二十一数的整除特征

合集下载

数的整除特征

数的整除特征

如:22,33
22÷11=2(整除)
33÷11=3(整除)
如:23,34
23÷11=2.090909(不能整除)
34÷11=3.090909(不能整除)
13的整除特征
若一个整数的个位数字截去,再从余下 的数中,加上个位数的4倍,如果差是13 的倍数,则原数能被13整除。
如:665 665÷13=15(整除) 如:14 14÷13=1.07692308(不能整除)
除)
7的整除特征
被7整除若一个整数的个位数字截去,再从余下的数中, 减去个位数的2倍,如果差是7的倍数,则原数能被7 整除。如果差太大或心算不易看出是否7的倍数,就需 要继续上述「截尾、倍大、相减、验差」的过程,直 到能清楚判断为止。
如:133 13-3×2=7 , 7÷7=1(整除) 如:12 12÷7=1.741857(不能整除)
数的整除特征
研究内容: 2、3、5、7、9、11、13等数的整除特征 同学们,你们有没有在做题时遇到除数是2、
3、5、7、9、11、13的情况呢?如果有, 是不是很难算呢?那么今天就让我们来 揭开他们的秘密吧!
2的整除特征
被2整除的数是偶数。 如:2,4,6,8 2÷2=1(整除) 4÷2=2(整除) 6÷2=3(整除) 8÷2=4(整除) 如:3,5 3÷2=1.5(不能整除) 5÷2=2.5(不能整
小测试
200÷2 21÷3 55÷5 147÷7 46÷9 67÷11 123÷13
答案是前四个可以,后三个不行。
你都算对了吗?
除)
3的整除特征
被3整除的数必须各个位数上的数加起来 为3的倍数。
如:147=1+4+7=12 147÷3=49(整除) 如:136=1+3+6=10 136÷3=45.33333333.......(不能整除)

数的整除的特征

数的整除的特征

一、数的整除的特征1.前面我们已学过奇数与偶数,我们正是以能否被2整除来区分偶数与奇数的。

因此,有下面的结论:末位数字为0、2、4、6、8的整数都能被2整除。

偶数总可表为2k,奇数总可表为2k+1(其中k为整数)。

2.末位数字为零的整数必被10整除。

这种数总可表为10k (其中k为整数)。

3.末位数字为0或5的整数必被5整除,可表为5k(k为整数)。

4.末两位数字组成的两位数能被4(25)整除的整数必被4(25)整除。

如1996=1900+96,因为100是4和25的倍数,所以1900是4和25的倍数,只要考察96是否4或25的倍数即可。

由于4|96能被25整除的整数,末两位数只可能是00、25、50、75。

能被4整除的整数,末两位数只可能是00,04,08,12,16,20,2 4,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,不可能是其它的数。

5.末三位数字组成的三位数能被8(125)整除的整数必能被8(125)整除。

由于1000=8×125,因此,1000的倍数当然也是8和125的倍数。

如判断765432是否能被8整除。

因为765432=765000+432显然8|765000,故只要考察8是否整除432即可。

由于432=8×54,即8|432,所以8|765432。

能被8整除的整数,末三位只能是000,008,016,024, (9)84,992。

由于125×1=125,125×2=250,125×3=375;125×4=500,125×5=625;125×6=750;125×7=875;125×8=10000故能被125整除的整数,末三位数只能是000,125,250,3 75,500,625,750,875。

6.各个数位上数字之和能被3(9)整除的整数必能被3(9)整除。

能被2、3、5、7、9、11、13、17、19整除的数的特征

能被2、3、5、7、9、11、13、17、19整除的数的特征

能被2、3、5、7、9、11、13、17、19整除的数的特征能被2整除的数的特征是个位上是偶数,能被3整除的数的特征是所有位数的和是3的倍数(例如:315能被3整除,因为3+1+5=9是3的倍数)能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

能被5整除的数个位上的数为0或5,能被7整除的数的特征若一个整数的个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果数字仍然太大不能直接观察出来,就重复此过程。

能被9整除的数的特征是所有位数的和是9的倍数能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。

例如:判断491678能不能被11整除。

奇位数字的和9+6+8=23偶位数位的和4+1+7=1223-12=11因此,491678能被11整除。

这种方法叫“奇偶位差法”。

能被13整除的数的特征把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。

如果数字仍然太大不能直接观察出来,就重复此过程。

如:判断1284322能不能被13整除。

128432+2×4=12844012844+0×4=128441284+4×4=13001300÷13=100所以,1284322能被13整除。

【其它方法:能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。

】例1:判断1059282是否是7的倍数?例2:判断3546725能否被13整除?能被17整除的数的特征把一个整数的个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

能被整除的数的特征

能被整除的数的特征

能被整除的数的特征 Revised by BLUE on the afternoon of December 12,2020.能被2、3、5、7、9、11、13、17、19整除的数的特征能被2整除的数的特征是个位上是偶数,能被3整除的数的特征是所有位数的和是3的倍数(例如:315能被3整除,因为3+1+5=9是3的倍数)能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

能被5整除的数个位上的数为0或5,能被7整除的数的特征若一个整数的个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果数字仍然太大不能直接观察出来,就重复此过程。

能被9整除的数的特征是所有位数的和是9的倍数能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。

例如:判断491678能不能被11整除。

奇位数字的和9+6+8=23偶位数位的和4+1+7=1223-12=11因此,491678能被11整除。

这种方法叫“奇偶位差法”。

能被13整除的数的特征把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。

如果数字仍然太大不能直接观察出来,就重复此过程。

如:判断1284322能不能被13整除。

128432+2×4=12844012844+0×4=128441284+4×4=13001300÷13=100所以,1284322能被13整除。

【其它方法:能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。

】例1:判断1059282是否是7的倍数例2:判断3546725能否被13整除能被17整除的数的特征把一个整数的个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

数字21的奥秘解析它的数学特征与规律

数字21的奥秘解析它的数学特征与规律

数字21的奥秘解析它的数学特征与规律数字21的奥秘解析:它的数学特征与规律数字在我们生活中扮演着重要的角色,代表着不同的意义和价值。

其中一个数字,21,引发了许多人的好奇心。

在这篇文章中,我们将解析数字21的奥秘,探讨它的数学特征与规律。

一、数字21的特征数字21由两个数位组成,分别是2和1。

这两个数位有着不同的特征和含义。

下面我们将分别探讨这两个数位的特征。

1. 数字2的特征数字2是一个偶数,它可以被2整除。

它也是第一个能够被除以1和自身以外的数字整除的数字。

数字2还是一个素数,因为它没有其他的正因子。

在几何学中,数字2代表了一个点的位置。

它是最简单的几何形状,也是线段的两端点。

此外,数字2还与平衡和和谐的概念相关联。

2. 数字1的特征数字1是一个奇数,它不能被2整除。

它是最小的自然数,也是唯一一个既是正整数又是负整数的数字。

数字1还是单位元素,它不会改变任何数值通过加法或乘法。

在几何学中,数字1代表了一个单位长度。

它是最简单的线段,也是所有几何形状的构建块。

数字1还与独立和个人的概念相关联。

二、数字21的数学规律数字21由数字2和数字1组成,它们的组合形成了数字21的数学规律。

下面我们将探讨数字21的一些数学规律。

1. 数字21的因数数字21可以被1、3、7和21整除。

这些数字被称为数字21的因数,因为它们能够整除数字21并得到整数结果。

2. 数字21的倍数数字21是3和7的倍数。

这意味着数字21可以被3和7整除而没有余数。

3. 数字21的平方与立方数字21的平方是441,立方是9261。

平方和立方是数字21的幂运算的结果,用于表示数字21的乘法和幂运算。

4. 数字21的素数因子数字21只有一个素数因子,即7。

素数因子是指能被整除且不能被其他数字整除的质数。

5. 数字21的两位数特征数字21是一个两位数,它处于两位数的范围内。

两位数有着自己的特征和规律,而数字21正好处于这个范围中。

三、数字21在生活中的应用数字21不仅仅是一个数学概念,它在我们的生活中也有着各种应用。

最新能被1—31整除的数的特征资料

最新能被1—31整除的数的特征资料

能被1—31整除的数的特征能被质数整除的数的特征(1—31)7-2 11-1 13+4 17-5 19+2 23+7 29+3 31-3能被2整除:偶数。

能被3整除:各个数位的和,是3的倍数。

能被5整除:个位为0或5。

能被7整除:方法1(能被7—31的质数的整除类似):非个位数减去个位数的2倍,差是7的倍数。

例如,6139是否7的倍数?613-9×2=595,59-5×2=49,所以6139是7的倍数。

方法2(能被7、11、13整除相同):末三位数与非末三位数的差,是7的倍数。

例如,6139是否7的倍数?139-6=133,所以6139是7的倍数。

能被11整除:方法1(能被7—31的质数的整除类似):非个位数减去个位数,差是11的倍数。

方法2(能被7、11、13整除相同):末三位数与非末三位数的差,是11的倍数。

方法3:奇数位的和减去偶数位的和,差是11的倍数。

能被13整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的4倍,和是13的倍数。

方法2(能被7、11、13整除相同):末三位数与非末三位数的差,是13的倍数。

能被17整除:方法1(能被7—31的质数的整除类似):非个位数减去个位数的5倍,差是17的倍数。

方法2(能被17、19整除类似):末三位数与3倍的非末三位数的差,是17的倍数。

能被19整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的2倍,和是19的倍数。

方法2(能被17、19整除类似):末三位数与7倍的非末三位数的差,是19的倍数。

能被23整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的7倍,和是23的倍数。

方法2(能被23、29整除相同):末四位数与5倍的非末四位数的差,是23的倍数。

能被29整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的3倍,和是29的倍数。

方法2(能被23、29整除相同):末四位数与5倍的非末四位数的差,是29的倍数。

数的整除特征特点

数的整除特征特点

数的整除特征特点 It was last revised on January 2, 2021
数的整除特征特点
一、尾数判断法:
(1) 能被 2、 5整除的数的特征:个位数字能被2或5整除。

(2) 能被4、25 整除的数的特征:末两位能被4或25整除。

(3) 能被8、125整除的数的特征:末三位能被8或125整除。

二、数字求和法
(1)能被3、9整除的数的特征:各位数字之和能被3或9整除。

三、奇偶位求差法
(1)能被11整除的数的特征:“奇位和”与“偶位和”的差能被11整除。

四、三位截断法
(1)能被7、11、13整除的数的特征:“末三位数字组成的数”与“末三位以前的数字组成的数”之差能被7或11或13整除。

整除特征:
7:个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

(如果数字太大仍然不能直接观察出来,就重复此过程。


13:个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。

17:个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

19:个位数字去掉,再从余下的数中,加上个位数的2倍,如果和是19的倍数,则原数能被19整除。

数的整除特征特点

数的整除特征特点

数的整除特征特点
一、尾数判断法:
(1) 能被2、5整除的数的特征:个位数字能被2或5整除。

(2) 能被4、25 整除的数的特征:末两位能被4或25整除。

(3) 能被8、125整除的数的特征:末三位能被8或125整除。

二、数字求和法
(1)能被3、9整除的数的特征:各位数字之和能被3或9整除。

三、奇偶位求差法
(1)能被11整除的数的特征:“奇位和”与“偶位和”的差能被11整除。

四、三位截断法
(1)能被7、11、13整除的数的特征:“末三位数字组成的数”与“末三位以前的数字组成的数”之差能被7或11或13整除。

整除特征:
7:个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

(如果数字太大仍然不能直接观察出来,就重复此过程。

)13:个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,
则原数能被13整除。

17:个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

19:个位数字去掉,再从余下的数中,加上个位数的2倍,如果和是19的倍数,则原数能被19整除。

能被4、6、7、8、11、13整除的数的特征

能被4、6、7、8、11、13整除的数的特征

能被4、6、7、8、11、13整除的数的特征一、被4或25整除的数的特征如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如: 832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.二、被6整除的数的特征三、能被6整除的数的特征末尾是0、2、4、6、8且各位上数字的和能被3整除能被6整除的数的特征既要符合能被2整除的数的特征,又要符合能被3整除的数的特征三、被7整除的数的特征方法1、(适用于数字位数少时)一个数割去末位数字,再从留下来的数中减去所割去数字的2倍,这样,一次次减下去,如果最后的结果是7的倍数(包括0),那么,原来的这个数就一定能被7整除.例如:判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

方法2、(适用于数字位数在三位以上)一个多位数的末三位数与末三位以前的数字所组成的数之差,如果能被7整除,那么,这个多位数就一定能被7整除.如判断数280679末三位数字是679,末三位以前数字所组成的数是280,679-280=399,399能被7整除,因此280679也能被7整除。

此法也适用于判断能否被11或13整除的问题。

如:283679的末三位数字是679,末三位以前数字所组成的数是283,679-283=396,396能被11整除,因此,283679就一定能被11整除.如:判断383357能不能被13整除.这个数的未三位数字是357,末三位以前的数字所组成的数是383,这两个数的差是:383-357=26,26能被13整除,因此,383357也一定能被13整除.方法3、首位缩小法,在首位或前几位,减于7的倍数。

能被1—31整除的数的特征

能被1—31整除的数的特征

能被1—31整除的数的特征能被质数整除的数的特征(1—31)7-2 11-1 13+4 17-5 19+2 23+7 29+3 31-3能被2整除:偶数。

能被3整除:各个数位的和,是3的倍数。

能被5整除:个位为0或5。

能被7整除:方法1(能被7—31的质数的整除类似):非个位数减去个位数的2倍,差是7的倍数。

例如,6139是否7的倍数?613-9×2=595,59-5×2=49,所以6139是7的倍数。

方法2(能被7、11、13整除相同):末三位数与非末三位数的差,是7的倍数。

例如,6139是否7的倍数?139-6=133,所以6139是7的倍数。

能被11整除:方法1(能被7—31的质数的整除类似):非个位数减去个位数,差是11的倍数。

方法2(能被7、11、13整除相同):末三位数与非末三位数的差,是11的倍数。

方法3:奇数位的和减去偶数位的和,差是11的倍数。

能被13整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的4倍,和是13的倍数。

方法2(能被7、11、13整除相同):末三位数与非末三位数的差,是13的倍数。

能被17整除:方法1(能被7—31的质数的整除类似):非个位数减去个位数的5倍,差是17的倍数。

方法2(能被17、19整除类似):末三位数与3倍的非末三位数的差,是17的倍数。

能被19整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的2倍,和是19的倍数。

方法2(能被17、19整除类似):末三位数与7倍的非末三位数的差,是19的倍数。

能被23整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的7倍,和是23的倍数。

方法2(能被23、29整除相同):末四位数与5倍的非末四位数的差,是23的倍数。

能被29整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的3倍,和是29的倍数。

方法2(能被23、29整除相同):末四位数与5倍的非末四位数的差,是29的倍数。

能被1~23整除的数的特征

能被1~23整除的数的特征

能被1-23整除的数的特征(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)能被2整除的数,整数的末位是0、2、4、6或8。

(3)整数能被3整除的数,整数的数字和能被3整除。

(4) 能被4整除的数,整数的末尾两位数能被4整除。

(5)能被5整除的数,整数的末位是0或5。

(6)能被6整除的数,整数能被2和3整除同时整除,即整数的数字和能被3整除,且为偶数。

(7)能被7整除的数,一个数的其末三位数与末三位前的数字所组成的差(以大减小)能被7整除。

此法也适用于能被11、13整除的数。

(8)能被8整除的数,整数的未尾三位数能被8整除。

因为1000能被8整除。

(9)能被9整除的数,整数的数字和能被9整除。

同能被3整除的数的特征相似。

(10)能被10整除的数,整数的末位是0。

(11)能被11整除的数,整数的奇位数字之和与偶位数字之和(注意:是从右往左数)的差能被11整除。

(12)能被12整除的数,整数能被3和4整除。

(13)能被13整除的数,一个数的其末三位数与末三位前的数字所组成的差(以大减小)能被7整除。

此法也适用于能被11整除的数。

(14)能被14整除的数,能同时被7和2整除。

(15)能被15整除的数,能同时被5和3整除。

(16)能被16整除的数,能同时被8和2整除。

(17)能被17整除的数,把一个整数的个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

如果数字仍然太大不能直接观察出来,就重复此过程。

另一种方法,一个数去掉末二位后得到的数的两倍与末位数之差能被17整除,则这个数就能被17整除。

(18)能被18整除的整数,整数能同时被9和2整除。

(19) 能被19整除的数,整数的个位数字去掉,再从余下的数中,加上个位数的2倍,这样,一次次下去,直到能清楚判断为止,如果是19的倍数(包括0),则这个数能被19整除。

常见数的整除特征

常见数的整除特征

常见数的整除特征1.偶数的特征:偶数是可以被2整除的数。

任何一个偶数都可以表示为2n(n为整数),所以偶数除以2的余数必为0。

2.能被5整除的特征:一个数能被5整除的条件是它的个位数字为0或5、例如,10、25、45等。

3.能被10整除的特征:一个数能被10整除的条件是它的个位数字为0。

例如,30、80、120等。

4.能被2和5同时整除的特征:一个数能同时被2和5整除的条件是它的个位数字为0、2、4、6或8、例如,40、60、100等。

5.能被3整除的特征:一个数能被3整除的条件是它的各位数字之和能被3整除。

例如,36(3+6=9,9能被3整除),258(2+5+8=15,15能被3整除)等。

6.能被9整除的特征:一个数能被9整除的条件是它的各位数字之和能被9整除。

例如,99(9+9=18,18能被9整除),891(8+9+1=18,18能被9整除)等。

7.能被4整除的特征:一个数能被4整除的条件是它的末尾两位数能被4整除。

例如,116(16能被4整除),528(28能被4整除)等。

8.能被8整除的特征:一个数能被8整除的条件是它的末尾三位数能被8整除。

例如,216(216能被8整除),1152(152能被8整除)等。

9.能被6整除的特征:一个数能被6整除的条件是它能同时被2和3整除。

根据特征1和特征5,一个数能被6整除的条件是它是一个偶数且各位数字之和能被3整除。

10.质数的特征:质数是只能被1和自身整除的数。

特征1中提到的偶数和特征2中提到的能被5整除的数不是质数。

11.完全平方数的特征:完全平方数是能被一个自然数的平方整除的数。

例如,1、4、9、16等。

一个数是否是完全平方数可以通过求平方根并判断是否是整数来确定。

总结起来,常见数的整除特征包括偶数、能被2和5同时整除的数、能被3和9整除的数、特定位数(个位、末尾两位、末尾三位)能被4和8整除的数、能被6整除的数、质数和完全平方数。

通过了解这些特征,我们可以更快地判断一个数是否能被其他数整除。

数的整除特征(一)

数的整除特征(一)

数的整除特征(一)(一)阅读思考1. 整除的意义:整数除以整数商是整数而没有余数,那么a就能被b整除。

记作b|a。

如果数a不能被数b整除,记作。

2. 数的整除特征:有时候,我们判断一个整数能不能被另一个整数整除,不需要通过除法演算来验证,而可以通过某些规律来判断,这些规律叫做“数的整除特征”。

下面就给同学们介绍一下:(1)个位是0,2,4,6,8的整数能被2整除。

例如:102,584,316976(2)个位是0或5的整数能被5整除。

例如:15,31560(3)各个数位上数字的和能被3或9整除的整数能被3或9整除。

例如:21能被3整除;36能被9整除。

能被9整除的数一定能被3整除。

(4)末尾两位数是4或25的倍数的整数,能被4或25整除。

例如:912能被4整除。

3175能被25整除;500既能被4整除又能被25整除。

(5)末尾三位数是8或125的倍数的整数,能被8或125整除。

例如:1008能被8整除。

1125能被125整除。

41000既能被8整除,又能被125整除。

(如果一个数既能被8整除,又能被125整除,这个数一定是整千数。

)(6)如果一个数奇数位上数字的和与偶数位上数字的和之差是11的倍数,那么这个数一定能被11整除。

例如:189354,奇数位上数字的和是,偶数位上数字的和是,它们的差是,因为0能被11整除,所以189354能被11整除。

(7)把一个数的末尾数字割去,从留下的数中减去所割去数字的2倍,这样继续下去,如果最后的结果是7的倍数,那么这个数就能被7整除。

例如:判断4158能不能被7整除。

4158割去末尾数字8399割去末尾数字921是7的倍数,所以4158能被7整除。

(8)把一个数的末尾数字割去,在留下的数上加上末尾数字的4倍,照这样做下去,如果最后的结果是13的倍数,这个数就能被13整除。

例如:判断10686能不能被13整除。

10686割去末尾数字61092割去末尾数字2117割去末尾数字739是13的倍数,所以10686能被13整除。

数的整除特征特点

数的整除特征特点

数的整除特征特点
数的整除特征特点
一、尾数判断法:
(1) 能被2、5整除的数的特征:个位数字能被2或5整除。

(2) 能被4、25 整除的数的特征:末两位能被4或25整除。

(3) 能被8、125整除的数的特征:末三位能被8或125整除。

二、数字求和法
(1)能被3、9整除的数的特征:各位数字之和能被3或9整除。

三、奇偶位求差法
(1)能被11整除的数的特征:“奇位和”与“偶位和”的差能被11整除。

四、三位截断法
(1)能被7、11、13整除的数的特征:“末三位数字组成的数”与“末三位以前的数字组成的数”之差能被7或11或13整除。

整除特征:
7:个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

(如果数字太大仍然不能直接观察出来,就重复此过程。

)13:个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。

17:个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

19:个位数字去掉,再从余下的数中,加上个位数的2倍,如果和是19的倍数,则原数能被19整除。

能够被2~23整除数的特征

能够被2~23整除数的特征

能够被2~23的素数整除的数的特征【能被7整除的数的特征】一个数割去末位数字,再从留下来的数中减去所割去数字的2倍,这样,一次次减下去,如果最后的结果是7的倍数(包括0),那么,原来的这个数就一定能被7整除。

例如:判断6692能不能被7整除.这种方法叫“割减法”。

此法还可简化为:从一个数减去7的10倍、20倍、30 倍、,,到余下一个100以内的数为止,如果余数能被7整除,那么,这个数就能被7整除。

【能被11整除的数的特征】把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11 整除。

例如:判断491678能不能被11整除。

→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=1223-12=11因此,491678能被11整除。

这种方法叫“奇偶位差法”。

除上述方法外,还可以用割减法进行判断。

即:从一个数里减去11的10倍、20 倍、30倍,,到余下一个100以内的数为止。

如果余数能被11整除,那么,原来这个数就一定能被11整除。

又如:判断583能不能被11整除。

用583减去11的50倍(583-11×50=33)余数是33,33能被11整除,583也一定能被11整除。

【能被13整除的数的特征】一个多位数的末三位数与末三位以前的数字所组成的数之差,如果能被13整除,那么,这个多位数就一定能被13整除。

例如:判断383357能不能被13整除。

这个数的未三位数字是357,末三位以前的数字所组成的数是383,这两个数的差是:383-357=26,26能被13整除,因此,383357也一定能被13整除。

这个方法也同样适用于判断一个数能不能被7或11整除。

如:283679的末三位数字是679,末三位以前数字所组成的数是283,679-283=396,396能被11整除,因此,283679就一定能被11整除。

能被整除的数的特征

能被整除的数的特征

能被整除的数的特征
1.能够被另一个数整除:如果一个数能够被另一个数整除,那么它就
是被整除的数的一个特征。

例如,4能够被2整除,因此4是被整除的数。

2.余数为0:当两个数进行整除运算时,如果余数为0,那么被除数
就是被整除的数。

例如,10除以5的余数为0,因此10是被整除的数。

3.可以被同一个数整除多次:如果一个数能够被同一个数整除多次,
那么它也是被整除的数的一个特征。

例如,12可以被2整除多次,因此
12是被整除的数。

4.能够被一组数整除:除了能够被单个数整除外,还有一些数能够被
一组数整除。

例如,15能够被3和5整除,因此15是被整除的数。

5.能够整除自己:除了能够被其他数整除外,数还可以被自己整除。

例如,5可以被自己整除,因此5是被整除的数。

6.能够被任意数整除:有一些数能够被任意数整除,这些数被称为无
穷整数。

例如,0、正负无穷大以及自然数的倍数都属于无穷整数。

7.有规律的整除性质:有一些数具有特殊的整除性质。

例如,能够被
2整除的数都是偶数,能够被3整除的数如果各个位上的数字之和能被3
整除,那么这个数也能被3整除。

总的来说,能够被整除的数具有上述特征之一或多个。

这些特征使我
们能够对数的整除性质进行计算和推理。

在数学和实际应用中,能够被整
除的数的特征是十分重要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二十一数的整除特征
同学们都知道,两个整数做除法运算时(除数不为0),它们的商有时是整数,有时不是整数.例如:
对于整数a与b(b≠0),若存在整数q,使等式a=bq成立,则称b 整除a,或a能被b整除.这时,称a是b的倍数,b是a的约数,并记作
整数的整除性质:
1.如果整数a、b都能被整数c整除,那么(a+b)与(a-b)也能被c整除.
2.几个整数相乘,如果其中有一个因数能被某一个整数整除,那么它们的积也能被这个数整除.
3.如果一个整数能被两个互质数中的每一个整除,那么这个数也能被这两个互质数的积整除.反过来,如果一个整数能被两个互质数的积整除,那么这个数也能分别被这两个互质的数整除.
数的整除特征:
1.末位数字是偶数的整数能被2整除;末位数字是0或5的整数能被5整除;末两位数是4(或25)的倍数的整数能被4(或25)整除;末三位数是8(或125)的倍数的整数能被8(或125)整除.
2.各位数字之和能被3(或9)整除的整数,能被3(或9整除).
3.若一个整数的奇数位数字的和与偶数位数字的和的差能被11整除,则这个数能被11整除.
问题21.1四位数57A1能被9整除,求A.
分析四位数57A1的各位数字的和应是9的倍数.
解5+7+A+1=A+13.
∵四位数57A1能被9整除,
∴A+13应是9的倍数,
∵0≤A≤9,∴13≤A+13≤22.
故 A+13=18,∴A=18-13=5.
问题21.2 六位数a8919b能被33整除,求a与b.
分析此六位数应同时是3与11的倍数.
解33=3×11.∵a8919b能被33整除,
∴ a8919b同时是3与11的倍数.
故a+8+9+1+9+b=27+a+b应是3的倍数,
且(a+9+9)-(8+1+b)=9+a-b应是11的倍数.
∵9+a-b是11的倍数,
∴ a-b=2.故a-b是偶数.
∵ a+b与 a-b同为奇数或同为偶数,
∴a+b为偶数.
∵ 27+a+b是3的倍数,∴a+b是3的倍数.
∵ a≠0,∴a+b≠0.
∵a-b=2,∴a+b≠18.
故a+b=6或 12.又a-b=2,
∴ a=4,b=2或a=7,b=5.
问题21.3 在568后面补上三个数字,组成一个六位数,使它分别能被3、4、5整除,且使这个数值尽可能小.求这个六位数.
分析根据一个整数分别被3、4、5整除的特征,通过分析推理,探求应补上的三个数字.
解设所求的六位数为568abc.
568abc能被5整除,∴ c=0或 5.
∵568abc能被4整除,∴c=0.
要使568abc的数值尽可能地小,则二位数bc=20.
568abc能被3整除,
5+6+8+a+b+c=21+a是3的倍数.
要使568abc尽可能地小,故a=0.
所以,所求的六位数为568020.
问题21.4 任意一个三位数连着写两次得到一个
六位数,这个六位数一定同时能被7、11、13整除.这是为什么?
分析用字母表示这个六位数.
所以这个六位数能同时被7、11、13整除.
问题21.5 有72名学生,共交课间餐费a527b元,每人交了多少元?
分析先求a和b代表的数字.
解把单位由元改为分,可a527b为72的倍数.
因为72=8×9,所以a527b应同为8和9的倍数.
因为a527b为8的倍数,所以27b为8的倍数,故b=2.
因为a527b为9的倍数,所以a+5+2+7+b=16+a为9的倍数,故a=2.
因此,a527b=25272. 25272÷72=351(分).
答:每人交了3.51元.
问题21.6 从0、3、5、7四个数字中任选三个,排成能同时被2、3、5整除的三位数.这样的三位数共有几个?
分析能同时被2、3、5整除的自然数,其个位数字应为0,各位数字之和应是3的倍数.
解因为所求的三位数能同时被2、5整除,所以这个三位数的个位数字为0.
因为所求的三位数能被3整除,所以这个三位数的各位数字之和应是3的倍数.
故所求的三位数为570或750,共2个.
问题21.7 用1、2、3、4、5、6、7、8、9(每个数字用一次)组成三个能被9整除的、和尽可能大的三位数,这三个三位数分别是多少?
分析所求的三个三位数能被9整除,那么它们的各位数字之和分别能被9整除.
解1+2+3+4+5+6+7+8+9=45.
因为所求的三个三位数都能被9整除,所以它们的各位数字之和分别能被9整除,故这三个三位数中有两个的数字和都是18,一个的数字和是9.
要使数字和是9的三位数尽可能大,百位上的数字必须为6,十位上的数字为2,个位上的数字为1,所以这个三位数是 621.
要使数字和是18的两个三位数尽可能大,一个的百位上数字为9,另一个百位上数字为8,十位上数字分别为5与7,个位上数字分别为4与3.故这两个三位数是954与873.
因此,所求的三个三位数分别是621、954、873.
问题21.8 已知A、B、C、D是各不相同的数字,
A+B+C=18,
分析依题意,C=3或C=8.分这两种情况进行讨论.
若 C=3,则B+D=23-3=20,这与 B+D<18矛盾.故C≠3.
若C=8,则B+D=23-8=15.故
从而A=1或A=4.
问题21.9 一个六位数的各位数字都不相同,最左边一个数字是3,且此六位数能被11整除.这样的六位数中的最小的数是多少?
分析用字母表示所求六位数的个位数字.
解依题意,设所求的六位数为30124a,
因为六位数30124a能被11整除,
所以(a+2)-(4+1+3)=a-6应是11的倍数.
故a=6.因此,所求的最小六位数是301246.
被6整除.请说明道理.
分析依题意,a+b+c+d+e是3的倍数,e是2的倍数.
解6=2×3.
的倍数,a+b+c+d+e是3的倍数.
因为
2×(a+b+c+d)-e=2×(a+b+c+d+e)-3e,
而2×(a+b+c+d+e)、3e都能被6整除,
所以 2×(a+b+c+d)-e能被6整除.。

相关文档
最新文档