九年级数学测试(1)
九年级上册数学测试题(含答案)
九年级上册数学测试题(考试时间: 120 分钟分数: 120 )一、选择题(本大题共10 小题,共 30 分)1.某钢铁厂一月份生产钢铁 560 吨,从二月份起 ,由于改进操作技术 ,使得第一季度共生产钢铁1850 吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为 x,则可得方程A. B.C. D.2.若一元二次方程的常数项是 0,则 m 等于 ( )A. B. 3 C. D. 93.如图 ,AB 是的一条弦 ,于点 C,交于点 D,连接若,,则的半径为 ()A. 5B.C. 3D.4.若抛物线与 x 轴有交点 ,则 m 的取值X围是( )A. B. C. D.5.如图 ,A,B,C 是上三个点 ,,则下列说法中正确的是()A. B. 四边形 OABC 内接于C. D.6.中,于 C,AE 过点 O,连接 EC,若,,则 EC长度为( )A. B. 8 C. D.7.下列判断中正确的是 ( )A.长度相等的弧是等弧B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦8. 如图 ,已知与坐标轴交于点A,O,B,点C在上,且,若点 B 的坐标为,则弧 OA 的长为 ( )A.B.C.D.9.将含有角的直角三角板 OAB 如图放置在平面直角坐标中 ,OB 在 x 轴上 ,若,将三角板绕原点 O 顺时针旋转,则点 A 的对应点的坐标为( )A.B.C.D.10.如图 ,在中 ,,,以点 C 为圆心 ,CB 的长为半径画弧 ,与 AB 边交于点 D,将绕点 D旋转后点 B 与点 A 恰好重合 ,则图中阴影部分的面积为 ()A. B.C. D.二、填空题(本大题共8 小题,共 24分)11.m 是方程的一个根 ,则代数式的值是______.12.已知,,是二次函数上的点 ,则, , 从小到大用“”排列是 ______.13.如图 ,在中 ,直径,弦于 E,若,则______.14.如图是一座抛物形拱桥 ,当水面的宽为 12m时,拱顶离水面 4m,当水面下降3m 时 ,水面的宽为 ______15.如图 ,正的边长为 4,将正绕点 B顺时针旋转得到,若点 D 为直线上的一动点 ,则的最小值是 ______.16.如图 ,在平面内将绕着直角顶点 C 逆时针旋转,得到,若,,则阴影部分的面积为 ______.17.如图,A、B、C、D 均在上 ,E 为 BC 延长线上的一点 ,若,则______.18.如图 ,内接于,于点 D,若的半径,则 AC 的长为 ______.三、解答题(本大题共7 小题,共66分)19. 已知关于 x 的一元二次方程有实数根.求 m 的取值X围;( 3+3=6分)若方程有一个根为,求 m 的值及另一个根.20. 如图 ,E 与 F 分别在正方形 ABCD 边 BC 与 CD 上,.以A 为旋转中心 ,将按顺时针方向旋转 ,画出旋转后得到的图形.( 4+4=8分)已知,,求 EF 的长.21. 平面上有 3 个点的坐标:,,.在 A,B,C 三个点中任取一个点 ,这个点既在直线上又在抛物线上的概率是多少?从A,B,C 三个点中任取两个点 ,求两点都落在抛物线上的概率.( 4+4=8分)22. 如图 ,抛物线与x轴交于A、B两点点A在点B的左侧,点 A 的坐标为,与 y 轴交于点,作直线动点P在x轴上运动,过点 P 作轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.( 4+4+4=12)Ⅰ求抛物线的解析式和直线 BC 的解析式;Ⅱ当点 P 在线段 OB 上运动时 ,求线段 MN 的最大值;Ⅲ当以 C、O、M、N 为顶点的四边形是平行四边形时,直接写出 m 的值.23. 如图,内接于,,CD 是的直径 ,点 P 是 CD 延长线上的一点 ,且.( 5+5=10分)求证: PA 是的切线;若,,求的半径.24. 如图 ,AB 是的直径,四边形ABCD内接于,延长 AD,BC 交于点 E,且.求证:;若,,求的长.25. 如图 ,A、B、C 是圆 O 上三点 ,,点 D 是圆上一动点且,过点 D 作 BC 的平行线 DE,过点 A 作 AB 的垂线 AE,两线交于点 E.(1)求证: AB 是圆 O 的直径。
房山区2023年九年级学业水平考试第一次统练数学答案及评分标准
房山区2023年初中学业水平考试模拟测试(一)九年级数学参考答案一、选择题(共16分,每题2分)二、填空题(共16分,每题2分)9.x≥5 10.a (x -1) 2 11.a+b 12.<13.2914.答案不唯一,ac=4即可 15.李波 16. 5,14三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分)17.()04sin 6043--++π-………………………………4分………………………………5分18. 解①得:x <3 ………………………………2分解②得:x >2………………………………4分∴不等式组的解集是2<x <3 ………………………………5分19. 解: ………………………………2分………………………………3分………………………………4分………………………………5分441413=-++=-+=-982962)3()2(2222a a a a a a a a a 222430,43286=6+9=15a a a a a a +-=∴+=∴+=∴原式20. 方法一:证明:∵AD 平分∠BAC∴∠BAD =∠CAD , ………………………………1分 在△BAD 与△CAD 中, ===AB ACBAD CAD AD AD ⎧⎪∠∠⎨⎪⎩∴△BAD ≌△CAD ………………………………3分 ∴BD =CD ,∠BDA =∠CDA , ………………………………4分 ∵∠BDA+∠CDA=180°,∴∠BDA =∠CDA=90°∴AD ⊥BC ………………………………5分 方法二:证明:∵点D 为BC 中点,∴BD =CD , ………………………………1分 在△BAD 与△CAD 中, ===AB AC AD AD BD CD ⎧⎪⎨⎪⎩,,∴△BAD ≌△CAD ………………………………3分 ∴∠BAD =∠CAD ,∠BDA =∠CDA , ……………………4分又∵∠BDA+∠CDA=180°, ∴∠BDA =∠CDA=90°∴AD ⊥BC ………………………………5分 方法三:证明:∵AB=AC∴∠B =∠C ………………………………1分 ∵AD ⊥BC ,∴∠BDA =∠CDA=90° ………………………………2分 在△BAD 与△CAD 中,DCBAD CB AABCD===AB AC AD AD BD CD ⎧⎪⎨⎪⎩,, ∴△BAD ≌△CAD ………………………………4分 ∴BD =CD ,∠BAD =∠CAD . ………………………………5分(其它证法酌情给分)21.(1) 证明:∵ ABCD 中,对角线AC 、BD 交于点O ,∴OA =OC , ………………………………1分 又∵OE=OF=OA ,∴四边形AECF 是平行四边形, ……………………2分 ∵ OE=OF=OA=OC , ∴OE+OF=OA+OC , 即AC =EF ,∴ AECF 是矩形. ………………………………3分(2)证明:∵四边形AECF 是矩形且AE=AF ,∴四边形AECF 是正方形, …………………………4分 ∴AC ⊥EF ,∴ ABCD 是菱形, …………………………5分 ∴AC 平分∠BAD . …………………………6分(其它证法酌情给分)22.(1)解:∵点A (1,a )在直线y = kx+ 3k (k >0)上,∴a = k +3k =3 ………………………………1分即a 值为3∵直线y = x + m 经过点B (2,3),∴2+m =3,∴m =1. ………………………………2分 ∴直线2l 的表达式为y = x + 1 . ……………………3分 (2)k 的取值范围为1≤k ≤23. ………………………………5分23.(1)证明:连接AO , ……………………1分∵AB =AC ,点O 为直径BC 中点,∴AO ⊥BC ,∠BAC =2∠OAC , ……………………2分 ∴∠OAC +∠ACO =90°, ∵BC 为⊙O 直径,点D 在⊙O 上, ∴∠BDC =90°, ∴∠DBC +∠ACO =90°, ∴∠DBC =∠OAC ,∴∠BAC =2∠DBC ; ……………………3分(2)解:连接OD , ……………………4分 ∴∠DOE =2∠DBC , 又∵∠BAC =2∠DBC ,∴∠BAC=∠DOE , ……………………5分∴cos ∠DOE = cos ∠BAC =53,∵DE 切⊙O 于点D , ∴∠ODE =90°, 在Rt △ODE 中,cos ∠DOE =OD OE =53,∴设OD =3x ,OE =5x , ∴由勾股定理可得,DE =4x , ∵DE =4, ∴4x =4, ∴x =1,∴OE =5,OD =3,∴OB =OD =3,∴BE =OB +OE =3+5=8. ……………………6分 (其它解法酌情给分)24. (1)74 ……………………2分(2)甲校 ……………………4分 (3)答案不唯一 ……………………6分25. (1)“门高”: 7.2 m ……………………1分设函数表达式2(6)7.2y a x =-+ (a <0) ……………………2分 将点(12,0)代入得:367.20a +=,解得0.2a =-,故拱门上的点满足的函数关系为:20.267.2y x =--+(). …………………3分(2) > ……………………5分26.(1)把(1,1)代入表达式得,112a b =-+,∴a b 2= ……………………1分 抛物线为22222()2y x ax a x a a a =-+=--+抛物线顶点坐标为2(,2)a a a -+ ……………………2分(2)∵抛物线关于x =a 对称,开口向上,∴当1-a ≤x ≤2+a 时,由对称性得,x =2+a 时函数y 有最大值: y 最大=(a+2-a )2-a 2+2a=-a 2+2a+4. ……………………3分 ∵对于任意1-a ≤x ≤2+a ,都有y ≤1,∴-a 2+2a+4≤1 ……………………4分 即a 2-2a -3≥0∴ a ≤-1或a ≥3 ……………………6分 (其它解法酌情给分)27.(1)补完图形如下:……………………1分∠ADG =∠CDG . ……………………2分证明:如图,连接AG 、CG∵∠EAF =90° ,点G 是EF 中点,∴AG =12EF∵正方形ABCD ,∠ECF =90° ,∴CG =12EF∴AG =CG ……………………3分 ∵AD =CD ,DG =DG ∴△ADG ≌△CDG∴∠CDG =∠ADG ……………………4分 (2)BC =3BE ……………………5分过点G 作GH ⊥CD 于点H , 易证GH 是△CEF 的中位线,∴CE =2GH . ……………………6分 易证△GDH 是等腰直角三角形,∴DG .又∵DG DF ,∴DF =GH . 易证△ADF ≌△ABE ∴DF =BE , ∴BE =GH . ∵CE =2GH , ∴CE =2BE∴BC =3BE ……………………7分 (其它证法酌情给分)28.(1)①(-2,1); ……………………2分②存在.设点B 坐标为(x ,x -1),则它向右平移1个单位,再向下平移1个单位 的点坐标为B'(x +1,x -2),B'关于y 轴对称点坐标为(-x -1,x -2) ……………3分 代入y = x -1得x -2 =-x -1-1,x = 0; ……………………4分 ∴点B 坐标为(0,-1). ……………………5分(2)-12 ≤t ≤12 ……………………7分。
(典型题)初中数学九年级数学上册第三单元《概率的进一步认识》测试(包含答案解析)(1)
一、选择题1.掷一枚均匀的硬币两次,两次均为反面朝上的概率是()A.12B.13C.23D.142.在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为()A.12B.13C.14D.13.如图,正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点.现随机向正方形ABCD内投掷一枚小针,则针尖落在阴影区域的概率为()A.18B.14C.13D.124.王刚设计了一个转盘游戏:随意转动转盘,使指针最后落在红色区域的概率为13,如果他将转盘等分成12份,则红色区域应占的份数是()A.3份B.4份C.6份D.9份5.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是( )A.12B.13C.23D.166.抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是()A.小于12B.等于12C.大于12D.无法确定7.如图,随意向水平放置的大⊙O内部区域抛一个小球,则小球落在小⊙O内部(阴影)区域的概率为()A.12B.14C.13D.198.2018年10月,开州区举行初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,甲、乙两名同学都抽到化学学科的概率是().A.13B.14C.16D.199.在一个不透明的盒子中有大小均匀的黄球与白球共12个,若从盒子中随机取出一个球,若取出的球是白球的概率是13,则盒子中白球的个数是().A.3 B.4 C.6 D.810.一个不透明的布袋中,装有红、黄、白三种只有颜色不同的小球,其中红色小球有6个,黄、白色小球的数量相同,为估计袋中黄色小球的数量,每次将袋中小球搅匀后摸出一个小球记下颜色放回,再搅匀多次试验发现摸到红色的频率是18,则估计黄色小球的个数是()A.21 B.40 C.42 D.4811.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出两个小球,则摸出的两个小球标号之和大于4的概率是()A.38B.12C.58D.2312.已知数据:1174,52π1-,0.其中无理数出现的频率为()A.0.2B.0.4C.0.6D.0.8二、填空题13.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.14.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.15.一个不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同.搅匀后从中任意摸出2个球,摸出两个颜色不同的小球的概率为_____.16.中缅边境实弹演习期间,空军战斗机随即将炮弹放在如图所示方格地面上(每个小方格都是边长相等的正方形),则炮弹落在阴影方格地面上的概率为_____.17.在一个布袋中装有四个完全相同的小球,它们分别写有“美”、“丽”、“罗”、“山”的文字.先从袋中摸出1个球后放回,混合均匀后再摸出1个球,求两次摸出的球上是含有“美”“丽”二字的概率为_____.的矩形方框内有一个不规则的区城A(图中阴影部分所示),小明同学18.如图,在43用随机的办法求区域A的面积.若每次在矩形内随机产生10000个点,并记录落在区域A 内的点的个数,经过多次试验,计算出落在区域A内点的个数的平均值为6700个,则区域A的面积约为___________.19.在一个不透明的布袋中,有红球、白球共30个,除颜色外其它完全相同,小明通过多次摸球试验后发现,其中摸到红球的频率稳定在40%,则随机从口袋中摸出一个是红球的概率是_____.20.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是_____.三、解答题21.2020年疫情期间,某校为学生提供四种在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了解学生的需求,对学生进行了“你最喜欢哪种在线学习方式的调查,调查结果制成两幅不完整统计图如图,根据图中信息回答问题:(1)本次调查人数有人,在线答疑所在扇形的圆心角度数是;(2)补全条形统计图;(3)甲、乙两位同学都参加了在线学习,请用画树状图或列表的方法求出两名同学喜欢同一种在线学习方式的概率.22.有甲、乙、丙三张完全相同的卡片,小明在其正面各写上一个方程,如图,然后将这三张卡片背面朝上洗匀.(1)从中随机抽取一张,求抽到方程没有实数根的概率;(2)从中随机抽取一张,记下方程后放回,再随机抽取一张,请用列表或面树状图的方法,求抽到的方程都有实数根的概率.23.河口瑶族自治县位于红河哈尼族彝族自治州东南部,隔红河与越南老街市、谷柳市相望,是云南唯一一个以瑶族为主体的自治县.瑶族人民的粽粑是当地一种美味的特色小吃,包粽粑是瑶族传统的“盘王节”(农历十月十六)活动之一.盘王节那天,小盘同学回家看到桌子上有一盘粽粑,其中花生仁、紫苏仁各1,豆沙仁2个,这些粽粑除陷外,其它无差别.(1)小盘随机地从盘子中取一个粽粑,求取出的是花生仁的概率;(2)小盘随机地从盘子中取出两个粽粑,请用列表法或画树状图法表示所有可能的结果,并求出小盘取出的两个粽粑都是豆沙粽粑的概率.24.如图,转盘中A,B,C三个扇形的圆心角均为120°,让转盘自由转动两次,当转盘停止转动时,求指针两次都落在A扇形的概率.(转盘停止转动时,若指针箭头恰好停留在分界线上,则重转一次)25.某校合唱团为了开展线上“同唱一首赞歌”活动,需招收新成员,小东、小海、小富、小美四名同学报名参加了应聘活动,其中小东、小海来自八年级,小富、小美来自九年级,现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小东同学的概率为___________;(2)若随机抽取两名同学,请用画树状图或列表法求两名同学均来自九年级的概率.26.三名运动员参加定点投篮比赛,原定甲、乙、丙依次出场.为保证公平竞争,现采用抽签方式重新确定出场顺序.(1)画出抽签后每个运动员出场顺序的树状图;(2)求:①抽签后甲运动员的出场顺序发生变化的概率;②抽签后每个运动员的出场顺序都发生变化的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】首先根据题意用列举法,即可求得掷一枚均匀的硬币两次,所有等可能的结果,又由两次均为反面朝上的只有1种情况,然后利用概率公式求解即可求得答案.【详解】解:∵掷一枚均匀的硬币两次,等可能的结果有:正正,正反,反正,反反,又∵两次均为反面朝上的只有1种情况,∴两次均为反面朝上的概率是:1.4故选:D.【点睛】本题考查了用列举法求概率.注意不重不漏的表示出所有等可能的结果是解此题的关键,注意:概率 所求情况数与总情况数之比.2.C解析:C【详解】解:∵共有4个球,红球有1个,∴摸出的球是红球的概率是:P=1.4故选C.【点睛】本题考查概率公式.3.B解析:B【分析】连接BE,如图,利用圆周角定理得到∠AEB=90°,再根据正方形的性质得到AE=BE=CE,于是得到阴影部分的面积=△BCE的面积,然后用△BCE的面积除以正方形ABCD的面积可得到镖落在阴影部分的概率.解:连接BE ,如图,∵AB 为直径, ∴∠AEB=90°,而AC 为正方形的对角线, ∴AE=BE=CE ,∴弓形AE 的面积=弓形BE 的面积, ∴阴影部分的面积=△BCE 的面积, ∴镖落在阴影部分的概率=14. 故选:B . 【点睛】本题考查了几何概率:某事件的概率=这个事件所对应的面积除以总面积.也考查了正方形的性质.4.B解析:B 【分析】首先根据概率确定在图中红色区域的面积在整个面积中占的比例,根据这个比例即可求出红色区域应占的份数. 【详解】解:∵他将转盘等分成12份,指针最后落在红色区域的概率为13, 设红色区域应占的份数是x ,∴1123x , 解得:x=4, 故选:B . 【点睛】本题考查了几何概率的求法,根据面积之比即所求几何概率得出是解题关键.5.A解析:A 【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可.解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概率为61122=. 故答案为A . 【点睛】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.6.B解析:B 【分析】根据概率的意义分析即可. 【详解】解:∵抛掷一枚质地均匀的硬币是随机事件,正面朝上的概率是12∴抛掷第100次正面朝上的概率是12故答案选:B 【点睛】本题主要考查概率的意义,熟练掌握概率的计算公式是解题的关键.7.B解析:B 【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比. 【详解】解:∵如图所示的正三角形, ∴∠CAB =60°,∴∠OAB =30°,∠OBA =90°, 设OB =a ,则OA =2a ,则小球落在小⊙O 内部(阴影)区域的概率为()22142a a ππ=. 故选:B .【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.8.D解析:D【分析】列树状图解答即可.【详解】树状图如下:共有9种等可能的情况,其中甲、乙都抽到化学学科的有1种情况,∴P(甲、乙两名同学都抽到化学学科)=19,故选:D.【点睛】此题考查列树状图求事件的概率,会画树状图,理解题意是解题的关键. 9.B解析:B【分析】根据白、黄球共有的个数乘以白球的概率即可解答.【详解】由题意得:12×13=4,即白球的个数是4.故选:B.【点睛】本题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.10.A 解析:A 【分析】根据多次试验发现摸到红球的频率是18,则可以得出摸到红球的概率为18,再利用红色小球有6个,黄、白色小球的数目相同进而表示出黄球概率,得出答案即可.【详解】设黄球的数目为x,则黄球和白球一共有2x个,∵多次试验发现摸到红球的频率是18,则得出摸到红球的概率为18,∴662x=18,解得:x=21,经检验x=21是所列方程的根,则黄色小球的个数是21个.故选:A.【点睛】本题考查了利用频率估计概率,根据题目中给出频率可知道概率,从而可求出黄色小球的数目是解题关键.11.D解析:D【分析】首先根据题意列出表格,然后由表格中求得所有等可能的结果与两次摸出的小球的标号之和大于4的情况,再利用概率公式即可求得答案;【详解】两次摸出小球标号的组合如下:共12组∴其概率为:=123,故选:D.【点睛】本题考查了用列表法或树状图法求概率,注意列表法或树状图法要不重复不遗漏的列出所有等可能的情况,所用到的知识点为:概率 =所求情况数与总情况数之比.12.B解析:B【分析】根据无理数的定义和“频率=频数÷总数”计算即可.【详解】解:共有5个数,其中无理数有,2π1-,共2个所以无理数出现的频率为2÷5=0.4.故选B.【点睛】此题考查的是无理数的判断和求频率问题,掌握无理数的定义和频率公式是解决此题的关键.二、填空题13.【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得【详解】解:所有可能的结果如下表:男1 男2 女1 女2 男1 (男1男2)(男1女1)(男解析:2 3【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.【详解】解:所有可能的结果如下表:的结果有8种,所以其概率为挑选的两位教师恰好是一男一女的概率为812=23,故答案为23.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14.【详解】试题分析:在线段等边三角形圆矩形正六边形这五个图形中既是中心对称图形又是轴对称图形的有线段圆矩形正六边形共4个所以取到的图形既是中心对称图形又是轴对称图形的概率为【点睛】本题考查概率公式掌握解析:4 5 .【详解】试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为4 5 .【点睛】本题考查概率公式,掌握图形特点是解题关键,难度不大.15.【分析】用列表法列举出所有等可能出现的情况从中找出两个球颜色不同的结果数进而求出概率【详解】解:用列表法表示所有可能出现的结果如下:共有12种不同的结果数其中两个球颜色不同的有6种∴摸出两个颜色不同解析:1 2【分析】用列表法列举出所有等可能出现的情况,从中找出两个球颜色不同的结果数,进而求出概率.【详解】解:用列表法表示所有可能出现的结果如下:共有12种不同的结果数,其中两个球颜色不同的有6种,∴摸出两个颜色不同的小球的概率为61122,故答案为:12.【点睛】本题考查随机事件的概率,可用列表法和树状图法来解,属于中考常考题型.16.【分析】根据几何概率的求法:炮弹落在阴影方格地面上的概率即该区域的面积与总面积的比值【详解】解:设每个小正方形的面积为1因为所有方格的面积为25阴影的面积为9所以炮弹落在阴影方格地面上的概率为;故答解析:9 25【分析】根据几何概率的求法:炮弹落在阴影方格地面上的概率即该区域的面积与总面积的比值.【详解】解:设每个小正方形的面积为1,因为所有方格的面积为25,阴影的面积为9,所以炮弹落在阴影方格地面上的概率为925;故答案为:925.【点睛】本题考查了几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.17.【分析】画树状图展示所有16种等可能的结果数再找出两次摸出的球上是写有美丽二字的结果数然后根据概率公式求解【详解】(1)用1234别表示美丽罗山画树形图如下:由树形图可知所有等可能的情况有16种其中解析:1 8【分析】画树状图展示所有16种等可能的结果数,再找出两次摸出的球上是写有“美丽”二字的结果数,然后根据概率公式求解.【详解】(1)用1、2、3、4别表示美、丽、罗、山,画树形图如下:由树形图可知,所有等可能的情况有16种,其中“1,2”出现的情况有2种,∴P(美丽)21168==.故答案为:18.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.18.04【分析】先利用古典概型的概率公式求概率再求区域A的面积的估计值【详解】解:由题意∵在矩形内随机产生10000个点落在区域A内点的个数平均值为6700个∴概率P=∵4×3的矩形面积为12∴区域A的解析:04【分析】先利用古典概型的概率公式求概率,再求区域A的面积的估计值.【详解】解:由题意,∵在矩形内随机产生10000个点,落在区域A内点的个数平均值为6700个,∴概率P=67000.6710000,∵4×3的矩形面积为12,∴区域A的面积的估计值为:0.67×12=8.04;故答案为:8.04;【点睛】本题考查古典概型概率公式,考查学生的计算能力,属于中档题.19.【分析】根据题意得出摸出红球的频率继而根据频数=总数×频率计算即可【详解】∵小明通过多次摸球试验后发现其中摸到红球的频率稳定在40∴口袋中红色球的个数可能是30×40=12个故答案为:12【点睛】本解析:【分析】根据题意得出摸出红球的频率,继而根据频数=总数×频率计算即可.【详解】∵小明通过多次摸球试验后发现其中摸到红球的频率稳定在40%,∴口袋中红色球的个数可能是30×40%=12个.故答案为:12.【点睛】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.20.【分析】利用黑色区域的面积除以游戏板的面积即可【详解】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4∴击中黑色区域的概率==故答案是:【点睛】本题考查了几何概率:求概率时已知和未知与几解析:1 5【分析】利用黑色区域的面积除以游戏板的面积即可.【详解】解:黑色区域的面积=3×3﹣12×3×1﹣12×2×2﹣12×3×1=4,∴击中黑色区域的概率=420=15.故答案是:15.【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.三、解答题21.(1)100,72°;(2)见解析;(3)14.【分析】(1)样本中“在线阅读”的人数有25人,占调查人数的25%,可求出调查人数;再求出“在线答疑”所占整体的百分比即可求出相应的圆心角的度数即可;(2)补全条形统计图即可;(3)画出树状图表示所有可能出现的结果情况,进而求出甲、乙两个人选择同一种方式的概率.【详解】解:(1)25÷25%=100(人),即本次调查人数有100人,“在线答疑”的人数为100-40-25-15=20(人),在扇形图中的圆心角度数为360°×20 100=72°;故答案为:100,72°;(2)补全条形统计图如图所示:(3)四类在线学习方式在线阅读、在线听课、在线答疑、在线讨论分别用A、B、C、D表示,画树状图如图:共有16个等可能的结果,其中甲、乙两名同学喜欢同一种在线学习方式的结果有4个, ∴甲、乙两名同学喜欢同一种在线学习方式的概率为41164=. 【点睛】本题考查了列表法与树状图法、条形统计图、扇形统计图等知识,理解两个统计图中的数量关系,正确画出树状图是解题的关键.22.(1)13;(2)49. 【分析】(1)根据根的判别式分别判断三个方程根的情况,再运用概率公式求解即可;(2)画出树状图展示所有9种等可能的结果,找出恰好抽到两个方程都有实数根的结果数,然后根据概率公式求解.【详解】解:(1)方程有实数根,则2=40b ac ∆-≥>甲方程:210x += 2=0411=40∆-⨯⨯-<∴甲方程没有实数根;乙方程:20x x +=2=1410=10∆-⨯⨯>∴乙方程有实数根丙方程:2210x x ++=2=2411440∆-⨯⨯=-=∴丙方程有实数根所以,抽到方程没有实数根的概率13; (2)画树状图:共有9种等可能的结果,其中恰好抽到两个方程都有实数根的结果数为4,所以恰好抽到两个方程都有实数根的概率=49. 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.(1)14;(2)16. 【分析】 (1)直接利用概率公式求出取出的是肉包的概率;(2)用列表法列举出所有的可能,进而利用概率公式求出答案.【详解】解:(1)共有4个等可能结果,其中花生仁有1个∴P (小盘从中随机地从盘子中取一个粽粑,取出的是花生仁)111124==++. (2)由题意可得:花生 紫苏 豆沙1 豆沙2 花生(花生,紫苏) (花生,豆沙1) (花生,豆沙2) 紫苏 (紫苏,花生)(紫苏,豆沙1) (紫苏,豆沙2) 豆沙1 (豆沙1,花生)(豆沙1,紫苏) (豆沙1,豆沙2) 豆沙2 (豆沙2,花生) (豆沙2,紫苏) (豆沙2,豆沙1)∴P (小盘取出的两个粽粑都是豆沙粽粑)21126==. 【点睛】此题主要考查了列表法或树状图法求概率,正确列举出所有的可能是解题关键. 24.19【分析】画出树状图,得出总结果数和指针两次都落在A 扇形的结果数,利用概率公式即可得答案.【详解】画树状图如下:∵共有9种等可能的结果,其中指针两次都落在A扇形的结果有1种,∴指针两次都落在A扇形的概率为19.【点睛】本题考利用列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.25.(1)14;(2)()16P=两名均来自九年级【分析】(1)根据概率的意义求解;(2)通过树状图分别计算总的可能性与两名同学均来自九年级的可能性,然后根据概率的意义求解即可.【详解】解:(1)∵随机抽取一名同学的结果可能性有4种,恰好抽到小东同学的可能性为1种,∴概率为1÷4=14,故答案为14;(2)画树状图如下:由上可知,总共有12种可能结果,其中两名均来自九年级的结果有2种:(小富,小美)、(小美,小富),所以所求概率为21126P==.【点睛】本题考查概率的应用,熟练掌握概率的意义和计算是解题关键.26.(1)图见解析;(2)①23;②13.【分析】(1)根据题意画出树状图即可;(2)①先根据树状图得出所有可能的结果,再找出抽签后甲运动员的出场顺序发生变化的结果,然后利用概率公式进行计算即可得;②先根据树状图得出所有可能的结果,再找出抽签后每个运动员的出场顺序都发生变化的结果,然后利用概率公式进行计算即可得.【详解】解:(1)由题意,画树状图如下所示:(2)①由树状图可知,所有可能出现的等可能结果共6种,其中,抽签后甲运动员的出场顺序发生变化的有4种情况,即(乙、甲、丙),(乙、丙、甲),(丙、甲、乙),(丙、乙、甲),则抽签后甲运动员的出场顺序发生变化的概率为4263P==;②∵在这6种等可能的结果中,抽签后每个运动员的出场顺序都发生变化的有2种情况,即(乙、丙、甲),(丙、甲、乙),∴抽签后每个运动员的出场顺序都发生变化的概率为2163P==.【点睛】本题考查了利用列举法求概率,依据题意,正确画出树状图是解题关键.。
2022九年级下册数学 期 末 测试题(一)
C. ①②③D. ①③
9.在湖边高出水面50 m的山顶A处看见一艘飞艇停留在湖面上空某处,观察到飞艇底部标志P处的仰角为45°,又观其在湖中之像的俯角为60°,则飞艇底部P距离湖面的高度为(参考等式: = )()
A.(25 +75)米
B.(50 +50)米
C.(75 +75)米
D.(50 +100)米
【解析】
【分析】△AOC的面积可以分为△AOM和△AMC的面积之和.
【详解】设 ,即
,
,
=6,
∴ ,
故答案为:4.
12.如图,直线 与 相切于点 , 且 ,则 ______.
【答案】
【解析】
【详解】解∶连接 、 , 的反向延长线交 与 ,如图,
∵直线 与 相切于点 ,
∴ ,
∵ ,
∴ ,
∴ ,
∴ ,
而 ,
A.(25 +75)米B.(50 +50)米C.(75 +75)米D.(50 +100)米
【答案】D
【解析】
【详解】分析:设AE=x,则PE=AE=x,根据山顶A处高出水面50m,得出OE=50,OP′=x+50,根据∠P′AE=60°,得出P′E= x,从而列出方程,求出x的值即可.
详解:设AE=xm,在Rt△AEP中∠PAE=45°,则∠P=45°,
A. B. C. D.
【答案】D
【解析】
【分析】过A作AB⊥x轴于点B,在Rt△AOB中,利用勾股定理求出OA,再根据正弦的定义即可求解.
【详解】如图,过A作AB⊥x轴于点B,
∵A的坐标为(4,3)
∴OB=4,AB=3,
在Rt△AOB中,
∴
故选:D.
苏教版九年级数学上册第一章一元二次方程测试题1(1)
一元二次方程一、选择题(每小题3分,共24分)1.下面关于x 的方程①ax 2+bx +c =0;②(x -9)2=1;③x +3=1x;④4x 2+2x -1=0;⑤1x +=x -1中,一元二次方程的个数是 ( ) A .1 B .2 C .3 D .42.用配方法解方程x 2+4x +1=0,配方后的方程是 ( )A .(x +2)2=3B .(x -2)2=3C .(x -2)2=5D .(x +2)2=53.已知一元二次方程x 2-6x +c =0有一个根为2,则另一根为 ( )A .2B .3C .4D .84.关于x 的方程(m 2-m -2)x 2+mx +n =0是一元二次方程的条件是 ( )A .m ≠-1B .m ≠2C .m ≠-1或m ≠2D .m ≠1且m ≠25.三角形的两边分别为2和6,第三边是方程x 2-10x +21=0的解,则第三边的长为 ( )A .7B .3C .7或3D .无法确定6.已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是 ( )A .a>2B .a<2C .a<2且a ≠1D .a<-27.关于x 的一元二次方程012=--ax x (其中a 为常数)的根的情况是( )A .有两个不相等的实数根B .可能有实数根,也可能没有实数根C .有两个相等的实数根D .没有实数根8.a 、b 、c 是△ABC 的三边长,且关于x 的方程x 2-2cx +a 2+b 2=0有两个相等的实数根,这个三角形是 ( )A .等边三角形B .钝角三角形C .直角三角形D .等腰直角三角形二、填空题(每小题4分,共24分)9.(x +3)2-3x =5x 2化为一元二次方程的一般式得_______,它的一次项系数是_______. 10.当m =_______时,关于x 的方程(m +2)x 22m-+6x -9=0是一元二次方程. 11.若方程x 2-x =0的两个根为x 1,x 2(x 1<x 2),则x 2-x 1=_______.12.写一个你喜欢的实数m 的值_______,使关于x 的一元二次方程x 2-x +m =0有两个不相等的实数根.13.若关于x 的一元二次方程kx 2+4x +3=0有实根,则k 的非负整数值是_______.14.若关于x 的方程x 2+(a -1)x +a 2=0的两根互为倒数,则a =_______.三、解答题15.解下列方程:(共30分)(1)4(x-1)2=9 (2)5x(x +3)=2(x +3) (3)2x 2-4x -3=0(用配方法)(4)(y -2)(y -4)=2 (5)(x +1) 2﹣2(x+1)﹣3=016.当m 为何值时,关于x 的方程26250x x m -+-=有两个相等的实数根? 此时这两个实数根是多少?17.阅读材料:如果1x ,2x 是一元二次方程20ax bx c ++=的两根,那么有1212,b c x x x x a a+=-=. 这是一元二次方程根与系数的关系,我们利用它可以用来解题:设12,x x 是方程2630x x +-=的两根,求2212x x +的值.解法可以这样:126,x x +=-123,x x =-则222212112()2x x x x x x +=+-=2(6)2(3)42--⨯-=. 请你根据以上解法解答下题:已知12,x x 是方程2420x x -+=的两根,求:(1)1211x x +的值;(2)212()x x -的值. 双休日放松但别太放纵——养成合理的作息习惯我国实行双休日后,无疑给学生们创造了更广泛的、可自已支配的空间,每年52个双休日就是104天时间,这是一个不小的数目。
小龙人中学九年级数学测试试题一(含答案)
小龙人中学九年级数学测试试题(一)一、选择题(每小题3分,共30分) 1.下列命题中假命题的个数是( )①三点确定一个圆;②三角形的内心到三边的距离相等;③相等的圆周角所对的弧相等;④平分弦的直径垂直于弦;⑤垂直于半径的直线是圆的切线. A 、4 B 、3 C 、2 D 、1 2. 17、在二次根式2235.03216b a ,xa,,,x --中,最简二次根式有( )个。
A.1 B.2 C.3 D.43.下列说法中,①平分弦的直径垂直于弦 ②直角所对的弦是直径 ③相等的弦所对的弧相等 ④等弧所对的弦相等 ⑤圆周角等于圆心角的一半 ⑥2570x x -+=两根之和为5,其中正确的命题个数为( ) A 、0 B 、1 C 、2 D 、34. 已知两圆半径分别为2和3,圆心距为d ,若两圆没 有公共点,则下列结论正确的是( ) A 、0<d <1 B 、d >5 C 、0<d <1或d >5 D 、0≤d <1或d >55.如图,将三角尺ABC (其中∠ABC =60°,∠C =90°)绕B 点按顺时针方向转动一个角度到11A BC 的位置,使得点A ,B ,1C 在同一条直线上,那么这个角度等于( ) A .30° B .60° C .90° D .120°6.关于x 的一元二次方程22110a x x a -++-=()的一个根是0,则a 的值是( ) A .1- B .1 C .1或1- D .1-或07.如图,在△ABC 中,AB 为⊙O 的直径,∠B =60°,∠BOD =100°,则∠C 的度数为( ) A .50° B .60° C .70° D .80°8.正方形ABCD 内一点P ,AB =5,BP =2,把△ABP 绕点B 顺时针旋转90°得到△CBP ',则PP '的长为( ) A .22 B .23 C .3 D .329.如图,Rt △ABC 中,∠C =90°,O 是AB 边上一点,⊙O 与AC 、BC 都相切,若BC =3,AC =4,则⊙O 的半径为( )A .1B .2C .52D .12710.若222228a b a b ++=()(-),则22a b +=( )A .2-B .4C .4或2-D .4-或2 二、填空题(每小题3分,共15分)11.点(2,2-)关于原点对称的点的坐标是 .12.若20n 是整数,则正整数n 的最小值为 .13.同时从1,2,3这三个数字中任意取出两个不同的数字, 则取出的两个数字都是奇数的概率是 .14.如图,把一个半径为12cm 的圆形硬纸片等分成三个扇形,用其中一个 扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面 半径是 cm .15.如图,平面直角坐标系中,⊙O 1过原点O ,且⊙O 1与⊙O 2相外切,圆心O 1与O 2在x 轴正半轴上,⊙O 1的半径O 1P 1、⊙O 2的半径O 2P 2都与x 轴垂直,且点P 1(x 1,y 1)、P 2(x 2,y 2)在反比例函数1y x =(x >0)的图象上,则y 1+y 2= .16.已知,m n 为方程2210x x +-=的两个实数根,则222011m n -+= .三、解答题(17题8分,18题6分,19-21各7分,22、23各9分,24题10分,25题12分) 17.①32112516224x x x x x+- ②解方程: 0132=--x x18如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是32A (-,),B (0,4),C (0,2). (1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C ;平移△ABC ,若点A 的对应点A 2的坐标为(0,4-),画出平移后对应的△A 2B 2C 2;(2)若将△A 1B 1C 绕某一点旋转可以得到△A 2B 2C 2;请直接写出旋转中心的坐标; (3)在x 轴上有一点P ,使得PA +PB 的值最小,请直接写出点P 的坐标.19.一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,篮球1个,黄球若干个,现从中任意摸出一个球是红球的概率为12.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;(3)现规定:摸到红球得5分,摸到黄球得3分,摸到篮球得2分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率.考场 _______________ 班级_______________ 姓名_______________ 座号________第4题第7题 第8题 第9题第14题第15题20.如图,AB 是⊙O 的直径,AC 是弦,直线EF 经过点C ,AD ⊥EF 于点D ,DAC BAC ∠=∠ . (1)求证:EF 是⊙O 的切线;(2)若⊙O 的半径为2,∠ACD =30°,求图中阴影部分的面积.21.某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点A 、B 以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程l (cm )与时间t (s )满足关系:23122l t t =+0t ≥(),乙以4cm/s 的速度匀速运动,半圆的长度为21cm .(1)甲运动4s 后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间? (3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?22.如图1所示,将一个边长为2的正方形ABCD 和一个长为2、宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至CE F D ''',旋转角为a . (1)当点D '恰好落在EF 边上时,求旋转角a 的值;(2)如图2,G 为BC 中点,且0°<a <90°,求证:GD E D '=';(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,△DCD '与△CBD '能否全等?若能,直接写出旋转角a 的值;若不能说明理由.23. 已知抛物线经过点A (-3,0)、B (1,0)、C (0,3).(1)求抛物线的解析式;(2)求该抛物线顶点Q 的坐标,且判断△ACQ 的形状,并请 说明理由;(3)在抛物线的对称轴左边图象上,是否存在一点P ,使得以P 、A 、B 、C 四个点为顶点的四边形是梯形.若存在,求出点P 坐标;若不存在,请说明理由.24.如图(1),在平面直角坐标系中,Rt ABC △的AC 边与x 轴重合,且点A 在原点,2,60,90==∠=∠AC BAC ACB ;又一直径为2的⊙D 与x 轴切于点)0,1(E ;(1) 当Rt ABC △的边BC 移动到与y 轴重合时,则把ACB Rt ∆绕原点O 按逆时针方向旋转,使斜边AB 恰好经过点)2,0(F ,得''Rt A B O ∆,AB 分别与',''A O A B 相交于N M ,,如图(2)所示. ① 求旋转角'AOA ∠的度数; ② 求四边形FOMN 的面积;(结果保留根号(.2.). 如图(1),若Rt ABC △沿x 轴正方向移动,当斜边AB 与⊙D 相切时,请直接 写出..此时点A 的坐标; )25.如图,在平面直角坐标系xOy 中,AB ⊥x 轴于点B ,AB=3,tan ∠AOB=3/4。
2022年九年级数学上册第二十一章一元二次方程测试卷1新版新人教版
第21章一元二次方程测试卷(1)一、精心选一选,相信自己的判断!(每小题3分,共30分)1.(3分)方程2x2﹣3=0的一次项系数是()A.﹣3 B.2 C.0 D.32.(3分)方程x2=2x的解是()A.x=0 B.x=2 C.x1=0,x2=2 D.x1=0,x2=3.(3分)方程x2﹣4=0的根是()A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=44.(3分)若一元二次方程2x(kx﹣4)﹣x2+6=0无实数根,则k的最小整数值是()A.﹣1 B.0 C.1 D.25.(3分)用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=96.(3分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,做成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是()A.x2+130x﹣1400=0 B.x2+65x﹣350=0C.x2﹣130x﹣1400=0 D.x2﹣65x﹣350=07.(3分)已知直角三角形的三边长为三个连续整数,那么,这个三角形的面积是()A.6 B.8 C.10 D.128.(3分)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定9.(3分)若关于一元二次方程x2+2x+k+2=0的两个根相等,则k的取值是()A.1 B.1或﹣1 C.﹣1 D.210.(3分)科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠送一件,全组共互赠了132件,那么全组共有()名学生.A.12 B.12或66 C.15 D.33二、耐心填一填:(把答案填放相应的空格里.每小题3分,共15分).11.(3分)写一个一元二次方程,使它的二次项系数是﹣3,一次项系数是2:.12.(3分)﹣1是方程x2+bx﹣5=0的一个根,则b= ,另一个根是.13.(3分)方程(2y+1)(2y﹣3)=0的根是.14.(3分)已知一元二次方程x2﹣3x﹣1=0的两根为x1、x2,x1+x2= .15.(3分)用换元法解方程+2x=x2﹣3时,如果设y=x2﹣2x,则原方程可化为关于y的一元二次方程的一般形式是.三、按要求解一元二次方程:(20分)16.(20分)按要求解一元二次方程(1)4x2﹣8x+1=0(配方法)(2)7x(5x+2)=6(5x+2)(因式分解法)(3)3x2+5(2x+1)=0(公式法)(4)x2﹣2x﹣8=0.四、细心做一做:17.(6分)有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18 m),另三边用竹篱笆围成,如果竹篱笆的总长为35 m,求鸡场的长与宽各为多少?18.(6分)如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计一横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?19.(7分)某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?20.(7分)中华商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,这种衬衫每件涨价4元,其销售量就减少40件.如果商场计划每月赚得8000元利润,那么售价应定为多少?这时每月应进多少件衬衫?21.(9分)如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.(1)经过几秒△PCQ的面积为△ACB的面积的?(2)经过几秒,△PCQ与△ACB相似?(3)如图2,设CD为△ACB的中线,那么在运动的过程中,PQ与CD有可能互相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由.参考答案与试题解析一、精心选一选,相信自己的判断!(每小题3分,共30分)1.(3分)方程2x2﹣3=0的一次项系数是()A.﹣3 B.2 C.0 D.3【考点】一元二次方程的一般形式.【分析】一元二次方程的一般形式是ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:方程2x2﹣3=0没有一次项,所以一次项系数是0.故选C.【点评】要特别注意不含有一次项,因而一次项系数是0,注意不要说是没有.2.(3分)方程x2=2x的解是()A.x=0 B.x=2 C.x1=0,x2=2 D.x1=0,x2=【考点】解一元二次方程-因式分解法;因式分解-提公因式法.【专题】因式分解.【分析】把右边的项移到左边,用提公因式法因式分解,可以求出方程的两个根.【解答】解:x2﹣2x=0x(x﹣2)=0∴x1=0,x2=2.故选C.【点评】本题考查的是用因式分解法解一元二次方程,把右边的项移到左边,用提公因式法因式分解,可以求出方程的根.3.(3分)方程x2﹣4=0的根是()A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=4【考点】解一元二次方程-直接开平方法.【分析】先移项,然后利用数的开方解答.【解答】解:移项得x2=4,开方得x=±2,∴x1=2,x2=﹣2.故选C.【点评】(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0),ax2=b(a,b同号且a≠0),(x+a)2=b(b≥0),a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”;(2)运用整体思想,会把被开方数看成整体;(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.4.(3分)若一元二次方程2x(kx﹣4)﹣x2+6=0无实数根,则k的最小整数值是()A.﹣1 B.0 C.1 D.2【考点】根的判别式;一元二次方程的定义.【分析】先把方程变形为关于x的一元二次方程的一般形式:(2k﹣1)x2﹣8x+6=0,要方程无实数根,则△=82﹣4×6(2k﹣1)<0,解不等式,并求出满足条件的最小整数k.【解答】解:方程变形为:(2k﹣1)x2﹣8x+6=0,当△<0,方程没有实数根,即△=82﹣4×6(2k﹣1)<0,解得k>,则满足条件的最小整数k为2.故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.(3分)用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【分析】先移项,再方程两边都加上一次项系数一半的平方,即可得出答案.【解答】解:移项得:x2﹣4x=5,配方得:x2﹣4x+22=5+22,(x﹣2)2=9,故选D.【点评】本题考查了解一元二次方程,关键是能正确配方.6.(3分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,做成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是()A.x2+130x﹣1400=0 B.x2+65x﹣350=0C.x2﹣130x﹣1400=0 D.x2﹣65x﹣350=0【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】本题可设长为(80+2x),宽为(50+2x),再根据面积公式列出方程,化简即可.【解答】解:依题意得:(80+2x)(50+2x)=5400,即4000+260x+4x2=5400,化简为:4x2+260x﹣1400=0,即x2+65x﹣350=0.故选:B.【点评】本题考查的是一元二次方程的运用,解此类题目要注意运用面积的公式列出等式再进行化简.7.(3分)已知直角三角形的三边长为三个连续整数,那么,这个三角形的面积是()A.6 B.8 C.10 D.12【考点】勾股定理.【分析】设三边长分别为x,x+1,x+2,根据勾股定理可得(x+2)2=(x+1)2+x2,解方程可求得三角形的三边长,利用直角三角形的性质直接求得面积即可.【解答】解:设这三边长分别为x,x+1,x+2,根据勾股定理得:(x+2)2=(x+1)2+x2解得:x=﹣1(不合题意舍去),或x=3,∴x+1=4,x+2=5,则三边长是3,4,5,∴三角形的面积=××4=6;故选:A.【点评】本题考查了勾股定理、直角三角形面积的计算方法;熟练掌握勾股定理,由勾股定理得出方程是解决问题的关键.8.(3分)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定【考点】等腰三角形的性质;解一元二次方程-因式分解法;三角形三边关系.【专题】分类讨论.【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.【解答】解:解方程x2﹣9x+18=0,得x1=6,x2=3∵当底为6,腰为3时,由于3+3=6,不符合三角形三边关系∴等腰三角形的腰为6,底为3∴周长为6+6+3=15故选C.【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论.9.(3分)若关于一元二次方程x2+2x+k+2=0的两个根相等,则k的取值是()A.1 B.1或﹣1 C.﹣1 D.2【考点】根的判别式.【分析】根据判别式的意义得到△=22﹣4(k+2)=0,然后解一次方程即可.【解答】解:根据题意得△=22﹣4(k+2)=0,解得k=﹣1.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.(3分)科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠送一件,全组共互赠了132件,那么全组共有()名学生.A.12 B.12或66 C.15 D.33【考点】一元二次方程的应用.【分析】设全组共有x名学生,每一个人赠送x﹣1件,全组共互赠了x(x﹣1)件,共互赠了132件,可得到方程,求解即可.【解答】解:设全组共有x名学生,由题意得x(x﹣1)=132解得:x1=﹣11(不合题意舍去),x2=12,答:全组共有12名学生.故选:A.【点评】本题考查一元二次方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.二、耐心填一填:(把答案填放相应的空格里.每小题3分,共15分).11.(3分)写一个一元二次方程,使它的二次项系数是﹣3,一次项系数是2:﹣3x2+2x ﹣3=0 .【考点】一元二次方程的一般形式.【专题】开放型.【分析】根据一元二次方程的一般形式和题意写出方程即可.【解答】解:由题意得:﹣3x2+2x﹣3=0,故答案为:﹣3x2+2x﹣3=0.【点评】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.在一般形式中a,b,c分别叫二次项系数,一次项系数,常数项.12.(3分)﹣1是方程x2+bx﹣5=0的一个根,则b=﹣4 ,另一个根是 5 .【考点】一元二次方程的解.【分析】把x=﹣1代入方程得出关于b的方程1+b﹣2=0,求出b,代入方程,求出方程的解即可.【解答】解:∵x=﹣1是方程x2+bx﹣5=0的一个实数根,∴把x=﹣1代入得:1﹣b﹣5=0,解得b=﹣4,即方程为x2﹣4x﹣5=0,(x+1)(x﹣5)=0,解得:x1=﹣1,x2=5,即b的值是﹣4,另一个实数根式5.故答案为:﹣4,5;【点评】本题考查了一元二次方程的解的概念:使方程两边成立的未知数的值叫方程的解.13.(3分)方程(2y+1)(2y﹣3)=0的根是y1=﹣,y2=.【考点】解一元二次方程-因式分解法.【专题】因式分解.【分析】解一元二次方程的关键是把二次方程化为两个一次方程,解这两个一次方程即可求得.【解答】解:∵(2y+1)(2y﹣3)=0,∴2y+1=0或2y﹣3=0,解得y1=,y2=.【点评】解此题要掌握降次的思想,把高次的降为低次的,把多元的降为低元的,这是解复杂问题的一个原则.14.(3分)已知一元二次方程x2﹣3x﹣1=0的两根为x1、x2,x1+x2= 3 .【考点】根与系数的关系.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,代入计算即可.【解答】解:∵一元二次方程x2﹣3x﹣1=0的两根是x1、x2,∴x1+x2=3,故答案为:3.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.15.(3分)用换元法解方程+2x=x2﹣3时,如果设y=x2﹣2x,则原方程可化为关于y的一元二次方程的一般形式是y2﹣3y﹣1=0 .【考点】换元法解分式方程.【专题】换元法.【分析】此题考查了换元思想,解题的关键是要把x2﹣2x看作一个整体.【解答】解:原方程可化为:﹣(x2﹣2x)+3=0设y=x2﹣2x﹣y+3=0∴1﹣y2+3y=0∴y2﹣3y﹣1=0.【点评】此题考查了学生的整体思想,也就是准确使用换元法.解题的关键是找到哪个是换元的整体.三、按要求解一元二次方程:(20分)16.(20分)按要求解一元二次方程(1)4x2﹣8x+1=0(配方法)(2)7x(5x+2)=6(5x+2)(因式分解法)(3)3x2+5(2x+1)=0(公式法)(4)x2﹣2x﹣8=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.【分析】(1)首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.(2)方程移项变形后,采用提公因式法,可得方程因式分解的形式,即可求解.(3)方程化为一般形式,找出二次项系数,一次项系数及常数项,计算出根的判别式,发现其结果大于0,故利用求根公式可得出方程的两个解.(4)方程左边分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)4x2﹣8x+1=0(配方法)移项得,x2﹣2x=﹣,配方得,x2﹣2x+1=﹣+1,(x﹣1)2=,∴x﹣1=±∴x1=1+,x2=1﹣.(2)7x(5x+2)=6(5x+2)(因式分解法)7x(5x+2)﹣6(5x+2)=0,(5x+2)(7x﹣6)=0,∴5x+2=0,7x﹣6=0,∴x1=﹣,x2=;(3)3x2+5(2x+1)=0(公式法)整理得,3x2+10x+5=0∵a=3,b=10,c=5,b2﹣4ac=100﹣60=40,∴x===,∴x1=,x2=;(4)x2﹣2x﹣8=0.(x+4)(x﹣2)=0,∴x+4=0,x﹣2=0,∴x1=﹣4,x2=2.【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.四、细心做一做:17.(6分)有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18 m),另三边用竹篱笆围成,如果竹篱笆的总长为35 m,求鸡场的长与宽各为多少?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设养鸡场的宽为xm,则长为(35﹣2x),根据矩形的面积公式即可列方程,列方程求解.【解答】解:设养鸡场的宽为xm,则长为(35﹣2x),由题意得x(35﹣2x)=150解这个方程;x2=10当养鸡场的宽为时,养鸡场的长为20m不符合题意,应舍去,当养鸡场的宽为x1=10m时,养鸡场的长为15m.答:鸡场的长与宽各为15m,10m.【点评】本题考查的是一元二次方程的应用,难度一般.18.(6分)如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计一横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】本题可根据关键语“小路的面积是草地总面积的八分之一”,把小路移到一起正好构成一个矩形,矩形的长和宽分别是(32﹣2x)和(15﹣x),列方程即可求解.【解答】解:设小路的宽应是x米,则剩下草总长为(32﹣2x)米,总宽为(15﹣x)米,由题意得(32﹣2x)(15﹣x)=32×15×(1﹣)即x2﹣31x+30=0解得x1=30 x2=1∵路宽不超过15米∴x=30不合题意舍去答:小路的宽应是1米.【点评】找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.19.(7分)某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?【考点】一元二次方程的应用.【专题】增长率问题.【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率).(1)可先求出增长率,然后再求2007年的盈利情况.(2)有了2008年的盈利和增长率,求出2009年的就容易了.【解答】解:(1)设每年盈利的年增长率为x,根据题意,得1500(1+x)2=2160.解得x1=0.2,x2=﹣2.2(不合题意,舍去).∴1500(1+x)=1500(1+0.2)=1800.答:2007年该企业盈利1800万元.(2)2160(1+0.2)=2592.答:预计2009年该企业盈利2592万元.【点评】本题考查的是增长率的问题.增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.20.(7分)中华商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,这种衬衫每件涨价4元,其销售量就减少40件.如果商场计划每月赚得8000元利润,那么售价应定为多少?这时每月应进多少件衬衫?【考点】一元二次方程的应用.【专题】销售问题.【分析】设涨价4x元,则销量为(500﹣40x),利润为(10+4x),再由每月赚8000元,可得方程,解方程即可.【解答】解:设涨价4x元,则销量为(500﹣40x),利润为(10+4x),由题意得,(500﹣40x)×(10+4x)=8000,整理得,5000+2000x﹣400x﹣160x2=8000,解得:x1=,x2=,当x1=时,则涨价10元,销量为:400件;当x2=时,则涨价30元,销量为:200件.答:当售价定为60元时,每月应进400件衬衫;售价定为80元时,每月应进200件衬衫.【点评】本题考查的是一元二次方程的应用,根据题意正确找出等量关系、列出方程是解题的关键,注意分情况讨论思想的应用.21.(9分)如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.(1)经过几秒△PCQ的面积为△ACB的面积的?(2)经过几秒,△PCQ与△ACB相似?(3)如图2,设CD为△ACB的中线,那么在运动的过程中,PQ与CD有可能互相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由.【考点】一元二次方程的应用;相似三角形的判定.【专题】几何动点问题.【分析】(1)分别表示出线段PC和线段CQ的长后利用S△PCQ=S△ABC列出方程求解;(2)设运动时间为ts,△PCQ与△ACB相似,当△PCQ与△ACB相似时,可知∠CPQ=∠A或∠CPQ=∠B,则有=或=,分别代入可得到关于t的方程,可求得t的值;(3)设运动时间为ys,PQ与CD互相垂直,根据直角三角形斜边上的中线的性质以及等腰三角形的性质得出∠ACD=∠A,∠BCD=∠B,再证明△PCQ∽△BCA,那么=,依此列出比例式=,解方程即可.【解答】解:(1)设经过x秒△PCQ的面积为△ACB的面积的,由题意得:PC=2xm,CQ=(6﹣x)m,则×2x(6﹣x)=××8×6,解得:x=2或x=4.故经过2秒或4秒,△PCQ的面积为△ACB的面积的;(2)设运动时间为ts,△PCQ与△ACB相似.当△PCQ与△ACB相似时,则有=或=,所以=,或=,解得t=,或t=.因此,经过秒或秒,△OCQ与△ACB相似;( 3)有可能.由勾股定理得AB=10.∵CD为△ACB的中线,∴∠ACD=∠A,∠BCD=∠B,又PQ⊥CD,∴∠CPQ=∠B,∴△PCQ∽△BCA,∴=,=,解得y=.因此,经过秒,PQ⊥CD.【点评】本题考查了一元二次方程的应用,相似三角形的判定与性质,三角形的面积,勾股定理,直角三角形、等腰三角形的性质,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.。
初中数学九年级下期中经典测试卷(含答案解析)(1)
一、选择题1.(0分)[ID:11125]如图,△ABC的三个顶点A(1,2)、B(2,2)、C(2,1).以原点O为位似中心,将△ABC扩大得到△A1B1C1,且△ABC 与△A1B1C1的位似比为1 :3.则下列结论错误的是 ( )A.△ABC∽△A1B1C1B.△A1B1C1的周长为6+32C.△A1B1C1的面积为3D.点B1的坐标可能是(6,6)2.(0分)[ID:11124]若反比例函数kyx=(x<0)的图象如图所示,则k的值可以是()A.-1B.-2C.-3D.-43.(0分)[ID:11112]在Rt△ABC中,∠ACB=90°,AB5tan∠B=2,则AC的长为()A.1B.2C5D.54.(0分)[ID:11104]如图,在△ABC中,DE∥BC ,12ADDB=,DE=4,则BC的长是()A.8 B.10 C.11 D.125.(0分)[ID:11099]已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=512-BC D.BC=512-AC6.(0分)[ID:11092]在△ABC中,若|cosA−12|+(1−tanB)2=0,则∠C的度数是()A.45°B.60°C.75°D.105°7.(0分)[ID:11089]如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段AC 的长为()A.43B.42C.6D.48.(0分)[ID:11072]下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:99.(0分)[ID:11067]如图,在△ABC中,cos B=22,sin C=35,AC=5,则△ABC的面积是()A.212B.12C.14D.2110.(0分)[ID:11061]如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.15B.25C.215D.811.(0分)[ID:11050]如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了()A.8tan20°B.C.8sin20°D.8cos20°12.(0分)[ID:11044]如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE 与旗杆顶点A在同一直线上,已知DE=0.5m,EF=0.25m,目测点D到地面的距离DG=1.5m,到旗杆的水平距离DC=20m,则旗杆的高度为( )A.5B.(105 1.5) mC.11.5m D.10m13.(0分)[ID:11041]在平面直角坐标系中,点E(﹣4,2),点F(﹣1,﹣1),以点O 为位似中心,按比例1:2把△EFO缩小,则点E的对应点E的坐标为()A.(2,﹣1)或(﹣2,1)B.(8,﹣4)或(﹣8,4)C.(2,﹣1)D.(8,﹣4)14.(0分)[ID:11033]给出下列函数:①y=﹣3x+2;②y=3x;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A.①③B.③④C.②④D.②③15.(0分)[ID:11036]如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2B.x<﹣3或x>2C.﹣3<x<0或x>2D.0<x<2二、填空题16.(0分)[ID:11202]如图,P(m,m)是反比例函数9yx=在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为_____.17.(0分)[ID:11171]△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是_____.18.(0分)[ID:11164]已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣4x图象上的两个点,则y1与y2的大小关系为__________.19.(0分)[ID:11161]将三角形纸片(ABC∆)按如图所示的方式折叠,使点B落在边AC上,记为点'B,折痕为EF,已知3AB AC==,4BC=,若以点'B,F,C为顶点的三角形与ABC∆相似,则BF的长度是______.20.(0分)[ID:11139]如图,在平行四边形ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为_____.21.(0分)[ID:11137]已知AB∥CD,AD与BC相交于点O.若BOOC=23,AD=10,则AO=____.22.(0分)[ID:11226]如图,l1∥l2∥l3,直线a、b与l1、l2、l3分别相交于点A、B、C和点D、E、F.若AB=3,DE=2,BC=6,则EF=______.23.(0分)[ID:11224]如图,矩形ABCD的顶点,A C都在曲线kyx=(常数0k≥,x>)上,若顶点D的坐标为()5,3,则直线BD的函数表达式是_.24.(0分)[ID:11181]若关于x的分式方程33122x mx x+-=--有增根,则m的值为_____.25.(0分)[ID:11222]如果a c eb d f===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____.三、解答题26.(0分)[ID:11310]如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,3).(1)画出△ABC 绕点B 逆时针旋转90°得到的△A 1BC 1.(2)以原点O 为位似中心,位似比为2:1,在y 轴的左侧,画出将△ABC 放大后的△A 2B 2C 2,并写出A 2点的坐标 .27.(0分)[ID :11297]已知:如图,四边形ABCD 的对角线AC 和BD 相交于点E ,AD=DC ,DC 2=DE•DB ,求证:(1)△BCE ∽△ADE ;(2)AB•BC=BD•BE .28.(0分)[ID :11277]已知如图,ADBE CF ,它们依次交直线a ,b 于点A 、B 、C和点D 、E 、F.(1)如果6AB =,8BC =,21DF =,求DE 的长.(2)如果:2:5DE DF =,9AD =,14CF =,求BE 的长.29.(0分)[ID :11257]如图:已知▱ABCD ,过点A 的直线交BC 的延长线于E ,交BD 、CD 于F 、G .(1)若AB =3,BC =4,CE =2,求CG 的长;(2)证明:AF 2=FG ×FE .30.(0分)[ID:11239]如图,已知∠BAE=∠CAD,AB=18,AC=48,AE=15,AD=40.求证:△ABC∽△AED.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.C3.B4.D5.D6.C7.B8.B9.A10.C11.A12.C13.A14.B15.C二、填空题16.【解析】【详解】如图过点P作PH⊥OB于点H∵点P(mm)是反比例函数y=在第一象限内的图象上的一个点∴9=m2且m>0解得m=3∴PH=OH=3∵△PAB是等边三角形∴∠PAH=60°∴根据锐角三17.12【解析】【分析】根据位似是相似的特殊形式位似比等于相似比其对应的面积比等于相似比的平方进行解答即可【详解】解:∵△ABC与△A′B′C′是位似图形位似比是1:2∴△ABC∽△A′B′C′相似比是18.y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小从而可以解答本题详解:∵反比例函数y=--4<0∴在每个象限内y随x的增大而增大∵A(-4y1)B(-1y2)19.或2【解析】【分析】由折叠性质可知BF=BF△BFC与△ABC相似有两种情况分别对两种情况进行讨论设出BF=BF=x列出比例式方程解方程即可得到结果【详解】由折叠性质可知BF=BF设BF=BF=x故20.2【解析】【分析】首先证明CF=BC=12利用相似三角形的性质求出BF再利用勾股定理即可解决问题【详解】解:∵四边形ABCD是平行四边形∴AB=CD=12AE∥BCAB∥CD∴∠CFB=∠FBA∵B21.【解析】∵AB∥CD解得AO=4故答案是:4【点睛】运用了平行线分线段成比例定理灵活运用定理找准对应关系是解题的关键22.4【解析】【分析】利用平行线分线段成比例定理列出比例式求出EF结合图形计算即可【详解】∵∥∥∴又DE=2∴EF=4故答案为:4【点睛】本题考查的是平行线分线段成比例定理灵活运用定理找准对应关系是解题23.【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A(3)C (5)所以B()然后利用待定系数法求直线BD的解析式【详解】∵D(53)∴A(3)C (5)∴B()设直线BD的解析式为y=m24.3【解析】【分析】把分式方程化为整式方程进而把可能的增根代入可得m的值【详解】去分母得3x-(x-2)=m+3当增根为x=2时6=m+3∴m=3故答案为3【点睛】考查分式方程的增根问题;增根问题可按25.3【解析】∵=k∴a=bkc=dke=fk∴a+c+e=bk+dk+fk=k(a+b+c)∵a+c+e=3(b+d+f)∴k=3故答案为:3三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】根据位似图的性质可知,位似图形也是相似图形,周长比等于位似比,面积比等于位似比的平方,对应边之比等于位似比,据此判断即可.【详解】A. △ABC∽△A1B1C1,故A正确;B. 由图可知,AB=2-1=1,BC=2-1=1,,所以△ABC的周长为,由周长比等于位似比可得△A1B1C1的周长为△ABC周长的3倍,即6+B正确;C. S△ABC=1111=22⨯⨯,由面积比等于位似比的平方,可得△A1B1C1的面积为△ABC周长的9倍,即19=4.52⨯,故C 错误; D. 在第一象限内作△A 1B 1C 1时,B 1点的横纵坐标均为B 的3倍,此时B 1的坐标为(6,6),故D 正确;故选C.【点睛】本题考查位似三角形的性质,熟练掌握位似的定义,以及位似三角形与相似三角形的关系是解题的关键.2.C解析:C 【解析】【分析】由图像可知,反比例函数与线段AB 相交,由A 、B 的坐标,可求出k 的取值范围,即可得到答案.【详解】如图所示:由题意可知A (-2,2),B (-2,1),∴1-2⨯2<<-2⨯k ,即4-<<-2k故选C.【点睛】本题考查反比例函数的图像与性质,由图像性质得到k 的取值范围是解题的关键.3.B解析:B【解析】【分析】根据正切的定义得到BC=12AC ,根据勾股定理列式计算即可. 【详解】在Rt △ABC 中,∠ACB=90°,tan ∠B=2,∴AC BC =2,∴BC=12AC ,由勾股定理得,AB 2=AC 2+BC 2)2=AC 2+(12AC )2, 解得,AC=2,故选B .【点睛】本题考查的是锐角三角函数的定义、勾股定理,掌握锐角A 的对边a 与邻边b 的比叫做∠A 的正切是解题的关键.4.D解析:D【解析】【分析】 根据AD DB =12,可得AD AB =13,再根据DE ∥BC ,可得DE BC =AD AB ; 接下来根据DE=4,结合上步分析即可求出BC 的长.【详解】 ∵AD DB =12, ∴AD AB =13, ∵在△ABC 中,DE ∥BC , ∴DE BC =AD AB =13. ∵DE=4,∴BC=3DE=12.故答案选D.【点睛】 本题考查了平行线分线段成比例的知识,解题的关键是熟练的掌握平行线分线段成比例定理.5.D解析:D【解析】【分析】根据黄金分割的定义得出BC AC AC AB ==,从而判断各选项. 【详解】∵点C 是线段AB 的黄金分割点且AC >BC ,∴12BC AC AC AB ==,即AC 2=BC•AB,故A 、B 错误;AB ,故C 错误;AC ,故D 正确; 故选D .【点睛】本题考查了黄金分割,掌握黄金分割的定义和性质是解题的关键.6.C解析:C【解析】【分析】根据非负数的性质可得出cosA 及tanB 的值,继而可得出A 和B 的度数,根据三角形的内角和定理可得出∠C 的度数.【详解】由题意,得 cosA=12,tanB=1, ∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C .7.B解析:B【解析】【分析】由已知条件可得ABC DAC ~,可得出AC BC DC AC =,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC= 故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答. 8.B解析:B【解析】【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B.【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.9.A解析:A【解析】【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.【详解】解:过点A作AD⊥BC,∵△ABC中,cosB=22,sinC=35,AC=5,∴cosB=22=BDAB,∴∠B=45°,∵sinC=35=ADAC=5AD,∴AD=3,∴2253,∴BD=3,则△ABC的面积是:12×AD×BC=12×3×(3+4)=212.故选:A.【点睛】此题主要考查了解直角三角形的知识,作出AD⊥BC,进而得出相关线段的长度是解决问题的关键.10.C解析:C【解析】【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA-AP=2,接着在Rt△OPH中根据含30°的直角三角形的性质计算出OH=12OP=1,然后在Rt△OHC中利用勾股定理计算出CH=15,所以CD=2CH=215.【详解】作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=30°,∴OH=12OP=1,在Rt△OHC中,∵OC=4,OH=1,∴22=15OC OH∴15故选C.【点睛】本题主要考查圆中的计算问题,熟练掌握垂径定理、含30°的直角三角形的性质以及勾股定理等知识点,掌握数形结合的思想是解答的关键11.A解析:A【解析】【分析】根据已知,运用直角三角形和三角函数得到上升的高度为:8tan20°.【详解】设木桩上升了h 米,∴由已知图形可得:tan20°=8h , ∴木桩上升的高度h =8tan20°故选B. 12.C解析:C【解析】【分析】确定出△DEF 和△DAC 相似,根据相似三角形对应边成比例求出AC ,再根据旗杆的高度=AC+BC 计算即可得解.【详解】解:∵∠FDE=∠ADC ,∠DEF=∠DCA=90°,∴△DEF ∽△DAC , ∴CDE CD EF A = , 即:0.50.2520AC = , 解得AC=10,∵DF 与地面保持平行,目测点D 到地面的距离DG=1.5米,∴BC=DG=1.5米,∴旗杆的高度=AC+BC=10+1.5=11.5米.故选:C .【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例,准确确定出相似三角形是解题的关键.13.A解析:A【解析】【分析】利用位似比为1:2,可求得点E 的对应点E′的坐标为(2,-1)或(-2,1),注意分两种情况计算.【详解】∵E (-4,2),位似比为1:2,∴点E 的对应点E′的坐标为(2,-1)或(-2,1).故选A .【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.注意位似的两种位置关系.14.B解析:B【解析】分析:分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.详解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项错误;②y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项错误;③y=2x2,当x>1时,函数值y随自变量x增大而减小,故此选项正确;④y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项正确.故选B.点睛:本题主要考查了一次函数、正比例函数、反比例函数、二次函数的性质,正确把握相关性质是解题的关键.15.C解析:C【解析】【分析】一次函数y1=kx+b落在与反比例函数y2=cx图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.二、填空题16.【解析】【详解】如图过点P作PH⊥OB于点H∵点P(mm)是反比例函数y=在第一象限内的图象上的一个点∴9=m2且m>0解得m=3∴PH=OH=3∵△PAB是等边三角形∴∠PAH=60°∴根据锐角三.【解析】【详解】如图,过点P作PH⊥OB于点H,∵点P(m,m)是反比例函数y=9x在第一象限内的图象上的一个点,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△P AB是等边三角形,∴∠P AH=60°.∴根据锐角三角函数,得3∴OB3∴S△POB=12OB•PH933.17.12【解析】【分析】根据位似是相似的特殊形式位似比等于相似比其对应的面积比等于相似比的平方进行解答即可【详解】解:∵△ABC与△A′B′C′是位似图形位似比是1:2∴△ABC∽△A′B′C′相似比是解析:12【解析】【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可.【详解】解:∵△ABC与△A′B′C′是位似图形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC与△A′B′C′的面积比是1:4,又△ABC的面积是3,∴△A′B′C′的面积是12,故答案为12.【点睛】本题考查的是位似变换的概念和性质,掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方是解题的关键.18.y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小从而可以解答本题详解:∵反比例函数y=--4<0∴在每个象限内y随x的增大而增大∵A(-4y1)B(-1y2)解析:y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小,从而可以解答本题.详解:∵反比例函数y=-4x,-4<0,∴在每个象限内,y随x的增大而增大,∵A(-4,y1),B(-1,y2)是反比例函数y=-4x图象上的两个点,-4<-1,∴y1<y2,故答案为:y1<y2.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.19.或2【解析】【分析】由折叠性质可知BF=BF△BFC与△ABC相似有两种情况分别对两种情况进行讨论设出BF=BF=x列出比例式方程解方程即可得到结果【详解】由折叠性质可知BF=BF设BF=BF=x故解析:127或2【解析】【分析】由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x当△B’FC∽△ABC,有'B F CFAB BC=,得到方程434x x-=,解得x=127,故BF=127;当△FB’C∽△ABC,有'B F FCAB AC=,得到方程433x x-=,解得x=2,故BF=2;综上BF的长度可以为127或2.【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论. 20.2【解析】【分析】首先证明CF=BC=12利用相似三角形的性质求出BF再利用勾股定理即可解决问题【详解】解:∵四边形ABCD是平行四边形∴AB =CD=12AE∥BCAB∥CD∴∠CFB=∠FBA∵B解析:【解析】【分析】首先证明CF=BC=12,利用相似三角形的性质求出BF,再利用勾股定理即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD=12,AE∥BC,AB∥CD,∴∠CFB =∠FBA ,∵BE 平分∠ABC ,∴∠ABF =∠CBF ,∴∠CFB =∠CBF ,∴CB =CF =8,∴DF =12﹣8=4,∵DE ∥CB ,∴△DEF ∽△CBF , ∴EF BF =DF CF , ∴2BF =48, ∴BF =4,∵CF =CB ,CG ⊥BF ,∴BG =FG =2,在Rt △BCG 中,CG =故答案为【点睛】本题考查平行四边形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.21.【解析】∵AB∥CD 解得AO=4故答案是:4【点睛】运用了平行线分线段成比例定理灵活运用定理找准对应关系是解题的关键解析:【解析】∵AB ∥CD ,223103AO BO AO OD OC AO ∴===-,即, 解得,AO=4,故答案是:4.【点睛】运用了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 22.4【解析】【分析】利用平行线分线段成比例定理列出比例式求出EF 结合图形计算即可【详解】∵∥∥∴又DE=2∴EF=4故答案为:4【点睛】本题考查的是平行线分线段成比例定理灵活运用定理找准对应关系是解题解析:4【解析】【分析】利用平行线分线段成比例定理列出比例式,求出EF ,结合图形计算即可.【详解】∵1l ∥2l ∥3l ,∴36DE AB EF BC == 又DE=2,∴EF=4,故答案为:4.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.23.【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3)C (5)所以B ()然后利用待定系数法求直线BD 的解析式【详解】∵D(53)∴A(3)C (5)∴B()设直线BD 的解析式为y=m 解析:35y x =【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3k ,3),C (5,5k ),所以B (3k ,5k ),然后利用待定系数法求直线BD 的解析式. 【详解】∵D (5,3),∴A (3k ,3),C (5,5k ), ∴B (3k ,5k ), 设直线BD 的解析式为y=mx+n , 把D (5,3),B (3k ,5k )代入得 5335m n k k m n ==+⎧⎪⎨+⎪⎩,解得350m n ⎧⎪⎨⎪⎩==, ∴直线BD 的解析式为35y x =. 故答案为35y x =. 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=k x (k 为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了矩形的性质.24.3【解析】【分析】把分式方程化为整式方程进而把可能的增根代入可得m 的值【详解】去分母得3x-(x-2)=m+3当增根为x=2时6=m+3∴m=3故答案为3【点睛】考查分式方程的增根问题;增根问题可按解析:3【解析】【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m的值.【详解】去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.25.3【解析】∵=k∴a=bkc=dke=fk∴a+c+e=bk+dk+fk=k(a+b+c)∵a+c+e=3(b+d+f)∴k=3故答案为:3解析:3【解析】∵a c eb d f===k,∴a=bk,c=dk,e=fk,∴a+c+e=bk+dk+fk=k(a+b+c),∵a+c+e=3(b+d+f),∴k=3,故答案为:3.三、解答题26.(1)见解析;(2)(﹣4,2).【解析】【分析】(1)根据网格结构找出点A、B、C以点B为旋转中心逆时针旋转90°后的对应点,然后顺次连接即可.(2)利用位似图形的性质得出对应点位置即可得出答案.【详解】解:(1)如图所示,△A1BC1即为所求;(2)如图,△A2B2C2,即为所求,A2(﹣4,2);故答案是:(﹣4,2).【点睛】此题主要考查旋转与位似图形的作图,解题的关键是熟知旋转的性质及位似的定义. 27.(1)见解析;(2)见解析.【解析】【分析】(1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.(2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.【详解】证明:(1)∵AD=DC,∴∠DAC=∠DCA,∵DC2=DE•DB,∴=,∵∠CDE=∠BDC,∴△CDE∽△BDC,∴∠DCE=∠DBC,∴∠DAE=∠EBC,∵∠AED=∠BEC,∴△BCE∽△ADE,(2)∵DC2=DE•DB,AD=DC∴AD2=DE•DB,同法可得△ADE∽△BDA,∴∠DAE=∠ABD=∠EBC,∵△BCE∽△ADE,∴∠ADE=∠BCE,∴△BCE ∽△BDA , ∴=,∴AB•BC=BD•BE .【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.28.(1)DE 的长为9;(2)BE 的长为11;【解析】【分析】(1)由果6AB =,8BC =,可得AC=14,然后根据平行线等分线段定理得到6=14DE AB DF AC =,然后将已知条件代入即可求解; (2)过D 作DH∥AC,分别交BE,CF 于H ,说明四边形ABGD 和四边形BCHG 是平行四边形,然后根据平行四边形的性质得CH=BG=AD=9;进一步说明FH=CF-DH=5,然后再按照平行线等分线段定理得到:2:5DE DF =,最后代入已知条件求解即可.【详解】(1)∵6AB =,8BC =,∴AC=AB+BC=14∵ADBE CF ∴6=14DE AB DF AC = ∴662191414DE DF ==⨯= (2)过D 作DH∥AC,分别交BE,CF 于H.∵AD BE CF∴四边形ABGD和四边形BCHG是平行四边形,∴CH=BG=AD=9∴FH=CF-DH=5∵:2:5DE DF=∴:2:5GE HF=∴225255GE HF==⨯=∴BE=BG+GE=9+2=11.【点睛】本题主要考查平行线分线段成比例的知识,关键是掌握三条平行线截两条直线,所得的对应线段成比例.29.(1)1;(2)证明见解析【解析】【分析】(1)根据平行四边形的性质得到AB∥CD,证明△EGC∽△EAB,根据相似三角形的性质列出比例式,代入计算即可;(2)分别证明△DFG∽△BFA,△AFD∽△EFB,根据相似三角形的性质证明.【详解】(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴△EGC∽△EAB,∴CG ECAB EB=,即2324CG=+,解得,CG=1;(2)∵AB∥CD,∴△DFG∽△BFA,∴FG DF FA FB=,∴AD∥CB,∴△AFD∽△EFB,∴AF DF FE FB=,∴FG AFFA FE=,即AF2=FG×FE.【点睛】本题考查的是平行四边形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.30.证明见解析.【解析】【分析】由∠BAE=∠CAD知∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,再根据线段的长得出65AB ACAE AD==,据此即可得证.【详解】∵∠BAE=∠CAD,∴∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,∵AB=18,AC=48,AE=15,AD=40,∴65 AB ACAE AD==,∴△ABC∽△AED.【点睛】本题主要考查相似三角形的判定,解题的关键是掌握两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似.。
人教版九年级数学上册期末测试卷 (1)
2017-2018学年福建省漳州市九年级(上)期末数学试卷一、选择题(本题共10个小题,每小题4分,共40分,每小题只有一个正确的选项)1.式子有意义,则x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤12.方程x2=4的解是()A.x=2 B.x=﹣2 C.x1=1,x2=4 D.x1=2,x2=﹣23.一元二次方程x2+2x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根 D.没有实数根4.下列各式计算正确的是()A.6﹣2=4 B.2+3=5C.2×3=6D.6÷2=3 5.在△ABC中,∠ACB=90°,BC=1,AC=2,则下列正确的是()A.sinA=B.tanA=C.cosB=D.tanB=6.用配方法解方程x2﹣6x﹣5=0,下列配方结果正确的是()A.(x﹣6)2=41 B.(x﹣3)2=14 C.(x+3)2=14 D.(x﹣3)2=47.下列事件中,是必然事件的是()A.打开电视机,它正在直播排球比赛B.抛掷5枚硬币,结果是2个正面朝上与3个反面朝上C.黑暗中从一大串钥匙中随便选中一把,用它打开了门D.投掷一枚普通的正方体骰子,正面朝上的数不是奇数便是偶数8.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长是()A.4cm B.6cm C.8cm D.10cm9.下列关于相似的命题中,①等边三角形都相似;②直角三角形都相似;③等腰直角三角形都相似;④矩形都相似,其中真命题有()A.①②B.①③C.①③④D.①②③④10.如图,E为▱ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则▱ABCD的面积为()A.30 B.27 C.14 D.32二、填空题(本大题共6小题,每小题4分,共26分)11.已知=,则=.12.已知锐角α满足cosα=,则锐角α的度数是度.13.把二次根式化成最简二次根式,则=.14.同时投掷二枚正四面体骰子,所得的点数之和恰为偶数的概率是.15.若关于x的一元二次方程x2﹣x+k=0的一个根是0,则另一个根是.16.将矩形纸片ABCD按如图方式折叠,BE、CF为折痕,折叠后点A和点D都落在点O处,若△EOF是等边三角形,则的值为.三、解答题(本大题共9小题,共86分)17.计算:2+tan60°﹣2sin45°.18.解方程:(x﹣1)2=2(1﹣x)19.如图,在△ABC中,DE∥BC中,AD=1,BD=2,DE=2,求BC的长.20.用一个字来回顾2016年漳州的楼市,这个字就是“涨”!根据漳州房地产联合网不完全统计,2016年市区某在售的楼盘十月份房价为8100元/m2,到了十二月房价均价为12100元/m2,求十月到十二月房价均价的平均月增长率是多少?21.如图所示,有一个绳索拉直的木马秋千,秋千绳索AB的长度为4米,将它往前推进2米(即DE=2米),求此时秋千的绳索与静止时所夹的角度及木马上升的高度.(精确到0.1米)22.在学习概率知识的课堂上,老师组织小组讨论一道题目:在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,要求同学们按两种规则摸球,规则一:搅匀后从中摸出一个球,放回搅匀后再摸出第二个球;规则二:搅匀后从中一次任意摸出两个球,请你通过画树状图或列表法计算说明哪种规则摸出两个红球的概率较大?23.观察下列各式:=1+﹣=1;=1+﹣=1;=1+﹣=1,…请你根据以上三个等式提供的信息解答下列问题①猜想:==;②归纳:根据你的观察,猜想,请写出一个用n(n为正整数)表示的等式:;③应用:计算.24.如图,在平面直角坐标系中,▱ABCD的边BC在x轴上,点A在y轴上,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求cos∠ABC的值;(2)点P由B出发沿BC方向匀速运动,速度为每秒2个单位长度,点Q由D 出发沿DA方向匀速运动,速度为每秒1个单位长度,设运动时间为t秒(0<t ≤3),是否存在某一时刻;使△AOP与△QAO相似?若存在,求此时t的值;若不存在,请说明理由.25.探究证明:(1)如图1,矩形ABCD中,点M、N分别在边BC,CD上,AM⊥BN,求证:=.(2)如图2,矩形ABCD中,点M在边BC上,EF⊥AM,EF分别交AB,CD于点E、点F,试猜想与有什么数量关系?并证明你的猜想.拓展应用:综合(1)、(2)的结论解决以下问题:(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求的值.2017-2018学年福建省漳州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10个小题,每小题4分,共40分,每小题只有一个正确的选项)1.式子有意义,则x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤1【考点】二次根式有意义的条件.【分析】根据二次根式的被开方数是非负数列出不等式x﹣1≥0,通过解该不等式即可求得x的取值范围.【解答】解:根据题意,得x﹣1≥0,解得,x≥1.故选:C.2.方程x2=4的解是()A.x=2 B.x=﹣2 C.x1=1,x2=4 D.x1=2,x2=﹣2【考点】解一元二次方程﹣直接开平方法.【分析】直接开平方法求解可得.【解答】解:∵x2=4,∴x1=2,x2=﹣2,故选:D.3.一元二次方程x2+2x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根 D.没有实数根【考点】根的判别式.【分析】先计算出根的判别式△的值,根据△的值就可以判断根的情况.【解答】解:∵在方程x2+2x﹣1=0中,△=22﹣4×1×(﹣1)=8>0,∴方程x2+2x﹣1=0有两个不相等的实数根.故选A.4.下列各式计算正确的是()A.6﹣2=4 B.2+3=5C.2×3=6D.6÷2=3【考点】二次根式的混合运算.【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、原式=2,所以A选项错误;B、2与3不能合并,所以B选项错误;C、原式=6=6,所以C选项正确;D、原式=3,所以D选项错误.故选C.5.在△ABC中,∠ACB=90°,BC=1,AC=2,则下列正确的是()A.sinA=B.tanA=C.cosB=D.tanB=【考点】锐角三角函数的定义.【分析】先根据勾股定理得出AB,再根据三角函数的定义分别得出sinA,tanA,cosB,tanB即可.【解答】解:∵∠ACB=90°,BC=1,AC=2,∴AB===,∴sinA===,tanA==,cosB===,tanB==2,故选C.6.用配方法解方程x2﹣6x﹣5=0,下列配方结果正确的是()A.(x﹣6)2=41 B.(x﹣3)2=14 C.(x+3)2=14 D.(x﹣3)2=4【考点】解一元二次方程﹣配方法.【分析】将常数项移到等式的右边,再在两边都配上一次项系数一半的平方即可得.【解答】解:∵x2﹣6x=5,∴x2﹣6x+9=5+9,即(x﹣3)2=14,故选:B.7.下列事件中,是必然事件的是()A.打开电视机,它正在直播排球比赛B.抛掷5枚硬币,结果是2个正面朝上与3个反面朝上C.黑暗中从一大串钥匙中随便选中一把,用它打开了门D.投掷一枚普通的正方体骰子,正面朝上的数不是奇数便是偶数【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、打开电视机,它正在直播排球比赛是随机事件,故A错误;B、抛掷5枚硬币,结果是2个正面朝上与3个反面朝上是随机事件,故B错误;C、黑暗中从一大串钥匙中随便选中一把,用它打开了门是随机事件,故C错误;D、投掷一枚普通的正方体骰子,正面朝上的数不是奇数便是偶数是必然事件,故D正确;故选:D.8.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长是()A.4cm B.6cm C.8cm D.10cm【考点】解直角三角形;线段垂直平分线的性质.【分析】根据垂直平分线的性质得出BD=AD,再利用cos∠BDC==,即可求出CD的长,再利用勾股定理求出BC的长.【解答】解:∵∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,∴BD=AD,∴CD+BD=8,∵cos∠BDC==,∴=,解得:CD=3,BD=5,∴BC=4.故选A.9.下列关于相似的命题中,①等边三角形都相似;②直角三角形都相似;③等腰直角三角形都相似;④矩形都相似,其中真命题有()A.①②B.①③C.①③④D.①②③④【考点】命题与定理.【分析】判断两个多边形是否相似,需要看对应角是否相等,对应边的比是否相等.矩形、三角形、都属于形状不唯一确定的图形,即对应角、对应边的比不一定相等,故不一定相似,而两个等边三角形和等腰直角三角形,对应角都是相等,对应边的比也都相当,故一定相似.【解答】解:①等边三角形都相似,正确;②直角三角形不一定相似,错误;③等腰直角三角形都相似,正确;④矩形不一定相似,错误;故选B10.如图,E为▱ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则▱ABCD的面积为()A .30B .27C .14D .32【考点】相似三角形的判定与性质;平行四边形的性质.【分析】用相似三角形的面积比等于相似比的平方,以及面积的和差求解.【解答】解:∵四边形ABCD 是平行四边形,∴AB=CD ,CD ∥AB ,BC ∥AB ,∴△BEF ∽△AED , ∵, ∴, ∴,∵△BEF 的面积为4,∴S △AED =25,∴S 四边形ABFD =S △AED ﹣S △BEF =21,∵AB=CD ,, ∴, ∵AB ∥CD ,∴△BEF ∽△CDF , ∴,∴S △CDF =9,∴S 平行四边形ABCD =S 四边形ABFD +S △CDF =21+9=30,故选A .二、填空题(本大题共6小题,每小题4分,共26分)11.已知=,则= .【考点】比例的性质.【分析】根据等式的性质,可用m表示n,根据分式的性质,可得答案.【解答】解:由=,得n=3m.∴==,故答案为:.12.已知锐角α满足cosα=,则锐角α的度数是60度.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:由锐角α满足cosα=,则锐角α的度数是60度,故答案为:60.13.把二次根式化成最简二次根式,则=.【考点】最简二次根式.【分析】根据二次根式的性质把根号内的因式开出来即可.【解答】解:==,故答案为:.14.同时投掷二枚正四面体骰子,所得的点数之和恰为偶数的概率是.【考点】列表法与树状图法.【分析】画树状图展示所有16种等可能的结果数,再找出所得的点数之和恰为偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中所得的点数之和恰为偶数的结果数为8,所以所得的点数之和恰为偶数的概率==.15.若关于x的一元二次方程x2﹣x+k=0的一个根是0,则另一个根是1.【考点】根与系数的关系.x2=﹣,来求方程的另一个根.【分析】根据一元二次方程的根与系数的关系x1+【解答】解:设x1,x2是关于x的一元二次方程x2﹣x+k=0的两个根,∵关于x的一元二次方程x2﹣x+k=0的一个根是0,∴由韦达定理,得x1+x2=1,即x2=1,即方程的另一个根是1.故答案为1.16.将矩形纸片ABCD按如图方式折叠,BE、CF为折痕,折叠后点A和点D都落在点O处,若△EOF是等边三角形,则的值为.【考点】翻折变换(折叠问题);等边三角形的性质;矩形的性质.【分析】由△EOF是等边三角形,可得EF=OE=OF,∠OEF=60°,又由由折叠的性质可得:OE=AE,OF=DF,∠AEB=∠OEB,则可得AD=3AE,∠AEB=60°,则可证得AB=AE,继而求得答案.【解答】解:∵△EOF是等边三角形,∴EF=OE=OF,∠OEF=60°,由折叠的性质可得:OE=AE,OF=DF,∠AEB=∠OEB,∴AD=3AE,∠AEB==60°,∵四边形ABCD是矩形,∴∠A=90°,∴tan∠AEB==,∴AB=AE,∴=.故答案为:.三、解答题(本大题共9小题,共86分)17.计算:2+tan60°﹣2sin45°.【考点】实数的运算;特殊角的三角函数值.【分析】把tan60°、sin45°的特殊三角函数值代入代数式,再进行加减运算.【解答】解:原式=2×+﹣2×==.18.解方程:(x﹣1)2=2(1﹣x)【考点】解一元二次方程﹣因式分解法.【分析】先移项得到(x﹣1)2+2(x﹣1)=0,然后利用因式分解法解方程.【解答】解:(x﹣1)2+2(x﹣1)=0,(x﹣1)(x﹣1+2)=0,x﹣1=0或x﹣1+2=0,所以x1=1,x2=﹣1.19.如图,在△ABC中,DE∥BC中,AD=1,BD=2,DE=2,求BC的长.【考点】相似三角形的判定与性质.【分析】求出AB=3,证明△ADE∽△ABC,得出比例式,即可得出结果.【解答】解:∵AD=1,BD=2,∴AB=AD+BD=3,∵DE∥BC,∴△ADE∽△ABC,∴=,∴BC=3DE=3×2=6.20.用一个字来回顾2016年漳州的楼市,这个字就是“涨”!根据漳州房地产联合网不完全统计,2016年市区某在售的楼盘十月份房价为8100元/m2,到了十二月房价均价为12100元/m2,求十月到十二月房价均价的平均月增长率是多少?【考点】一元二次方程的应用.【分析】首先根据题意可得十二月的房价=十一月的房价×(1+增长率),十一月的房价=十月的房价×(1+增长率),由此可得方程.【解答】解:设十月到十二月房价均价的平均月增长率是x,根据题意得:8100(1+x)2=12100,解得x1=≈22%,x2=﹣(不合题意,舍去)答:十月到十二月房价均价的平均月增长率约为22%.21.如图所示,有一个绳索拉直的木马秋千,秋千绳索AB的长度为4米,将它往前推进2米(即DE=2米),求此时秋千的绳索与静止时所夹的角度及木马上升的高度.(精确到0.1米)【考点】勾股定理的应用.【分析】作CF⊥AB,由sin∠CAB=可得∠CAB度数,根据勾股定理求得AF的长,可得BF的长度.【解答】解:过点C作CF⊥AB于点F,根据题意得:AB=AC=4,CF=DE=2,在Rt△ACF中,sin∠CAB===,∴∠CAB=30°,由勾股定理可得AF2+CF2=AC2,∴AF===2,∴BF=AB﹣AF=4﹣2≈0.5,∴此时秋千的绳索与静止时所夹的角度为30度,木马上升的高度约为0.5米.22.在学习概率知识的课堂上,老师组织小组讨论一道题目:在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,要求同学们按两种规则摸球,规则一:搅匀后从中摸出一个球,放回搅匀后再摸出第二个球;规则二:搅匀后从中一次任意摸出两个球,请你通过画树状图或列表法计算说明哪种规则摸出两个红球的概率较大?【考点】列表法与树状图法.【分析】列举出所有情况,看两次都摸到红球的情况占总情况的多少即可知道哪种方法摸到两个红球的概率较大.【解答】解:规则一、摸出一个球后放回,再摸出一个球时,,共有16种等可能的结果数,其中两个都是红球的占4种,所以两次都摸到红球的概率=;规则二、一次性摸两个球时,∴一共有12种情况,有2种情况两次都摸到红球,∴两次都摸到红球的概率是=.∵>,∴第一规则摸出两个红球的概率较大.23.观察下列各式:=1+﹣=1;=1+﹣=1;=1+﹣=1,…请你根据以上三个等式提供的信息解答下列问题①猜想:=1+﹣=1;②归纳:根据你的观察,猜想,请写出一个用n(n为正整数)表示的等式:=1+﹣=;③应用:计算.【考点】二次根式的性质与化简.【分析】①直接利用利用已知条件才想得出答案;②直接利用已知条件规律用n(n为正整数)表示的等式即可;③利用发现的规律将原式变形得出答案.【解答】解:①猜想:=1+﹣=1;故答案为:1+﹣,1;②归纳:根据你的观察,猜想,写出一个用n(n为正整数)表示的等式:=1+﹣=;③应用:===1+﹣=1.24.如图,在平面直角坐标系中,▱ABCD的边BC在x轴上,点A在y轴上,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求cos∠ABC的值;(2)点P由B出发沿BC方向匀速运动,速度为每秒2个单位长度,点Q由D 出发沿DA方向匀速运动,速度为每秒1个单位长度,设运动时间为t秒(0<t ≤3),是否存在某一时刻;使△AOP与△QAO相似?若存在,求此时t的值;若不存在,请说明理由.【考点】相似形综合题.【分析】(1)先解一元二次方程得出OA=4,OB=3,再用勾股定理即求出AB,最后用三角函数的定义即可得出结论;(2)分点P在OB和OC上两种情况,当点P在OB上时①分△AOP∽△OAQ和△AOP∽△QAO,用比例式建立方程求解即可;当点P在OC上时,同点P在OB 上的方法即可得出结论.【解答】解:(1)由方程x2﹣7x+12=0解得,x=4,或x=3,∵OA>OB,∴OA=4,OB=3,在Rt△AOB中,AB==5,∴cos∠ABC=,(2)如图,由题意得,BP=2t,AQ=6﹣t,当点P在OB上时,0<t<1.5,∵∠AOP=∠OAQ=90°,∴①当时,△AOP∽△OAQ,∴,∴t=(舍)或t=,②当时,△AOP∽△QAO,∴3﹣2t=6﹣t,∴t=﹣3(舍),当点P在OC上时,1.5≤t≤3,∵∠AOP=∠OAQ=90°,∴①当,△AOP∽△OAQ,∴此时方程无实数解,②当,∴2t﹣3=6﹣t,∴t=3,综上可得当t=或t=3时,△AOP与△QAO相似25.探究证明:(1)如图1,矩形ABCD中,点M、N分别在边BC,CD上,AM⊥BN,求证:=.(2)如图2,矩形ABCD中,点M在边BC上,EF⊥AM,EF分别交AB,CD于点E、点F,试猜想与有什么数量关系?并证明你的猜想.拓展应用:综合(1)、(2)的结论解决以下问题:(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求的值.【考点】相似形综合题.【分析】(1)根据两角对应相等两三角形相似即可证明.(2)结论:=.如图2中,过点B作BG∥EF交CD于G,首先证明四边形BEFG是平行四边形,推出BG=EF,由△GBC∽△MAB,得=,由此即可证明.(3)如图3中,过点D作平行于AB的直线交过点A平行于BC的直线于R,交BC的延长线于S,连接AC,则四边形ABSR是平行四边形.由(2)中结论可得:=,想办法求出BS即可解决问题.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴∠ABC=∠C=90°∴∠NBA+∠NBC=90°,∵AM⊥BN,∴∠MAB+∠NBA=90°,∴∠NBC=∠MAB,∴△BCN∽△ABM,∴=.(2)结论:=.理由:如图2中,过点B作BG∥EF交CD于G,∵四边形ABCD是矩形,∴AB∥CD,∴四边形BEFG是平行四边形,∴BG=EF,∵EF⊥AM,∴BG⊥AM,∴∠GBA+∠MAB=90°,∵∠ABC=∠C=90°,∴∠GBC+∠GBA=90°,∴∠MAB=∠GBC,∴△GBC∽△MAB,∴=,∴=.(3)如图3中,过点D作平行于AB的直线交过点A平行于BC的直线于R,交BC的延长线于S,连接AC,则四边形ABSR是平行四边形.∵∠ABC=90°,∴四边形ABSR是矩形,∴∠R=∠S=90°,RS=AB=10,AR=BS,∵AM⊥DN,∴由(2)中结论可得:=,∵AB=AD,CB=CD,AC=AC,∴△ACD≌△ACB,∠ADC=∠ABC=90°,∴∠SDC+∠RDA=90°,∵∠RAD+∠RDA=90°,∴∠RAD=∠SDC,∴△RAD∽△SDC,∴∴=,设SC=x,∴=,∴RD=2x,DS=10﹣2x,在Rt△CSD中,∵CD2=DS2+SC2,∴52=(10﹣2x)2+x2,∴x=3或5(舍弃),∴BS=5+x=8,∴===.高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________ 一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ …………………………密………………………………….封……………………….线…………………………………………………………………………..5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2第5题图 第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )A .8个B .6个C .4个D .12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.第8题图 第9题图 第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )第1 题图 第2题图 第3题图 2.(2016·抚顺中考)如图所示几何体的主视图是( )3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A .1个B .2个C .3个D .4个乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..5.(2016·宁波中考)如图所示的几何体的主视图为( )6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )◆类型二 简单组合体的三视图8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为( )。
九年级(上)期中目标检测数学试卷(一)及答案
九年级(上)期中目标检测试卷(一)一、精心选一选(每小题3分,共30分)1.函数y =x 23-中自变量x 的取值范围是( ) A.x ≤23-B.x ≥23- C.x ≥23 D.x ≤232.如果2是方程x 2-c =0的一个根,那么c 的值是( )A.4B.-4C.2D.-2 3.小马虎做了下列四道题:①523=+;②27=±33;③2235-=2235-=5-3=2;④3123-=-.他拿给好朋友聪聪看,聪聪告诉他只做对了( ) A.4道 B.3道 C.2道 D.1道4.观察下列银行标志,从图案看是中心对称图形的有( )个A.1个B.2个C.3个D.4个5.2010年广州亚运会距离我们越来越近,为了支持广州亚运会,某班举行了“迎亚运,我为先”联欢晚会,会上,班长准备了若干张相同的卡片,上面写的是联欢会上同学们要回答的问题.联欢会开始后,班长问小明:你能设计一个方案,估计联欢会共准备了多少张卡片?小明用20张空白卡片(与写有问题的卡片相同),和全部写有问题的卡片洗匀,从中随机抽取10张,发现有2张空白卡片,马上正确估计出了写有问题卡片的数目,小明估计的数目是( )A.60张B.80张C.90张D.110张6. 6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、直角梯形、正方形、正五边形、圆.在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是( )A.61 B.31 C.21 D.32 7.2008年8月8日,五环会旗将在“鸟巢”高高飘扬,会旗上的五环(如图)间的位置关系有( )A.相交或相切B.相交或内含C.相交或相离D.相切或相离 8.为了让返乡农民工工作尽快实现就业,某区加强了对返乡农民工培训经费的投入.2008年投入3000万元.预计2010年投入5000万元.设培训经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )A.3000(1+x )2=5000B.3000x 2=5000C.3000(1+x %)2=5000 D.3000(1+x )+3000(1+x )2=5000 9.如图,阴影部分组成的图案既是关于x 轴成轴对称的图形又是关于坐标原点O 成中心对称的图形.若点A 的坐标是(1,3),则点M 和点N 的坐标分别是( ) A.M (1,-3),N (-1,-3)C. M (-1,-3),N (-1,3)D. M (-1,3),N (1,-3)10.⊙O 的半径是42,弦AB 的长为x 2-3x -4=0的一根,则圆心O 到弦AB 的距离以及AB 所对的圆心角分别为( ) A.4和45° B.4和90° C.3和45° D.3和90° 二、细心填一填(每小题3分,共24分) 11.已知3+a +|b -2|=0,那么(a +b )2009=_______.12.若关于x 的一元二次方程x 2+2x +k =0的一个根是0,则另一个根是_________.13.在实数范围内定义一种运算,其规则为:M ※N =M 2-MN ,根据这个规则,则方程(x -3)※5=0的解为_________. 14.如图,Rt △ABC 中∠ACB =90°,AC =4,BC =3.将△ABC 绕AC 所在的直线F 旋转一周得到一个旋转体,该旋转体的侧面积= .(π取3.14,结果保留两个有效数字)15.如图,轮椅车的大小两车轮(在同一平面上)与地面的触点A ,B 间距离为80cm ,两车轮的直径分别为136cm ,16cm ,则此两车轮的圆心相距 cm .16.有位同学对英语是一窍不通,在考试做选择题时,自己制作了四个阄,抓到哪个写哪个,那么他每道题做对的概率是________,如果选择题共40分,那么他大概能得________分. 17.如图,将△ABC 绕点C 按顺时针方向旋转90°后得到△A 1B 1C 1,则A 点对应点A 1的坐标是_________. 18.如下图中每个阴影部分是以多边形各顶点为圆心,1为半径的扇形,并且所有多边形的每条边长都大于2,则第n 个多边形中,所有扇形面积之和是 (结果保留π).三、耐心解一解(共66分)19.(每小题4分,共8分)计算题:(1)4821319125+-; (2)521312321⨯÷.F ABC第3个第2个第1个 ······20.(每小题4分,拱8分)解方程:(1)x2-3x=2x-6;(2)解方程:(x+2)(x+3)=x+14.21.(6分)如图,在直角坐标系中,Rt△AOB的两条直角边OA,OB分别在x轴的负半轴,y轴的负半轴上,且OA=2,OB=1.将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的像沿x轴正方向平移1个单位,得△CD O.(2)求点A和点C之间的距离.x22.(7分)如图所示,有一座圆弧形拱桥,它的跨度为60米,拱高位18米,当洪水泛滥到水面跨度只有30米时,就要采取紧急措施,若拱顶离水面只有4米,即PN=4米时,是否需要采取紧急措施?23.(8分)已知关于x的一元二次方程x2+3x+1-m=0.(1)请你选取一个你喜欢的M的值,使方程有两根不相等的实数根,并说明它的正确性.(2)设x1,x2是(1)中所得的方程的两根根,求x1·x2+x1+x2的值.24.(9分)小樱的爸爸买了2010年广州亚运会开幕式的一张门票,她和哥哥两人都很想去观看.可门票只有一张,读九年级的哥哥想了一个办法,拿了8张扑克牌,将数字为2、3、5、9的四张牌给小敏,将数字为4、6、7、8的四张牌留给自己,并按如下游戏规则进行:小敏和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小敏去;如果和为奇数,则哥哥去.(1)请用画树形图或列表的方法求小敏去看比赛的概率;(2)哥哥设计的游戏规则公平吗? 若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.25.(10分)如图(1),在△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为对方),将直角三角板DEF绕D点按逆时针方向旋转.(1)在图(1)中,DE交AB于点M,DF交BC于点N.①证明DM=DN;②在这一过程中,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化,若发生变化,请说明是如何变化的;若不发生变化,求出其面积.(2)继续旋转至如图(2)的位置,延长AB交DE于点M,延长BC交DF于点N,DM=DN是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)继续旋转至如图(3)的位置,延长FD交BC于点N,延长ED交AB于点M,DM=DN是否仍然成立?若成立,请直接写出结论,不用证明.26.(10分)如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连结AD、BD.(1)求证:∠ADB=∠E;(2)当点D运动到什么位置时,DE是⊙O的切线?请说明理由.(3)当AB=5,BC=6时,求⊙O的半径.EC A参考答案一、1.C 2.A 3.D 4.D 5.B 6.C 7.C 8.A 9.B 10.B二、11.-1 12.-2 13.x 1=3,x 2=8 14.47 15.100 16.0.25,10 17.(3,0) 18.n π2三、19.(1)原式=3233310+-=39.(2)原式=573735⨯÷=573735⨯÷=1. 20.(1)x 1=2,x 2=3.(2)321+-=x ,322--=x .21.(1)点A 的坐标是(-2,0),点C 的坐标是(1,2).(2)连结AC ,在Rt △ACD 中,AD =OA +OD =3,CD =2, ∴AC 2=CD 2+AD 2=22+32=13, ∴AC =13.22.设拱桥所在圆的圆心为O ,半径为r 米,在R t △OAM 中,设OP 交A B 于M 点,则有r 2-(r -18)2=302,解得r =34.又又在R t △OA /N 中,有A /N 2+ON 2=OA /2,即A /N =22)434(34--=16,A /B /=2A /N =32(米)>30(米)所以不需要采取紧急措施.23.(1)如M =5,此时方程为x 2+3x -4=0,b 2-4ac=32-4×1×(-4)>0,所以方程有两根不相等的实数根.(2)x 1·x 2+x 1+x 2=-4-3=-7.24.(1)根据题意,我们可以画出如下的树形图:或者:根据题意,我们也可以列出下表:从树形图(表) 以看出,所有可能出现的结果共有16个,出现的可能性相等.而和为偶数的结果共有6所以小樱看比赛的概率P (和为偶数)=83166=. 4 6 7 894CBA(2)哥哥去看比赛的概率P (和为奇数)=1-83=85,因为83<85,所以哥哥设计的游戏规则不公平; 如果规定点数之和小于等于10时则小樱(哥哥)去,点数之和大于等于11时则哥哥(小樱)去.则两人去看比赛的概率都为21,那么游戏规则就是公平的. 或者:如果将8张牌中的2、3、4、5四张牌给小樱,而余下的6、7、8、9四张牌给哥哥,则和为偶数或奇数的概率都为21,那么游戏规则也是公平的.(只要满足两人手中点数为偶数(或奇数)的牌的张数相等即可.)25.(1)①连接DB .在Rt △ABC 中,AB =BC ,AD =DC ,∴DB =DC =AD ,∠BDC =90°.∴∠ABD =∠C =45°.∵∠MDB +∠BDN =∠CDM +∠BDN =90°,∴∠MDB =∠NDC .∴△BMD ≌△CND .∴DM =DN .②四边形D M B N 的面积不发生变化.由①知△B M D ≌△C N D , ∴S △B M D =S △C N D .∴S 四边形D M B N =S △DB N +S △D M B =S △DB N +S △D N C =S △DBC =21S △ABC =41. (2)DM =DN 仍然成立.连接DB ,在Rt △ABC 中,AB =BC ,AD =DC ,∴DB =DC ,∠BDC =90°,∴∠DCB =∠DBC =45°.∴∠DBM =∠DCN =135°.∵∠NDC +∠CDM =∠BDM +∠CDM =90°,∴∠CDN =∠BDM .∴△BMD ≌△CND.∴DM =DN . (3)DM =DN .26.(1)在△ABC 中,∵AB =AC ,∴∠ABC =∠C .∵DE ∥BC ,∴∠ABC =∠E , ∴∠E =∠C .又∵∠ADB =∠C , ∴∠ADB =∠E .(2)当点D 是弧BC 的中点时,DE 是⊙O 的切线.理由是:当点D 是弧BC 的中点时,则有AD ⊥BC ,且AD 过圆心O . 又∵DE ∥BC ,∴ AD ⊥ED . ∴ DE 是⊙O 的切线.(3)连结BO 、AO ,并延长AO 交BC 于点F , 则AF ⊥BC ,且BF =21BC =3. 又∵AB =5,∴AF =4.设⊙O 的半径为r ,在R t △OBF 中,OF =4-r ,OB =r ,BF =3, ∴r 2=32+(4-r )2 解得r =825,∴⊙O 的半径是825.。
人教版九年级数学第一单元测试题
人教版九年级数学第一单元测试题一、选择题(每题3分,共30分)1. 一元二次方程公式配方后可变形为()A. 公式B. 公式C. 公式D. 公式解析:对于一元二次方程公式,配方时,首先将方程变形为公式。
然后在等式两边加上一次项系数一半的平方,即公式,得到公式,即公式。
所以答案是A。
2. 方程公式的解是()A. 公式B. 公式C. 公式D. 公式先将方程公式展开得到公式,即公式。
分解因式得公式,则公式或公式,解得公式。
所以答案是B。
3. 关于公式的一元二次方程公式的常数项为0,则公式等于()A. 1B. 2C. 1或2D. 0解析:因为方程公式的常数项为0,所以公式。
分解因式得公式,解得公式或公式。
又因为方程是一元二次方程,二次项系数公式,即公式,所以公式。
答案是B。
4. 若公式是关于公式的一元二次方程公式的一个根,则公式的值为()B. 2018C. 2020D. 2022解析:因为公式是方程公式的一个根,所以将公式代入方程得公式,即公式。
则公式。
5. 一元二次方程公式的一个根是公式,则另一个根是()A. 3B. -1C. -3D. -2解析:已知一元二次方程公式的一个根是公式,将公式代入方程得公式,解得公式。
所以原方程为公式,分解因式得公式,另一个根为公式。
答案是C。
6. 下列方程中,没有实数根的是()A. 公式B. 公式C. 公式D. 公式解析:对于一元二次方程公式,判别式公式。
A选项中,公式,公式,有两个不同的实数根。
B选项中,公式,公式,没有实数根。
C选项中,公式,公式,有两个相同的实数根。
D选项中,公式,公式,有两个不同的实数根。
所以答案是B。
7. 若关于公式的一元二次方程公式有两个相等的实数根,则实数公式的值为()A. -1B. 0C. 1D. 2解析:对于方程公式,公式,因为方程有两个相等的实数根,所以公式,即公式,解得公式。
答案是C。
8. 一种药品经过两次降价,药价从原来每盒公式元降至现在的公式元,则平均每次降价的百分率是()A. 10%B. 11%C. 12%D. 13%解析:设平均每次降价的百分率为公式,则第一次降价后的价格为公式,第二次降价是在第一次降价后的价格基础上进行的,所以第二次降价后的价格为公式。
人教版初中九年级数学上册第二十二章《二次函数》阶段测试(含答案解析)(1)
一、选择题1.二次函数()20y ax bx c a =++≠的图象如图所示,对称轴是直线1x =-.下列结论:①240b ac ->,②0abc <,③420a b c -+>.其中正确的是( )A .①②B .①③C .②③D .①②③B解析:B 【分析】先由抛物线与x 轴的交点个数判断出结论①,再根据二次函数图像的开口方向,及与y 轴的交点位置,对称轴的位置分别判断出,,a b c 的符号可判断结论②,最后用2x =-时,抛物线再x 轴上方判断结论③. 【详解】由图象知,抛物线与x 轴有两个交点, 方程ax 2+bx+c=0有两个不相等的实数根, ∴b 2-4ac>0,故①正确,由图象知抛物线的开口向下0a <, 抛物线与y 轴交于正半轴0c >, 对称轴直线为1x =-, ∴102ba-=-<,可推出0b <, ∴0abc >,故②错误,由图象知,当x=-2与x=0对应的y 值相同,0y >, ∴420a b c -+>,故③正确. 故选:B . 【点睛】本题主要考查了二次函数图形与系数的关系,抛物线的开口方向,与y 轴的交点,抛物线的对称轴,掌握抛物线的性质是解题的关键2.若飞机着陆后滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,则函数图象大致为( )A .B .C .D .C解析:C 【分析】根据关系式可得图象的开口方向,可求出函数的顶点坐标,根据s 从0开始到最大值时停止,可得t 的取值范围,即可得答案. 【详解】∵滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,-1.5<0, ∴图象的开口向下,∵s=60t-1.5t 2=-1.5(t-20)2+600, ∴顶点坐标为(20,600), ∵s 从0开始到最大值时停止, ∴0≤t≤20, ∴C 选项符合题意, 故选:C . 【点睛】本题考查二次函数的应用,熟练掌握二次函数的图象与性质是解题关键. 3.设函数()()12y x x m =--,23y x=,若当1x =时,12y y =,则( ) A .当1x >时,12y y < B .当1x <时,12y y > C .当0.5x <时,12y y < D .当5x >时,12y y >D解析:D 【分析】当y 1=y 2,即(x ﹣2)(x ﹣m )=3x,把x =1代入得,(1﹣2)(1﹣m )=3,则m =4,画出函数图象即可求解. 【详解】解:当y 1=y 2, 即(x ﹣2)(x ﹣m )=3x, 把x =1代入得,(1﹣2)(1﹣m )=3, ∴m =4,∴y 1=(x ﹣2)(x ﹣4), 抛物线的对称轴为:x =3,如下图:设点A 、B 的横坐标分别为1,5,则点A 、B 关于抛物线的对称轴对称,从图象看在点B 处,即x =5时,y 1>y 2, 故选:D . 【点睛】本题考查的是二次函数与不等式(组),主要要求学生通过观察函数图象的方式来求解不等式.4.已第二次函数()2240y ax ax a =-+->图象上三点()11,A y -、()21,B y 、()32,C y ,则1y ,2y ,3y 的大小关系为( )A .132y y y <<B .312y y y <<C .123y y y <<D .213y y y <<B解析:B 【分析】把三点横坐标代入函数解析式,求出函数值,再进行比较大小即可. 【详解】解:当x=-1时,y=-2a-a-4=-3a-4; 当x=1时,y=-2a+a-4=-a-4; 当x=2时,y=-8a+2a-4=-6a-4; ∵a >0∴-6a-4<-3a-4<-a-4 ∴312y y y << 故选B 【点睛】本题考查抛物线上点的坐标特征,解答本题的关键是明确题意,可以判断y 1,y 2,y 3的大小.5.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .C解析:C 【分析】分a >0与a <0两种情况考虑两函数图象的特点,再对照四个选项中图形即可得出结论. 【详解】解:①当a >0时,二次函数y=ax 2-a 的图象开口向上、对称轴为y 轴、顶点在y 轴负半轴,一次函数y=ax-a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y 轴同一点;②当a <0时,二次函数y=ax 2-a 的图象开口向下、对称轴为y 轴、顶点在y 轴正半轴,一次函数y=ax-a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y 轴同一点. 对照四个选项可知C 正确. 故选:C . 【点睛】本题考查了一次函数的图象以及二次函数图象与系数的关系,根据二次函数及一次函数系数找出其大概图象是解题的关键. 6.表格对应值:x 1 2 3 4 2ax bx c ++0.5-512.522判断关于x 的方程2ax bx c ++=的一个解x 的范围是( )A .01x <<B .12x <<C .23x <<D .34x <<B解析:B 【分析】利用x =1和x =2所对应的函数值可判断抛物线y=ax 2+bx +c 与x 轴的一个交点在(1,0)和(2,0)之间,则根据抛物线于x 轴的交点问题可判断关于x 的方程ax 2+bx +c =0(a≠0)的一个解x 的范围. 【详解】解:∵x =2时,y =5,即ax 2+bx +c >0; x =1时,y =-0.5,即ax 2+bx +c <0,∴抛物线y=ax 2+bx +c 与x 轴的一个交点在(1,0)和(2,0)之间, ∴关于x 的方程ax 2+bx +c =0(a ≠0)的一个解x 的范围是1<x <2. 故选:B . 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程. 7.抛物线()2512y x =--+的顶点坐标为( ) A .()1,2- B .()1,2C .()1,2-D .()2,1B解析:B 【分析】由于给的是二次函数顶点式的表达式,可直接写出顶点坐标. 【详解】解:∵y=-5(x-1)2+2,∴此函数的顶点坐标是(1,2). 故选:B . 【点睛】本题考查了二次函数的性质,解题的关键是掌握二次函数顶点式的表示方法.8.把函数2(1)2y x =-+图象向右平移1个单位长度,平移后图象的函数解析式为( ) A .22y x =+ B .2(1)1y x =-+C .2(2)2y x =-+D .2(1)3y x =-+C解析:C 【分析】先求出y=(x-1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可. 【详解】解:二次函数y=(x-1)2+2的图象的顶点坐标为(1,2), ∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2), ∴所得的图象解析式为y=(x-2)2+2. 故选:C . 【点睛】本题主要考查的是函数图象的平移,求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.9.已知二次函数2y ax bx c =++,当2x =时,该函数取最大值9.设该函数图象与 x 轴的一个交点的横坐标为1x ,若15x >则a 的取值范围是( ) A .3a 1-<<- B .2a 1-<< C .1a 0-<< D .2a 4<<C解析:C 【分析】根据二次函数2y ax bx c =++,当2x =时,该函数取最大值9,可以写出该函数的顶点式,得到0a <,再根据该函数图象与x 轴的一个交点的横坐标为1x ,15x >,可知,当5x =时,0y >,即可得到a 的取值范围,本题得以解决.【详解】 解:二次函数2y ax bx c =++,当2x =时,该函数取最大值9,0a ∴<,该函数解析式可以写成2(2)9y a x =-+,设该函数图象与x 轴的一个交点的横坐标为1x ,15x >,∴当5x =时,0y >,即2(52)90a -+>,解得,1a >-,a ∴的取值范围时10a -<<,故选:C . 【点睛】本题考查二次函数图象与系数的关系、二次函数的最值、抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.10.二次函数2y ax bx c =++的图象如图所示,下列结论正确的是( )A .0abc >B .0a b c ++=C .420a b c ++=D .240b ac -<C解析:C 【分析】由二次函数的开口方向,对称轴0x >,以及二次函数与y 的交点在x 轴的上方,与x 轴有两个交点等条件来判断各结论的正误即可. 【详解】A 、观察图象,二次函数的开口向下,∴0a <, 与y 轴的交点在x 轴上方,∴0c >, 又∵对称轴为2bx a=-,在x 轴的正半轴上, 故02bx a=->,即0b >. ∴0abc <,故选项A 不正确;B 、观察图象,抛物线对称轴为直线12122x -+== ∴在对称轴右侧,当1x =时,函数值0y a b c =++>,故选项B 不正确;C 、观察图象,当2x =时,函数值420y a b c =++=,故选项C 正确;D 、∵二次函数与x 轴有两个交点,∴240b ac =->,故D 不正确.故选:C . 【点睛】本题考查了二次函数的图象与系数的关系,能利用数形结合求解是解答此题的关键.二、填空题11.有一个二次函数的图象,三位同学分别说了它的一些特点: 甲:与x 轴只有一个交点; 乙:对称轴是直线x =4;丙:与y 轴的交点到原点的距离为3.满足上述全部特点的二次函数的解析式为_____.y =(x ﹣4)2或y =﹣(x ﹣4)2【分析】根据甲乙所说的特点可知判断抛物线的顶点坐标为(40)再根据丙所说的特点可得到抛物线与y 轴的交点坐标为(03)或(0﹣3)然后利用待定系数法求出抛物线解析式解析:y =316(x ﹣4)2或y =﹣316(x ﹣4)2. 【分析】根据甲、乙所说的特点可知判断抛物线的顶点坐标为(4,0),再根据丙所说的特点可得到抛物线与y 轴的交点坐标为(0,3)或(0,﹣3),然后利用待定系数法求出抛物线解析式即可. 【详解】解:∵抛物线与x 轴只有一个交点且对称轴是直线x =4, ∴抛物线的顶点坐标为(4,0), ∵抛物线与y 轴的交点到原点的距离为3.∴抛物线与y 轴的交点坐标为(0,3)或(0,﹣3), 设抛物线的解析式为y =a (x ﹣4)2, 把(0,3)代入得3=a (0﹣4)2,解得a =316,此时抛物线的解析式为y =316(x ﹣4)2;把(0,﹣3)代入得﹣3=a (0﹣4)2,解得a =﹣316,此时抛物线的解析式为y =﹣316(x ﹣4)2;综上,满足上述全部特点的二次函数的解析式为y =316(x ﹣4)2或y =﹣316(x ﹣4)2. 故答案为y =316(x ﹣4)2或y =﹣316(x ﹣4)2. 【点睛】本题主要考查了二次函数的性质以及运用待定系数法确定函数解析式,灵活运用二次函数的性质成为解答本题的关键.12.若二次函数26y x x c =-+的图象经过()11,A y -,()22,By ,()33C y +三点,则关于1y ,2y ,3y 大小关系正确的是_______.(用“<”连接)【分析】根据函数解析式的特点其对称轴为x=3图象开口向上;利用y 随x 的增大而减小可判断根据二次函数图象的对称性可判断于是【详解】根据二次函数图象的对称性可知中在对称轴的左侧y 随x 的增大而减小因为于是 解析:231y y y <<【分析】根据函数解析式的特点,其对称轴为x=3,图象开口向上;利用y 随x 的增大而减小,可判断21y y <,根据二次函数图象的对称性可判断23y y >,于是231y y y <<. 【详解】根据二次函数图象的对称性可知,33()C y 中,|33||32|1+>-=,1(1,)A y -、2(2,)B y 在对称轴的左侧,y 随x 的增大而减小,因为112-<<,于是231y y y <<.故答案为231y y y <<. 【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.13.公园广场前有一喷水池,喷水头位于水池中央,从喷头喷出水珠的路径可近似看作抛物线.如图是根据实际情境抽象出的图象,水珠在空中划出的曲线恰好是抛物线26y x x =-+(单位:m )的一部分,则水珠落地点(点P )到喷水口(点O )的距离为________m .6【分析】根据题意可以得到水珠落地点(点P )到喷水口(点O )的距离就是OP 的长度利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案【详解】解:∵水在空中划出的曲线是抛物线y=-x2+6x ∴解析:6 【分析】根据题意可以得到水珠落地点(点P )到喷水口(点O )的距离就是OP 的长度,利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案. 【详解】解:∵水在空中划出的曲线是抛物线y=-x 2+6x , ∴y=-x 2+6x=-(x-3)2+9, ∴顶点坐标为:(3,9),∴水珠落地点(点P )到喷水口(点O )的距离为OP=3×2=6(米), 故答案为:6. 【点睛】本题考查了二次函数的应用,解决此类问题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题. 14.二次函数223y x =的图象如图所示,点0A 位于坐标原点,点1A ,2A ,3A ,…,2013A 在y 轴的正半轴上,点1B ,2B ,3B ,…,2013B 在二次函数223y x =位于第一象限的图象上,若011A B A △,122A B A △,233A B A △,…,201220132013A B A △都为等边三角形,则201220132013A B A △的边长=________.2013【分析】分别过B1B2B3作y 轴的垂线垂足分别为ABC 设A0A1=aA1A2=bA2A3=c 则AB1=aBB2=bCB3=c 再根据所求正三角形的边长分别表示B1B2B3的纵坐标逐步代入抛物线解析:2013【分析】分别过B 1,B 2,B 3作y 轴的垂线,垂足分别为A 、B 、C ,设A 0A 1=a ,A 1A 2=b ,A 2A 3=c ,则AB 1=32a ,BB 2=32b ,CB 3=32c ,再根据所求正三角形的边长,分别表示B 1,B 2,B 3的纵坐标,逐步代入抛物线y=23x 2中,求a 、b 、c 的值,得出规律. 【详解】分别过1B ,2B ,3B 作y 轴的垂线,垂足分别为A 、B 、C , 设01A A a =,12A A b =,23A A c =,由勾股定理则22101032AB A B AA a =-=,232BB b =,332CB c =, 1111312233AA AB a a ==⨯=,则13,22a B a ⎛⎫ ⎪ ⎪⎝⎭, 2211312233BA BB b b ==⨯=,则23,22b B b a ⎛⎫+ ⎪ ⎪⎝⎭, 3331233CA c ===,则33,2c B a b ⎫++⎪⎪⎝⎭, 在正011A B A △中,13,2a B ⎫⎪⎪⎝⎭, 代入223y x =中,得223234a a =⨯,解得1a =,即011A A =,在正122A B A △中,23,12b B ⎫+⎪⎪⎝⎭,代入223y x =中,得2231234b b +=⨯,解得2b =,即122A A =,在正233A B A △中,33,322c B c ⎛⎫+ ⎪ ⎪⎝⎭,代入223y x =中,得2233234c c ⎛⎫+=⨯ ⎪⎝⎭,解得3c =,即233A A =,…,依此类推由此可得201220132013A B A △的边长2013=.故答案为:2013.【点睛】本题考查了二次函数的综合运用.勾股定理应用,掌握探究规律题的解题方法,关键是根据正三角形的性质用边长表示抛物线上点的坐标,利用抛物线解析式求正三角形的边长,得到规律.15.已知点()12,A y -,()23,B y -在二次函数22y x x c =--+的图象上,则1y 与2y 的大小关系为1y ______2y .(填“>”“<”或“=”)【分析】抛物线开口向下且对称轴为直线x=-1根据二次函数的图象性质:在对称轴的左侧y 随x 的增大而增大判断即可【详解】解:∵二次函数的解析式为y=-x2-2x+c=-(x+1)2+1+c ∴该抛物线开口解析:>【分析】抛物线开口向下,且对称轴为直线x=-1,根据二次函数的图象性质:在对称轴的左侧,y 随x 的增大而增大判断即可.【详解】解:∵二次函数的解析式为y=-x 2-2x+c=-(x+1)2+1+c ,∴该抛物线开口向下,且对称轴为直线:x=-1.∵点A (-2,y 1),B (-3,y 2)在二次函数y=-x 2-2x+c 的图象上,且-3<-2<-1, ∴y 1>y 2.故答案为>.【点睛】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.16.将二次函数 ()2213y x =-+ 的图象先向左平移2个单位,再向下平移4个单位,则所得图象的函数表达式为________.y=2(x+1)2-1【分析】利用二次函数图像平移规律:上加下减左加右减可得平移后的函数解析式【详解】解:将二次函数 的图象先向左平移2个单位再向下平移4个单位则所得图象的函数表达式为:y=2(x解析:y=2(x+1)2-1【分析】利用二次函数图像平移规律:上加下减,左加右减,可得平移后的函数解析式.【详解】解:将二次函数 ()2213y x =-+ 的图象先向左平移2个单位,再向下平移4个单位,则所得图象的函数表达式为:y=2(x-1+2)2+3-4∴y=2(x+1)2-1.故答案为:y=2(x+1)2-1.【点睛】本题考查了二次函数与几何变换,正确掌握平移规律是解题关键.17.单行隧道的截面是抛物线形,且抛物线的解析式为21 3.258y x =-+,一辆车高3米,宽4米,该车________(填“能”或“不能”)通过该隧道.不能【分析】根据题意将x=2代入求出相应的y 值然后与车高比较大小即可解答本题【详解】解:将x=2代入y=-x2+325得y=-×22+325=275∵275<3∴该车不能通过隧道故答案为:不能【点睛解析:不能.【分析】根据题意,将x=2代入求出相应的y 值,然后与车高比较大小即可解答本题.【详解】解:将x=2代入y=-18x 2+3.25,得 y=-18×22+3.25=2.75, ∵2.75<3,∴该车不能通过隧道,故答案为:不能.【点睛】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.18.已知二次函数()232y x m x m =-+-+的顶点在y 轴上,则其顶点坐标为___________.【分析】先根据二次函数的顶点在y 轴上可得其对称轴为y 轴从而求出m 的值再根据二次函数的解析式即可得出答案【详解】二次函数的顶点在y 轴上此二次函数的对称轴为y 轴即解得二次函数的解析式为其顶点坐标为故答案解析:()0,2【分析】先根据二次函数的顶点在y 轴上可得其对称轴为y 轴,从而求出m 的值,再根据二次函数的解析式即可得出答案.【详解】二次函数()232y x m x m =-+-+的顶点在y 轴上, ∴此二次函数的对称轴为y 轴,即()2023m x -=-=⨯-, 解得2m =,∴二次函数的解析式为232y x =-+,∴其顶点坐标为()0,2,故答案为:()0,2.【点睛】本题考查了二次函数的顶点坐标和对称轴,熟练掌握二次函数的对称性是解题关键. 19.写出一个二次函数,其图像满足:①开口向下;②与y 轴交于点(0,3)-,这个二次函数的解析式可以是_______________________.【分析】根据二次函数的性质可得出a <0利用二次函数图象上点的坐标特征可得出c=-3取a=-1b=0即可得出结论【详解】解:设二次函数的解析式为y=ax2+bx+c ∵抛物线开口向下∴a <0∵抛物线与y解析:23=--y x【分析】根据二次函数的性质可得出a <0,利用二次函数图象上点的坐标特征可得出c=-3,取a=-1,b=0即可得出结论.【详解】解:设二次函数的解析式为y=ax 2+bx+c .∵抛物线开口向下,∴a <0.∵抛物线与y 轴的交点坐标为(0,-3),∴c=-3.取a=-1,b=0时,二次函数的解析式为y=-x 2-3.故答案为:y=-x 2-3(答案不唯一).【点睛】本题考查了二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征,找出a <0,c=-3是解题的关键.20.过点()0,2,()2,2,()2,1--的二次函数图象开口向_______(填“上”或“下”)下【分析】先用待定系数法确定二次函数的解析式然后根据二次项系数即可解答【详解】解:设一般式y=ax2+bx+c 由题意得:解得由<0则该函数图像开口向下故答案为:下【点睛】本题考查了二次函数图像的性质解析:下【分析】先用待定系数法确定二次函数的解析式,然后根据二次项系数即可解答.【详解】解:设一般式y=ax 2+bx+c ,由题意得:2=c 2=42142a b c a b c ⎧⎪++⎨⎪-=-+⎩解得3=-83=42a b c ⎧⎪⎪⎪⎨⎪=⎪⎪⎩由3=-8a <0,则该函数图像开口向下. 故答案为:下.【点睛】 本题考查了二次函数图像的性质,根据题意确定二次函数的解析式是解答本题的关键.三、解答题21.已知抛物线23y ax bx =++经过点()3,0-,()2,5-.求此抛物线的解析式. 解析:223y x x =--+【分析】将点3,0,2,5代入抛物线23y ax bx =++解方程组求出b 、c 的值即可得答案.【详解】由题意得,93304235a b a b -+=⎧⎨++=-⎩解得,12a b =-⎧⎨=-⎩, 则二次函数的解析式为223y x x =--+.【点睛】本题考查待定系数法求二次函数解析式,把抛物线上的点的坐标代入解析式确定字母的值是解题关键.22.已知二次函数2y ax =与22y x c =-+.(1)随着系数a 和c 的变化,分别说出这两个二次函数图象的变与不变;(2)若这两个函数图象的形状相同,则a =______;若抛物线2y ax =沿y 轴向下平移2个单位就能与22y x c =-+的图象完全重合,则c =______. (3)二次函数22y x c =-+中x 、y 的几组对应值如下表:解析:(1)见解析;(2)2±,2-;(3)p m n <<【分析】(1)二次函数的二次项系数、一次项系数和常数项的变化会影响开口大小,开口方向,对称轴和顶点坐标,根据二次函数的性质即可得出图像的具体影响.(2)由于函数图像形状相同,可以得到2a =±;根据二次函数平移规律上加下减可求得函数22y ax =-,再由题意就可得到c =-2. (3)将表中数值代入二次函数即可分别得到m 、n 、p 含未知数c 的代数式,比较大小即可.【详解】(1)二次函数2y ax =的图像随着a 的变化,开口大小和开口方向都会变化,但是对称轴、顶点坐标不会改变;二次函数22y x c =-+的图像随着c 的变化,开口大小和开口方向都没有改变,对称轴也没有改变,但是,顶点坐标会发生改变.(只要学生答对变与不变各一个点就给满分).(2)由于函数2y ax =与函数22y x c =-+的形状相同,所以2a =-,即2a =±.抛物线2y ax =沿y 轴向下平移两个单位,即得到抛物线22y ax =-.因为该抛物线与22y x c =-+的图像完全重合所以2c =-故答案为2±;2-(3)表中数值代入二次函数22y x c =-+可得; 8m c =-+,2n c =-+,50p c =-+因为50c -+<8c -+<2c -+所以p m n <<.故答案为p m n <<【点睛】本题考查二次函数的性质,二次函数图像与几何变换,二次函数上点的坐标特征.特别注意(2)2a =时两个函数图像形状相同.23.“新冠肺炎”疫情期间某工厂为支持国家抗击疫情每天连夜生产急缺的消毒液,已知每瓶消毒液的生产成本为20元,为了合理定价,根据市场调查发现,当销售单价为30元时,每天的销售量为6000瓶,若销售单价每降低1元,则每天能多销售1000瓶,但要求销售单价不能低于成本且不高于30元.(1)求每天的销售量y (瓶)与销售单价x (元)之间的函数关系式;(2)求每天的利润w (元)与销售单价x (元)之间的函数关系式;(3)该工厂负责人决定将每天的利润全部捐献出来进一步支持国家抗击“新冠肺炎”疫情,则当销售单价为多少元时,每天的销售利润最大?最大利润是多少?解析:(1)函数关系式为y =-1000x +36000;(2)函数关系式为w =-1000x 2+56000x -720000;(3)当销售单价为28元时,最大利润是64000元.【分析】(1)抓住关键的已知条件:当销售单价为30元时,每天的销售量为6000瓶,若销售单价每降低1元,则每天能多销售1000瓶,由此可得到y 与x 之间的函数解析式. (2)利用根据每天的利润=每一件的利润×销售量,列出w 与x 之间的函数解析式. (3)将(2)中的函数解析式转化为顶点式,利用二次函数的性质,可得结果.【详解】(1)解:由题意得y =(30-x )×1×1000+6000=-1000x +36000.∴每天的销售量y (瓶)与销售单价x (元)之间的函数关系式为y =-1000x +36000. (2)解:由题意得w =(x -20)(-1000x +36000)=-1000x 2+56000x -720000.∴每天的利润w (元)与销售单价x (元)之间的函数关系式为w =-1000x 2+56000x -720000. (3)解:w =-1000x 2+56000x -720000=-1000(x -28)2+64000.∵a =-1000<0∴当x =28时,w 有最大值为64000.答:当销售单价为28元时,最大利润是64000元.【点睛】本题考查一次函数和二次函数的实际应用-销售问题;二次函数顶点式的转化也是本题求最值问题的关键.24.(1)若抛物线23y x x a =++与x 轴只有一个交点,求实数a 的值;(2)已知点()3,0在抛物线()233y x k x k =-++-上,求此抛物线的对称轴. 解析:(1)94a =;(2)2x = 【分析】 (1)由根的判别式进行计算,即可求出答案;(2)先求出k 的值,然后代入计算,即可求出对称轴.【详解】解:(1)抛物线23y x x a =++与x 轴只有一个交点,0∴∆=,即940a -=, ∴94a =. (2)点()3,0在抛物线()233y x k x k =-++-上, ()203333k k ∴=-⨯++-,9k ∴=, ∴抛物线的解析式为:23129y x x =-+-,∴对称轴为:1222(3)x =-=⨯-. 【点睛】本题考查了一元二次方程根的判别式,二次函数的性质,解题的关键是掌握所学的知识,正确的求出参数的值.25.如图已知抛物线2y x bx c =-++与x 轴交于(1,0)A -,(3,0)B 两点与y 轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t .(1)求抛物线的表达式;(2)如图,连接BC ,PB ,PC ,设PBC 的面积为S .①求S 关于t 的函数表达式;②求P 点到直线BC 的距离的最大值,并求出此时点P 的坐标.解析:(1)2y x 2x 3=-++;(2)①23922S t t =-+;②92P 坐标315,24⎛⎫ ⎪⎝⎭【分析】(1)由点A 、B 坐标,利用待定系数法求解抛物线的表达式即可;(2)①过点P 作PH ⊥x 轴于H ,设点P 坐标为(t ,223t t -++),由PBC PHB BOC OCPH S S S S ∆∆∆=+-梯形即可表示出S 关于t 的函数表达式;②由于BC 为定值,所以点P 到直线BC 的距离最大时即为S 最大,根据二次函数的性质求出S 的最大值,利用勾股定理求出线段BC 的长,再利用等面积法求出点P 到直线BC 的距离的最大值,进而可求出此时的点P 坐标.【详解】解:(1)将点A (﹣1,0)、B (3,0)代入2y x bx c =-++中,得:10930b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩, ∴,抛物线的表达式为2y x 2x 3=-++;(2)①过点P 作PH ⊥x 轴于H ,如图,当x=0时,y=3,∴C (0,3),OC=3,∵点P 的坐标为(t ,223t t -++)且点P 在第一象限,∴PH=223t t -++,OH=t ,BH=3﹣t ,∴PBC PHB BOC OCPH S S S S ∆∆∆=+-梯形 =22111(233)(3)(23)33222t t t t t t ⋅-+++⋅+⋅-⋅-++-⨯⨯ =23922t t -+, ∴S 关于t 的函数关系式为S=23922t t -+(t >0); ②由S=23922t t -+= 23327()228t --+,且32-<0,得: 当t= 32时,S 有最大值,最大值为278, ∵OB=3,OC=3,∴2232OB OC +=∵当t=32时,223t t -++=23315()23224-+⨯+= ∴点P 到直线BC 27292832⨯=,此时,点P 的坐标为(32,154). 【点睛】本题考查了待定系数法求二次函数的解析式、坐标与图形的性质、二次函数的性质、割补法求三角形的面积,解答的关键是认真审题,寻找知识点的关联点,利用待定系数法、割补法和数形结合思想进行推理、探究和计算.26.已知抛物线的顶点为()1,4-,且过点()2,5-.(1)求抛物线的解析式;(2)当0y >时,自变量x 的取值范围是______(直接写出结果).解析:(1)()214y x =--或223y x x =--; (2)1x <-或3x > 【分析】(1)直接利用顶点式求出二次函数解析式即可;(2)首先求出图象与x 轴交点,再利用抛物线图象得出当函数值y >0时,自变量x 的取值范围.【详解】(1)设抛物线的解析式为()214y a x =--把点()2,5-代入得 ()25214a =---∴1a =∴()214y x =--或223y x x =-- (2)(2)当y =0可得,0=(x−1)2−4,解得:1x =3,2x =−1,故抛物线与x 轴的交点为:(−1,0),(3,0),如图所示:可得:当函数值y >0时,自变量x 的取值范围为:x <−1或x >3.【点睛】此题主要考查了利用顶点式求抛物线解析式以及抛物线与x 轴的交点,正确画出函数图象是解题关键.27.已知关于x 的方程222(1)2()10a x a b x b +-+++=.(1)若2b =,且2x =是此方程的根,求a 的值;(2)若此方程有实数根,当51a -<<-时,求函数242y a a ab =++的取值范围.解析:(1)12;(2)27y -≤< 【分析】 (1)把2b =、2x =代入方程可得()()22212222210a a +⋅-+⋅++=,然后解a 关于的方程即可得解;(2)根据根的判别式的意义可得()()()2222424110b ac a b a b ∆=-=-+-⋅+⋅+≥⎡⎤⎣⎦,整理得()210ab -≤,利用非负数的性质得到1ab =,则函数242y a a ab =++为:()222y a =+-,再由51a -<<-可求得函数的取值范围.【详解】解:(1)∵若2b =,且2x =是此方程的根∴()()22212222210a a +⋅-+⋅++= ∴2102a ⎛⎫-= ⎪⎝⎭ ∴1212a a ==∴a 的值为12. (2)∵方程222(1)2()10a x a b x b +-+++=有实数根∴()()()2222424110b ac a b a b ∆=-=-+-⋅+⋅+≥⎡⎤⎣⎦ ∴()210ab -≤ ∴10ab -=∴1ab =∴函数242y a a ab =++为:()224222y a a a =++=+-∵51a -<<-∴可画出函数图象,如图:∴函数242y a a ab =++的取值范围是:27y -≤<.【点睛】本题考查了含参数的一元二次方程、一元二次方程的根的判别式、由自变量取值范围求函数取值范围等,熟练掌握相关知识点是解题的关键.28.某滑雪场在滑道上设置了几个固定的计时点.一名滑雪者从山坡滑下,测得了滑行距离s (单位:m )与滑行时间t (单位:s )的若干数据,如下表所示:位置1 位置2 位置3 位置4 位置5 位置6 位置7 滑行时间/s t 0 1.07 1.40 2.08 2.46 2.79 3.36 滑行距离/m s51015202535为观察s 与t 之间的关系,建立坐标系,以t 为横坐标,s 为纵坐标,描出表中数据对应的点(如图).可以看出,其中绝大部分的点都近似位于某条抛物线上.于是,我们可以用二次函数()20s at bt c t =++≥来近似地表示s 与t 的关系.(1)有一个计时点的计时装置出现了故障,这个计时点的位置编号可能是_________; (2)当0t =时,0s =,所以c =________;(3)当此滑雪者滑行距离为30m 时,用时约为________s (结果保留一位小数). 解析:(1)3;(2)0;(3)3.1 【分析】(1)由图像及表格可直接进行解答; (2)把t=0代入求解即可;(3)从表格选两个点代入函数解析式求解即可. 【详解】解:(1)由表格及图像可得:出现故障的位置编号可能是位置3; 故答案为3;(2)把t=0,s=0代入()20s at bt c t =++≥得:c=0;故答案为0;(3)由(2)可得:把t=1.07,s=5和t=2.08,s=15代入()20s at bt t =+≥得:221.07 1.0752.08 2.0815a b a b ⎧+=⎨+=⎩,解得: 2.511.98a b ≈⎧⎨≈⎩, ∴二次函数的解析式为:()22.51 1.980s t t t =+≥,把s=30代入解析式得:()230 2.51 1.980t t t =+≥,解得:123.1, 3.9t t ≈≈-(不符合题意,舍去), ∴当此滑雪者滑行距离为30m 时,用时约为3.1s ; 故答案为3.1. 【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键.。
人教版九年级数学上册第22章《二次函数》测试卷1(附答案)
人教版九年级数学上册第22章《二次函数》测试卷1(附答案)时间:100分钟总分120分一、选择题(每小题3分,共30分)1.下列函数不是二次函数的是()A.y=(x-1)2B.y=1-√3x²C.y=-(x+1)(x-1)D.y=2(x+3)2-2x²2.抛物线y=4x2-3的顶点坐标是()A.(0,3)B.(0,-3)C.(-3,0)D.(4,-3)3.将抛物线y=2x²向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2 +3B.y=2(x-2)2 +3C.y=2(x-2)2 -3D.y=2(x+2)2 -34.已知抛物线y=-x2+bx+4经过(-2,n)和(4,n)两点,则n的值为()A.-2B.-4C.2D.45.在平面直角坐标系中,抛物线y=x2+2x-3 与x铀交于点A,B,与y轴交于点C,则△ABC的面积是()A.6B.10 C.12 D.156.已知点A(-3,a),B(-2,b),C(1,c)均在抛物线y=3(x+2)2 +k上,则a,b,c的大小关系是( )A.c<a<b B.a<c<b C.b<a<cD.b<c<a7.在同一坐标系中,二次函数y=ax²+bx与一次函数y=bx-a的图象可能是( )ABCD8.一位篮球运动员在距离篮筐中心水平距离4 m处投篮,球的飞行路线将是一条抛物线,当球运动的水平距离为2.5 m时,达到最大高度3.5 m,然后准确落入篮筐内.已知篮筐中心距离地面高度为3.05 m,在如图所示的平面直角坐标系中,下列说法正确的是()x²+3.5A.此抛物线的解析式是y=-15B. 篮筐中心的坐标是(4,3.05)C. 此抛物线的顶点坐标是(3.5,0)D. 篮球出手时离地面的高度是2 m9.已知抛物线y=x²+2mx+m-7与x轴的两个交点在点(1,0)两旁,则关于x的方程x²+(m+1)x+m²+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有实数根D.无实数根10.如图,△ABC是等腰直角三角形,∠A= 90°,BC = 4,P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()第10题图 A B C D二、填空题(每小题3分,共15分)11.若y=(m+2)x〡m〡+2x-1是关于x的二次函数,则m=_________.12.飞机着陆后滑行的距离s(单位∶m)与滑行的时间t(单位s)之间的函数关系式为s =96t-1.2t²,那么飞机着陆后滑行________m停下.13.已知函数y={−x2+2x(x>0),−x(x≤0)的图象如图所示,若直线y = x + m与该图象恰有三个不同的交点,则m的取值范围为________________.第13题图第14题图第15题图14.如图,将抛物线y=- 12x²平移后经过原点O和点A(6,0),平移后的抛物线的顶点为B,对称轴与抛物线y=- 12x²相交于点C,则图中直线BC与两条抛物线围成的阴影部分的面积为___________.15.二次函数y=ax²+bx+c的图象如图所示,下列结论①b2-4ac >0;②2a+b =0;③abc >0;④4a+2b+c>0;⑤ax²+bx+c - 3 = 0 有两个相等的实数根.其中正确的有___________ (只填序号).三、解答题(本大题共7个小题,满分75分)16.(8分)在平面直角坐标系中,已知抛物线y=-x²+ 3x + m,其中m为常数.(1)当抛物线经过点(3,5)时,求该抛物线的解析式;(2)当抛物线与直线y=x+3m只有一个交点时,求该抛物线的解析式.17.(9分)已知一个二次函数图象上部分点的横坐标x与纵坐标y的对应值如下表所示:(1)求这个二次函数的解析式;(2)在给定的平面直角坐标系中画出这个二次函数的图象;(3)求当-2<x<3时,y的取值范围.18.(10分)某景区内有一块矩形鲜花田地,其长为8 m,宽为6 m.现在其中修建一条观花道(图中阴影部分,观花道在矩形田地的长与宽上的长度均为x m)供游人赏花,设改建后剩余鲜花占地面积为y m2.(1)求y与x的函数关系式,并写出自变量的取值范围;(2)若改建后观花道的面积为13 m²,求x的值.19.(10分)若抛物线y1,y2的顶点坐标分别为(m,n),(p,q),并满足m=2p,n=2q,如果两抛物线的开口方向也相同,则称抛物线y1与y2是“关联抛物线”.(1)请求出抛物线y=x²+3x+2的一个“关联抛物线”的解析式;(2)已知抛物线y1=x²-ax和y2=2x²-ax+a是“关联抛物线”,求a的值.x …-1 0 1 2 3 …y…0 3 4 3 0 …20.(12分)已知抛物线y=x²+(1-2a)x-2a(a是常数).(1)证明该抛物线与x轴总有交点;(2)设该抛物线与x轴的一个交点为A(m,0),若2<m≤5,求a的取值范围;(3)在(2)的条件下,若a为整数,将抛物线在x轴下方的部分沿x轴向上翻折,其余部分保持不变,得到一个新图象,请你结合新图象,探究直线y = kx + 1(k为非负数)与新图象公共点个数的情况.21.(12分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为每件10元,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于每件16 元,市场调查发现,该产品每天的销售量y(件)与每件销售价x(元)之间的函数关系图象如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润w(元)与每件销售价x(元)之间的函数关系式,并求出当每件销售价为多少元时,每天的销售利润最大,最大利润是多少.22.(14分)如图,抛物线y=ax²+6x+c交x轴于A,B两点,交y轴于点C.直线y = x - 5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.参考答案:一、1.D 2.B 3.B 4.B 5.A 6.C 7.C 8.A 9.D 10.B 二、11. 2 12. 1 920 13. 0<m <14 14. 272 15. ①②④⑤三、16. 解∶(1)∵点(3,5)在抛物线y =-x ²+3x +m 上,∴-9+9+m =5.∴m =5.∴抛物线的解析式为y =-x ²+3x +5.(2)令-x ²+3x +m =x +3m ,整理,得x ²-2x +2m =0.∴∆=(-2)2-4×1×2m =4-8m . ∵抛物线与直线y =x +3m 只有一个交点,∴∆=0,即4-8m =0.解得m = 12 . ∴抛物线的解析式为y =-x ²+3x +12 .17.解∶(1)根据表中数据可知,二次函数图象的顶点坐标为(1,4).设二次函数的解析式为 y =a (x -1)2+4.把点(0,3)代入 y =a (x -1)2 +4,得a +4=3.∴a =-1. ∴该二次函数的解析式为y =-(x -1)2+4, 即y =-x ²+2x +3. (2)所画函数图象如图所示. (3)∵y =-(x -1)2+4,-1<0,当x =1时,y 有最大值4.当x =-2时,y =-(-2-1)2+4 =-5; 当x =3时,y =0.∵该抛物线的对称轴为x =1,∴结合函数图象,得当-2<x <3时,y 的取值范围是-5<y ≤4.18.解∶(1)根据题意,得y = 12 (8-x )(6-x )×2=x ²-14x +48(0<x <6). ∴y 与x 的函数关系式为y =x 2-14x +48 (0<x <6).(2)根据题意,得6×8-(x ²-14x +48)=13.解得x 1=1,x 2=13(舍去). ∴x 的值为1.19.解∶(1)∵y =x ²+3x +2=(x +32)2 - 14 ,∴抛物线的顶点坐标为(-32,-14).∴一个“关联抛物线”的顶点坐标为 (-34,-18). ∴所求的“关联抛物线”的解析式为y =(x +34)2 - 18(答案不唯一)(2)∵y1=x2-ax=(x-a2)2 - a24,y2=2x2-ax+a=2(x-a4)2 +a- a28,∴抛物线y1=x²-ax的顶点坐标为(a2,- a24),y2=2x²-ax+a的顶点坐标为(a4, a- a28).∵抛物线y1=x²-ax和y2=2x²-ax+a是“关联抛物线”,a2=2×a4,∴- a24= 2×(a- a28). 解得a=020.解(1)证明:令y=0,则x²+(1-2a)x-2a=0.∴△=(1-2a)2-4×1×(-2a)=1+4a+4a²=(1+2a)2.∵a为常数,△=(1+2a)2≥ 0.∴方程则x²+(1 - 2a)x - 2a = 0 必有实数根,即该抛物线与x轴总有交点.(2)令y=0,则x²+(1-2a)x-2a=0.解得x1= 2a,x2= -1.∴抛物线与x轴的交点为(-1,0)和(2a,0).∵抛物线与x轴的一个交点A(m,0)满足2<m≤5,∴2<2a≤5,即1<a≤52. ∴a的取值范围为1<a≤52.(3)∵1<a≤52,a为整数,∴a=2 .∴抛物线的解析式为y=x2-3x-4.∴该抛物线与x轴的两个交点坐标为(-1,0)和(4,0).∵k为非负数,分两种情况讨论:①当k=0时,y =1.如图①所示.直线与新图象有4个公共点;②当k>0时,直线y=kx+1必过点(0,1). 如图②所示.当直线y=kx+1经过点(-1,0)时,-k+1=0.∴k=1.当k=1时,直线与新图象有3个公共点;当0<k<1时,直线与新图象有4个公共点;当k >1时,直线与新图象有2个公共点.综上所述,当0≤k<1时,直线与新图象有4个公共点;当k=1时,直线与新图象有3个公共点;当k>1时,直线与新图象有2个公共点.21.解∶(1)设y 与x 之间的函数关系式为y =kx +b .根据图象可知,该函数图象经过(10,26)和(16,20)两点。
(典型题)初中数学九年级数学上册第二单元《一元二次方程》测试(包含答案解析)(1)
一、选择题1.一元二次方程x 2=2x 的根是( ). A .0B .2C .0和2D .0和﹣22.一元二次方程x 2﹣2x +5=0的根的情况为( ) A .有两个不相等的实数根 B .有两个相等实数根 C .只有一个实数根D .没有实数根3.已知方程240x x n ++=可以配方成()23x m +=,则()2015m n -=( )A .1B .-1C .0D .4 4.设a ,b 是方程x 2+x ﹣2021=0的两个实数根,则a 2+b 2+a +b 的值是( ) A .0B .2020C .4040D .4042 5.1x =是关于x 的一元二次方程220x ax b ++=的解,则24a b +=( ) A .2-B .3-C .4-D .6-6.一人携带变异新冠状病毒,经过两轮传染后共有121人感染,设每轮传染中平均一个人传染了x 个人,则可列方程( )A .()1121x x x ++=B .()11121x x ++=C .()21121x +=D .()1121x x +=7.下列方程中,没有实数根的是( ) A .220x x --=B .210x x -+=C .2210x x -+=D .24x =8.我国古代数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载过一元二次方程(正根)的几何解法.以方程22350x x +-=即(2)35x x +=为例说明,记载的方法是:构造如图,大正方形的面积是2(2)x x ++.同时它又等于四个矩形的面积加上中间小正方形的面积,即24352⨯+,因此5x =.则在下面四个构图中,能正确说明方程23100x x --=解法的构图是( )A .B .C .D .9.已知关于x 的一元二次方程2420ax x +-=有实数根,则a 的取值范围是( ) A .2a >-且0a ≠ B .2a ≥-且0a ≠ C .2a ≥-D .0a ≠ 10.用配方法解方程2420x x -+=,下列配方正确的是( )A .()222x -=B .()222x +=C .()222x -=-D .()226x -=11.已知m 为实数,则关于x 的方程2(2)20x m x m ---=的实数根情况一定是( )A .有两个不相等的实数根B .有两个相等的实数根C .有两个实数根D .没有实数根12.由于国内疫情得到缓和,餐饮业逐渐恢复,某地一家餐厅重新开张,开业第一天收入约为2000元,之后两天的收入按相同的增长率增长,第3天的收入约为2420元,若设每天的增长率为x ,则列方程为( ) A .2000(1)2420x += B .2000(12)2420x += C .22000(1)2420x -=D .22000(1)2420x +=二、填空题13.已知一元二次方程ax 2+bx +c =0(a ≠0).下列说法:①若a +c =0,则方程一定有两个不相等的实数根;②若a +b +c =0,则1一定是这个方程的实数根;③若b 2﹣6ac >0,则方程一定有两个不相等的实数根;④若ax 2+bx +c =0(a ≠0)的两个根为2和3,则1211,23x x ==是方cx 2+bx +a =0(a ≠0)的根,其中正确的是_____(填序号).14.如果菱形的两对角线的长分别是关于x 的一元二次方程2240x mx ++=的两实数根,那么该菱形的面积是____.15.如果一个直角三角形的两边长是一元二次方程27120x x -+=的两个根,那么这个直角三角形的斜边长为_______________.16.若x 1,x 2是方程x 2-3x +1=0的两个不相等的实数根,则x 1+x 2+x 1x 2=______. 17.若m 是方程x 2+2x -1=0的一个根,则m 2+2m -4=______. 18.方程21(1)104k x k x --+=有两个实数根,则k 的取值范围是________. 19.已知△ABC 中,AB=3,AC=5,第三边BC 的长为一元二次方程x 2﹣9x+20=0的一个根,则该三角形为_____三角形.20.若关于x 的一元二次方程2(1)20x m x +++=的一个根是1-,则另一个根是_________.三、解答题21.已知x =2是方程280x mx +-=的一个根,求: (1)m 的值; (2)1211+x x 的值. 22.已知关于x 的一元二次方程(m ﹣3)x 2﹣6x +m 2﹣9=0的常数项为0,求m 的值及此方程的解.23.阅读材料:若22228160x xy y y -+-+=,求x ,y 的值.解:∵22228160x xy y y -+-+=∴()()22228160x xy yyy -++-+=∴()()2240x y y -+-= ∴()20x y -=,()240y -=∴4,4y x ==根据上述材料,解答下列问题:(1)2222210m mn n n -+-+=,求2m n +的值; (2)6a b -=,24130ab c c +-+=,求a b c ++的值.24.如果关于x 的一元二次方程20(a 0)++=≠ax bx c 有两个实数根、且其中一个根比另一个根大 1,那么称这样的方程为“邻根方程”.例如、一元二次方程20x x +=的两个根是120,1x x ==-,则方程20x x +=是“邻根方程”.通过计算,判断下列方程是否是“邻根方程”: (1)260x x --=; (2)2210x -+=.25.小虎同学用配方法推导一元二次方程20(a 0)++=≠ax bx c 的求根公式时,对于240b ac -≥的情况,他是这样做的:由于0a ≠,方程20ax bx c ++=变形为:2b cx x a a+=-, 第一步 22222b b c b x x a a a a ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭, 第二步222424b b ac x a a -⎛⎫+= ⎪⎝⎭, 第三步24b x a a+=,第四步x =.第五步 (1)小虎的解法从第_______步开始出现错误;事实上,当240b ac -≥时,方程20(a 0)++=≠ax bx c 的求根公式是:_____________________.(2)用配方法解方程:2640x x ++=.26.已知关于x 的一元二次方程22210x kx k k -+++=有两个实数根. (1)试求k 的取值范围;(2)若此方程的两个实数根12x x 、,是否存在实数k ,满足12112x x +=-,若存在,求出k 的值;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据一元二次方程的性质,先提公因式,通过计算即可得到答案. 【详解】 移项得,x 2-2x =0, 提公因式得,x (x-2)=0, 解得,x 1=0,x 2=2, 故选:C . 【点睛】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.2.D解析:D 【分析】根据根的判别式判断 . 【详解】解:∵△=4﹣20=﹣16<0, ∴方程没有实数根. 故选:D . 【点睛】本题考查一元二次方程的根的情况,熟练掌握根判别式的计算方法及应用是解题关键.3.A解析:A 【分析】将配方后的方程转化成一般方程即可求出m 、n 的值,由此可求得答案. 【详解】解:由(x +m )2=3,得: x 2+2mx +m 2﹣3=0, ∴2m =4,m 2﹣3=n , ∴m =2,n =1, ∴(m ﹣n )2015=1, 故选:A . 【点睛】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.4.D解析:D 【分析】根据一元二次方程的解及根与系数的关系可得出a+b=-1,ab=-2021,将其代入a 2+b 2+a +b =(a+b )2+(a+b )-2ab 中即可求出结论. 【详解】解:∵a ,b 是方程x 2+x-2020=0的两个实数根, ∴a+b=-1,ab=-2021∴a 2+b 2+a +b =(a+b )2+(a+b )-2ab=1-1+4042=4042. 故选:D . 【点睛】本题考查了根与系数的关系,根据一元二次方程根与系数的关系找出a+b=-1,ab=-2021是解题的关键.5.A解析:A 【分析】把1x =代入方程,得到a 与b 的式子,整体代入即可. 【详解】解:把1x =代入220x ax b ++=得,120a b ++=, ∴21a b +=-, ∴242a b +=-, 故选:A . 【点睛】本题考查了一元二次方程的解和求代数式的值,解题关键是明确方程解的意义,树立整体代入思想.6.C解析:C【分析】患变异新冠状病毒的人把病毒传染给别人,自己仍然患病,包括在总数中.设每轮传染中平均一个人传染了x个人,则第一轮传染了x个人,第二轮作为传染源的是(x+1)人,则传染x(x+1)人,根据共有121人感染列方程即可.【详解】解:设每轮传染中平均一个人传染了x个人,依题意得1+x+x(1+x)=121,即(1+x)2=121,故选:C.【点睛】本题考查了一元二次方程的应用-传播问题,要注意的是患变异新冠状病毒的人把病毒传染给别人,自己仍然是患者,人数应该累加.7.B解析:B【分析】分别计算判别式△=b2-4ac,再根据计算结果判断根的情况即可找到没有实数根的方程.【详解】解:(1)∵a=1,b=-1,c=-2,∴△=b2-4ac=(-1)2-4×1×(-2)=9>0,∴方程有两个不相等的实数根;所以A选项不符合题意.(2)∵a=1,b=-1,c=1,∴△=b2-4ac=(-1)2-4×1×1=-3<0,∴方程没有实数根.所以B选项符合题意.(3)∵a=1,b=-2,c=1,∴△=b2-4ac=(-2)2-4×1×1=0,∴方程有两个相等的实数根;所以C选项不符合题意.(4)∵x2=4,∴可直接得到方程的解为2或-2,所以D选项不符合题意.故选:B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.C解析:C 【分析】根据题意,画出方程x 2-3x-10=0,即x (x-3)=10的拼图过程,由面积之间的关系可得出答案. 【详解】解:方程x 2-3x-10=0,即x (x-3)=10的拼图如图所示;中间小正方形的边长为x-(x-3)=3,其面积为9,大正方形的面积:(x+x-3)2=4x (x-3)+9=4×10+9=49,其边长为7, 因此,C 选项所表示的图形符合题意, 故选:C . 【点睛】本题考查完全平方公式的几何背景,通过图形直观,得出面积之间的关系,并用代数式表示出来是解决问题的关键.9.B解析:B 【分析】根据方程有实数根得到. 【详解】由题意得:0∆≥,即244(2)0a -⨯⨯-≥,且0a ≠, 解得2a ≥-且0a ≠, 故选:B . 【点睛】此题考查根据一元二次方程根的情况求参数,掌握一元二次方程根的判别式与根的个数的三种情况是解题的关键.10.A解析:A 【分析】先把方程变形为x 2-4x=-2,再把两方程两边加上4,然后把方程左边用完全平方公式表示即可. 【详解】解:x 2-4x=-2, x 2-4x+4=2, (x-2)2=2. 故选:A . 【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m )2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.11.C解析:C 【分析】计算判别式的值,利用配方法得到△=(m+2)2≥0,然后根据判别式的意义对各选项进行判断. 【详解】解:∵a =1,b =-(m -2),c =-2m , ∴224(2)41(2)b ac m m -=--⨯⨯-2448m m m =-++ 244m m =++2(2)m =+,∵2(2)0m +≥, ∴240b ac -≥, ∴方程有两个实数根, 故选:C . 【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c =0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.12.D解析:D 【分析】根据开业第一天收入约为2000元,之后两天的收入按相同的增长率增长,第3天收入约为2420元列方程即可得到结论. 【详解】设每天的增长率为x ,依题意,得:22000(1)2420x +=.故选:D . 【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题13.①②④【分析】根据一元二次方程根的判别式根与系数的关系解的意义求解【详解】解:①因为a+c =0a≠0所以ac 异号所以△=b2﹣4ac >0所以方程有两个不等的实数根故①正确;②∵x=1时ax2+bx+解析:①②④ 【分析】根据一元二次方程根的判别式、根与系数的关系、解的意义求解. 【详解】解:①因为a +c =0,a ≠0,所以a 、c 异号,所以△=b 2﹣4ac >0,所以方程有两个不等的实数根故①正确;②∵x=1时,ax 2+bx +c =a+b+c ,∴a +b +c =0时,一定有一个根是1,故②正确;③根据b 2﹣6ac >0,不能得到b 2﹣4ac >0,从而不能证得方程ax 2+bx +c =0一定有两个不相等的实数根,故③错误;④∵2和3是ax 2+bx +c =0(a ≠0)的两个根, ∴235,236b ca a -=+==⨯=, ∴51,66b ac c -==, 而115111,236236b a c c+==-⨯==, ∴121123x x ==,是方和cx 2+bx +a =0(a ≠0)的根,故④正确, ∴正确的结论是①②④, 故答案为:①②④, 【点睛】本题考查一元二次方程的应用,熟练掌握一元二次方程根判别式的计算与应用、根与系数的关系、解的意义是解题关键.14.12【分析】可根据韦达定理求出一元二次方程的两根之积接着通过菱形面积公式求解即可【详解】解:设的两根为则一元二次方程的两实数根为菱形的两对角线的长菱形的面积===12故答案为:12【点睛】本题主要考解析:12 【分析】可根据韦达定理求出一元二次方程的两根之积,接着通过菱形面积公式求解即可. 【详解】解:设2240x mx ++=的两根为12x x 、, 则1224x x =,一元二次方程的两实数根12x x 、为菱形的两对角线的长,∴菱形的面积=1212x x =1242⨯=12.故答案为:12. 【点睛】本题主要考查一元二次方程的韦达定理,还涉及菱形的面积运算,属于基础题,熟练掌握韦达定理及菱形的面积公式是解决本题的关键.15.5或4【分析】解方程可得直角三角形的两边是34然后分这两边都是直角边和边长为4为直角边两种情况解答即可【详解】解:(x-3)(x-4)=0x-3=0x-4=0∴方程的根为34∴直角三角形的两边为34解析:5或4. 【分析】解方程27120x x -+=可得直角三角形的两边是3、4,然后分这两边都是直角边和边长为4为直角边两种情况解答即可. 【详解】解:27120x x -+= (x-3)(x-4)=0 x-3=0,x-4=0 ∴方程的根为3、4 ∴直角三角形的两边为3、4; 当两边有一条边是直角边时,斜边长为4. 故答案为5或4. 【点睛】本题主要考查勾股定理、解一元二次方程等知识点,正确的解一元二次方程和分类讨论成为解答本题的关键.16.4【分析】利用一元二次方程根与系数的关系求解:用韦达定理算出和的值带入求解即可;【详解】∵方程为∴a=1b=-3c=1∴=3=1∴=3+1=4故答案为:4【点睛】本题考查了一元二次方程根与系数的关系解析:4 【分析】利用一元二次方程根与系数的关系求解:12bx x a +=-,12c x x a= ,用韦达定理算出12x x + 和12x x 的值带入求解即可;【详解】∵ 方程为2310x x -+= , ∴ a=1,b=-3,c=1,∴ 12x x +=3,12x x =1,∴ 1212x x x x ++ =3+1=4,故答案为:4.【点睛】本题考查了一元二次方程根与系数的关系,正确理解韦达定理是解题的关键;17.-3【分析】由于可知m 是方程的解可得将其带入求值即可;【详解】∵∴∵m 是的一个根∴∴故答案为:-3【点睛】本题考查了方程的解的定义此类型的题的特点是:利用方程解的定义找到相等的关系再把所求的代数式化 解析:-3【分析】由于2210x x +-=可知221x x +=,m 是方程的解,可得221m m += ,将其带入求值即可;【详解】∵2210x x +-=,∴ 221x x +=,∵ m 是2210x x +-=的一个根,∴ 221m m +=,∴ 224143m m +-=-=- ,故答案为:-3.【点睛】本题考查了方程的解的定义,此类型的题的特点是:利用方程解的定义找到相等的关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值;18.【分析】由方程有两个实数根可得方程为一元二次方程可得:且解不等式组可得答案【详解】解:由已知方程可知:∵方程有两个实数根∴解得:∵∴故答案为:【点睛】本题考查的是二次根式有意义的条件一元二次方程的定 解析:1k <【分析】由方程有两个实数根,可得方程为一元二次方程,可得:0≥且110k k ≠⎧⎨-≥⎩,解不等式组可得答案.【详解】解:由已知方程可知:11,4a k b c =-==, ∵方程有两个实数根,∴24220b ac k =-=-+≥,解得:1k ≤,∵110k k ≠⎧⎨-≥⎩∴1k <,故答案为:1k <.【点睛】本题考查的是二次根式有意义的条件,一元二次方程的定义,一元二次方程根的判别式,掌握以上知识列不等式组求参数的范围是解题的关键.19.直角或等腰【分析】先解方程再根据三角形的三边关系定理求得第三边的范围即可得出第三边再根据勾股定理的逆定理得出该三角形的形状【详解】解一元二次方程x2﹣9x+20=0得:x=4或5∵AB=3AC=5∴解析:直角或等腰【分析】先解方程,再根据三角形的三边关系定理求得第三边的范围,即可得出第三边,再根据勾股定理的逆定理得出该三角形的形状.【详解】解一元二次方程x 2﹣9x +20=0,得:x =4或5,∵AB =3,AC =5,∴2<BC <7,∵第三边BC 的长为一元二次方程x 2﹣9x +20=0的一个根,∴BC =4或5,当BC =4时,AB 2+BC 2=AC 2,△ABC 是直角三角形;当BC =5时,BC =AC ,△ABC 是等腰三角形;故答案为直角或等腰.【点睛】本题考查了一元二次方程的解法、等腰三角形的判定、勾股定理的逆定理,注意分类讨论思想的应用.20.-2【分析】把-1代入方程求m 再把m 代回方程解方程即可;或用根与系数关系可求【详解】解:方法一把-1代入方程得解得m=2代入原方程得解得故答案为:-2;方法二设另一个根是a 根据根与系数关系a×(-1解析:-2【分析】把-1代入方程求m ,再把m 代回方程,解方程即可;或用根与系数关系可求.【详解】解:方法一,把-1代入方程2(1)20x m x +++=,得,1(1)20m -++=,解得,m=2,代入原方程得,2320x x ++=,解得,121,2x x =-=-,故答案为:-2;方法二,设另一个根是a ,根据根与系数关系,a ×(-1)=2,a =-2,故答案为:-2【点睛】本题考查了一元二次方程的根和一元二次方程根与系数关系,选择不同方法解题,体现思维的灵活性,准确把握知识是解题关键.三、解答题21.(1)2;(2)14【分析】(1)由x =2是方程280x mx +-=的一个根,把x =2代入280x mx +-=即可得到关于m 的一元一次方程,求之即可;(2)将m=2代入280x mx +-=得到关于x 的一元二次方程,根据根与系数的关系求出两根之和与两根之积,将所求的式子通分并利用同分母分式的加法法则计算,将求出的两根之和与两根之积代入计算即可.【详解】解:(1)把x =2代入280x mx +-=,得 22280m +-=,解得m=2(2)将m=2代入280x mx +-=,得2280x x +-=,∴12122,8x x x x +=-=-, ∴121212112184x x x x x x +-+===-. 【点睛】本题考查了一元二次方程的解,解一元一次方程,分式的加法,以及根与系数的关系.方程的解即为能使方程左右两边相等的未知数的值,熟练掌握根与系数的关系是解题的关键,22.m =-3;x 1=0,x 2=−1.【分析】直接利用常数项为0,进而得出关于m 的等式,计算后可求出m 的值,利用所求m 的值则求出方程的解.【详解】解:由题意,得m 2−9=0,且m−3≠0,解得m =-3.当m =-3时,代入(m ﹣3)x 2﹣6x+m 2﹣9=0,得-6x 2-6x =0,-6x (x +1)=0解得x 1=0,x 2=−1.【点睛】此题主要考查了一元二次方程的一般形式以及一元二次方程的解法,掌握一元二次方程的定义及解法是解题的关键.23.(1)23m n +=;(2)2a b c ++=.【分析】(1)将方程2222210m mn n n -+-+=的左边分组配方,再根据偶次方的非负性,可求得mn 、的值,最后代入2m n +即可解题; (2)由6a b -=整理得,6+a b =,代入已知等式中,利用完全平方公式化简,最后由偶次方的非负性解题即可【详解】解:(1)∵2222210m mn n n -+-+=∴()()2222210m mn nn n -++-+= ∴()()2210m n n -+-=∴()20m n -=,()210n -= ∴1n =,1m n ==∴22113m n +=⨯+=;(2)∵6a b -=,∴6a b =+∵24130ab c c +-+=2(6)4130b b c c ∴++-+=∴22(69)(44)0b b c c +++-+=∴()()22320b c ++-= ∴()230b +=,()220c -= ∴3b =-,2c =∴()633a =+-=∴()3322a b c ++=+-+=.【点睛】本题考查配方法的应用,涉及完全平方公式化简、偶次方的非负性,是重要考点,难度较易,掌握相关知识是解题关键.24.(1)不是;(2)是.【分析】(1)求出方程解,然后根据“邻根方程”的定义进行判定;(2)求出方程解,然后根据“邻根方程”的定义进行判定.【详解】解:(1)260x x --=,解得13x =,22x =-,∵125x x -=,不符合邻根方程的定义∴260x x --=不是邻根方程.(2)2210x -+=,解得1x =,2x = ∴121x x -=∴符合邻根方程的定义 ∴2210x -+=是邻根方程.【点睛】本题主要考查了一元二次方程解法.理解题意,掌握“邻根方程”的定义是关键.25.(1)四;2b x a -±=;(2)13x =-23x =-. 【分析】(1)观察小虎的解法找出出错的步骤,写出求根公式即可;(2)利用配方法求出方程的解即可.【详解】解:(1)小虎的解法从第四步开始出现错误;当b 2﹣4ac >0时,方程ax 2+bx +c =0(a ≠0)的求根公式是x ;故答案为:四;x =2b a-±; (2)移项得:264x x +=-,配方得:x 2+6x +9=-4+9,即(x +3)2=5,开方得:x解得:x 1= - x 2=【点睛】本题考查了解一元二次方程﹣公式法与配方法,熟练掌握各种解法是解本题的关键. 26.(1)1k ≤-;(2)存在,1k =-.【分析】(1)由根的判别式0∆≥,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围;(2)由根与系数的关系,得到122x x k +=,2121x x k k =++,然后解关于k 的一元二次方程,即可求出答案.【详解】解:(1)∵此方程有两个实数根,∴0∆≥即222411k k k ∆=--⨯⨯++()()440k =--≥,∴1k ≤-;(2)存在.根据题意,∵一元二次方程22210x kx k k -+++=,∴122x x k +=,2121x x k k =++, ∴122121211221x x k x x x x k k ++===-++, ∴121k k ==-符合题意,即1k =-;【点睛】本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:(1)根据根的判别式△>0,列出关于k 的一元一次不等式;(2)根据根与系数的关系求出k 值.。
(常考题)人教版初中数学九年级数学上册第四单元《圆》测试(含答案解析)(1)
一、选择题1.在ABC 中,90,4,3C AC BC ∠=︒==,把它绕AC 旋转一周得一几何体,该几何体的表面积为( )A .24πB .21πC .16.8πD .36π2.如图,AC 为半圆的直径,弦3AB =,30BAC ∠=︒,点E 、F 分别为AB 和AC 上的动点,则BF EF +的最小值为( )A .3B .332C .3D .332+ 3.如图,A 是B 上任意一点,点C 在B 外,已知2AB =,4BC =,ACD △是等边三角形,则BCD △的面积的最大值为( )A .434+B .43C .438+D .63 4.如图,ABC 为O 的一个内接三角形,过点B 作O 的切线PB 与OA 的延长线交于点P .已知34ACB ∠=︒,则P ∠等于( )A .17°B .27°C .32°D .22°5.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D 、C .若∠ACB=30°,AB= 3 )A.32B.33C.3π26-D.3π36-6.已知△ABC的外心为O,连结BO,若∠OBA=18°,则∠C的度数为()A.60°B.68°C.70°D.72°7.如图,ABC的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将ABC绕点B顺时针旋转到A B C'''的位置,且点A'、C'仍落在格点上,则线段AB扫过的图形的面积是()平方单位(结果保留)A.254πB.134πC.132πD.136π8.已知⊙O的直径为6,圆心O到直线l的距离为3,则能表示直线l与⊙O的位置关系的图是()A.B.C.D.9.在下列命题中,正确的是( )A.弦是直径B.半圆是弧C.经过三点确定一个圆D.三角形的外心一定在三角形的外部10.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为BD的中点.若50A ∠=︒,则B 的度数是( )A .50︒B .55︒C .60︒D .65︒11.如图,⊙O 是四边形 ABCD 的内切圆,连接 OA 、OB 、OC 、OD .若∠AOB =110°,则∠COD 的度数是( )A .60°B .70°C .80°D .45°12.如图,点M 是矩形ABCD 的边BC 、CD 上的点,过点B 作BN ⊥AM 于点P ,交矩形ABCD 的边于点N ,连接DP ,若AB=6,AD=4,则DP 的长的最小值为( )A .2B .121313C .4D .5二、填空题13.如图,等腰直角△ABC 中,∠BAC=90°,AB=AC=4.平面内的直线l 经过点A ,作CE ⊥l 于点E ,连接BE.则当直线l 绕着点A 转动时,线段BE 长度的最大值是________.14.如图所示,在平面直角坐标系中,正六边形OABCDE 边长是6,则它的外接圆圆心P 的坐标是______.15.如图,正六边形ABCDEF 的边长为2,分别以点A ,D 为圆心,以AB ,DC 为半径作扇形ABF ,扇形DCE .则图中阴影部分的面积是______.16.如图,点C ,D 是半圈O 的三等分点,直径43AB =.连结AC 交半径OD 于E ,则阴影部分的面积是_______.17.如图,△ABC 中,∠A=60°,若O 为△ABC 的内心,则∠BOC 的度数为______度.18.在矩形ABCD 中,43AB =6BC =,若点P 是矩形ABCD 上一动点,要使得60APB ∠=︒,则AP 的长为__________.19.如图,四边形ABCD 内接于O ,若76A ∠=︒,则C ∠=_______ °.20.如图所示,在⊙O中,AB为弦,交AB于AB点D,且OD=DC,P为⊙O上任意一点,连接PA,PB,若⊙O的半径为1,则S△PAB的最大值为_____.三、解答题21.如图,AB为量角器(半圆O)的直径,等腰直角△BCD的斜边BD交量角器边缘于点G,直角边CD切量角器于读数为60°的点E处(即弧AE的度数为60°),第三边交量角器边缘于点F处.(1)求量角器在点G处的读数α(0°<α<90°);(2)若AB=12cm,求阴影部分面积.22.如图,AB是圆的直径,且AD//OC,求证:CD BC.23.已知:△ABC.(1)求作:△ABC的外接圆⊙O(要求:尺规作图,保留作图痕迹,不写作法);(2)若已知△ABC的外接圆的圆心O到BC边的距离OD=8,BC=12,求⊙O的半径.24.如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点.求证:AP=BP.25.如图,长方形ABCD的长是a,宽是b,分别以A、C为圆心作扇形,用代数式表示阴影部分的周长L和面积S(结果中保留π).⨯的网格中有一个圆,请仅用无刻度直尺作图(保留画图痕迹).26.如图,在33(1)在图1中,圆过格点A,B,请作出圆心O;=,请作一个45圆周角.(2)在图2中,⊙O的两条弦AB CD【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】以直线AC为轴旋转一周所得到的几何体的表面积是圆锥的侧面积加底面积,根据圆锥的侧面积公式计算即可.【详解】解:根据题意得:圆锥的底面周长6π=, 所以圆锥的侧面积165152ππ=⨯⨯=, 圆锥的底面积239ππ=⨯=,所以以直线AC 为轴旋转一周所得到的几何体的表面积15924πππ=+=.故选:A .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了扇形的面积公式.2.B解析:B【分析】作B 点关于直径AC 的对称点B′,过B′点作B′E ⊥AB 于E ,交AC 于F ,如图,利用两点之间线段最短和垂线段最短可判断此时FB +FE 的值最小,再判断△ABB′为等边三角形,然后计算出B′E 的长即可.【详解】解:作B 点关于直径AC 的对称点B′,过B′点作B′E ⊥AB 于E ,交AC 于F ,如图,则FB =FB′,∴FB +FE =FB′+FE =B′E ,此时FB +FE 的值最小,∵∠BAC =30°,∴∠B′AC =30°,∴∠BAB′=60°,∵AB =AB′,∴△ABB′为等边三角形,∵B′E ⊥AB ,∴AE =BE =32, ∴B′E =3AE =332, 即BF +EF 的最小值为332. 故选:B .【点睛】 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了等腰三角形的性质.3.A解析:A【分析】以BC 为边作等边BCM ,连接DM ,则DCM CAB ≅△△,根据全等三角形的性质得到DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232+,根据三角形的面积即可得到结论.【详解】解:以BC 为边作等边BCM ,连接DM ,∵60DCA MCB ==∠∠,∴DCM ACB =∠∠,∵DC=AC ,MC=BC ,∴DCM CAB ≅△△(SAS ),∴DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232,此时面积为:434故选:A【点睛】本题考查了等边三角形的性质,三角形面积的计算,找出点D 的位置是解题的关键.4.D解析:D【分析】连接OB,利用圆周角定理求得∠AOB,再根据切线性质证得∠OBP=90°,利用直角三角形的两锐角互余即可求解.【详解】解:连接OB,∵∠ACB=34°,∴∠AOB=2∠ACB=68°,∵PB为O的切线,∴OB⊥PB,即∠OBP=90°,∴∠P=90°﹣∠AOB=22°,故选:D.【点睛】本题考查了切线的性质、圆周角定理、直角三角形的两锐角互余,熟练掌握切线的性质和圆周角定理是解答的关键.5.C解析:C【分析】首先求出∠AOB,OB,然后利用S阴=S△ABO−S扇形OBD计算即可.【详解】连接OB.∵AB是⊙O切线,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB=3,∠A=30°,∴OB=ABtan30°=1,∴S阴=S△ABO−S扇形OBD=12×1×3−2601360π⋅=3π26-.故选:C.【点睛】本题考查切线的性质、等腰三角形的性质、勾股定理,直角三角形30度角性质,解题的关键是学会分割法求面积,记住扇形面积公式,属于中考常考题型.6.D解析:D【分析】连接OA,则OA=OB,可得∠OBA=∠OAB,再结合∠OBA=18°即可求得∠AOB=144°,再根据圆周角的性质即可求得∠C=72°.【详解】解:如图,连接OA,∵点O为ABC的外心,∴OA=OB,∴∠OBA=∠OAB,又∵∠OBA=18°,∴∠OAB=∠OBA=18°,∴∠AOB=180°-∠OAB-∠OBA=144°,∴∠C=12∠AOB=72°,故选:D.【点睛】本题考查了三角形的外心,圆周角定理,熟练掌握相关定义及性质是解决本题的关键.7.B解析:B【分析】在Rt△ABC中,由勾股定理求AB,观察图形可知,线段AB扫过的图形为扇形,旋转角为90°,根据扇形面积公式求解.【详解】解:在Rt△ABC中,由勾股定理,得==由图形可知,线段AB扫过的图形为扇形ABA′,旋转角为90°,∴线段AB扫过的图形面积=2290n13= 3603604AB⨯=πππ.故选:B.【点睛】本题考查了旋转的性质,扇形面积公式的运用,关键是理解题意,明确线段AB扫过的图形是90°的扇形,难度一般.8.C解析:C【分析】因为⊙O的直径为6,所以圆的半径是3,圆心O到直线l的距离为3即d=3,所以d=r,所以直线l与⊙O的位置关系是相切.【详解】解:∵⊙O的直径为6,∴r=3,∵圆心O到直线l的距离为3即d=3,∴d=r∴直线l与⊙O的位置关系是相切.故选:C.【点睛】本题考查直线与圆的位置关系,若圆的半径为r,圆心到直线的距离为d,d>r时,圆和直线相离;d=r时,圆和直线相切;d<r时,圆和直线相交.9.B解析:B【分析】根据命题的“真”“假”进行判断即可.【详解】解:A、弦不一定是直径,原说法错误,不符合题意;B、半圆是弧,说法正确,符合题意;C、不在同一直线上的三点确定一个圆,原说法错误,不符合题意;D、三角形的外心不一定在三角形的外部,原说法错误,不符合题意;故选:B.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.10.D解析:D【分析】连接AC ,根据圆心角、弧、弦的关系求出∠BAC ,根据圆周角定理求出∠ACB=90°,根据三角形内角和定理计算即可.【详解】解:连接AC ,∵点C 为BD 的中点,∴∠BAC=12∠BAD=25°, ∵AB 为⊙O 的直径,∴∠ACB=90°,∴∠B=90°-∠BAC=65°,故选:D .【点睛】本题考查的是圆心角、弧、弦的关系、圆周角定理的应用,掌握圆心角、弧、弦的关系定理和圆周角定理是解题的关键.11.B解析:B【分析】设四个切点分别为E 、F 、G 、H ,分别连接切点和圆心,利用切线性质和HL 定理可以得到4对全等三角形,进而可得∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,根据8个角之和为360°即可求解.【详解】解:设四个切点分别为E 、F 、G 、H ,分别连接切点和圆心,则OE ⊥AB ,OF ⊥BC ,OG ⊥CD ,OH ⊥AD ,OE=OF=OG=OH ,在Rt △BEO 和△BFO 中,OE OF OB OB =⎧⎨=⎩, ∴Rt △BEO ≌△BFO (HL )∴∠1=∠2,同理可得:∠3=∠4,∠5=∠6,∠7=∠8,∴∠1+∠8=∠2+∠7,∠4+∠5=∠3+∠6,∵∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8=360°,∴∠1+∠8+∠4+∠5=180°,即∠AOB+∠COD=180°,∵∠AOB=110°,∴∠COD=180°﹣∠AOB=180°﹣110°=70°,故选:B.【点睛】本题考查了圆的切线性质、全等三角形的判定与性质,利用圆的的切线性质,添加辅助线构造全等三角形是解答的关键.12.A解析:A【分析】易证∠APB=90°,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB的中点为O,连接OD,OD与半圆的交点P′就是DP的长的最小值时的位置,OP′=OA=12AB=3,OD=5,DP′=OD−OP′=2,即可得出结果.【详解】解:∵BN⊥AM,∴∠APB=90°,∵AB=6为定长,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB的中点为O,连接OD,OD与半圆的交点P′就是DP长的最小值时的位置,如图所示:∵AB=6,AD=4,∴OP′=OA=12AB=3,OD22AD+OA224+3=5,∴DP′=OD−OP′=5−3=2,∴DP的长的最小值为2,故选:A .【点睛】本题考查了矩形的性质、勾股定理、轨迹等知识;判断出P 点的运动轨迹,找出DP 长的最小值时的位置是解题的关键.二、填空题13.【分析】以AC 为直径作圆O 连接BO 并延长交圆O 于点可得BO+O >B 从而可得BO+OE >B 即BE 为最大值再由勾股定理求出BO 的长即可解决问题【详解】解:由题意知CE ⊥l 于点E ∴以AC 为直径作圆O ∵CE 解析:225+【分析】以AC 为直径作圆O ,连接BO ,并延长交圆O 于点E ',可得BO+O E '>B E ',从而可得BO+OE >B E ',即BE 为最大值,再由勾股定理求出BO 的长即可解决问题.【详解】 解:由题意知,CE ⊥l 于点E ,∴以AC 为直径作圆O ,∵CE ⊥AE,∴点E 在圆O 上运动,连接BO ,并延长交圆O 于点E ',如图,∴BO+O E '>B E ',∵OE=O E ',∴BO+OE >B E ',∴BE 的长为最大值, ∵AO=OC=OE ,且AB=AC=4,∴122OE AC == 又∵∠BAC=90° ∴222224220BO AO AB =+=+=∴25BO =∴BE=252BO OE +=故答案为:225+【点睛】此题主要考查了求线段的最大值,构造出△ACE 的外接贺是解答本题的关键.14.【分析】如图所示连接POPA 过点P 作PG ⊥OA 于点G 由正六边形推出为等边三角形进而求出OGPG 的长度即可求得P 点坐标【详解】解:如图所示连接POPA 过点P 作PG ⊥OA 于点G 则∵多边形为正六边形∴∵∴ 解析:()3,33 【分析】 如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,由正六边形OABCDE 推出OPA 为等边三角形,进而求出OG 、PG 的长度即可求得P 点坐标.【详解】解:如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,则90OGP ∠=︒,∵多边形OABCDE 为正六边形,∴60OPA ∠=︒,∵PO PA =, ∴OPA 为等边三角形,又∵PG ⊥OA ,∴PG 平分OPA ∠,∴30OPG ∠=︒,又∵OA=6,∴11163222OG OP OA ===⨯=, ∴由勾股定理得:22226333PG OP OG =-=-=,∴P 的坐标是()3,33,故答案为:()3,33【点睛】本题考查正多边形外接圆的问题,熟练掌握正多边形的性质,灵活运用三角形相关知识解决边角关系是本题的关键.15.﹣【分析】根据题意和图形可知阴影部分的面积是正六边形的面积减去两个扇形的面积从而可以解答本题【详解】解:∵正六边形ABCDEF 的边长为2∴正六边形ABCDEF 的面积是:6××22=∠FAB =∠EDC解析:63﹣83π 【分析】 根据题意和图形可知阴影部分的面积是正六边形的面积减去两个扇形的面积,从而可以解答本题. 【详解】解:∵正六边形ABCDEF 的边长为2,∴正六边形ABCDEF 的面积是:6×34×22=63,∠FAB =∠EDC =120°, ∴图中阴影部分的面积是:63﹣2×21202360π⋅⋅=63﹣83π, 故答案为:63﹣83π. 【点睛】本题考查正多边形和圆、扇形面积的计算,解答本题的关键是明确题意,利用数形结合的思想解答. 16.【分析】连接OC 由点CD 是半圆O 的三等分点得到根据垂径定理得到OD ⊥AC ∠DOC=60°求得OE=CE=3根据扇形和三角形的面积公式即可得到结论【详解】解:连接OC ∵点CD 是半圆O 的三等分点∴∴OD解析:332π-【分析】连接OC ,由点C ,D 是半圆O 的三等分点,得到AD CD CB ==,根据垂径定理得到OD ⊥AC ,∠DOC=60°,求得OE=3,CE=3,根据扇形和三角形的面积公式即可得到结论.【详解】解:连接OC ,∵点C ,D 是半圆O 的三等分点,∴AD CD CB ==,∴OD ⊥AC ,∠DOC=60°,∴∠OCE=30°,∵3AB =∴3∴CE=3,∴S阴影=S 扇形COD -S △OCE =2601236022ππ⋅⋅-⨯=-.故答案为:22π-. 【点睛】本题考查了扇形的面积的计算,垂径定理,含30°角的直角三角形的性质,正确的识别图形是解题的关键. 17.120【分析】根据三角形的内心是三角形角平分线的交点结合公式求出即可【详解】解:为的内心故答案是:120【点睛】注意此题中的结论:若是内心则熟记公式可简化计算解析:120【分析】 根据三角形的内心是三角形角平分线的交点,结合公式1902BOC A ∠=+∠︒求出即可. 【详解】解:60A ∠=︒,O 为ABC ∆的内心, 1190906012022BOC A , 故答案是:120.【点睛】注意此题中的结论:若O 是内心,则1902BOC A ∠=+∠︒.熟记公式可简化计算. 18.或4或8【分析】取CD 中点P1连接AP1BP1由勾股定理可求AP1=BP1=4即可证△AP1B 是等边三角形可得∠AP1B =60°过点A 点P1点B 作圆与ADBC 各有一个交点即这样的P 点一共3个再运用勾解析:4或8.【分析】取CD 中点P 1,连接AP 1,BP 1,由勾股定理可求AP 1=BP 1=△AP 1B 是等边三角形,可得∠AP 1B =60°,过点A ,点P 1,点B 作圆与AD ,BC 各有一个交点,即这样的P 点一共3个.再运用勾股定理求解即可.【详解】解:如图,取CD 中点P 1,连接AP 1,BP 1,如图1,∵四边形ABCD 是矩形∴AB =CD =43,AD =BC =6,∠D =∠C =90°∵点P 1是CD 中点∴CP =DP 1=23∴AP 1=221AD DP +=43, BP 1=221BC CP +=43 ∴AP 1=P 1B =AB∴△APB 是等边三角形∴∠AP 1B =60°,过点A ,点P 1,点B 作圆与AD ,BC 的相交,∴这样的P 点一共有3个当点P 2在AD 上时,如图2,∵四边形ABCD 是矩形,∴3,43,90AB A CD AD =∠===︒∵260,AP B ∠=︒∴221,2P A P B = 即222,P B P A =在2Rt P AB ∆中,22222,P B P A AB -=∴222222(43),P A P A -=∴24AP =;当点P 3在BC 上时,如图3,∵四边形ABCD 是矩形,∴∠B=90°∵∠360,AP B =︒∴∠3390906030,P AB AP B =︒-∠=︒-︒=︒ ∴331,2BP AP = 在3Rt ABP ∆中,22233,AP BP AB -=222331()(43),2AP AP -= 23348,4AP = ∴8,AP =综上所述,AP 的长为:34或8. 故答案为:34或8.【点睛】本题考查了矩形的性质,勾股定理,等边三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.19.104【分析】根据圆内接四边形的对角互补列式计算即可【详解】解:∵四边形ABCD 内接于⊙O ∴∠A+∠C =180°∴∠C =180°﹣∠A =180°﹣76°=104°故答案为:104【点睛】本题考查的是解析:104【分析】根据圆内接四边形的对角互补列式计算即可.【详解】解:∵四边形ABCD 内接于⊙O ,∴∠A +∠C =180°,∴∠C =180°﹣∠A=180°﹣76°=104°,故答案为:104.【点睛】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键. 20.【分析】作直径CE 连OAAEBE 利用垂经定理的AD=BD 在利用勾股定理计算出AD 则AB=2AD 当点P 与点E 重合时P 点到AB 的距离最大然后根据三角形面积公式求解即可【详解】延长CD 交⊙O 于点E 连接OA【分析】作直径CE ,连OA 、AE 、BE ,利用垂经定理的AD=BD ,在利用勾股定理计算出AD ,则AB=2AD ,当点P 与点E 重合时,P 点到AB 的距离最大,然后根据三角形面积公式求解即可.【详解】延长CD 交⊙O 于点E ,连接OA ,AE ,BE 如图,∵OA=OC=1,OD=CD ,∴OD=CD=12OC=12, ∵OC ⊥AB ,∴2=, AD=BD=12AB ,,∴sin ∠OAD=12OD OA =, ∴∠OAD=30º, ∴∠AOD =90º-∠OAD =60º,∵OA =OE ,∴∠OAE=∠OEA ,∵∠AOD=∠OAE+∠OEA ,∴∠OAE=∠OEA=30º,∵CE ⊥AB ,∴AE=BE ,∴∠OEB=∠OEA=30º,∴∠AEB=∠OEB+∠OEA=60º,∴△ABE 是等边三角形,∴DE=223 2AE AD-=,S△ABE=133 24AB DE=,∵在△ABP中,当点P与点E重合时,AB边上的高取最大值,此时△ABP的面积最大,∴S△ABP的最大值=334.故答案为:334.【点睛】本题考查三角形面积,掌握垂经定理,勾股定理,和引辅助线构造图形,找到当点P与点E重合时,P点到AB的距离最大,然后根据三角形面积公式求解是解题关键.三、解答题21.(1)30°;(2)6π﹣93【分析】(1)如图,连接OE,OF,利用切线的性质、等腰直角三角形的性质以及平行线的判定证得OE∥BC,则同位角∠ABC=∠AOE=60°,所以由图形中相关角与角间的和差关系即可得到∠ABG=15°;然后由圆周角定理可以求得量角器在点G处的读数α(0°<α<90°);(2)根据扇形和三角形的面积公式即可得到结论.【详解】解:(1)如图,连接OE,OF.∵CD切半圆O于点E,∴OE⊥CD,∵BD为等腰直角△BCD的斜边,∴BC⊥CD,∠D=∠CBD=45°,∴OE ∥BC ,∴∠ABC =∠AOE =60°,∴∠ABG =∠ABC ﹣∠CBD =60°﹣45°=15°∴弧AG 的度数=2∠ABG =30°,∴量角器在点G 处的读数α=弧AG 的度数=30°;(2)∵AB =12cm ,∴OF =OB =6cm ,∠ABC =60°,∴△OBF 为正三角形,∠BOF =60°,∴S 扇形=2606360π⋅⨯=6π(cm 2),S △OBF =93, ∴S 阴影=S 扇形﹣S △OBF =6π﹣93.【点睛】本题考查了切线的性质,扇形面积的计算,圆周角定理.求(2)题时,利用了“分割法”求得图中阴影部分的面积.22.证明见解析.【分析】主要是根据弧相等只需要证明弧所对的圆周角相等或者弧所对的圆心角相等即可证明.连接AC 或者OD 都可以证明.【详解】解:连接ACAD//OC∴∠DAC=∠OCAOA=OC∴∠BAC=∠ACO∴∠DAC=∠BAC∴CD BC =.【点睛】主要是考察学生对圆周角定理的内容的掌握.同时角相等和弧相等之间的转化. 23.(1)作图见解析;(2)10.【分析】(1)分别做AB 、BC 的垂直平分线且交于O ,然后以O 为圆心、OA 为半径画圆即可; (2)如图:连接OB ,然后根据垂径定理求得BD ,最后根据勾股定理解答即可.【详解】解:(1)如图所示∴⊙O 即为所求作的外接圆;(2)如图:连接OB∵已知△ABC 的外接圆的圆心O 到BC 边的距离OD =8∵线段BC 的垂直平分线交BC 于点D ,∴BD =CD =12BC=6, 在Rt △BOD 中,OB =2286+=10,∴⊙O 的半径长10.【点睛】本题考查了三角形的外接圆的作法和垂径定理的应用,灵活应用相关知识成为解答本题的关键.24.见解析【分析】根据切线的性质得出OP ⊥AB ,根据垂径定理得出即可.【详解】证明:如图,连接OP ,∵大圆的弦AB 是小圆的切线,点P 为切点,∴OP ⊥AB ,∵OP 过O ,∴AP=BP .【点睛】本题考查了切线的性质和垂径定理的应用,主要考查学生的推理能力,题目比较好,难度适中.25.22L b a b π=+-;212S ab b π=-.【分析】由已知图知,阴影部分的周长是()12πb 22a b ⨯+-; 阴影部分的面积为,长方形的面积减去两个14圆的面积(半圆的面积). 【详解】 阴影部分的周长()122222L b a b b a b ππ=⨯+-=+-; 阴影部分的面积221=1242S ab b ab b ππ=-⨯-. 【点睛】此题考查的是列代数式,用到的知识点是半圆的周长和面积的计算方法.26.(1)见解析;(2)见解析.【分析】(1)如图3,连接AN 、BM ,通过圆内接三角形是直角三角形时,斜边就是直径来确定圆心位置;(2)连接BC 、AD 、BD ,通过同(等)弧所对圆周角相等推出ABD CDB ∠=∠,进而推出45BDC ∠=︒.【详解】(1)如图3,连接AN 、BM 交点O 即为圆心∵9090ABN BAM ∠=︒∠=︒,,∴AN 、BM 是直径,∴直径交点O 就是圆心.(2)如图4,连接BC 、AD 、BD∵AB=CD ,∴AB CD =,∴ADB CBD ∠=∠,又∵AC CA =,∴ABC CDA ∠=∠,∴ABD CDB ∠=∠,又∵90BED ∠=︒,∴45ABD CDB ∠=∠=︒,故连接BD ,则45BDC ∠=︒.【点睛】本题考查确定圆心和确定圆弧圆周角等问题,解题的关键是圆内接三角形是直角三角形时,斜边就是直径以及同(等)弧所对圆周角相等.。
人教版九年级数学上册第24章《圆》测试卷1(附答案)
人教版九年级数学上册第24章《圆》测试卷1(附答案)时间:100分钟总分:120分一、选择题(每小题3分,共30分)1.已知⊙O与点P在同一平面内,如果⊙O的半径为5,线段OP的长为4,则点P( )A.在⊙O上B.在⊙O内C.在⊙O外D.以上答案都不正确2.若半径为5c m的一段弧长等于半径为2c m的圆的周长,则这段弧所对的圆心角为( )A.144°B.132°C.126°D.108°3.如图,一个直角三角尺的30°角的顶点P落在⊙O上,两边分别交⊙O于A,B两点,若⊙O的直径为4,则弦AB长为( )A.2B.3C.√2D.√3第3题图第4题图第5题图第6题图4.如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是( )A.AG=BGB.AD//BCC.AB//EFD. ∠ABC= ∠ADC5.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO=8m,底面半径OB=6m,则圆锥的侧面积是( )A.60πm²B.50π m²C.47.5π m²D.45.5π m²6. 如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )A.45°B.50°C.60°D.75°7. 已知⊙A与⊙B外切,⊙C与⊙A,⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是( )A.11B.10C.9D.88.如图,⊙P与x轴交于点A(-5,0),B(1,0),与y轴的正半轴交于点C.若∠ACB=60°,则点P的坐标为( )A.(-3, √3)B.(-2, √3,)C.(-3, 3√3)D.(-2, 3√3)第8题图第9题图第10题图9.如图,用6个小正方形构造如图所示的网格图(每个小正方形的边长均为2),设经过图中M,P,H三点的圆弧与AH交于点R,则图中阴影部分的面积为( )A.3π-2B.2π-5C.5π2--5 D. 5π4-5210. 如图,⊙O的半径为5,点A是⊙O上一定点,点B在⊙O上运动,且∠ABM =30°,AC⊥BM于点C,连接OC,则OC的最小值是( )A. 3−√32B.√32C. √33D.5√32−52二、填空题(每小题3分,共15分)11.已知某个正六边形的周长为6,则这个正六边形的边心距是__________.12.如图所示,在“世界杯”足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到点A时,同伴乙已经成功冲到点B,现在有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅从射门角度大小考虑,应选择第______种射门方式.第12题图第13题图第14题图第15题图13.用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA = 2,则四叶幸运草的周长是________.14. 如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40m,C是弧AB的中点,且CD=10m,则这段弯路所在圆的半径为_________ m.15. 如图,在扇形OAB中,∠AOB=60°,OA = 4,射线AM⊥OA,E为弧AB上的一个动点,过点E作EF⊥AM于点F,连接AE,当AE-EF的值最大时,图中阴影部分的面积为______.三、解答题(本大题共8个小题,满分75分)16.(8分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且CO=CD,求∠PCA的度数.17.(9分)如图,矩形ABCD中,AB=2BC,以AB为直径作⊙O.(1)求证CD是OO的切线.(2)若BC=3,连接BD,求阴影部分的面积.(结果保留π)18.(9分)下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程..已知:⊙O及⊙O外一点P.求作:直线P A和直线PB,使P A切⊙O于点A,PB切⊙O于点B.作法:如图.OP的长为半径作弧,两弧分别交于点M,N;①连接OP.分别以点O和点P为圆心,大于12②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B;③作直线P A和直线PB.所以直线P A和PB就是所求作的直线.根据小东设计的尺规作图过程解答下列问题:(1)使用直尺和圆规,补全图形(保留作图痕迹)(2)完成下面的证明.证明:连接OA,OB . ∵OP是⊙Q的直径,∴∠OAP=∠OBP =______°( ) (填推理的依据).∴P A⊥OA , PB⊥OB .∵OA,OB为⊙O的半径,∴P A,PB是⊙O的切线.̂上,连19.(9分)如图,在⊙O的内接四边形ABCD中,AB=AD,∠BCD=120°,点E在AD接AE,DE.(1)求∠AED的度数;(2)连接OA,OD,OE,当∠DOE=90°时,AE恰好为⊙O的内接正n边形的一边,求n的值.̂=BĈ= AĈ,点E是BC上的一点,20.(9分)如图,已知△ABC是⊙O的内接三角形,AB连接AE,过点B作BD//AE交⊙O于点D,连接CD交AB于点F.(1)求证:AF=BE.(2)若∠CAE=15°,请仅用无刻度的直尺在图中作出一个⊙O的内接等腰直角三角形(保留作图痕迹,不写作法).̂的中点,N是AĈ的中点,弦MN分别交21.(10分)如图,AB,AC是⊙O的两条弦,M是ABAB,AC于点P,D.(1)求证AP=AD.(2)连接PO,若AP=3,OP=√10,⊙O的半径为5,求MP的长.22.(10分)如图,AB是⊙O的直径,点C是⊙O上一点(点C不与A,B重合),连接CA,CB,∠ACB的平分线CD与⊙O交于点D.(1)求∠ACD的度数;(2)探究CA,CB,CD三者之间的等量关系,并证明;(3)E为⊙O外一点,满足ED=BD,AB=5,AE =3,若P为AE中点,求PO的长.23.(11分)如图,AB是⊙O的直径,PC切⊙O于点P,过点A作直线AC⊥PC交⊙O于另一点D,连接P A,PB,PO.(1)求证:AP平分∠CAB;(2)若P是直径AB上方半圆弧上一动点。
九年级数学第二学期阶段性测试(一)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学
九年级数学第二学期阶段性测试(一)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载---------------------------------------九年级数学第二学期阶段性测试(一)数学试卷亲爱的同学:好的开端是成功的一半,希望你们稳扎稳打,在考试中获得好成绩!请注意:全卷共三大题25小题,满分150分。
一、选择题。
(本题有12小题,每小题4分,共48分)1、下列运算正确的是()A、a+a=a2B、a2·a=2a3C、(2a)2÷a=4aD、(―ab)2=―ab22、我县经济发展步伐不断加快,综合实力显著增强,其中外向型经济发展迅速,近四年来实际利用外资1640万美元。
1640万美元用科学记数法表示为()A、1.64×103美元B、1.64×107美元C、0.164×108美元D、164×105美元3、计算的结果为()A、4B、C、D、164、若等腰三角形底角为72°,则顶角为()A、108°B、72°C、54°D、36°5、不等式2―x<1的解是()A、x>1B、x>―1C、x<1D、x<―16、夏天,一杯开水放在桌子上,杯中水的温度T(℃)随时间t变化的关系大致图象()T(℃)T(℃)T(℃)T(℃)OtOtOtOtABCD7、在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A、小明的影子比小强的影子长B、小明的影子比小强的影子短yC、小明的影子和小强的影子一样长D、无法判断谁的影子长8、已知抛物线y=―x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A、―2.5<x<B、―1.5<x<-10xC、x>或x<—2.5D、x<或x>—2.5y9、如图,AP切圆O于点P,OA交圆O于B,且AB=1,PAP=,则阴影部分的面积S等于()OBAA、B、C、D、无法确定10、如图,把一个正方形纸片三次对折后沿虚线剪下(1)、(2)两部分,则展开(2)得()ABC D11、有若干张如图所示的正方形和长方形卡片,表中所列四种方案能拼成邻边长分别是a+b 和2a+b的矩形是()a(1)b(2)b(3)aba12、已知P是线段AB的黄金分割点,点P将AB分成m、n两部分(m>n),以m为边长的正方形面积是S1,以(m+n)和n为边长的矩形的面积为S2,则S1与S2的大小关系是()A、S1>S2B、S1=S2C、S1<S2D、无法确定二、填空题。
九年级数学上册测试题(含答案)
九年级数学上册测试卷满分100分 用时90分钟 家长签名:班级: 姓名: 座号: 评分:一、选择题( 10×3′=30′)1.一个等腰三角形的顶角是40°,则它的底角是( )A .40°B .50°C .60°D .70°2.下列命题中,不正确...的是( ) A .对角线相等的平行四边形是矩形. B .有一个角为60°的等腰三角形是等边三角形.C .直角三角形斜边上的高等于斜边的一半.D .正方形的两条对角线相等且互相垂直平分.3.下列函数中,属于反比例函数的是( )A .2x y =B .12y x =C .23y x =+D .223y x =+4.方程 x (x +3)= 0的根是( )A .x =0B .x =-3C .x 1=0,x 2 =3D .x 1=0,x 2 =-35.如图所示,圆柱体的主视图是( )6. 下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是( )A .球B .圆柱C .三棱柱D .圆锥7.如图,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区域的概率是( )A .38B .12C .14D .138.如图,菱形ABCD 的对角线交于点O ,AC = 8cm ,BD = 6cm ,则菱形的高为( )A .485 cmB .245cm C .125 cm D.105cm A B CD9.若反比例函数1y x=-的图象经过点A (2,m ),则m 的值是( ) A .-2 B .2 C . 12- D . 1210.函数xk y =的图象经过(1,-1),则函数2y kx =+的图象是( )二、填空题( 6×4′=24′)11.在一个有10万人的城市,随机调查了2000人,其中有250人看中央电视台的早间新闻——朝闻天下.在该城市随便问一个人,他看中央电视台朝闻天下的概率大约是 .12.如果43=y x ,那么=-yy x 13.若反比例函数x k y =的图象经过点(-3, 4),则k= ,则此函数在每一个象限内y 随x 的增大而 .14.在△ABC 中,D 、E 、F 分别是AB 、BC 、AC 的中点,若△ABC 的周长为30 cm ,则△DFE 的周长为 cm .15.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率是 。
2024-2025学年冀教版九年级数学上学期 期末综合模拟测试卷1
冀教版数学九年级上册期末测试卷一、单选题1.已知关于x的方程x2-kx-3=0的一个根为3,则k的值为()A.1B.-1C.2D.-22.下列命题中,不正确的命题是()A.平分一条弧的直径,垂直平分这条弧所对的弦B.平分弦的直径垂直于弦,并平分弦所对的弧C.在⊙O中,AB、CD是弦,则AB CDD.圆是轴对称图形,对称轴是圆的每一条直径.3.一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖).组员甲乙丙丁戊方差平均成绩得分8179■8082■80那么被遮盖的两个数据依次是()A.80,2B.80,C.78,2D.78,4.上海世博会的某纪念品原价168元,连续两次降价a%后售价为128元.下列所列方程中正确的是()A.168(1+a)2=128B.168(1﹣a%)2=128C.168(1﹣2a%)=128D.168(1﹣a2%)=1285.如图,△ABC内接于⊙O,作OD⊥BC于点D,若∠A=60°,则OD:CD的值为()A.1:2B.1:C.1:D.2:6.若反比例函数y=的图象经过点(2,3),则它的图象也一定经过的点是()A.(﹣3,﹣2)B.(2,﹣3)C.(3,﹣2)D.(﹣2,3)7.下列四条线段中,不能成比例的是()A.a=3,b=6,c=2,d=4B.a=1,b=,c=,d=4C.a=4,b=5,c=8,d=10D.a=2,b=3,c=4,d=58.如图,已知⊙O的半径等于1cm,AB是直径,C,D是⊙O上的两点,且==,则四边形ABCD的周长等于()A.4cmB.5cmC.6cmD.7cm9.如图,△ADE∽△ABC,若AD=1,BD=2,则△ADE与△ABC的相似比是().A.1:2B.1:3C.2:3D.3:210.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A.∠C=2∠AB.BD平分∠ABCC.S△BCD=S△BODD.点D为线段AC的黄金分割点二、填空题11.若,则的值为________.12.已知关于x的方程x2﹣2x+m=0有两个相等的实数根,则m的值是________.13.墙壁CD上D处有一盏灯(如图),小明站在A站测得他的影长与身长相等都为1.5m,他向墙壁走1m到B处时发现影子刚好落在A点,则灯泡与地面的距离CD=________m.14.三角形的每条边的长都是方程x2-6x+8=0的根,则三角形的周长是________.15.如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y轴于点N,反比例函数的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=________.16.若关于x的一元二次方程x2+4x﹣k=0有实数根,则k的最小值为________.17.点A(-2,5)在反比例函数(k≠0)的图象上,则k的值是________.18.在△ABC中,∠C=90°,AC=4,点G为△ABC的重心.如果GC=2,那么sin∠GCB的值是________.19.如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=________度.20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题21.计算:.22.如图所示,在△ABC中,CE,BD分别是AB,AC边上的高,求证:B,C,D,E四点在同一个圆上.23.如图,在Rt△ABC中,∠A=90º,AB=6,BC=10,D是AC上一点,CD=5,DE⊥BC于E.求线段DE的长.24.如图,在⊙O中,AB为直径,点B为的中点,直径AB交弦CD于E,CD=2,AE=5.(1)求⊙O半径r的值;(2)点F在直径AB上,连接CF,当∠FCD=∠DOB时,求AF的长.25.已知:关于x的方程x2+4x+(2﹣k)=0有两个不相等的实数根.(1)求实数k的取值范围.(2)取一个k的负整数值,且求出这个一元二次方程的根.26.已知:如图,AB为⊙O的直径,CE⊥AB于E,BF∥OC,连接BC,CF.求证:∠OCF=∠ECB.27.如图,一艘轮船以18海里/时的速度由西向东方向航行,行至A处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,求轮船与灯塔的最短距离.(精确到0.1,≈1.73)28.李明对某校九年级(2)班进行了一次社会实践活动调查,从调查的内容中抽出两项.调查一:对小聪、小亮两位同学的毕业成绩进行调查,其中毕业成绩按综合素质、考试成绩、体育测试三项进行计算,计算的方法按4:4:2进行,毕业成绩达80分以上为“优秀毕业生”,小聪、小亮的三项成绩如右表:(单位:分)综合素质考试成绩体育测试满分100100100小聪729860小亮907595调查二:对九年级(2)班50名同学某项跑步成绩进行调查,并绘制了一个不完整的扇形统计图,请你根据以上提供的信息,解答下列问题:(1)小聪和小亮谁能达到“优秀毕业生”水平?哪位同学的毕业成绩更好些?(2)升入高中后,请你对他俩今后的发展给每人提一条建议.(3)扇形统计图中“优秀率”是多少?(4)“不及格”在扇形统计图中所占的圆心角是多少度?29.如图,D在AB上,且DE∥BC交AC于E,F在AD上,且AD2=AF•AB.求证:EF∥CD.30.如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于A、B、C、D四点,连接CP,⊙P的半径为2.(1)写出A、B、C、D四点坐标;(2)求过A、B、D三点的抛物线的函数解析式,求出它的顶点坐标.(3)若过弧CB的中点Q作⊙P的切线MN交x轴于M,交y轴于N,求直线MN的解析式参考答案一、单选题1.【答案】C∵方程x2-kx-3=0的一个根为3,∴将x=3代入方程得:9-3k-3=0,解得:k=2.故选C2.【答案】C在圆内的弦不一定平行,故C选项错误.3.【答案】C解:根据题意得:80×5﹣(81+79+80+82)=78,方差=[(81﹣80)2+(79﹣80)2+(78﹣80)2+(80﹣80)2+(82﹣80)2]=2.故答案为:C4.【答案】B解:当商品第一次降价a%时,其售价为168﹣168a%=168(1﹣a%);当商品第二次降价a%后,其售价为168(1﹣a%)﹣168(1﹣a%)a%=168(1﹣a%)2.∴168(1﹣a%)2=128.故选B.5.【答案】C解:连接OB,OC,∵∠A=60°,∴∠BOC=2∠A=120°.∵OB=OC,OD⊥BC,∴∠COD=∠BOC=60°,∴=cot60°=,即OD:CD=1:.故选C.6.【答案】A根据题意得k=2×3=6,所以反比例函数解析式为y=,∵﹣3×(﹣2)=6,2×(﹣3)=﹣6,3×(﹣2)=﹣6,﹣2×3=﹣6,∴点(﹣3,﹣2)在反比例函数y=的图象上.故答案为:A.7.【答案】DA、2×6=3×4,能成比例,不符合题意;B、4×1=×2,能成比例,不符合题意;C、4×10=5×8,能成比例,不符合题意;D、2×5≠3×4,不能成比例,符合题意.故答案为:D.8.【答案】B解:如图,连接OD、OC.∵==(已知),∴∠AOD=∠DOC=∠COB(在同圆中,等弧所对的圆心角相等);∵AB是直径,∴∠AOD+∠DOC+∠COB=180°,∴∠AOD=∠DOC=∠COB=60°;∵OA=OD(⊙O的半径),∴△AOD是等边三角形,∴AD=OD=OA;同理,得OC=OD=CD,OC=OB=BC,∴AD=CD=BC=OA,∴四边形ABCD的周长为:AD+CD+BC+AB=5OA=5×1cm=5cm;故选:B.9.【答案】B∵AD=1,BD=2,∴AB=AD+BD=3.∵△ADE∽△ABC,∴AD:AB=1:3.∴△ADE与△ABC的相似比是1:3.故选B.10.【答案】CA、∵∠A=36°,AB=AC,∴∠C=∠ABC=72°,∴∠C=2∠A,正确,故本选项错误。
人教版九年级数学上册 期末检测题(一)
期末检测题(一)时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.(盐城中考)已知一元二次方程x 2+kx -3=0有一个根为1,则k 的值为( B )A .-2B .2C .-4D .42.(2020·深圳)下列图形既是轴对称图形又是中心对称图形的是( B )3.(2020·武汉)某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是( C )A .13B .14C .16D .184.(2020·营口)如图,AB 为⊙O 的直径,点C ,点D 是⊙O 上的两点,连接CA ,CD ,AD .若∠CAB =40°,则∠ADC 的度数是( B )A .110°B .130°C .140°D .160°第4题图 第7题图 第8题图第9题图5.对于二次函数y =-(x -1)2+2的图象与性质,下列说法正确的是( B )A .对称轴是直线x =1,最小值是2B .对称轴是直线x =1,最大值是2C .对称轴是直线x =-1,最小值是2D .对称轴是直线x =-1,最大值是26.(2020·滨州)对于任意实数k ,关于x 的方程12x 2-(k +5)x +k 2+2k +25=0的根的情况为( B )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法判定7.(2020·无锡)如图,在矩形ABCD 中,AB =5,AD =4,将矩形ABCD 绕点A 逆时针旋转得到矩形AB ′C ′D ′,AB ′交CD 于点E ,且DE =B ′E ,则AE 的长为( D )A .3B .25C .258D .41108.把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB =60°,若量出AD =6 cm ,则圆形螺母的外直径是( D )A .12 cmB .24 cmC .6 3 cmD .12 3 cm9.(2020·乐山)在△ABC 中,已知∠ABC =90°,∠BAC =30°,BC =1.如图所示,将△ABC 绕点A 按逆时针方向旋转90°后得到△AB ′C ′.则图中阴影部分面积为( B )A .π4B .π-32C .π-34D .32π10.(2020·恩施州)如图,已知二次函数y =ax 2+bx +c的图象与x 轴相交于A (-2,0),B (1,0)两点.则以下结论:①ac >0;②二次函数y =ax 2+bx +c 的图象的对称轴为x =-1;③2a +c =0;④a -b +c >0.其中正确的有( C )A .0个B .1个C .2个D .3个二、填空题(每小题3分,共24分)11.(资阳中考)a 是方程2x 2=x +4的一个根,则代数式4a 2-2a 的值是__8__.12.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB =15°,则∠AOD =__30__度. 第12题图 第15题图 第16题图第18题图13.袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有__3__个.14.(2020·宜宾)已知一元二次方程x 2+2x -8=0的两根为x 1,x 2,则x 2x 1 +2x 1x 2+x 1x 2=__-372 __. 15.(北京中考)如图,点A ,B ,C ,D 在⊙O 上,CB =CD ,∠CAD =30°,∠ACD =50°,则∠ADB =__70°__.16.(2020·呼和浩特)如图,在△ABC 中,D 为BC 的中点,以D 为圆心,BD 长为半径画一弧,交AC 于点E ,若∠A =60°,∠ABC =100°,BC =4,则扇形BDE 的面积为__4π9__.17.已知二次函数y =ax 2+bx -3自变量x 的部分取值和对应函数值y 如下表:则在实数范围内能使得y -5>0成立的x 取值范围是__x <-2或x >4__.18.(咸宁中考)如图,已知∠MON =120°,点A ,B 分别在OM ,ON 上,且OA =OB =a ,将射线OM 绕点O 逆时针旋转得到OM ′,旋转角为α(0°<α<120°且α≠60°),作点A 关于直线OM ′的对称点C ,画直线BC 交OM ′于点D ,连接AC ,AD ,有下列结论:①AD =CD ;②∠ACD 的大小随着α的变化而变化;③当α=30°时,四边形OADC 为菱形;④△ACD 面积的最大值为3 a 2;其中正确的是__①③④__.(把你认为正确结论的序号都填上)三、解答题(共66分)19.(6分)用适当的方法解下列一元二次方程:(1)2x 2+4x -1=0; (2)(y +2)2-(3y -1)2=0.解:x 1=-1+62 ,x 2=-1-62 解:y 1=-14 ,y 2=3220.(7分)如图,△BAD 是由△BEC 在平面内绕点B 旋转60°而得,且AB ⊥BC ,BE =CE ,连接DE .(1)求证:△BDE ≌△BCE ;(2)试判断四边形ABED 的形状,并说明理由.解:(1)∵△BAD 是由△BEC 在平面内绕点B 旋转60°而得,∴DB =CB ,∠ABD =∠EBC ,∠ABE =60°,∵AB ⊥BC ,∴∠ABC =90°,∴∠DBE =∠CBE =30°,在△BDE 和△BCE中,⎩⎪⎨⎪⎧DB =CB ,∠DBE =∠CBE ,BE =BE ,∴△BDE ≌△BCE (2)四边形ABED 为菱形.理由如下:由(1)得△BDE ≌△BCE ,∵△BAD 是由△BEC 旋转而得,∴△BAD ≌△BEC ,∴BA =BE ,AD =EC =ED ,又∵BE =CE ,∴AB =BE =ED =AD ,∴四边形ABED 为菱形21.(7分)(2020·江西)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为_______;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.解:(1)共有4种可能出现的结果,抽到小艺的只有1种,因此恰好抽到小艺的概率为14,故答案为:14(2)用列表法表示所有可能出现的结果如下:共有12种等可能出现的结果,其中都是八年级,即抽到小志、小晴的有2种,∴P (小志、小晴)=212 =16 22.(8分)(2020·南充)已知x 1,x 2是一元二次方程x 2-2x +k +2=0的两个实数根.(1)求k 的取值范围;(2)是否存在实数k ,使得等式1x 1 +1x 2=k -2成立?如果存在,请求出k 的值;如果不存在,请说明理由.解:(1)∵一元二次方程x 2-2x +k +2=0有两个实数根,∴Δ=(-2)2-4×1×(k +2)≥0,解得k ≤-1 (2)∵x 1,x 2是一元二次方程x 2-2x +k +2=0的两个实数根,∴x 1+x 2=2,x 1x 2=k +2.∵1x 1 +1x 2 =k -2,∴x 1+x 2x 1x 2 =2k +2=k -2,∴k 2-6=0,解得k 1=-6 ,k 2=6 .又∵k ≤-1,∴k =-6 .∴存在实数k ,使得等式1x 1 +1x 2=k -2成立,k 的值为-6 23.(8分)某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?解:(1)(14-10)÷2+1=3(档次).答:此批次蛋糕属第三档次产品 (2)设烘焙店生产的是第x 档次的产品,根据题意得(2x +8)×(76+4-4x )=1080,整理得x 2-16x +55=0,解得x 1=5,x 2=11(不合题意,舍去).答:该烘焙店生产的是第五档次的产品24.(8分)(2020·潍坊)如图,AB 为⊙O 的直径,射线AD 交⊙O 于点F ,点C 为劣弧BF 的中点,过点C 作CE ⊥AD ,垂足为E ,连接AC .(1)求证:CE 是⊙O 的切线;(2)若∠BAC =30°,AB =4,求阴影部分的面积.解:(1)连接BF ,∵AB 是⊙O 的直径,∴∠AFB =90°,即BF ⊥AD ,∵CE ⊥AD ,∴BF ∥CE ,连接OC ,∵点C 为劣弧BF 的中点,∴OC ⊥BF ,∵BF ∥CE ,∴OC ⊥CE ,∵OC 是⊙O 的半径,∴CE 是⊙O 的切线(2)连接OF ,FC ,∵OA =OC ,∠BAC =30°,∴∠BOC =60°,∵点C 为劣弧BF 的中点,∴FC =BC ,∴∠FOC =∠BOC =60°,∴∠AOF =60°,∵OF =OC ,∴△FOC 为等边三角形,∴∠CFO =60°,∴∠CFO =∠AOF ,∴FC ∥AB ,∴S △AFC =S △FOC ,∵AB=4,∴S 阴影=S 扇形FOC =60π×22360 =23π 25.(10分)(2020·南充)某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件.(1)如图,设第x (0<x ≤20)个生产周期设备售价z 万元/件,z 与x 之间的关系用图中的函数图象表示.求z 关于x 的函数解析式(写出x 的范围).(2)设第x 个生产周期生产并销售的设备为y 件,y 与x 满足关系式y =5x +40(0<x ≤20).在(1)的条件下,工厂第几个生产周期创造的利润最大?最大为多少万元?(利润=收入-成本)解:(1)由图可知,当0<x ≤12时,z =16,当12<x ≤20时,z 是关于x 的一次函数,设z =kx +b ,则⎩⎪⎨⎪⎧12k +b =16,20k +b =14, 解得⎩⎪⎨⎪⎧k =-14,b =19,∴z =-14 x +19,∴z 关于x 的函数解析式为z =⎩⎪⎨⎪⎧16(0<x ≤12)-14x +19(12<x ≤20) (2)设第x 个生产周期工厂创造的利润为w 万元,①当0<x ≤12时,w =(16-10)×(5x+40)=30x +240,∴由一次函数的性质可知,当x =12时,w 最大值=30×12+240=600(万元);②当12<x ≤20时,w =(-14 x +19-10)(5x +40)=-54 x 2+35x +360=-54(x -14)2+605,∴当x =14时,w 最大值=605(万元).综上所述,工厂第14个生产周期创造的利润最大,最大是605万元26.(12分)(2020·上海)在平面直角坐标系xOy 中,直线y =-12x +5与x 轴、y 轴分别交于点A ,B (如图).抛物线y =ax 2+bx (a ≠0)经过点A .(1)求线段AB 的长;(2)如果抛物线y =ax 2+bx 经过线段AB 上的另一点C ,且BC =5 ,求这条抛物线的表达式;(3)如果抛物线y =ax 2+bx 的顶点D 位于△AOB 内,求a 的取值范围.解:(1)对于直线y =-12 x +5,令x =0,y =5,∴B (0,5),令y =0,则-12x +5=0,∴x =10,∴A (10,0),∴AB =52+102 =55 (2)设点C (m ,-12m +5),∵B (0,5),∴BC =m 2+(-12m +5-5)2 =52 |m |,∵BC =5 ,∴52 |m |=5 ,∴m =±2,∵点C 在线段AB 上,∴m =2,∴C (2,4),将点A (10,0),C (2,4)代入抛物线y =ax 2+bx (a ≠0)中,得⎩⎪⎨⎪⎧100a +10b =0,4a +2b =4, ∴⎩⎨⎧a =-14,b =52, ∴抛物线的表达式为y =-14 x 2+52x (3)∵点A (10,0)在抛物线y =ax 2+bx 上,得100a +10b =0,∴b =-10a ,∴抛物线的解析式为y =ax 2-10ax=a (x -5)2-25a ,∴抛物线的顶点D 坐标为(5,-25a ),将x =5代入y =-12x +5中,得y =-12 ×5+5=52 ,∵顶点D 位于△AOB 内,∴0<-25a <52 ,∴-110 <a <0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学综合测试(1)
一.选择题(24分)
1.
化简=(
) A.
2 B. C. D. 4 2.如图,⊙O 是△ABC 的外接圆,∠BAC =50°P 为OA 上一点(不与O ,A 重合),则∠BPC 的度数可以是( ) A. 120°B. 110°C. 90° D. 50°
3.下列事件中是必然事件的为( )
A .有两边及一角对应相等的三角形全等
B .方程x 2﹣x+1=0两根之和为1
C .三点确定一个圆
D .圆的切线垂直于过切点的半径
4.如图,⊙P 的半径为2,圆心P 在抛物线y =12
x 2上运动,当⊙P
与x 轴相切时,P 点的坐标为( ) A. (2,2) B. (﹣2,2)
C. (2,2)或(2,﹣2)
D. (2,2)或(﹣2,2)
5.如图水平面上有一个面积为30πcm 2扇形AOB ,半径为6cm , 且OA 垂直于地面,在没有滑动的情况下,将扇形向右滚 动至OB 垂直于地面为止,则O 点移动的距离为( ) A. 20cm B. 24cm C. 10πcm D. 30πcm
6.关于x 的方程(a ﹣5)x 2﹣4x ﹣1=0有实数根,则a 的范围( )
A. a >0
B. a >1
C. a ≥1
D. a ≥1且a ≠5 7.如图,已知∠AOB =60°,半径为3的⊙M ,沿OA 从右向左 平移,与边OA 相切,切点恒记为C ,当⊙M 与边OB 相交于E ,
F ,若EF =CM 交OB 于N ,则NC 的长为( )
A. 2
B. 5
C. 1
D. 5或1
B
O
8.设一元二次方程(x﹣1)( x﹣2)=m(m>0)两根为x1,x2,且x1<x2,则x1,x2满足( )
A. 1<x1<x2<2
B. 1<x1<2<x2
C. x1<1<x2<2
D. x1<1且x2>2
二.填空题(24分)
9.化简=_________.
10.定义运算“▲”对于任意实数a,b,都有a▲b=a2﹣3a+b,若x▲2=6,则x=__________
11.O为△ABC的外心,若∠BOC=110°,则∠A的度数为___________
M D
C
12. 在x 2□2xy □y 2
的空格□中,分别填上“+”或“-”使得式子为完全平方式的概率为______.
13. 关于x 一元二次方程x 2+(2m ﹣1)x +m 2=0的两实数根为x 1,x 2,当x 12﹣x 22=0时,m =____.
14. 如图,M 是CD 的中点,EM ⊥CD ,若CD=4,EM=8,则CED 所在圆的半径为 .
15.如图,平行于y 轴的直线x =﹣1 被抛物线2
2
11112
2
y x
y x =+=
-,所截,当直线x =﹣1向右平移3个单位,直线x =﹣1被两条抛物
B
C
线截得线段扫过图形的面积为_____平方单位.
16.如图,△ABC 中,∠A =60°,BC 为定长,以BC 为直径的⊙O 交AB ,AC 于D ,E ,下列结论:①BC =2DE ②BD +CE =2DE ③D 点到OE 的距离不变 ④OE 为△ADE 的外接圆的切线。
其中正确的序号 为________________.
三.解答题(72分)
17.(7
分)
计算;012()21
-++-
18. (7分)我们解方程x 4﹣x 2﹣2=0时,通常设x 2=y ,变形为二次方程y 2﹣y ﹣2=0来求解。
请你使用这种方法解答: 已知:实数x 满足(x 2+x )2﹣(x 2+x )﹣12=0,求x 2+x 的值.
19. (8分)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满. 当每个房间每天的房价每增加10元时,就会有一个房间空闲. 宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元. 设每个房间的房价每天增加x元(x为10的整数倍).
(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;
(2)设宾馆一天的利润为W元,求W与x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?
20. (9分) 如图,AB为⊙O的直径,C为⊙O上一点,AD的过C点的直线互相垂直,垂足为D,且AC平分∠DAB. (1)求证:DC为⊙O的切线;
(2)若⊙O的半径为3,AD=4,求AC的长.
21. (9分)某中学定期进行视力检测,设现有A,B两处检测点,甲,乙,丙三名学生各自随机选择其中的一处检测视力.
⑴求甲,乙,丙三名学生在同一处检测视力的概率.
⑵求甲,乙,丙三名学生中至少有两人在B处检测视力的概率.
22. (9分)已知抛物线y=x2+bx﹣c与x轴交点坐标为(m,0),(﹣
3m,0)(m≠0)
⑴求证:4c=3b2⑵若抛物线的对称轴为直线x=1,求这个二次函数的解析式.
23. (11分) 某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:
操作发现:
在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC 的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是(填序号即可)
1AB;②MD=ME;③整个图形是轴对称图形;
①AF=AG=
2
④∠DAB=∠DMB.
数学思考:
在任意△ABC中,分别以AB和AC为斜边,向△ABC的外.侧.作等腰直角三角形,如图2所示,M是BC的中点,连接
MD 和ME ,则MD 和ME 具有怎样的数量和位置关系?请给出证明过程; ●类比探索:
在任意△ABC 中,仍分别以AB 和AC 为斜边,向△ABC 的内侧作等腰直角三角形,如图3所示,M 是BC 的中点,连接MD 和ME ,试判断△MED 的形状. 答: .
G
F
C
B D
C
A
E
D
E M
C
D
B
24. 如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).
(1)求抛物线的解析式;
(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD 的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;
(3)若点E是(1)中抛物线上的一个动点,且位于直线AC 的下方,试求△ACE的最大面积及E点的坐标.
y
x O l
C
B
A。