设计问题时应考虑周全和灵活性,采用启发式探索式教学,师生共同探讨,共同研究,让学生积极思考,主动学习。
2、学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难,要根据问题提供的信息回忆所学知识,采用转化思想,数形结合的思想,选择最佳方案加以解决。
另外学生在探究问题的能力,合作交流的意识等方面还有待加强。
三、教学目标(1) 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题。
(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识。
(3) 情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣。
四、教学重点和难点(1)重点:圆的标准方程的求法及其应用。
(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题。
411圆的标准方程公开课教案
《4.1.1 圆的标准方程》教案授课时间:2017.6.9 授课地点:尤溪晨光中学高一(5) 授课教师:朱兴炬一、教材分析:圆是解析几何中一类重要的曲线,是在学生学习了直线与方程的基础知识之后,知道了在直角坐标系中通过建立方程可以达到研究图形性质,圆的标准方程正是这一知识运用的延续,在学习中使学生进一步体会数形结合的思想,形成用代数方法解决几何问题的能力,是进一步学习圆锥曲线的基础。
对于知识的后续学习,具有相当重要的意义.二、教学目标:1、知识与技能:①掌握圆的标准方程,能根据圆心、半径写出圆的标准方程;反之,会根据圆的标方程,求圆心和半径;②会判断点和圆的位置关系;③会用待定系数法和几何法求圆的标准方程;2、过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力.3、情感态度和价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣.三、内容分析:重点:圆的标准方程的求法及其应用难点:会根据不同的已知条件求圆的标准方程四、教具学具的选择:多媒体、圆规、直尺、课件.五、教学方法:采用“问题-探究”教学法.六、教学过程教教师活师生交设计意环节已知隧道的截面是半径1. 为4米的半圆,车辆只能在道路从实际问题出发激2.7引入中心线一侧行驶,一辆宽为学生学生阅起学生学习数学的热新课米,高为3米的货车能不能驶入读思考. . 情和兴趣这个隧道?确定直 2. 在直角坐标系中,线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何复习、回忆一条直线都可用一个二元一次通过师生合作交方程来表示,那么,圆是否也可学过的知识,思引出复习旧知识,流,用一个方程来表示呢?如果能,考、回答问题 . .新知识这个方程又有什么特征呢?课件显示本节课的学习目学生阅读.让学生清楚本节.标课要学习的内容.确定圆的基本条件为圆心教师引导学和半径,设圆的圆心坐标为培养学生独立思A(a,b),半径为r。
人教版高中数学必修2-4.1《圆的标准方程》教学设计
4.1圆的方程4.1.1圆的标准方程(熊用兵)一、教学目标(一)核心素养通过本节课的学习,掌握圆的定义,并根据此定义得出圆的标准方程.(二)学习目标掌握圆的定义及圆的标准方程,会利用条件求圆的标准方程.(三)学习重点利用各种条件求圆的标准方程.(四)学习难点根据圆的定义推导圆的标准方程以及求圆的标准方程.二、教学设计(一)课前设计1.预习任务读一读:阅读教材第118页到119页,填空:确定一个圆的最基本的要素是圆心和半径;圆心为点(,)a b ,半径为r 的圆的标准方程为222()()x a y b r -+-=.2.预习自测(1)圆心在点(1,2),半径为5的圆的标准方程为( )A.22(1)(2)5x y +++=B.22(1)(2)25x y +++=C.22(1)(2)5x y -+-=D.22(1)(2)25x y -+-=【知识点】圆的标准方程.【解题过程】由条件知1,2,5a b r ===,代入标准方程得:22(1)(2)25x y -+-=【思路点拨】熟记圆的标准方程,明确各字母的具体含义.【答案】D(2)若点(15,)M a a +在圆22(1)26x y -+=上,则实数a =( )A.1B. 1±C.2D.【知识点】点与圆的位置关系.【解题过程】由条件,将点M 的坐标代入圆的方程得21a =,故1a =±【思路点拨】点000(,)M x y 与圆C :222()()x a y b r -+-=的位置关系:(1)点0M 在圆C 上⇔22200()()x a y b r -+-=;(2)点0M 在圆C 内⇔22200()()x a y b r -+-<;(3)点0M 在圆C 外⇔22200()()x a y b r -+->;【答案】B(3)已知点(1,1),(1,1)A B --,则以线段AB 为直径的圆的标准方程为( )A.221x y +=B. 22x y +=C. 222x y +=D. 224x y +=【知识点】圆的标准方程.【解题过程】由线段AB 为直径,所以圆心为(0,0),半径r 圆的标准方程为222x y +=【思路点拨】求圆的标准方程就是要找出圆心坐标和半径.【答案】C(二)课堂设计1.知识回顾:(1)在直角坐标平面中确定一条直线的方法有哪些?两点可以确定一条直线;一点和倾斜角可以确定一条直线;横、纵截距可以确定一条直线等等.(2)直角坐标平面中两点间的距离公式:设点1122(,)(,)A x y B x y 、,则这两点间2.问题探究探究一 圆的定义•活动① 在直角坐标平面中,如何确定一个圆?显然,当圆心位置和半径大小确定后,这个圆也就唯一确定了.因此,确定一。
高中数学 (4.1.1 圆的标准方程)示范教案 新人教A版必修2
第四章圆与方程本章教材分析上一章,学生已经学习了直线与方程,知道在直角坐标系中,直线可以用方程表示,通过方程,可以研究直线间的位置关系、直线与直线的交点坐标、点到直线的距离等问题,对数形结合的思想方法有了初步体验.本章将在上章学习了直线与方程的基础上,学习在平面直角坐标系中建立圆的代数方程,运用代数方法研究点与圆、直线与圆、圆与圆的位置关系,了解空间直角坐标系,以便为今后的坐标法研究空间的几何对象奠定基础,这些知识是进一步学习圆锥曲线方程、导数和微积分的基础,在这个过程中进一步体会数形结合的思想,形成用代数方法解决几何问题的能力.通过方程,研究直线与圆、圆与圆的位置关系是本章的重点内容之一,坐标法不仅是研究几何问题的重要方法,而且是一种广泛应用于其他领域的重要数学方法,通过坐标系把点和坐标、曲线和方程联系起来,实现了形和数的统一,因此在教学过程中,要始终贯穿坐标法这一重要思想,不怕反复.用坐标法解决几何问题时,先用坐标和方程表示相应的几何元素:点、直线、圆;然后对坐标和方程进行代数运算;最后把运算结果“翻译”成相应的几何结论.这就是坐标法解决几何问题的三步曲.坐标法还可以与平面几何中的综合方法、向量方法建立联系,同时可以推广到空间,解决立体几何问题.本章教学时间约需9课时,具体分配如下(仅供参考):4.1.1 圆的标准方程1课时4.1.2 圆的一般方程1课时4.2.1 直线与圆的位置关系2课时4.2.2 圆与圆的位置关系2课时4.3.1 空间直角坐标系1课时4.3.2 空间两点间的距离公式1课时本章复习1课时4.1 圆的方程4.1.1 圆的标准方程整体设计教学分析在初中曾经学习过圆的有关知识,本节内容是在初中所学知识及前几节内容的基础上,进一步运用解析法研究圆的方程,它与其他图形的位置关系及其应用.同时,由于圆也是特殊的圆锥曲线,因此,学习了圆的方程,就为后面学习其他圆锥曲线的方程奠定了基础.也就是说,本节内容在教材体系中起到承上启下的作用,具有重要的地位,在许多实际问题中也有着广泛的应用.由于“圆的方程”一节内容的基础性和应用的广泛性,对圆的标准方程要求层次是“掌握”,为了激发学生的主体意识,教学生学会学习和学会创造,同时培养学生的应用意识,本节内容可采用“引导探究”型教学模式进行教学设计,所谓“引导探究”是教师把教学内容设计为若干问题,从而引导学生进行探究的课堂教学模式,教师在教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来.教师的每项教学措施,都是给学生创造一种思维情境,一种动脑、动手、动口并主动参与的学习机会,激发学生的求知欲,促使学生解决问题.三维目标1.使学生掌握圆的标准方程,能根据圆心、半径写出圆的标准方程,能根据圆的标准方程写出圆的圆心、半径,进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,注意培养学生观察问题、发现问题和解决问题的能力.2.会用待定系数法求圆的标准方程,通过圆的标准方程解决实际问题的学习,形成代数方法处理几何问题的能力,从而激发学生学习数学的热情和兴趣,培养学生分析、概括的思维能力.3.理解掌握圆的切线的求法.包括已知切点求切线,从圆外一点引切线,已知切线斜率求切线等.把握运动变化原则,培养学生树立相互联系、相互转化的辩证唯物主义观点,欣赏和体验圆的对称性,感受数学美.重点难点教学重点:圆的标准方程的推导过程和圆的标准方程特点的明确.教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程.课时安排1课时教学过程导入新课思路1.课前准备:(用淀粉在一张白纸上画上海和山)说明:在白纸上要表演的是一个小魔术,名称是《日出》,所以还缺少一个太阳,请学生帮助在白纸上画出太阳.要求其他学生在自己的脑海里也构画出自己的太阳.课堂估计:一种是非尺规作图(指出数学作图的严谨性);一种作出后有同学觉得不够美(点评:其实每个人心中都有一个自己的太阳,每个人都有自己的审美观点).然后上升到数学层次:不同的圆心和半径对应着不同的圆,进而对应着不同的圆的方程.从用圆规作图复习初中所学圆的定义:到定点的距离等于定长的点的轨迹.那么在给定圆心和半径的基础上,结合我们前面所学的直线方程的求解,应该如何建立圆的方程?教师板书本节课题:圆的标准方程.思路2.同学们,我们知道直线可以用一个方程表示,那么,圆可以用一个方程表示吗?圆的方程怎样来求呢?这就是本堂课的主要内容,教师板书本节课题:圆的标准方程.推进新课新知探究提出问题①已知两点A(2,-5),B(6,9),如何求它们之间的距离?若已知C(3,-8),D(x,y),又如何求它们之间的距离?②具有什么性质的点的轨迹称为圆?③图1中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?图1④我们知道,在平面直角坐标系中,确定一条直线的条件是两点或一点和倾斜角,那么,决定圆的条件是什么?⑤如果已知圆心坐标为C(a,b),圆的半径为r,我们如何写出圆的方程?⑥圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?讨论结果:①根据两点之间的距离公式221221)()(y y x x -+-,得 |AB|=212)59()62(22=++-, |CD|=22)8()3(++-y x .②平面内与一定点距离等于定长的点的轨迹称为圆,定点是圆心,定长是半径(教师在黑板上画一个圆).③圆心C 是定点,圆周上的点M 是动点,它们到圆心距离等于定长|MC|=r ,圆心和半径分别确定了圆的位置和大小.④确定圆的条件是圆心和半径,只要圆心和半径确定了,那么圆的位置和大小就确定了. ⑤确定圆的基本条件是圆心和半径,设圆的圆心坐标为C(a ,b),半径为r(其中a 、b 、r 都是常数,r >0).设M(x ,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件22)()(b y a x -+-=r.①将上式两边平方得(x-a)2+(y-b)2=r 2.化简可得(x-a)2+(y-b)2=r 2.②若点M(x ,y)在圆上,由上述讨论可知,点M 的坐标满足方程②,反之若点M 的坐标满足方程②,这就说明点M 与圆心C 的距离为r ,即点M 在圆心为C 的圆上.方程②就是圆心为C(a ,b),半径长为r 的圆的方程,我们把它叫做圆的标准方程.⑥这是二元二次方程,展开后没有xy 项,括号内变数x ,y 的系数都是1.点(a ,b)、r 分别表示圆心的坐标和圆的半径.当圆心在原点即C(0,0)时,方程为x 2+y 2=r 2.提出问题①根据圆的标准方程说明确定圆的方程的条件是什么?②确定圆的方程的方法和步骤是什么?③坐标平面内的点与圆有什么位置关系?如何判断?讨论结果:①圆的标准方程(x -a)2+(y -b)2=r 2中,有三个参数a 、b 、r ,只要求出a 、b 、r 且r >0,这时圆的方程就被确定,因此确定圆的标准方程,需三个独立条件,其中圆心是圆的定位条件,半径是圆的定形条件.②确定圆的方程主要方法是待定系数法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a ,b)和半径r ,一般步骤为:1°根据题意,设所求的圆的标准方程(x -a)2+(y -b)2=r 2;2°根据已知条件,建立关于a 、b 、r 的方程组;3°解方程组,求出a 、b 、r 的值,并把它们代入所设的方程中去,就得到所求圆的方程.③点M(x 0,y 0)与圆(x-a)2+(y-b)2=r 2的关系的判断方法:当点M(x 0,y 0)在圆(x-a)2+(y-b)2=r 2上时,点M 的坐标满足方程(x-a)2+(y-b)2=r 2.当点M(x 0,y 0)不在圆(x-a)2+(y-b)2=r 2上时,点M 的坐标不满足方程(x-a)2+(y-b)2=r 2.用点到圆心的距离和半径的大小来说明应为:1°点到圆心的距离大于半径,点在圆外⇔(x 0-a)2+(y 0-b)2>r 2,点在圆外;2°点到圆心的距离等于半径,点在圆上⇔(x 0-a)2+(y 0-b)2=r 2,点在圆上;3°点到圆心的距离小于半径,点在圆内⇔(x 0-a)2+(y 0-b)2<r 2,点在圆内.应用示例思路1例1 写出下列各圆的标准方程:(1)圆心在原点,半径是3;⑵圆心在点C(3,4),半径是5;(3)经过点P(5,1),圆心在点C(8,-3);(4)圆心在点C(1,3),并且和直线3x-4y-7=0相切.解:(1)由于圆心在原点,半径是3,所以圆的标准方程为(x-0)2+(y-0)2=32,即x 2+y 2=9.(2)由于圆心在点C(3,4),半径是5,所以圆的标准方程是(x-3)2+(y-4)2=(5)2,即(x-3)2+(y-4)2=5.(3)方法一:圆的半径r=|CP|=25)31()85(22=++-=5,因此所求圆的标准方程为(x-8)2+(y+3)2=25.方法二:设圆的标准方程为(x-8)2+(y+3)2=r 2,因为圆经过点P(5,1),所以(5-8)2+(1+3)2=r 2,r 2=25,因此所求圆的标准方程为(x-8)2+(y+3)2=25.这里方法一是直接法,方法二是间接法,它需要确定有关参数来确定圆的标准方程,两种方法都可,要视问题的方便而定.(4)设圆的标准方程为(x-1)2+(y-3)2=r 2,由圆心到直线的距离等于圆的半径,所以r=25|16|25|7123|=--.因此所求圆的标准方程为(x-1)2+(y-3)2=25256. 点评:要求能够用圆心坐标、半径长熟练地写出圆的标准方程.例2 写出圆心为A(2,-3),半径长等于5的圆的方程,并判断点M 1(5,-7),M 2(-5,-1)是否在这个圆上.解:圆心为A(2,-3),半径长等于5的圆的标准方程是(x-2)2+(y+3)2=25,把点M 1(5,-7),M 2(-5,,-1)分别代入方程(x-2)2+(y+3)2=25,则M 1的坐标满足方程,M 1在圆上.M 2的坐标不满足方程,M 2不在圆上.点评:本题要求首先根据坐标与半径大小写出圆的标准方程,然后给一个点,判断该点与圆的关系,这里体现了坐标法的思想,根据圆的坐标及半径写方程——从几何到代数;根据坐标满足方程来看在不在圆上——从代数到几何.例3 △ABC 的三个顶点的坐标是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程.活动:教师引导学生从圆的标准方程(x-a)2+(y-b)2=r 2入手,要确定圆的标准方程,可用待定系数法确定a 、b 、r 三个参数.另外可利用直线AB 与AC 的交点确定圆心,从而得半径,圆的方程可求,师生总结、归纳、提炼方法.解法一:设所求的圆的标准方程为(x-a)2+(y-b)2=r 2,因为A(5,1),B(7,-3),C(2,-8)都在圆上,它们的坐标都满足方程(x-a)2+(y-b)2=r 2,于是⎪⎩⎪⎨⎧=--+-=--+-=-+-)3(.)8()2()2()3()7()1(,)1()5(222222222r b a rb a r b a解此方程组得⎪⎩⎪⎨⎧=-==.5,3,2r b a 所以△ABC 的外接圆的方程为(x-2)2+(y+3)2=25.解法二:线段AB 的中点坐标为(6,-1),斜率为-2,所以线段AB 的垂直平分线的方程为y+1=21(x-6).①同理线段AC 的中点坐标为(3.5,-3.5),斜率为3,所以线段AC 的垂直平分线的方程为y+3.5=3(x-3.5). ②解由①②组成的方程组得x=2,y=-3,所以圆心坐标为(2,-3),半径r=22)31()25(++-=5,所以△ABC 的外接圆的方程为(x-2)2+(y+3)2=25.点评:△ABC 外接圆的圆心是△ABC 的外心,它是△ABC 三边的垂直平分线的交点,它到三顶点的距离相等,就是圆的半径,利用这些几何知识,可丰富解题思路.思路2例1 图2是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20 m ,拱高OP=4 m ,在建造时每隔4 m 需用一个支柱支撑,求支柱A 2P 2的长度(精确到0.01 m).图2解:建立坐标系如图,圆心在y 轴上,由题意得P(0,4),B(10,0).设圆的方程为x 2+(y-b)2=r 2,因为点P(0,4)和B(10,0)在圆上,所以⎪⎩⎪⎨⎧=-+=-+.)0(10,)4(0222222r b r b 解得⎩⎨⎧=-=,5.14,5.1022r b 所以这个圆的方程是x 2+(y+10.5)2=14.52.设点P 2(-2,y 0),由题意y 0>0,代入圆方程得(-2)2+(y 0+10.5)2=14.52,解得y 0=2225.14--10.5≈14.36-10.5=3.86(m).答:支柱A 2P 2的长度约为3.86 m.例2 求与圆x 2+y 2-2x=0外切,且与直线x+3y=0相切于点(3,-3)的圆的方程. 活动:学生审题,注意题目的特点,教师引导学生利用本节知识和初中学过的几何知识解题.首先利用配方法,把已知圆的方程写成标准方程,再利用两圆外切及直线与圆相切建立方程组,求出参数,得到所求的圆的方程.解:设所求圆的方程为(x-a)2+(y-b)2=r 2.圆x 2+y 2-2x=0的圆心为(1,0),半径为1.因为两圆外切,所以圆心距等于两圆半径之和,即22)0()1(-+-b a =r+1,①由圆与直线x+3y=0相切于点(3,-3),得⎪⎪⎩⎪⎪⎨⎧=++-=-∙-+)3(.)3(1|3|)2(,1)31(332r b a a b 解得a=4,b=0,r=2或a=0,b=-43,r=6.故所求圆的方程为(x-4)2+y 2=4或x 2+(y+43)2=36. 点评:一般情况下,如果已知圆心(或易于求出)或圆心到某一直线的距离(或易于求出),可用圆的标准方程来求解,用待定系数法,求出圆心坐标和半径.变式训练一圆过原点O 和点P(1,3),圆心在直线y=x+2上,求此圆的方程.解法一:因为圆心在直线y=x+2上,所以设圆心坐标为(a ,a+2).则圆的方程为(x-a)2+(y-a-2)2=r 2.因为点O(0,0)和P(1,3)在圆上,所以⎪⎩⎪⎨⎧=--+-=--+-,)23()1(,)20()0(222222r a a r a a 解得⎪⎪⎩⎪⎪⎨⎧=-=.825,412r a 所以所求的圆的方程为(x+41)2+(y-47)2=825. 解法二:由题意:圆的弦OP 的斜率为3,中点坐标为(21,23), 所以弦OP 的垂直平分线方程为y-23=-31(x-21),即x+3y-5=0. 因为圆心在直线y=x+2上,且圆心在弦OP 的垂直平分线上,所以由⎩⎨⎧=-++=,053,2y x x y 解得⎪⎪⎩⎪⎪⎨⎧=-=,47,41y x ,即圆心坐标为C(-41,47). 又因为圆的半径r=|OC|=825)47()41(22=+-, 所以所求的圆的方程为(x+41)2+(y-47)2=825. 点评:(1)圆的标准方程中有a 、b 、r 三个量,要求圆的标准方程即要求a 、b 、r 三个量,有时可用待定系数法.(2)要重视平面几何中的有关知识在解题中的运用.例3 求下列圆的方程:(1)圆心在直线y=-2x 上且与直线y=1-x 相切于点(2,-1).(2)圆心在点(2,-1),且截直线y=x-1所得弦长为22.解:(1)设圆心坐标为(a ,-2a),由题意知圆与直线y=1-x 相切于点(2,-1),所以2222)12()2(11|12|+-+-=+--a a a a ,解得a=1.所以所求圆心坐标为(1,-2),半径r=22)12()21(+-+-=2.所以所求圆的标准方程为(x-1)2+(y+2)2=2. (2)设圆的方程为(x-2)2+(y+1)2=r 2(r >0),由题意知圆心到直线y=x-1的距离为d=2211|112|+-+=2.又直线y=x-1被圆截得弦长为22,所以由弦长公式得r 2-d 2=2,即r=2.所以所求圆的标准方程为(x-2)2+(y+1)2=4.点评:本题的两个题目所给条件均与圆心和半径有关,故都利用了圆的标准方程求解,此外平面几何的性质的应用,使得解法简便了许多,所以类似问题一定要注意圆的相关几何性质的应用,从确定圆的圆心和半径入手来解决.知能训练课本本节练习1、2.拓展提升1.求圆心在直线y=2x 上且与两直线3x+4y-7=0和3x+4y+3=0都相切的圆的方程.活动:学生思考交流,教师提示引导,求圆的方程,无非就是确定圆的圆心和半径,师生共同探讨解题方法.解:首先两平行线的距离d=2221B A C C +-=2,所以半径为r=2d =1. 方法一:设与两直线3x+4y-7=0和3x+4y+3=0的距离相等的直线方程为3x+4y+k=0,由平行线间的距离公式d=2221||B A C C +-,得222234|3|43|7|+-=++k k ,即k=-2,所以直线方程为3x+4y-2=0.解3x+4y-2=0与y=2x 组成的方程组⎩⎨⎧==-+,2,0243x y y x 得⎪⎪⎩⎪⎪⎨⎧==,114,112y x ,因此圆心坐标为(112,114).又半径为r=1,所以所求圆的方程为(x-112)2+(y-114)2=1. 方法二:解方程组⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==⎩⎨⎧==++⎩⎨⎧==-+.113,116117,1114,2,0343,2,0743x y x y x y y x x y y x 和得与因此圆心坐标为(112,114).又半径r=1,所以所求圆的方程为(x-112)2+(y-114)2=1.点评:要充分考虑各几何元素间的位置关系,把它转化为代数问题来处理.课堂小结①圆的标准方程.②点与圆的位置关系的判断方法.③根据已知条件求圆的标准方程的方法.④利用圆的平面几何的知识构建方程.⑤直径端点是A(x1,y1)、B(x2,y2)的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.作业1.复习初中有关点与圆的位置关系,直线与圆的位置关系,圆与圆的位置关系有关内容.2.预习有关圆的切线方程的求法.3.课本习题4.1 A组第2、3题.设计感想圆是学生比较熟悉的曲线,求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.利用圆的标准方程由浅入深的解决问题,并通过圆的方程在实际问题中的应用,增强学生应用数学的意识.另外,为了培养学生的理性思维,在例题中,设计了由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成.本节课的设计通过适当的创设情境,调动学生的学习兴趣.本节课以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想.把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时锻炼了思维,提高了能力、培养了兴趣、增强了信心,高效地完成本节的学习任务.。
高中数学教学课例《4.1.1圆的标准方程》课程思政核心素养教学设计及总结反思
1.知识与技能
(1)掌握圆的标准方程,并根据方程写出圆的坐
标和圆的半径。
(2)会选择适当的坐标系来解决与圆有关的实际
问题。 教学目标
2.过程与方法
(1)实际问题引入,师生共同探讨。
(2)探究曲线方程的基本方法。
3.情感态度与价值观
培养用坐标法研究几何问题的兴趣
学生学习能
高一学生,在老师的引导下,已经具备一定探究与
为方程表示: 将上式两边平方得: (1) 显然,圆上任意一点 M 的坐标(x,y)适合方程(1);
如果平面上一点 M 的坐标(x,y)适合方程(1),可 得|MC|=r,则点 M 在圆上。
所以方程(1)是以 C(a,b)为圆心、r 为半径的圆的 方程.我们把它叫做圆的标准方程.
那同学们观察一下圆的标准方程形式有什么特 点?思考一下当圆心在原点时,x 轴上,y 轴上时,圆 的方程是什么?
圆是最简单的曲线之一,这节教材安排在学习了直 线之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程 的理论为后继学习作好准备。同时有关圆的问题,特别 是直线与圆的位置问题,也是解析几何中的基本问题, 课例研究综 这些问题的解决为圆锥曲线问题的解决提供了基本的 述 思想方法。
因此教学中应加强练习,使学生确实掌握这单元的 知识和方法。
口头练习: 1、说出下列圆的圆心和半径: (1);(2); (3) 总结:已知圆的标准方程,要能够熟练地求出它的 圆心和半径. 2、说出下列圆的方程: (1)圆心在原点,半径为 3. (2)圆心在点 C(3,-4),半径为 7. (3)圆心在点 C(3,,0).且与 y 轴相切。 总结:根据圆心坐标、半径长熟练地写出圆的标准 方程. 3、点与圆的位置关系: 如果点 M。(x。,y。)在圆外,则点到圆心的距 离大于圆的半径 r,即 如果点 M。(x。,y。)在圆内,则点到圆心的距 离小于圆的半径 r,即 二、例题讲解 例 1、写出圆心为 A(2,-3)半径长等于 5 的圆的并 判断点 M(5,-7),是否在这个圆上。 例 2、根据下列条件,求圆的方程: (1)圆心在点 C(-2,1),并过点 A(2,-2)的圆。
高中数学 第四章 圆与方程 4.1.1 圆的标准方程教案 新
圆的标准方程教学目标(1)在理解推导过程的基础上,掌握圆的标准方程的形式特点,理解方程中各个字母的含义,能合理应用平面几何中圆的有关性质,结合方程解决圆的有关问题.(2)理解掌握圆的切线的求法.包括已知切点求切线;从圆外一点引切线;已知切线斜率求切线等.教学重点和难点重点:圆的标准方程的理解、应用;圆的切线方程.(已知切点求切线;从圆外一点引切线;已知切线斜率求切线).难点:从圆外一点引切线,求切线方程,已知切线斜率求切线.教学过程设计(一)导入新课,教师讲授.同学们,前面我们研究了直线(特殊的曲线)的方程及其有关问题,今天我们研究圆及与圆有关的问题.什么是“圆”.想想初中我们学过的圆的定义.“平面内与定点距离等于定长的点的集合(轨迹)是圆”.定点就是圆心,定长就是半径.根据圆的定义,我们来求圆心是c(a,b),半径是r的圆的方程.(引导学生推导)设 M(x,y)是圆上任意一点,圆心坐标为(a,b),半径为r.则│CM│=r,两边平方. (x-a)2+(y-b)2=r2,我们得到圆的标准方程,这就是圆心为C(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程.如果圆的圆心在原点.O(0,0).即a=0.b=0.问题1.说出下列圆的方程:(1)圆心在点C(3, -4), 半径为7.(2) 经过点P(5,1),圆心在点C(8,-3).问题2 说出下列方程所表示的圆的圆心坐标和半径:(1) (x + 7)2 + ( y- 4)2 = 36(2) x2 + y2 - 4x + 10y + 28 = 0(3) (x- a)2 + y2 = m2例1.写出圆心为C(2,-3),半径长等于5的圆的方程,并判断点 m1(5.-7),m2(-5,-1) 是否在这个圆上。
跟踪训练已知两点M(3,8)和N(5,2).(1)求以MN为直径的圆C的方程;(2)试判断P1(2,8),P2(3,2),P3(6,7)是在圆上,在圆内,还是在圆外?探究:在平面几何中,如何确定点与圆的位置关系?点与圆的位置关系:(x0-a)2+(y0-b)2>r2时,点M在圆C外(x0-a)2+(y0-b)2=r2时,点M在圆C上(x0-a)2+(y0-b)2<r2时,点M在圆C内例2 ⊿ABC的三个顶点的坐标分别是A(5,1), B(7,-3),C(2,-8),求它的外接圆的方程例3 己知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心在直线l:x-y+1=0上,求圆心为C的圆的标准方程.(二)学生课堂练习1.点(2a, 1 a)在圆x2 + y2 = 4的内部,求实数a 的取值范围.2.根据下列条件,求圆的方程:(1)求过两点A(0,4)和B(4,6),且圆心在直线x-y+1=0上的圆的标准方程。
高中数学 411圆的标准方程教案1 新人教A版必修2 教案
创设情境引入新课逐步探究发现新知忆一忆:两点间的距离:22121212()()PP x x y y=-+-看一看:圆在我们的生活中无处不在,日出东方,车行天下,这些都是圆的具体表现形式。
说一说:问题1:生活中还有哪些物体是圆?画一画:问题2:如何画圆?分两组画圆,一组用圆规,一组用图钉、小绳、白板笔。
想一想:问题3:根据上面的画法,什么叫圆?议一议:问题4:在直角坐标系中,确定圆需要哪些要素?探究新知:圆的标准方程以C(a,b)为圆心,以r半径的圆的方程是什么?设点M (x,y)为圆C上任一点,则|MC|= r.所以,圆C就是集合P = { M | |MC| = r }22()()x a y b r-+-=①两边平方得:(x–a)2 + (y–b)2 = r2教师出示问题学生抢答教师用多媒体播放实际生活中圆的模型,引导学生从中抽象出圆的几何图形。
学生各抒己见,根据自己生活经验作答学生画图(分组)学生思考并回顾圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆,教师引导发现圆的两要素:圆心、半径。
同学们,我们知道直线可以用一个方程表示,那么,圆可以用一个方程表示吗?圆的方程怎样来求呢?这个方程具有什么特征?这就是缓解学生紧张情绪,同时为后面推导圆的方程提供理论依据教师从学生熟知的生活情境导入新课,有利于激发学生的学习兴趣,让学生体会数学与生活的紧密联系,然后引导学生回顾圆的定义,既引出新课,又为下面求圆的标准方程做铺垫。
通过实操让学生复习回顾初中圆的方程的定义,符合聋生的学习习惯。
通过演示让学生知道在直角坐标系中确定圆需要两个要素:圆心坐标和半径通过学生自己证明培养学生的探究能力.利用条件抽象概括出②知识点一:圆的标准方程圆心C(a,b),半径r(r>0)(x–a)2 + (y–b)2 = r2思考1:圆的方程形式有什么特点?思考2:当圆心在原点时,圆的方程是什么?若圆心为原点O(0,0),则圆的方程为:x2 + y2 = r2本堂课的主要内容,教师板书本节课题:圆的标准方程.小组合作的形式让学生独立完成。
4.1.1圆的标准方程教学设计
《圆的标准方程》教学设计教材分析本节内容位于曲线的方程和方程之后,是求具体曲线的方程。
同时,本节课的研究方法为以后学习椭圆、双曲线、抛物线提供了一个基本模式,因此,可以把圆看作是圆锥曲线的前奏曲。
学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的. 但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.教法分析为了充分调动学生学习的积极性,本节课采用“问题-探究”教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求解的过程.根据上述分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:教学目标基础目标:(1)理解圆的标准方程的推导;(2)掌握圆的标准方程。
会根据圆的方程,求圆心和半径;反之,会根据圆心和半径写圆的标准方程;(3)根据不同条件建立圆的标准方程,以及运用圆的标准方程解决一些简单的实际问题;(4)进一步熟悉求曲线方程的方法。
提高目标:培养学生数形结合,由特殊到一般的数学思想;加深对待定系数法的理解;促进学生自主的、创造性的学习。
体验目标:通过利用已学知识学会分析、解决问题,品尝成功的喜悦,增强学生学习数学的兴趣,并激发学生学习数学的自信心。
教学重点与难点(1)重点:圆的标准方程的求法及其应用.(2)难点:会根据不同的已知条件求圆的标准方程教学过程一、复习引入1、课前复习填写学案(学案见附录)教师设问:①求曲线方程的一般步骤②圆的定义③两点间的距离公式学生回答问题,为圆的标准方程的推导作好准备。
2、创设情景引入新课教师准备一圆拱模型和卡车模型,作卡车穿过拱桥的实验。
高中数学 4.1.1圆的标准方程教案 新人教A版必修2
4.1.1 圆的标准方程一、教学目标1、目标:(1)学生掌握圆的标准方程,能根据圆心、半径写出圆的标准方程,能根据圆的标准方程写出圆的圆心、半径;(2)会用待定系数法求圆的标准方程,通过圆的标准方程解决实际问题的学习,形成代数方法处理几何问题的能力;(3)理解掌握圆的切线的求法.包括已知切点求切线,从圆外一点引切线,已知切线斜率求切线等.2、解析:由于“圆的方程”一节内容的基础性和应用的广泛性,对圆的标准方程要求层次是“掌握”,为了激发学生的主体意识,教学生学会学习和学会创造,同时培养学生的应用意识,本节内容可采用“引导探究”型教学模式进行教学设计,所谓“引导探究”是教师把教学内容设计为若干问题,从而引导学生进行探究的课堂教学模式,教师在教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来.教师的每项教学措施,都是给学生创造一种思维情境,一种动脑、动手、动口并主动参与的学习机会,激发学生的求知欲,促使学生解决问题.二、预习导引1、圆的定义平面内到的距离等于()的点的集合(轨迹)是圆,定点是(),定常是()。
2、圆的标准方程圆心为C(a,b),半径为r 的圆的标准方程是()三、问题引领,知识探究问题一:我们知道直线可以用方程表示,那么,圆可以用方程表示吗?如果能圆的方程怎样来求呢?.问题2:具有什么性质的点的轨迹称为圆?问题3:图1中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?图1问题4:我们知道,在平面直角坐标系中,确定一条直线的条件是两点或一点和倾斜角,那么,决定圆的条件是什么?问题5:如果已知圆心坐标为C(a ,b ),圆的半径为r ,我们如何写出圆的方程?问题6:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?问题7:根据圆的标准方程说明确定圆的方程的条件是什么?问题8:确定圆的方程的方法和步骤是什么?问题9:坐标平面内的点与圆有什么位置关系?如何判断?师生活动:学生思考,回答。
新人教A版必修2高中数学学案教案: §4.1.1 圆的标准方程
"数学§4.1.1 圆的标准方程教案新人教A版必修2 "本章教材分析上一章,学生已经学习了直线与方程,知道在直角坐标系中,直线可以用方程表示,通过方程,可以研究直线间的位置关系、直线与直线的交点坐标、点到直线的距离等问题,对数形结合的思想方法有了初步体验.本章将在上章学习了直线与方程的基础上,学习在平面直角坐标系中建立圆的代数方程,运用代数方法研究点与圆、直线与圆、圆与圆的位置关系,了解空间直角坐标系,以便为今后的坐标法研究空间的几何对象奠定基础,这些知识是进一步学习圆锥曲线方程、导数和微积分的基础,在这个过程中进一步体会数形结合的思想,形成用代数方法解决几何问题的能力.通过方程,研究直线与圆、圆与圆的位置关系是本章的重点内容之一,坐标法不仅是研究几何问题的重要方法,而且是一种广泛应用于其他领域的重要数学方法,通过坐标系把点和坐标、曲线和方程联系起来,实现了形和数的统一,因此在教学过程中,要始终贯穿坐标法这一重要思想,不怕反复.用坐标法解决几何问题时,先用坐标和方程表示相应的几何元素:点、直线、圆;然后对坐标和方程进行代数运算;最后把运算结果“翻译”成相应的几何结论.这就是坐标法解决几何问题的三步曲.坐标法还可以与平面几何中的综合方法、向量方法建立联系,同时可以推广到空间,解决立体几何问题.本章教学时间约需9课时,具体分配如下(仅供参考):4.1.1 圆的标准方程1课时4.1.2 圆的一般方程1课时4.2.1 直线与圆的位置关系2课时4.2.2 圆与圆的位置关系2课时4.3.1 空间直角坐标系1课时4.3.2 空间两点间的距离公式1课时本章复习1课时§4.1 圆的方程§4.1.1 圆的标准方程一、教材分析在初中曾经学习过圆的有关知识,本节内容是在初中所学知识及前几节内容的基础上,进一步运用解析法研究圆的方程,它与其他图形的位置关系及其应用.同时,由于圆也是特殊的圆锥曲线,因此,学习了圆的方程,就为后面学习其他圆锥曲线的方程奠定了基础.也就是说,本节内容在教材体系中起到承上启下的作用,具有重要的地位,在许多实际问题中也有着广泛的应用.由于“圆的方程”一节内容的基础性和应用的广泛性,对圆的标准方程要求层次是“掌握”,为了激发学生的主体意识,教学生学会学习和学会创造,同时培养学生的应用意识,本节内容可采用“引导探究”型教学模式进行教学设计,所谓“引导探究”是教师把教学内容设计为若干问题,从而引导学生进行探究的课堂教学模式,教师在教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来.教师的每项教学措施,都是给学生创造一种思维情境,一种动脑、动手、动口并主动参与的学习机会,激发学生的求知欲,促使学生解决问题.二、教学目标1.知识与技能(1)掌握圆的标准方程,能根据圆心、半径写出圆的标准方程.(2)会用待定系数法求圆的标准方程.2.过程与方法进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问题发现问题和解决问题的能力.3.情感态度与价值观通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣.三、教学重点与难点教学重点:圆的标准方程的推导过程和圆的标准方程特点的明确.教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程.四、课时安排1课时五、教学设计(一)导入新课思路1.课前准备:(用淀粉在一张白纸上画上海和山)说明:在白纸上要表演的是一个小魔术,名称是《日出》,所以还缺少一个太阳,请学生帮助在白纸上画出太阳.要求其他学生在自己的脑海里也构画出自己的太阳.课堂估计:一种是非尺规作图(指出数学作图的严谨性);一种作出后有同学觉得不够美(点评:其实每个人心中都有一个自己的太阳,每个人都有自己的审美观点).然后上升到数学层次:不同的圆心和半径对应着不同的圆,进而对应着不同的圆的方程.从用圆规作图复习初中所学圆的定义:到定点的距离等于定长的点的轨迹.那么在给定圆心和半径的基础上,结合我们前面所学的直线方程的求解,应该如何建立圆的方程?教师板书本节课题:圆的标准方程.思路2.同学们,我们知道直线可以用一个方程表示,那么,圆可以用一个方程表示吗?圆的方程怎样来求呢?这就是本堂课的主要内容,教师板书本节课题:圆的标准方程.(二)推进新课、新知探究、提出问题①已知两点A(2,-5),B(6,9),如何求它们之间的距离?若已知C(3,-8),D(x,y),又如何求它们之间的距离?②具有什么性质的点的轨迹称为圆?③图1中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?图1④我们知道,在平面直角坐标系中,确定一条直线的条件是两点或一点和倾斜角,那么,决定圆的条件是什么?⑤如果已知圆心坐标为C(a,b),圆的半径为r,我们如何写出圆的方程?⑥圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?讨论结果:①根据两点之间的距离公式221221)()(y y x x -+-,得 |AB|=212)59()62(22=++-, |CD|=22)8()3(++-y x .②平面内与一定点距离等于定长的点的轨迹称为圆,定点是圆心,定长是半径(教师在黑板上画一个圆).③圆心C 是定点,圆周上的点M 是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小.④确定圆的条件是圆心和半径,只要圆心和半径确定了,那么圆的位置和大小就确定了. ⑤确定圆的基本条件是圆心和半径,设圆的圆心坐标为C(a,b),半径为r(其中a 、b 、r 都是常数,r >0).设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件22)()(b y a x -+-=r.①将上式两边平方得(x-a)2+(y-b)2=r 2.化简可得(x-a)2+(y-b)2=r 2.②若点M(x,y)在圆上,由上述讨论可知,点M 的坐标满足方程②,反之若点M 的坐标满足方程②,这就说明点M 与圆心C 的距离为r,即点M 在圆心为C 的圆上.方程②就是圆心为C(a,b),半径长为r 的圆的方程,我们把它叫做圆的标准方程.⑥这是二元二次方程,展开后没有xy 项,括号内变数x,y 的系数都是1.点(a,b)、r 分别表示圆心的坐标和圆的半径.当圆心在原点即C(0,0)时,方程为x 2+y 2=r 2.提出问题①根据圆的标准方程说明确定圆的方程的条件是什么?②确定圆的方程的方法和步骤是什么?③坐标平面内的点与圆有什么位置关系?如何判断?讨论结果:①圆的标准方程(x -a)2+(y -b)2=r 2中,有三个参数a 、b 、r,只要求出a 、b 、r 且r >0,这时圆的方程就被确定,因此确定圆的标准方程,需三个独立条件,其中圆心是圆的定位条件,半径是圆的定形条件.②确定圆的方程主要方法是待定系数法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a,b)和半径r,一般步骤为:1°根据题意,设所求的圆的标准方程(x -a)2+(y -b)2=r 2;2°根据已知条件,建立关于a 、b 、r 的方程组;3°解方程组,求出a 、b 、r 的值,并把它们代入所设的方程中去,就得到所求圆的方程.③点M(x 0,y 0)与圆(x-a)2+(y-b)2=r 2的关系的判断方法:当点M(x 0,y 0)在圆(x-a)2+(y-b)2=r 2上时,点M 的坐标满足方程(x-a)2+(y-b)2=r 2.当点M(x 0,y 0)不在圆(x-a)2+(y-b)2=r 2上时,点M 的坐标不满足方程(x-a)2+(y-b)2=r 2.用点到圆心的距离和半径的大小来说明应为:1°点到圆心的距离大于半径,点在圆外⇔(x 0-a)2+(y 0-b)2>r 2,点在圆外;2°点到圆心的距离等于半径,点在圆上⇔(x 0-a)2+(y 0-b)2=r 2,点在圆上;3°点到圆心的距离小于半径,点在圆内⇔(x 0-a)2+(y 0-b)2<r 2,点在圆内.(三)应用示例思路1例1 写出下列各圆的标准方程:(1)圆心在原点,半径是3;⑵圆心在点C(3,4),半径是5;(3)经过点P(5,1),圆心在点C(8,-3);(4)圆心在点C(1,3),并且和直线3x-4y-7=0相切.解:(1)由于圆心在原点,半径是3,所以圆的标准方程为(x-0)2+(y-0)2=32,即x 2+y 2=9.(2)由于圆心在点C(3,4),半径是5,所以圆的标准方程是(x-3)2+(y-4)2=(5)2,即(x-3)2+(y-4)2=5.(3)方法一:圆的半径r=|CP|=25)31()85(22=++-=5,因此所求圆的标准方程为(x-8)2+(y+3)2=25.方法二:设圆的标准方程为(x-8)2+(y+3)2=r 2,因为圆经过点P(5,1),所以(5-8)2+(1+3)2=r 2,r 2=25,因此所求圆的标准方程为(x-8)2+(y+3)2=25.这里方法一是直接法,方法二是间接法,它需要确定有关参数来确定圆的标准方程,两种方法都可,要视问题的方便而定.(4)设圆的标准方程为(x-1)2+(y-3)2=r 2,由圆心到直线的距离等于圆的半径,所以r=25|16|25|7123|=--.因此所求圆的标准方程为(x-1)2+(y-3)2=25256. 点评:要求能够用圆心坐标、半径长熟练地写出圆的标准方程.例2 写出圆心为A(2,-3),半径长等于5的圆的方程,并判断点M 1(5,-7),M 2(-5,-1)是否在这个圆上.解:圆心为A(2,-3),半径长等于5的圆的标准方程是(x-2)2+(y+3)2=25,把点M 1(5,-7),M 2(-5,,-1)分别代入方程(x-2)2+(y+3)2=25, 则M 1的坐标满足方程,M 1在圆上.M 2的坐标不满足方程,M 2不在圆上.点评:本题要求首先根据坐标与半径大小写出圆的标准方程,然后给一个点,判断该点与圆的关系,这里体现了坐标法的思想,根据圆的坐标及半径写方程——从几何到代数;根据坐标满足方程来看在不在圆上——从代数到几何.例3 △ABC 的三个顶点的坐标是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程.活动:教师引导学生从圆的标准方程(x-a)2+(y-b)2=r 2入手,要确定圆的标准方程,可用待定系数法确定a 、b 、r 三个参数.另外可利用直线AB 与AC 的交点确定圆心,从而得半径,圆的方程可求,师生总结、归纳、提炼方法.解法一:设所求的圆的标准方程为(x-a)2+(y-b)2=r 2,因为A(5,1),B(7,-3),C(2,-8)都在圆上,它们的坐标都满足方程(x-a)2+(y-b)2=r 2,于是⎪⎩⎪⎨⎧=--+-=--+-=-+-)3(.)8()2()2()3()7()1(,)1()5(222222222r b a rb a r b a 解此方程组得⎪⎩⎪⎨⎧=-==.5,3,2r b a 所以△ABC 的外接圆的方程为(x-2)2+(y+3)2=25.解法二:线段AB 的中点坐标为(6,-1),斜率为-2,所以线段AB 的垂直平分线的方程为y+1=21(x-6). 同理线段AC 的中点坐标为(3.5,-3.5),斜率为3,所以线段AC 的垂直平分线的方程为y+3.5=3(x-3.5).解由①②组成的方程组得x=2,y=-3,所以圆心坐标为(2,-3),半径r=22)31()25(++-=5,所以△ABC 的外接圆的方程为(x-2)2+(y+3)2=25.点评:△ABC 外接圆的圆心是△ABC 的外心,它是△ABC 三边的垂直平分线的交点,它到三顶点的距离相等,就是圆的半径,利用这些几何知识,可丰富解题思路.思路2例1 图2是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20 m,拱高OP=4 m,在建造时每隔4 m 需用一个支柱支撑,求支柱A 2P 2的长度(精确到0.01 m).图2解:建立坐标系如图,圆心在y 轴上,由题意得P(0,4),B(10,0).设圆的方程为x 2+(y-b)2=r 2,因为点P(0,4)和B(10,0)在圆上,所以⎪⎩⎪⎨⎧=-+=-+.)0(10,)4(0222222r b r b 解得⎩⎨⎧=-=,5.14,5.1022r b 所以这个圆的方程是x 2+(y+10.5)2=14.52.设点P 2(-2,y 0),由题意y 0>0,代入圆方程得(-2)2+(y 0+10.5)2=14.52,解得y 0=2225.14--10.5≈14.36-10.5=3.86(m). 答:支柱A 2P 2的长度约为3.86 m.例2 求与圆x 2+y 2-2x=0外切,且与直线x+3y=0相切于点(3,-3)的圆的方程. 活动:学生审题,注意题目的特点,教师引导学生利用本节知识和初中学过的几何知识解题.首先利用配方法,把已知圆的方程写成标准方程,再利用两圆外切及直线与圆相切建立方程组,求出参数,得到所求的圆的方程.解:设所求圆的方程为(x-a)2+(y-b)2=r 2.圆x 2+y 2-2x=0的圆心为(1,0),半径为1.因为两圆外切,所以圆心距等于两圆半径之和,即22)0()1(-+-b a =r+1, ①由圆与直线x+3y=0相切于点(3,-3),得⎪⎪⎩⎪⎪⎨⎧=++-=-•-+)3(.)3(1|3|)2(,1)31(332r b a a b 解得a=4,b=0,r=2或a=0,b=-43,r=6.故所求圆的方程为(x-4)2+y 2=4或x 2+(y+43)2=36.点评:一般情况下,如果已知圆心(或易于求出)或圆心到某一直线的距离(或易于求出),可用圆的标准方程来求解,用待定系数法,求出圆心坐标和半径.变式训练一圆过原点O 和点P(1,3),圆心在直线y=x+2上,求此圆的方程.解法一:因为圆心在直线y=x+2上,所以设圆心坐标为(a,a+2).则圆的方程为(x-a)2+(y-a-2)2=r 2.因为点O(0,0)和P(1,3)在圆上,所以⎪⎩⎪⎨⎧=--+-=--+-,)23()1(,)20()0(222222r a a r a a 解得⎪⎪⎩⎪⎪⎨⎧=-=.825,412r a所以所求的圆的方程为(x+41)2+(y-47)2=825. 解法二:由题意:圆的弦OP 的斜率为3,中点坐标为(21,23), 所以弦OP 的垂直平分线方程为y-23=-31(x-21),即x+3y-5=0. 因为圆心在直线y=x+2上,且圆心在弦OP 的垂直平分线上,所以由⎩⎨⎧=-++=,053,2y x x y 解得⎪⎪⎩⎪⎪⎨⎧=-=,47,41y x ,即圆心坐标为C(-41,47). 又因为圆的半径r=|OC|=825)47()41(22=+-, 所以所求的圆的方程为(x+41)2+(y-47)2=825. 点评:(1)圆的标准方程中有a 、b 、r 三个量,要求圆的标准方程即要求a 、b 、r 三个量,有时可用待定系数法.(2)要重视平面几何中的有关知识在解题中的运用.例3 求下列圆的方程:(1)圆心在直线y=-2x 上且与直线y=1-x 相切于点(2,-1).(2)圆心在点(2,-1),且截直线y=x-1所得弦长为22.解:(1)设圆心坐标为(a,-2a),由题意知圆与直线y=1-x 相切于点(2,-1),所以2222)12()2(11|12|+-+-=+--a a a a ,解得a=1.所以所求圆心坐标为(1,-2),半径r=22)12()21(+-+-=2.所以所求圆的标准方程为(x-1)2+(y+2)2=2. (2)设圆的方程为(x-2)2+(y+1)2=r 2(r >0),由题意知圆心到直线y=x-1的距离为d=2211|112|+-+=2.又直线y=x-1被圆截得弦长为22,所以由弦长公式得r 2-d 2=2,即r=2.所以所求圆的标准方程为(x-2)2+(y+1)2=4.点评:本题的两个题目所给条件均与圆心和半径有关,故都利用了圆的标准方程求解,此外平面几何的性质的应用,使得解法简便了许多,所以类似问题一定要注意圆的相关几何性质的应用,从确定圆的圆心和半径入手来解决.(四)知能训练课本本节练习1、2.(一)拓展提升1.求圆心在直线y=2x 上且与两直线3x+4y-7=0和3x+4y+3=0都相切的圆的方程.活动:学生思考交流,教师提示引导,求圆的方程,无非就是确定圆的圆心和半径,师生共同探讨解题方法.解:首先两平行线的距离d=2221B A C C +-=2,所以半径为r=2d =1. 方法一:设与两直线3x+4y-7=0和3x+4y+3=0的距离相等的直线方程为3x+4y+k=0,由平行线间的距离公式d=2221||B A C C +-,得222234|3|43|7|+-=++k k ,即k=-2,所以直线方程为3x+4y-2=0.解3x+4y-2=0与y=2x 组成的方程组⎩⎨⎧==-+,2,0243x y y x 得⎪⎪⎩⎪⎪⎨⎧==,114,112y x ,因此圆心坐标为(112,114).又半径为r=1,所以所求圆的方程为(x-112)2+(y-114)2=1. 方法二:解方程组⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==⎩⎨⎧==++⎩⎨⎧==-+.113,116117,1114,2,0343,2,0743x y x y x y y x x y y x 和得与因此圆心坐标为(112,114).又半径r=1,所以所求圆的方程为(x-112)2+(y-114)2=1. 点评:要充分考虑各几何元素间的位置关系,把它转化为代数问题来处理.(六)课堂小结①圆的标准方程.②点与圆的位置关系的判断方法.③根据已知条件求圆的标准方程的方法.④利用圆的平面几何的知识构建方程.⑤直径端点是A(x 1,y 1)、B(x 2,y 2)的圆的方程是(x-x 1)(x-x 2)+(y-y 1)(y-y 2)=0.(七)作业1.复习初中有关点与圆的位置关系,直线与圆的位置关系,圆与圆的位置关系有关内容.2.预习有关圆的切线方程的求法.3.课本习题4.1 A 组第2、3题.。
高中数学 4.1.1圆的标准方程精品教案 新人教A版必修2
(一)教学目标1.知识与技能(1)掌握圆的标准方程,能根据圆心、半径写出圆的标准方程.(2)会用待定系数法求圆的标准方程.2.过程与方法进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问题发现问题和解决问题的能力.3.情感态度与价值观通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣.(二)教学重点、难点重点:圆的标准方程难点:会根据不同的已知条件,利用待定系数法求圆的标准方程.(三)教学过程教学环节教学内容师生互动设计意图复习引入在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么圆是否也可用一个方程来表示呢?如果能,这个方程具有什么特征?由学生回答,然后引入课题设置情境引入课题概念形成确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r (其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P= {M|MA| = r},由两点间的距离公式让学生写出点的坐标适合的条件22()()x a y b r-+-=①化简可得:(x–a)2 + (y–b)2= r2②引导学生自己证明(x–a)2 + (y–b)2 = r2为圆的方程,得出结论.方程②就是圆心为A(a,b)半径为r的圆的方程,我们把它叫做圆的标准方程.通过学生自己证明培养学生的探究能力.应用举例例1 写出圆心为A(2,–3)半径长等于5的圆的方程,并判断点M1(5,–7),2(5,1)M--是否在这个圆上.分析探求:可以从计算点到圆心的距离入手.探究:点M(x0,y0)与圆(x–a)2 + (y–b)2 = r2的关系的判断方法:(1)(x0–a)2 + (y0–b)2>r2,点在圆外.(2)(x0–a)2 + (y0–b)2= r2,点在圆上.(3)(x0–a)2 + (y0–b)2<r2,点在圆内.引导学生分析探究从计算点到圆心的距离入手.例1 解:圆心是A(2,–3),半径长等于5的圆的标准方程是(x+ 3)2+ ( y+ 3)2=25.把M1 (5,–7),M2(5-,–1) 的坐标代入方程(x–2)2 + (y +3)2 =25,左右两边相等,点M1的坐标适合圆的方程,所以点M2在这个圆上;把M2(5-,–1)的坐标代入方程(x–2)2+ (y+3)2=25,左右两边不相等,点M2的坐标不适合圆的方程,所以M2不在这个圆上通过实例引导学生掌握求圆的标准方程的两种方法.例 2 △ABC的三个顶点的坐标是A(5,1),B(7,–3),C(2,– 8). 求它的外接圆的方程.例2 解:设所求圆的方程是(x–a)2 + (y–b)2 = r2. ①因为A(5,1),B(7,–3),C(2,–8) 都在圆上,所以它们的坐标都满足方程①. 于是师生共同分析:从圆的标准方程(x–a)2 + (y–b)2= r2可知,要确定圆的标准方程,可用待定系数法确定a、b、r三个参数,(学生自己运算解决)6––4––2––––2 –––4––––55AM222222222(5)(1)(7)(3)(2)(8)a b r a b r a b r⎧-+-=⎪-+--=⎨⎪-+--=⎩ 解此方程组,得22325a b r ⎧=⎪=-⎨⎪=⎩ 所以,△ABC 的外接圆的方程是(x – 2)2 + (y +3)2=25. 例3 已知圆心为C 的圆C . 经过点A (1,1)和B (2,–2),且圆心在l : x – y + 1 = 0上,求圆心为C 的圆的标准方程.比较例(2)、例(3)可得出△ABC 外接圆的标准方程的两种求法:①根据题设条件,列出关于a 、b 、r 的方程组,解方程组得到a 、b 、r 得值,写出圆的根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程.练习:课本P127 第1、3、4题师生共同分析:如图确定一个图只需确定圆心位置与半径大小.圆心为C 的圆经过点A (1,1)和B (2,–2),由于圆心C 与A 、B 两点的距离相等,所以圆心C 在线段AB 的垂直平分线m 上,又圆心C 在直线l 上,因此圆心C 是直线l 与直线m 的交点,半径长等于|CA |或|CB |.(教师板书解题过程)例3 解:因为A (1,1),B (2,– 2),所以线段AB 的中点D 的坐标为(32,12-),直线AB 的斜率k AB =2121---= –3, 因为线段AB 的垂直平分线l ′的方程是y +113()232x =-,Bm A C即x –3y –3 = 0. 圆心C 的坐标是方程组33010x y x y --=⎧⎨-+=⎩的解. 解此方程组,得32x y =-⎧⎨=-⎩ 所以圆心C 的坐标是(–3,–2) .圆心为C 的圆的半径长r =|AC |=22(13)(12)+++=5.所以,圆心为C 的圆的标准方程是(x + 3)2 + (y +2)2=25.归纳总结 1.圆的标准方程.2.点与圆的位置关系的判断方法.3.根据已知条件求圆的标准方程的方法. 教师启发,学生自己比较、归纳. 形成知识体系课外作业布置作业:见习案4.1第一课时学生独立完成 巩固深化备选例题例1 写出下列方程表示的圆的圆心和半径(1)x 2 + (y + 3)2 = 2; (2)(x + 2)2 + (y – 1)2 = a 2(a ≠0) 【解析】(1)圆心为(0,–3),半径为2; (2)圆心为(–2,1),半径为|a |.例2 圆心在直线x – 2y – 3 = 0上,且过A (2,–3),B (–2,–5),求圆的方程.解法1:设所求的圆的方程为(x – a )2 + (y – b )2 = r 2由条件知222222(2)(3)(2)(5)230a b r a b r a b ⎧-+--=⎪--+--=⎨⎪--=⎩解方程组得21210a b r ⎧=-⎪=-⎨⎪=⎩即所求的圆的方程为(x + 1)2 + (y + 2)2= 10 解法2:12AB k =,AB 的中点是(0,–4), 所以AB 的中垂线方程为2x + y + 4 = 0 由230240x y x y --=⎧⎨++=⎩得12x y =-⎧⎨=-⎩因为圆心为(–1, –2 )又r=所以所求的圆的方程是(x + 1)2 + (y + 2)2 = 10.例3 已知三点A(3,2),B(5,–3),C(–1,3),以P(2,–1)为圆心作一个圆,使A、B、C三点中一点在圆外,一点在圆上,一点在圆内,求这个圆的方程.【解析】要使A、B、C三点中一点在圆外,一点在圆上,一点在圆内,则圆的半径是|PA|、|PB|、|PC|中的中间值.PA PB PC||||因为|PA|<|PB|<|PC|所以圆的半径||==r PB故所求的圆的方程为(x – 2)2 + (y + 1)2 = 13.。
《4.1.1圆的标准方程》教学案3
《4.1.1圆的标准方程》教学案3学习目标1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程.2、会用待定系数法求圆的标准方程.学习重点圆的标准方程学习难点会根据不同的已知条件,利用待定系数法求圆的标准方程.教学设计一、目标展示二、自主学习1.圆的定义平面内到一定点的距离等于定长的点的轨迹是圆,定点是圆心,定长是圆的半径.2.圆的标准方程3.点与圆的位置关系设点P到圆心距离为d,圆的半径为r,则点与圆的位置有如下表所示的对应关系:位置关系点在圆外点在圆上点在圆内d与r的关系d>r d=r d<r1.圆(x+a)2+(y+b)2=m2的圆心和半径各是什么?2.确定圆的标准方程需要哪几个独立条件?3.已知点M(x0,y0)与圆(x-a)2+(y-b)2=r2,点M在圆外、圆上、圆内的条件分别是什么?四、精讲点拨[例1] (1)写出下列各圆的方程:①圆心在原点,半径是3;②圆心在点C(3,4)处,半径是5;③经过点P(5,1),圆心在点C(4,2)处;(2)求圆心在直线x-2y-3=0上,且过点A(2,-3),B(-2,-5)的圆的标准方程.若本例(2)中两点不变,求过A、B两点且面积最小的圆的标准方程.———————————————————————————————求圆的标准方程时,一般有两种方法(1)待定系数法,其一般步骤如下:①根据题意,设出所求圆的标准方程(x-a)2+(y-b)2=r2.②根据已知条件,建立关于a,b,r的方程组.③解方程组,求出a,b,r的值.④将a,b,r的值代入所设的方程,即为所求圆的方程.(2)由圆的几何性质直接求出圆心坐标和半径,然后代入标准式写方程.这种方法要充分利用圆的几何性质,但计算相对较容易.————————————————————————————————————1.(1)已知圆的圆心为(2,-3),一条直径的两个端点分别落在x轴、y轴上,求此圆的方程.(2)一个圆经过A(10,5),B(-4,7)两点,半径为10,求圆的标准方程.[例2] 判断点P(1,1)与圆(x-1)2+(y-2)2=4的位置关系.若点P(1,1)在圆(x-1)2+(y-2)2=r2(r>0)内,而M(3,2)在其外,求半径r的取值范围.———————————————————————————————判断点与圆的位置关系有两种方法(1)将所给的点M与圆心C的距离跟半径r比较:若|CM|=r,则点M在圆上;若|CM|>r,则点M在圆外;若|CM|<r,则点M在圆内.(2)可利用圆的标准方程来确定:点M(m,n)在圆C上⇔(m-a)2+(n-b)2=r2;点M(m,n)在圆C外⇔(m-a)2+(n-b)2>r2;点M(m,n)在圆C内⇔(m-a)2+(n-b)2<r2.—————————————————————————————————————2.已知点(1,1)在圆(x-a)2+(y+a)2=4的内部,求实数a的取值范围.五、达标检测1.圆心为C(-1,-1),半径为2的圆的标准方程为( )A.(x-1)2+(y-1)2=2B.(x-1)2+(y-1)2=4C.(x+1)2+(y+1)2=2D.(x+1)2+(y+1)2=42.圆心为(0,4),且过点(3,0)的圆的方程为( )A.x2+(y-4)2=25B.x2+(y+4)2=25C.(x-4)2+y2=25D.(x+4)2+y2=253.点P(a,10)与圆(x-1)2+(y-1)2=2的位置关系是( )A.在圆外B.在圆上C.在圆内D.与a的值有关4.已知圆C的方程为(x+1)2+(y-2)2=5,则圆心C到直线2x+y-1=0的距离为________.5.点P(1,-1)在圆(x+2)2+y2=m的外部,则实数m的取值范围是________.6.已知圆C经过点A(1,3),B(2,2),并且直线l:3x-2y=0平分圆C,求圆C的方程六、课堂小结1、圆的标准方程.2、点与圆的位置关系的判断方法.3、根据已知条件求圆的标准方程的方法.课后作业1复习本节课内容;p习题4.1第2、3、4题2课本130教后反思。
高中数学 《圆的标准方程》教案1 新人教A版必修2
4.1.1 圆的标准方程教学要求:使学生掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程教学重点:圆的标准方程的推导步骤;根据具体条件正确写出圆的标准方程.教学难点:运用圆的标准方程解决一些简单的实际问题教学过程:一、复习准备:1.提问:两点间的距离公式?2.讨论:具有什么性质的点的轨迹称为圆?圆的定义?3.思考:在平面直角坐标系中,如何确定一个圆呢?二、讲授新课:1. 圆的标准方程:①设定点 A(a ,b),半径r ,设圆上任一点M 坐标为(x ,y).②写点集:根据定义,圆就是集合P={M||MA|=r}④化简方程: 将上式两边平方得222)))(r b x a x =-+-(建系设点→写点集→列方程→化简方程⇒圆的标准方程 (standard equation of circle)) ⑤思考:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?⑥师指出:只要a ,b ,r 三个量确定了且r >0,圆的方程就给定了.这就是说要确定圆的方程,必须具备三个独立的条件.注意,确定a 、b 、r ,可以根据条件,利用待定系数法来解决.2. 圆的标准方程的应用例1、写出下列各圆的方程:(1)圆心在原点,半径是3; (2)经过点P(5,1),圆心在点C(8,-3); (指出:要求能够用圆心坐标、半径长熟练地写出圆的标准方程.)例2、已知两点P 1(4,9)和P 2(6,3),求以P 1P 2为直径的圆的方程,试判断点M(6,9)、N(3,3)、 Q(5,3)是在圆上,在圆内,还是在圆外?(从确定圆的条件考虑,需要求圆心和半径,可用待定系数解决)探究:点M (00,y x )在圆222r y x =+内的条件是什么?在圆外呢?例3、 ABC ∆的三个定点的坐标分别是 A(5,1), B(7,-3), C(2,-8),求它的外接圆的方程 ( 用待定系数法解)思考:你还有其它方法吗?例4、已知圆心为C 的圆经过点A(1,1)和B(2,-2),却圆心C 在直线L:10x y -+=上,求圆心为C的圆的标准方程。
学案5:4.1.1 圆的标准方程
4.1.1 圆的标准方程学习目标1.明确圆的基本要素,能用定义推导圆的标准方程.2.会求圆的标准方程,能够判断点与圆的位置关系.基础知识1.圆M的____适合方程(x-a)2+(y-b)2=名师点拨由圆的标准方程,可直接得到圆心和半径;给出圆心和半径,也可直接写出圆的标准方程.做一做1-1 圆x2+y2=1的圆心为()A.(0,0)B.(1,1)C.(0,1)D.不存在做一做1-2 圆(x-1)2+(y+2)2=2的半径为()A.1 B.2C.2 D.42.点与圆的位置关系圆C:(x-a)2+(y-b)2=r2(r>0),其圆心为C(a,b),半径为r,点P(x0,y0),设d=|PC|+(y0-b)2.=(x0-a)2做一做2 圆C:(x-1)2+(y+2)2=4,点P(x0,y0)在圆C内部,且d=(x0-1)2+(y0+2)2,则有()A.d>2 B.d<2 C.d>4 D.d<4重点难点1.特殊位置的圆的标准方程剖析:如下表所示.2.圆不是函数的图象剖析:根据函数的知识,对于平面直角坐标系中某一曲线,如果垂直于x轴的直线与此曲线至多有一个交点,那么这条曲线是函数的图象;否则,不是函数的图象.在平面直角坐标系中,垂直于x轴的直线与圆至多有两个交点,因此圆不是函数的图象.但是存在图象是圆弧形状的函数.例如,函数y=b+r2-(x-a)2(r>0)的图象是以(a,b)为圆心,半径为r,位于直线y=b上方的半圆;函数y=b-r2-(x-a)2(r>0)的图象是以(a,b)为圆心,半径为r,位于直线y=b下方的半圆.函数和圆的联系,丰富了函数概念的内涵,又对圆赋予了代数意义.因此,可以用函数来研究平面几何问题,反过来也可以用平面几何研究函数问题,这充分揭示了数和形的密切联系,体现了数形结合的完美统一.典型例题题型一:判断点与圆的位置关系例1 已知圆C:(x-5)2+(y-6)2=10,试判断点M(6,9),N(3,3),Q(5,3)与圆C的位置关系.反思:判断点与圆的位置关系,可以判断该点与圆心的距离和圆的半径的大小关系,如本题;也可将该点的坐标代入圆的方程判断.题型二:求圆的标准方程例2 求经过A(6,5),B(0,1)两点,并且圆心在直线l:3x+10y+9=0上的圆的标准方程.反思:求圆的标准方程的方法:(1)直接法(如本题解法一),直接求出圆心坐标和半径.(2)待定系数法(如本题解法二),步骤是:①设圆的标准方程为(x-a)2+(y-b)2=r2;②由条件列方程(组)解得a,b,r的值;③写出圆的标准方程.题型三:易错辨析易错点不理解圆的标准方程例3 已知圆C:(x-5)2+(y+1)2=3,则圆C的周长等于__________.错解:半径r=3,则周长等于2πr=6π,故填6π.错因分析:圆C的半径r≠3,应有r2=3,r= 3.反思:圆C:(x-a)2+(y-b)2=m(m>0),其中圆C的半径r≠m,应为r=m.随堂练习1.圆心为(0,4),且过点(3,0)的圆的方程为()A.x2+(y-4)2=25 B.x2+(y+4)2=25C.(x-4)2+y2=25 D.(x+4)2+y2=25 2.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)()A.是圆心B.在圆上C.在圆内D.在圆外3.点P(1,-1)在圆(x+2)2+y2=m的外部,则实数m的取值范围是__________.4.已知圆C:(x+2)2+(y-6)2=1和直线l:3x-4y+5=0,求圆C关于直线l对称的圆的方程.5.已知△ABC的三个顶点分别为A(1,1),B(1,4),C(5,1),求它的外接圆的方程.参考答案基础知识1.圆心半径(x-a)2+(y-b)2=r2坐标圆C做一做1-1 【答案】A做一做1-2 【答案】B2.>=<做一做2 【答案】D典型例题例1 解:圆心C (5,6),半径r =10.|CM |=(6-5)2+(9-6)2=10,|CN |=(3-5)2+(3-6)2=13>10, |CQ |=(5-5)2+(3-6)2=3<10.因此点M 在圆上,点N 在圆外,点Q 在圆内. 例2 解法一:(直接法)由题意,得AB 的中垂线方程为3x +2y -15=0, 由⎩⎪⎨⎪⎧ 3x +2y -15=0,3x +10y +9=0,解得⎩⎪⎨⎪⎧x =7,y =-3. ∴圆心为C (7,-3).∴r =|CB |=72+(1+3)2=65.∴所求圆的标准方程是(x -7)2+(y +3)2=65. 解法二:(待定系数法)设圆的标准方程为(x -a )2+(y -b )2=r 2(r >0).则有⎩⎪⎨⎪⎧ (6-a )2+(5-b )2=r 2,(0-a )2+(1-b )2=r 2,3a +10b +9=0,解得a =7,b =-3,r =65.∴所求圆的标准方程是(x -7)2+(y +3)2=65. 例3 【答案】23π随堂练习1.【答案】A2.【答案】C3.【答案】(0,10)4.解:圆C :(x +2)2+(y -6)2=1的圆心为C (-2,6),半径为1, 设所求圆的圆心为M (a ,b ),半径为1. 由题知点M 与点C 关于直线l 对称,则有263450,22631,24a b b a -+⎧⨯-⨯+=⎪⎪⎨-⎪⨯=-⎪+⎩解得a =4,b =-2. 则所求圆的方程为(x -4)2+(y +2)2=1.5.解法一:设△ABC 外接圆的方程为(x -a )2+(y -b )2=r 2,则 222222222(1)(1),(1)(4),(5)(1),a b r a b r a b r ⎧-+-=⎪-+-=⎨⎪-+-=⎩解得3,2.5,2.5,a b r =⎧⎪=⎨⎪=⎩故所求圆的方程为(x -3)2+(y -2.5)2=6.25. 解法二:线段AB 的中垂线为y =2.5,线段AC 的中垂线为x =3,则圆心为(3,2.5), 半径r2.5,故所求圆的方程为(x -3)2+(y -2.5)2=6.25.。
411圆的标准方程教案
与价值观
通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣.
教学重点
圆的标准方程的求法及其应用
教学难点
会根据不同的条件求圆的标准方程
教学方法
“自主学习、合作探究、精讲点拨、有效训练〞四环节教学法
教
学
过
程
设
计
教
学
过
程
设
计
教
学
过
程
设
计
教师活动
学生活动
导入新课
合作探究
应用理解
应用理解
例1:写出圆心为 ,半径长等于5的圆的方程,并判断点 是否在这个圆上。
例2: 的三个顶点的坐标是 求它的外接圆的方程。
例3:圆心为 的圆经过点 和 ,且圆心在直线 上,求圆心为 的圆的标准方程.
检测反应
1.圆心在 ,半径长是 的圆的标准方程是.
2.圆心在 ,且经过点 的圆的标准方程是.
3.两点 ,求以线段 为直径的圆的方程。
4. 的顶点坐标分别是 ,求 外接圆的方程。
5.点(sinθ,cosθ)与圆x2+y2= 的位置关系是()
A.在圆上B.在圆内C.在圆外D.不能确定
归纳总结
课后
反思
课题
圆的标准方程
教
学
目
标
知识与技能
1.会用定义推导圆的标准方程,并掌握圆的标准方程的特征.
2.能根据所给条件求圆的标准方程.
3.Hale Waihona Puke 握点与圆的位置关系.过程与方法
进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一课时 4.1.1 圆的标准方程
教学要求:使学生掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程
教学重点:圆的标准方程的推导步骤;根据具体条件正确写出圆的标准方程.
教学难点:运用圆的标准方程解决一些简单的实际问题
教学过程:
一、 复习准备:
1.提问:两点间的距离公式?
2.讨论:具有什么性质的点的轨迹称为圆?圆的定义?
二、讲授新课:
1. 圆的标准方程:
①建系设点: A. C 是定点,可设C(a ,b)、半径r ,且设圆上任一点M 坐标为(x ,y). ②写点集:根据定义,圆就是集合P={M||MC|=r}
④化简方程: 将上式两边平方得22
()()x a y b r -+-=
(建系设点→写点集→列方程→化简方程⇒圆的标准方程 (standard equation of circle)) ⑤思考:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?
⑥师指出:只要a ,b ,r 三个量确定了且r >0,圆的方程就给定了.这就是说要确定圆的方程,必须具备三个独立的条件.注意,确定a 、b 、r ,可以根据条件,利用待定系数法来解决.
2. 圆的标准方程的应用
①.写出下列各圆的方程:
(1)圆心在原点,半径是3;(2)经过点P(5,1),圆心在点C(8,-3);
(指出:要求能够用圆心坐标、半径长熟练地写出圆的标准方程.)
②.已知两点P 1(4,9)和P 2(6,3),求以P 1P 2为直径的圆的方程,试判断点M(6,9)、N(3,3)、Q(5,3)是在圆上,在圆内,还是在圆外?
(从确定圆的条件考虑,需要求圆心和半径,可用待定系数解决)
③ ABC 的三个定点的坐标分别是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程
( 用待定系数法解)
④ .已知圆心为C 的圆经过点A(1,1)和B(2,-2),却圆心C 在直线L:10x y -+=上,求圆心为C 的圆的标准方程。
3. 小结: ①.圆的方程的推导步骤:建系设点→写条件→列方程→化简→说明 ②.圆的方程的特点:点(a ,b)、r 分别表示圆心坐标和圆的半径;
③.求圆的方程的两种方法:(1)待定系数法;确定a ,b ,r ;
(2)轨迹法:求曲线方程的一般方法.
三、巩固练习:
1. 练习:P131 14
2. 求下列条件所决定的圆的方程:
(1) 圆心为 C(3,-5),并且与直线x-7y+2=0相切;
(2) 过点A(3,2),圆心在直线y=2x 上,且与直线y=2x+5相切.
3. 已知:一个圆的直径端点是A(x 1,y 1)、B(x 2,y 2).
证明:圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.
4. 作业 P134 习题4 1、2题.
第二课时 4.1.2圆的一般方程
教学要求:使学生掌握圆的一般方程的特点;能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程.
教学重点:(1)能用配方法,由圆的一般方程求出圆心坐标和半径;(2)能用待定系数法,由
已知条件导出圆的方程.
教学难点:圆的一般方程的特点
教学过程:
一、复习准备:
1. 提问:圆的标准方程?
2.对方程222410x y x y +-++=配方,化为圆标准方程形式. 则圆心、半径?
二、讲授新课:
1.圆的一般方程的定义
(1)分析方程220x y Dx Ey F ++++=表示的轨迹
1)当2240D E F +->时,方程(1)与标准方程比较,可以看出方程表示以,22D E ⎛⎫-
- ⎪⎝⎭为
为半径的圆。
2)当2240D E F +-=时,方程只有实数解,22D E x y =-
=-。
它表示一个点(,)22
D E -- 3)当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.
(2)给出圆的一般方程的定义 当2240D E F +->时,方程220x y Dx Ey F ++++=叫做圆的一般方程。
(3)思考:圆的标准方程与圆的一般方程各有什么特点?
2.圆的一般方程的运用
1) 求过三点O(0,0),12(1,1),(4,2)M M 的圆的方程,并求这个圆的半径长和圆心坐标。
(小结:1.用待定系数法求圆的方程的步骤:1.根据题意设所求圆的方程为标准式或一般式;2.根据条件列出关于a 、b 、r 或D 、E 、F 的方程;3.解方程组,求出a 、b 、r 或D 、E 、F 的值,代入所设方程,就得要求的方程.)
2) 求圆心在直线 l :0x y +=上,且过两圆C 1∶x 2+y 2-2x+10y -24=0和C 2:
22210240x y x y +-+-=的交点的圆的方程.
3. 小结:一般方程;化标准方程;配方法;待定系数法.
三.巩固练习:
1.134P 练习 1
3 2. 求下列各圆的一般方程:
(1)过点A(5,1),圆心在点C(8,-3);
(2)过三点A(-1,5)、B(5,5)、C(6,-2).
2.已知一曲线是与两定点(0,0),(3,0)O A 的距离的比为
12
的点的轨迹,求这个曲线的方程,并画出曲线
3.作业:134p 习题4.1 第4题。